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Abstract

Motivated by applications to vortex rings, we study the Cauchy problem for the three-
dimensional axisymmetric Navier-Stokes equations without swirl, using scale invariant func-
tion spaces. If the axisymmetric vorticity ωθ is integrable with respect to the two-dimensional
measure dr dz, where (r, θ, z) denote the cylindrical coordinates in R

3, we show the existence
of a unique global solution, which converges to zero in L1 norm as t → ∞. The proof of
local well-posedness follows exactly the same lines as in the two-dimensional case, and our
approach emphasizes the similarity between both situations. The solutions we construct
have infinite energy in general, so that energy dissipation cannot be invoked to control the
long-time behavior. We also treat the more general case where the initial vorticity is a finite
measure whose atomic part is small enough compared to viscosity. Such data include point
masses, which correspond to vortex filaments in the three-dimensional picture.

1 Introduction

Among all three-dimensional incompressible flows, axisymmetric flows without swirl form a par-
ticular class that is relatively simple to study and yet contains interesting examples, such as
circular vortex filaments or toroidal vortex rings. For the evolutions defined by both the Euler
and the Navier-Stokes equations, global well-posedness in that class was established almost fifty
years ago by Ladyzhenskaya [17] and Ukhovksii & Yudovich [23]. In the viscous case, the original
approach of [17, 23] applies to velocity fields in the Sobolev space H2(R3), see [18], but it is
possible to obtain the same conclusions under the weaker assumption that the initial velocity
belongs to H1/2(R3) [1]. In all these works, global existence for arbitrary large data is shown by
combining the standard energy estimate, which holds for general solutions of the Navier-Stokes
equations, with a priori bounds on the vorticity that are specific to the axisymmetric case.

In this paper, we revisit the Cauchy problem for the axisymmetric Navier-Stokes equations
(without swirl) for the following reasons. First, motivated by a future study of vortex filaments,
we wish to formulate a global well-posedness result involving scale invariant function spaces

∗This paper is dedicated to Prof. Denis Serre on the occasion of his sixtieth birthday.
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only. As was already mentioned, all previous works deal with finite energy solutions, and energy
is not a scale invariant quantity for three-dimensional viscous flows. In particular, the long-
time behavior of axisymmetric solutions has not been studied in terms of scale invariant norms.
Our second motivation is to emphasize the analogy between the axisymmetric case and the
two-dimensional situation where the velocity field is planar and depends on two variables only.
Indeed, we shall see that, if appropriate function spaces are used, local existence of solutions can
be established in the axisymmetric case using literally the same proof as in the two-dimensional
situation, which has been studied by many authors [3, 11, 14]. However, significant differences
appear when one considers a priori estimates and long-time asymptotics.

To formulate our results, we introduce some notation. The time evolution of viscous incom-
pressible flows is described by the Navier-Stokes equations

∂tu+ (u · ∇)u = ∆u−∇p , div u = 0 , (1)

where u = u(x, t) ∈ R
3 denotes the velocity field and p = p(x, t) ∈ R the pressure field. For

simplicity, we assume throughout this paper that the kinematic viscosity and the fluid density
are both equal to 1. We restrict ourselves to axisymmetric solutions without swirl for which the
velocity field has the following particular form :

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez . (2)

Here (r, θ, z) are the usual cylindrical coordinates in R
3, defined by x = (r cos θ, r sin θ, z) for

any x ∈ R
3, and er, eθ, ez denote the unit vectors in the radial, toroidal, and vertical directions,

respectively :

er =





cos θ
sin θ
0



 , eθ =





− sin θ
cos θ
0



 , ez =





0
0
1



 . (3)

We emphasize that the “swirl” u · eθ is assumed to vanish identically. This means that the
velocity field (2) is not only invariant under rotations about the vertical axis, but also under
reflections by any plane containing the vertical axis.

A direct calculation shows that the vorticity ω = curlu associated with the velocity field (2)
is purely toroidal :

ω(r, z, t) = ωθ(r, z, t)eθ , where ωθ = ∂zur − ∂ruz . (4)

The flow is entirely determined by the single quantity ωθ, because the velocity field u can be
reconstructed by solving the linear elliptic system

∂rur +
1

r
ur + ∂zuz = 0 , ∂zur − ∂ruz = ωθ , (5)

in the half space Ω = {(r, z) ∈ R
2 | r > 0 , z ∈ R}, with boundary conditions ur = ∂ruz = 0

at r = 0. System (5) is the differential formulation of the axisymmetric Biot-Savart law, which
will be studied in more detail in Section 2 below.

The evolution equation for ωθ reads

∂tωθ + u · ∇ωθ −
ur
r
ωθ = ∆ωθ −

ωθ

r2
, (6)

where u · ∇ = ur∂r + uz∂z and ∆ = ∂2r + 1
r∂r + ∂2z denotes the Laplace operator in cylindrical

coordinates. Equation (6) is considered in the half-plane Ω with homogeneous Dirichlet condition
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at the boundary r = 0. As was already observed in [17, 23], it is useful to consider also the
related quantity

η(r, z, t) =
ωθ(r, z, t)

r
, (7)

which satisfies the advection-diffusion equation

∂tη + u · ∇η = ∆η +
2

r
∂rη , (8)

with homogeneous Neumann condition at the boundary r = 0. Systems (6) and (8) are, of course,
perfectly equivalent. In what follows we find it more convenient to work with the axisymmetric
vorticity equation (6), at least to prove local existence of solutions, but equation (8) will be
useful to derive a priori estimates and to study the long-time behavior.

Throughout this paper, to emphasize the similarity with the two-dimensional case, we equip
the half-plane Ω = {(r, z) ∈ R

2 | r > 0 , z ∈ R} with the two-dimensional measure dr dz, as
opposed to the 3D measure r dr dz which could appear more natural for axisymmetric problems.
Thus, given any p ∈ [1,∞), we denote by Lp(Ω) the space of measurable functions ωθ : Ω → R

for which the following norm is finite :

‖ωθ‖Lp(Ω) =

(
∫

Ω
|ωθ(r, z)|p dr dz

)1/p

, 1 ≤ p <∞ .

The space L∞(Ω) is defined similarly. Sometimes, however, it is more convenient to use the 3D
measure r dr dz, and the corresponding spaces are then denoted by Lp(R3) to avoid confusion.
For instance, we define

‖η‖Lp(R3) =

(
∫

Ω
|η(r, z)|p r dr dz

)1/p

, 1 ≤ p <∞ .

We are now in position to state our first main result.

Theorem 1.1 For any initial data ω0 ∈ L1(Ω), the axisymmetric vorticity equation (6) has a
unique global mild solution

ωθ ∈ C0([0,∞), L1(Ω)) ∩ C0((0,∞), L∞(Ω)) . (9)

The solution satisfies ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω) for all t > 0, and

lim
t→0

t1−
1
p ‖ωθ(t)‖Lp(Ω) = 0 , for 1 < p ≤ ∞ , (10)

lim
t→∞

t1−
1
p ‖ωθ(t)‖Lp(Ω) = 0 , for 1 ≤ p ≤ ∞ . (11)

If, in addition, the axisymmetric vorticity is non-negative and has finite impulse :

I =

∫

Ω
r2ω0(r, z) dr dz < ∞ , (12)

then

lim
t→∞

t2ωθ(r
√
t, z

√
t, t) =

I
16
√
π
r e−

r2+z2

4 , (r, z) ∈ Ω , (13)

where convergence holds in Lp(Ω) for 1 ≤ p ≤ ∞. In particular ‖ωθ(t)‖Lp(Ω) = O(t−2+ 1
p ) as

t→ ∞ in that case.
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Remark 1.2 A mild solution of (6) on R+ = [0,∞) is a solution of the associated integral
equation, namely Eq. (49) below. As will be verified in Section 4, both sides of (49) are well-
defined if ωθ satisfies (9) and (10). In the uniqueness claim, we only assume that ωθ satisfies
(9) and is a mild solution of (6) for strictly positive times. The proof then shows that (10)
automatically holds.

The statement of Theorem 1.1 has several aspects, and it is worth discussing them separately.
The local well-posedness claim is certainly not surprising, because the class of initial data we
consider is covered by at least two existence results in the literature. Indeed, if ωθ ∈ L1(Ω), it
is easy to verify that the vorticity ω = ωθeθ belongs to the Morrey space M3/2(R3) defined by
the norm

‖ω‖M3/2 = sup
x∈R3

sup
R>0

1

R

∫

B(x,R)
|ω(x)|dx ,

where B(x,R) ⊂ R
3 denotes the ball of radius R > 0 centered at x ∈ R

3. In addition ω can be
approximated in M3/2(R3) by smooth and compactly supported functions. As was proved by
Giga & Miyakawa [12], the Navier-Stokes equations in R

3 thus have a unique local solution with
initial vorticity ω, which is even global in time if the norm ‖ω‖M3/2 is sufficiently small. On the
other hand, under the same assumption on the vorticity, one can show that the velocity field u
given by the Biot-Savart law in R

3 belongs to the space BMO−1(R3) defined by the norm

‖u‖BMO−1 = sup
x∈R3

sup
R>0

(

1

R3

∫

B(x,R)

∫ R2

0
|et∆u|2 dt dx

)1/2

,

where et∆ denotes the heat semigroup in R
3. In fact u can be approximated by smooth and

compactly supported functions in BMO−1(R3), so that u ∈ VMO−1(R3). Thus we can also
invoke the celebrated result by Koch & Tataru [16] to obtain the existence of a unique local
solution to the Navier-Stokes equation in R

3, which is again global in time if the norm ‖u‖BMO−1

is sufficiently small. In contrast to the general results in [12, 16], the approach we follow to solve
the Cauchy problem for Eq. (6) uses specific features of the axisymmetric case. As we shall see
in Section 4, it is elementary and completely parallel to the two-dimensional situation which
was studied e.g. in [3, 7].

The assertion of global well-posedness in Theorem 1.1 is also quite natural in view of the
historical results by Ladyzhenskaya [17] and Ukhovkii & Yudovich [23]. As in [17, 23] we use the
structure of equation (8) to derive a priori estimates on the quantity η in Lp(R3), for 1 ≤ p ≤ ∞.
However, since the solutions we consider do not have finite energy in general, we cannot apply
the classical energy estimate to obtain a uniform bound on the velocity field in L2(R3). Instead
we prove that any solution of (6) with initial data ω0 ∈ L1(Ω) satisfies ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω)

for all t > 0 and
sup
t>0

t‖ωθ(t)‖L∞(Ω) ≤ C
(

‖ω0‖L1(Ω)

)

, (14)

where C(s) = O(s) as s → 0. This new a priori estimate is scale invariant, and implies that all
solutions of (6) with initial data in L1(Ω) are global. Using the axisymmetric Biot-Savart law,
we also deduce the following optimal bound on the velocity field :

sup
t>0

t1/2‖u(t)‖L∞(Ω) ≤ C
(

‖ω0‖L1(Ω)

)

. (15)

Our last comment on Theorem 1.1 concerns the long-time behavior, which differs significantly
from what happens in the two-dimensional case. In the latter situation, the L1 norm of the
vorticity is non-increasing in time, but does not converge to zero in general (in particular, it is
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constant for solutions with a definite sign). The long-time behavior is described by self-similar
solutions, called Oseen vortices, which have a nonzero total circulation [8, 9]. In contrast, the
axisymmetric vorticity ωθ vanishes on the boundary of the half-plane Ω, so that the L1 norm
is strictly decreasing for all nontrivial solutions. As we shall see in Section 6, this implies that
‖ωθ(t)‖L1(Ω) → 0 when t → ∞, as asserted in (11). In other words, the long-time behavior of
the axisymmetric vorticity is trivial when measured in scale invariant function spaces. More
can be said when the initial data have a definite sign and a finite impulse, given by (12). In
that case, the axisymmetric vorticity ωθ inherits the same properties for all positive times and
converges as t → ∞ to a self-similar solution of the linearized equation (35), whose profile is
explicitly determined in (13).

As in the two-dimensional case, it is possible to extend the local existence claim in Theo-
rem 1.1 to a larger class of initial data, so as to include finite measures as initial vorticities. Let
M(Ω) denote the set of all real-valued finite measures on the half-plane Ω, equipped with the
total variation norm

‖µ‖tv = sup

{∫

Ω
φdµ

∣

∣

∣
φ ∈ C0(Ω) , ‖φ‖L∞(Ω) ≤ 1

}

, for µ ∈ M(Ω) ,

where C0(Ω) is the set of all real-valued continuous functions on Ω that vanish at infinity and
on the boundary ∂Ω. If µ ∈ M(Ω) is absolutely continuous with respect to Lebesgue’s measure,
then µ = ωθ dr dz for some ωθ ∈ L1(Ω), and ‖µ‖tv = ‖ωθ‖L1(Ω). More generally, one can
decompose any µ ∈ M(Ω) as µ = µac + µsc + µpp, where µac is absolutely continuous with
respect to Lebesgue’s measure, µpp is a countable collection of Dirac masses, and µsc has no
atoms but is supported on a set of zero Lebesgue measure. In the original three-dimensional
picture, each Dirac mass in the atomic part µpp corresponds to a circular vortex filament, whereas
vortex sheets are included in the singularly continuous part µsc.

The proof of Theorem 1.1 can be adapted to initial vorticities in M(Ω), and gives the
following statement, which is our second main result.

Theorem 1.3 There exist positive constants ǫ and C such that, for any initial data ω0 ∈ M(Ω)
with ‖(ω0)pp‖tv ≤ ǫ, the axisymmetric vorticity equation (6) has a unique global mild solution
ωθ ∈ C0((0,∞), L1(Ω) ∩ L∞(Ω)) satisfying

lim sup
t→0

‖ωθ(t)‖L1(Ω) < ∞ , lim sup
t→0

t1/4‖ωθ(t)‖L4/3(Ω) ≤ Cǫ , (16)

and such that ωθ(t) ⇀ ω0 as t → 0. Moreover, the asymptotic estimates for t → ∞ given in
Theorem 1.1 hold without change.

Observe that we now have a limitation on the size of the data, which however only affects the
atomic part of the initial vorticity. This technical restriction inevitably occurs if local existence
is established using a fixed point argument in scale invariant spaces, as we do in Section 4.
In the two-dimensional case, early results by Giga, Miyakawa, & Osada [11] and by Kato [14]
had a similar limitation, which was then relaxed in [9, 6] using completely different techniques.
In the axisymmetric situation, existence of a global solution to (6) with a large Dirac mass as
initial vorticity has recently been established by Feng and Šverák [5], using an approximation
argument, but uniqueness is still under investigation. For a general initial vorticity ω0 ∈ M(Ω),
both existence and uniqueness are open.

Even if we restrict ourselves to initial vorticities with a small atomic part, the uniqueness
claim in Theorem 1.3 is probably not optimal. Indeed, although the solutions we construct satisfy
both estimates in (16), we believe that uniqueness should hold (as in the two-dimensional case)
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under the sole assumptions that ωθ(t) is uniformly bounded in L1(Ω) for t > 0 and converges
weakly to the initial vorticity ω0 as t → 0. However, technical difficulties arise when adapting
the two-dimensional proof to the axisymmetric case, and for the moment we need an additional
assumption, such as the second estimate in (16), to obtain uniqueness. We hope to clarify that
question in a future work.

Remark 1.4 It is interesting to ask whether our results can be extended to the case where a
non-zero axisymmetric forcing is included in the Navier-Stokes equations. For example, one can
add a forcing term f = f(r, z, t) to the right-hand side of equation (6). If f is “sufficiently
regular” and decays “sufficiently fast” as r + |z| + t → ∞, our results remain true, with quite
straightforward modifications of the proofs. However, if we wish to obtain results under optimal,
scale invariant assumptions such as

∫ ∞

0

∫

Ω
|f(r, z, t)|dr dz dt < ∞ ,

non-trivial modifications seem to be needed. We thank the anonymous referee for raising this
interesting point, which we plan to address in a future work.

The rest of this paper is organized as follows. In Section 2, which is devoted to the ax-
isymmetric Biot-Savart law, we estimate various norms of the velocity field u in terms of the
axisymmetric vorticity ωθ. In Section 3, we show that the semigroup generated by the lineariza-
tion of (6) about the origin satisfies the same Lp − Lq estimates as the two-dimensional heat
kernel. After these preliminaries, we prove the local existence claims in Theorems 1.1 and 1.3
in Sections 4.1 and 4.2, respectively. Global existence follows from a priori estimates which are
established in Section 5. Finally, the long-time behavior is investigated in Section 6. We prove
that all solutions of (6) converge to zero in L1(Ω), and we also compute the leading term in the
long-time asymptotics for vorticities with a definite sign and a finite impulse.

Acknowledgements. This project started during visits of the first named author to the
University of Minnesota, whose hospitality is gratefully acknowledged. Our research was sup-
ported in part by grants DMS 1362467 and DMS 1159376 from the National Science Foundation
(V.S.), and by the grant “Dyficolti” ANR-13-BS01-0003-01 from the French Ministry of Research
(Th.G.).

2 The axisymmetric Biot-Savart law

In this section, we assume that the axisymmetric vorticity ωθ : Ω → R is given, and we study
the properties of the velocity field u = (ur, uz) satisfying the linear elliptic system (5). The
divergence-free condition ∂r(rur) + ∂z(ruz) = 0 implies that there exists a function ψ : Ω → R

such that

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
. (17)

As ∂zur − ∂ruz = ωθ, the axisymmetric stream function ψ satisfies the following linear elliptic
equation in the half-space Ω :

−∂2rψ +
1

r
∂rψ − ∂2zψ = rωθ . (18)

Boundary conditions for (18) are determined by observing that, for a smooth axisymmetric
vector field u : R

3 → R
3 with div u = 0, the stream function defined by (17) satisfies the

6



asymptotic expansion

ψ(r, z) = ψ0 + r2ψ2(z) +O(r4) , as r → 0 , (19)

see [19] for an extensive discussion of these regularity issues. Without loss of generality, we
can assume that the constant ψ0 in (19) is equal to zero, in which case we conclude that
ψ(0, z) = ∂rψ(0, z) = 0.

The solution of (18) with these boundary conditions is well known, see e.g. [5]. If we assume
that the vorticity ωθ decays sufficiently fast at infinity, we have the explicit representation

ψ(r, z) =
1

2π

∫

Ω

√
rr̄ F

(

(r − r̄)2 + (z − z̄)2

rr̄

)

ωθ(r̄, z̄) dr̄ dz̄ , (20)

where the function F : (0,∞) → R is defined by

F (s) =

∫ π

0

cosφ dφ
(

2(1− cosφ) + s
)1/2

=

∫ π/2

0

cos(2φ) dφ
(

sin2 φ+ s/4
)1/2

, s > 0 . (21)

Useful properties of F are collected in the following lemma, whose proof can be found in [22,
Section 19].

Lemma 2.1 The function F : (0,∞) → R defined by (21) is decreasing and satisfies the asymp-
totic expansions :

i) F (s) = log
( 8√

s

)

− 2 +O
(

s log
1

s

)

and F ′(s) = − 1

2s
+O

(

log
1

s

)

as s→ 0;

ii) F (s) =
π

2s3/2
+O

( 1

s5/2

)

and F ′(s) = − 3π

4s5/2
+O

( 1

s7/2

)

as s→ ∞.

Remark 2.2 It follows in particular from Lemma 2.1 that the maps s 7→ sαF (s) and s 7→
sβF ′(s) are bounded if 0 < α ≤ 3/2 and 1 ≤ β ≤ 5/2. These observations will be constantly
used in the subsequent proofs.

Combining (17) and (20), we obtain explicit formulas for the axisymmetric Biot-Savart law :

ur(r, z) =

∫

Ω
Gr(r, z, r̄, z̄)ωθ(r̄, z̄) dr̄ dz̄ , uz(r, z) =

∫

Ω
Gz(r, z, r̄, z̄)ωθ(r̄, z̄) dr̄ dz̄ , (22)

where

Gr(r, z, r̄, z̄) = − 1

π

z − z̄

r3/2 r̄1/2
F ′(ξ2) , ξ2 =

(r − r̄)2 + (z − z̄)2

rr̄
, (23)

Gz(r, z, r̄, z̄) =
1

π

r − r̄

r3/2 r̄1/2
F ′(ξ2) +

1

4π

r̄1/2

r3/2

(

F (ξ2)− 2ξ2F ′(ξ2)
)

. (24)

Our first result gives elementary estimates for the axisymmetric Biot-Savart law in usual
Lebesgue spaces. We emphasize the striking similarity with the corresponding bounds for the
two-dimensional Biot-Savart law in the plane R

2, see e.g. [8, Lemma 2.1].

Proposition 2.3 The following properties hold for the velocity field u defined from the vorticity
ωθ via the axisymmetric Biot-Savart law (22).
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i) Assume that 1 < p < 2 < q <∞ and 1
q = 1

p − 1
2 . If ωθ ∈ Lp(Ω), then u ∈ Lq(Ω)2 and

‖u‖Lq(Ω) ≤ C‖ωθ‖Lp(Ω) . (25)

ii) If 1 ≤ p < 2 < q ≤ ∞ and ωθ ∈ Lp(Ω) ∩ Lq(Ω), then u ∈ L∞(Ω)2 and

‖u‖L∞(Ω) ≤ C‖ωθ‖σLp(Ω) ‖ωθ‖1−σ
Lq(Ω) , where σ =

p

2

q − 2

q − p
∈ (0, 1) . (26)

Proof. Both assertions follow from the basic estimate

|Gr(r, z, r̄, z̄)|+ |Gz(r, z, r̄, z̄)| ≤
C

(

(r − r̄)2 + (z − z̄)2
)1/2

, (27)

which holds for all (r, z) ∈ Ω and all (r̄, z̄) ∈ Ω. At a heuristic level, estimate (27) follows quite
naturally from the scaling properties of Gr(r, z, r̄, z̄) and Gz(r, z, r̄, z̄) if we observe that these
functions behave for (r, z) close to (r̄, z̄) like the two-dimensional velocity field generated by a
Dirac mass located at (r̄, z̄) in R

2. To prove (27) rigorously, we first bound the radial component
Gr. We distinguish two cases :

a) If r̄ ≤ 2r, we use the fact that ξ2F ′(ξ2) is bounded, and obtain the estimate

|Gr(r, z, r̄, z̄)| ≤ C
|z − z̄|
r3/2 r̄1/2

rr̄

(r − r̄)2 + (z − z̄)2

= C
r̄1/2

r1/2
|z − z̄|

(r − r̄)2 + (z − z̄)2
≤ C
(

(r − r̄)2 + (z − z̄)2
)1/2

,

because r̄/r ≤ 2 and |z − z̄| ≤
(

(r − r̄)2 + (z − z̄)2
)1/2

.

b) If r̄ > 2r, observing that ξ3F ′(ξ2) is bounded, we deduce

|Gr(r, z, r̄, z̄)| ≤ C
|z − z̄|
r3/2 r̄1/2

r3/2 r̄3/2
(

(r − r̄)2 + (z − z̄)2
)3/2

= C
r̄ |z − z̄|

(

(r − r̄)2 + (z − z̄)2
)3/2

≤ C
(

(r − r̄)2 + (z − z̄)2
)1/2

,

because r̄ < 2(r̄ − r) ≤ 2
(

(r − r̄)2 + (z − z̄)2
)1/2

. This proves estimate (27) for Gr.

Similar calculations give the same bound for the second component Gz too. Indeed, the first
term in the right-hand side of (24) can be estimated exactly as above, using the obvious fact

that |r− r̄| ≤
(

(r− r̄)2 +(z− z̄)2
)1/2

. The second term involves the quantity F (ξ2)− 2ξ2F ′(ξ2),
which is bounded by Cξ−1 in case a) and by Cξ−3 in case b). This concludes the proof of (27).

Now, since the integral kernel G = (Gr, Gz) in (22) satisfies the same bound as the two-
dimensional Biot-Savart kernel in R

2, properties i) and ii) in Proposition 2.3 can be established
exactly as in the 2D case. Estimate (25) thus follows from the Hardy-Littlewood-Sobolev in-
equality, and the bound (26) can be proved by splitting the integration domain and applying
Hölder’s inequality, see e.g. [8, Lemma 2.1]. �

The proof of Proposition 2.3 shows that the axisymmetric Biot-Savart law (22) has the same
properties as the usual Biot-Savart law in the whole plane R

2. In fact, it is possible to obtain
in the axisymmetric situation weighted inequalities (involving powers of the distance r to the
vertical axis) which have no analogue in the 2D case. As an example, we state here an interesting
extension of estimate (25).
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Proposition 2.4 Let α, β ∈ [0, 2] be such that 0 ≤ β − α < 1, and assume that p, q ∈ (1,∞)
satisfy

1

q
=

1

p
− 1 + α− β

2
.

If rβωθ ∈ Lp(Ω), then rαu ∈ Lq(Ω)2 and we have the bound

‖rαu‖Lq(Ω) ≤ C‖rβωθ‖Lp(Ω) . (28)

Proof. As in the proof of Proposition 2.3, all we need is to establish the pointwise estimate

rα

r̄β

(

|Gr(r, z, r̄, z̄)|+ |Gz(r, z, r̄, z̄)|
)

≤ C
(

(r − r̄)2 + (z − z̄)2
)λ

, (29)

for some λ ∈ (0, 1). Indeed, once (29) is known, the bound (28) follows immediately from the
Hardy-Littlewood-Sobolev inequality if q−1 = p−1 + λ− 1. To prove (29), we proceed as before
and distinguish three regions : a) r̄/2 ≤ r ≤ 2r̄ ; b) r > 2r̄ ; c) r̄ > 2r . In each region, we bound
the quantities F ′(ξ2) and F (ξ2)−2ξ2F ′(ξ2) appropriately using Remark 2.2. These calculations
shows that inequality (29) holds with λ = (1+β−α)/2 if and only if the exponents α, β satisfy
0 ≤ α ≤ β ≤ 2. Since we need λ < 1 we assume in addition that β − α < 1. The details are
straightforward and can be left to the reader. �

Remarks 2.5
1. Similarly, one can establish a weighted analogue of inequality (26).

2. If u is replaced by ur, inequality (28) holds for all α, β ∈ [−1, 2] such that 0 ≤ β − α < 1.

3. If we take α = 1/q and β = 1/p, so that 1
q = 1

p − 1
3 , inequality (28) is equivalent to

‖u‖Lq(R3) ≤ C‖ω‖Lp(R3) ,

which is well known for the three-dimensional Biot-Savart law, see e.g. [10, Lemma 2.1].

Finally, we prove other weighted inequalities, which are similar to those considered in [5].

Proposition 2.6 The following estimates hold :

‖u‖L∞(Ω) ≤ C‖rωθ‖1/2L1(Ω)
‖ωθ/r‖1/2L∞(Ω) , (30)

∥

∥

∥

ur
r

∥

∥

∥

L∞(Ω)
≤ C‖ωθ‖1/3L1(Ω)

‖ωθ/r‖2/3L∞(Ω) . (31)

Proof. Estimate (30) is stated in [5] in the slightly weaker form

‖u‖L∞(Ω) ≤ C‖ωθ‖1/4L1(Ω)
‖r2ωθ‖1/4L1(Ω)

‖ωθ/r‖1/2L∞(Ω) ,

but the proof given there actually yields the stronger bound (30), which can be compared with
(26) in the case p = 1, q = ∞. To prove (31), we follow the same approach as in [5]. Using
translation and scaling invariance, it is sufficient to show that the quantity

ur
r

∣

∣

∣

r=1,z=0
= ur(1, 0) =

∫

Ω

z

πr1/2
F ′
(

(r − 1)2 + z2

r

)

ωθ(r, z) dr dz (32)

is bounded by C‖ωθ‖1/3L1(Ω)
‖ωθ/r‖2/3L∞(Ω). We decompose Ω = I1 ∪ I2, where

I1 =
{

(r, z) ∈ Ω
∣

∣

∣

1

2
≤ r ≤ 2 , − 1 ≤ z ≤ 1

}

, I2 = Ω \ I1 .
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When integrating over the first region I1, we use the fact that |F ′(s)| ≤ Cs−1 and r ≈ 1. We
thus obtain

|u(1)r (1, 0)| ≤ C

∫

I1

|z|
(r − 1)2 + z2

|ωθ(r, z)|dr dz ≤ C

∫

I1

|ωθ(r, z)|
(

(r − 1)2 + z2
)1/2

dr dz .

As in [5], or in part ii) or Proposition 2.3, we deduce that

|u(1)r (1, 0)| ≤ C‖ωθ‖1/2L1(I1)
‖ωθ‖1/2L∞(I1)

≤ C‖ωθ‖1/3L1(I1)
‖ωθ/r‖2/3L∞(I1)

. (33)

In the complementary region, we use the optimal bound |F ′(s)| ≤ Cs−5/2 and we observe that,
if (r, z) ∈ I2, then (r − 1)2 + z2 ≥ C(r2 + z2) for some C > 0. We thus have

|u(2)r (1, 0)| ≤ C

∫

I2

|z| r2
(

(r − 1)2 + z2
)5/2

|ωθ(r, z)|dr dz ≤ C

∫

I2

|ωθ(r, z)|
r2 + z2

dr dz .

Fix any R > 0 and denote ΩR = {(r, z) ∈ Ω | ρ ≤ R}, where ρ = (r2 + z2)1/2. Extending the
integration domain from I2 to Ω = ΩR ∪ (Ω \ΩR), we compute

|u(2)r (1, 0)| ≤ C

∫

ΩR

|ωθ(r, z)|
ρ2

dr dz + C

∫

Ω\ΩR

|ωθ(r, z)|
ρ2

dr dz

≤ C‖ωθ/r‖L∞(Ω)

∫

ΩR

1

ρ
dr dz + CR−2

∫

Ω\ΩR

|ωθ(r, z)|dr dz

≤ CR‖ωθ/r‖L∞(Ω) + CR−2‖ωθ‖L1(Ω) .

Optimizing over R > 0 gives the bound |u(2)r (1, 0)| ≤ C‖ωθ‖1/3L1(Ω)
‖ωθ/r‖2/3L∞(Ω), which together

with (33) implies (31). �

Remark 2.7 Estimate (31) can also be obtained by observing that

∥

∥

∥

ur
r

∥

∥

∥

L∞(R3)
≤ C

∥

∥

∥

ωθ

r

∥

∥

∥

L3,1(R3)
≤ C

∥

∥

∥

ωθ

r

∥

∥

∥

1/3

L1(R3)

∥

∥

∥

ωθ

r

∥

∥

∥

2/3

L∞(R3)
, (34)

where L3,1(R3) denotes the Lorentz space. The first inequality in (34) is proved in [2, Proposi-
tion 4.1], and the second one follows by real interpolation.

3 The semigroup associated with the linearized equation

This section is devoted to the study of the linearized vorticity equation (6) :

∂tωθ =
(

∂2r + ∂2z +
1

r
∂r −

1

r2

)

ωθ , (35)

which is considered in the half-plane Ω = {(r, z) | r > 0, z ∈ R}, with homogeneous Dirichlet
condition at the boundary r = 0. Given initial data ω0 ∈ L1(Ω), we denote by ωθ(t) = S(t)ω0

the solution of (35) at time t > 0.

Lemma 3.1 For any t > 0, the evolution operator S(t) associated with Eq. (35) is given by the
explicit formula

(S(t)ω0)(r, z) =
1

4πt

∫

Ω

r̄1/2

r1/2
H
( t

rr̄

)

exp
(

−(r − r̄)2 + (z − z̄)2

4t

)

ω0(r̄, z̄) dr̄ dz̄ , (36)
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where the function H : (0,+∞) → R is defined by

H(τ) =
1√
πτ

∫ π/2

−π/2
e−

sin2 φ
τ cos(2φ) dφ , τ > 0 . (37)

Proof. If ωθ is a solution of (35), we observe that the vector valued function ω = ωθeθ satisfies
the usual heat equation ∂tω = ∆ω in the whole space R

3. For any t > 0, we thus have the
solution formula

ω(x, t) =
1

(4πt)3/2

∫

R3

e−
|x−x̄|2

4t ω(x̄, 0) dx̄ , x ∈ R
3 . (38)

Denoting x = (r cos θ, r sin θ, z) and x̄ = (r̄ cos θ̄, r̄ sin θ̄, z̄), we can write (38) in the form

ωθ(r, z, t)





− sin θ
cos θ
0



 =
1

(4πt)3/2

∫ ∞

0

∫

R

∫ π

−π
e−

|x−x̄|2
4t ω0(r̄, z̄)





− sin θ̄
cos θ̄
0



 r̄ dθ̄ dz̄ dr̄ , (39)

where

|x− x̄|2 = (r − r̄)2 + (z − z̄)2 + 4rr̄ sin2
θ − θ̄

2
.

Now, if we integrate over the angle θ̄ in (39) and use the definition (37) of H, we see that (39)
is equivalent to ωθ(t) = S(t)ω0 with S(t) defined by (36). �

The function H cannot be expressed in terms of elementary functions, but all we need to
know is the behavior of H(τ) as τ → 0 and τ → ∞.

Lemma 3.2 The function H : (0,∞) → R defined by (37) is smooth and satisfies the asymptotic
expansions :

i) H(τ) = 1− 3τ

4
+O(τ2) and H ′(τ) = −3/4 +O(τ) as τ → 0;

ii) H(τ) =
π1/2

4τ3/2
+O

( 1

τ5/2

)

and H ′(τ) = −3π1/2

8τ5/2
+O

( 1

τ7/2

)

as τ → ∞.

Proof. Expansion ii) follows immediately from (37) if, in the expression e−
sin2 φ

τ , we replace the
exponential function by its Taylor series at the origin. Expansion i) can be deduced from the
formula

H(τ) =
1√
π

∫ 1√
τ

− 1√
τ

e−x2 1− 2τx2√
1− τx2

dx ,

which is obtained by substituting x = sinφ√
τ

in the integral (37). �

Remark 3.3 We believe that the function H is decreasing, although we do not have a simple
proof. In what follows, we only use the fact that the maps τ 7→ ταH(τ) and τ 7→ τβH ′(τ) are
bounded if 0 ≤ α ≤ 3/2 and 0 ≤ β ≤ 5/2.

Let (S(t))t≥0 be the family of linear operators defined by (36) for t > 0 and by S(0) = 1 (the
identity operator). By construction, we have the semigroup property : S(t1 + t2) = S(t1)S(t2)
for all t1, t2 ≥ 0. Further important properties are collected in the following proposition.
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Proposition 3.4 The family (S(t))t≥0 defined by (36) is a strongly continuous semigroup of
bounded linear operators in Lp(Ω) for any p ∈ [1,∞). Moreover, if 1 ≤ p ≤ q ≤ ∞, the
following estimates hold :
i) If ω0 ∈ Lp(Ω), then

‖S(t)ω0‖Lq(Ω) ≤ C

t
1
p
− 1

q

‖ω0‖Lp(Ω) , t > 0 . (40)

ii) If f = (fr, fz) ∈ Lp(Ω)2, then

‖S(t) div∗ f‖Lq(Ω) ≤ C

t
1
2
+ 1

p
− 1

q

‖f‖Lp(Ω) , t > 0 , (41)

where div∗ f = ∂rfr + ∂zfz denotes the two-dimensional divergence of f .

Proof. We claim that

1

4πt

r̄1/2

r1/2
H
( t

rr̄

)

exp
(

−(r − r̄)2 + (z − z̄)2

4t

)

≤ C

t
exp
(

−(r − r̄)2 + (z − z̄)2

5t

)

, (42)

for all (r, z) ∈ Ω, all (r̄, z̄) ∈ Ω, and all t > 0. Indeed, since H is bounded, estimate (42) is
obvious when r̄ ≤ 2r. If r̄ > 2r, we observe that τ1/2H(τ) is bounded, so that

r̄1/2

r1/2
H
( t

rr̄

)

≤ C
r̄1/2

r1/2
r1/2 r̄1/2

t1/2
= C

r̄

t1/2
≤ C

|r − r̄|
t1/2

,

where in the last inequality we used the fact that r̄ < 2(r̄− r) = 2|r− r̄|. As xe−x2/4 ≤ Ce−x2/5

for all x ≥ 0, we conclude that (42) holds in all cases. This provides for the integral kernel
in (36) a pointwise upper bound in terms of the usual heat kernel in the whole plane R

2, with
a diffusion coefficient equal to 5/4 instead of 1. Thus estimate (40) follows immediately from
Young’s inequality, as in the 2D case.

To prove (41), we assume that ω0 = div∗ f = ∂rfr + ∂zfz, and we integrate by parts in (36)
to obtain the identity

(S(t) div∗ f)(r, z) =
1

4πt

∫

Ω

r̄1/2

r1/2
exp
(

−(r − r̄)2 + (z − z̄)2

4t

)

(Arfr +Azfz) dr̄ dz̄ ,

where

Ar =
t

rr̄2
H ′
( t

rr̄

)

−
( 1

2r̄
+
r − r̄

2t

)

H
( t

rr̄

)

, Az = −z − z̄

2t
H
( t

rr̄

)

.

Proceeding as above and using Remark 3.3, it is straightforward to verify that

1

4πt

r̄1/2

r1/2
exp
(

−(r−r̄)2 + (z−z̄)2
4t

)(

|Ar|+ |Az|
)

≤ C

t3/2
exp
(

−(r−r̄)2 + (z−z̄)2
5t

)

, (43)

for all (r, z) ∈ Ω, all (r̄, z̄) ∈ Ω, and all t > 0. Thus estimate (41) follows again from Young’s
inequality, as in the 2D case.

Finally, we show that the semigroup (S(t))t≥0 is strongly continuous in Lp(Ω) if 1 ≤ p <∞.
All we need to verify is the continuity at the origin. Given ω0 ∈ Lp(Ω), we denote by ω0 :
R
2 → R the function obtained by extending ω0 by zero outside Ω. Using the change of variables

r̄ = r +
√
tρ, z̄ = z +

√
tζ in (36), we obtain the identity

(

S(t)ω0 − ω0

)

(r, z) =
1

4π

∫

R2

e−
ρ2+ζ2

4 Ψ(r, z, ρ, ζ, t) dρdζ ,
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for all (r, z) ∈ Ω, where

Ψ(r, z, ρ, ζ, t) =
(

1 +

√
tρ

r

)1/2
H
( t

r(r +
√
tρ)

)

ω0(r +
√
tρ, z +

√
tζ)− ω0(r, z) .

By Minkowski’s integral inequality, we deduce that

‖S(t)ω0 − ω0‖Lp(Ω) ≤ 1

4π

∫

R2

e−
ρ2+ζ2

4 ‖Ψ(·, ·, ρ, ζ, t)‖Lp(Ω) dρdζ . (44)

Now, the estimates we used in the proof of (42) show that

(

1 +

√
tρ

r

)1/2
H
( t

r(r +
√
tρ)

)

≤ C(1 + |ρ|) , (45)

whenever r > 0 and r +
√
tρ > 0. This immediately implies that

‖Ψ(·, ·, ρ, ζ, t)‖Lp(Ω) ≤ C(1 + |ρ|)‖ω0‖Lp(Ω) ,

for all (ρ, ζ) ∈ R
2 and all t > 0. Since the left-hand side of (45) converges to 1 as t → 0, and

since translations act continuously in Lp(R2) for p < ∞, it also follows from estimate (45) and
Lebesgue’s dominated convergence theorem that

‖Ψ(·, ·, ρ, ζ, t)‖Lp(Ω) −→ 0 as t→ 0 ,

for all (ρ, ζ) ∈ R
2. Thus another application of Lebesgue’s theorem implies that the right-hand

side of (44) converges to zero as t→ 0, which is the desired result. �

As in the previous section, it is possible to derive weighted estimates for the linear semigroup
(36). The proof of the following result is very similar to that of Propositions 2.4 and 3.4, and
can thus be left to the reader.

Proposition 3.5 Let 1 ≤ p ≤ q ≤ ∞ and −1 ≤ α ≤ β ≤ 2. If rβω0 ∈ Lp(Ω), then

‖rαS(t)ω0‖Lq(Ω) ≤ C

t
1
p
− 1

q
+β−α

2

‖rβω0‖Lp(Ω) , t > 0 . (46)

Moreover, if −1 ≤ α ≤ β ≤ 1 and rβf ∈ Lp(Ω)2, then

‖rαS(t) div∗ f‖Lq(Ω) ≤ C

t
1
2
+ 1

p
− 1

q
+β−α

2

‖rβf‖Lp(Ω) , t > 0 . (47)

4 Local existence of solutions

Equipped with the results of the previous sections, we now take up the proof of Theorems 1.1
and 1.3. In view of the divergence-free condition in (5), the evolution equation (6) for the
axisymmetric vorticity ωθ can be written in the equivalent form

∂tωθ + div∗(uωθ) =
(

∂2r + ∂2z +
1

r
∂r −

1

r2

)

ωθ , (48)

where div∗(uωθ) = ∂r(urωθ) + ∂z(uzωθ). Given initial data ω0, the integral equation associated
with (48) is

ωθ(t) = S(t)ω0 −
∫ t

0
S(t− s) div∗(u(s)ωθ(s)) ds , t > 0 , (49)
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where S(t) denotes the linear semigroup defined in (36). In this section, our goal is to prove local
existence and uniqueness of solutions to (49) using a standard fixed point argument, in the spirit
of Kato [13]. For the sake of clarity, we first treat the case where ω0 ∈ L1(Ω), and then consider
the more complicated situation where ω0 is a finite measure with sufficiently small atomic part.
This will establish the local well-posedness claims in Theorems 1.1 and 1.3, respectively.

4.1 Local existence when the initial vorticity is integrable

Proposition 4.1 For any initial data ω0 ∈ L1(Ω), there exists T = T (ω0) > 0 such that the
integral equation (49) has a unique solution

ωθ ∈ C0([0, T ], L1(Ω)) ∩ C0((0, T ], L∞(Ω)) . (50)

Moreover ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω) for all t ∈ [0, T ], and estimate (10) holds. Finally, if
‖ω0‖L1(Ω) is small enough, the local existence time T > 0 can be taken arbitrarily large.

Proof. We follow the same approach as in the two-dimensional case, see e.g. [3, 7, 14]. Given
T > 0 we introduce the function space

XT =
{

ωθ ∈ C0((0, T ], L4/3(Ω)
∣

∣

∣ ‖ωθ‖XT
<∞

}

, (51)

equipped with the norm
‖ωθ‖XT

= sup
0<t≤T

t1/4‖ωθ(t)‖L4/3(Ω) .

For any t ≥ 0, we denote ωlin(t) = S(t)ω0, where S(t) is the linear semigroup (36). It then
follows from Proposition 3.4 that ωlin ∈ XT for any T > 0. For later use, we define

C1(ω0, T ) = ‖ωlin‖XT
= sup

0<t≤T
t1/4‖S(t)ω0‖L4/3(Ω) . (52)

In view of (40), there exists a universal constant C2 > 0 such that C1(ω0, T ) ≤ C2‖ω0‖L1(Ω) for

any T > 0. Moreover, since L1(Ω) ∩ L4/3(Ω) is dense in L1(Ω), it also follows from (40) that
C1(ω0, T ) → 0 as T → 0, for any ω0 ∈ L1(Ω).

Given ωθ ∈ XT and p ∈ [1, 2), we define a map Fωθ : (0, T ] → Lp(Ω) in the following way :

(Fωθ)(t) =

∫ t

0
S(t− s) div∗(u(s)ωθ(s)) ds , 0 < t ≤ T , (53)

where it is understood that u(s) is the velocity field obtained from ωθ(s) via the axisymmetric
Biot-Savart law (22). Using estimate (41), Hölder’s inequality, and the bound (25), we obtain
for t ∈ (0, T ] :

t
1− 1

p ‖(Fωθ)(t)‖Lp(Ω) ≤ t
1− 1

p

∫ t

0

C

(t− s)
3
2
− 1

p

‖u(s)ωθ(s)‖L1(Ω) ds

≤ t
1− 1

p

∫ t

0

C

(t− s)
3
2
− 1

p

‖u(s)‖L4(Ω)‖ωθ(s)‖L4/3(Ω) ds

≤ t
1− 1

p

∫ t

0

C

(t− s)
3
2
− 1

p

‖ωθ(s)‖2L4/3(Ω)
ds (54)

≤ t
1− 1

p

∫ t

0

C

(t− s)
3
2
− 1

p

‖ωθ‖2XT

s
1
2

ds ≤ C‖ωθ‖2XT
.
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It is also straightforward to verify that the quantity (Fωθ)(t) depends continuously on the time
parameter t ∈ (0, T ] in the topology of Lp(Ω). Choosing p = 4/3, we deduce that Fωθ ∈ XT

and ‖Fωθ‖XT
≤ C3‖ωθ‖2XT

for some C3 > 0. More generally, we have the Lipschitz estimate

‖Fωθ −F ω̃θ‖XT
≤ C3

(

‖ωθ‖XT
+ ‖ω̃θ‖XT

)

‖ωθ − ω̃θ‖XT
, (55)

for all ωθ, ω̃θ ∈ XT .

Now we consider the map G : XT → XT defined by Gωθ = ωlin − Fωθ. We fix R > 0
such that 2C3R < 1, and denote by BR the closed ball of radius R centered at the origin in
XT . If C1(ω0, T ) ≤ R/2, the estimates above show that G maps BR into BR and is a strict
contraction there, so that (by the Banach fixed point theorem) G has a unique fixed point ωθ

in BR. By construction, ωθ is a solution to the integral equation (49) in XT . The condition
C1(ω0, T ) ≤ R/2 can be fulfilled in two different ways. If the initial data are small enough so
that C2‖ω0‖L1(Ω) ≤ R/2, the existence time T > 0 can be chosen arbitrarily, and the fixed point
argument therefore establishes global existence for small data in L1(Ω). On the other hand, for
larger initial data ω0, we can always choose T > 0 small enough so that C1(ω0, T ) ≤ R/2, hence
we also have local existence for arbitrary data.

Remarks 4.2
1. For large data, the local existence time T > 0 given by the fixed point argument depends on
the initial data, and it is not possible to bound T from below using the norm ‖ω0‖L1(Ω) only.
However, if ω0 ∈ L1(Ω) ∩ Lp(Ω) for some p > 1, then (by Proposition 3.4) an upper bound on
‖ω0‖Lp(Ω) provides a lower bound on the local existence time T .

2. For later use, we note that the fixed point argument also proves that the solution ωθ depends
continuously on the initial data. More precisely, if K ⊂ L1(Ω) is any compact set, or any
sufficiently small neighborhood of a given point, we can take the same local existence time T > 0
for all initial data ω0 ∈ K, and there exists C > 0 such that

sup
t∈[0,T ]

‖ωθ(t)− ω̃θ(t)‖L1(Ω) + ‖ωθ − ω̃θ‖XT
≤ C‖ω0 − ω̃0‖L1(Ω) , (56)

for all ω0, ω̃0 ∈ K, where ωθ, ω̃θ ∈ XT denote the solutions corresponding to the initial data
ω0, ω̃0, respectively.

To conclude the proof of Proposition 4.1, we establish a few additional properties of the local
solution ωθ ∈ XT . We first note that

lim
t→0

t1/4‖ωθ(t)‖L4/3(Ω) = lim
T→0

‖ωθ‖XT
= 0 , (57)

because, when T > 0 is small, the fixed point argument holds in the ball BR with R = 2C1(ω0, T ).
This proves (10) for p = 4/3. Next, using (54) with p = 1, we see that that the map t 7→ (Fωθ)(t)
is continuous in the topology of L1(Ω) and satisfies ‖(Fωθ)(t)‖L1(Ω) ≤ C‖ωθ‖2XT

for all t ∈ (0, T ].

In view of (57), this implies that the map ωθ − ωlin ≡ −Fωθ belongs to C0([0, T ], L1(Ω) and
vanishes at t = 0. In particular, using Proposition 3.4, we conclude that ωθ ∈ C0([0, T ], L1(Ω)).
That ‖ωθ(t)‖L1(Ω) is a non-increasing function of time is a well known fact, which will be dis-
cussed in Lemma 5.1 below. Finally, to prove that ωθ ∈ C0((0, T ], Lp(Ω)) for any p ∈ (1,∞] and
that (10) holds, we use a standard bootstrap argument which we explain in some detail because
it will be used again in Section 5. For p ∈ (1,∞] we define

Mp(T ) = sup
0<t≤T

t1−
1
p ‖S(t)ω0‖Lp(Ω) , and Np(T ) = sup

0<t≤T
t1−

1
p ‖ωθ(t)‖Lp(Ω) . (58)
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Then Mp(T ) → 0 as T → 0, and we already know that Np(T ) → 0 as T → 0 for p = 4/3, hence
for all p ∈ (1, 4/3] by interpolation. To prove the same result for p > 4/3, we split the integral
in (49) in two parts and estimate the nonlinear term as follows :

‖uωθ‖Lr(Ω) ≤ C‖u‖Ls(Ω)‖ωθ‖Lq2 (Ω) ≤ C‖ωθ‖Lq1 (Ω)‖ωθ‖Lq2 (Ω) , s =
2q1

2− q1
,

where 4
3 ≤ q1 < 2, 4

3 ≤ q2 ≤ ∞, and 1
r = 1

q1
+ 1

q2
− 1

2 . We thus obtain

‖ωθ(t)‖Lp(Ω) ≤ ‖S(t)ω0‖Lp(Ω) +C

∫ t/2

0

‖ωθ(s)‖2Lq(Ω)

(t− s)
2
q
− 1

p

ds

+C

∫ t

t/2

‖ωθ(s)‖Lq1 (Ω)‖ωθ(s)‖Lq2 (Ω)

(t− s)
1
q1

+ 1
q2

− 1
p

ds , (59)

where the exponents p ∈ [1,∞], q, q1 ∈ [4/3, 2) and q2 ∈ [4/3,∞] are assumed to satisfy

1

2
≤ 2

q
− 1

p
, and

1

2
≤ 1

q1
+

1

q2
− 1

p
< 1 . (60)

Multiplying both sides of (59) by t
1− 1

p and taking the supremum over t ∈ (0, T ] we obtain the
useful bound

Np(T ) ≤ Mp(T ) + Cp,qNq(T )
2 + Cp,q1,q2Nq1(T )Nq2(T ) , (61)

where Cp,q and Cp,q1,q2 are positive constants. If we choose q = q1 = q2 = 4/3, we deduce from
(61) that Np(T ) → 0 as T → 0 for any p < 2. Then, taking q = 4/3 and q1 = q2 sufficiently
close to 2, we obtain the same result for any p < ∞. Finally, choosing q = 4/3, q1 = 3/2, and
q2 = 4, we conclude from (61) that N∞(T ) → 0 as T → 0, which proves (10).

Our final task is to discuss the uniqueness of the solution to (49). We first observe that,
given ω0 ∈ L1(Ω), the solution ωθ ∈ XT given by the fixed point argument is, by construction,
the only solution of (49) in XT satisfying (57). In fact, using a nice argument due to Brezis [4],
it is possible to prove uniqueness in a much larger class. Indeed, given any T > 0, assume that
ωθ ∈ C0([0, T ], L1(Ω)) ∩ C0((0, T ], L∞(Ω)) is a mild solution of (48) on (0, T ] in the following
sense :

ωθ(t) = S(t− t0)ωθ(t0)−
∫ t

t0

S(t− s) div∗(u(s)ωθ(s)) ds , 0 < t0 ≤ t ≤ T . (62)

The set K = {ωθ(t) | t ∈ [0, T ]} is compact in L1(Ω), hence the fixed point argument allows us to
construct a local solution in XT̃ for all initial data ω̃0 ∈ K, with a common existence time T̃ > 0

(without loss of generality, we assume henceforth that T̃ ≤ T/2). That solution is denoted by
ω̃θ(t) = Σ(t)ω̃0 for t ∈ [0, T̃ ]. By the observation above, for all t0 ∈ (0, T̃ ] we have the relation

ωθ(t) = Σ(t− t0)ωθ(t0) , t ∈ [t0, t0 + T̃ ] , (63)

because the left-hand side is a solution of (62) on the time interval [t0, t0 + T̃ ] and we obviously
have (t − t0)

1/4‖ωθ(t)‖L4/3(Ω) → 0 as t → t0, which is the analogue of condition (57). Now, for

any fixed t ∈ (0, T̃ ], it follows from (56) that

‖Σ(t− t0)ωθ(t0)− Σ(t− t0)ωθ(0)‖L1(Ω) ≤ C‖ωθ(t0)− ωθ(0)‖L1(Ω) −→ 0 ,

as t0 → 0, and it is also clear that ‖Σ(t − t0)ωθ(0) − Σ(t)ωθ(0)‖L1(Ω) → 0 as t0 → 0. Thus

taking the limit t0 → 0 in (63) we obtain the relation ωθ(t) = Σ(t)ωθ(0) for t ∈ [0, T̃ ], which
means that the solution ωθ we started with coincides on the time interval [0, T̃ ] with the solution
constructed from the initial data ωθ(0) by the fixed point argument. �
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4.2 The case where the initial vorticity is a finite measure

We next consider the more general case where the initial vorticity ω0 in (49) is a finite measure
on Ω, which is no longer absolutely continuous with respect to the Lebesgue measure dr dz. For
convenience we denote µ = ω0, and we recall the canonical decomposition µ = µac + µsc + µpp
where µac is absolutely continuous with respect to Lebesgue’s measure, µpp is a (countable)
collection of point masses, and µsc is the “singularly continuous” part which has no atoms yet
is supported on a set of zero Lebesgue measure. We have µac ⊥ µsc ⊥ µpp, which means that
the three measures are mutually singular. In particular, the total variation norm of µ satisfies

‖µ‖tv = ‖µac‖tv + ‖µsc‖tv + ‖µpp‖tv .

The linear semigroup S(t) acts on the measure µ by the formula

(S(t)µ)(r, z) =
1

4πt

∫

Ω

r̄1/2

r1/2
H
( t

rr̄

)

exp
(

−(r − r̄)2 + (z − z̄)2

4t

)

dµ(r̄, z̄) , (64)

which generalizes (36), and we have the following estimates :

Proposition 4.3 Let µ be a finite measure on Ω. Then

sup
t>0

t1−
1
p ‖S(t)µ‖Lp(Ω) ≤ C‖µ‖tv , 1 ≤ p ≤ ∞ , (65)

and
Lp(µ) := lim sup

t→0
t
1− 1

p ‖S(t)µ‖Lp(Ω) ≤ C‖µpp‖tv , 1 < p ≤ ∞ . (66)

Proof. Estimate (65) can be established as in Proposition 3.4, using the pointwise upper bound
(42). To prove (66) we proceed as in the two-dimensional case [7, 11], with minor modifications.
We know from (65) that Lp(µ) ≤ C‖µ‖tv, hence using the canonical decomposition we find

Lp(µ) ≤ Lp(µac) + Lp(µsc) + Lp(µpp) ≤ Lp(µac) + Lp(µsc) + C‖µpp‖tv .

Therefore, we only need to show that Lp(µac) = Lp(µsc) = 0. In fact, it is sufficient to prove
that for p = ∞, because the result then follows for 1 < p <∞ by interpolation.

From now on, we thus assume that µ is a non-atomic finite measure on Ω, and we denote by
|µ| the positive measure which represents the total variation of µ. Given any point ξ = (r, z) ∈ R

2

and any radius δ > 0, we define

B(ξ, δ) =
{

ξ̄ ∈ Ω
∣

∣ |ξ − ξ̄| ≤ δ
}

,

where |ξ − ξ̄| is the Euclidean distance between ξ and ξ̄. We claim that, for any ǫ > 0, there
exists δ > 0 such that

sup
ξ∈Ω

|µ|(B(ξ, δ)) ≤ ǫ . (67)

Indeed, if that property fails, there exist ǫ > 0, a sequence (ξn) of points of Ω, and a sequence
(δn) of positive real numbers such that δn → 0 as n→ ∞ and |µ|(B(ξn, δn)) > ǫ for all n ∈ N. It
is clear that the sequence (ξn) is bounded, because |µ| is a finite measure. Thus, after extracting
a subsequence, we can assume that ξn converges as n → ∞ to some point ξ̄ = (r̄, z̄) ∈ Ω̄. For
any δ > 0 we thus have |µ|(B(ξ̄, δ)) > ǫ, since B(ξ̄, δ) ⊃ B(ξn, δn) when n is sufficiently large.
We conclude that

|µ|
(

⋂

δ>0

B(ξ̄, δ)
)

≥ ǫ > 0 .
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But this is impossible, because the intersection above is empty if ξ̄ ∈ ∂Ω and equal to the
singleton {ξ̄} if ξ̄ ∈ Ω, and we assumed that the measure µ is non-atomic. Hence property
(67), which can be interpreted as a weak form of absolute continuity with respect to Lebesgue’s
measure, must hold.

Now, for any given t > 0, there exists ξ̄(t) ∈ Ω such that

|(S(t)µ)(ξ̄(t))| = ‖S(t)µ‖L∞(Ω) ,

because the map ξ 7→ (S(t)µ)(ξ) is continuous and vanishes at infinity as well as on the boundary
∂Ω. Using definition (64) and the pointwise estimate (42), we thus obtain

t‖S(t)µ‖L∞(Ω) ≤ C

∫

B(ξ̄(t),δ)
e−

|ξ−ξ̄(t)|2
5t d|µ|(ξ) + C

∫

Ω\B(ξ̄(t),δ)
e−

|ξ−ξ̄(t)|2
5t d|µ|(ξ) ,

where ǫ and δ are as in (67). The first integral is bounded by C|µ|(B(ξ̄(t), δ)) ≤ Cǫ, and the
second one by Ce−δ2/(5t)|µ|(Ω). It follows that

L∞(µ) = lim sup
t→0

t‖S(t)µ‖L∞(Ω) ≤ Cǫ ,

and since ǫ > 0 was arbitrary we conclude that L∞(µ) = 0, which is the desired result. �

Proposition 4.4 There exist positive constants ǫ and C such that, for any initial data ω0 ∈
M(Ω) with ‖(ω0)pp‖tv ≤ ǫ, one can choose T = T (ω0) > 0 such that the integral equation (62)
has a unique solution ωθ ∈ C0((0, T ], L1(Ω) ∩ L∞(Ω)) satisfying (16) and such that ωθ(t)⇀ ω0

as t → 0. Moreover, if ‖ω0‖tv is small enough, the local existence time T > 0 can be taken
arbitrarily large.

Proof. We briefly indicate how the proof of Proposition 4.1 has to be modified to handle the
case where µ = ω0 ∈ M(Ω). We use exactly the same function space XT defined in (51), and
observe that the fixed point argument works in the ball BR ⊂ XT provided C1(µ, T ) ≤ R/2,
where C1(µ, T ) is defined as in (52) and R > 0 satisfies 2C3R < 1 with C3 as in (55). From
(65) we know that C1(µ, T ) ≤ C2‖µ‖tv for any T > 0, hence we again obtain global existence
and uniqueness in BR if the initial vorticity is small enough so that C2‖µ‖tv ≤ R/2. For larger
data, we can use (66) which gives

lim
T→0

C1(µ, T ) = L4/3(µ) ≤ C4‖µpp‖tv ,

for some positive constant C4. Thus, if the atomic part of the initial vorticity is small enough
so that C4‖µpp‖tv < R/2, we can take T > 0 such that C1(µ, T ) ≤ R/2, and the fixed point
argument proves local existence and uniqueness in BR. In contrast, if 4C3C4‖µpp‖tv ≥ 1, it
is impossible to choose R > 0 and T > 0 so that the fixed point argument works in the ball
BR ⊂ XT , and the method above completely fails.

Assuming that the fixed point argument works in the ball BR ⊂ XT , we can establish
some additional properties of the solution ωθ ∈ BR as in the case of integrable initial data.
For instance, it is straightforward to verify that ωθ − ωlin ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)), where
ωlin(t) = S(t)µ. However property (57) fails if µpp 6= 0, and we cannot argue as in Section 4.1
to show that ‖ωθ(t)− ωlin(t)‖L1(Ω) converges to zero as t→ 0. To prove that, we first define

δ = lim sup
t→0

t1/4‖ωθ(t)− ωlin(t)‖L4/3(Ω) = lim sup
T→0

‖ωθ − ωlin‖XT
.
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Since ωθ −ωlin = (Fωlin−Fωθ)−Fωlin and ‖ωlin‖XT
+ ‖ωθ‖XT

≤ 2R, we can use (55) to obtain
the estimate δ ≤ 2C3Rδ + ℓ4/3(µ), where

ℓp(µ) = lim sup
t→0

t
1− 1

p ‖Fωlin(t)‖Lp(Ω) , 1 ≤ p ≤ ∞ .

As in the two-dimensional case [7, Section 2.3.4], a direct calculation, which exploits some
cancellations in the nonlinear term ulin(t) · ∇ωlin(t) for small times, reveals that ℓp(µ) = 0 for
any p ∈ [1,∞]. This in turn implies that δ = 0, since 2C3R < 1. Finally, using again the relation
ωθ − ωlin = (Fωlin −Fωθ)−Fωlin we conclude that

lim sup
t→0

‖ωθ(t)− ωlin(t)‖L1(Ω) ≤ CRδ + ℓ1(µ) = 0 . (68)

It follows in particular from (68) that ωθ(t) ⇀ µ as t → 0, because we can use the explicit
formula (64) to verify that ωlin(t)⇀ µ as t→ 0. By construction ωθ is a solution of (49), hence
of (62), and both inequalities in (16) hold.

Finally, if ωθ ∈ C0((0, T ], L1(Ω) ∩ L∞(Ω)) is a mild solution on (0, T ) satisfying (16) and
such that ωθ(t) ⇀ ω0 as t → 0, we can take the limit t0 → 0 in (62) and conclude that ωθ

satisfies (49), so that ωθ coincides with the solution constructed by the fixed point argument. �

Remark 4.5 In Proposition 4.4 we only claim uniqueness of solutions under assumption (16),
which means (after restricting the existence time) that ωθ belongs to the ball BR ⊂ XT where the
fixed point argument works. As in the two-dimensional case, one may conjecture that uniqueness
holds among all solutions ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) such that ‖ωθ(t)‖L1(Ω) is uniformly
bounded and ωθ(t)⇀ µ as t→ 0. We hope to come back to that interesting question in a future
work.

Remark 4.6 The solutions constructed in Propositions 4.1 and 4.4 are in fact smooth for pos-
itive times, and satisfy the axisymmetric vorticity equation (48) in the classical sense. This
can be proved using standard smoothing properties of the Navier-Stokes equations that are not
specific to the axisymmetric case, see e.g. [15] and Proposition 5.5 below.

5 A priori estimates and global existence

We continue the proof of Theorems 1.1 and 1.3 by showing that the local solutions constructed
in Sections 4.1 and 4.2 can be extended to global solutions for positive times. Since we are
not interested in the behavior for small times, we can assume without loss of generality that
the initial vorticity is integrable. Let thus ωθ ∈ C0([0, T ], L1(Ω)) ∩ C0((0, T ], L∞(Ω)) be a
solution of the integral equation (49), hence also of the differential equation (48), with initial
data ω0 ∈ L1(Ω). Our goal here is to derive a priori estimates on various norms of ωθ.

Lemma 5.1 The solution of (49) satisfies ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω) for all t ∈ [0, T ]. Moreover,
if ω0 6≡ 0, the map t 7→ ‖ωθ(t)‖L1(Ω) is strictly decreasing.

Proof. We first assume that ω0 ≥ 0 and ω0 6≡ 0. By the strong maximum principle, the solution
ωθ(t) of (48) is strictly positive for t ∈ (0, T ]. Integrating by parts and using the fact that ωθ(t)
satisfies the homogeneous Dirichlet boundary condition on ∂Ω, we easily find

d

dt

∫

Ω
ωθ(r, z, t) dr dz = −2

∫

R

∂rωθ(0, z, t) dz < 0 , (69)
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where the last inequality follows from Hopf’s lemma. This proves the claim for positive solutions.
Note that, in deriving (69), we did not use the precise expression of the velocity field u in (48).
In the general case where ω0 can change sign, we decompose ωθ(t) = ω+

θ (t)−ω−
θ (t), where ω

±
θ (t)

are defined as the solutions of the linear equations

∂tω
±
θ + div∗(uω

±
θ ) =

(

∂2r + ∂2z +
1

r
∂r −

1

r2

)

ω±
θ , (70)

with initial data ω±
θ (0) = max(±ω0, 0) ≥ 0. Both equations in (70) involve the same velocity

field u, which is associated to the full solution ωθ via the axisymmetric Biot-Savart law (22).
The analogue of (69) holds for the solutions ω±

θ (t) of (70), hence

‖ωθ(t)‖L1(Ω) ≤
∫

Ω

(

ω+
θ (r, z, t) + ω−

θ (r, z, t)
)

dr dz

≤
∫

Ω

(

ω+
θ (r, z, 0) + ω−

θ (r, z, 0)
)

dr dz = ‖ω0‖L1(Ω) , 0 ≤ t ≤ T .

For t > 0, the second inequality is strict if either ω+
θ (0) or ω

−
θ (0) is nonzero, and if both quantities

are nonzero the first inequality is also strict (by the strong maximum principle). If ω0 6≡ 0, this
proves that the L1 norm of the solution ωθ(t) is strictly decreasing at initial time, and a similar
argument shows that it is strictly decreasing over the whole interval [0, T ]. �

Higher Lp norms of the vorticity ωθ are more difficult to control, because the velocity field in
(48) does not satisfy div∗ u = 0. As in [17, 23], we thus consider the related quantity η = ωθ/r,
which satisfies Eq. (8) with initial data η0 = ω0/r ∈ L1(R3). Using the existence result in
Proposition 4.1 and the weighted estimates on the linear semigroup given in Proposition 3.5, it
is easy to verify that η ∈ C0([0, T ], L1(R3))∩C0((0, T ], L∞(R3)). Moreover, by Lemma 5.1, the
map t 7→ ‖η(t)‖L1(R3) ≡ ‖ωθ(t)‖L1(Ω) is decreasing for nonzero solutions. Since the advection
field u− (2/r)er in (8) satisfies

div
(

u− 2er
r

)

= −2 div
er
r

= −4πδr=0 ≤ 0 ,

a classical method due to Nash [20] gives the following a priori estimate :

Lemma 5.2 [5, Lemma 3.8] For any initial data η0 ∈ L1(R3), the solution of (8) satisfies,
for 1 ≤ p ≤ ∞,

‖η(t)‖Lp(R3) ≤ C

t
3
2
(1− 1

p
)
‖η0‖L1(R3) , 0 < t ≤ T . (71)

Equivalently, the axisymmetric vorticity ωθ satisfies, for p ∈ [1,∞], the weighted estimate

‖r
1
p
−1
ωθ(t)‖Lp(Ω) ≤ C

t
3
2
(1− 1

p
)
‖ω0‖L1(Ω) , 0 < t ≤ T . (72)

Using (72), we now establish our main a priori estimate on the solutions of (6).

Proposition 5.3 Any solution ωθ ∈ C0([0, T ], L1(Ω)) ∩ C0((0, T ], L∞(Ω)) of (49) with initial
data ω0 ∈ L1(Ω) satisfies, for all p ∈ [1,∞],

‖ωθ(t)‖Lp(Ω) ≤
Cp(‖ω0‖L1(Ω))

t1−
1
p

, 0 < t ≤ T , (73)

where Cp(s) = O(s) as s→ 0.
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Proof. We can assume without loss of generality that M := ‖ω0‖L1(Ω) > 0. We know from
Lemma 5.1 that ‖ωθ(t)‖L1(Ω) ≤ M for t ∈ [0, T ], hence (73) holds for p = 1. To prove (73) for
p = 2, we compute

d

dt

∫

Ω
ω2
θ dr dz = −2

∫

Ω
|∇ωθ|2 dr dz +

∫

Ω

(ur
r

− 1

r2

)

ω2
θ dr dz . (74)

The celebrated Nash inequality [20] asserts that

∫

Ω
ω2
θ dr dz ≤ C

(∫

Ω
|ωθ|dr dz

)(∫

Ω
|∇ωθ|2 dr dz

)1/2

≤ CM

(∫

Ω
|∇ωθ|2 dr dz

)1/2

.

On the other hand, using estimate (72) with p = ∞ and Proposition 2.6, we obtain

∥

∥

∥

ur(t)

r

∥

∥

∥

L∞(Ω)
≤ C ‖ωθ(t)‖1/3L1(Ω)

∥

∥

∥

ωθ(t)

r

∥

∥

∥

2/3

L∞(Ω)
≤ CM

t
.

Thus, if we define

f(t) =

∫

Ω
ωθ(r, z, t)

2 dr dz , 0 ≤ t ≤ T ,

we deduce from (74) that f : [0, T ] → R satisfies the differential inequality

f ′(t) ≤ −K1

M2
f(t)2 +

K2M

t
f(t) , 0 < t ≤ T , (75)

where K1,K2 are positive constants. If we set f(t) = tαg(t) with α = K2M , we see that (75)
reduces to the simpler differential inequality g′(t) ≤ −K1M

−2tαg(t)2, which can be integrated
of the time interval [t0, t] ⊂ (0, T ] to give the bound

1

g(t)
≥ 1

g(t0)
+
K1

M2

1

α+ 1

(

tα+1 − tα+1
0

)

≥ K1

M2

1

α+ 1

(

tα+1 − tα+1
0

)

−−−−→
t0→0

K1

M2

tα+1

α+ 1
.

We conclude that

‖ωθ(t)‖2L2(Ω) = f(t) = tαg(t) ≤ α+ 1

K1

M2

t
=

K2M + 1

K1

M2

t
, 0 < t ≤ T ,

which proves (73) for p = 2 (hence for 1 ≤ p ≤ 2 by interpolation). To reach the same conclusion
for higher values of p, we proceed exactly as in the proof of Proposition 4.1. Using the notations
(58), we know from Proposition 3.4 thatMp(T ) ≤ CM for any p ∈ [1,∞], and from the argument
above that Np(T ) ≤ C(M) for p ∈ [1, 2]. The relation (61) then shows that Np(T ) ≤ C(M) for
all p > 2, and a second iteration gives the desired result for p = ∞ too. �

Remark 5.4 Proposition 5.3 shows in particular that the Lp norms of the vorticity ωθ(t) cannot
blow up in finite time. In view of Remark 4.2, this implies that all solutions constructed in
Sections 4.1 and 4.2 are global for positive times, and that the conclusions of Lemma 5.1 and
Proposition 5.3 hold for all t > 0.

With Proposition 5.3 at hand, it is straightforward to show that the solutions of the vorticity
equation (6) are smooth for positive times, and that estimates similar to (73) hold for the
derivatives too. For later use, we state the following result.
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Proposition 5.5 Under the assumptions of Proposition 5.3, we have for all p ∈ [1,∞] :

‖∇ωθ(t)‖Lp(Ω) ≤
Cp(‖ω0‖L1(Ω))

t
3
2
− 1

p

, t > 0 , (76)

where Cp(s) = O(s) as s→ 0.

Proof. It is possible to prove estimate (76) by working directly on the integral representation
(49), but we find it easier to deduce it from Proposition 5.3 using general smoothing properties
of the Navier-Stokes equations. We know from (26) and (73) that the velocity field associated
with the solution ωθ of (48) satisfies, for any t0 > 0,

‖u(t0)‖L∞(Ω) ≤ C‖ωθ(t0)‖1/2L1(Ω)
‖ωθ(t0)‖1/2L∞(Ω) ≤ C(M)√

t0
, (77)

where M = ‖ω0‖L1(Ω) and C(s) = O(s) as s → 0. On the other hand, there exist positive
constants a and A such that the solution u(t) of the Navier-Stokes equations (1) in R

3 with data
u(t0) ∈ L∞(R3) at time t0 satisfies

(t− t0)‖∇2u(t)‖L∞(R3) ≤ A‖u(t0)‖L∞(R3) , t0 < t < t0 + a‖u(t0)‖−2
L∞(R3)

, (78)

see [15, Proposition 4.1]. Here ∇2u denotes the collection of all second-order derivatives of u.
Since ‖u(t0)‖L∞(Ω) ≡ ‖u(t0)‖L∞(R3), we can combine estimates (77), (78) by fixing t > 0 and
choosing, for instance,

t0 =
t

2

2C(M)2 + a

C(M)2 + a
,

so that t0 < t < t0 + at0C(M)−2 ≤ t0 + a‖u(t0)‖−2
L∞(R3)

. We thus obtain

‖∇2u(t)‖L∞(R3) ≤ A

t− t0

C(M)√
t0

=
C̃(M)

t3/2
, (79)

where C̃(s) = O(s) as s→ 0. Using the pointwise estimate

|∇ωθ| ≤ |∂rωθ|+ |∂zωθ| ≤ C
(

|∇2u|+ 1

r
|∂ruz|

)

,

and the fact that ∂ruz vanishes at r = 0, we see that (79) implies (76) with p = ∞. The case
p <∞ easily follows by interpolation, in view of (73). �

6 Long-time behavior

In this final section, we study the long-time behavior of the solutions of the axisymmetric
vorticity equation (6) constructed in Sections 4 and 5. In particular we prove estimate (11),
and we obtain the asymptotic formula (13) in the particular case where the initial vorticity
has a definite sign and a finite impulse in the sense of (12). This will conclude the proof of
Theorems 1.1 and 1.3.
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6.1 Convergence to zero in scale invariant norms

Let ωθ ∈ C0([0,∞), L1(Ω)) ∩ C0((0,∞), L∞(Ω)) be a global solution of the vorticity equation
(48), with initial data ω0 ∈ L1(Ω). We know from Lemma 5.1 that the L1 norm ‖ωθ(t)‖L1(Ω) is
a decreasing function of time, and our goal here is to prove that this quantity actually converges
to zero as t → ∞. We first show that ωθ(r, z, t) is essentially confined, for large times, in a ball
of radius O(

√
t) in Ω.

Proposition 6.1 Let ω0 ∈ L1(Ω) andM = ‖ω0‖L1 . For any ǫ > 0, there exist positive constants
K3(ǫ, ω0) and K4(ǫ,M) such that the solution of (48) with initial data ω0 satisfies, for all t ≥ 0,
∫

Ω(t)
|ωθ(r, z, t)|dr dz ≤ ǫ , where Ω(t) =

{

(r, z) ∈ Ω
∣

∣

∣

√

r2 + z2 ≥ K3 +K4

√
t
}

. (80)

Proof. By the maximum principle, it is sufficient to establish (80) for positive solutions of (48)
(in the general case, the result follows by decomposing ωθ as in the proof of Lemma 5.1). We
thus assume that ω0 ≥ 0 and that M =

∫

Ω ω0 dr dz > 0. The only property of the velocity field
that will be used to obtain (80) is the a priori estimate (77).

We first prove confinement in the radial direction. For R ≥ 0 and t ≥ 0, we define

f(R, t) =

∫ ∞

R

{∫

R

ωθ(r, z, t) dz

}

dr .

Then f(R, t) is a non-increasing function of R such that f(0, t) = ‖ωθ(t)‖L1(Ω) and f(R, t) → 0
as R→ ∞. Moreover, using (48), it is easy to verify that f satisfies the evolution equation

∂tf(R, t) = ∂2Rf(R, t) +
1

R
∂Rf(R, t) +

∫

R

ur(R, z, t)ωθ(R, z, t) dz , R > 0 . (81)

In view of (77), we have the estimate
∫

R

ur(R, z, t)ωθ(R, z, t) dz ≤ C(M)√
t

∫

R

ωθ(R, z, t) dz = −C(M)√
t

∂Rf(R, t) , (82)

for some positive constant C(M). Since ∂Rf ≤ 0, we deduce from (81), (82) that

∂tf(R, t) ≤ ∂2Rf(R, t)−
C(M)√

t
∂Rf(R, t) , R > 0 . (83)

Solving the differential inequality (83), with homogeneous Neumann boundary condition at
R = 0, is a straightforward task. For instance, if we extend f(·, t) to the whole real line by
setting f(R, t) = f(0, t) for R ≤ 0, the extension satisfies inequality (83) for all R ∈ R. We
deduce that

f(R, t) ≤ g(R − 2C(M)
√
t, t) , R ≥ 0 , t ≥ 0 ,

where g is the solution of the heat equation ∂tg = ∂2Rg on R with initial data g(R, 0) = f(R, 0).
Given any ǫ > 0, we choose R0 > 0 large enough so that f(R0, 0) ≤ ǫ. If R > R0 we estimate

g(R, t) =
1√
4πt

∫ R0

−∞
e−

(R−r)2

4t f(r, 0) dr +
1√
4πt

∫ ∞

R0

e−
(R−r)2

4t f(r, 0) dr

≤ e−
(R−R0)

2

4t√
4πt

∫ R0

−∞
e−

(R0−r)2

4t M dr +
ǫ√
4πt

∫ ∞

R0

e−
(R−r)2

4t dr

≤ M e−
(R−R0)

2

4t + ǫ .
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The right-hand side is smaller than 2ǫ if R ≥ R0 + 2
√
t log(M/ǫ)1/2. Summarizing, we have

shown that f(R, t) ≤ 2ǫ provided R ≥ R0 +K
√
t, with K = 2C(M) + 2 log(M/ǫ)1/2.

The argument is similar for the confinement in the vertical direction. For Z ∈ R and t ≥ 0,
we define

h+(Z, t) =

∫ ∞

Z

{
∫ ∞

0
ωθ(r, z, t) dr

}

dz , h−(Z, t) =

∫ Z

−∞

{
∫ ∞

0
ωθ(r, z, t) dr

}

dz .

Then Z 7→ h+(Z, t) is non-increasing, Z 7→ h−(Z, t) is non-decreasing, and we have the differ-
ential inequalities

∂th±(Z, t) ≤ ∂2Zh±(Z, t) ∓
C(M)√

t
∂Zh±(Z, t) ,

which allow us to compare h±(Z, t) with suitably translated solutions of the one-dimensional
heat equation. Proceeding as above, we find that, for any ǫ > 0, there exist positive constants
Z0 and K such that h+(Z, t) ≤ 2ǫ if Z ≥ Z0 +K

√
t, and h−(Z, t) ≤ 2ǫ if Z ≤ −Z0 −K

√
t. It

follows that
∫ ∞

0

∫

|z|≥Z0+K
√
t
ωθ(r, z, t) dz dz ≤ 4ǫ , t ≥ 0 .

Combining this result with the previous estimate on f(R, t), we obtain (80). �

Proposition 6.2 For any initial data ω0 ∈ L1(Ω), the solution of the axisymmetric vorticity
equation (48) satisfies ‖ωθ(t)‖L1(Ω) → 0 as t→ ∞.

Proof. We know from Lemma 5.1 that ‖ωθ(t)‖L1(Ω) converges to some limit ℓ as t → ∞. To
prove that ℓ = 0, we use a standard rescaling argument. Let (λn)n∈N be an increasing sequence
of positive real numbers such that λn → ∞ as n→ ∞. We define for all n ∈ N :

wn(r, z, t) = λ2n ωθ(λnr, λnz, λ
2
n(1 + t)) , (r, z) ∈ Ω , t ≥ 0 .

Denoting wn(t) = wn(·, ·, t), we claim that the sequence (wn(0))n∈N is relatively compact in
L1(Ω). Indeed, by Proposition 6.1, for all ǫ > 0 there exists a compact set Ω0 ⊂ Ω such that

sup
n∈N

∫

Ω\Ω0

|wn(r, z, 0)|dr dz ≤ ǫ . (84)

In addition, Proposition 5.5 asserts that

sup
n∈N

‖∇wn(0)‖L∞(Ω) = sup
n∈N

λ3n‖∇ωθ(λ
2
n)‖L∞(Ω) < ∞ . (85)

Combining (84), (85) and using the Riesz criterion [21, Theorem XIII.66], we obtain the desired
compactness. Thus, after extracting a subsequence, we can assume that wn(0) converges in
L1(Ω) to some limit w, which satisfies ‖w‖L1(Ω) = ℓ because ‖wn(0)‖L1(Ω) = ‖ωθ(λ

2
n)‖L1(Ω) → ℓ

as n→ ∞.

Now, we fix t > 0, and repeating the procedure above we extract yet another subsequence so
that wn(t) converges in L

1(Ω) to some limit w(t). By construction, for each n ∈ N, the function
wn(r, z, t) solves the vorticity equation (48) with initial data wn(r, z, 0). As in the proof of
Proposition 4.1, we thus denote wn(t) = Σ(t)wn(0). Taking the limit n→ ∞ and using the fact
that the solutions of (48) depend continuously on the initial data in L1(Ω), see Remark 4.2.2,
we deduce that w(t) = Σ(t)w. But since ‖w(t)‖L1(Ω) = ‖w‖L1(Ω) = ℓ, we get a contradiction
with the strict decay of the L1 norm established in Lemma 5.1, unless ℓ = 0. �
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Corollary 6.3 Under the assumptions of Proposition 6.2, we have

lim
t→∞

t
1− 1

p ‖ωθ(t)‖Lp(Ω) = 0 , 1 ≤ p ≤ ∞ . (86)

Proof. Given any t0 > 0, we can apply Proposition 5.3 to the solution of (48) restricted to the
time interval [t0,∞). For any p ∈ [1,∞], we thus find

‖ωθ(t)‖Lp(Ω) ≤
Cp(‖ω(t0)‖L1(Ω))

(t− t0)
1− 1

p

, t > t0 ,

hence
lim sup
t→∞

t1−
1
p ‖ωθ(t)‖Lp(Ω) ≤ Cp(‖ω(t0)‖L1(Ω)) .

Taking now the limit t0 → ∞ and using Proposition 6.2 together with the fact that Cp(s) = O(s)
as s→ 0, we obtain (86). �

6.2 Asympotic behavior of positive solutions with finite impulse

We now consider the particular situation where the initial vorticity ω0 ∈ L1(Ω) is non-negative
and has a finite impulse. We denote

M =

∫

Ω
ω0(r, z) dr dz , I =

∫

Ω
r2ω0(r, z) dr dz . (87)

As is well-known, the impulse I is conserved for solutions of (48).

Lemma 6.4 For any non-negative solution of (48) in L1(Ω) with finite impulse, we have
∫

Ω
r2ωθ(r, z, t) dr dz =

∫

Ω
r2ω0(r, z) dr dz , t ≥ 0 .

Proof. Using (48) we find by a direct calculation

d

dt

∫

Ω
r2ωθ dr dz =

∫

Ω
r2
(

∂2r + ∂2z +
1

r
∂r −

1

r2

)

ωθ dr dz −
∫

Ω
r2 div∗(uωθ) dr dz

= 2

∫

Ω
rurωθ dr dz .

The last integral actually vanishes. Indeed, using the explicit formulas (22) and (23), we obtain
∫

Ω
rurωθ dr dz = − 1

π

∫

Ω

∫

Ω

z − z̄

r1/2 r̄1/2
F ′(ξ2)ωθ(r̄, z̄)ωθ(r, z) dr̄ dz̄ dr dz = 0 ,

because the integrand is odd with respect to the permutation (r, z) ↔ (r̄, z̄). This gives the
desired result. �

Under the assumption that I < ∞, one can obtain precise information on the long-time
behavior of the axisymmetric vorticity. We begin with the linear case :

Lemma 6.5 If ω0 ∈ L1(Ω) is non-negative and I <∞, one has

lim
t→∞

t2(S(t)ω0)(r
√
t, z

√
t) =

I
16
√
π
r e−

r2+z2

4 , (r, z) ∈ Ω , (88)

where convergence holds in Lp(Ω) for 1 ≤ p ≤ ∞.
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Proof. In view of the explicit formula (36), we have for all (r, z) ∈ Ω :

t2(S(t)ω0)(r
√
t, z

√
t) =

r

4π

∫

Ω
K
(

√
t

rr̄

)

exp
(

−1

4

[(

r− r̄√
t

)2
+
(

z− z̄√
t

)2])

r̄2ω0(r̄, z̄) dr̄ dz̄ ,

where K(τ) = τ3/2H(τ) is uniformly bounded and converges to
√
π/4 as τ → +∞. The

pointwise result (88) thus follows from Lebesgue’s dominated convergence theorem. Convergence
in Lp norms is easy to prove if ω0 has compact support in Ω, and can be established in the general
case by an approximation argument. �

It follows in particular from (88) that ‖S(t)ω0‖Lp(Ω) = O(t
−2+ 1

p ) as t → ∞. Our last result
is the extension of Lemma 6.5 to the nonlinear case.

Proposition 6.6 If ω0 ∈ L1(Ω) is non-negative and I < ∞, the solution of (48) with initial
data ω0 satisfies

lim
t→∞

t2ωθ(r
√
t, z

√
t, t) =

I
16
√
π
r e−

r2+z2

4 , (r, z) ∈ Ω , (89)

where convergence holds in Lp(Ω) for all p ∈ [1,∞]. Thus ‖ωθ(t)‖Lp(Ω) = O(t
−2+ 1

p ) as t→ ∞.

Proof. We estimate the integral term in (49) in the following way. First, using (47) with α = 0
and β = 1, we write

∥

∥

∥

∫ t/2

0
S(t− s) div∗(u(s)ωθ(s)) ds

∥

∥

∥

L1(Ω)
≤
∫ t/2

0

C

t− s
‖u(s)‖L∞(Ω)‖rωθ(s)‖L1(Ω) ds .

From (30) we have ‖u‖L∞‖rωθ‖L1 ≤ C‖rωθ‖3/2L1 ‖ωθ/r‖1/2L∞ ≤ C‖ωθ‖3/4L1 ‖r2ωθ‖3/4L1 ‖ωθ/r‖1/2L∞ , hence
using Lemmas 5.1 and 5.2 we obtain

‖u(s)‖L∞(Ω)‖rωθ(s)‖L1(Ω) ≤ C
M1/2 I3/4

s3/4
‖ωθ(s)‖3/4L1 ,

where M,I are defined in (87). Similarly, we find

∥

∥

∥

∫ t

t/2
S(t− s) div∗(u(s)ωθ(s)) ds

∥

∥

∥

L1(Ω)
≤
∫ t

t/2

C

(t− s)1/2
‖u(s)‖L∞(Ω)‖ωθ(s)‖L1(Ω) ds ,

where

‖u(s)‖L∞(Ω)‖ωθ(s)‖L1(Ω) ≤ C
M1/2 I1/4

s3/4
‖ωθ(s)‖5/4L1 .

Thus it follows from (49) that

‖ωθ(t)‖L1(Ω) ≤ ‖S(t)ω0‖L1(Ω) + CM1/2 I3/4

∫ t/2

0

‖ωθ(s)‖3/4L1

(t− s) s3/4
ds

+ CM1/2 I1/4

∫ t

t/2

‖ωθ(s)‖5/4L1

(t− s)1/2 s3/4
ds . (90)

Since ‖S(t)ω0‖L1(Ω) = O(t−1) as t→ ∞ by Lemma 6.5, the integral inequality (90) implies (by
a straightforward bootstrap argument) that ‖ωθ(t)‖L1(Ω) = O(t−1) as t→ ∞. In a similar way,

one can show that ‖ωθ(t)‖Lp(Ω) = O(t−2+1/p) as t→ ∞ for all p ∈ [1,∞].
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To prove (89), we fix t0 ≥ 1 and consider the integral equation (62) for t ≥ t0. If we bound the
nonlinear term exactly as in (90), using the additional information that ‖ωθ(t)‖L1(Ω) = O(t−1),
we obtain the estimate

t‖ωθ(t)− S(t− t0)ωθ(t0)‖L1(Ω) ≤ C(M,I)√
t0

, (91)

for some positive constant C(M,I). We now rescale the solution ωθ(r, z, t) as in (89) and take
the limit as t→ ∞. Using (91) and Lemma 6.5, we obtain

lim sup
t→∞

‖t2ωθ(·
√
t, ·

√
t, t)−Φ‖L1(Ω) ≤ C(M,I)√

t0
, (92)

where Φ : Ω → R denotes the function defined by the expression in the right-hand side of (89).
If we take the limit t0 → ∞ in (92), we see that (89) holds if convergence is understood in L1(Ω).
A similar argument shows that convergence also holds Lp(Ω) for all p ∈ [1,∞]. �
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3, Z. Anal.

Anwendungen 18 (1999), 639–649.

[19] Jian-Guo Liu and Wei-Cheng Wang, Characterization and regularity for axisymmetric
solenoidal vector fields with application to Navier-Stokes equation, SIAM J. Math. Anal.
41 (2009), 1825–1850.

[20] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80
(1958), 931–954.

[21] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators,
Academic Press, New York, 1978.
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