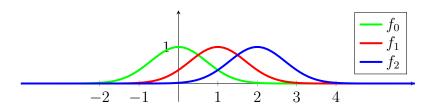
Partiel du 15 mars 2019

Corrigé

Questions de cours. cf. cours.

Exercice 1. 1. La fonction $x \mapsto x^2$ est strictement croissante sur \mathbb{R}_+ et $y \mapsto e^{-y}$ est strictement décroissante sur \mathbb{R}_+ donc par composition f_0 est strictement décroissante sur \mathbb{R}_+ , et strictement croissante sur \mathbb{R}_- par parité. Elle a donc pour maximum $f_0(0) = 1$. En outre, $\lim_{x \to \pm \infty} x^2 = +\infty$ et $\lim_{y \to +\infty} e^{-y} = 0$ donc par composition, $\lim_{x \to \pm \infty} f_0(x) = 0$. Enfin, f_0 est continue. Tout ceci donne l'allure ci-dessous pour son graphe.

Pour tout $n \in \mathbb{N}$, le graphe de f_n est obtenu en translatant de n (vers la droite) celui de f_0 , d'où l'allure suivante des graphes de f_1 et f_2 (les graphes semblent confondus avec l'axe des abscisses en dehors d'un segment mais ce n'est pas le cas, les fonctions f_n ne s'annulent pas mais tendent très vite vers 0 en $\pm \infty$).



- 2. Soit $x \in \mathbb{R}$ (fixé). Alors $(x n)_{n \in \mathbb{N}}$ tend vers $+\infty$ donc par composition, $(f_n(x))_n = (f_0(x n))_n$ tend vers $\lim_{y \to +\infty} f_0(y) = 0$. Ainsi, $(f_n)_n$ converge simplement vers la fonction nulle sur \mathbb{R} , que l'on notera f.
- 3. Pour tout $n \in \mathbb{N}$, $||f_n f||_{\infty,\mathbb{R}} = \sup_{\mathbb{R}} |f_n| = \max_{\mathbb{R}} f_n$ $(f_n \text{ positive}) = 1$ donc $(||f_n f||_{\infty,\mathbb{R}})_n$ ne tend pas vers 0 donc la convergence de $(f_n)_n$ vers la fonction nulle n'est pas uniforme (et $(f_n)_n$ ne peut pas cvu vers autre chose, cvu impliquant cvs et la limite simple étant unique).
- 4. Pour tout $n \in \mathbb{N}$, $||f_n f||_{\infty,[-a,a]} = \sup_{[-a,a]} |f_n| = \sup_{[-a,a]} f_n = \max_{[-a,a]} f_n$ car f_n est continue donc admet un max sur tout segment. Or f_n est croissante sur $]-\infty,n]$, donc si $n \geq a$, $\max_{[-a,a]} f_n = f_n(a) \xrightarrow[n \to +\infty]{} 0$ d'après la question 1. Donc la convergence de $(f_n)_n$ est uniforme sur [-a,a].

Exercice 2. 1. Soit $x \in [1, +\infty[$. Alors pour tout $n \in \mathbb{N}^*$, comme $1 + \frac{1}{n} > 0$, $x^{1 + \frac{1}{n}} \ge 1$ donc $|f_n(x)| \le \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc $(f_n(x))_n$ cv vers 0. Ainsi, $(f_n)_n$ converge simplement sur $[1, +\infty[$ vers la fonction nulle.

- 2. On a vu dans la question précédente que, pour tout $n \in \mathbb{N}^*$: $\forall x \in [1, +\infty[, |f_n(x)| \leq \frac{1}{n}, \text{ avec } \frac{1}{n}]$ indépendant de $x \in [1, +\infty[$ et tendant vers 0 quand $n \to +\infty$. Ceci montre la convergence uniforme de $(f_n)_n$ vers la fonction nulle sur $[1, +\infty[$.
- 3. On n'a besoin ici que de la partie suivante du théorème donné en cours :

Soit $(f_n)_n$ une suite de fonctions continues sur un segment [a,b] convergeant uniformément sur [a,b] vers une fonction f (nécessairement continue). Alors $(\int_a^b f_n(t)dt)_n$ converge vers $\int_a^b f(t)dt$.

Les f_n de notre exercice sont bien continues sur $[1, +\infty[$ et convergent uniformément vers la fonction nulle f sur $[1, +\infty[$ et a fortiori sur [1, A] pour tout A > 1, et on conclut en appliquant le théorème avec [a, b] = [1, A].

4.
$$\forall n \in \mathbb{N}^*, \ \forall A > 1, \ I_n(A) = \int_1^A \frac{dx}{nx^{1+\frac{1}{n}}} = \left[-x^{-1/n}\right]_1^A = -A^{-1/n} - (-1) = 1 - A^{-1/n}.$$

En particulier, $I_n(\alpha^n) = 1 - \alpha^{-1} > 0$ et $I_n(n^{\beta}) = 1 - n^{-\beta/n} = 1 - \exp(-\frac{\beta}{n}\ln(n))$.

Ainsi, $(I_n(\alpha^n))_n$ est constante égale à $1 - \alpha^{-1}$ donc converge vers cette valeur non nulle, et donc pas vers $\int_1^{+\infty} f(t)dt = 0$ (et ce quel que soit $\alpha > 1$). En revanche, comme $(\frac{\ln(n)}{n})_n$ tend vers 0 et par continuité de exp en 0, $(I_n(n^{\beta}))_n$ converge vers $1 - \exp(0) = 0 = \int_1^{+\infty} f(t)dt$.

La réponse à la dernière question de l'énoncé est donc "rien" puisque l'étude ci-dessus fournit un exemple de $(u_n)_n$ pour lequel il y a cv vers $\int_1^{+\infty} f(t)dt$ et un pour lequel ce n'est pas le cas.

Exercice 3. 1. Si $\alpha > 1$, en prenant $\beta \in]1, \alpha[$, $a_n = \frac{\ln(n)}{n^{\alpha - \beta}} \times \frac{1}{n^{\beta}} = o(\frac{1}{n^{\beta}})$ par croissances comparées $(\alpha - \beta > 0)$. Or comme $\beta > 1$, la série de Riemann $(\sum_n \frac{1}{n^{\beta}})$ cv, donc par comparaison de séries à terme général positif, $(\sum_n a_n)$ converge.

Si $\alpha \leq 1$, pour tout $n \geq 2$, $\frac{\ln(n)}{n^{\alpha}} \geq \frac{\ln(2)}{n^{\alpha}}$, terme général d'une série divergente (toujours par Riemann), donc par comparaison de séries à terme général positif $(\sum_n a_n)$ diverge.

- 2. Soit a > 1. Pour tout $n \in \mathbb{N}^*$, pour tout $x \in [a, +\infty[$, $n^x \ge n^a$ et $\ln(n) \ge 0$ donc $|u_n(x)| = \frac{\ln(n)}{n^x} \le \frac{\ln(n)}{n^a}$, indépendant de $x \in [a, +\infty[$ et terme général d'une série convergente d'après le 1, donc $(\sum_{n \in \mathbb{N}^*} u_n)$ converge normalement sur $[a, +\infty[$.
- 3.a. La fonction $f: t \mapsto \frac{\ln(t)}{t^x} = \ln(t) \exp(-x \ln(t))$ est définie et dérivable sur $[1, +\infty[$, de dérivée

$$f': t \mapsto \frac{1}{t} \exp(-x \ln(t)) - \frac{x}{t} \ln(t) \exp(-x \ln(t)) = \frac{1 - x \ln(t)}{t^{x+1}}.$$

En particulier, $f'(t) \leq 0 \Leftrightarrow 1-x\ln(t) \leq 0 \Leftrightarrow \ln(t) \geq \frac{1}{x} \Leftrightarrow t \geq e^{\frac{1}{x}}$. La fonction f est donc strictement décroissante sur $[e^{\frac{1}{x}}, +\infty[$. En posant $N_x = E(e^{\frac{1}{x}}) + 1$ (où E désigne la partie entière), on a donc que la suite $(\frac{\ln(n)}{n^x})_{n \in \mathbb{N}^*}$ est décroissante à partir du rang N_x , qui décroît bien avec x (à expliciter).

- 3.b. La suite $(u_n(x))_{n\in\mathbb{N}^*}$ tend vers 0 et est décroissante à partir d'un certain rang donc le théorème des séries alternées donne la convergence de la série $(\sum_{n\in\mathbb{N}^*} u_n(x))$.
- 4. Soit x > 0. La deuxième partie du théorème des séries alternées affirme que pour tout $n \ge N_x$, $|R_n(x)| \le |u_{n+1}(x)|$. En particulier, pour tout $x \ge a$, $N_x \le N_a$, donc pour tout $n \ge N_a$, $n \ge N_x$ et donc $|R_n(x)| \le |u_{n+1}(x)| = \frac{\ln(n+1)}{(n+1)^x} \le \frac{\ln(n+1)}{(n+1)^a}$, indépendant de $x \in [a, +\infty[$ et qui tend vers 0 quand $n \to +\infty$ par croissances comparées (a > 0). Ainsi, $(R_n)_n$ converge uniformément vers la fonction nulle sur $[a, +\infty[$, et donc $(\sum_{n \in \mathbb{N}^*} u_n)$ converge uniformément sur $[a, +\infty[$.
- 5. Pour $n \in \mathbb{N}^*$ fixé, u_n est continue sur \mathbb{R} (car $x \mapsto n^x = \exp(x \ln(n))$ l'est), donc $\lim_{x\to 0^+} u_n(x) = u_n(0) = (-1)^n \ln(n) =: l_n$. La série $(\sum_n l_n)$ diverge grossièrement (son terme général ne tend pas vers 0).
- 6. Si on avait convergence uniforme de $(\sum_{n\in\mathbb{N}^*}u_n)$ sur $]0,+\infty[$, i.e. cvu de la suite des sommes partielles $(S_n)_n$, comme $\lim_{x\to 0^+}S_n(x)=\sum_{k=0}^n l_k=:L_n$ existe, la première affirmation du théorème d'interversion de limites serait la convergence de $(L_n)_n$ vers un certain $L\in\mathbb{R}$. Or on vient de voir que $(L_n)_n$ diverge, ce qui conclut.
- 7. Pour tout x > 0, la suite $(\frac{1}{n^x})_n$ est décroissante et tend vers 0 donc le TSA donne la cv de la série numérique $(\sum_n v_n(x))$. Pour tout $x \le 0$, $(v_n(x))_n$ ne converge pas vers 0 donc la série numérique $(\sum_n v_n(x))$ diverge grossièrement. Ainsi, $(\sum_n v_n)$ converge simplement sur $]0, +\infty[$ et pas ailleurs.
- 8. Pour tout $n \in \mathbb{N}^*$, $v_n : x \mapsto (-1)^n \exp(-x \ln(n))$ est C^1 sur \mathbb{R}_+^* , de dérivée $-u_n$. Ainsi, pour tout a > 0,
 - $(\sum_n v_n)$ converge simplement sur \mathbb{R}_+^* donc sur $[a, +\infty[$ d'après la question précédente,
 - $(\sum_n v_n') = (\sum_n -u_n)$ converge uniformément sur $[a, +\infty[$ d'après la question 4.

Par le théorème de dérivabilité, $G = \sum_{n=1}^{+\infty} u_n$ est C^1 sur $[a, +\infty[$, et ce pour tout a > 0, donc en fait sur $]0, +\infty[$.