Feuille 3 : Projectif (suite), fibrés vectoriels, champs de vecteurs

Exercice 1. Coniques affines et projectives. Une conique affine du plan \mathbb{R}^2 est un sous-ensemble C de \mathbb{R}^2 défini par une équation du type

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0,$$

avec a,b,c,d,e,f des réels et $(a,b,c) \neq (0,0,0)$. Si l'on identifie \mathbb{R}^2 au plan affine $\mathbb{R}^2 \times \{1\} \subset \mathbb{R}^3$, C s'identifie à l'intersection de ce plan avec l'ensemble Q des (x,y,z) satisfaisant l'équation homogénéisée :

$$q(x, y, z) := ax^{2} + 2bxy + cy^{2} + dxz + eyz + fz^{2} = 0.$$

Si Q est un cône, ce qui correspond au cas où la signature de q est (1,2) ou (2,1), ce que l'on supposera dorénavant, on dit que C est une conique propre (et on comprend alors bien la dénomination de conique). Celles-ci se divisent en trois catégories : les ellipses (si $ac - b^2 > 0$), les hyperboles (si $ac - b^2 < 0$) et les paraboles (si $ac - b^2 = 0$). L'équation homogénéisée permet également de définir une conique projective :

$$C' = \{ [x : y : z] \in \mathbb{R}P^2, q(x, y, z) = 0 \}.$$

- 1. Montrer que C' est une sous-variété de $\mathbb{R}\mathrm{P}^2$ difféomorphe à un cercle.
- 2. En identifiant $\mathbb{R}P^2$ à la réunion de $\mathbb{R}^2(\times\{1\})$ et d'une "droite projective à l'infini", montrer qu'en ajoutant à une conique propre 0, 1 ou 2 points à l'infini, on obtient un cercle dans $\mathbb{R}P^2$.

Exercice 2. Le ruban de Möbius (I). On considère l'action de \mathbb{Z} sur \mathbb{R}^2 définie par

$$\forall n \in \mathbb{Z}, \forall (x, y) \in \mathbb{R}^2, \quad n \cdot (x, y) = (x + n, (-1)^n y)$$

et on appelle *Ruban de Möbius*, noté \mathcal{R} , le quotient de \mathbb{R}^2 par cette action, muni de la topologie quotient. On admet que, comme dans le cas du tore \mathbb{T}^1 , on peut munir \mathcal{R} d'une structure de variété différentiable pour laquelle la projection $p_{\mathcal{R}}: \mathbb{R}^2 \to \mathcal{R}$ est un difféomorphisme local au voisinage de chaque point.

- 1. Montrer que la projection $\mathbb{R}^2 \to \mathbb{R} \times \{0\} \simeq \mathbb{R}$ induit une submersion surjective $\pi : \mathcal{R} \to \mathbb{R}/\mathbb{Z}$.
- 2. Trouver un recouvrement ouvert $\{U_0, U_1\}$ de \mathbb{R}/\mathbb{Z} et des difféomorphismes Φ_i de $\pi^{-1}(U_i)$ dans $U_i \times \mathbb{R}$ faisant commuter le diagramme :

$$\pi^{-1}(U_i) \xrightarrow{\Phi_i} U_i \times \mathbb{R}^r$$

$$U_i \qquad U_i$$

et tels que pour tout $x \in U_0 \cap U_1$, $\Phi_1 \circ \Phi_0^{-1}$ induise un automorphisme linéaire de $\{x\} \times \mathbb{R}$.

- 3. En déduire que l'on peut munir les fibres $\pi^{-1}(\{x\})$, $x \in \mathbb{R}/\mathbb{Z}$, d'une structure vectorielle de sorte que tout ce qui précède munisse \mathcal{R} d'une structure de fibré vectoriel localement trivial lisse de rang 1
- 4. Montrer que ce fibré n'est pas trivial, c'est-à-dire que \mathcal{R} n'est pas difféomorphe à $\mathbb{T}^1 \times \mathbb{R}$. On pourra montrer que \mathcal{R} privé de la section nulle est connexe par arcs, ou que \mathcal{R} n'admet pas de section partout non nulle.

Exercice 3. Champs de vecteurs linéaires du plan. Étant donnée une matrice $A \in M_2(\mathbb{R})$, on définit le champ de vecteurs X_A sur \mathbb{R}^2 par

$$X_A: \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mapsto A \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \simeq T_{\begin{pmatrix} x \\ y \end{pmatrix}} \mathbb{R}^2.$$

1. "Dessiner" X_A dans chacun des cas suivants (c'est-à-dire représenter le vecteur $X\binom{x}{y}$ issu du point $\binom{x}{y}$ pour un certain nombres de points $\binom{x}{y}$ bien choisis) :

$$A = \pm I_2, \ A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \ A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ A = \begin{pmatrix} \frac{1}{10} & -1 \\ 1 & \frac{1}{10} \end{pmatrix}.$$

- 2. Esquisser l'allure des courbes intégrales de X_A dans chacun des cas ci-dessus.
- 3. Si $P \in GL_2(\mathbb{R})$, quel est le lien entre les courbes intégrales de X_A et celles de $X_{PAP^{-1}}$?
- 4. En déduire l'expression d'un champ de vecteurs linéaire sur \mathbb{R}^2 dont toutes les orbites (à part $\{0\}$) sont des ellipses (mais pas des cercles).
- 5. De manière générale, décrire le portrait de phase de X_A (c'est-à-dire l'allure de ses courbes intégrales) en fonction du spectre de A.

Exercice 4. Rotation de la sphère. Donner un champ de vecteurs sur la sphère \mathbb{S}^2 dont le flot au temps 1 soit la rotation d'angle $\theta \in [0, 2\pi]$ autour de l'axe vertical (orienté).

Exercice 5. Dynamique "Sud-Nord" et "Nord-Nord". On note N=(0,0,1) le pôle nord de la sphère unité \mathbb{S}^2 de \mathbb{R}^3 , ϕ_N la projection stéréographique depuis N de $\mathbb{S}^2 \setminus \{N\}$ sur le plan $\mathbb{R}^2 \times \{0\}$, et, pour tout $t \in \mathbb{R}$, h_t l'homothétie de centre (0,0,0) et de rapport e^t de ce même plan.

- 1. Montrer que $\phi_N^{-1} \circ h_t \circ \phi_N$ se prolonge de manière unique en un difféomorphisme g_t de \mathbb{S}^2 et que pour tout $(t,s) \in \mathbb{R}^2$, $g_t \circ g_s = g_s \circ g_t$.
- 2. Montrer que les seuls points fixes de g_t sont les pôles Nord et Sud. Vérifier que pour tout $x \in \mathbb{S}^2$,

$$\lim_{t \to +\infty} g_t(x) = N \quad \text{et} \quad \lim_{t \to -\infty} g_t(x) = S.$$

- 3. Vérifier que $(t,x) \in \mathbb{R} \times \mathbb{S}^2 \mapsto g_t(x)$ est le flot du champ de vecteurs X sur \mathbb{S}^2 donné pour tout $x \in \mathbb{S}^2$ par la projection orthogonale sur $T_x\mathbb{S}^2$ du vecteur (0,0,1).
- 4. En s'inspirant de la construction faite en 1., donner un exemple de champ de vecteurs sur \mathbb{S}^2 ayant un seul zéro, et dessiner ses trajectoires.

Exercice 6. Feuilletage linéaire du tore.

- 1. Décrire les orbites d'un champ de vecteurs constant (non nul) sur \mathbb{R}^2 (i.e. de la forme $x \in \mathbb{R}^2 \mapsto v \in T_x \mathbb{R}^2 \simeq \mathbb{R}^2$, avec $v \in \mathbb{R}^2 \setminus \{0\}$ fixé).
- 2. Montrer que le fibré tangent du tore \mathbb{T}^2 s'identifie naturellement à $\mathbb{T}^2 \times \mathbb{R}^2$.
- 3. Étant donné $v=(v_1,v_2)\in\mathbb{R}^2\setminus\{0\}$, on peut alors définir sur \mathbb{T}^2 le champ de vecteurs "constant" $x\in\mathbb{T}^2\mapsto(x,v)\in T_x\mathbb{T}^2\simeq\{x\}\times\mathbb{R}^2$. Décrire les orbites d'un tel champ de vecteurs. Sont-ce des sous-variétés de \mathbb{T}^2 ? On distinguera les cas où v_1 et v_2 sont rationnellement dépendants/indépendants.