Feuille 7 : différentielle extérieure, orientation, formule de Stokes

Exercice 1. Calculer $d\alpha$, $d\beta$, $d\omega$, $d\eta$ et $d\epsilon$ avec :

$$\alpha = xdx + ydy \in \Omega^{1}(\mathbb{R}^{2})$$

$$\beta = \frac{-y}{x^{2} + y^{2}}dx + \frac{x}{x^{2} + y^{2}} \in \Omega^{1}(\mathbb{R}^{2} \setminus \{0\})$$

$$\omega = e^{xz}dx + x\cos(z)dy + y^{2}dz \in \Omega^{1}(\mathbb{R}^{3})$$

$$\eta = xdx \wedge dy - zdx \wedge dz + xyzdy \wedge dz \in \Omega^{2}(\mathbb{R}^{3})$$

$$\epsilon = dx^{1} \wedge dx^{2} + \dots + dx^{2n-1} \wedge dx^{2n} \in \Omega^{2}(\mathbb{R}^{2n})$$

Exercice 2. Soient $\flat : \mathcal{X}(\mathbb{R}^3) \to \Omega^1(\mathbb{R}^3)$ et $\star \flat : \mathcal{X}(\mathbb{R}^3) \to \Omega^2(\mathbb{R}^3)$ les isomorphismes :

$$\flat: X = X^{1} \frac{\partial}{\partial x} + X^{2} \frac{\partial}{\partial y} + X^{3} \frac{\partial}{\partial z} \mapsto X^{\flat} = X^{1} dx + X^{2} dy + X^{3} dz$$
 et
$$\star \flat: X = X^{1} \frac{\partial}{\partial x} + X^{2} \frac{\partial}{\partial y} + X^{3} \frac{\partial}{\partial z} \mapsto X^{1} dy \wedge dz + X^{2} dz \wedge dx + X^{3} dx \wedge dy.$$

Notons formellement $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$. Étant donné un champ de vecteurs $X = (X^1, X^2, X^3)$, on définit la fonction

$$\nabla \cdot X = \frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}$$

(produit scalaire formel entre les vecteurs ∇ et X), que l'on appelle divergence du champ de vecteurs X, notée encore dive X, et le champ de vecteurs

$$\nabla \times X = \left(\frac{\partial X^3}{\partial y} - \frac{\partial X^2}{\partial z}, \frac{\partial X^1}{\partial z} - \frac{\partial X^3}{\partial x}, \frac{\partial X^2}{\partial x} - \frac{\partial X^1}{\partial y}\right)$$

(produit vectoriel formel entre les vecteurs ∇ et X), que l'on appelle rotationnel du champ de vecteurs X, noté encore $\mathbf{rot}X$. Enfin étant donnée une fonction lisse f, on définit un champ de vecteurs appelé gradient de f par

$$\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

(multiplication formelle du vecteur ∇ par le scalaire f), noté encore $\mathbf{grad} f$.

On note $\langle \cdot, \cdot \rangle$ et $\omega = dx \wedge dy \wedge dz$ les produit scalaire et forme volume canoniques sur \mathbb{R}^3 . Montrer que:

- 1. $X^{\flat}(Y) = \langle X, Y \rangle$ pour tout $Y \in \mathcal{X}(\mathbb{R}^3)$;
- 2. $\star \flat(X) = \iota_X \omega$;
- 3. **grad** $f = b^{-1}(df)$;
- 4. $d(\star \flat(X)) = (\nabla \cdot X)\omega$, ou encore $d(\iota_X \omega) = (\operatorname{div} X)\omega$;
- 5. $d(X^{\flat}) = \star \flat(\nabla \times X)$, ou encore $d(X^{\flat}) = \iota_{\mathbf{rot}X}\omega$

(tout ceci permet de définir plus généralement *> et div sur toute variété munie d'une forme volume, > et **grad** sur toute variété munie d'une *métrique riemannienne*, et **rot** sur toute variété munie des deux) ;

- 6. $\nabla \times (\nabla f) = 0$, ou encore $\mathbf{rot}(\mathbf{grad} f) = 0$;
- 7. $\nabla \cdot (\nabla \times X) = 0$, ou encore $\operatorname{div}(\mathbf{rot}X) = 0$.

Relier les deux dernières identités à la relation $d \circ d = 0$.

Exercice 3. Orientabilité de la sphère. Donner un atlas d'orientation de la sphère \mathbb{S}^n , c'est-à-dire un atlas de \mathbb{S}^n dont les changements de cartes ont un jacobien partout strictement positif.

Exercice 4. Hypersurfaces de \mathbb{R}^n .

- 1. Montrer que tout niveau régulier M d'une fonction lisse $f: U \subset \mathbb{R}^n \to \mathbb{R}$ définie sur un ouvert de \mathbb{R}^n admet une normale unitaire lisse, c'est-à-dire une application lisse $\nu: M \to \mathbb{S}^{n-1}$ telle qu'en tout point x de M, $\nu(x)$ soit orthogonal à l'espace tangent T_xM .
- 2. Montrer qu'une hypersurface quelconque M de \mathbb{R}^n est orientable si et seulement si elle admet une normale unitaire lisse. Retrouver ainsi l'orientabilité de la sphère \mathbb{S}^n .
- 3. Montrer que le ruban de Mœbius n'est pas orientable.

Exercice 5. Non-orientabilité

- 1. Montrer qu'une variété n'est pas orientable si elle admet deux cartes (U, φ) et (V, ψ) telles que U et V soient connexes et $\det(d\varphi_x \circ (d\psi_x)^{-1})$ prenne à la fois des valeurs positives et négatives lorsque x décrit $U \cap V$.
- 2. Redémontrer que le ruban de Mœbius n'est pas orientable.
- 3. Montrer que l'espace projectif $\mathbb{R}P^n$ est orientable si et seulement si n est impair.

Exercice 6. Orientabilité des espaces projectifs (bis). On considère $\mathbb{R}P^n$ comme le quotient de \mathbb{S}^n par $\{\pm \operatorname{Id}\}$ et on note $p: \mathbb{S}^n \to \mathbb{R}P^n$ la projection canonique. On note en outre ω_0 la forme volume de \mathbb{S}^n définie par

$$\forall x \in \mathbb{S}^n, \quad \forall (v_1, ..., v_n) \in T_x \mathbb{S}^n, \quad (\omega_0)_x (v_1, ..., v_n) = \det(x, v_1, ..., v_n).$$

Supposons que $\mathbb{R}P^n$ admette une forme volume α .

- 1. Montrer que $\omega = p^*\alpha$ est une forme volume sur \mathbb{S}^n satisfaisant $(-\operatorname{Id})^*\omega = \omega$.
- 2. Il existe donc une fonction f lisse et de signe constant sur \mathbb{S}^n telle que $\omega = f\omega_0$. Calculer $(-\operatorname{Id})^*\omega_0$ puis $(-\operatorname{Id})^*\omega$ en fonction de ω_0 . En déduire que n est nécessairement impair, et que les espaces projectifs de dimension paire ne sont donc pas orientables.
- 3. Soit Γ un groupe discret agissant librement et proprement sur une variété X et $p: X \to V/\Gamma$ l'application de revêtement sur la variété quotient. Montrer que pour toute forme différentielle ω sur X satisfaisant

$$\gamma^*\omega = \omega \quad \forall \gamma \in \Gamma.$$

il existe sur X/Γ une unique forme différentielle α telle que $p^*\alpha = \omega$, qui est une forme volume si ω l'est.

4. En déduire que les espaces projectifs de dimension impaire sont orientables.

Exercice 7. Cas particuliers de la formule de Stokes.

1. Formule de Green-Riemann. Soit D un domaine régulier de \mathbb{R}^2 et P,Q de fonctions lisses définies au voisinage de D. Montrer que

$$\int_{\partial D} P dx + Q dy = \int_{D} (\partial_x Q - \partial_y P) dx dy.$$

2. Formule d'Ostrogradski. Soit D un domaine régulier de \mathbb{R}^3 , $\omega = dx \wedge dy \wedge dz$ et X un champ de vecteurs sur \mathbb{R}^3 . Montrer que

$$\int_{\partial D} \iota_X \omega = \int_{D} (\operatorname{div} X) \omega.$$

Que devient cette égalité pour $X = P\partial_x + Q\partial_y + R\partial_z$?

On définit en outre le flux de X à travers $S = \partial D$, noté $\int_S X$, comme

$$\int_{S} \langle X, N \rangle \sigma$$

où N désigne le champ normal sortant et $\sigma = \iota_N \omega$ la forme volume canonique sur S. Vérifier que

$$\iota_X \omega_{|S} = \langle X, N \rangle \sigma$$

ce qui entraîne:

$$\int_{S} X = \int_{D} (\operatorname{div} X) \omega.$$

3. Formule de Stokes "classique". Soit $\Gamma \subset \mathbb{R}^3$ une courbe fermée lisse orientée et X un champ de vecteurs au voisinage de Γ . Soit $\gamma:I\subset\mathbb{R}\to\mathbb{R}^3$ une paramétrisation (nécessairement non injective) de Γ (compatible avec l'orientation) et $[a,b]\subset I$ tel que $\gamma([a,b])=\Gamma$ et $\gamma_{|[a,b[}$ injective. On définit

$$\int_{\gamma} X := \int_{a}^{b} \langle X(\gamma(t)), \dot{\gamma}(t) \rangle dt.$$

- (a) Vérifier que $\int_{\gamma} X = \int_{\Gamma} X^{\flat}$ (cf. exercice 2). Cette quantité ne dépend donc pas de la paramétrisation. On l'appelle circulation de X le long de Γ et on la note $\oint_{\Gamma} X$.
- (b) On suppose ici que Γ est le bord (orienté) d'un domaine compact S d'une surface orientée de \mathbb{R}^3 . Vérifier que

$$\oint_{\Gamma} X = \int_{S} \mathbf{rot}(X) \quad \text{(flux du rotationnel à travers } S\text{)}.$$

Exercice 8. Stokes et résidus. Une forme différentielle complexe de degré k sur un ouvert U de \mathbb{R}^n est une application lisse de U dans l'espace des applications k-linéaires alternées de \mathbb{R}^n dans \mathbb{C} . Une telle forme s'écrit de façon unique sous la forme $\alpha + i\beta$ avec $\alpha, \beta \in \Omega^k(U)$. On définit sa différentielle comme la forme différentielle complexe $d\alpha + id\beta$ et son intégrale (sur ce qui a un sens) comme $\int \alpha + i \int \beta$.

Étant donnée une fonction $f:U\subset\mathbb{R}^2\simeq\mathbb{C}\to\mathbb{C}$, on désigne par f(z)dz la 1-forme différentielle complexe f(x+iy)(dx+idy) (notamment, dz:=dx+idy).

- 1. Si f est de la forme P+iQ avec $P,Q:U\subset\mathbb{R}^2\to\mathbb{R}$, exprimer d(f(z)dz) en fonction des dérivées de P et Q.
- 2. On rappelle qu'une fonction \mathbb{R} -différentiable $f=P+iQ:U\subset\mathbb{R}^2\simeq\mathbb{C}\to\mathbb{C}$ est holomorphe si et seulement si $\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}$ et $\frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x}$ (équations de Cauchy-Riemann). Comment cela se traduit-il en termes de la forme f(z)dz?
- 3. Soit $f: U \to \mathbb{C}$ une fonction holomorphe. Montrer que pour tout domaine compact D de U, $\int_{\partial D} f(z)dz = 0$.
- 4. Soit $A \subset U$ un sous-ensemble discret et $f: U \setminus A \to \mathbb{C}$ une fonction holomorphe. Montrer que pour tout domaine compact $D \subset U$ dont le bord ne rencontre pas A,

$$\int_{\partial D} f(z)dz = 2\pi i \sum_{a \in A \cap D} \operatorname{Res}(f, a),$$

où $\operatorname{Res}(f,a) = \frac{1}{2\pi i} \int_{\partial B(a,\varepsilon)} f(z) dz$ pour tout ε suffisamment petit pour que $B(a,\varepsilon) \subset U \setminus A$.