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Abstract

In 1969, J. Wood showed that any plane field on a closed 3-manifold can be de-
formed into the tangent plane field to a foliation. In these notes, we outline the proof
of a one-parameter version of this statement: if two C∞ foliations have homotopic
tangent plane fields, they can be connected by a path of C1 foliations. Under some
restrictions on the holonomy of the initial foliations, one can actually remain in the
C∞ class. The full proof is to appear in an upcoming paper [Ey3] and is part of the
author’s PhD dissertation [Ey1].

Introduction

A codimension one foliation on a closed 3-manifold M is a partition of M into connected
subsets, called the leaves, such that every point of M has a neighbourhood U with coor-
dinates (x, y, z) : U → R3 in which every connected component of F ∩U , for every leaf F ,
is defined by z = constant. In other words, a foliation is a partition of M into immersed
surfaces which locally pile up nicely like a family of parallel affine planes. Until further
notice, everything – manifolds, coordinates, etc. – is assumed C∞.

An important example is the Reeb foliation on the solid torus, which can be visualized
by rotating the leftmost picture on Fig. 1 around a vertical axis and quotienting out by
the unit vertical translation. It has only one compact leaf, the boundary torus, on which
all the other leaves accumulate. When this foliation appears in a larger foliated manifold,
it is called a Reeb component.

Figure 1: Reeb foliation of the solid torus
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Whether any closed 3-manifold admits a codimension one foliation is not a priori ob-
vious. It turns out however that they all do, according to Lickorish [Li] and Novikov and
Zieschang [No] (independently). The next natural step is to try and classify these objects:
how many “different” foliations are there on a given manifold M?

One (rather unexplored) way of tackling this question is to put a nice topology on the
set F(M) of foliations on M and to try and describe the topological properties of this
space. To that end, a key observation is that foliations can be viewed as “a special kind
of plane fields”. Indeed, each leaf has, at each point, a tangent plane, and the collection
of those planes defines the so-called tangent plane field to the foliation, which determines
the foliation completely. Thus, one can consider a foliation and its tangent plane field to
be the same object, and endow F(M) with a natural topology, inherited from the space
P(M) of plane fields on M .

Figure 2: Nonintegrable plane field on R3

Note that not every plane field is tangent to a foliation. The ones that are are called
integrable. The others actually form a dense open subset of P(M). The topology of the
closed subset F(M) is therefore likely to be quite complicated. As a matter of fact, little
is known about this topology, apart from the following fundamental theorem, proved first
by J. Wood [Wo], and then by W. Thurston [Th2], whose original techniques underlie the
work presented in these notes.

Theorem (Wood [Wo]). Every plane field on a closed 3-manifold M is homotopic to an
integrable plane field.

In other words, every connected component of P(M) contains at least one component

of F(M): the map π0F(M) → π0P(M) induced by the inclusion F(M)
ι
↪→ P(M) is

surjective. It is tempting to ask whether this inclusion is actually a homotopy equivalence
– or equivalently if foliations satisfy Gromov’s h-principle – all the more as this kind of
result exists in the close field of 3-dimensional contact geometry: Y. Eliashberg [El] has
generalized Thurston’s ideas [Th2] to prove a similar equivalence for overtwisted contact
structures (another subspace of P(M)).

In these notes, we focus on the injectivity of the map between π0’s, though similar
arguments give the surjectivity of the maps between πk’s, k ≥ 1 (see [Ey3]). The concrete
question we have to tackle is:

If two foliations have homotopic tangent plane fields, are they connected by a path of
foliations?

The aim of these notes is to present the strategy leading to the following partial answer:

Theorem A. Let M be a closed 3-manifold. Two transversely oriented C∞ foliations with
homotopic tangent plane fields can be connected by a continuous path of C1 foliations.
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The complete proof lies in the author’s PhD dissertation [Ey1] and will be transcribed
and improved in an upcoming paper [Ey3].

Let us make a few remarks about this statement. First of all, by C1 foliations, we
mean C1 integrable plane fields, which is slightly stronger than the usual terminology but
makes the notion of “continuous path” much simpler. Integrability has a meaning in any
regularity class: for all r ≥ 1, a Cr plane field is said to be integrable if every point of the
manifold belongs to a Cr surface which is everywhere tangent to this plane field. Just like
F(M)(= F∞(M)), the space F1(M) of C1 foliations inherits a natural topology from the
space P1(M) of C1 plane fields on M .

As a matter of fact, the foliations we build are C∞ outside finitely many regions of the
form T2 × [0, 1], on which they are transverse to the [0, 1] factor, and they can even be
made C∞ everywhere if we put some restriction on the holonomy of the initial foliations
(cf. Theorem 7).

Let us note that a positive answer to the above question had already been obtained
by A. Larcanché [La] in two specific cases: when M is a circle bundle and the foliations
under scrutiny are transverse to the fibres, and, for a general M , when both foliations are
taut and sufficiently close to each other (we will recall later what a taut foliation is). Her
main tool plays a key role in the proof of Theorem A.

Let us finally dwell for a while on the perhaps misleading notion of “deformation” or
“homotopy” of foliations. A continuous path of foliations/integrable plane fields is not
necessarily induced by an isotopy! In particular, the topology of the leaves can change
completely under such a deformation. Let us illustrate this via two crucial examples.

Figure 3: Linear foliations on the torus1

For the first example (cf. Fig. 3), we drop one dimension and consider codimension
one foliations on the torus T2, obtained by quotienting out linear foliations of R2 (that
is foliations by parallel straight lines). A one parameter family of such foliations on R2

(obtained by increasing the slope continuously) induces a continuous family of foliations
on T2, which are clearly not pairwise isotopic: if the slope is rational, all the leaves are
compact, whereas if the slope is irrational, all the leaves are dense.

The second example is the creation of a Reeb component: on the solid torus, the
foliation by meridian disks can be homotoped (among foliations and relatively to the
boundary) into a foliation with a Reeb component along the core and cylinder leaves
accumulating on it. This homotopy can be visualized by rotating each picture of the central

1In most figures, tori are represented as cylinders for a better visibility. The top and bottom should be
identified to get the real picture.
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sequence of Fig. 4 around a vertical axis. This sequence represents a continuous path of
dimension one foliations invariant under vertical translations, the continuous deformation
of their tangent line fields being sketched above.

Figure 4: Adding a Reeb component

Strategy of the proof

The main idea to prove Theorem A is to give a parametric version of the process carried
out by Thurston in [Th2] to deform any given plane field into a foliation. But we must
also deal with the relative aspect of the problem: the ends of the one parameter family of
plane fields we want to deform must remain unchanged along the process.

Thurston’s construction, outlined in Section 1, consists of three steps: first make the
initial plane field integrable outside ball-shaped holes, then enlarge the holes into solid
toric ones by digging out tunnels along arcs transverse to the newly defined foliation, and
finally make the plane field integrable inside the enlarged holes. Recently, A. Larcanché
found a new way of carrying out the last step so that, in addition, the foliations inside
the holes depend continuously on the foliations already given on their boundaries, which
will be very useful for our problem. We recall her construction in Section 2. In Section
3, we start the parametric adaptation of Thurston’s construction by perturbing a given
one-parameter family of plane fields into a family of foliations with holes. This step relies
on works by Eliashberg in 3-dimensional contact geometry. In Section 4, we complete the
proof of Theorem A in a specific case: when the initial foliations (the ends of the initial
one-parameter family) have “sufficiently many” transversals. Eventually, in Section 5, we
explain how to reduce to this specific case. Basically, the idea is: given any foliation,
eliminate as many torus leaves as possible by a homotopy of foliations, and in particular
get rid of those which do not bound solid tori. In Sections 1 to 4, all plane fields and
foliations are C∞. The regularity loss occurs in Section 5, while trying to eliminate torus
leaves.

1 Thurston’s process

Let M be a closed 3-manifold. In this section, we recall how Thurston deforms a given
plane field ξ on M into a foliation.

Step 1. First, he constructs a triangulation “in good position” with respect to ξ, and
makes ξ integrable in a neighbourhood V of its 2-skeleton. More precisely, he requires
all faces and edges to be transverse to ξ, and the direction of ξ to be almost constant
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on each 3-simplex. Then he makes ξ integrable in a neighbourhood of every vertex, then
every edge, and finally every face (cf. Fig. 5). The key point is that, in a neighbourhood
of every simplex σ of the 2-skeleton, there exists a nonsingular vector field ν tangent
to ξ and transverse to σ. The deformation consists in making ξ invariant under ν in a
neighbourhood of σ. Since ξ is already integrable near ∂σ, it is already invariant under
ν there and thus remains unchanged. This guarantees the global coherence of these local
perturbations. The neighbourhood V of the 2-skeleton can be chosen so that, at the end
of this step, every component of ∂V is a sphere S enclosed in a 3-simplex on which ξ is
almost horizontal, meaning that the foliation traced by ξ on S has only two singularities,
the poles, which are connected (on S) by a vector field transverse to ξ (see Fig. 5).

ξ

Figure 5: Making ξ integrable near the 2-skeleton

Step 2. At that stage, we have a “foliation with holes” (the new ξ | V ), and we want to
extend it to all of M . However, because of the Reeb Stability Theorem [Re], this is only
possible if ξ | S is a foliation by circles away from the poles for every component S of ∂V .
So the newly built foliation ξ |V needs to be modified in some places (outside the holes). A
nice situation, Thurston observes, is when, for every S, there exists a properly imbedded
arc A ⊂ V transverse to ξ | V joining the poles of S. In that case, the union of the ball
bounded by S and a tube around A foliated by disks forms a solid torus W ' D2 × S1
on the boundary of which ξ induces a foliation transverse to S1. Now Thurston shows
that such a foliation is always the trace of a foliation of the solid torus (homotopic to ξ
rel. boundary), using the simplicity of the group D∞+ (S1), proved by M. Herman and J.
Mather. A different argument, due to A. Larcanché and outlined in Section 2, provides an
extension which, in addition, depends continuously on the foliation given on the boundary.

A

Figure 6: Enlarging the holes

Step 3. The required transverse arcs A do not always exist. A classical sufficient con-
dition for them to exist is that ξ | V has no compact leaf. Thurston artfully reduces to this
situation by digging a number of new ball-shaped holes in V and breaking the integrability
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on these balls. More precisely, assume that the grey surface on Fig. 7 is a small piece of
compact leaf and that the foliation is horizontal in the neighbourhood represented on the
picture. Then consider two little balls centered on this leaf and linked by a “cubic tunnel”.
Perturb the foliation continuously inside the cube like the picture suggests. Because of
the Reeb stability theorem again, this does not extend into a homotopy of foliations inside
the balls, but it can be extended into a homotopy of plane fields. Now (what remains of)
the grey leaf is not compact anymore since its boundary spirals around the balls and even-
tually accumulates on circles. Repeating this trick as many times as necessary (finitely
many times since the manifold is compact), Thurston gets rid of all compact leaves.

Figure 7: Killing all compact leaves

2 The key construction of Larcanché

As we said before, A. Larcanché [La] invented a continuous process to extend to D2 × S1
any foliation of ∂D2 × S1 transverse to S1.

To clarify this statement and give an idea of her construction, we first need to define
the holonomy of a foliation ϕ of ∂D2 × S1 transverse to S1. The transversality condition
implies that, for every x in S1, the leaf through (1, x) ∈ ∂D2 × S1 goes all the way
around the solid torus, alternately intersecting every fiber {e2πit} × S1, t ∈ [0, 1], at a
point (e2πit, ft(x)). This defines a one-parameter family (ft)t∈[0,1] of smooth orientation-

preserving diffeomorphisms of the circle, which has a unique lift (f̃t)t∈[0,1] in D̃∞+ (S1) – the
group of orientation-preserving diffeomorphisms of R commuting to the unit translation –
satisfying f̃0 = idR. What we call holonomy of the foliation ϕ, and denote by hol(ϕ), is
the diffeomorphism f̃1.

If F(D2 × S1) denotes the set of foliations on D2 × S1 transverse to the boundary (and
homotopic rel. boundary to a plane field transverse to the S1 factor), Larcanché’s key
result can be stated as follows:

Theorem (Larcanché [La]). There exists a continuous map

` :

{
D̃∞+ (S1)→ F(D2 × S1)

f 7→ `f

satisfying hol(`f | ∂D2×S1) = f .

Her proof relies on two important facts. First, when the foliation on the boundary is
linear – in which case the holonomy is a translation Tλ : x 7→ x + λ – there is a classical
way of extending it: put a Reeb component along the core of the solid torus, and wrap
the external leaves around it as shown on Fig. 8 (explicit formulas can be written). We
will call the resulting foliation a Reeb filling of Tλ, or of slope λ. This also works when
the holonomy is conjugate to a translation, but not in the general case.
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Figure 8: Reeb filling of a linear foliation

To deal with the general case, Larcanché’s idea is to combine the above with a decom-
position theorem of Herman:

Theorem (Herman [He], p.123). Let µ = (1 +
√

5)/2 denote the Golden Number2. There
is a continuous map {

D̃∞+ (S1)→ R× D̃∞+ (S1)
f 7→ (λf , gf )

such that f = Tλf ◦ (g−1f ◦ Tµ ◦ gf ) for all f ∈ D̃∞+ (S1), and (λid, gid) = (−µ, id).

Now take any holonomy f . Roughly speaking, the foliation `f is obtained by taking the
Reeb fillings of Tλf and g−1f ◦Tµ ◦gf , gluing them together as Fig. 9 suggests, and inflating
the result a little (to remove the angles). The holonomy on the boundary of the resulting
bigger solid torus is exactly the composition of the holonomies on the smaller tori, i.e
precisely f , and this construction depends continuously on f since the decomposition of
f does.

Reeb filling of
g−1
f ◦Tµ◦gf

Reeb filling
of Tλf

Figure 9: Larcanché filling

Note that when f is the identity, Larcanché’s extension is far from being the most
natural one (i.e. a foliation by disks), since it consists of two Reeb fillings (of slope µ and
−µ respectively) glued together. The “inflated” picture is depicted on Fig. 10.

It is crucial, however, to realize that `id and the foliation by meridian disks are ho-
motopic among foliations. Indeed, let us start with the foliation by meridian disks. By
a homotopy of foliations (cf. Introduction), we can create two Reeb components (or, in
other words, two Reeb fillings of slope 0) in two smaller solid tori within the big one.
In these small tori, we simply increase the slopes of the Reeb fillings continuously, from
0 to ±µ respectively. Using some basic knowledge of suspension foliations on “Pair of
pants”×S1 (that is foliations transverse to the S1 factor), we extend this deformation to
the complement without affecting the trivial foliation on the boundary of the big torus.

2actually any diophantine number would do according to [Yo]

7



  

Figure 10: From the trivial foliation to `id

3 Making foliations with holes

We are now ready to try and adapt Thurston’s construction to the one-parameter situation.
We start with a family ξt, t ∈ [0, 1], of plane fields on M , with ξ0 and ξ1 already integrable,
and we want to make all the ξt’s integrable. Like Thurston, we first want to construct a
nice triangulation and make all plane fields integrable near its 2-skeleton. However, we
have a priori no chance of finding a triangulation whose edges and faces are transverse to
every ξt, the direction of the latter varying with the parameter in an uncontrollable way.
Still, we can find a triangulation such that the direction of each ξt is almost constant on
every 3-simplex; but we will have to deal with the situation in which, for some parameter
t and some point x of the 2-skeleton, the plane ξt(x) is tangent to the face or edge through
x.

Fortunately, this problem has been studied by Eliashberg [El] in the case of contact
structures, and his arguments work the same for foliations (see [Ey1] for the adaptation).
As in Thurston’s construction, the idea is to find near each simplex a continuous family
νt, t ∈ [0, 1], of nonsingular vector fields tangent to their respective ξt, and to make ξt
invariant under νt. But this time, νt will not necessarily be transverse to the simplex,
and to ensure the coherence of the local deformations, we will have to start with the
“problematic” simplices. Eliashberg also deals with the perhaps bigger issue of ensuring
the almost horizontality of the resulting plane fields on the boundary spheres of the newly
foliated area V . This requires a careful control of the amplitude of the deformations and
of the size of the neighbourhood of the 2-skeleton on which the plane fields are made
integrable.

Note that this process leaves ξ0 and ξ1 unchanged, since they were integrable from the
beginning.

4 Enlarging and filling the holes in the taut case

We are now dealing with a (new) family ξt, t ∈ [0, 1], of plane fields which are integrable
outside a number of ball-shaped holes on the boundary of which they are almost horizontal,
and we want to make them integrable everywhere on M . Note that the poles of the
boundary spheres vary continuously with the parameter t. Let V denote the complement
of the holes. As in [Th2], a very nice situation is when one can find, for every sphere
S of ∂V and every t ∈ [0, 1], an arc At in V transverse to ξt | V connecting the poles of
S and depending continuously on t. In that case, Larcanché’s construction (cf. Section
2) is the perfect tool to fill the time-dependent toric holes obtained by the union of a
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ball-shaped one with a moving tubular neighbourhood of a moving transversal. Note that
even in this ideal case, we are not quite done yet, because this last manipulation affects
ξ0 and ξ1, which were supposed to remain unchanged. Indeed, the new ξ0 and ξ1 differ
from the initial ones by a number of Larcanché `id foliations inserted in solid tori (toric
holes)which initially contained simple foliations by meridian disks. But this is not a real
problem according to the last remark of Section 2.

However, two real problems can prevent the situation from being ideal:

• though we can apply a parametric version of Thurston’s trick (cf. Section 1) to the
family (ξt)t∈(0,1) to ensure the existence of transverse arcs At for all t ∈ (0, 1), the
ends ξ0 and ξ1 must remain unchanged (and one can easily come up with examples
of ξ0 and ξ1 which do not have “enough” transversals);

• even when it is possible to find At’s for all t ∈ [0, 1], it is in general impossible to
make them depend continuously on t.

Let us forget about the first problem for a while by assuming that ξ0 and ξ1 are
taut foliations, that is foliations for which each transverse arc can be extended into a
closed transversal (note that not every manifold admits such a foliation, so this temporary
hypothesis is a very restrictive one).

Now, for all t in [0, 1] and all S in ∂V , there is an arc At in V transverse to ξt | V
connecting the poles of S. For s close enough to t, At is still transverse to ξs, so one can
actually make the family At piecewise continuous. In other words, for some values of the
parameter t, we have two transverse arcs A− and A+ joining the poles of some S ⊂ ∂V ,
which means two ways of digging out a tunnel in which to replace ξ := ξt by a Larcanché
foliation. So what we need to check is:

Lemma 1 (Communicating Vessels Lemma). The two foliations built from ξ by Lar-
canché’s construction using the arcs A− and A+ respectively are homotopic among folia-
tions.

To see this, let us define two foliations ξ− and ξ+ which are not exactly the foliations
mentioned above but isotopic ones. First, we perturb A+ and A− near both ends to make
them disjoint (see Fig. 11). Then, we cut the ball B bounded by S along a disk D through
the poles and, to each half-ball B±, we add a small tubular neighbourhood of A± so as
to obtain two (slightly angular) solid tori W+ and W− intersecting along D. Outside B,
both solid tori are foliated by disks.

A+A− W+W−

Figure 11: A± and W±

The foliation ξ± is obtained by filling W∓ with a trivial foliation by meridian disks,
which traces a new foliation on D, and then putting a “Larcanché foliation” in W± –
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the “only one” inducing the new foliation traced on ∂W±. The key observation is that
the holonomies of ξ+ | ∂W+ and ξ− | ∂W− are the same. This diffeomorphism f essentially
describes the holonomy of ξ around the ball.

ξ+

`f

−

`f

ξ−

Figure 12: ξ+ and ξ−

Now to homotope ξ+ into ξ−, we start with ξ+, we perturb the trivial foliation on W−
into `id, then we perturb the foliation on D so that the resulting holonomy on ∂W+ (resp.
∂W−) varies from f to id (resp. id to f) and we extend this perturbation to W± (rel. their
complement) by continuous paths of Larcanché foliations. At the end, W+ is foliated by
`id. To get ξ−, we only need to homotope `id back into a foliation by meridian disks (cf.
Section 2).

At this point, we have:

Theorem 2. Two C∞ taut foliations homotopic among plane fields can be connected by
a path of C∞ foliations.

Actually, little extra work is needed to generalize this to a larger class of foliations,
namely the kind we just used to build the path, which will be called malleable in these
notes. A smooth foliation is malleable if it is taut outside finitely many solid tori on which
it is of the form `f , for an f having a whole interval of fixed points.

Theorem 3. Two malleable foliations homotopic among plane fields can be connected by
a path of C∞ foliations.

5 General case

To obtain the full force of Theorem A, the last thing to prove is that any C∞ foliation can
be deformed into a malleable one by a homotopy of foliations. This is where the loss of
regularity occurs.

Theorem 4. Any C∞ foliation can be connected to a malleable one by a continuous path
of C1 foliations.

The general idea is to try and make the given foliation “as taut as possible”, by a
homotopy of foliations. To that end, note that a foliation on some region is taut if and
only if every leaf meets a closed transversal in this region. So basically, we want to alter
the given foliation so that in the end, as many leaves as possible meet closed transversals.
Now according to works by Novikov [No] and Goodman [Go], only torus leaves do not
necessarily satisfy this condition. So our first task is to get rid of as many torus leaves as
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possible (we call this cleaning, cf. 5.1). Then (cf. 5.2), we will have to see to it that the
remaining “problematic” ones all lie in “Larcanché foliated” solid tori (in particular, we
will need to get rid of the incompressible ones).

5.1 Cleaning

We start with any foliation and we want to reduce to a finite number of torus leaves by
a homotopy of foliations. To do so, we first note (thanks to Novikov [No] and Thurston
[Th1]) that the problematic torus leaves always arise in “bundles”: there are finitely many
disjoint saturated sets of the form T2 × J , where J is a segment, on which the foliation is
transverse to J and outside which every leaf is cut by a closed transversal. The idea then is
to shrink these foliated bundles into isolated compact leaves. By holonomy, this is in fact
equivalent to proving that the space of representations (homomorphisms) of Z2 = π1(T2)
in D∞+ [0, 1] is connected. This is a difficult problem, but the following result, based on
classical works by Szekeres [Sz] and Kopell [Ko] on commuting interval diffeomorphisms,
at least allows us to shrink the bundles via a homotopy of C1 foliations.

Theorem 5 ([Ey2]). Every representation of Z2 in D∞+ [0, 1] can be linked to the trivial
representation through a continuous path of representations of Z2 in D1

+[0, 1].

With similar arguments (related to commuting germs of interval diffeomorphisms), we
can actually reduce to foliations whose torus leaves all have a neighbourhood parametrized
by T2×]− ε, ε[ where the foliation has an equation of the form:

dz − u(z)(a+dx1 + b+dx2) on T2 × [0, ε[

and
dz − u(z)(a−dx1 + b−dx2) on T2×]− ε, 0]

with (a±, b±) ∈ R2 \ {0} and u a smooth function vanishing only at 0 (see Fig. 13). We
call them clean foliations. In the next step, we use the flexibility of this simple model to
“kill” the problematic torus leaves of clean foliations, or, more precisely, to replace them
by compressible ones enclosed in Reeb fillings.

T2×{0}
T2×{−ε}

T2×{ε}

(a−,b−)=(0,1)

(a+,b+)=(4,5)

Figure 13: Model foliation near a torus leaf

5.2 Killing incompressible torus leaves

There is a nice case in which getting rid of the torus leaf T2 × {0} =: T0 in the above
model is easy: when (a+, b+) = (a−, b−) and u has a constant sign outside 0. In that case,
we only need to perturb u locally around 0 into a nonvanishing function.
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Now let us deal with the general case, represented on Fig. 13. In order to reduce
to the previous case, we want to deform the foliation on one side of the compact leaf to
make its slope match the slope on the other side. But this deformation has to be local –
say between the compact leaf T0 and some slightly larger parallel torus T – because the
foliation near the outermost tori Tε and T−ε must remain unchanged.

T−εT0TTε

T0

T

T0

T

Figure 14: Desired deformation between T and the compact leaf T0

But this will trace on T a path of linear foliations of slope varying continuously from
λ 6= 0 to 0, which must then be extended between T and Tε rel. Tε. To make this possible,
we first need to add a Reeb component in this external region, along a “vertical” transverse
circle (see Fig. 15). We denote by T ′ the boundary torus of the affected region. T , Tε
and T ′ bound a region of the form “Pair of pants”× S1. In this region, it is easy (again
using some basic knowledge on suspension foliations) to define a path of foliations which
is invariant on Tε and varies from the linear foliation of slope 0 (resp. λ) to the one of
slope λ (resp. 0) on T ′ (resp. T ) (cf. Fig. 15). We extend this by Reeb fillings on the
solid torus bounded by T ′ and by the desired path of spiralling foliations between T and
the compact leaf T0 (cf. Fig. 14), and we are done.

TT ′

 

TT ′

 

TT ′

Figure 15: Deformation between Tε and T

5.3 Holonomy fragmentation

After the above step, we end up with a foliation which is taut outside finitely many solid
tori foliated by Reeb fillings. The last thing to do is to replace each Reeb filling of slope λ
by a collection of Larcanché foliations whose holonomies on the boundary have intervals of
fixed points and have Tλ for product. To that end, we first homotope the Reeb filling into
the Larcanché foliation `Tλ (adapting the last remark of Section 2). Then we conclude with
a combination of Larcanché’s theorem, the following (elementary) fragmentation lemma
and, once again, the flexibility of suspension foliations on “Punctured disk”× S1.

Lemma 6. Every element of D̃∞+ (S1) a (finite) composition of elements of D̃∞+ (S1) which
all have an interval of fixed points.
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Note that 5.2 and 5.3, together with Theorem 3, yield the following intermediate result:

Theorem 7. Two clean foliations homotopic among plane fields can be connected by a
continuous path of clean foliations.

Conclusion

The surjectivity of the map π1F(M)→ π1P(M) induced by the inclusion is actually much
easier to prove than the injectivity of the map between π0’s, since one avoids the relative
aspect of the problem. All the necessary tools lie in Sections 3 and 4. As a matter of fact,
most techniques described in these sections adapt to any number of parameters, yielding
the surjectivity of the maps between πk’s for all k ≥ 1 (see [Ey3]). Injectivity, on the other
hand, requires, among other things, a better understanding of the topology of the space
of C∞ orientation-preserving actions of Z2 on [0, 1], of which little is known.
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