
Arnold’s variational principle and its application

to the stability of planar vortices

Thierry Gallay and Vladimı́r Šverák
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Abstract

We consider variational principles related to V. I. Arnold’s stability criteria for steady-
state solutions of the two-dimensional incompressible Euler equation. Our goal is to inves-
tigate under which conditions the quadratic forms defined by the second variation of the
associated functionals can be used in the stability analysis, both for the Euler evolution and
for the Navier-Stokes equation at low viscosity. In particular, we revisit the classical exam-
ple of Oseen’s vortex, providing a new stability proof with stronger geometric flavor. Our
analysis involves a fairly detailed functional-analytic study of the inviscid case, which may
be of independent interest, and a careful investigation of the influence of the viscous term in
the particular example of the Gaussian vortex.

1 Introduction

In this paper we investigate the applicability of V. I. Arnold’s geometric methods to certain
stability problems related to Navier-Stokes vortices at high Reynolds number. Our main goal is a
“proof of concept” that such applications are possible, at least in simple cases, even though much
of the geometric structure behind the inviscid stability analysis does not survive the addition of
the viscosity term. In particular, we give a new proof of a known result concerning the stability
of Oseen’s vortex as a steady state of the Navier-Stokes equation in self-similar variables. We
expect that the approach we advertise here will be useful to tackle stability problems involving
solutions that are less symmetric and less explicit than the classical Oseen vortex. In such cases
one may not have good alternative methods for proving stability in the presence of viscosity.
Our investigation leads to a detailed study of the quadratic forms naturally arising in Arnold’s
approach. Some of their functional-analytic properties, which are established in the course of
our analysis, may be of independent interest.

1.1 A finite-dimensional model

Following V. I. Arnold’s seminal paper [2], we first illustrate the issues we want to address
in a model situation where the “phase space” is finite-dimensional. We consider the ordinary
differential equation

ẋ = b(x) , x ∈ Rn , (1.1)

where b is a smooth vector field in Rn. Let us assume that f, g1, . . . , gm : Rn → R are (sufficiently
smooth) conserved quantities for the evolution (1.1), with m < n. This means

f ′(x)b(x) = 0 and g′j(x)b(x) = 0 , x ∈ Rn , j = 1, . . . ,m , (1.2)
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where we adopt the standard notation f ′(x) for the linear form given by the first derivative of f
at x. The situation we have ultimately in mind is somewhat more specific: it corresponds to the
case where the phase space Rn is equipped with a Poisson bracket { · , · }, where system (1.1) is
of the form

ẋ = {f, x} , (1.3)

and where g1, . . . , gm are Casimir functions. The Poisson structure is of course important in
many respects, but for our arguments here it does not play a big role. We can therefore proceed
in the general context of (1.1) and (1.2).

For any c = (c1, . . . , cm) ∈ Rm, let us denote Xc = {x ∈ Rn ; g1(x) = c1, . . . , gm(x) = cm}.
We assume that, for some c ∈ Rm, the function f attains a non-degenerate local maximum on
Xc at some point x̄ ∈ Xc, and that the derivatives g′1(x̄), . . . , g′m(x̄) are linearly independent.
The stationarity condition at x̄ gives the linear relation

f ′(x̄)−
m∑
j=1

λjg
′
j(x̄) = 0 , (1.4)

for some Lagrange multipliers λ1, . . . , λm ∈ R. Moreover, the second order differential1 of the
function f |Xc (the restriction of f to Xc) at x̄ is given by the restriction to the tangent space
Tx̄Xc of the quadratic form

Q = f ′′(x̄)−
m∑
j=1

λjg
′′
j (x̄) , (1.5)

where we denote by f ′′(x̄) the quadratic form given by the Hessian of f at x̄, and similarly for
g′′1(x̄), . . . , g′′m(x̄). Our non-degeneracy assumption means that the restriction of the form Q to
Tx̄Xc is strictly negative definite. Now, let B = b′(x̄) be the n× n matrix corresponding to the
linearization of (1.1) at the point x̄, which is a steady state by construction [2]. If we differentiate
twice the relations (1.2) and use (1.4) together with b(x̄) = 0, we see that the evolution defined
by the linearized equation ξ̇ = Bξ leaves the form Q invariant. In other words,

d

dt
Q(ξ, ξ) = Q(Bξ, ξ) + Q(ξ,Bξ) = 0 , ∀ ξ ∈ Rn . (1.6)

The above structure2 gives various options for the stability analysis of the equilibrium x̄
of (1.1), depending on the index of the quadratic form Q in (1.5). Our assumptions readily
imply that x̄ is stable in the sense of Lyapunov with respect to perturbations on the invariant
submanifold Xc. Moreover, since a neighborhood of x̄ in Rn is foliated by submanifolds of
this form for nearby values of the parameter c = (c1, . . . , cm), one can show that x̄ is in fact
Lyapunov stable with respect to small unconstrained perturbations [2]. The perspective changes
qualitatively if we add to the vector field b in (1.1) a small “dissipative” term, with the effect that
the quantities f and g1, . . . , gm are no longer exactly conserved under the modified evolution.
This is in the spirit of what we intend to do in the infinite-dimensional case, when we consider
the Navier-Stokes equation as a perturbation of the Euler equation. Since the evolution no
longer takes place on the manifolds Xc, the argument above leading to unconstrained Lyapunov
stability is not applicable anymore. However, in good situations, stability can still be obtained
if the quadratic form Q in (1.5) happens to be negative definite not just on Tx̄Xc, but on larger

1We recall that the second order differential of a function on a manifold is intrinsically defined at the points
where the first order differential vanishes.

2Pointed out in [2] in the form we use here, although in the finite-dimensional case these ideas go back to the
founders of the analytical mechanics.
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subspaces as well, for instance on the whole space Rn. This is, roughly speaking, the idea we
shall pursue in the infinite-dimensional case, to study the stability of vortex-like solutions of the
Navier-Stokes equation.

To conclude with the (unmodified) evolution (1.1), we emphasize that the problem of deter-
mining the index of the form (1.5) is also very natural from the viewpoint of the usual constrained
optimization theory. Clearly, the “Lagrange function”

L(x) = f(x)−
m∑
j=1

λjgj(x) , x ∈ Rn , (1.7)

when considered on the whole space Rn, has a critical point at x̄ (and a local maximum at x̄
when restricted to Xc). The form Q will be strictly negative definite3 in the whole space Rn if
and only if L has a non-degenerate unconstrained maximum at x̄. As is explained in Section 2.4,
this is related to the concavity of the function

(c1, . . . , cm) 7−→ M(c1, . . . , cm) := sup
x∈Xc

f(x) . (1.8)

1.2 Arnold’s geometric view of the 2d incompressible Euler equation

V. I. Arnold [3, 4, 5] carried out the analogue of the above calculations in an infinite-dimensional
setting to handle in particular the 2d incompressible Euler equation ∂tω + u · ∇ω = 0, where
u denotes the velocity of the fluid and ω = curlu is the associated vorticity. In this case the
evolution is generated by the Hamiltonian function, which represents the kinetic energy of the
fluid, and the constraints are given by the Casimir functionals

CΦ(ω) =

∫
Ω

Φ(ω(x)) dx , (1.9)

where Ω ⊂ R2 is the fluid domain and Φ is an “arbitrary” function on R. The idea of maximizing
or minimizing the energy on the set of vorticities satisfying suitable constraints has been widely
used since then to study the stability of steady-state solutions of the 2d Euler equations and
related fluid models, see [5, 8, 9] and the references therein.

Let us briefly recall the setup relevant for our goals here, making the similarities with the
finite-dimensional case as transparent as possible. Our main objects will be the following:

(i) The phase space P = {ω : R2 → (0,∞) ; ω is smooth and decays “sufficiently fast” at ∞}.
This is our infinite-dimensional replacement for the manifold Rn in the finite-dimensional
model. We restrict ourselves to positive vorticity distributions defined on Ω = R2, because
this is the appropriate framework to study the stability of radially symmetric vortices in the
whole plane. Admittedly, the definition above is somewhat vague, but it serves only as a
motivation and our results will be independent of the vague parts of the definitions. There is
a natural Poisson structure on P that is relevant for the Euler equation, see Section A.5, but
here we only need some of its Casimir functionals (to be specified now).

(ii) The Casimir functionals, which play the role of the constraints gj in the finite-dimensional
example. These are linear combinations of elementary functionals of the form

h(a, ω) = |{ω > a}| =

∫
R2

χ
(
ω(x)− a

)
dx , a > 0 , (1.10)

3Our use of the terms “positive definite” and “negative definite” allows for vanishing along some directions.
When this is not the case, we speak of strictly positive definite or strictly negative definite forms.
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where χ = 1(0,∞) is the indicator function of (0,∞). Here and in what follows, we denote by
|S| the Lebesgue measure of any (Borel) set S ⊂ R2. Due to our assumptions on the vorticities
in P, the functions a 7→ h(a, ω) are finite and nonincreasing on (0,∞). In general, they do not
have to be continuous in a but they will have this property in the examples considered later.
Similarly, the functionals ω 7→ h(a, ω) may in general not be differentiable in every direction,
but they will be in our examples. It is useful to single out the quantity

M0(ω) =

∫
R2

ω(x) dx =

∫ ∞
0

h(a, ω) da , (1.11)

which will be referred to as the “mass” of the vorticity distribution ω ∈ P.

(iii) The orbits defined for any ω̄ ∈ P by

Oω̄ =
{
ω ∈ P ; h(a, ω) = h(a, ω̄) for all a ∈ (0,∞)

}
. (1.12)

These subsets of the phase space are the analogues of the manifolds Xc defined by the con-
straints, and can be considered as a measure-theoretical replacement for the symplectic leaves

OSDiff
ω̄ =

{
ω ∈ P ; ω = ω̄ ◦ φ for some φ ∈ SDiff

}
⊂ Oω̄ ,

where SDiff denotes the group of area-preserving diffeomorphisms in R2. In contrast to OSDiff
ω̄ ,

the orbit Oω̄ does not carry any topological information about ω̄, since ω ∈ Oω̄ as soon as ω
is a measure-preserving rearrangement of ω̄.

(iv) The Hamiltonian (or energy functional) E : P→ R, given by

E(ω) = −1

2

∫
R2

ψ(x)ω(x) dx = − 1

4π

∫
R2

∫
R2

log |x− y|ω(x)ω(y) dx dy , (1.13)

where ψ = ∆−1ω is the stream function defined by

ψ(x) =
1

2π

∫
R2

log |x− y|ω(y) dy , x ∈ R . (1.14)

This is an analogue of the function f in the finite-dimensional example. Note that the usual
kinetic energy defined by 1

2

∫
R2 |u|2 dx, where u = ∇⊥ψ, is infinite for ω ∈ P. However, both

definitions of the energy coincide when
∫
R2 ω dx = 0, which is the case for instance if ω is

the difference of two vorticities in P with the same mass. It is also worth observing that the
functional E is not invariant under the scaling transformation ω(x) 7→ ω(λ)(x) := λ2ω(λx)
when M0 =

∫
R2 ω dx 6= 0. In fact, one can easily check that

E(ω(λ)) = E(ω) +
M2

0

4π
log λ , for all λ > 0 .

(v) The conserved quantities induced by Euclidean symmetries. These are the first order moments
M1,M2 and the symmetric second order moment I defined by

Mj(ω) =

∫
R2

xjω(x) dx , j = 1, 2 , I(ω) =

∫
R2

|x|2ω(x) dx . (1.15)

Note that M1,M2 are associated to the translational symmetry, via Noether’s theorem, and
I to the rotational symmetry.

With these definitions, the Euler equation can be written in the form ∂tω = {E(ω), ω},
where { · , ·} denotes the Poisson bracket on P, see Section A.5. Any steady state ω̄ ∈ P

is a critical point of the Hamiltonian E on the orbit Oω̄. Stability can be inferred when the
restriction of the energy E to Oω̄ has a strict local extremum at ω̄. In what follows, we focus
on the maximizers of the energy, which correspond to radially symmetric vortices.
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1.3 The constrained maximization of the energy in P

Under our assumptions, it is easy to determine the maximizers of the Hamiltonian E under
the constraints given by the functions h(a, ω) for a ∈ (0,∞). Indeed, for any ω ∈ P, the orbit
Oω contains a unique element ω∗ that is radially symmetric and nonincreasing in the radial
direction; this is the symmetric decreasing rearrangement of ω [20]. The Riesz’s rearrangement
inequality then shows that E(ω) ≤ E(ω∗) for all ω ∈ Oω∗ , with equality if and only if ω is a
translate of ω∗, see [10, Lemma 2]. Of course ω∗ is a stationary solution of the Euler equation,
which represents a radially symmetric vortex with nonincreasing vorticity profile. Our main
focus here will be on the analogue of the quadratic form (1.5) for the steady state ω̄ = ω∗.

First, the analogue of the Lagrange function (1.7) is

E(ω)−
∫ ∞

0
Λ(a)h(a, ω) da = E(ω)−

∫ ∞
0

Λ(a)

(∫
R2

χ
(
ω(x)− a

)
dx

)
da ,

where the quantities Λ(a) for a ∈ (0,∞) can be thought of as the Lagrange multipliers. The
role of the discrete index j in (1.7) is now played by the continuous parameter a > 0. Defining4

Φ(s) = −
∫ ∞

0
Λ(a)χ(s− a) da = −

∫ s

0
Λ(a) da , s > 0 , (1.16)

we see that the Lagrange function can also be expressed as

F (ω) = E(ω) +

∫
R2

Φ(ω(x)) dx , ω ∈ P . (1.17)

This quantity will be referred to later as the “free energy” of the vorticity distribution ω, a
terminology that will be discussed in Section 1.4 below.

Next, the analogue of the stationarity condition (1.4) at ω̄ = ω∗ is F ′(ω̄) = 0, where the
linear form η 7→ F ′(ω̄)η is defined for all η ∈ Tω̄P by

F ′(ω̄)η =

∫
R2

(
−ψ̄(x) + Φ′(ω̄(x))

)
η(x) dx , ψ̄(x) =

1

2π

∫
R2

log |x− y| ω̄(y) dy .

Stationarity is thus equivalent to the relation ψ̄(x) = Φ′(ω̄(x)) for all x ∈ R2. Finally the
analogue of (1.5) is the quadratic form η 7→ F ′′(ω̄)[η, η], where

F ′′(ω̄)[η, η] =

∫
R2

(
−ϕη + Φ′′(ω̄)η2

)
dx , ϕ(x) =

∫
R2

1

2π
log |x− y| η(y) dy .

Using the relation ∇ψ̄(x) = Φ′′(ω̄(x))∇ω̄(x), the second variation can be rewritten in the form

F ′′(ω̄)[η, η] =

∫
R2

(
−ϕη +

∇ψ̄
∇ω̄

η2
)

dx = 2E(η) +

∫
R2

∇ψ̄
∇ω̄

η2 dx , (1.18)

which is well-known from Arnold’s work. Note that the ratio ∇ψ̄∇ω̄ is meaningful only when the
vector ∇ω̄(x) is nonzero and collinear with ∇ψ̄(x) for almost all x ∈ R2. This condition is
obviously satisfied for all radially symmetric vortices with strictly decreasing vorticity profile.

1.4 Overview of our results

We are now able to describe more precisely the results of this paper. We consider a general
family of radially symmetric vortices ω̄ ∈ P with vorticity profile satisfying Hypotheses 2.1
below. Typical examples are the “algebraic vortex” ω̄(x) = (1 + |x|2)−κ, where κ > 1 is a
parameter, and the Oseen vortex for which ω̄(x) = e−|x|

2/4.

4The reason for the minus sign in (1.16) will become clear later.
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1.4.1 Arnold’s quadratic forms with and without constraints

In Section 2, we study in detail the quadratic form (1.18) associated with the second variation of
the Lagrange function (1.17) at the steady state ω̄ ∈ P, paying some attention to the functional-
analytic questions. First of all, while we know from the constrained maximization result that the
restriction of that form to the tangent space Tω̄Oω̄ is negative, it is not clear if this restriction is
strictly negative definite, and if so in which function space. Our first main result is Theorem 2.5,
where we show that, if two neutral directions corresponding to translational symmetry are
disregarded, the restriction to Tω̄Oω̄ of the quadratic form (1.18) is indeed strictly negative in
an appropriate weighted L2 space. The proof ultimately relies on a variant of the Krein-Rutman
theorem.

We next investigate the index of the quadratic form (1.18) on a much larger subspace,
corresponding to perturbations η ∈ Tω̄P satisfying

∫
R2 η(x) dx = 0. In other words, we relax

all constraints given by the Casimir functions (1.10), except for the mass M0 defined in (1.11),
which is still supposed to be constant. A priori there is no reason why the form (1.18) should be
negative definite in this larger sense, and indeed Theorem 2.8 shows that this is not always the
case. More precisely, we show that negativity holds in the large sense if and only if the optimal
constant in some weighted Hardy inequality (where the weight function depends on the vorticity
profile ω̄) is smaller than 1. While that condition is not easy to check in general, we deduce
from Corollary 2.11 that it is fulfilled at least for the Oseen vortex, as well as for the algebraic
vortex ω̄(x) = (1 + |x|2)−κ if κ ≥ 2.

Although the mass constraint is rather natural, one may wonder if, for some vorticity profiles,
the quadratic form (1.18) can be negative definite for all perturbations η ∈ Tω̄P; this question
is briefly discussed in Section 2.3. Finally, in Section 2.4, we give a fairly explicit expression
of the energy E(ω̄) in terms of the constraints h(a, ω̄) for all a > 0, see Proposition 2.16. One
obtains in this way an infinite-dimensional analogue of the quantity M(c1, . . . , cn) defined in
(1.8). Among other things, we justify our claim that the index of the quadratic form (1.5) is
related to the concavity of the function (1.8) (which is a well known fact), and we discuss a
similar link in the infinite-dimensional case.

As an aside, we mention here that the stability of radially symmetric vortices for the 2d
Euler equations can also be studied using other conserved quantities, such as the second order
symmetric moment I defined in (1.15), see e.g. [21, Chapter 3].

1.4.2 The global maximizers of the free energy

Let ψ̄ be the stream function associated with the radially symmetric vortex ω̄. We have seen
that the analogue of the Lagrange function (1.7) is given by the “free energy” (1.17), where
the function Φ is defined, up to an additive constant, by the relation ψ̄(x) = Φ′(ω̄(x)). The
appellation “free energy” is partially justified by a (loose) analogy of formula (1.17) with the
classical thermodynamical expression for the free energy

F = U − TS . (1.19)

Here U is the internal energy (of a suitable system), T is the temperature, and S is the entropy.
In (1.17), the energy E is analogous to U , the integral

∫
R2 Φ(ω(x)) dx is analogous to S, and

one can argue that it is reasonable to take T = −1. Of course, T has nothing to do with the
real temperature of the fluid, but should roughly be thought of as the statistical mechanics
temperature of our system in the sense of Onsager [24]. We have not attempted to make this
connexion rigorous, which would take us in a different direction.

6



In Section 3, we consider vortices ω̄ which are global maximizers of the free energy F (ω) for all
ω ∈ P satisfying

∫
R2 ω dx =

∫
R2 ω̄ dx. Such equilibria can be expected to have strong stability

properties, and may be useful for other purposes too. Using a direct approach, in the sense
of the calculus of variations, we prove the existence of global maximizers under fairly general
assumptions on the function Φ, see Theorem 3.4. However, we do not have any efficient method
to determine if a given vortex ω̄ is a global maximizer or not. A necessary condition is of course
that the quadratic form (1.18) be negative on perturbations η with zero mean, see Theorem 2.8,
but there is no reason to believe that this is sufficient. Numerical evidence indicates that the
Oseen vortex is a global maximizer, and so are the algebraic vortices ω̄(x) = (1 + |x|2)−κ for
κ ≥ 2. In the particular case κ = 2, maximality can be deduced from the logarithmic Hardy-
Littlewood-Sobolev inequality∫

R2

∫
R2

log
1

|x− y|
ω(x)ω(y) dx dy ≤ 1

2

∫
R2

ω(x) log(ω(x)) +
1 + log(π)

2
, (1.20)

which holds for all ω ∈ P with M0(ω) = 1, see [10]. We mention that (1.20) is related to Onofri’s
sharp version of the Moser-Trudinger inequality [23].

1.4.3 The effect of viscosity — application to Oseen vortices

In Section 4, we consider the stability of the Gaussian vortex under the evolution defined by
the Navier-Stokes equation ∂tω + u · ∇ω = ν∆ω, where ν > 0 is the viscosity parameter. More
precisely, we show that the quadratic form (1.18) can be used to give an alternative proof of the
local stability results established in [17]. We believe that a proof relying on the second variation
of the energy is of some interest, because the analogue of the form (1.18) can be defined for
more complicated vortex structures as well, whereas the simpler approach in [17] may be more
difficult to adapt.

The addition of the viscous term results in important new issues: the radial vortices are no
longer steady states and the orbits (1.12) are no longer invariant under the evolution, so that
much of the geometric picture underlying the Euler equation is destroyed. The first problem is
settled by introducing self-similar variables and restricting ourselves to Oseen’s vortex, which is
a stationary solution of the Navier-Stokes equation in these new coordinates. Thanks to The-
orem 2.8 and Corollary 2.11, the quadratic form (1.18) is positive definite for all perturbations
with zero mean. This form is invariant under the evolution defined by the linearized Euler equa-
tion at the vortex, but not under the Navier-Stokes evolution due to the viscous term and the
nonlinearity. The effect of viscosity is measured by a second quadratic form, which happens to
have a favorable sign, see Theorem 4.2. We do not know if this is just a lucky coincidence, or if
there are deeper reasons behind that. In any event, this nice structure allows us to recover the
local stability result of [17], except for a slight difference in the choice of the function space, see
Theorem 4.5. Again, we emphasize that the functional setting used in [17] relies in an essential
way on the radial symmetry of Oseen’s vortex, through the existence of conserved quantities
such as the moment I in (1.15), whereas our new approach can, at least in principle, be adapted
to more general situations, where other methods do not work.

Acknowledgments. ThG is partially supported by the grant SingFlows ANR-18-CE40-0027
of the French National Research Agency (ANR). The research of VS is supported in part by
grant DMS 1956092 from the National Science Foundation.
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2 The second variation of the energy

In this section we study the coercivity, on various subspaces, of the quadratic form (1.18) which
represents the second variation of the free energy (1.17) at a radially symmetric vortex ω̄ ∈ P.
We assume that ω̄(x) = ω∗(|x|) for all x ∈ R2, and that the vorticity profile ω∗ : [0,+∞) → R
is a C2 function with the following properties :

Hypotheses 2.1. The vorticity profile ω∗ ∈ C2([0,+∞)) satisfies

1) ω∗(0) > 0, ω′∗(0) = 0, and ω′′∗(0) < 0;

2) ω′∗(r) < 0 for all r > 0, and ω∗(r)→ 0 as r → +∞;

3) there exists C > 0 and β > 2 such that |ω′∗(r)| ≤ C(1 + r)−β−1 for all r > 0.

It follows in particular from 2), 3) that ω∗(r) = −
∫∞
r ω′∗(s) ds, so that

0 < ω∗(r) ≤
C

(1 + r)β
∀ r > 0 , and 0 <

∫ ∞
0

rω∗(r) dr < ∞ . (2.1)

Let ψ̄ be the stream function associated with ω̄ as in (1.14). We have ψ̄(x) = ψ∗(|x|), where the
stream profile ψ∗ : [0,+∞)→ R satisfies

ψ′′∗(r) +
1

r
ψ′∗(r) = ω∗(r) , hence ψ′∗(r) =

1

r

∫ r

0
sω∗(s) ds , ∀ r > 0 . (2.2)

We introduce the weight function A : [0,+∞)→ R defined by A(0) = −ω∗(0)/(2ω′′∗(0)) and

A(r) = −ψ
′
∗(r)

ω′∗(r)
= − 1

rω′∗(r)

∫ r

0
sω∗(s) ds , r > 0 . (2.3)

Hypotheses 2.1 ensure that A ∈ C0([0,+∞)) ∩ C1((0,+∞)). Moreover, there exists a constant
C > 0 such that A(r) ≥ C(1 + r)β for all r ≥ 0.

Let A : R2 → (0,∞) be the radially symmetric extension of A to R2, namely A(x) = A(|x|)
for all x ∈ R2. We introduce the weighted L2 space X defined by

X =
{
ω ∈ L2(R2) ; ‖ω‖2X :=

∫
R2

A(x)|ω(x)|2 dx <∞
}
, (2.4)

so that ω ∈ X if and only if A1/2ω ∈ L2(R2). Our assumptions ensure that A−1 ∈ L1(R2),
and using Hölder’s inequality we easily deduce that X ↪→ L1(R2). We also consider the closed
subspaces X1 ⊂ X0 ⊂ X defined by

X0 =
{
ω ∈ X ;

∫
R2

ω(x) dx = 0
}
,

X1 =
{
ω ∈ X0 ;

∫
R2

xj
|x|

ω(x) dx = 0 for j = 1, 2
}
.

(2.5)

We observe that, for any ω ∈ X, the energy E(ω) introduced in (1.13) is well defined. This
a consequence of the following classical estimate, whose proof is reproduced in Section A.1 for
the reader’s convenience.

Proposition 2.2. Assume that ω ∈ L1(R2) satisfies∫
R2

|ω(x)| log(1 + |x|) dx < ∞ , and

∫
R2

|ω(x)| log
(
1 + |ω(x)|

)
dx < ∞ . (2.6)
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Then the last member in (1.13) is well defined, and the energy E(ω) satisfies the bound

|E(ω)| ≤ C‖ω‖L1

(∫
R2

|ω(x)| log(2 + |x|) dx+

∫
R2

|ω(x)| log+

|ω(x)|
‖ω‖L1

dx

)
, (2.7)

where log+(a) = max
(
log(a), 0

)
. If moreover

∫
R2 ω(x) dx = 0, then E(ω) = 1

2

∫
R2 |u|2 dx where

u(x) = ∇⊥ψ(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(y) dy , x ∈ R2 . (2.8)

Since any ω ∈ X obviously satisfies (2.6), we can consider the quadratic form J on X defined
by J(ω) = 1

2 ‖ω‖
2
X − E(ω), or explicitly

J(ω) =
1

2

∫
R2

A(x)ω(x)2 dx +
1

4π

∫
R2

∫
R2

log |x− y|ω(x)ω(y) dx dy , ω ∈ X . (2.9)

In the particular case where ω ∈ X0, namely when ω has zero average over R2, Proposition 2.2
gives the alternative expression

J(ω) =
1

2

∫
R2

(
A(x)ω(x)2 − |u(x)|2

)
dx , ω ∈ X0 , (2.10)

where u is the velocity field associated with ω via the Biot-Savart formula (2.8). In view of
(1.18) and (2.3), we have J = −1

2F
′′(ω̄), where F ′′(ω̄) is the second variation of the free energy

(1.17) at the equilibrium ω̄. It is clear that X is the largest function space on which this second
variation is well defined.

Our main goal in this section is to study the positivity and coercivity properties of the
quadratic form J on the spaces X, X0, and X1 defined in (2.4), (2.5). To formulate our results,
it is useful to decompose X = Xrs ⊕X⊥rs , where

Xrs =
{
ω ∈ X ; ω is radially symmetric

}
, (2.11)

and X⊥rs is the orthogonal complement of Xrs in the Hilbert space X. Referring to the geometric
picture of Section 1.2, we consider X⊥rs as the tangent space to the orbit Oω̄ at ω̄. This inter-
pretation can be formally justified as follows: if ω̄ ∈ X is smooth, the tangent space Tω̄Oω̄ is
spanned by vorticities of the form v · ∇ω̄, where v is a (smooth and localized) divergence-free
vector field, and using polar coordinates as in Section 2.1 below one verifies that such vorticities
are indeed orthogonal in X to all radially symmetric functions. A contrario, since there is a
one-to-one correspondence in P between orbits and symmetric decreasing rearrangements, it is
clear that any radially symmetric perturbation of the equilibrium ω̄ is transverse to the orbit
Oω̄.

It is easy to verify that J(ω1 +ω2) = J(ω1)+J(ω2) when ω1 ∈ Xrs and ω2 ∈ X⊥rs , so that the
restrictions of J to Xrs and X⊥rs can be studied separately. We first consider the tangent space
X⊥rs in Section 2.1, and postpone the study of radially symmetric perturbations (with zero or
nonzero mass) to Sections 2.2 and 2.3.

Remark 2.3. Differentiating the first equality in (2.2), we see that the function φ = ψ′∗ satisfies(
L0φ

)
(r) := −φ′′(r)− 1

r
φ′(r) +

1

r2
φ(r) =

1

A(r)
φ(r) , r > 0 , (2.12)

where A(r) ≥ C(1 + r)β. Since φ > 0, Sturm-Liouville theory asserts that µ = 1 is the low-
est eigenvalue of the (generalized) eigenvalue problem L0φ = µA−1φ on R+, with boundary
conditions φ(0) = φ(+∞) = 0, see [11, 18]. This observation will be used later.
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Remark 2.4. Hypotheses 2.1 are sufficient for our results to hold, but can be relaxed in several
ways. In particular, we can consider vortices that are not smooth at the origin, but the assump-
tion that ω′∗(r) < 0 for all r > 0 seems essential. This excludes vortices with compact support
from our considerations, but as our motivation comes from applications to the Navier-Stokes
equations, hypotheses 2.1 are good enough for our purposes here. Of course, extensions of the
theory that would include compactly supported vortices might be relevant in other situations and
can probably be constructed, although they may require additional work.

2.1 Positivity of the quadratic form J on X⊥rs

Theorem 2.5. Under Hypotheses 2.1, the quadratic form J defined by (2.10) is nonnegative on
the space X⊥rs ⊂ X0. Moreover, there exists a constant γ > 0 such that

J(ω) ≥ γ

2

∫
R2

A(x)ω(x)2 dx , for all ω ∈ X⊥rs ∩X1 . (2.13)

Proof. We introduce polar coordinates (r, θ) in R2, and given any ω ∈ X⊥rs we use the Fourier
decomposition

ω
(
r cos(θ), r sin(θ)

)
=
∑
k 6=0

ωk(r) e
ikθ , r > 0 , θ ∈ R/(2πZ) , (2.14)

where the sum runs over all nonzero integers k ∈ Z \ {0}. By Parseval’s relation we have∫
R2

A(x)ω(x)2 dx = 2π
∑
k 6=0

∫ ∞
0

A(r) |ωk(r)|2 r dr ,∫
R2

|u(x)|2 dx =

∫
R2

(
−∆−1ω

)
(x)ω(x) dx = 2π

∑
k 6=0

∫ ∞
0

Bk[ωk](r)ωk(r) r dr ,

(2.15)

where Bk is the integral operator on the half-line R+ defined by the formula(
Bk[f ]

)
(r) =

1

2|k|

∫ ∞
0

min
(r
s
,
s

r

)|k|
f(s) s ds , r > 0 . (2.16)

Note that g = Bk[f ] is the unique solution of the ODE

−g′′(r)− 1

r
g′(r) +

k2

r2
g(r) = f(r) , r > 0 , (2.17)

which is regular at the origin and converges to zero at infinity.

In view of (2.15), the proof of Theorem 2.5 reduces to the study of the one-dimensional
inequality ∫ ∞

0

(
Bk[f ]

)
(r) f(r) r dr ≤ Ck

∫ ∞
0

A(r)|f(r)|2 r dr , (2.18)

which depends on the angular Fourier parameter k ∈ Z\{0}. More precisely, the quadratic form
J is nonnegative on X⊥rs if and only if, for all k 6= 0, inequality (2.18) holds with some constant
Ck ≤ 1. In addition, we have the lower bound (2.13) on the subspace X⊥rs ∩ X1 if and only if
inequality (2.18) holds with a better constant Ck ≤ 1− γ for all k 6= 0, assuming when |k| = 1
that f satisfies the additional condition∫ ∞

0
f(r) r dr = 0 . (2.19)
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It remains to establish inequality (2.18) for all k ∈ Z \ {0}. We obviously have the pointwise
bound |(Bk[f ])(r)| ≤ (Bk[|f |])(r), so that we can restrict ourselves to nonnegative functions f .
Moreover the operator Bk preserves positivity, and an inspection of the formula (2.16) reveals
that 0 ≤ Bk[f ] ≤ |k|−1B1[f ] if f ≥ 0. As a consequence, to show that J is nonnegative on X⊥rs ,
it is sufficient to prove inequality (2.18) in the particular case where |k| = 1 and f ≥ 0. Setting
h = A1/2f , we write that inequality in the equivalent form∫ ∞

0

(
B̃1[h]

)
(r)h(r) r dr ≤ C1

∫ ∞
0

h(r)2 r dr , (2.20)

where B̃1[h] = A−1/2B1[A−1/2h]. The following assertions play a crucial role in our argument :

Claim 1 : The operator B̃1 is selfadjoint and compact in the (real) space Y = L2(R+, r dr).
Indeed, take h ∈ Y with ‖h‖Y ≤ 1, and denote f = A−1/2h, g = B1[f ] = A1/2B̃1[h]. Applying
(2.16) with |k| = 1, we see that

g(r) =
1

2r

∫ r

0
A(s)−1/2h(s) s2 ds +

r

2

∫ ∞
r

A(s)−1/2h(s) ds , r > 0 ,

and using Hölder’s inequality we deduce

|g(r)| ≤
{

1

2r

(∫ r

0
A(s)−1 s3 ds

)1/2
+
r

2

(∫ ∞
r

A(s)−1 s−1 ds
)1/2

}
‖h‖Y . (2.21)

As A(r) ≥ C(1 + r)β with β > 2, the right-hand side of (2.21) is uniformly bounded, so that
‖g‖L∞ ≤ C for some universal constant C. It also follows from (2.21) that g(r) → 0 as r → 0
and r → +∞. On the other hand, since g satisfies the ODE (2.17) with k = 1 and f = A−1/2h,
a standard energy estimate yields the bound∫ ∞

0

(
g′(r)2 +

g(r)2

r2

)
r dr =

∫ ∞
0

g(r)A(r)−1/2h(r) r dr ≤ ‖g‖L∞‖A−1/2‖Y ‖h‖Y ≤ C . (2.22)

In view of (2.21) and (2.22), the Fréchet-Kolmogorov theorem [25, Thm XIII.66] implies that
the function B̃1[h] = A−1/2g lies in a compact set of Y , so that the operator B̃1 is compact. To
prove that B̃1 is selfadjoint, we take h1, h2 ∈ Y and observe that∫ ∞

0

(
B̃1[h1]

)
(r)h2(r) r dr =

∫ ∞
0

(
g′1(r)g′2(r) +

g1(r)g2(r)

r2

)
r dr ,

where gj = B1[A−1/2hj ] for j = 1, 2. This expression is clearly a symmetric function of (h1, h2).

Claim 2 : The spectral radius of B̃1 is equal to 1, and λ = 1 is a simple eigenvalue of B̃1.
To see that, we first observe that λ = 1 is an eigenvalue of B̃1 with a positive eigenfunction.
Indeed, using (2.2), it is straightforward to verify that the function g = ψ′∗ satisfies the ODE
(2.17) with k = 1 and f = −ω′∗. This shows that B1[−ω′∗] = ψ′∗, hence defining h = A−1/2ψ′∗ =
−A1/2ω′∗ we conclude that B̃1[h] = h. On the other hand, assume that λ > 0 is an eigenvalue
of B̃1, with eigenfunction h ∈ Y . Defining f = A−1/2h, we see that B1[f ] = λAf , so that the
function g = B1[f ] satisfies the generalized eigenvalue problem

−g′′(r)− 1

r
g′(r) +

1

r2
g(r) = µ

g(r)

A(r)
, r > 0 , (2.23)

with the boundary conditions g(0) = g(+∞) = 0, where µ = 1/λ, We already observed that
µ = 1 is the lowest eigenvalue of (2.23), see Remark 2.3. It follows that λ = 1 is the largest eigen-
value of the integral operator B̃1, whose spectral radius is therefore equal to 1. The argument
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above also shows that all positive eigenvalues of B̃1 are simple, because (2.23) is a second-order
differential equation.

It is now a simple task to conclude the proof of Theorem 2.5. Claims 1 and 2 imply the
validity of inequality (2.20) with C1 = 1. We deduce that (2.18) holds for |k| = 1 with Ck = 1,
and (since Bk ≤ |k|−1B1) for |k| ≥ 2 with Ck ≤ 1/|k|. This shows that the quadratic form
J is nonnegative on X⊥rs . On the other hand, if we assume that ω ∈ X⊥rs ∩ X1, the function
f = ω±1 satisfies condition (2.19), which means that h = A1/2f is orthogonal in Y to the one-
dimensional subspace Y0 spanned by the positive function χ = A−1/2. It is clear that Y ⊥0 does
not contain any positive function, and in particular does not include the principal eigenfunction
h0 = −A1/2ω′∗ of the operator B̃1. So, applying Lemma 4.7 and Remark 4.8 below, we deduce
that 1 − B̃1 > 0 on Y ⊥0 , which means that inequality (2.20) holds on Y ⊥0 with some constant
C ′1 < 1. Taking into account the other values of k, for which Ck ≤ 1/|k| ≤ 1/2, we conclude
that estimate (2.13) holds with γ = min(1/2, 1−C ′1).

Remark 2.6. The Krein-Rutman theorem [12, Thm 19.2] asserts that the spectral radius of
the compact and positivity-preserving operator B̃1 is an eigenvalue with positive eigenfunction.
However, since the cone of positive functions has empty interior in Y , we cannot apply Theo-
rem 19.3 in [12] to conclude that B̃1 has a unique eigenvalue with positive eigenfunction, which
is thus equal to the spectral radius. For this reason, we prefer invoking Sturm-Liouville theory
to prove that 1 is the largest eigenvalue of B̃1.

Remark 2.7. If β > 4 in Hypotheses 2.1, the conclusion of Theorem 2.5 remains valid, with
the same proof, if the subspace X1 is replaced by

X1 =
{
ω ∈ X0 ;

∫
R2

xj ω(x) dx = 0 for j = 1, 2
}
. (2.24)

This possibility will be used in Section 4.

2.2 Positivity of the quadratic form J on Xrs ∩X0

The quadratic form J is not necessarily positive when considered on the subspace Xrs ∩ X0,
which consists of radially symmetric functions with zero mean. This question is related to the
optimal constant in the weighted Hardy inequality∫ ∞

0
f(r)2 dr

r
≤ CH

∫ ∞
0

A(r)f ′(r)2 dr

r
, (2.25)

where f : [0,+∞)→ R is an absolutely continuous function with f(0) = f(+∞) = 0. Weighted
Hardy inequalities are extensively studied in the literature, see e.g. [22, Section 1.3.2]. In
particular, it is known that (2.25) holds for some constant CH > 0 if and only if the positive
function A satisfies

lim sup
r→0

(
log

1

r

)∫ r

0

s

A(s)
ds < ∞ , and lim sup

r→+∞
log(r)

∫ ∞
r

s

A(s)
ds < ∞ . (2.26)

Both conditions in (2.26) are fulfilled in our case, since A(r) ≥ C(1 + r)β for some β > 2.

Theorem 2.8. Under Hypotheses 2.1, the quadratic form J defined by (2.10) is coercive on
Xrs ∩X0 if and only if Hardy’s inequality (2.25) holds for some CH < 1. In that case we have

J(ω) ≥ γ

2

∫
R2

A(x)ω(x)2 dx , for all ω ∈ Xrs ∩X0 , (2.27)

where γ = 1− CH .
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Proof. Given ω ∈ Xrs ∩X0, we write ω(x) = ω0(|x|) and we consider the stream function ψ0

defined (up to an irrelevant additive constant) by

ψ′0(r) =
1

r

∫ r

0
sω0(s) ds = −1

r

∫ ∞
r

sω0(s) ds , r > 0 .

Defining f(r) = rψ′0(r), we see that f is absolutely continuous on R+ with f(0) = f(+∞) = 0.
Moreover we have ω0(r) = f ′(r)/r and u0(r) := ψ′0(r) = f(r)/r by construction. Finally the
assumption that ω0 ∈ Xrs∩X0 ensures that A1/2ω0 and u0 belong to the space Y = L2(R+, r dr).
We thus have

J(ω) = π

∫ ∞
0

(
A(r)ω0(r)2 − u0(r)2

)
r dr = π

∫ ∞
0

(
A(r)f ′(r)2 − f(r)2

)dr

r
, (2.28)

and using (2.25) we conclude that (2.27) holds with γ = 1−CH . This proves that the quadratic
form J is coercive on Xrs ∩X0 if CH < 1. Conversely, if (2.27) holds for some γ > 0, it follows
from (2.28) that inequality (2.25) is valid with CH = 1− γ.

As is well known, the optimal constant in Hardy’s inequality (2.25) is related to the lowest
eigenvalue of a selfadjoint operator. A convenient way of seeing this is to apply the change of
variables r = ex, h(x) = f(ex), B(x) = e−2xA(ex), which transforms (2.25) into the equivalent
inequality ∫

R
h(x)2 dx ≤ CH

∫
R
B(x)h′(x)2 dx . (2.29)

The integral in the right-hand side of (2.29) defines a closed quadratic form on the Hilbert space
H = L2(R), with dense domain D = {h ∈ H ; B1/2h′ ∈ H}. Let

B : D(B) −→ H , h 7−→ −∂x(B(x)∂xh)

be the selfadjoint operator in H associated with the quadratic form (2.29) by Friedrich’s rep-
resentation theorem [19]. Since B(x) > 0 for all x ∈ R we know that B is positive, and using
the fact that x2B(x)−1 → 0 as |x| → ∞ it is easy to verify that B has compact resolvent in H,
hence purely discrete spectrum. The optimal constant in CH in (2.29) is precisely the inverse of
the lowest eigenvalue of B :

CH = max
{
λ−1 ; λ ∈ spec(B)

}
. (2.30)

By Sturm-Louville’s theory, if µ = C−1
H is the lowest eigenvalue of B, there exists a positive

eigenfunction h ∈ D(B) such that Bh = µh. Setting h(x) = f(ex), we see that f is a positive
solution of the ODE

−∂r
(
A(r)

r
∂rf(r)

)
= µ

f(r)

r
, r > 0 , (2.31)

satisfying the boundary conditions f(0) = f(+∞) = 0. Moreover
∫∞

0 A(r)f ′(r)2 dr/r < ∞ by
construction. It is not easy to guess from (2.31) whether µ is smaller or larger than 1, but under
additional assumptions on the vortex profile it is possible to make another change of variables
which puts (2.31) into a form that allows for a comparison with (2.12).

Lemma 2.9. If the function A in (2.3) satisfies

A ∈ C2([0,+∞)) , and sup
r≥1

(
A(r)

r2
+
A′(r)2

r2A(r)

)∫ ∞
r

s

A(s)
ds < ∞ , (2.32)

13



then the function g : [0,+∞)→ R defined by g(r) = A(r)1/2f(r)/r is a solution of the ODE

−g′′(r)− 1

r
g′(r) +

1

r2
g(r) + V (r)g(r) =

µ

A(r)
g(r) , (2.33)

with boundary conditions g(0) = g(+∞) = 0, where

V (r) = χ′′(r)− 1

r
χ′(r) + χ′(r)2 , and χ(r) =

1

2
log(A(r)) . (2.34)

Proof. Since f satisfies (2.31), a direct calculation shows that g(r) := A(r)1/2f(r)/r is a solution
of (2.33), where the potential V is defined by (2.34). As for the boundary conditions, we recall
that

∫∞
0 A(r)f ′(r)2 dr/r <∞, hence

∫∞
0 |f

′(r)|dr <∞. As f(r) =
∫ r

0 f
′(s) ds, we have

|f(r)|
r
≤ 1

r

(∫ r

0

s

A(s)
ds

)1/2(∫ r

0
A(s)f ′(s)2 ds

s

)1/2

−−−→
r→0

0 ,

which shows that g(r)→ 0 as r → 0. Similarly, since f(r) = −
∫∞
r f ′(s) ds, we have

|g(r)| ≤ A(r)1/2

r

(∫ ∞
r

s

A(s)
ds

)1/2(∫ ∞
r

A(s)f ′(s)2 ds

s

)1/2

−−−−→
r→+∞

0 ,

thanks to (2.32). This concludes the proof.

Remark 2.10. The same arguments show that r2g′(r)→ 0 as r → 0 and g′(r)→ 0 as r → +∞,
at least along appropriate sequences.

Let L be the differential operator defined by

L = L0 + V = −∂2
r −

1

r
∂r +

1

r2
+ V (r) , (2.35)

where L0 was introduced in (2.12). We know from (2.33) that Lg = µA−1g, where µ = C−1
H and

g is the positive function defined in Lemma 2.9. On the other hand, we observed in Remark 2.3
that L0φ = A−1φ, where φ = ψ′∗ is also a positive function vanishing at the origin and at infinity.
Using Sturm-Liouville’s theory, we easily deduce the following useful criterion:

Corollary 2.11. Under assumptions (2.32), if the function V defined by (2.34) does not change
sign, the optimal constant in Hardy’s inequality (2.25) satisfies CH ≤ 1 if V ≥ 0, and CH ≥ 1
if V ≤ 0; moreover CH = 1 only if V is identically zero.

Proof. With the notations above, we have L0φ−A−1φ = 0 and

L0g −A−1g = Lg −
(
A−1 + V )g = R , where R = (µ− 1)A−1g − V g . (2.36)

Since rRφ = r
(
φ(L0g)− g(L0φ)

)
= d

dr

(
r(φ′g − g′φ)

)
, we have for r1 > r0 > 0 the identity∫ r1

r0

R(r)φ(r)r dr = r
(
φ′(r)g(r)− g′(r)φ(r)

) ∣∣∣r=r1
r=r0

. (2.37)

Now, we let r0 tend to 0 and r1 to +∞ along appropriate sequences, in such a way that the
right-hand side of (2.37) converges to zero. This possible, because we know that φ(r) = O(r)
and φ′(r) = O(1) as r → 0, while φ(r) = O(1/r) and φ′(r) = O(1/r2) as r → +∞; moreover
the behavior of g in these limits is given in Lemma 2.9 and Remark 2.10. We thus deduce from
(2.37) that

∫∞
0 Rφr dr = 0, which is impossible if the function R has a constant sign and is not

identically zero. So, if V does not change sign, we must have µ ≥ 1 if V ≥ 0 and µ ≤ 1 if V ≤ 0;
moreover µ = 1 is possible only if V ≡ 0. Since µ = C−1

H , this gives the desired conclusion.
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Remark 2.12. As is easily verified, the optimal constant CH in Hardy’s inequality (2.25) is
unchanged if the function A(r) is replaced by λ−2A(λr) for some λ > 0. This corresponds to a
rescaling of the vortex profile ω∗.

We now give two important examples where the sign of CH − 1 can be determined.

Example 1 : Algebraic vortex. Given κ > 1, we define

ω∗(r) =
1

(1 + r2)κ
, ψ′∗(r) =

1

2(κ−1)r

(
1− 1

(1 + r2)κ−1

)
. (2.38)

We have

A(r) = −ψ
′
∗(r)

ω′∗(r)
=

1

4κ(κ−1)r2

(
(1 + r2)κ+1 − (1 + r2)2

)
.

When κ = 2 (Kaufmann-Scully vortex), inequality (2.25) holds with optimal constant CH = 1,
and is saturated for f(r) = r2/(1 + r2)2. Indeed, it is easy to verify that A(r) = (1 + r2)2/8
and V (r) = 0 in that particular case. Taking g(r) = r/(1 + r2), a direct calculation shows that
Lg = A−1g, so that CH = 1.

If κ > 2, we prove in Section A.2 that the potential V is positive, so that CH < 1 by
Corollay 2.11. Finally, if 1 < κ < 2, the potential V is negative, implying that CH > 1.
Summarizing, for the family of algebraic vortices (2.38), the quadratic form J is coercive on
Xrs ∩X0 if and only if κ > 2.

Example 2 : Gaussian vortex. We next consider the Oseen vortex given by

ω∗(r) = e−r
2/4 , ψ′∗(r) =

2

r

(
1− e−r2/4

)
, A(r) =

4

r2

(
er

2/4 − 1
)
. (2.39)

In that case too, the potential V defined in (2.34) is positive, see Section A.2. By Corollary 2.11,
we conclude that CH < 1, so that the quadratic form J is coercive on Xrs ∩ X0. A numerical
calculation gives the approximate value CH ≈ 0.57, so that γ ≈ 0.43.

Remark 2.13. In a finite-dimensional situation, one can use statements such as Theorems 2.5
and 2.8 for showing the nonlinear Lyapunov stability of the corresponding steady solution, at
least if the smoothness class of the relevant objects is C2. More precisely, if a flow ẋ = b(x)
on a finite-dimensional manifold preserves a C2 function f which attains a non-degenerate local
maximum at x̄, then the sets {f(x) > f(x̄) − ε} are invariant under the flow and for small ε
are well approximated by the small balls given by the quadratic form −1

2f
′′(x̄)[x − x̄, x − x̄]. A

standard way to see this is to write f(x) > f(x̄)− ε as

−1

2
f ′′(x̄)[x− x̄, x− x̄]−

∫ 1

0
(1− t)

(
f ′′((1− t)x̄+ tx)− f ′′(x̄)

)
[x− x̄, x− x̄] dt < ε .

When f ′′ is continuous at x̄ and x is close to x̄, the integral in this inequality is dominated by
a small multiple of −1

2f
′′(x̄)[x − x̄, x − x̄] and the usual Lyapunov stability statements follow.

In our situation here the set Oω̄ is not a C2 submanifold and the free energy functional ω 7→
E(ω) +

∫
R2 Φ(ω(x)) dx is not of class C2. It is not hard to see directly that the expression

−
∫
R2

∫ 1

0
(1− t)Φ′′

(
(1− t)ω̄(x) + tω(x)

)
(ω(x)− ω̄(x))2 dtdx

cannot be dominated by −1
2

∫
R2 Φ′′(ω̄)(ω(x) − ω̄(x))2 dx in a suitable way. One may still use

the invariance of the sets Uω̄,ε := {ω ∈ Oω̄ ∩X1, E(ω) > E(ω̄)− ε} under the Euler evolution,
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and possibly also the conservation of the second order moment I(ω) defined in (1.15), to obtain
Lyapunov-type stability statements. For results in this spirit when the domain occupied by the
fluid is compact the reader can consult [8] and [5, Section II.4]. Our situation here is somewhat
complicated by the non-compactness of our flow domain R2, but under our assumptions one still
has ∩ε>0Uω̄,ε = {ω̄} (by using the uniqueness of the maximizers discussed in [10], for example).
This could be turned into Lyapunov-type stability statements, although not quite of the same
form as in the C2 case. The important point is that there are estimates for the proximity of
“almost maximizers” to the exact maximizers, an issue that also appears in other problems, such
as the stability of the isoperimetric inequality [13], and of the Sobolev inequality [7].

In the present work our focus is on quadratic forms, due to their applicability to the viscous
case. Of course, at the level of the linearized inviscid equation ωt + ū · ∇ω + u · ∇ω̄ = 0, the
quadratic form J does provide Lyapunov stability in the space X1 if inequality (2.25) holds with
CH < 1. We note that the linearized analysis in other topologies can be more complicated, see
for example [6].

2.3 The quadratic form J without mass constraint

In this short section we make a few remarks on the index of the quadratic form (2.9) when
considered on the whole space X defined by (2.4), and not only on the subspace X0 given by
(2.5). Our first observation is that, due to lack of scale invariance in this context, the form
J cannot be positive on X if the underlying steady state ω̄ is sharply concentrated near the
origin. To see this, we consider the rescaled vortex ω̄λ(x) = λ2ω̄(λx) and the associated weight
function Aλ(x) = λ−2A(λx), see Remark 2.12. We denote by Jλ the quadratic form on X
corresponding to the steady state ω̄λ, namely the form (2.9) where A is replaced by Aλ. If
ω ∈ X and ωλ(x) = λ2ω(λx), a simple calculation shows that

Jλ(ωλ) = J(ω)− M2
0

4π
log(λ) , where M0 =

∫
R2

ω(x) dx .

If M0 6= 0, it is clear that Jλ(ωλ) < 0 when λ > 0 is sufficiently large, so that the quadratic form
Jλ cannot be positive in this regime.

Remark 2.14. The negative direction arising by such a rescaling is related to a particular choice
of the unit of length implicitly involved in the kernel 1

2π log |x|. In writing log |x|, we imply that
x is dimensionless. In case x is measured in some units of length, we should write the kernel
as 1

2π log |x|r0 , where r0 is a reference length. The choice of r0 does not affect the behavior of
the system, and in the stability analysis based on J it can be compensated for by adding to the
quadratic form J a suitable multiple of the quantity

(∫
R2 ω(x, t) dx

)2
, which is preserved by the

evolution. Hence, as one can expect, the stability analysis is independent of the choice of the
reference length r0, or, equivalently, of the scaling parameter λ above.

We next argue that, for any vortex ω̄ satisfying Hypotheses 2.1, the index of the quadratic
form is well defined in the sense that J has (at most) a finite number of negative directions. In
view of Theorem 2.5, it is sufficient to evaluate J on radially symmetric functions ω ∈ Xrs. The
following expression will be useful:

Lemma 2.15. For any ω ∈ Xrs, we have

J(ω) = π

∫ ∞
0

A(r)ω(r)2r dr + π

∫ ∞
0

∫ ∞
0

log
(
max(r, s)

)
rω(r)sω(s) dr ds . (2.40)
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Proof. Here and below, with a slight abuse of notation, we consider any ω ∈ Xrs as a function
of the one-dimensional variable r = |x|. For such vorticities, the first integral in (2.9) obviously
gives the first term in (2.40), so it remains to establish the following expression of the energy:

E(ω) = −π
∫ ∞

0

∫ ∞
0

log
(
max(r, s)

)
rω(r) sω(s) dr ds , ω ∈ Xrs . (2.41)

To this end, we introduce polar coordinates x = r eiθ, y = s eiζ to compute the right-hand side
of (1.13), and we use the identity∫ 2π

0

∫ 2π

0
log |reiθ − seiζ | dθ dζ = 2π

∫ 2π

0
log |reiθ − s|dθ = 4π2 log

(
max(r, s)

)
. (2.42)

The formula (2.42) is well known and can be derived in many ways. For example, assuming that
r is a fixed positive number, we interpret the last integral as a function of s ∈ C. This expression
obviously depends only on |s|, is continuous everywhere, and is analytic both inside and outside
of the circle |s| = r. Inside the circle it has to be constant and outside the circle it coincides
with the potential of a point particle of mass 2π located at the origin, which is 2π log |s|. This
gives (2.42), and (2.41) follows.

Applying the change of variables w(r) = ω(r)A(r)1/2, so that w ∈ Y = L2(R+, r dr) when
ω ∈ Xrs, the formula (2.40) becomes

1

π
J(ω) =

∫ ∞
0

w(r)2r dr −
∫ ∞

0

∫ ∞
0

k(r, s)w(r)w(s)rsdr ds , (2.43)

where k(r, s) = − log
(
max(r, s)

)
A(r)−1/2A(s)−1/2. Under Hypotheses 2.1, we have the lower

bound A(r) ≥ C(1 + r)β for some β > 2, which implies that∫ ∞
0

∫ ∞
0

k(r, s)2 rsdr ds < ∞ .

This means that the right-hand side of (2.43) is the quadratic form in Y associated with a
selfadjoint operator of the form 1−K, where 1 is the identity and K is a Hilbert-Schmidt per-
turbation. By compactness, this operator has (at most) a finite number of negative eigenvalues,
which means that the index of the quadratic form J on X is well defined.

The eigenvalues of K can also be thought of as eigenvalues of the quadratic form (2.41) with
respect to the reference form ω 7→ π

∫∞
0 A(r)ω(r)2r dr. As is easily verified, if λ is such an

eigenvalue, the corresponding eigenfunction ω satisfies

−ψ(r) = λA(r)ω(r) , where ψ(r) =

∫ ∞
0

log
(
max(r, s)

)
sω(s) ds . (2.44)

Since ω(r) = ψ′′(r) + 1
r ψ
′(r), the first relation in (2.44) is an ordinary differential equation for

the stream function ψ : R+ → R, to be solved with the boundary conditions

ψ′(0) = 0 , and lim
r→+∞

(
ψ(r) log(2r)− ψ(2r) log(r)

)
= 0 ,

which can be deduced from the expression of ψ in (2.44). For the Lamb-Oseen vortex (2.39) a
numerical computation gives the largest eigenvalue λ ≈ 0.7127, thus suggesting that the form J
is strictly positive definite on the whole space Xrs in that case. In contrast, the largest eigenvalue
for the algebraic vortices (2.38) seems to exceed the threshold value 1, indicating that for those
vortices the form J is not positive definite without additional constraints on ω.
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2.4 The maximal energy as a function of the constraints

In Section 1.1 we considered the classical problem of maximizing a function f : Rn → R under
a family of constraints of the form g1 = c1, . . . , gm = cm, where g1, . . . , gm : Rn → R. Given
c = (c1, . . . , cm) ∈ Rm, we recall the notation Xc = {x ∈ Rn ; g1(x) = c1, . . . , gm(x) = cm}.
Assuming that f reaches a non-degenerate maximum on Xc at some point x̄ ∈ Xc where the
first-order derivatives g′1(x̄), . . . , g′m(x̄) are linearly independent, we introduced the quadratic
form Q defined by (1.5), which is the second order differential of the Lagrange function (1.7)
at x̄. In the present section, we are interested in the index of the form Q on larger subspaces
than Tx̄Xc. As was already mentioned, this question is closely related to concavity properties
of the function M defined by (1.8) or, almost equivalently, to convexity properties of the set
S = {(g1(x), . . . , gm(x), f(x)) ; x ∈ Rn} ⊂ Rm+1 near its “upper boundary”.

The situation becomes particularly transparent if we use adapted coordinates which, as it
turns out, have a fairly complete analogy in 2d Euler case. Let us assume that we can introduce
new coordinates (c1, . . . , cm, y1, . . . , yn−m) in Rn such that, as before, c1, . . . , cm are the values
of the constraints g1, . . . , gm, and the additional coordinates y1, . . . , yn−m are chosen so that the
points having coordinates (c1, . . . , cm, 0, . . . , 0) are those where f attains its maximum on Xc.

5

Denoting M(c1, . . . , cm) = f(c1, . . . , cm, 0, . . . , 0) as in (1.8), one verifies that

∂M

∂cj
(c1, . . . , cm) = λj , j = 1, . . . ,m , (2.45)

where λ1, . . . , λm are the Lagrange multipliers introduced in (1.4). Moreover the extremality
condition on Xc implies that

∂f

∂yk
(c1, . . . , cm, 0, . . . , 0) = 0 , k = 1, . . . , n−m.

We infer that

D2f(c1, . . . , cm, 0, . . . , 0) =


(

∂2f
∂ci∂cj

)m
i,j=1

0

0
(

∂2f
∂yk∂y`

)n−m
k,`=1

 , (2.46)

where all derivatives are evaluated at the point (c1, . . . , cm, 0, . . . , 0). The first submatrix in
the right-hand side of (2.46) is precisely the Hessian of M , and the second submatrix is always
negative definite, due to our assumption that f reaches a maximum at (y1, . . . , yn−m) = (0, . . . , 0)
for any fixed value of c1, . . . , cm. So we conclude that the quadratic form Q defined in (1.5) is
negative definite at x̄ if and only if the Hessian of M is negative definite at (c1, . . . , cm), where
cj = gj(x̄) for j = 1, . . . ,m.

Another interesting object is the function

N(λ1, . . . , λm) = sup
x∈Rn

(
f(x)− λ1g1(x)− . . .− λmgm(x)

)
= sup

c∈Rm

(
M(c1, . . . , cm)− λ1c1 − . . .− λmcm

)
,

(2.47)

which is the Legendre transform of M . Under appropriate assumptions, the main one being the
concavity of M , this quantity is well defined and the relation (2.45) can be inverted (at least

5In a non-degenerate situation, the local existence of such a coordinate system is clear by standard arguments,
but globally the situation can, of course, be more complicated.
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locally) via the formula

cj = −∂N
∂λj

(λ1, . . . , λm) , j = 1, . . . ,m . (2.48)

We now return to the infinite-dimensional framework of the 2d Euler equation, with the
manifold Rn replaced by the phase space P introduced in Section 1.2, the function f replaced
by the energy E in (1.13), the constraints gj replaced by the Casimir functionals h(a, ω) in (1.10),
and the submanifolds Xc replaced by the orbits Oω in (1.12). In that case we have

max
ω∈Oω̄

E(ω) = E(ω̄∗) , (2.49)

where, as before, ω̄∗ denotes the symmetric decreasing rearrangement of an element ω̄ ∈ P.
As Oω̄ is characterized in terms of the functionals h(a, ω) defined in (1.10), the energy of the
maximizer ω̄∗ in Oω̄ can also be expressed in terms of the constraint function a → h(a, ω̄). It
turns out that the representation formula is quite explicit.

Proposition 2.16. Given ω̄ ∈ P, we define h(a) = π−1h(a, ω̄) = π−1|{ω̄ > a}| for any a > 0.
Then

E(h) := max
ω∈P

h(·,ω)=πh

E(ω) =
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) da db +

1

8π
M2

0 , (2.50)

where m = max ω̄, M0 =
∫
R2 ω̄ dx = π

∫m
0 h(a) da, and

L(R,S) = −RS log max(R,S)− 1

2
min(R,S)2 . (2.51)

Proof. Replacing ω̄ with ω̄∗ (an operation that does not affect the function h), we can assume
that ω̄ is radially symmetric and nonincreasing in the radial direction. In view of of (2.49), we
then have E(h) = E(ω̄), and if we consider ω̄ as a function of the radius r = |x| we observe
that h(a) = (ω̄−1(a))2 wherever ω̄ is strictly decreasing. To compute E(ω̄), we start from the
expression (2.41), and we introduce the functions

k(r, s) = −rs log max(r, s) , K(R,S) = L(R,S) +RS .

Clearly K(R, 0) = 0 , K(0, S) = 0 for R,S > 0, and one can verify by direct calculation that
K(R,S) is twice continuously differentiable on (0,∞)× (0,∞) with

∂2K

∂R∂S
(R,S) = − log max(R,S) , R, S > 0 .

So the function (r, s) 7→ K(r2, s2) is twice continuously differentiable on [0,∞)× [0,∞) and

1

8

∂2

∂r∂s
K(r2, s2) = k(r, s) .

Integrating by parts in (2.41) and recalling that m = max ω̄, we can thus write

E(ω̄) =
π

8

∫ ∞
0

∫ ∞
0

∂2

∂r∂s
K(r2, s2) ω̄(r) ω̄(s) dr ds =

π

8

∫ ∞
0

∫ ∞
0

K(r2, s2) dω̄(r) dω̄(s)

=
π

8

∫ m

0

∫ m

0
K
(
(ω̄−1(a))2, (ω̄−1(b))2

)
da db =

π

8

∫ m

0

∫ m

0
K(h(a), h(b)) da db

=
π

8

∫ m

0

∫ m

0
L(h(a), h(b)) dadb+

1

8π
M2

0 ,

(2.52)

where we have formally used the substitutions ω̄(r) = a, ω̄(s) = b. This is straighforward
when ω̄ is strictly decreasing, and the general case where ω̄ is nonincreasing can be treated by
integrating only over the intervals where ω̄ is strictly decreasing.
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We now make a more precise comparison with the finite-dimensional situation above. Let
us assume that ω̄ ∈ P is radially symmetric with ∂rω̄(r) < 0 for all r > 0 and ∂2

r ω̄(0) < 0. To
eliminate the translational symmetries, we work with the manifold

P̃ =
{
ω ∈ P ; M0(ω) = M0(ω̄) , Mj(ω) = 0 , j = 1, 2

}
, (2.53)

where M0,Mj are as in (1.11), (1.15). If η ∈X1 (see (2.24)) is smooth and compactly supported
with suffiently small C2 norm, then ω̄ + η ∈ P̃. Denoting by ηrs the projection of η onto the
subspace Xrs defined in (2.11), we can take the quantities h(a, ω̄+ ηrs) and η⊥rs := η− ηrs as the
(approximate) analogues of the coordinates cj and yk, respectively. The analogy is not perfect,
due to the stronger-than-ideal assumptions on η, but it is sufficient for concluding that when
ω̄ = ω̄∗, the negative-definiteness of Arnold’s form (1.18) on the tangent space Tω̄P̃ is strongly
related to the concavity of the energy E in the variable6 h at the function h̄(a) = π−1h(a, ω̄).
In some sense the expression (2.50) is “trying to be concave”, although not quite achieving this:
the function L(R,S) is separately concave, but not concave. The second variation on the space
X0 is given by the quadratic form which takes a function ξ(a) with

∫m
0 ξ(a) da = 0 to

π

8

∫ m

0

∫ m

0

(
D2

1L(h(a), h(b))ξ(a)2 + 2D1D2L(h(a), h(b))ξ(a)ξ(b) +D2
2L(h(a), h(b))ξ(b)2

)
dadb .

Due to the separate concavity of L the first term and the third term are negative, but the second
one can lead to the form being indefinite. In view of our previous considerations, the negativity
of the form is equivalent to the validity of the Hardy inequality (2.25) with CH ≤ 1, and it is
not hard to verify directly that this is indeed the case. As an analogue of (2.45), we also note
that the variational derivative of E with respect to h is

1

π

δE

δh
(a) = Λ(a) = −Φ′(a) . (2.54)

We will not go into the details as we will not work with this expression. The reader can also
derive the analogue of (2.48) (under appropriate assumptions).

3 Global maximization of the free energy

In the previous section we observed that some radially symmetric vortices ω̄, including the
Gaussian vortex (2.39) and the algebraic vortex (2.38) with κ > 2, are non-degenerate local
maxima of the associated free energy functional (1.17) once restricted to the manifold P̃ defined
in (2.53). This was established by showing that the second order differential F ′′(ω̄) is strictly
negative definite on the tangent space Tω̄P̃. We now follow a different approach, which relies on
the direct method in the calculus of variations: under appropriate assumptions on the function
Φ in (1.17), we show that the free energy F (ω) has a global maximum on the set of all vorticity
distributions with a fixed mass M . By construction, if ω̄ is any maximizer obtained in this way,
the conclusion of Theorem 2.8 applies with γ ≥ 0, so that Hardy’s inequality (2.25) holds with
CH ≤ 1. Note also that, according to the discussion in Section 2.4, prescribing Φ amounts to
fixing the “Lagrange multipliers” in our constrained maximization problem.

We start with a preliminary result, which is probably well known. For the reader’s conve-
nience, the proof is reproduced in Section A.1.

6It is perhaps worth recalling that E is convex in ω on the subspace given by
∫
R2 ω dx = 0. However, in some

regions it may be concave in h, at least on the subspace given by
∫∞

0
h(a) da = 0.
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Proposition 3.1. Assume that f ∈ L1(Rn) is nonnegative and that M :=
∫
Rn f(x) dx > 0.

Then

M +

∫
Rn

(
log− |x|

)
f(x) dx . M +

∫
Rn

(
log+

f(x)

M

)
f(x) dx , (3.1)

M +

∫
Rn

(
log+ |x|

)
f(x) dx & M +

∫
Rn

(
log−

f(x)

M

)
f(x) dx , (3.2)

where the implicit constants only depend on the space dimension n. Moreover, if f is radially
symmetric and nonincreasing in the radial direction, then the reverse inequalities also hold.

We next specify the function space in which we shall solve our maximization problem.

Definition 3.2. Given any M > 0, we denote by XM the set of all ω ∈ L1(R2) such that
ω(x) ≥ 0 for almost all x ∈ R2 and∫

R2

ω(x) dx = M ,

∫
R2

ω(x) log
(
1 + |x|

)
dx < ∞ ,

∫
R2

ω(x) log
(
1 + ω(x)

)
dx < ∞ . (3.3)

For later use we observe that, if ω ∈ XM and if ω∗ denotes the symmetric nonincreasing
rearrangement of ω, then

∫
R2 ω

∗(x) dx =
∫
R2 ω(x) dx = M and∫

R2

ω∗(x) log
(
1 + |x|

)
dx ≤

∫
R2

ω(x) log
(
1 + |x|

)
dx < ∞ ,∫

R2

ω∗(x) log
(
1 + ω∗(x)

)
dx =

∫
R2

ω(x) log
(
1 + ω(x)

)
dx < ∞ .

This shows that the set XM ⊂ L1(R2) is invariant under the action of the symmetric nonin-
creasing rearrangement.

For ω ∈ XM , we consider the free energy defined by F (ω) = E(ω) + S(ω), where

E(ω) =
1

4π

∫
R2

∫
R2

log
1

|x− y|
ω(x)ω(y) dx dy , S(ω) =

∫
R2

Φ(ω(x)) dx .

We have shown in Proposition 2.2 that the energy E(ω) is finite for any ω ∈ XM . Unlike in
Section 2, the function Φ in the entropy term is not related here to any radially symmetric
vortex, but is an arbitrary function satisfying the following properties:

Hypotheses 3.3. The function Φ : [0,+∞)→ R is continuous with Φ(0) = 0. Moreover, there
exist constants C1 ∈ R, C2 < M/(8π), and C3 > M/(8π) such that

Φ(ω) ≤ C1ω + C2 ω log
M

ω
when ω ≤M ,

Φ(ω) ≤ C1ω − C3 ω log
ω

M
when ω ≥M .

(3.4)

Under Hypotheses 3.3, the positive part of Φ satisfies Φ+(ω) ≤ Cω(1+ | log(ω/M)|) for some
constant C > 0, and this implies in particular that the entropy S(ω) is well defined in R∪{−∞}
for any ω ∈ XM . We are now in a position to state the main result of this section.

Theorem 3.4. Fix any M > 0. Under Hypotheses 3.3, there exists ω̄ ∈ XM such that

F (ω̄) = E(ω̄) + S(ω̄) = sup
ω∈XM

(
E(ω) + S(ω)

)
.

Moreover ω̄ can be chosen to be radially symmetric and nonincreasing in the radial direction.
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The proof of Theorem 3.4 is divided into two parts. The first one consists in showing that
the free energy F is bounded from above on XM , and that there exists a maximizing sequence
which is convergent in L1(R2). We formulate this in a separate statement:

Proposition 3.5. Under Hypotheses 3.3, the free energy F = E + S is bounded from above on
the space XM :

FM := sup
ω∈XM

(
E(ω) + S(ω)

)
< ∞ .

Moreover, there exists a maximizing sequence (ωj)j∈N in XM which converges in L1(R2) to some
limiting profile ω̄ = ω̄∗ ∈ XM as j → +∞, and we have S(ω̄) > −∞.

Proof. Our starting point is the logarithmic Hardy-Littlewood-Sobolev inequality

E(ω) +
M

8π

∫
R2

ω log
M

ω
dx ≤ M2

8π

(
1 + log π

)
, (3.5)

which holds for all ω ∈ XM , see [10]. In view of (3.4), we deduce from (3.5) that

E(ω) + S(ω) +
(M

8π
− C2

)∫
ω<M

ω log
M

ω
dx+

(
C3 −

M

8π

)∫
ω>M

ω log
ω

M
dx

≤ E(ω) + C1M +
M

8π

∫
R2

ω log
M

ω
dx ≤ C1M +

M2

8π

(
1 + log π

)
.

(3.6)

Since C2 < M/(8π) and C3 > M/(8π), this proves that FM ≤ C1M +M2(1 + log π)/(8π).

Now, let (ωj)j∈N be a sequence in XM such that E(ωj) + S(ωj) → FM as j → +∞. If
we denote by (ωj)

∗ ∈ XM the symmetric nonincreasing rearrangement of ωj , we know that
E((ωj)

∗) ≥ E(ωj) and S((ωj)
∗) = S(ωj) for all j ∈ N, so that

(
(ωj)

∗)
j∈N is a fortiori a maxi-

mizing sequence. So we assume henceforth that ωj = (ωj)
∗, i.e. ωj is radially symmetric and

nonincreasing in the radial direction. In that case, there exists a constant C0 > 0 such that∫
R2

ωj(x)
∣∣∣log

ωj(x)

M

∣∣∣dx ≤ C0 , and

∫
R2

ωj(x)
∣∣log |x|

∣∣ dx ≤ C0 , (3.7)

for all j ∈ N. Indeed, the first inequality in (3.7) follows directly from (3.6), and the second one
is a consequence of the first inequality and of Proposition 3.1, since ωj = (ωj)

∗.

It remains to verify that one can extract from (ωj)j∈N a convergent subsequence in L1(R2).
We recall that ωj(x) is a nonincreasing function of the radial variable |x|, which satisfies the
uniform pointwise estimate 0 ≤ ωj(x) ≤ M/(π|x|2), see (A.3) below. By Helly’s selection
theorem [26], there exists a subsequence, still denoted by (ωj)j∈N, which converges pointwise to
some limit ω̄ : R2 → R+ as j → +∞. It is clear that ω̄ is radially symmetric and nonincreasing,
so that ω̄ = ω̄∗, and Fatou’s lemma implies that

∫
R2 ω̄(x) dx ≤ M . Using in addition (3.7), we

obtain similarly∫
R2

ω̄(x)
∣∣∣log

ω̄(x)

M

∣∣∣dx ≤ C0 , and

∫
R2

ω̄(x)
∣∣log |x|

∣∣ dx ≤ C0 . (3.8)

To prove the convergence in L1(R2) we decompose, for any ε ∈ (0, 1),∫
R2

|ωj(x)− ω̄(x)|dx =

∫
Aε

|ωj(x)− ω̄(x)|dx+

∫
R2\Aε

|ωj(x)− ω̄(x)| dx , (3.9)
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where Aε = {x ∈ R2 ; ε ≤ |x| ≤ ε−1}. The integral over Aε converges to zero as j → +∞ by the
dominated convergence theorem, and in view of (3.7), (3.8) the integral over R2 \Aε is bounded
by 2C0/| log ε| uniformly in j. It thus follows from (3.9) that

lim sup
j→+∞

∫
R2

|ωj(x)− ω̄(x)|dx ≤ 2C0

| log ε|
−−→
ε→0

0 ,

which shows that ωj → ω̄ in L1(R2). In particular
∫
R2 ω̄(x) dx = M , so that ω̄ ∈ XM .

Finally, if we decompose Φ = Φ+−Φ−, where Φ+,Φ− denote the positive and negative parts
of Φ, we have the lower bound

S(ω̄) ≥ −
∫
R2

Φ−(ω̄(x)) dx ≥ − lim inf
j→+∞

∫
R2

Φ−(ωj(x)) dx , (3.10)

where the second inequality is again obtained by Fatou’s lemma. But we have the identity∫
R2

Φ−(ωj(x)) dx =

∫
R2

Φ+(ωj(x)) dx− S(ωj) =

∫
R2

Φ+(ωj(x)) dx+ E(ωj)− F (ωj) ,

where the first two terms in the right-hand side are bounded uniformly in j by (3.7), in view
of Hypotheses 3.3 and Proposition 2.2, whereas F (ωj) is bounded from below since (ωj) is a
maximizing sequence for F . We conclude that the right-hand side of (3.10) is finite, so that
S(ω̄) > −∞.

To conclude the proof of Theorem 3.4, it remains to show that the free energy is upper
semicontinuous along the maximizing sequence constructed in Proposition 3.5, namely

E(ω̄) + S(ω̄) ≥ lim sup
j→+∞

(
E(ωj) + S(ωj)

)
= FM . (3.11)

This will imply that E(ω̄) + S(ω̄) = FM , which is the desired result.

Proof of Theorem 3.4. Let (ωj)j∈N be the maximizing sequence defined in Proposition 3.5,
and ω̄ ∈ XM be the limiting profile. Given any sufficiently large R > 0, we decompose

ωj(x) = ωj(x) 1{|x|≤R} + ωj(x) 1{|x|>R} =: ω1
jR(x) + ω2

jR(x) ,

ω̄(x) = ω̄(x) 1{|x|≤R} + ω̄(x) 1{|x|>R} =: ω̄1
R(x) + ω̄2

R(x) ,

for all x ∈ R2. We thus have

E(ωj) + S(ωj) = E(ω1
jR) + S(ω1

jR) + 2E(ω1
jR, ω

2
jR) + E(ω2

jR) + S(ω2
jR) ,

E(ω̄) + S(ω̄) = E(ω̄1
R) + S(ω̄1

R) + 2E(ω̄1
R, ω̄

2
R) + E(ω̄2

R) + S(ω̄2
R) ,

where E(ω1, ω2) is the bilinear form associated with the energy functional:

E(ω1, ω2) = − 1

4π

∫
R2

∫
R2

log |x− y|ω1(x)ω2(y) dx dy .

The upper-semicontinuity property (3.11) can be deduced from the following assertions:

lim sup
j→+∞

(
E(ω1

jR) + S(ω1
jR)
)
≤ E(ω̄1

R) + S(ω̄1
R) , (3.12)

sup
j∈N

(
2E(ω1

jR, ω
2
jR) + E(ω2

jR) + S(ω2
jR)
)
≤ δ1(R) −−−−−→

R→+∞
0 , (3.13)

2E(ω̄1
R, ω̄

2
R) + E(ω̄2

R) + S(ω̄2
R) = δ2(R) −−−−−→

R→+∞
0 . (3.14)
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Indeed, assuming that (3.12)–(3.14) hold, we obtain

lim sup
j→+∞

(
E(ωj) + S(ωj)

)
−
(
E(ω̄) + S(ω̄)

)
≤ δ1(R)− δ2(R) −−−−−→

R→+∞
0 .

It remains to verify the assertions (3.12)–(3.14) above. We recall that the functions ωj , ω̄ are
radially symmetric and nonincreasing in the radial direction. With a slight abuse of notation,
we write ωj(r) instead of ωj(x) when r = |x|, and similarly for ω̄. Accordingly, using (2.41), we
obtain the following expressions for the energy of ωj and ω̄:

E(ωj) = −
∫ ∞

0
Mj(r) log(r) rωj(r) dr , E(ω̄) = −

∫ ∞
0

M(r) log(r) rω̄(r) dr , (3.15)

where

Mj(r) = 2π

∫ r

0
sωj(s) ds , M(r) = 2π

∫ r

0
sω̄(s) ds , r > 0 . (3.16)

Since ωj → ω̄ in L1(R2), we see that Mj(r) → M(r) uniformly in r as j → +∞. Moreover,
since ωj ∈ XM satisfies (3.7), the quantity Mj(r) converges to M as r → +∞ uniformly in j. In
particular, we can choose R ≥ 1 large enough so that Mj(r) ≥M/2 for all j ∈ N when r ≥ R.

To prove (3.12), we first decompose

E(ω1
jR)−E(ω̄1

R) = −
∫ R

0

(
Mj(r)−M(r)

)
log(r) rωj(r) dr−

∫ R

0
M(r) log(r) r

(
ωj(r)− ω̄(r)

)
dr ,

and we deduce that∣∣E(ω1
jR)− E(ω̄1

R)
∣∣ ≤ sup

0≤r≤R

(
|Mj(r)−M(r)|

) ∫ R

0
| log(r)| rωj(r) dr

+ sup
0≤r≤R

(
| log(r)|M(r)

) ∫ R

0
r
∣∣ωj(r)− ω̄(r)

∣∣dr −−−−→
j→+∞

0 . (3.17)

Here we used the convergence of ωj to ω̄ in L1(R2), the a priori estimates (3.7), and the fact
that log(r)M(r) is bounded as r → 0, as a consequence of (3.8). On the other hand, since the
function −Φ is continuous and bounded from below, and since we integrate on the bounded
domain {x ∈ R2 ; |x| ≤ R}, we can apply Fatou’s lemma to obtain

−S(ω̄1
R) =

∫
|x|≤R

−Φ(ω̄(x)) dx ≤ lim inf
j→+∞

∫
|x|≤R

−Φ(ωj(x)) dx = − lim sup
j→+∞

S(ω1
jR) . (3.18)

Combining (3.17) and (3.18), we obtain (3.12).

We next prove (3.13). Recalling that R ≥ 1, we first observe that

E(ω2
jR) = −

∫ ∞
R

Mj(r) log(r) rωj(r) dr ≤ 0 ,

which means that the contribution of E(ω2
jR) can be disregarded since we only need an upper

bound. The other terms in (3.13) have the following expressions

2E(ω1
jR, ω

2
jR) = −Mj(R)

∫ ∞
R

log(r) rωj(r) dr , S(ω2
jR) = 2π

∫ ∞
R

Φ(ωj(r)) r dr .

Since ωj is decreasing, we have ωj(r) ≤Mj(r)/(πr
2) ≤M for r ≥ R. So, using Hypotheses 3.3,

we deduce that Φ(ωj) ≤ C1ωj + C2ωj log(M/ωj), where C1 ∈ R and C2 < M/(8π). It follows
that

2E(ω1
jR, ω

2
jR) + S(ω2

jR) ≤ 2πC1

∫ ∞
R

ωj(r)r dr +

∫ ∞
R

∆j(r)ωj(r)r dr , (3.19)
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where

∆j(r) = 2πC2 log
M

ωj(r)
−Mj(R) log(r) .

In view of (3.7), the first term in the right-hand side of (3.19) converges to zero uniformly in j
as R → +∞, and can therefore be absorbed in the quantity δ1(R). To treat the second term,
we fix a positive number α > 2 such that 4πC2α ≤M , and we introduce the mutually disjoints
sets

I(α,R) =
{
r ≥ R ; ωj(r) ≥ Mr−α

}
, I(α,R)c =

{
r ≥ R ; ωj(r) < M r−α

}
. (3.20)

As Mj(R) ≥M/2, it follows from (3.20) that ∆j(r) ≤ 0 when r ∈ I(α,R), so the last integral in
(3.19) can be restricted to the complement I(α,R)c. But on that set we have the upper bound
ωj(r) < Mr−α, where α > 2, and we easily deduce that

∫
I(α,R)c ∆j(r)ωj(r)r dr converges to zero

as R→ +∞, uniformly in j. Altogether we obtain (3.13).

It remains to establish (3.14), which is an easy task. Indeed ω̄ is a fixed function which
satisfies the estimates (3.8), so that 2E(ω̄1

R, ω̄
2
R) + E(ω̄2

R) → 0 as R → +∞. In addition, we
proved in Proposition 3.5 that the integral defining S(ω̄) is absolutely convergent, and this
implies that S(ω̄2

R) → 0 as R → +∞. We thus obtain (3.14), and the proof of Theorem 3.4 is
complete.

Example 3.6. We consider the family of algebraic vortices with parameter κ > 1:

ω(r) =
1

(1 + r2)κ
, M = 2π

∫ ∞
0

rω(r) dr =
π

κ− 1
.

The associated stream function ψ satisfies ψ(r) = ψ(0) +
∫ r

0 ψ
′(s) ds where

ψ(0) =

∫ ∞
0

log(r)
r

(1 + r2)κ
dr , ψ′(r) =

1

2(κ−1)r

(
1− 1

(1 + r2)κ−1

)
.

We have Φ(ω) =
∫ ω

0 φ(s) ds where φ(ω(r)) = ψ(r). Explicitly, for a few values of κ, we find

κ = 3
2 : ψ(r) = log

(
1 +

√
1 + r2

)
φ(ω) = log

(
1 +

1

ω1/3

)
κ = 2 : ψ(r) =

1

4
log
(
1 + r2

)
φ(ω) =

1

8
log

1

ω

κ = 3 : ψ(r) =
1

8

(
log
(
1 + r2

)
− 1

1 + r2

)
φ(ω) =

1

24
log

1

ω
− ω1/3

8

In all cases, we observe that

φ(ω) = Φ′(ω) ∼ 1

4κ(κ−1)
log

1

ω
=

M

4πκ
log

1

ω
, as ω → 0 .

It follows that Hypotheses 3.3 are satisfied if and only if κ > 2.

Example 3.7. We next consider the Gaussian vortex ω(r) = e−r
2/4, where M = 4π. In that

case we have ψ(0) =
∫ +∞

0 log(r) e−r
2/4 dr = 2 log(2)− γE, so that the stream function satisfies

ψ(r) = ψ(0) +

∫ r

0

2

s

(
1− e−s2/4

)
ds = 2 log(2)− γE + Ein(r2/4) ,

where

Ein(z) =

∫ z

0

1− e−t

t
dt =

∞∑
k=1

(−1)k−1

k

zk

k!
, z ∈ C .
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We conclude that

φ(ω) = Φ′(ω) = 2 log(2)− γE + Ein

(
log

1

ω

)
.

In particular φ(ω) ∼ log log 1
ω as ω → 0, and Hypotheses 3.3 are satisfied in that case.

We do not have much information on the maximizer ω̄ whose existence is established in
Theorem 3.4. We expect that, if Φ is as in Example 3.7, the maximizer is indeed the Gaussian
vortex (2.39), but except from numerical evidence we have no proof so far. Similarly, we believe
that the algebraic vortices (2.38) with κ ≥ 2 are global maximizers, but this is known only in
the particular case κ = 2, where maximality follows from the logarithmic HLS inequality (3.5).

The examples above also suggest that the decay rate of the maximizer ω̄(x) as |x| → ∞
strongly depends on the behavior of the function Φ(s) near s = 0. Extending the techniques in
the proof of Theorem 3.4, one should be able to prove that, if Φ is differentiable to the right at the
origin, the corresponding maximizer ω̄ is compactly supported. It is also worth mentioning that
the entropy function Φ associated with any radially symmetric decreasing vortex ω̄ through
the relation ψ̄(x) = Φ′(ω̄(x)) is necessarily concave on the range of ω̄, whereas no concavity
assumption is included in Hypotheses 3.3. This suggests that the maximizer ω̄ corresponding
to a non-concave function Φ should be discontinuous, so that its range does not include the
intervals where Φ does not coincide with its concave hull.

4 Stability of viscous vortices

In this final section, we give a new proof of the nonlinear stability of the Oseen vortices, which are
self-similar solutions of the Navier-Stokes equations in R2. Our approach relies on the functional-
analytic tools developed in Section 2, in connexion with Arnold’s variational principle, although
we now consider a dissipative equation for which the Casimir functions (1.9) are no longer
conserved quantities. Let w = w(y, τ) ∈ R denote the vorticity of the fluid at point y ∈ R2 and
time τ > 0, and let φ = φ(y, τ) ∈ R be the associated stream function. The vorticity formulation
of the Navier-Stokes equations is

∂τw(y, τ) +
{
φ,w

}
(y, τ) = ν∆(y, τ) , ∆φ(y, τ) = w(y, τ) , (4.1)

where {φ,w} = ∇⊥φ · ∇w is the Poisson bracket, ν > 0 is the viscosity parameter, and the
Laplace operator ∆ acts on the space variable y ∈ R2. As in [16, 17], we introduce self-similar
variables x = y/

√
ντ and t = log(τ/T ), where T > 0 is an arbitrary time scale. More precisely,

we look for solutions of (4.1) in the form

w(y, τ) =
1

τ
ω
( y√

ντ
, log

τ

T

)
, φ(y, τ) = ν ψ

( y√
ντ

, log
τ

T

)
. (4.2)

The evolution equation for the rescaled vorticity ω is

∂tω(x, t) +
{
ψ, ω

}
(x, t) = Lω(x, t) , ∆ψ(x, t) = ω(x, t) , (4.3)

where {ψ, ω} = ∇⊥ψ · ∇ω and L is the Fokker-Planck operator

L = ∆ +
1

2
x · ∇+ 1 . (4.4)

Let ω̄ be the vortex with Gaussian profile (2.39), namely

ω̄(x) =
1

4π
e−|x|

2/4 , ū(x) = ∇⊥ψ̄(x) =
1

2π

x⊥

|x|2
(

1− e−|x|2/4
)
. (4.5)
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It is easy to verify that Lω̄ = 0 and
{
ψ̄, ω̄

}
= 0. This implies that ω = αω̄ is a stationary

solution of (4.3) for any α ∈ R. This family of equilibria is known to be stable with respect to
perturbations in various weighted L2 spaces, see [17, 14]. We present here a new stability proof,
which may be easier to adapt to more general situations.

4.1 Nonlinear stability of Oseen vortices

Given any α ∈ R, we consider solutions of (4.3) of the form ω = αω̄ + ω̃, ψ = αψ̄ + ψ̃. The
perturbation ω̃ satisfies the modified equation

∂tω̃ + α
{
ψ̄, ω̃

}
+ α

{
ψ̃, ω̄

}
+
{
ψ̃, ω̃

}
= Lω̃ , (4.6)

where it is understood that the stream function ψ̃ is expressed in terms of ω̃ via the formula
(1.14), so that ∆ψ̃ = ω̃. We assume henceforth that the perturbation ω̃ satisfies the moment
conditions ∫

R2

ω̃ dx = 0 , and

∫
R2

xjω̃ dx = 0 for j = 1, 2 , (4.7)

which are preserved under the evolution defined by (4.6). As is shown at the end of Ref. [17],
this hypothesis does not restrict the generality, in the sense that stability with respect to general
perturbations (with no moment conditions) can then deduced by a simple argument. As for the
existence of solutions to (4.6), we have the following standard result :

Lemma 4.1. The Cauchy problem for equation (4.6) is globally well-posed in the weighted L2

space X defined by (2.4), where A(x) = 4|x|−2(e|x|
2/4 − 1), and the subspace X1 ⊂ X defined

by (2.24) is invariant under the evolution.

Proof. It is known that the vorticity equation (4.3) or (4.6) is globally well-posed in various
weighted L2 spaces, see e.g. [16, 14, 15]. The nearly gaussian weight A is not explicitly
considered in those references, but the arguments therein can be easily modified to cover that
case too. If A1/2ω̃ ∈ L2(R2), then all moments of ω̃ are well defined, and a direct calculation
shows that the conditions (4.7) are preserved under the evolution, so that (4.6) is globally
well-posed in the subspace X1.

Let ω̃0 ∈ X1, and let ω̃ ∈ C0([0,+∞),X1) be the solution of (4.6) with initial data ω̃0. By
parabolic regularization, we have ω̃(·, t) ∈ Z1 := Z ∩X1 for all t > 0, where Z is the weighted
Sobolev space

Z =
{
ω ∈ H1(R2) ; A1/2ω ∈ L2(R2) , A1/2∇ω ∈ L2(R2)

}
. (4.8)

For later use, we introduce the following quadratic form on Z:

Q(ω) =

∫
R2

(
A(x)|∇ω(x)|2 − B(x)ω(x)2

)
dx , ω ∈ Z , (4.9)

where

B = 1 +
1

2

(
∆A − x

2
· ∇A + A

)
= 1 + A − x · ∇A

|x|2
. (4.10)

We shall verify in Section A.3 that A/2 ≤ B ≤ 2A, so that the form Q is well defined.

The following coercivity result plays a crucial role in our argument.
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Theorem 4.2. The quadratic form Q defined by (4.9) is coercive on the subspace Z1 = Z ∩X1 :
there exists a constant δ > 0 such that

Q(ω) ≥ δ

∫
R2

A(x)ω(x)2 dx , for all ω ∈ Z1 . (4.11)

The proof of Theorem 4.2 requires a careful analysis, which is postponed to Section 4.2
below. In particular, we shall see that the quadratic form Q is not positive on the whole space
Z, because it takes negative values on a one-dimensional subspace made of radially symmetric
functions. If we restrict ourselves to functions with zero mean, the form Q is nonnegative but
vanishes on a two-dimensional subspace due to translation invariance. Therefore, all moment
conditions (4.7) are necessary to establish the coercivity of Q.

Returning to the solution ω̃ ∈ C0([0,+∞),X1) of (4.6), we define for all t > 0 the quantities

J̃(t) =
1

2

∫
R2

(
A(x)ω̃(x, t)2 + ψ̃(x, t)ω̃(x, t)

)
dx = J(ω̃(t)) ,

Q̃(t) =

∫
R2

(
A(x)|∇ω̃(x, t)|2 − B(x)ω̃(x, t)2

)
dx = Q(ω̃(t)) ,

Ñ(t) =
1

2

∫
R2

{
A(x), ψ̃(x, t)

}
ω̃(x, t)2 dx =: N(ω̃(t)) .

(4.12)

The key observation is:

Proposition 4.3. If ω̃ ∈ C0([0,+∞),X1) is a solution of (4.6), the quantities defined in (4.12)
satisfy

J̃ ′(t) = −Q̃(t)− Ñ(t) , for all t > 0 . (4.13)

Proof. Using the evolution equation (4.6), we find

J̃ ′(t) =

∫
R2

(
A(x)ω̃(x, t) + ψ̃(x, t)

)
∂tω̃(x, t) dx

=

∫
R2

(
Aω̃ + ψ̃

)(
Lω̃ − α

{
ψ̄, ω̃

}
− α

{
ψ̃, ω̄

}
−
{
ψ̃, ω̃

})
(x, t) dx .

(4.14)

We first consider the terms involving the diffusion operator L in (4.14). We observe that∫
R2

ψ̃(x, t)Lω̃(x, t) dx =

∫
R2

ω̃(x, t)2 dx , (4.15)

because Lω̃ = ∆ω̃ + 1
2 div(xω̃) and∫

R2

ψ̃∆ω̃ dx =

∫
R2

(
∆ψ̃
)
ω̃ dx =

∫
R2

ω̃2 dx ,∫
R2

ψ̃ div(xω̃) dx = −
∫
R2

(
∆ψ̃
)(
x · ∇ψ̃

)
dx =

1

2

∫
R2

div
(
x|∇ψ̃|2

)
dx = 0 .

On the other hand, integrating by parts we obtain by direct calculation∫
R2

A(x)ω̃(x, t)Lω̃(x, t) dx = −Q(ω̃(t))−
∫
R2

ω̃(x, t)2 dx . (4.16)

We next compute the advection terms in (4.14), which are proportional to α. We claim that

I(ω̃) :=

∫
R2

(
Aω̃ + ψ̃

)({
ψ̄, ω̃

}
+
{
ψ̃, ω̄

})
dx = 0 . (4.17)
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This identity is not surprising, as it means that the quadratic form J is invariant under the
evolution defined by the linearized Euler equation at ω̄, see (1.6) for an analogue in the finite-
dimensional case. It can also be verified by direct calculations :∫

R2

Aω̃
{
ψ̄, ω̃

}
dx =

1

2

∫
R2

A
{
ψ̄, ω̃2

}
dx =

1

2

∫
R2

{
A, ψ̄

}
ω̃2 dx = 0 ,∫

R2

ψ̃
{
ψ̃, ω̄

}
dx =

∫
R2

{
ψ̃, ψ̃

}
ω̄ dx = 0 ,∫

R2

(
Aω̃

{
ψ̃, ω̄

}
+ ψ̃

{
ψ̄, ω̃

})
dx =

∫
R2

ω̃
(
A
{
ψ̃, ω̄

}
+
{
ψ̃, ψ̄

})
dx = 0 .

Here we used the fact that
{
A, ψ̄

}
= 0, because A and ψ̄ are radially symmetric. Moreover,

A
{
ψ̃, ω̄

}
+
{
ψ̃, ψ̄

}
= (∇ψ̃)⊥ ·

(
A∇ω̄ +∇ψ̄

)
= 0 ,

by the very definition of A, see (2.3). This proves (4.17).

Finally, integrating by parts the last term in (4.14), we find

N(ω̃) :=

∫
R2

(
Aω̃ + ψ̃

){
ψ̃, ω̃

}
dx =

∫
R2

Aω̃
{
ψ̃, ω̃

}
dx =

1

2

∫
R2

{
A, ψ̃

}
ω̃2 dx . (4.18)

Combining (4.14)–(4.18), we obtain the desired result.

To control the nonlinear term N(ω̃), we use the following estimate.

Lemma 4.4. There exists a constant C0 > 0 such that, for all ω̃ ∈ Z, the nonlinear term (4.18)
satisfies

|N(ω̃)| ≤ C0 ‖A1/2ω̃‖2L2

(
‖A1/2ω̃‖L2 + ‖A1/2∇ω̃‖L2

)
. (4.19)

Proof. We have |{A, ψ̃}| ≤ C|∇A| |∇ψ̃| ≤ C|x|A|∇ψ̃|, hence

|N(ω̃)| ≤ C

∫
R2

|x| |∇ψ̃|A ω̃2 dx ≤ C ‖|x||∇ψ̃|‖L∞ ‖A1/2ω̃‖2L2 .

On the other hand, using Proposition B.1 in [16], Hölder’s inequality and Sobolev’s embedding
theorem, we find

‖|x||∇ψ̃|‖L∞ ≤ C
(
‖〈x〉ω̃‖L3/2 + ‖〈x〉ω̃‖L3

)
≤ C

(
‖A1/2ω̃‖L2 + ‖A1/2∇ω̃‖L2

)
,

where 〈x〉 = (1 + |x|2)1/2. Combining these estimates we arrive at (4.19).

We are now able to state our final result:

Theorem 4.5. There exist positive constants C1, ε0, and µ such that, for any α ∈ R and any
ω̃0 ∈X1 satisfying ‖ω̃0‖X ≤ ε0, the solution of (4.6) with initial data ω̃0 satisfies

‖ω̃(t)‖2X ≤ C1 ‖ω̃0‖2X e−µt , for all t ≥ 0 . (4.20)

Proof. If ω̃ ∈ C0([0,+∞),X1) is the solution of (4.6) with initial data ω̃0, we define

m0(t) = ‖ω̃(t)‖2X = ‖A1/2ω̃(t)‖2L2 (t ≥ 0) , m1(t) = ‖A1/2∇ω̃(t)‖2L2 (t > 0) .
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For the Gaussian vortex, we proved in Section 2 that Hardy’s inequality (2.25) holds for some
CH < 1. Thus, by Theorems 2.5 and 2.8, there exists a constant γ ∈ (0, 1) such that

γ

2
m0(t) ≤ J̃(t) ≤ 1

2
m0(t) , t ≥ 0 . (4.21)

On the other hand, by Theorem 4.2, there exists δ > 0 such that

Q̃(t) ≥ δ m0(t) , and Q̃(t) ≥ m1(t)− 2m0(t) , t > 0 , (4.22)

where the second inequality follows from the definition (4.9) and the inequality B ≤ 2A. Taking
a convex combination of both estimates in (4.22), we deduce

Q̃(t) ≥ µ
(
m0(t) +m1(t)

)
, t > 0 , (4.23)

where µ = δ/(3 + δ). Finally, it follows from Lemma 4.4 and Young’s inequality that

|Ñ(t)| ≤ C0m0(t)
(
m0(t)1/2 +m1(t)1/2

)
≤ µ

4

(
m0(t) +m1(t)

)
+

2C2
0

µ
m0(t)2 . (4.24)

Now, as long as m0(t) ≤ ε2 := µ2/(8C2
0 ), we have by (4.13), (4.21), (4.23), (4.24)

J̃ ′(t) = −Q̃(t)− Ñ(t) ≤ −µ
2

(
m1(t) +m0(t)

)
≤ −µJ̃(t) ,

which implies
γm0(t) ≤ 2J̃(t) ≤ 2J̃(0) e−µt ≤ m0(0) e−µt .

As a consequence, if we assume that ‖ω̃0‖2X = m0(0) ≤ ε20 := γε2, we have m0(t) ≤ ε2 for all
t ≥ 0 and estimate (4.20) holds with C1 = γ−1.

We briefly indicate here the meaning of our result for the Navier-Stokes equations in the
original, unscaled variables. If ω = αω̄ + ω̃ where ω̃ ∈ C0([0,+∞),X1) is as in Theorem 4.5,
the vorticity w defined by (4.2) satisfies, in particular, the estimate∫

R2

∣∣∣w(y, τ)− α

4πτ
e−|y|

2/(4τ)
∣∣∣dy = O

(
τ−µ/2

)
, as τ → +∞ ,

which means that w(·, τ) converges to a self-similar solution with Gaussian profile as τ → +∞.
As is shown in [14, Theorem 1.2], that property holds in fact for all solutions of the vorticity
equation (4.1) in L1(R2), although it is not possible to specify any decay rate in the general
case. Note that the evolution defined by (4.1) in L1(R2) preserves the total mass, so that we
necessarily have

∫
R2 w(y, τ) dy = α for all τ > 0.

Remark 4.6. Except for a slight difference in the definition of the function space X, Theo-
rem 4.5 coincides with the well known stability result established in [14, Proposition 4.5]. The
approach originally developed by C.E. Wayne and the first author relies on conserved quantities
related to symmetries of the problem, such as the second order moment I(ω) in (1.15). In many
respects, it is simpler than ours, and it provides an estimate of the form (4.20) with explicit
constants C1 and µ. Note also that, in the limit of large circulation numbers |α| → ∞, the
enhanced dissipation effect due to fast rotation can be used to improve both the decay rate of the
perturbations and the size of the basin of attraction of the vortex, see [15].
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4.2 Coercivity of the diffusive quadratic form

This section is entirely devoted to the proof of Theorem 4.2, which is a key ingredient in The-
orem 4.5. We first observe that the functions A(x),B(x) in (4.9) are both radially symmetric,
with radial profiles A(r), B(r) given by the explicit expressions

A(r) =
es − 1

s
, B(r) =

1

2s2

(
es(1 + s)− 1− 2s

)
+ 1 , s =

r2

4
. (4.25)

On can also verify that B/A is a decreasing function of r satisfying 1/2 ≤ B(r)/A(r) ≤ 7/4 for
all r > 0, see Section A.3.

We next follow a similar approach as in Section 2. If ω ∈ Z is decomposed in Fourier series
like in (2.14), we have

Q(ω) = 2π
∑
k∈Z

∫ ∞
0

{
A(r)

(
|ω′k(r)|2 +

k2

r2
|ωk(r)|2

)
−B(r)|ωk(r)|2

}
r dr , (4.26)

and we observe that ω ∈ Z1 if and only if∫ ∞
0

ω0(r) r dr = 0 , and

∫ ∞
0

ω±1(r) r2 dr = 0 .

Introducing the new variables wk = A1/2ωk ≡ eχωk, where χ = 1
2 log(A), we obtain after

straightforward calculations

Q(ω) = 2π
∑
k∈Z

∫ ∞
0

{
|w′k(r)|2 +

k2

r2
|wk(r)|2 +W (r)|wk(r)|2

}
r dr , (4.27)

where the potential W is defined by

W (r) = χ′′(r) +
1

r
χ′(r) + χ′(r)2 − B(r)

A(r)
=

r

2
χ′(r)− χ′(r)2 − 1

2
− e−2χ(r) . (4.28)

The coercivity estimate (4.11) is thus equivalent to the inequality∫ ∞
0

{
|w′k(r)|2 +

k2

r2
|wk(r)|2 +W (r)|wk(r)|2

}
r dr ≥ δ

∫ ∞
0
|wk(r)|2 r dr , (4.29)

which should hold for all k ∈ Z under the conditions∫ ∞
0

w0(r) e−χ(r) r dr = 0 , and

∫ ∞
0

w±1(r) e−χ(r) r2 dr = 0 . (4.30)

For any k ∈ Z, we denote by Lk the selfadjoint operator in Y = L2(R+, r dr) defined by

Lkg = −1

r
∂r
(
r∂rg

)
+
k2

r2
g +Wg . (4.31)

The domain of Lk is exactly the same as for the harmonic oscillator in R2, because the potential
W defined by (4.28) satisfies

W (r) >
r2

16
− 3

2
for all r > 0 , and W (r) ∼

{
−3/2 as r → 0 ,

r2/16 as r →∞ ,
(4.32)
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see Section A.3. Our goal is to prove the lower bound Lk ≥ δ in the entire space Y when |k| ≥ 2,
and in the subspaces given by conditions (4.30) when k = 0 or k = ±1. We consider three cases
separately.

Case 1 : When |k| ≥ 2, the desired inequality is simply obtained by comparing Lk with the
usual harmonic operator. Indeed, we know from (4.31), (4.32) that

Lk > −∂2
r −

1

r
∂r +

k2

r2
+
r2

16
− 3

2
≥ |k|

2
− 1 , (4.33)

where inequalities are between selfadjoint operators on Y . Thus Lk ≥ 1/2 when |k| ≥ 3, and
there exists δ > 0 such that Lk ≥ δ when |k| = 2, because the inequality in (4.32) is strict.

Case 2 : When |k| = 1, the lower bound (4.33) is of no use, but it is easy to verify that Lk ≥ 0
in that case. Indeed, we claim that Lkg1 = 0 where g1(r) = eχ(r) r e−r

2/4. Since g1 is a positive
function vanishing at the origin and at infinity, this means that 0 is the lowest eigenvalue of Lk
in Y when k = ±1. To prove the above claim, we first observe that, for any (smooth) function
f on R+, we have the identity

L̃kf := eχLk(e
χf) = −1

r
∂r
(
rA∂rf

)
+
k2

r2
Af −Bf , (4.34)

because this is the property we used to go from (4.26) to (4.27). On the other hand, in view of
(2.2) and (2.3), we have the identity

−1

r
∂r
(
rA∂rω∗

)
= ω∗ , (4.35)

which holds in fact for any vorticity profile ω∗, if A is defined by (2.3). In the case of the
Lamb-Oseen vortex, if we differentiate the equality (4.35) with respect to r, we find that the
function f = −2ω′∗ = r e−r

2/4 satisfies the relation

−1

r
∂r
(
rA∂rf

)
+

1

r2
Af −

(
A′′ +

2

r
A′ − r

2
A′
)
f = f . (4.36)

But A′′ + 2A′/r − rA′/2 = B − 1 by (4.10), so combining (4.34) and (4.36) we conclude that
L̃kf = 0 if |k| = 1, which is the desired result.

To get coercivity, we now restrict ourselves to the subspace Y1 ⊂ Y of all functions g satisfying
〈g, h1〉 = 0 where h1(r) = r e−χ(r), see the second relation in (4.30). It is important to observe
that h1 is not proportional to g1, so that Y1 is not the orthogonal complement in Y of the
eigenspace spanned by g1. However, we have 〈g1, h1〉 = 8 6= 0, which means that the closed
hyperplane Y1 does not contain the eigenfunction g1. In view of Remark 4.8 below, we conclude
that there exists some δ > 0 such that Lk ≥ δ on Y1 when |k| = 1.

Case 3 : Finally, we consider the radially symmetric case where k = 0. The difficulty here is
that the operator L0 is not positive on the entire space Y . A numerical calculation indicates
that L0 has one negative eigenvalue µ0 ≈ −0.722, and that the next eigenvalue µ1 ≈ 0.615 is
positive. So it is essential to use the first relation in (4.30), and to restrict our analysis to the
subspace Y0 of all g ∈ Y such that 〈g, h0〉 = 0, where h0(r) = e−χ(r). Our strategy is to apply
Lemma 4.7 below with a = −µ0, b = µ1, ψ = h0/‖h0‖, and φ = g0/‖g0‖, where g0 denotes a
positive function in the kernel of L0−µ0. Estimate (4.41) can be used to prove coercivity of L0

on Y0 if we have good lower bounds on the eigenvalues µ0, µ1 and on the scalar product |〈φ, ψ〉|,
which measures the angle between the linear spaces spanned by g0 and h0.
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We first estimate the lowest eigenvalue µ0. We know from the previous step that L1g1 = 0.
Defining g = cg1/r = ceχ e−r

2/4, where c = (2 log(2))−1/2 is a normalization factor chosen so
that ‖g‖ = 1, we deduce that L0g = (2/r)∂rg. This gives the relation(

L0 +
3

4

)
g = R , where R =

2

r
∂rg +

3

4
g =

(3

4
− B − 1

A

)
g , (4.37)

where we used the identity (B − 1)/A = 1 − A′/(rA) = 1 − 2χ′/r, see (4.10). In Section A.3
below, we show that B−1 < 3A/4, so that R > 0. This means that the operator L0 + 3

4 admits a
positive supersolution, and using Sturm-Liouville’s theory we conclude that L0 + 3

4 > 0, so that
µ0 > −3/4. Actually the function g is a remarkably accurate quasimode, in the sense that the
remainder R in (4.37) is small. The norm of R in Y = L2(R+, r dr) can be computed explicitly,
see Section A.4. The result is∫ ∞

0
R(r)2r dr =

1

16 log(2)

(
3− log(2)− 2 log(π)

)
, (4.38)

so that ε := ‖R‖Y ≈ 0.0396. Since L0 is a selfadjoint operator, we deduce that L0 has an
eigenvalue in the interval [−3/4,−3/4 + ε]. Anticipating the fact (established below) that L0

has a unique negative eigenvalue, we conclude that µ0 ∈ [−3/4,−3/4 + ε].

We next estimate the second eigenvalue µ1 of L0. It is convenient here to observe that, if
g = eχf , the relation L0g = µg is equivalent to the generalized eigenvalue problem L̃0f = µAf ,
where L̃k is defined in (4.34). The second eigenvalue of that problem is characterized by the
inf-sup formula

µ1 = inf
f∈F

sup
r>0

(
R[f ]

)
(r) = sup

f∈F
inf
r>0

(
R[f ]

)
(r) , where R[f ] =

L̃0f

Af
. (4.39)

Here F denotes the class of all (smooth) functions f : [0,+∞) → R such that f(0) = 1,
f(r) → 0 as r → +∞, and f has exactly one zero in the interval (0,+∞). Our first trial
function is f(r) = e−s(1 − αs), where s = r2/4 and α = log(2)−1. The value of α is chosen so
that the Rayleigh quotient has no singularity :

R[f ] =
e−s(1 + (2−α)s+ 2αs2)− (1 + (1−α)s+ αs2)

2s(1− e−s)(1− αs)
, s =

r2

4
.

It happens that R[f ] is a decreasing function on R+, with R[f ](0) = −3/4+α and R[f ](+∞) =
1/2. In view of (4.39), this implies that 1/2 < µ1 < −3/4 + α ≈ 0.69. A better approximation
is obtained using the improved try

f(r) = e−s(1− αs)(1 + βs) , where β =
α(1− 2 e−1/α)

2α− 1 + 2 e−1/α(1− α)
.

If 1/2 < α < log(2)−1, then β > 0 and the Rayleigh quotient has no singularity in the interval
(0,+∞). Taking for instance α = 1.4 gives the excellent lower bound µ1 ≥ 0.6.

Finally, we use the quasimode g in (4.37) and a standard perturbation argument to estimate
the true eigenfunction corresponding to the lowest eigenvalue µ0. We first look for a non-
normalized eigenfunction of the form g0 = g − f , where f ⊥ g0. We have

0 = (L0 − µ0)g0 = (L0 − µ0)g − (L0 − µ0)f = R−
(
µ0 + 3

4

)
g − (L0 − µ0)f ,

so that f = (L0−µ0)−1
(
R− (µ0 + 3

4)g
)
, where (L0−µ0)−1 denotes the partial inverse of L0−µ0

on its range. The norm of that inverse is bounded by 1/d, where d = µ1 − µ0 is the spectral
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gap. As ‖R‖ = ε and |µ0 + 3
4 | ≤ ε, we conclude that ‖f‖ ≤ 2ε/d. The normalized eigenfunction

is

φ =
g0

‖g0‖
=

g − f√
1− ‖f‖2

.

Let ψ = ĉh0 = ĉ e−χ, where ĉ =
√

3/π is a normalization factor chosen so that ‖ψ‖ = 1. A
direct calculation shows that

〈ψ, g〉 = cĉ

∫ ∞
0

e−r
2/4 r dr = 2cĉ =

1

π

√
6

log(2)
≈ 0.9365 ,

hence

〈ψ, φ〉 =
〈ψ, g〉 − 〈ψ, f〉√

1− ‖f‖2
≥ 2cĉ− 2ε

d
. (4.40)

We use Lemma 4.7 below with a = −µ0 ≤ 3/4, d = a+ b = µ1 − µ0 ≥ 1.2, and ε = ‖R‖ ≤ 0.04.
In view of (4.40), estimate (4.41) shows that there exists some δ > 0 such that 〈Lf, f〉 ≥ δ‖f‖2
for all f ∈ Y0 = h⊥0 . This concludes the proof of Theorem 4.5. �

Finally, we state an elementary lemma that was used twice in the above proof.

Lemma 4.7. Let X be a Hilbert space and L : D(L) → X be a selfadjoint operator in X. We
assume that there exist φ ∈ D(L) with ‖φ‖ = 1 and a, b ∈ R with a+ b ≥ 0 such that

i) Lφ = −aφ, and

ii) 〈Lg, g〉 ≥ b‖g‖2 for all g ∈ D(L) with g ⊥ φ.

Then, for any ψ ∈ X with ‖ψ‖ = 1, we have the lower bound

〈Lf, f〉 ≥
(

(a+ b)|〈φ, ψ〉|2 − a
)
‖f‖2 , for all f ∈ D(L) with f ⊥ ψ . (4.41)

Proof. Given f ∈ D(L), we decompose f = 〈f, φ〉φ + g, so that g ⊥ φ. Since Lφ = −aφ, we
find

〈Lf, f〉 = 〈Lg, g〉 − a|〈f, φ〉|2 ≥ b‖g‖2 − a|〈f, φ〉|2 = b‖f‖2 − (a+ b)|〈f, φ〉|2 ,

where the inequality follows from ii). We now assume that f ⊥ ψ and decompose φ = 〈φ, ψ〉ψ+h.
By Cauchy-Schwarz, we have

|〈f, φ〉|2 = |〈f, h〉|2 ≤ ‖f‖2 ‖h‖2 = ‖f‖2
(
1− |〈φ, ψ〉|2

)
,

and combining both inequalities we arrive at (4.41).

Remark 4.8. In the particular case where a = 0 and b > 0, the kernel of L is one-dimensional,
and inequality (4.41) implies that the quadratic form of L is strictly positive on any closed
hyperplane that does not contain the eigenfunction φ.

A Appendix

A.1 Integral inequalities involving logarithmic weights

Proof of Proposition 3.1. Let B1 = {x ∈ Rn ; |x| < 1} and DM =
{
x ∈ Rn ; f(x) < M

}
. To

prove (3.1), we must verify that∫
B1

(
log

1

|x|

)
f(x) dx . M +

∫
Rn\DM

(
log

f(x)

M

)
f(x) dx . (A.1)
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Let Ω1 =
{
x ∈ B1 ; f(x) ≤ M |x|−n/2

}
and Ω2 =

{
x ∈ B1 ; f(x) > M |x|−n/2

}
⊂ Rn \DM . We

have B1 = Ω1 ∪ Ω2 and∫
Ω1

(
log

1

|x|

)
f(x) dx ≤ M

∫
B1

1

|x|n/2
log

1

|x|
dx = CM ,∫

Ω2

(
log

1

|x|

)
f(x) dx ≤ 2

n

∫
Ω2

(
log

f(x)

M

)
f(x) dx ≤ 2

n

∫
Rn\DM

(
log

f(x)

M

)
f(x) dx ,

hence (A.1) follows by adding both inequalities. We next consider (3.2), which reads∫
DM

(
log

M

f(x)

)
f(x) dx . M +

∫
Rn\B1

(
log |x|

)
f(x) dx . (A.2)

Let e = exp(1) and

Ω3 =
{
x ∈ DM ; f(x) ≤ M

e(1+|x|)2n

}
, Ω4 =

{
x ∈ DM ; f(x) >

M

e(1+|x|)2n

}
.

Since t 7→ t log(1/t) is increasing on [0, e−1] and s 7→ log(s) is increasing on [1,+∞), we have∫
Ω3

(
log

M

f(x)

)
f(x) dx ≤ M

∫
Rn

1

e(1+|x|)2n
log
(
e(1+|x|)2n

)
dx = CM ,∫

Ω4

(
log

M

f(x)

)
f(x) dx ≤

∫
Ω4

log
(
e(1+|x|)2n

)
f(x) dx ≤ CM + 2n

∫
Rn\B1

(
log |x|

)
f(x) dx ,

and (A.2) follows in the same way.

From now on, we assume that f is radially symmetric and nonincreasing in the radial direc-
tion. In particular, we have for all x 6= 0:

f(x) ≤ 1

αn|x|n

∫
|y|≤|x|

f(y) dy ≤ M

αn|x|n
, where αn =

πn/2

Γ(1 + n
2 )
. (A.3)

Since t 7→ log+(t) is increasing, we deduce that∫
Rn\DM

(
log

f(x)

M

)
f(x) dx ≤

∫
Rn

(
log+

1

αn|x|n
)
f(x) dx ≤ CM + n

∫
B1

(
log

1

|x|

)
f(x) dx ,

which is the converse of (3.1). Note that, when n ≤ 12, the first term CM in the right-hand
side can be dropped, because αn > 1. In a similar way, we find∫

Rn\B1

(
log |x|

)
f(x) dx ≤ 1

n

∫
Rn

(
log+

M

αnf(x)

)
f(x) dx ≤ CM +

∫
DM

(
log

M

f(x)

)
f(x) dx ,

which is the converse of (3.2). Again, the first term CM in the right-hand side can be dropped
when n ≤ 12.

Proof of Proposition 2.2. Throughout the proof we assume that M := ‖ω‖L1 > 0. We
decompose E(ω) = E1(ω) + E2(ω) where

Ei(ω) =
1

4π

∫
Ωi

log
1

|x− y|
ω(x)ω(y) dx dy , i = 1, 2 ,

and Ω1 = {(x, y) ∈ R2 × R2 ; |x − y| < 1}, Ω2 = {(x, y) ∈ R2 × R2 ; |x − y| ≥ 1}. We have to
verify that the integrals defining the quantities E1, E2 are convergent under assumptions (2.6).
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First of all, using inequality (A.1) above with n = 2, we obtain for all x ∈ R2:∫
|y−x|<1

log
1

|x− y|
|ω(y)|dy ≤ C

∫
R2

(
1 + log+

|ω(y)|
M

)
|ω(y)|dy .

If we multiply both sides by |ω(x)| and integrate over x ∈ R2, we thus find

|E1(ω)| ≤ CM

∫
R2

(
1 + log+

|ω(y)|
M

)
|ω(y)|dy . (A.4)

On the other hand, we have log |x−y| ≤ log(|x|+|y|) ≤ log(1+|x|)+log(1+|y|) when |x−y| ≥ 1.
This gives the bound

|E2(ω)| ≤ 1

4π

∫
Ω2

|ω(x)| |ω(y)|
(

log(1 + |x|) + log(1 + |y|)
)

dx dy

≤ M

2π

∫
R2

|ω(y)| log(1 + |y|) dy .

(A.5)

Combining (A.4) and (A.5), we arrive at (2.7).

Finally, we assume that ω ∈ C2
c (R2) and

∫
R2 ω(x) dx = 0. The associated stream function

ψ ∈ C2(R) defined by (1.14) satisfies |ψ(x)| = O(|x|−1) and |u(x)| = |∇ψ(x)| = O(|x|−2) as
|x| → ∞, so that u ∈ L2(R2). This allows us to integrate by parts in the first expression (1.13)
of the energy, using the relation ∆ψ = ω, to obtain the elegant formula E(ω) = 1

2

∫
R2 |u|2 dx. By

a density argument, the conclusion remains valid for all integrable vorticities with zero average
satisfying a assumptions (2.6).

A.2 Positivity of the potential V in some examples

For the algebraic vortex (2.38) with κ = 1 + ν > 1, the potential V defined in (2.34) has the
following expression

V (r) =
1

r2(1+r2)2

(
3− 2(ν−1)r2 + (ν2−1)r4 − 2S − S2

)
, where S =

νr2

(1 + r2)ν − 1
.

If ν = 1, then S = 1 hence V ≡ 0. Otherwise :

• If ν > 1, we have (1 + r2)ν > 1 + νr2 for all r > 0, so that S < 1. We deduce

V (r) >
ν − 1

(1+r2)2

(
−2 + (ν+1)r2

)
, (A.6)

so that V (r) > 0 if r2 ≥ 2/(ν+1). In the region where r2 ≤ 2/(ν+1), we use the improved
estimate

S =
νr2

(1 + r2)ν − 1
< 1− ν−1

2
r2 +

ν2−1

12
r4 , r > 0 , (A.7)

which can be established by a direct calculation. This gives the lower bound

V (r) >
(ν−1)r2

12(1+r2)2

(
5ν + 11 + (ν2−1)r2 − (ν−1)(ν+1)2

12
r4
)
, (A.8)

which implies that V (r) > 0 if (ν+1)r2 ≤ 2.

• If 0 < ν < 1, the calculations are entirely similar, except that all inequalities in (A.6)–(A.8)
are reversed. This shows that V (r) < 0 in that case.
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For the Gaussian vortex (2.39), a direct calculation shows that

V (r) =
3

4s
− 1

2
+
s

4
− 1/2

es − 1
− s/4

(es − 1)2
, where s =

r2

4
.

Using the lower bound es − 1 ≥ s(1 + s/2 + s2/6), we obtain

V (r) ≥ 1

4s

1

(1+s/2+s2/6)2

(
(3− 2s+ s2)(1 + s/2 + s2/6)2 − 2(1 + s/2 + s2/6)− 1

)
=

1

4

s

(6+3s+s2)2

(
15 + 12s+ 12s2 + 4s3 + s4

)
> 0 .

A.3 Properties of the Gaussian vortex

Given the expressions of A,B in (4.25), we first verify that the ratio B/A is a decreasing function
of r. We have

B(r)− 1

A(r)
=

1

2

(
1 + h(r2/4)

)
, where h(s) =

1

s
− 1

es − 1
. (A.9)

Since

h′(s) = −(es − 1)2 − s2es

s2(es − 1)2
= −4 es

sinh(s/2)2 − (s/2)2

s2(es − 1)2
< 0 , s > 0 ,

we see that h is strictly decreasing on (0,+∞) with h(0) = 1/2 and h(+∞) = 0. We conclude
that (B − 1)/A, hence also B/A, is a decreasing function of r, and that 1/2 ≤ B/A ≤ 7/4.

We next prove the lower bound (4.32) on the potential W . Since χ = log(A)/2 with A as
in (4.25), a direct calculation shows that the potential W defined by (4.28) has the following
expression

W (r) =
s

4
− 1

2
− 1

4s
− s− 1/2

es − 1
− s/4

(es − 1)2
, where s =

r2

4
.

Inequality (4.32) is thus equivalent to the positivity of the function G defined by

G(s) = 1− 1

4s
− s− 1/2

es − 1
− s/4

(es − 1)2
, s > 0 . (A.10)

If s ≥ 1/2, we use the lower bound es − 1 ≥ s(1 + s/2) and obtain

G(s) ≥ s

4(2 + s)2

(
7 + 4s

)
> 0 .

If 0 < s < 1/2, the third term in the right-hand side of (A.10) has the opposite sign. To estimate
the denominator, we use the upper bound es−1 ≤ s(1+s/2)(1+s2/5), which holds for s ≤ 1/2.
This gives

G(s) ≥ s

4(2 + s)2(5 + s2)

(
27 + 32s+ 15s2 + 4s3

)
> 0 .

A.4 Computing the norm of the quasimode (4.37)

In this section we compute the L2 norm of the function R defined by (4.37). We recall that
g = cA1/2e−r

2/4, where c = (2 log(2))−1/2, and using (A.9) we observe that

3

4
− B − 1

A
=

1

4

(
1− 2h(r2/4)

)
, where h(s) =

1

s
− 1

es − 1
.
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It follows that

‖R‖2Y =
1

16

∫ ∞
0

(
1− 2h(r2/4)

)2
g(r)2r dr =

1

16 log(2)

∫ ∞
0

(
1− 2h(s)

)2 1

s

(
e−s − e−2s

)
ds .

Expanding (1− 2h(s))2 = 1− 4h(s) + 4h(s)2, we decompose

‖R‖2Y ≡
∫ ∞

0
R(r)2r dr =

I1 − 4I2 + 4I3

16 log(2)
, (A.11)

where the integrals I1, I2, I3 are defined and computed below.

• Evaluation of I1 :

I1 =

∫ ∞
0

1

s

(
e−s − e−2s

)
ds = log(2) .

• Evaluation of I2 :

I2 =

∫ ∞
0

h(s)

s

(
e−s − e−2s

)
ds

=

∫ ∞
0

(1

s
− 1

es − 1

){∫ ∞
0

e−st dt

}(
e−s − e−2s

)
ds

=

∫ ∞
0

{∫ ∞
0

(1

s
− 1

es − 1

)(
e−s(1+t) − e−s(2+t)

)
ds

}
dt

=

∫ ∞
0

(
log

2 + t

1 + t
− 1

2 + t

)
dt = (1 + t) log

2 + t

1 + t

∣∣∣∣t=+∞

t=0

= 1− log(2) .

• Evaluation of I3 :

I3 =

∫ ∞
0

h(s)2

s

(
e−s − e−2s

)
ds

=

∫ ∞
0

(1

s
− 1

es − 1

)2
{∫ ∞

0
ts e−st dt

}(
e−s − e−2s

)
ds

=

∫ ∞
0

{∫ ∞
0

(
e−s(1+t) − e−s(2+t)

s
− 2 e−s(2+t) +

s e−s(2+t)

es − 1

)
ds

}
t dt

=

∫ ∞
0

(
log

2 + t

1 + t
− 2

2 + t
+ ψ(1)(3 + t)

)
t dt ,

where ψ(1) denotes the trigamma function [1, Section 6.4] :

ψ(1)(z) =

∫ ∞
0

s e−sz

1− e−s
ds =

d2

dz2
log Γ(z) , Re(z) > 0 .

It follows that

I3 =
t2 + 4

2
log(2 + t)− t2 − 1

2
log(1 + t)− 3t

2
+ t
(
log Γ

)′
(3 + t)−

(
log Γ

)
(3 + t)

∣∣∣∣t=+∞

t=0

=
1

4

(
7− 6 log(2)− 2 log(π)

)
.

Here we used Stirling’s formula to compute an asymptotic expansion of
(
log Γ

)
(3 + t) and its

derivative as t→ +∞. Inserting the values of I1, I2, I3 into (A.11), we arrive at (4.38).
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A.5 The Poisson structure on P

For two functions φ, ψ on R2 we use the familiar notation {φ, ψ} = ∂1φ∂2ψ − ∂2φ∂1ψ. Now, if
F and G are two functionals of P, the standard way of defining their Poisson bracket is

{F,G}(ω) = −
∫
R2

ω

{
δF

δω
,
δG

δω

}
dx , (A.12)

where δF
δω is the usual “variational derivative” of F, namely, the function on R2 defined by the

relation ( d

dε
F(ω + εη)

)∣∣∣
ε=0

=

∫
R2

δF

δω
(x)η(x) dx ,

for all (smooth and compactly supported) increments η. In particular, the variational derivative
of the energy functional (1.13) is δE

δω = −ψ, where ψ is the stream function (1.14). As an
application, if ω evolves according to the Euler equation ∂tω + {ψ, ω} = 0, we have for any
(smooth) functional F :

d

dt
F(ω) = −

∫
R2

δF

δω
{ψ, ω} dx =

∫
R2

{
δF

δω
,
δE

δω

}
ω dx = {E,F}(ω) .

This is precisely the integrated form of the canonical equation ∂tω = {E,ω}.
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