Exercise sheet n° 7

Eigenvalues and eigenvectors

1. Compute the eigenvalues and the eigenvectors of the following matrices.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 4 & 1 & 2 \\ -1 & 1 & -1 \\ -2 & -1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 2 & -2 \\ 1 & 0 & 0 \end{pmatrix}.$$

Which of the previous matrices is diagonalizable?

2. Let

$$A = \left(\begin{array}{ccc} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{array}\right).$$

- (i) Show that A is diagonalizable and find a matrix P diagonalizing A. Compute A^n for all $n \ge 1$.
- (ii) Consider the sequences (u_n) , (v_n) and (w_n) defined by the initial values $u_0 = v_0 = 1$, $w_0 = 2$ and the following recursive relations:

$$u_{n+1} = 3u_n - v_n + w_n$$
 $v_{n+1} = 2v_n$ $w_{n+1} = u_n - v_n + 3w_n$.

Compute u_n , v_n and w_n .

3. Let $a, b \in \mathbb{R}$ and

$$A = \left(\begin{array}{ccc} a & b & b \\ b & a & b \\ b & b & a \end{array}\right).$$

Compute A^n for all $n \geq 1$.

- **4.** Let $A \in \mathcal{M}_n(\mathbf{C})$ be a nilpotent matrix, *i.e.* there exists $p \in \mathbf{N}^*$ such that $A^p = 0$. Show that the only eigenvalue of A is 0. Does the converse hold?
- 5. Let $A \in \mathcal{M}_n(\mathbf{C})$. Show that the determinant of A is equal to the product of its eigenvalues (counted with multiplicity) and that the trace of A is equal to the sum of its eigenvalues (also counted with multiplicity).
- **6.** Let $A, B \in \mathcal{M}_n(\mathbf{C})$. Show that AB and BA have the same set of eigenvalues, each of them with the same multiplicity.

1

7. The Italian mathematician Leonardo Fibonacci (c. 1175 - c. 1250) was the first to study the sequence of integers given by 1, 1, 2, 3, 5, 8,... and that has his name. It is recursively defined by

$$f_0 = 1, f_1 = 1, f_{k+1} = f_k + f_{k-1}, k = 1, 2, \dots$$

1. Let $x^{(k)} = (f_{k+1}; f_k)$. Write this relations in matricial form

$$x^{(k+1)} = Ax^{(k)}, \ k = 0, 1, \dots, \ x^{(0)} = (1; 1),$$

- , where A is a matrix to be determined .
- 2. Compute the eigenvalues and the eigenvectors of A. Is the matrix LA diagonalizable?
- 3. Find an explicit formula for the k-th element of the Fibonacci sequence.
- 8. Compute the eigenvalues of the matrix

$$A = \left(\begin{array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right).$$

Consider now the system of differential equations given by

$$\dot{x}(t) = x(t) + 4z(t), \qquad \dot{y}(t) = y(t) + 4w(t),$$

$$\dot{z}(t) = x(t) + z(t), \qquad \dot{w}(t) = y(t) + w(t).$$

Compute the general solution of the system, and then the particular solution satisfying the conditions x(0) = y(0) = z(0) = 0, w(0) = 2.

9. Let $a \in \mathbb{R}$. Consider the matrix

$$A = \left(\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & a \\ 0 & -1 & 2 & 0 \\ 1 & 0 & 1 & 2 \end{array}\right).$$

- (i) Compute the characteristic polynomial of A and the corresponding eigenvalues.
- (ii) Compute the eigenspaces of A associated to each eigenvalue. Determine all the values of the parameter a such that the matrix A is diagonalizable. And triangularizable?
- (iii) Assume that a = 0 and consider the system of differential equations given by

$$\dot{x}(t) = x(t) + y(t) - z(t), \qquad \dot{y}(t) = y(t),$$
$$\dot{z}(t) = -y(t) + 2z(t), \qquad \dot{w}(t) = x(t) + z(t) + 2w(t).$$

Compute the general solution of the system, and then the particular solution satisfying the conditions x(0) = y(0) = w(0) = 0, z(0) = 1.

10. Consider the system formed by two masses and three springs with the same force constant k > 0 as indicated in the following diagram:

Assume that the two are longitudinally separated from the equilibrium position (using an external force) at time t=0 and the systems stars moving freely. Let $x_1(t)$ (resp. $x_2(t)$) the (signed) longitudinal distance of the first (resp. second) mass from its equilibrium position at t. We assume that the two springs obey Hooke's law, so

$$mx_1'' = -2kx_1 + kx_2,$$

 $mx_2'' = kx_1 - 2kx_2.$

1. Rewrite these equations in matrix form:

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)'' = M \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

where M s a matrix to be determined.

- 2. Diagonalize M and compute the general solution of this equation.
- 3. What are normal modes of oscillation of the system?

We consider now the analogous situation with 3 masses and 4 springs.

- 1. Write down the equations of motion of this system.
- 2. Rewrite them in matrix form:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}'' = M \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

where M s a matrix to be determined.

- 3. Diagonalize M and compute the general solution of this equation.
- 4. What is the normal mode of oscillation of the system corresponding to the eigenvalue 2k/m.

Eigenvalues of symmetric matrices and singular value decomposition

11. Show that the following matrices are orthogonal and compute their eigenvalues.

(a)
$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (b)
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

12. Show that the following matrices are symmetric and diagonalize them by means of an orthogonal matrix.

(a)
$$\begin{bmatrix} -2 & 2 \\ 2 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 36 \\ 36 & 23 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

13. Compute the singular value decomposition of the following matrices.

$$(a) \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \quad (b) \begin{bmatrix} -2 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \quad (c) \begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \quad (d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 2 \end{bmatrix}$$

14. Let $A = U\Sigma V^t$ be the singular value decomposition of a matrix $A \in \mathbb{R}^{m \times n}$ of rank $p < \min(m, n)$. We denote by $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_p$ the nonzero singular values of A, and by $\bar{U} = [u_1, ..., u_p]$ and $\bar{V} = [v_1, ..., v_p]$ the left and right associated orthogonal matrices, respectively. We have thus

$$A = \bar{U} \operatorname{diag}(\sigma_1, ..., \sigma_p) \bar{V}^t$$

(minimal decomposition).

Let A^+ be the matrix of size $n \times m$ given by

$$A^{+} = \bar{V} \operatorname{diag}(\sigma_{1}^{-1}, ..., \sigma_{n}^{-1}) \bar{U}^{t}.$$

4

It is called the $pseudo-inverse\ matrix\ of\ A.$

- 1. What is the size of A^+ ? Express A^+A and AA^+ in terms of the singular value decomposition of A. Verify that $AA^+A = A$ and $A^+AA^t = A^tAA^+ = A^t$. Explain their meaning.
- 2. Let A be a matrix of size $m \times n$ and rank n, and let b be a vector column of size m. Assume that the system Ax = b has a solution x. Show that the solution $x \in \mathbb{R}^n$ satisfies $x = A^+b$.