

$A_\infty\text{-}\mathsf{algebras}$ in representation theory and homological algebra

Estanislao HERSCOVICH

Université Grenoble Alpes, FRANCE - Universidad de Buenos Aires & CONICET, ARGENTINA XXI CLA, Buenos Aires, ARGENTINA

July 28th, 2016

Let (A, d_A) be a dg algebra (over a field k).

Let (A, d_A) be a dg algebra (over a field k). Examples:
(i) If (C, d_C) is a complex of modules over Λ, then End_Λ(C) with the differential d(f) = d_C o f - (-1)^{|f|}f o d_C is a dg algebra.

- Let (A, d_A) be a dg algebra (over a field k). Examples:
 - (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X, k), d)$ provided with the *cup product* is a dg algebra.

- Let (A, d_A) be a dg algebra (over a field k). Examples:
 - (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the *de Rham complex* $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.

- Let (A, d_A) be a dg algebra (over a field k). Examples:
 - (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the de Rham complex $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.
- (iv) Analogously, given a manifold M, the *de Rham complex* $\Omega^{\bullet}M$ provided with the *exterior derivative* is a dg algebra.

- Let (A, d_A) be a dg algebra (over a field k). Examples:
 - (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the de Rham complex $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.
- (iv) Analogously, given a manifold M, the de Rham complex $\Omega^{\bullet}M$ provided with the exterior derivative is a dg algebra.
- (v) If Λ is an associative algebra, the Hochschild cohomology complex $C^{\bullet}(\Lambda, \Lambda) = \mathcal{H}om(\Lambda^{\otimes \bullet}, \Lambda)$ with the cup product is a dg algebra.

Let (A, d_A) be a dg algebra (over a field k). Examples:

- (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the de Rham complex $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.
- (iv) Analogously, given a manifold M, the de Rham complex $\Omega^{\bullet}M$ provided with the exterior derivative is a dg algebra.
- (v) If Λ is an associative algebra, the Hochschild cohomology complex $C^{\bullet}(\Lambda, \Lambda) = \mathcal{H}om(\Lambda^{\otimes \bullet}, \Lambda)$ with the cup product is a dg algebra.
- One typically considers $H(A, d_A)$.

Let (A, d_A) be a dg algebra (over a field k). Examples:

- (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the de Rham complex $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.
- (iv) Analogously, given a manifold M, the de Rham complex $\Omega^{\bullet}M$ provided with the exterior derivative is a dg algebra.
- (v) If Λ is an associative algebra, the Hochschild cohomology complex $C^{\bullet}(\Lambda, \Lambda) = \mathcal{H}om(\Lambda^{\otimes \bullet}, \Lambda)$ with the cup product is a dg algebra.

One typically considers $H(A, d_A)$. \checkmark It is a graded algebra!

Let (A, d_A) be a dg algebra (over a field k). Examples:

- (i) If (C, d_C) is a complex of modules over Λ , then $\mathcal{E}nd_{\Lambda}(C)$ with the differential $d(f) = d_C \circ f (-1)^{|f|} f \circ d_C$ is a dg algebra.
- (ii) Given a topological space X, the complex of singular cochains $(C^{\bullet}(X,k),d)$ provided with the cup product is a dg algebra.
- (iii) For a commutative algebra R, the de Rham complex $\Omega^{\bullet}_{R/k} = \Lambda^{\bullet}_R \Omega_{R/k}$ is a dg algebra for the usual differential.
- (iv) Analogously, given a manifold M, the de Rham complex $\Omega^{\bullet}M$ provided with the exterior derivative is a dg algebra.
- (v) If Λ is an associative algebra, the Hochschild cohomology complex $C^{\bullet}(\Lambda, \Lambda) = \mathcal{H}om(\Lambda^{\otimes \bullet}, \Lambda)$ with the cup product is a dg algebra.

One typically considers $H(A, d_A)$. \mathcal{N} It is a graded algebra! What is missing? More precisely, we say that two dg algebras (A, d_A) and (B, d_B) are *quasi-isomorphic* if there is a diagram

More precisely, we say that two dg algebras (A, d_A) and (B, d_B) are quasi-isomorphic if there is a diagram

The question now reads: What structure should we impose to H(A) and H(B) so that: H(A) and H(B) are 'equivalent' $\Leftrightarrow A$ and B are quasi-isomorphic?

Let $\Lambda(n) = k[x]/(x^n)$ (n > 2), $P_{\bullet}(n) \to k$ a min. proj. res. and define $A(n) = \mathcal{E}nd_{\Lambda(n)}(P(n))$. (i) Then A(n) is a dg algebra.

- (i) Then A(n) is a dg algebra.
- (ii) Moreover, $H(A(n)) \simeq k[X, Y]/(X^2)$ as graded algebras, where |X| = 1 and |Y| = 2.

- (i) Then A(n) is a dg algebra.
- (ii) Moreover, $H(A(n)) \simeq k[X,Y]/(X^2)$ as graded algebras, where |X| = 1 and |Y| = 2.

(iii) However, A(n) and A(m) are not quasi-isomorphic if $n \neq m$.

- (i) Then A(n) is a dg algebra.
- (ii) Moreover, $H(A(n)) \simeq k[X,Y]/(X^2)$ as graded algebras, where |X| = 1 and |Y| = 2.

(iii) However, A(n) and A(m) are not quasi-isomorphic if $n \neq m$.

Consequence: the algebra structure of cohomology is not enough!

An A_{∞} -algebra (J. Stasheff, '63) is a graded vector space $A = \bigoplus_{i \in \mathbb{Z}} A^i$ with maps

 $m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$

An $A_\infty\text{-algebra}$ is a graded vector space $A=\oplus_{i\in\mathbb{Z}}A^i$ with maps

$$m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$$

that satisfy the equations

$$\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0, \forall n \in \mathbb{N} \quad (\mathsf{Sl}(\mathsf{n}))$$

An $A_\infty\text{-algebra}$ is a graded vector space $A=\oplus_{i\in\mathbb{Z}}A^i$ with maps

$$m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$$

that satisfy the equations

$$\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0, \forall n \in \mathbb{N} \quad (\mathsf{Sl}(\mathsf{n}))$$

For example,

An $A_\infty\text{-algebra}$ is a graded vector space $A=\oplus_{i\in\mathbb{Z}}A^i$ with maps

$$m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$$

that satisfy the equations

$$\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0, \forall n \in \mathbb{N} \quad (\mathsf{Sl}(\mathsf{n}))$$

For example,

```
(1) SI(1) means that m_1 \circ m_1 = 0;
```

An $A_\infty\text{-algebra}$ is a graded vector space $A=\oplus_{i\in\mathbb{Z}}A^i$ with maps

$$m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$$

that satisfy the equations

$$\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0, \forall n \in \mathbb{N} \quad (\mathsf{Sl}(\mathsf{n}))$$

For example,

SI(1) means that m₁ o m₁ = 0;
 SI(2) says that m₁ is a derivation for m₂;

An A_∞ -algebra is a graded vector space $A = \oplus_{i \in \mathbb{Z}} A^i$ with maps

$$m_n: A^{\otimes n} \to A, \forall n \in \mathbb{N}, \text{ of degree } |m_n| = 2 - n,$$

that satisfy the equations

 $\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0, \forall n \in \mathbb{N} \quad (\mathsf{Sl}(\mathsf{n}))$

For example,

- (1) SI(1) means that $m_1 \circ m_1 = 0$;
- (2) SI(2) says that m_1 is a derivation for m_2 ;
- (3) SI(3) means that m_2 is associative up to the homotopy m_3 :

 $m_2 \circ (\mathrm{id} \otimes m_2) - m_2 \circ (m_2 \otimes \mathrm{id}) = \delta(m_3)$

where δ is the differential of $\mathcal{H}om(A^{\otimes 3}, A)$ induced by m_1 .

A morphism (A. Clark, '65) of A_{∞} -algebras $f_{\bullet}: (A, m_{\bullet}^{A}) \to (B, m_{\bullet}^{B})$ is a collection of maps

 $f_n: A^{\otimes n} \to B, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = 1 - n,$

$$f_n: A^{\otimes n} \to B, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = 1 - n,$$

satisfying the equations

$$\sum_{r+s+t=n} (-1)^{r+st} f_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s^A \otimes \mathrm{id}^{\otimes t})$$
$$= \sum_{n_1+\dots+n_q=n} \pm m_q^B \circ (f_{n_1} \otimes \dots \otimes f_{n_q}), \forall n \in \mathbb{N} \quad (\mathsf{MI}(\mathsf{n}))$$

$$f_n: A^{\otimes n} \to B, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = 1 - n,$$

satisfying the equations

$$\sum_{r+s+t=n} (-1)^{r+st} f_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s^A \otimes \mathrm{id}^{\otimes t})$$
$$= \sum_{n_1+\dots+n_q=n} \pm m_q^B \circ (f_{n_1} \otimes \dots \otimes f_{n_q}), \forall n \in \mathbb{N} \quad (\mathsf{MI}(\mathsf{n}))$$

For example,

$$f_n: A^{\otimes n} \to B, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = 1 - n,$$

satisfying the equations

$$\sum_{r+s+t=n} (-1)^{r+st} f_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s^A \otimes \mathrm{id}^{\otimes t})$$
$$= \sum_{n_1+\dots+n_q=n} \pm m_q^B \circ (f_{n_1} \otimes \dots \otimes f_{n_q}), \forall n \in \mathbb{N} \quad (\mathsf{MI}(\mathsf{n}))$$

For example,

(1) MI(1) means that f_1 is a morphism of complexes;

$$f_n: A^{\otimes n} \to B, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = 1 - n,$$

satisfying the equations

$$\sum_{r+s+t=n} (-1)^{r+st} f_{r+1+t} \circ (\mathrm{id}^{\otimes r} \otimes m_s^A \otimes \mathrm{id}^{\otimes t})$$
$$= \sum_{n_1+\dots+n_q=n} \pm m_q^B \circ (f_{n_1} \otimes \dots \otimes f_{n_q}), \forall n \in \mathbb{N} \quad (\mathsf{MI}(\mathsf{n}))$$

For example,

- (1) MI(1) means that f_1 is a morphism of complexes;
- (2) MI(2) says that f_2 commutes with multiplications up to the homotopy f_2 :

$$f_1 \circ m_2^A - m_2^B \circ (f_1 \otimes f_1) = \delta'(f_2)$$

where δ' is the differential of $\mathcal{H}om(A^{\otimes 2},B)$ induced by m_1^B and $m_1^A.$

A morphism of A_{∞} -algebras is called a *quasi-isomorphism* if f_1 is a quasi-isomorphism of the underlying complexes.

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra (or an A_{∞} -algebra!).

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra. Then, there is a unique (up to noncanonical quasi-isomorphism) minimal (i.e. $m_1 = 0$) A_{∞} -algebra structure on $H(A, d_A)$

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra. Then, there is a unique (up to noncanonical quasi-isomorphism) minimal A_∞ -algebra structure on $H(A, d_A)$ and a quasi-isomorphism of A_∞ -algebras $f_{\bullet} : H(A) \to A$, where f_1 is the composition of a section of $Z(A) \twoheadrightarrow H(A)$ and the inclusion $Z(A) \to A$.

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra. Then, there is a unique (up to noncanonical quasi-isomorphism) minimal A_{∞} -algebra structure on $H(A, d_A)$ and a quasi-isomorphism of A_{∞} -algebras $f_{\bullet}: H(A) \to A$, where f_1 is the composition of a section of $Z(A) \twoheadrightarrow H(A)$ and the inclusion $Z(A) \to A$.

Theorem 2 (B. Keller, '02).

Let A and B be two dg algebras.

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra. Then, there is a unique (up to noncanonical quasi-isomorphism) minimal A_∞ -algebra structure on $H(A, d_A)$ and a quasi-isomorphism of A_∞ -algebras $f_{\bullet}: H(A) \to A$, where f_1 is the composition of a section of $Z(A) \twoheadrightarrow H(A)$ and the inclusion $Z(A) \to A$.

Theorem 2 (B. Keller, '02).

Let A and B be two dg algebras. Then, A and B are quasi-isomorphic (as dg algebras)

A morphism of A_{∞} -algebras is called a quasi-isomorphism if f_1 is a quasi-isomorphism of the underlying complexes.

Theorem 1 (T. Kadeishvili, '80/'82).

Let (A, d_A) be a dg algebra. Then, there is a unique (up to noncanonical quasi-isomorphism) minimal A_∞ -algebra structure on $H(A, d_A)$ and a quasi-isomorphism of A_∞ -algebras $f_{\bullet}: H(A) \to A$, where f_1 is the composition of a section of $Z(A) \twoheadrightarrow H(A)$ and the inclusion $Z(A) \to A$.

Theorem 2 (B. Keller, '02).

Let A and B be two dg algebras. Then, A and B are quasi-isomorphic iff there is a quasi-isomorphism of A_{∞} -algebras from A to B.

A (left) A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$.

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of *(quasi-iso)morphism* of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$.

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of morphism of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$. The *derived category* $\mathcal{D}_{\infty}(A)$ of A is obtained from $\mathcal{C}_{\infty}(A)$ by formally inverting all quasi-isomorphisms.

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of morphism of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$. The derived category $\mathcal{D}_{\infty}(A)$ of A is obtained from $\mathcal{C}_{\infty}(A)$ by formally inverting all quasi-isomorphisms.

Theorem 3 (B. Keller, '02).

(a) Let (A, d_A) be a dg algebra, $C_{dg}(A)$ be the category of dg modules with morphisms of dg modules and $\mathcal{D}_{dg}(A)$ be its derived category.

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of morphism of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$. The derived category $\mathcal{D}_{\infty}(A)$ of A is obtained from $\mathcal{C}_{\infty}(A)$ by formally inverting all quasi-isomorphisms.

Theorem 3 (B. Keller, '02).

(a) Let (A, d_A) be a dg algebra, C_{dg}(A) be the category of dg modules with morphisms of dg modules and D_{dg}(A) be its derived category. Then the inclusion functor C_{dg}(A) → C_∞(A) induces an equivalence of triangulated categories D_{dg}(A) → D_∞(A).

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of morphism of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$. The derived category $\mathcal{D}_{\infty}(A)$ of A is obtained from $\mathcal{C}_{\infty}(A)$ by formally inverting all quasi-isomorphisms.

Theorem 3 (B. Keller, '02).

(a) Let (A, d_A) be a dg algebra, C_{dg}(A) be the category of dg modules with morphisms of dg modules and D_{dg}(A) be its derived category. Then the inclusion functor C_{dg}(A) → C_∞(A) induces an equivalence of triangulated categories D_{dg}(A) → D_∞(A).

(b) Let $f_{\bullet} : A \to B$ be a quasi-isomorphism of A_{∞} -algebras.

An A_{∞} -module over an A_{∞} -algebra A is a complex of vector spaces $(M = \bigoplus_{i \in \mathbb{Z}} M^i, d)$ with a morphism of A_{∞} -algebras $A \to \mathcal{E}nd(M)$. There is also a definition of morphism of A_{∞} -modules, so we obtain a category $\mathcal{C}_{\infty}(A)$. The derived category $\mathcal{D}_{\infty}(A)$ of A is obtained from $\mathcal{C}_{\infty}(A)$ by formally inverting all quasi-isomorphisms.

Theorem 3 (B. Keller, '02).

(a) Let (A, d_A) be a dg algebra, C_{dg}(A) be the category of dg modules with morphisms of dg modules and D_{dg}(A) be its derived category. Then the inclusion functor C_{dg}(A) → C_∞(A) induces an equivalence of triangulated categories D_{dg}(A) → D_∞(A).

(b) Let $f_{\bullet}: A \to B$ be a quasi-isomorphism of A_{∞} -algebras. Then, the induced functor $f^*: \mathcal{D}_{\infty}(B) \to \mathcal{D}_{\infty}(A)$ is an equivalence of triangulated categories sending B to A. There is also the dual notion of A_{∞} -coalgebra $C = \bigoplus_{i \in \mathbb{Z}} C_i$, with a loc. finite collection of maps

$$\Delta_n: C \to C^{\otimes n}, \forall n \in \mathbb{N}, \text{ where } |\Delta_n| = n - 2,$$

satisfying the "dual" identities to SI(n).

There is also the dual notion of A_{∞} -coalgebra $C = \bigoplus_{i \in \mathbb{Z}} C_i$, with a loc. finite collection of maps

$$\Delta_n: C \to C^{\otimes n}, \forall n \in \mathbb{N}, \text{ where } |\Delta_n| = n - 2,$$

satisfying the "dual" identities to $\operatorname{SI}(n)$. There is the dual notion of *morphism* of A_{∞} -coalgebras $f_{\bullet}: (C, \Delta_{\bullet}^{C}) \to (D, \Delta_{\bullet}^{D})$, given by a collection of maps

 $f_n: C \to D^{\otimes n}, \forall n \in \mathbb{N}, \text{ of degree } |f_n| = n - 1,$

that fulfil equalities analogous to MI(n).

If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra! If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra, where (i) $m_1(\phi) = d_A \circ \phi - (-1)^{\deg \phi} \phi \circ \Delta_1^C$, and If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra, where (i) $m_1(\phi) = d_A \circ \phi - (-1)^{\deg \phi} \phi \circ \Delta_1^C$, and (ii) $m_n(\phi_1 \otimes \cdots \otimes \phi_n) = \pm \mu_A^{(n)} \circ (\phi_1 \otimes \cdots \otimes \phi_n) \circ \Delta_n^C$, for $n \ge 2$.

Motivation

If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra, where (i) $m_1(\phi) = d_A \circ \phi - (-1)^{\deg \phi} \phi \circ \Delta_1^C$, and (ii) $m_n(\phi_1 \otimes \cdots \otimes \phi_n) = \pm \mu_A^{(n)} \circ (\phi_1 \otimes \cdots \otimes \phi_n) \circ \Delta_n^C$, for $n \ge 2$. If M is an A-bimodule, then $M \otimes C$ is an A_{∞} -bimodule over \mathcal{H}

Motivation

If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra, where (i) $m_1(\phi) = d_A \circ \phi - (-1)^{\deg \phi} \phi \circ \Delta_1^C$, and (ii) $m_n(\phi_1 \otimes \cdots \otimes \phi_n) = \pm \mu_A^{(n)} \circ (\phi_1 \otimes \cdots \otimes \phi_n) \circ \Delta_n^C$, for $n \ge 2$. If M is an A bimodule, then $M \otimes C$ is an A - bimodule over \mathcal{H}

If M is an A-bimodule, then $M \otimes C$ is an A_{∞} -bimodule over \mathcal{H} , where $m_{0,0} = d_M \otimes \mathrm{id}_C + \mathrm{id}_M \otimes \Delta_1^C$,

Motivation

If A is a dg algebra and C is an A_{∞} -coalgebra, then $\mathcal{H} = \mathcal{H}om(C, A)$ has an explicit structure of A_{∞} -algebra, where (i) $m_1(\phi) = d_A \circ \phi - (-1)^{\deg \phi} \phi \circ \Delta_1^C$, and (ii) $m_n(\phi_1 \otimes \cdots \otimes \phi_n) = \pm \mu_A^{(n)} \circ (\phi_1 \otimes \cdots \otimes \phi_n) \circ \Delta_n^C$, for $n \ge 2$. If M is an A-bimodule, then $M \otimes C$ is an A_{∞} -bimodule over \mathcal{H} , where $m_{0,0} = d_M \otimes id_C + id_M \otimes \Delta_1^C$, and, for $p + q \ge 1$, $m_{p,q}(\phi_1 \otimes \cdots \otimes \phi_p \otimes (m \otimes c) \otimes \psi_1 \otimes \cdots \otimes \psi_q)$ $= \pm \left(\phi_1(c_{(q+2)}) \dots \phi_p(c_{(q+p+1)}) \right) \dots \left(\psi_1(c_{(1)}) \dots \psi_q(c_{(q)}) \right) \otimes c_{(q+1)},$ (1)

where
$$\Delta_{p+q+1}^C(c) = c_{(1)} \otimes \cdots \otimes c_{(p+q+1)}$$
.

Let H be a (topological) A_{∞} -algebra

Let H be an A_{∞} -algebra and $a \in F^1H^1$.

Let H be an A_{∞} -algebra and $a \in H^1$. We say that a satisfies the Maurer-Cartan equation if

$$\sum_{n \in \mathbb{N}} \pm m_n(a^{\otimes n}) = 0.$$
⁽²⁾

Let H be an $A_\infty\text{-algebra}$ and $a\in H^1.$ We say that a satisfies the Maurer-Cartan equation if

$$\sum_{n\in\mathbb{N}} \pm m_n(a^{\otimes n}) = 0.$$
⁽²⁾

Then we define the *twisted* A_{∞} -algebra H^a by

Let H be an A_{∞} -algebra and $a \in H^1$. We say that a satisfies the Maurer-Cartan equation if

$$\sum_{n \in \mathbb{N}} \pm m_n(a^{\otimes n}) = 0.$$
(2)

Then we define the twisted $A_\infty\text{-algebra}\ H^a$ by

$$m_n^a(x_1, \dots, x_n) = \sum_{\ell_1, \dots, \ell_{n+1} \in \mathbb{N}_0} \pm m_{n+\ell}(a^{\otimes \ell_1}, x_1, a^{\otimes \ell_2}, x_2, \dots, x_n, a^{\otimes \ell_{n+1}}),$$
(3)

where $\ell = \ell_1 + \cdots + \ell_{n+1}$.

Let H be an A_{∞} -algebra and $a \in H^1$. We say that a satisfies the Maurer-Cartan equation if

$$\sum_{n \in \mathbb{N}} \pm m_n(a^{\otimes n}) = 0.$$
(2)

Then we define the twisted $A_\infty\text{-algebra}\ H^a$ by

$$m_n^a(x_1,\ldots,x_n) = \sum_{\ell_1,\ldots,\ell_{n+1}\in\mathbb{N}_0} \pm m_{n+\ell}(a^{\otimes\ell_1},x_1,a^{\otimes\ell_2},x_2,\ldots,x_n,a^{\otimes\ell_{n+1}}),$$

where $\ell = \ell_1 + \cdots + \ell_{n+1}$. Observation: These formulas also apply to A_{∞} -bimodules! (3)

Let H be an A_{∞} -algebra and $a \in H^1$. We say that a satisfies the Maurer-Cartan equation if

$$\sum_{n \in \mathbb{N}} \pm m_n(a^{\otimes n}) = 0.$$
(2)

Then we define the twisted A_∞ -algebra H^a by

$$m_n^a(x_1,\ldots,x_n) = \sum_{\ell_1,\ldots,\ell_{n+1}\in\mathbb{N}_0} \pm m_{n+\ell}(a^{\otimes\ell_1},x_1,a^{\otimes\ell_2},x_2,\ldots,x_n,a^{\otimes\ell_{n+1}}),$$

where $\ell = \ell_1 + \cdots + \ell_{n+1}$. Observation: These formulas also apply to A_{∞} -bimodules. Hence, if N is an A_{∞} -bimodule over H then we obtain an A_{∞} -bimodule N^a over H^a .

(3)

Why A_{∞} -coalgebras? Easy verifications!

Theorem 4 (B. Keller, ICRA '02).

Let A be a (locally fin. dim.) nonnegatively graded connected algebra,

Why A_{∞} -coalgebras? Easy verifications!

Theorem 4 (B. Keller, ICRA '02).

Let A be a nonnegatively graded connected algebra, and let C be a minimal (i.e. $\Delta_1 = 0$) A_{∞} -coalgebra.

Theorem 4 (B. Keller, ICRA '02).

Let A be a nonnegatively graded connected algebra, and let C be a minimal A_{∞} -coalgebra. The following are equivalent:

(i) There is a quasi-isomorphism of A_{∞} -algebras $\mathcal{E}xt^{\bullet}_{A}(k,k) \to C^{\#}$;

Theorem 4 (B. Keller, ICRA '02).

Let A be a nonnegatively graded connected algebra, and let C be a minimal A_{∞} -coalgebra. The following are equivalent: (i) There is a quasi-isomorphism of A_{∞} -algebras $\mathcal{E}xt^{\bullet}_{A}(k,k) \to C^{\#}$;

(ii) There is twisting cochain $\tau \in Hom(C, A)$ such that the tensor product $_{\epsilon_A}A \otimes_{\tau} C$ is a projective resolution of k.

Why A_{∞} -coalgebras? Easy verifications!

Theorem 4 (B. Keller, ICRA '02).

Let A be a nonnegatively graded connected algebra, and let C be a minimal A_{∞} -coalgebra. The following are equivalent:

- (i) There is a quasi-isomorphism of A_{∞} -algebras $\mathcal{E}xt^{\bullet}_{A}(k,k) \to C^{\#}$;
- (ii) There is twisting cochain $\tau \in Hom(C, A)$ such that the tensor product $_{\epsilon_A}A \otimes_{\tau} C$ is a projective resolution of k.

Example:

Let A be the algebra $\Lambda(n) = k[x]/(x^n)$. Then $\mathcal{E}xt^{\bullet}_A(k,k) \simeq k[X,Y]/(X^2)$ (as graded vector spaces!).

Theorem 4 (B. Keller, ICRA '02).

Let A be a nonnegatively graded connected algebra, and let C be a minimal A_{∞} -coalgebra. The following are equivalent:

(i) There is a quasi-isomorphism of A_{∞} -algebras $\mathcal{E}xt^{\bullet}_{A}(k,k) \to C^{\#}$;

(ii) There is twisting cochain $\tau \in Hom(C, A)$ such that the tensor product $\epsilon_A A \otimes_{\tau} C$ is a projective resolution of k.

Example:

Let A be the algebra $\Lambda(n) = k[x]/(x^n)$. Then $\mathcal{E}xt^{\bullet}_A(k,k) \simeq k[X,Y]/(X^2)$. Define a basis $\{Z_j : j \in \mathbb{N}_0\}$ of it by

$$Z_j = Y^{j/2}$$
 if j is even, and $Z_j = XY^{(j-1)/2}$ else.

Example (cont.):

Example (cont.): Set m_2 to be its usual product, $m_i = 0$ for $i \neq 2, n$, and

 $m_n(Z_{j_1},\ldots,Z_{j_n})=Z_{j_1+\cdots+j_n-n+2}$ if all j_p are odd, and zero else.

Example (cont.): Set m_2 to be its usual product, $m_i = 0$ for $i \neq 2, n$, and

 $m_n(Z_{j_1},\ldots,Z_{j_n})=Z_{j_1+\cdots+j_n-n+2}$ if all j_p are odd, and zero else.

This gives an A_{∞} -algebra structure on $k[X,Y]/(X^2)!$

Example (cont.): Set m_2 to be its usual product, $m_i = 0$ for $i \neq 2, n$, and

$$m_n(Z_{j_1},\ldots,Z_{j_n})=Z_{j_1+\cdots+j_n-n+2}$$
 if all j_p are odd, and zero else.

This gives an A_{∞} -algebra structure on $k[X,Y]/(X^2)$. In this case, taking graded dual we obtain an A_{∞} -coalgebra C and the map $\tau : C \to A$ sending $X^{\#}$ to x and the other monomials to zero is a twisting cochain satisfying condition (ii).

Theorem 5.

Let A be a (locally fin. dim.) nonnegatively graded connected algebra,

Theorem 5.

Let A be a nonnegatively graded connected algebra, let $C = \operatorname{Tor}_{\bullet}^{A}(k,k)$ be the Tor A_{∞} -coalgebra and let $\tau \in \mathcal{H}om(C,A)$ be the twisting cochain given by Keller's Theorem.

Theorem 5.

Let A be a nonnegatively graded connected algebra, let $C = \operatorname{Tor}^{A}_{\bullet}(k,k)$ be the Tor A_{∞} -coalgebra and let $\tau \in \mathcal{H}om(C,A)$ be the twisting cochain given by Keller's Theorem. Then there is a quasi-isomorphism of A_{∞} -algebras between the twisted A_{∞} -algebra $\mathcal{H}om^{\tau}(C,A)$ and the complex $C^{\bullet}(A,A)$ computing Hochschild cohomology.

Theorem 5.

Let A be a nonnegatively graded connected algebra, let $C = \operatorname{Tor}^A_{\bullet}(k,k)$ be the Tor A_{∞} -coalgebra and let $\tau \in \mathcal{H}om(C,A)$ be the twisting cochain given by Keller's Theorem. Then there is a quasi-isomorphism of A_{∞} -algebras between the twisted A_{∞} -algebra $\mathcal{H}om^{\tau}(C,A)$ and the complex $C^{\bullet}(A,A)$ computing Hochschild cohomology.

Corollary 6.

We directly obtain the formulas for the cup product of Hochschild cohomology for Koszul algebras given by R. Buchweitz, E. Green, N. Snashall and Ø. Solberg, '08, and for N-Koszul algebras by Y. Xu and H. Xiang, '11.