Licence de mathématiques (2016-2017) Partiel "Topologie" (MAT303) Novembre 2016

Durée: 2h

Sans calculatrice, ni document. Le barème est donné à titre indicatif

Exercice 1 (6 points). 1) On munit \mathbb{R}^n d'une norme notée ||.||.

- 1a) Donner la définition d'un ouvert.
- 1b) Démontrer qu'une réunion quelconque d'ouverts $(O_i)_{i\in I}$ est ouverte.
- 2) On munit \mathbb{R}^n d'une norme notée ||.||.
- 2a) Donner la définition (avec des suites) d'un compact.
- 2b) Donner la définition d'un ensemble $A \subset \mathbb{R}^n$ borné.
- 2c) Démontrer qu'un compact est borné.
- 3a) Donner la définition des normes usuelles $||.||_{\infty}$ et $||.||_{2}$ dans \mathbb{R}^{n} .
- 3b) Rappeler les propriétés d'une norme puis démontrer que $||.||_{\infty}$ est une norme sur \mathbb{R}^n .
- 3c) Démontrer que les normes $||.||_{\infty}$ et $||.||_{2}$ dans \mathbb{R}^{n} sont équivalentes (on commencera par rappeler ce que cela signifie).

Exercice 2 (6 points). On considère l'application linéaire f sur \mathbb{R}^2 dont la matrice dans la base canonique (e_1, e_2) est $A = \begin{pmatrix} 3/2 & -1/2 \\ 1 & 0 \end{pmatrix}$.

- 1) Montrer que les vecteurs $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ forment une base de \mathbb{R}^2 . Cette base est-elle orthogonale?
- 2) On note P la matrice de passage de (e_1, e_2) à (v_1, v_2) . Exprimer P puis calculer P^{-1} .
- 3) Montrer que $P^{-1}AP$ est une matrice diagonale notée D. En déduire A^n pour tout $n \in \mathbb{N}$.
- 4) On pose $U_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = DU_n$. La suite (U_n) est-elle convergente dans \mathbb{R}^2 ? On pourra poser $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ où (x_n) et (y_n) sont des suites de réels.

Exercice 3 (4 points). Les ensembles suivants sont-ils ouverts, fermés, compacts ? L'espace ambiant et la norme considérée sont précisés dans chaque cas.

1) $A = \mathbb{N}$ dans \mathbb{R} muni de la valeur absolue (Indication : Montrer que si une suite (u_n) d'entiers naturels converge dans \mathbb{R} , elle est constante à partir d'un certain rang). 2) $B = \{(x,y) \in \mathbb{R}^2, 0 < y < 1\}$ dans \mathbb{R}^2 muni de la norme $||.||_2$ (On pourra s'aider d'un dessin).

Exercice 4 (4 points). On munit \mathbb{R}^n d'une norme ||.||. On note B(x,R) la boule ouverte de centre x et de rayon R pour la norme ||.||. Si A est un sous ensemble de \mathbb{R}^n , on dit que $x \in \mathbb{R}^n$ est un point intérieur de A s'il existe R > 0 tel que $B(x,R) \subset A$. L'ensemble des points intérieurs de A s'appelle l'intérieur de A et se note Int(A).

- 1) Justifier que $Int(A) \subset A$.
- 2) On étudie dans cette partie deux exemples.
- 2a) Soit \mathbb{R} muni de la valeur absolue. Si A = [0, 1[, démontrer que int(A) =]0, 1[.
- 2b) Soit A = B(0,1) (la boule ouverte de centre 0 et de rayon 1 pour ||.||). Démontrer que Int(A) = A.
- 3) Démontrer que Int(A) est ouvert (On pourra s'inspirer de la question 2b).