2017-2018 M1EEF – UGA

Feuille 2 : Équations différentielles (suite)

Correction

Exercice 1. Les deux équations à étudier sont linéaires du premier ordre à coefficients variables. On commence donc par résoudre l'équation homogène associée, puis on détermine une solution particulière de l'équation complète grâce à la méthode de la variation de la constante, et on déduit enfin l'ensemble de toutes les solutions de l'équation initiale.

L'équation (E_1) est de la forme y' = a(x)y + b(x) avec a définie sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$ par $a(x) = \tan(x)$ et $b: x \in \mathbb{R} \mapsto \cos(x)$. Les solutions maximales seront donc définies sur $I =]-\frac{\pi}{2}, \frac{\pi}{2}[$.

La fonction $\tan = \frac{\sin}{\cos} = \frac{-\cos'}{\cos}$ admet pour primitive $-\ln|\cos| = -\ln(\cos) = \ln(\frac{1}{\cos})$ sur I. L'ensemble des solutions de l'équation homogène associée (EH_1) est donc

$$\left\{ f: x \in I \mapsto C \exp\left(\ln\left(\frac{1}{\cos(x)}\right)\right) = \frac{C}{\cos(x)}, \ C \in \mathbb{R} \right\}.$$

On cherche une solution particulière de (E_1) sous la forme $f: x \in I \mapsto \frac{C(x)}{\cos(x)}$ avec $C: I \to \mathbb{R}$ de classe C^1 . f est solution de (E_1) si et seulement si

$$\forall x \in I, \ f'(x) = \tan(x)f(x) - \cos^2(x) \iff \forall x \in I, \ \frac{C'(x)}{\cos(x)} + C(x)\frac{\sin(x)}{\cos^2(x)} = \tan(x)\frac{C(x)}{\cos(x)} - \cos^2(x)$$
$$\Leftrightarrow \forall x \in I, \ \frac{C'(x)}{\cos(x)} = -\cos^2(x)$$
$$\Leftrightarrow \forall x \in I, \ C'(x) = -\cos^3(x).$$

Pour déterminer une primitive de $-\cos^3$, on "linéarise":

$$\forall x \in \mathbb{R}, \ -(\cos(x))^3 = -\left(\frac{e^{ix} + e^{-ix}}{2}\right)^3$$

$$= -\frac{1}{8}\left(e^{i3x} + 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} + e^{-i3x}\right)$$

$$= -\frac{1}{8}\left(2\cos(3x) + 6\cos(x)\right)$$

$$= -\frac{1}{4}\left(\cos(3x) + 3\cos(x)\right).$$

Donc $-\cos^3$ admet pour primitive $x \mapsto -\frac{1}{4} \left(\frac{\sin(3x)}{3} + 3\sin(x) \right)$, et (E1) admet donc pour solution particulière :

$$f: x \in I \mapsto -\frac{\frac{\sin(3x)}{3} + 3\sin(x)}{4\cos(x)}.$$

L'ensemble des solutions maximales de (E_1) est donc l'ensemble des fonctions de la forme

$$g: x \in I \mapsto -\frac{\frac{\sin(3x)}{3} + 3\sin(x)}{4\cos(x)} + \frac{C}{\cos(x)}$$

avec $C \in \mathbb{R}$.

Pour tout $x \in \mathbb{R}$, $1 + x^2 \neq 0$ donc l'équation (E_2) peut être mise sous la forme y' = a(x)y + b(x) avec $a : x \in \mathbb{R} \mapsto -\frac{1}{1+x^2}$ et $b : x \in \mathbb{R} \mapsto \frac{1}{1+x^2}$. Les solutions maximales seront donc définies sur \mathbb{R} .

La fonction a admet pour primitive – arctan sur \mathbb{R} . L'ensemble des solutions de l'équation homogène associée (EH_2) est donc

$$\{f: x \in \mathbb{R} \mapsto C \exp(-\arctan(x)), C \in \mathbb{R}\}.$$

On cherche une solution particulière de (E_2) sous la forme $f: x \in \mathbb{R} \mapsto C(x) \exp(-\arctan(x))$ avec $C: \mathbb{R} \to \mathbb{R}$ de classe C^1 . f est solution de (E_2) si et seulement si

$$\forall x \in \mathbb{R}, \ f'(x) = -\frac{f(x)}{1+x^2} + \frac{1}{1+x^2} \iff \forall x, \ C'(x)e^{-\arctan(x)} - C(x)\frac{e^{-\arctan(x)}}{1+x^2} = -\frac{C(x)e^{-\arctan(x)}}{1+x^2} + \frac{1}{1+x^2}$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \ C'(x)e^{-\arctan(x)} = \frac{1}{1+x^2}$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \ C'(x) = \frac{e^{\arctan(x)}}{1+x^2}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ C(x) = e^{\arctan(x)} + \lambda.$$

Ainsi, (E2) admet pour solution particulière $e^{\arctan} \times e^{-\arctan}$, c'est-à-dire.... la fonction constante égale à 1, ce qu'on aurait pu remarquer dès le début... L'ensemble des solutions maximales de (E_2) est donc l'ensemble des fonctions de la forme

$$g: x \in \mathbb{R} \mapsto 1 + Ce^{-\arctan(x)}$$

avec $C \in \mathbb{R}$.

Exercice 2. 1. À nouveau, l'équation à étudier est linéaire du premier ordre à coefficients variables. Si l'on se restreint à \mathbb{R}_+^* , elle peut être mise sous la forme y' = a(x)y + b(x) avec $a: x \in \mathbb{R}_+^* \mapsto -\frac{2}{x}$ et $b: x \in \mathbb{R}_+^* \mapsto \frac{1}{1+x^2}$. Les solutions maximales dans ce cas restreint seront définies sur \mathbb{R}_+^* .

La fonction a admet pour primitive $x \mapsto -2\ln(x) = \ln(\frac{1}{x^2})$ sur \mathbb{R}_+^* . L'ensemble des solutions de l'équation homogène associée (EH) est donc

$$\left\{ f : x \in \mathbb{R}_+^* \mapsto C \exp\left(\ln\left(\frac{1}{x^2}\right)\right) = \frac{C}{x^2}, \ C \in \mathbb{R} \right\}.$$

On cherche une solution particulière de (E) sous la forme $f: x \in \mathbb{R}_+^* \mapsto \frac{C(x)}{x^2}$ avec $C: \mathbb{R}_+^* \to \mathbb{R}$ de classe C^1 . f est solution de (E) si et seulement si

$$\forall x \in \mathbb{R}_{+}^{*}, \ f'(x) = -2\frac{f(x)}{x} + \frac{1}{1+x^{2}} \iff \forall x \in \mathbb{R}_{+}^{*}, \ \frac{C'(x)}{x^{2}} - \frac{2C(x)}{x^{3}} = -2\frac{C(x)}{x^{3}} + \frac{1}{1+x^{2}}$$

$$\Leftrightarrow \ \forall x \in \mathbb{R}_{+}^{*}, \ \frac{C'(x)}{x^{2}} = \frac{1}{1+x^{2}}$$

$$\Leftrightarrow \ \forall x \in \mathbb{R}_{+}^{*}, \ C'(x) = \frac{x^{2}}{1+x^{2}} = 1 - \frac{1}{1+x^{2}}$$

$$\Leftrightarrow \ \exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}_{+}^{*}, \ C(x) = x - \arctan(x) + \lambda.$$

Ainsi, (E) admet pour solution particulière $x\mapsto \frac{x-\arctan(x)}{x^2}$. L'ensemble des solutions maximales de (E) sur \mathbb{R}_+^* est donc l'ensemble des fonctions de la forme

$$g_C: x \in \mathbb{R}_+^* \mapsto \frac{x - \arctan(x) + C}{r^2}$$

avec $C \in \mathbb{R}$.

De la même façon, les solutions maximales de (E) sur \mathbb{R}_{-}^{*} sont les fonctions de la forme

$$h_{C'}: x \in \mathbb{R}_+^* \mapsto \frac{x - \arctan(x) + C'}{x^2}$$

avec $C' \in \mathbb{R}$.

Au voisinage de 0^+ , $\arctan(x) = x - \frac{x^3}{3} + o(x^3)$ donc $g_C(x) = \frac{x}{3} + o(x) + \frac{C}{x^2}$, qui est prolongeable par continuité en 0 si et seulement si C = 0. Il en est de même pour $h_{C'}$. La seule éventuelle solution de (E) définie sur \mathbb{R} tout entier coincide donc avec g_0 sur \mathbb{R}_+^* , avec h_0 sur \mathbb{R}_-^* et vaut 0 en 0 puisque c'est la limite de g_0 et h_0 en 0^+ et 0^- respectivement. La fonction ainsi définie admet bien un développement limité à l'ordre 1 en 0, donc elle y est dérivable (ailleurs on le savait déjà), et elle satisfait bien (E) y compris en x = 0. C'est donc bien l'unique solution de (E) définie sur \mathbb{R} tout entier.

Exercice 3. Les trois équations à étudier sont linéaires du second ordre à coefficients constants. On commence donc par résoudre l'équation homogène associée $((E_1)$ est déjà homogène) à l'aide du polynôme caractéristique de l'équation, puis (pour (E_2) et (E_3)) on détermine une solution particulière de l'équation complète en remarquant que le second membre est de type polynomial ou exponentiel (et en particulier défini sur \mathbb{R} tout entier), et on déduit enfin l'ensemble de toutes les solutions de l'équation initiale, qui sont elles aussi définies sur \mathbb{R} tout entier.

Le polynôme caractéristique de l'équation homogène (E_1) est $\chi_1(X) = X^2 - 5X + 6$, qui a deux racines réelles distinctes 2 et 3. L'ensemble des solutions maximales de (E_1) est donc

$$\{f: x \in \mathbb{R} \mapsto \lambda e^{2x} + \mu e^{3x}, \ \lambda, \mu \in \mathbb{R}\}.$$

Le polynôme caractéristique de l'équation homogène (EH_2) associée à (E_2) est $\chi_2(X) = X^2 - 4X + 4 = (X - 2)^2$, qui a 2 pour racine réelle double. L'ensemble des solutions maximales de (EH_2) est donc

$$\{f: x \in \mathbb{R} \mapsto (\lambda + \mu x)e^{2x}, \ \lambda, \mu \in \mathbb{R}\}.$$

Le second membre de (E_2) est polynomial de degré 2 donc (E_2) admet une solution particulière polynomiale de degré 2. Déterminons-la. Pour tout $(a,b,c) \in \mathbb{R}^3$, $f: x \in \mathbb{R} \mapsto ax^2 + bx + c$, de dérivées première et seconde $f': x \mapsto 2ax + b$ et $f'': x \mapsto 2a$, est solution de (E_2) si et seulement si

$$\forall x \in \mathbb{R}, \ 2a - 4(2ax + b) + 4(ax^2 + bx + c) = x^2 \\ \Leftrightarrow \ \forall x \in \mathbb{R}, \ 4ax^2 + 4(b - 2a)x + (2a - 4b + 4c) = x^2 \\ \Leftrightarrow \ (\text{par identification}) \begin{cases} 4a = 1 \\ 4(b - 2a) = 0 \\ 2a - 4b + 4c = 0 \end{cases} \\ \Leftrightarrow \ a = \frac{1}{4}, \ b = 2a = \frac{1}{2} \text{ et } c = \frac{1}{4}(4b - 2a) = \frac{3}{8}.$$

Ainsi, l'ensemble des solutions maximales de (E_2) est

$$\{f: x \in \mathbb{R} \mapsto (\lambda + \mu x)e^{2x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{8}, \ \lambda, \mu \in \mathbb{R}\}\$$
.

Le polynôme caractéristique de l'équation homogène (EH_3) associée à (E_3) est $\chi_3(X) = X^2 - 1 = (X - 1)(X + 1)$, qui a deux racines réelles distinctes 1 et -1. L'ensemble des solutions maximales de (EH_2) est donc

$$\{f: x \in \mathbb{R} \mapsto \lambda e^x + \mu e^{-x}, \ \lambda, \mu \in \mathbb{R}\}.$$

Le second membre de (E_2) est de la forme $x \mapsto e^{rx}$ avec r racine simple du polyn \tilde{A} me caractéristique donc (E_3) admet une solution particulière de la forme $f: x \mapsto axe^{rx}$, avec $a \in \mathbb{R}$. Une telle f a pour dérivées successives $f': x \mapsto axe^x + ae^x = (ax + a)e^x$ et $f'': x \mapsto (ax + a)e^x + ae^x = (ax + 2a)e^x$, donc elle est solution de (E_3) si et seulement si

$$\forall x \in \mathbb{R}, (ax+2a)e^x - axe^x = e^x \iff a = \frac{1}{2}.$$

Finalement, l'ensemble des solutions maximales de (E_3) est

$$\left\{ f: x \in \mathbb{R} \mapsto (\lambda + \frac{x}{2})e^x + \mu e^{-x}, \ \lambda, \mu \in \mathbb{R} \right\}.$$

Exercice 4. (E_1) est de la forme y'=f(y) avec f de classe C^1 donc le théorème de Cauchy-Lipschitz s'applique. Elle est en outre autonome (pas de dépendance en t) donc il suffit de déterminer les solutions avec condition initiale du type $y(0)=\alpha\in\mathbb{R}$ pour en déduire toutes les autres. En effet, si $(t_0,\alpha)\in\mathbb{R}^2$ et si $z:]a,b[\to\mathbb{R}$ est l'unique solution maximale du pb de Cauchy

$$\begin{cases} y' = 1 + y^2 \\ y(0) = \alpha \end{cases},$$

l'unique solution maximale du pb de Cauchy

$$\begin{cases} y' = 1 + y^2 \\ y(t_0) = \alpha \end{cases}$$

est $t \in]a + t_0, b + t_0[\mapsto z(t - t_0)]$. En effet, c'est une solution (vérification immédiate), elle est maximale sinon z ne le serait pas (à vérifier), et on conclut par unicité.

Soit donc $\alpha \in \mathbb{R}$ et z une fonction définie sur un intervalle ouvert I de \mathbb{R} contenant 0. Alors

$$z \text{ est sol. du pb de Cauchy } \begin{cases} y' = 1 + y^2 \\ y(0) = \alpha \end{cases}$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ z'(t) = 1 + (z(t))^2 \ (\neq 0)$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ \frac{z'(t)}{1 + (z(t))^2} = 1$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ \int_0^t \frac{z'(s)}{1 + (z(s))^2} ds = t$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ \int_{z(0)}^{z(t)} \frac{du}{1 + u^2} = t$$

$$\Leftrightarrow \forall t \in I, \arctan(z(t)) - \arctan(\alpha) = t$$

$$\Leftrightarrow \forall t \in I, \arctan(z(t)) = t + \arctan(\alpha)$$

$$\Leftrightarrow \forall t \in I, t + \arctan(z(t)) = t + \arctan(\alpha)$$

$$\Leftrightarrow \forall t \in I, t + \arctan(z(t)) = t + \arctan($$

Ainsi, la solution maximale de (E_1) valant α en 0 est

$$t \in]-\frac{\pi}{2}-\arctan\alpha, \frac{\pi}{2}-\arctan\alpha[\mapsto \tan(t+\arctan\alpha).$$

Pour (E_2) , on raisonne comme pour (E_1) . Soit $\alpha \in \mathbb{R}$ et z une fonction définie sur un intervalle ouvert I de \mathbb{R} contenant 0. Alors

$$z \text{ est sol. du pb de Cauchy } \begin{cases} y' = e^y \\ y(0) = \alpha \end{cases}$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ z'(t) = e^{z(t)} \ (\neq 0)$$

$$\Leftrightarrow z(0) = \alpha \text{ et } \forall t \in I, \ \frac{z'(t)}{e^{z(t)}} = z'(t)e^{-z(t)} = -(e^{-z})'(t) = 1$$

$$\Leftrightarrow \forall t \in I, \ e^{-\alpha} - e^{-z(t)} = t$$

$$\Leftrightarrow \forall t \in I, \ e^{-z(t)} = e^{-\alpha} - t$$

$$\Leftrightarrow \forall t \in I, \ \arctan(z(t)) = t + \arctan(\alpha)$$

$$\Leftrightarrow \forall t \in I, e^{-\alpha} - t > 0 \text{ et } -z(t) = \ln(e^{-\alpha} - t)$$

$$\Leftrightarrow I \subset] - \infty, e^{-\alpha}[\text{ et } z(t) = -\ln(e^{-\alpha} - t).$$

Ainsi, la solution maximale de (E_2) valant α en 0 est

$$t \in]-\infty, e^{-\alpha}[\mapsto z(t) = -\ln(e^{-\alpha} - t).$$

 (E_3) est de la forme y'=f(t)g(y) avec f et g de classe C^1 donc le théorème de Cauchy-Lipschitz s'applique. En particulier, la fonction constante égale à 0 est solution donc par unicité de la solution maximale à condition initiale donnée, les autres solutions ne s'annulent pas. Soit donc $(t_0, \alpha) \in \mathbb{R}^2$ et z une fonction ne s'annulant pas, définie sur un intervalle ouvert I de \mathbb{R} contenant t_0 . Supposons α (et donc z) > 0. Alors

$$z$$
 est sol. du pb de Cauchy
$$\begin{cases} y' = ty \\ y(t_0) = \alpha \end{cases}$$

$$\Leftrightarrow z(t_0) = \alpha \text{ et } \forall t \in I, \ z'(t) = tz(t)$$

$$\Leftrightarrow z(t_0) = \alpha \text{ et } \forall t \in I, \ \frac{z'(t)}{z(t)} = t$$

$$\Leftrightarrow \forall t \in I, \ \ln\left(\frac{z(t)}{\alpha}\right) = \frac{t^2 - t_0^2}{2}$$

$$\Leftrightarrow \forall t \in I, \ z(t) = \alpha e^{(t^2 - t_0^2)/2}.$$

Ainsi, la solution maximale de (E_3) valant $\alpha > 0$ en t_0 est $t \in \mathbb{R} \mapsto \alpha e^{(t^2 - t_0^2)/2}$, et il en est de même pour $\alpha < 0$.

Enfin, (E_4) est de la forme y' = f(t)g(y) avec g définie sur [-1,1] mais de classe C^1 seulement sur]-1,1[, et f définie et C^1 sur]-1,1[. g s'annule en ± 1 , donc les fonctions constantes égales à ± 1 sur]-1,1[sont des solutions (maximales), mais comme g n'est pas C^1 au voisinage de 1, on ne peut pas appliquer le théorème de Cauchy-Lipschitz pour dire qu'une solution qui prend la valeur ± 1 est constante égale à cette valeur (nous verrons que ce n'est en effet pas le cas). CL s'applique en revanche pour les fonctions définies et à valeurs dans]-1,1[. Commençons par trouver les solutions maximales de ce type.

Soit donc $(t_0, \alpha) \in]-1, 1[^2$ et z une fonction C^1 à valeurs dans]-1, 1[, définie sur un

intervalle ouvert $I \subset]-1,1[$ contenant t_0 . Alors

$$z \text{ est sol. du pb de Cauchy } \begin{cases} y' = \sqrt{\frac{1-y^2}{1-t^2}} \\ y(t_0) = \alpha \end{cases}$$

$$\Leftrightarrow z(t_0) = \alpha \text{ et } \forall t \in I, \ z'(t) = \sqrt{\frac{1-(z(t))^2}{1-t^2}}$$

$$\Leftrightarrow z(t_0) = \alpha \text{ et } \forall t \in I, \ \frac{z'(t)}{\sqrt{1-(z(t))^2}} = \frac{1}{\sqrt{1-t^2}}$$

$$\Leftrightarrow \forall t \in I, \arcsin(z(t)) - \arcsin(\alpha) = \arcsin(t) - \arcsin(t_0)$$

$$\Leftrightarrow \forall t \in I, \arcsin(z(t)) = \arcsin(\alpha) + \arcsin(t) - \arcsin(t_0) \quad (*)$$

$$\Leftrightarrow \forall t \in I, z(t) = \sin(\arcsin(t) + \arcsin(\alpha) - \arcsin(t_0)$$

 $(\forall t \in I, \arcsin(z(t)) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, intervalle sur lequel sin est injective). Notons $\beta = \arcsin(\alpha) - \arcsin(t_0) \in]-\pi, \pi[$. D'après (*), si z est solution, I est tel que pour tout $t \in I$, $\arcsin(t) + \beta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, donc

$$\arcsin(t) \in]-\tfrac{\pi}{2}-\beta, \tfrac{\pi}{2}-\beta[\ \cap\]-\tfrac{\pi}{2}, \tfrac{\pi}{2}[\ =\]-\tfrac{\pi}{2}, \tfrac{\pi}{2}-\beta[\ \ \text{ou}\]-\tfrac{\pi}{2}-\beta, \tfrac{\pi}{2}[$$

selon le signe de β , i.e. $I \subset]-1,\cos(\beta)[$ si $\beta \geq 0$ et $I \subset]-\cos\beta,1[$ si $\beta \leq 0$. Réciproquement, si l'inclusion est satisfaite, la fonction z définie dans la dernière ligne des équivalences est bien solution. Finalement, si $\beta \geq 0$, la solution maximale du problème de Cauchy (toujours avec la contrainte d'être à valeurs dans]-1,1[) est la fonction

$$z_{\beta}: t \in I \mapsto \sin(\arcsin(t) + \beta) = \sin(\arcsin(t))\cos\beta + \sin\beta\cos(\arcsin(t))$$

= $(\cos\beta)t + (\sin\beta)\sqrt{1 - t^2}$

avec
$$I =]-1, \cos(\beta)[$$
 si $\beta \ge 0$ et $I =]-\cos\beta, 1[$ si $\beta \le 0.$

Si maintenant on n'impose plus que les solutions soient à valeurs dans]-1,1[, il s'agit de se demander si les solutions ci-dessus peuvent être prolongées à un intervalle plus grand (mais lui toujours inclus dans]-1,1[, car l'équation n'a pas de sens pour $t \notin]-1,1[$).

On remarque que si $\beta > 0$, z_{β} admet pour limite 1 en $\cos(\beta)$, et que donc, de par l'équation, z'_{β} y admet pour limite 0. z_{β} se prolonge donc en fonction C^1 sur $]-1,\cos(\beta)]$, toujours solution. La fonction constante égale à 1 étant solution, on peut prolonger z_{β} par cette fonction à]-1,1[tout entier, et ce prolongement est une solution maximale du pb de Cauchy.

Mais $y \mapsto \sqrt{1-y^2}$ n'est pas C^1 au voisinage de 1, donc le théorème de Cauchy Lipschitz ne s'applique pas, et le pb de Cauchy pourrait avoir une autre solution maximale. La seule autre façon de prolonger z_{β} au delà de $\cos(\beta)$ serait par une solution non constante de l'équation, donc de la forme z_{γ} , définie à droite de $\cos \beta$ et ayant pour limite 1 en $\cos \beta^+$.

On vérifie que ça ne peut être le cas pour aucune fonction z_{γ} avec $\gamma \geq 0$ (une telle fonction n'a pour limite 1 qu'en l'extrémité droite de son intervalle de définition, $\cos \gamma$). Une fonction z_{γ} avec $\gamma < 0$ ne peut approcher la valeur 1 qu'au bord de son intervalle de définition, or la limite en $-\cos \gamma$ vaut -1.

Ainsi la seule façon de prolonger z_{β} était finalement par la fonction constante égale à 1. On a finalement déterminé l'ensemble des solutions maximales de l'équation : elles sont toutes définies sur]-1,1[et ce sont les fonctions constantes égales à ± 1 et les fonctions z_{β} avec $\beta \geq 0$ prolongées par 1 ou les fonctions z_{γ} avec $\gamma \leq 0$ prolongées par -1.

On constate notamment que pour un $t_0 \in]-1,1[$ donné, il y a une infinité de solutions valant 1 en t_0 : toutes les z_β avec $\beta \geq 0$ et $\cos(\beta) \leq t_0$. Il n'y a donc pas unicité de la solution maximale à un problème de Cauchy donné.