Problème: Comparaison de convergences

Dans tout le problème, $\sum f_{n}$ est une série de fonctions définies sur un intervalle I de \mathbb{R} et à valeurs réelles.

Partie I

Une série de fonctions $\sum f_{n}$ converge absolument sur I lorsque, pour tout $x \in I$, la série $\sum\left|f_{n}(x)\right|$ converge. Dans les deux premières questions on supposera, pour simplifier les démonstrations, que toutes les fonctions f_{n} sont bornées sur I.

1. (a) Rappeler la définition de la convergence normale de la série de fonctions $\sum f_{n}$ sur I.
(b) On suppose que la série de fonctions $\sum f_{n}$ converge normalement sur I, démontrer que $\sum f_{n}$ converge absolument sur I.
2. On suppose que la série de fonctions $\sum f_{n}$ converge normalement sur I, démontrer que $\sum f_{n}$ converge uniformément sur I.

On pourra démontrer que la suite des restes converge uniformément sur I vers la fonction nulle ou utiliser toute autre méthode.
3. On pose pour $x \in[0 ; 1], f_{n}(x)=(-1)^{n}\left(\frac{x^{2}+n}{n^{2}}\right)$.

Démontrer que la série de fonctions $\sum f_{n}$ converge simplement puis converge uniformément sur $[0 ; 1]$ mais ne converge absolument en aucune valeur de $[0 ; 1]$.
4. Si la série de fonctions $\sum f_{n}$ converge absolument sur I, a-t-on nécessairement $\sum f_{n}$ qui converge uniformément sur I ?
On attend une réponse détaillée et on pourra utiliser une série entière.

Partie II

Dans toute cette partie, $\left(\alpha_{n}\right)_{n \geq 1}$ est une suite décroissante de réels positifs, $I=[0 ; 1[$ et pour tout $x \in I, f_{n}(x)=\alpha_{n} x^{n}(1-x)$.
5. Justifier que la suite $\left(\alpha_{n}\right)_{n \geq 1}$ est bornée et que la série de fonctions $\sum_{n>1} f_{n}$ converge simplement sur I.
6. (a) Calculer pour $n \geqslant 1,\left\|f_{n}\right\|_{\infty}=\sup _{x \in I}\left|f_{n}(x)\right|$.
(h) Démontrer que la série de fonctions $\sum_{n \geq 1} f_{n}$ converge normalement sur I si et seulement si la série de réels positifs $\sum_{n \geq 1} \frac{\alpha_{n}}{n}$ converge.
7. (a) Calculer pour tout $x \in I, \sum_{k=n+1}^{\infty} x^{k}$.
(b) Si on suppose que la suite $\left(\alpha_{n}\right)_{n \geq 1}$ converge vers 0 , démontrer que la série de fonctions $\sum_{n \geq 1} f_{n}$ converge uniformément sur I.
()n pourra observer que pour $k \geq n+1, \alpha_{k} \leq \alpha_{n+1}$.
(c) Réciproquement, démontrer que si la série de fonctions $\sum_{n \geq 1} f_{n}$ converge uniformément sur I, alors la suite $\left(\alpha_{n}\right)_{n \geq 1}$ converge vers 0 .
8. Dans chacun des cas suivants, donner, en détaillant, un exemple de suite décroissante de réels positifs $\left(\alpha_{n}\right)_{n \geq 1}$ telle que :
(a) La série de fonctions $\sum_{n \geq 1} f_{n}$ converge normalement sur I.
(b) La série de fonctions $\sum_{n \geq 1} f_{n}$ ne converge pas uniformément sur I.
(c) La série de fonctions $\sum_{n \geq 1} f_{n}$ converge uniformément sur I mais ne converge pas normale ment sur I.
9. Résumer à l'aide d'un schéma toutes les implications possibles, pour une série de fonctions quelconque, entre les convergences : normale, uniforme, absolue et simple sur I.

Fin de l'énoncé

