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Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k).

Examples:

(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with
the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.

(ii) Given a topological space X, the complex of singular cochains
(C•(X, k), d) provided with the cup product is a dg algebra.

(iii) For a commutative algebra R, the de Rham complex
Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.

(ii) Given a topological space X, the complex of singular cochains
(C•(X, k), d) provided with the cup product is a dg algebra.

(iii) For a commutative algebra R, the de Rham complex
Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.
(ii) Given a topological space X, the complex of singular cochains

(C•(X, k), d) provided with the cup product is a dg algebra.

(iii) For a commutative algebra R, the de Rham complex
Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.
(ii) Given a topological space X, the complex of singular cochains

(C•(X, k), d) provided with the cup product is a dg algebra.
(iii) For a commutative algebra R, the de Rham complex

Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.
(ii) Given a topological space X, the complex of singular cochains

(C•(X, k), d) provided with the cup product is a dg algebra.
(iii) For a commutative algebra R, the de Rham complex

Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?

Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.
(ii) Given a topological space X, the complex of singular cochains

(C•(X, k), d) provided with the cup product is a dg algebra.
(iii) For a commutative algebra R, the de Rham complex

Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

Herscovich A∞-algebras in rep. theory and homology The realm of A∞-algebras 2 / 14



Why A∞-algebras ?
Let (A, dA) be a dg algebra (over a field k). Examples:
(i) If (C, dC) is a complex of modules over Λ, then EndΛ(C) with

the differential d(f) = dC ◦ f − (−1)|f |f ◦ dC is a dg algebra.
(ii) Given a topological space X, the complex of singular cochains

(C•(X, k), d) provided with the cup product is a dg algebra.
(iii) For a commutative algebra R, the de Rham complex

Ω•R/k = Λ•RΩR/k is a dg algebra for the usual differential.

(iv) Analogously, given a manifold M , the de Rham complex Ω•M
provided with the exterior derivative is a dg algebra.

(v) If Λ is an associative algebra, the Hochschild cohomology
complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

One typically considers H(A, dA).

It is a graded algebra!
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(iv) Analogously, given a manifold M , the de Rham complex Ω•M

provided with the exterior derivative is a dg algebra.
(v) If Λ is an associative algebra, the Hochschild cohomology

complex C•(Λ,Λ) = Hom(Λ⊗•,Λ) with the cup product is a dg
algebra.

One typically considers H(A, dA). It is a graded algebra!
What is missing?
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More precisely, we say that two dg algebras (A, dA) and (B, dB) are
quasi-isomorphic if there is a diagram

A1

∼
��

∼

  

A3

∼
~~

∼

  

. . . A2`+1

∼
||

∼

""
A A2 . . . B

The question now reads:
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More precisely, we say that two dg algebras (A, dA) and (B, dB) are
quasi-isomorphic if there is a diagram

A1

∼
��

∼

  

A3

∼
~~

∼

  

. . . A2`+1

∼
||

∼

""
A A2 . . . B

The question now reads:
What structure should we impose to H(A) and H(B) so that:

H(A) and H(B) are ‘equivalent’ ⇔ A and B are quasi-isomorphic?
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Example(s)

Let Λ(n) = k[x]/(xn) (n > 2), P•(n)→ k a min. proj. res. and
define A(n) = EndΛ(n)(P (n)).

(i) Then A(n) is a dg algebra.
(ii) Moreover, H(A(n)) ' k[X, Y ]/(X2) as graded algebras, where
|X| = 1 and |Y | = 2.

(iii) However, A(n) and A(m) are not quasi-isomorphic if n 6= m.
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define A(n) = EndΛ(n)(P (n)).
(i) Then A(n) is a dg algebra.
(ii) Moreover, H(A(n)) ' k[X, Y ]/(X2) as graded algebras, where
|X| = 1 and |Y | = 2.

(iii) However, A(n) and A(m) are not quasi-isomorphic if n 6= m.

Consequence: the algebra structure of cohomology is not enough!
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What is an A∞-algebra ?
An A∞-algebra (J. Stasheff, ’63) is a graded vector space
A = ⊕i∈ZAi with maps

mn : A⊗n → A,∀n ∈ N, of degree |mn| = 2− n,

that satisfy the equations∑
r+s+t=n

(−1)r+stmr+1+t ◦ (id⊗r ⊗ms ⊗ id⊗t) = 0,∀n ∈ N (SI(n))

For example,

(1) SI(1) means that m1 ◦m1 = 0;
(2) SI(2) says that m1 is a derivation for m2;
(3) SI(3) means that m2 is associative up to the homotopy m3:

m2 ◦ (id⊗m2)−m2 ◦ (m2 ⊗ id) = δ(m3)

where δ is the differential of Hom(A⊗3, A) induced by m1.
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A morphism (A. Clark, ’65) of A∞-algebras f• : (A,mA
• )→ (B,mB

• )
is a collection of maps

fn : A⊗n → B, ∀n ∈ N, of degree |fn| = 1− n,

satisfying the equations∑
r+s+t=n

(−1)r+stfr+1+t ◦ (id⊗r ⊗mA
s ⊗ id⊗t)

=
∑

n1+···+nq=n

±mB
q ◦ (fn1 ⊗ · · · ⊗ fnq),∀n ∈ N (MI(n))

For example,

(1) MI(1) means that f1 is a morphism of complexes;
(2) MI(2) says that f2 commutes with multiplications up to the

homotopy f2:

f1 ◦mA
2 −mB

2 ◦ (f1 ⊗ f1) = δ′(f2)

where δ′ is the differential of Hom(A⊗2, B) induced by mB
1 and

mA
1 .
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Properties of A∞-algebras

A morphism of A∞-algebras is called a quasi-isomorphism if f1 is a
quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, ’80/’82).
Let (A, dA) be a dg algebra. Then, there is a unique (up to
noncanonical quasi-isomorphism) minimal A∞-algebra structure on
H(A, dA) and a quasi-isomorphism of A∞-algebras f• : H(A)→ A,
where f1 is the composition of a section of Z(A) � H(A) and the
inclusion Z(A)→ A.

Theorem 2 (B. Keller, ’02).
Let A and B be two dg algebras. Then, A and B are
quasi-isomorphic iff there is a quasi-isomorphism of A∞-algebras from
A to B.
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More properties
A (left) A∞-module over an A∞-algebra A is a complex of vector
spaces (M = ⊕i∈ZM i, d) with a morphism of A∞-algebras
A→ End(M).

There is also a definition of morphism of
A∞-modules, so we obtain a category C∞(A). The derived category
D∞(A) of A is obtained from C∞(A) by formally inverting all
quasi-isomorphisms.

Theorem 3 (B. Keller, ’02).
(a) Let (A, dA) be a dg algebra, Cdg(A) be the category of dg

modules with morphisms of dg modules and Ddg(A) be its
derived category. Then the inclusion functor Cdg(A)→ C∞(A)
induces an equivalence of triangulated categories
Ddg(A)→ D∞(A).

(b) Let f• : A→ B be a quasi-isomorphism of A∞-algebras. Then,
the induced functor f ∗ : D∞(B)→ D∞(A) is an equivalence of
triangulated categories sending B to A.
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The dual notions

There is also the dual notion of A∞-coalgebra C = ⊕i∈ZCi, with a
loc. finite collection of maps

∆n : C → C⊗n, ∀n ∈ N, where |∆n| = n− 2,

satisfying the “dual” identities to SI(n).

There is the dual notion of morphism of A∞-coalgebras
f• : (C,∆C

• )→ (D,∆D
• ), given by a collection of maps

fn : C → D⊗n,∀n ∈ N, of degree |fn| = n− 1,

that fulfil equalities analogous to MI(n).
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Motivation

If A is a dg algebra and C is an A∞-coalgebra, then
H = Hom(C,A) has an explicit structure of A∞-algebra!

where

(i) m1(φ) = dA ◦ φ− (−1)deg φφ ◦∆C
1 , and

(ii) mn(φ1 ⊗ · · · ⊗ φn) = ± µ(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆C

n , for n ≥ 2.
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(ii) mn(φ1 ⊗ · · · ⊗ φn) = ± µ(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆C

n , for n ≥ 2.

If M is an A-bimodule, then M ⊗ C is an A∞-bimodule over H

,
where m0,0 = dM ⊗ idC + idM ⊗∆C

1 , and, for p+ q ≥ 1,

mp,q

(
φ1 ⊗ · · · ⊗ φp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq

)
= ±

(
φ1(c(q+2)) . . . φp(c(q+p+1))

)
.m.
(
ψ1(c(1)) . . . ψq(c(q))

)
⊗ c(q+1),

(1)

where ∆C
p+q+1(c) = c(1) ⊗ · · · ⊗ c(p+q+1).
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Torsion of A∞-algebras

Let H be a (topological) A∞-algebra

and a ∈ H1. We say that a
satisfies the Maurer-Cartan equation if∑

n∈N

±mn(a⊗n) = 0. (2)

Then we define the twisted A∞-algebra Ha by

ma
n(x1, . . . , xn) =

∑
`1,...,`n+1∈N0

±mn+`(a
⊗`1 , x1, a

⊗`2 , x2, . . . , xn, a
⊗`n+1),

(3)
where ` = `1 + · · ·+ `n+1.
Observation: These formulas also apply to A∞-bimodules Hence, if
N is an A∞-bimodule over H then we obtain an A∞-bimodule Na

over Ha.
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Why A∞-coalgebras? Easy verifications!

Theorem 4 (B. Keller, ICRA ’02).
Let A be a (locally fin. dim.) nonnegatively graded connected
algebra,

and let C be a minimal A∞-coalgebra. The following are
equivalent:

(i) There is a quasi-isomorphism of A∞-algebras Ext•A(k, k)→ C#;
(ii) There is twisting cochain τ ∈ Hom(C,A) such that the tensor

product εAA⊗τ C is a projective resolution of k.
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Theorem 4 (B. Keller, ICRA ’02).
Let A be a nonnegatively graded connected algebra, and let C be a
minimal A∞-coalgebra. The following are equivalent:
(i) There is a quasi-isomorphism of A∞-algebras Ext•A(k, k)→ C#;
(ii) There is twisting cochain τ ∈ Hom(C,A) such that the tensor

product εAA⊗τ C is a projective resolution of k.

Example:
Let A be the algebra Λ(n) = k[x]/(xn). Then
Ext•A(k, k) ' k[X, Y ]/(X2) (as graded vector spaces!).

Define a
basis {Zj : j ∈ N0} of it by

Zj = Y j/2 if j is even, and Zj = XY (j−1)/2 else.
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Why A∞-coalgebras? Easy verifications!
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Example (cont.):

Set m2 to be its usual product, mi = 0 for i 6= 2, n, and

mn(Zj1 , . . . , Zjn) = Zj1+···+jn−n+2 if all jp are odd, and zero else.

This gives an A∞-algebra structure on k[X, Y ]/(X2)
In this case, taking graded dual we obtain an A∞-coalgebra C and
the map τ : C → A sending X# to x and the other monomials to
zero is a twisting cochain satisfying condition (ii).
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Hochschild cohomology

Theorem 5.
Let A be a (locally fin. dim.) nonnegatively graded connected
algebra,

let C = TorA• (k, k) be the Tor A∞-coalgebra and let
τ ∈ Hom(C,A) be the twisting cochain given by Keller’s Theorem.
Then there is a quasi-isomorphism of A∞-algebras between the
twisted A∞-algebra Homτ (C,A) and the complex C•(A,A)
computing Hochschild cohomology.

Corollary 6.
We directly obtain the formulas for the cup product of Hochschild
cohomology for Koszul algebras given by R. Buchweitz, E. Green, N.
Snashall and Ø. Solberg, ’08, and for N -Koszul algebras by Y. Xu
and H. Xiang, ’11.
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