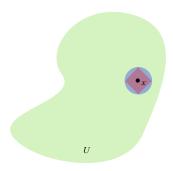
2017-2018 MAT303-UGA

TD 3 : topologie de \mathbb{R}^n

Correction

Exercice 2. Exemple de changement de norme.

Soit $x \in U$. Comme U est ouvert pour $\|\cdot\|_2$, il existe r > 0 tel que $B_{\|\cdot\|_2}(x,r) \subset U$ (en rouge sur la figure). Et comme $\|\cdot\|_2$ et $\|\cdot\|_1$ sont équivalentes, il existe C > 0 tel que $\|\cdot\|_2 \leq C\|\cdot\|_1$, ce qui entraı̂ne $B_{\|\cdot\|_1}(x,r/C) \subset B_{\|\cdot\|_2}(x,r) \subset U$ (en bleu). Ainsi, U est un voisinage de chacun de ses points pour la norme $\|\cdot\|_1$, donc un ouvert pour $\|\cdot\|_1$.



Si F est fermé pour la norme $\|\cdot\|_2$, son complémentaire F^c est ouvert pour la norme $\|\cdot\|_2$, donc pour la norme $\|\cdot\|_1$ d'après ce qui précède, donc son complémentaire à lui, F, est fermé pour la norme $\|\cdot\|_1$.

Supposons K compact pour la norme $\|\cdot\|_2$. Soit $\{U_i\}_{i\in I}$ un recouvrement de K par des ouverts pour la norme $\|\cdot\|_1$. Ce sont aussi des ouverts pour la norme $\|\cdot\|_2$ par le même raisonnement que ci-dessus. On peut donc en extraire un recouvrement fini. Donc K est compact pour la norme $\|\cdot\|_1$.

On peut aussi raisonner avec les suites. Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans K. Par compacité de K pour la norme $\|\cdot\|_2$, elle admet une sous-suite qui converge vers $l\in K$ pour la norme $\|\cdot\|_2$. Mais par équivalence des normes, une suite converge vers l pour la norme $\|\cdot\|_2$ si et seulement si elle converge vers l pour la norme $\|\cdot\|_1$ (cours?). Donc $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite qui converge dans K pour la norme $\|\cdot\|_1$. Ainsi K est compact pour la norme $\|\cdot\|_1$.