
MAT332 - SERIES AND INTEGRATION
Fall term — 2022-2023

Exercise sheet 1: Sequences, comparison of sequences
and Taylor polynomials

1. Existence and computations of limits. Decide whether the following sequences
(un)n∈N0

given by

(a) un = 1/(2n+ 1),
(b) un = (n+ 2)/(2n+ 3),
(c) un = n2/(n+ 1),
(d) un = (10n2 + 1)/(n3 − 1),

(e) un = 1/(
p

n+ 1−
p

n),

(f) un = (n+ 1)2/((n+ 1)3 − n3),

(g) un = n10/1.01n,

converge or diverge. In the first case, compute the limit.

Solution.

(a) It is easy to see that

lim
n→+∞

1
2n+ 1

= 0,

since, given ε > 0, we pick n0 = ⌊1/ε⌋+ 1, so
�

�

�

�

1
2n+ 1

�

�

�

�

=
1

2n+ 1
≤

1
n
≤ ε,

for all integers n≥ n0.
(b) We see that

lim
n→+∞

n+ 2
2n+ 3

= lim
n→+∞

1+ 2/n
2+ 3/n

=
1
2

,

since c/n converges to zero as n goes to +∞, for c ∈ R.
(c) We have that

lim
n→+∞

n2

n+ 1
= lim

n→+∞

n
1+ 1/n

= +∞,

since c/n converges to zero as n goes to +∞, for c ∈ R.
(d) We see that

lim
n→+∞

10n2 + 1
n3 − 1

= lim
n→+∞

10+ 1/n2

n(1− 1/n3)
= 0,

since c/nk converges to zero as n goes to +∞, for c ∈ R and k ∈ N.
(e) We have that

lim
n→+∞

1
p

n+ 1−
p

n
= lim

n→+∞

p
n+ 1+

p
n

(n+ 1)− n
= lim

n→+∞

p
n+ 1+

p
n= +∞,

since
p

n+ c converges to zero as n goes to +∞, for c ∈ R>0.
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(f) We see that

lim
n→+∞

(n+ 1)2

(n+ 1)3 − n3
= lim

n→+∞

n2 + 2n+ 1
3n2 + 3n+ 1

= lim
n→+∞

1+ 2/n+ 1/n2

3+ 3/n+ 1/n2
=

1
3

,

since c/nk converges to zero as n goes to +∞, for c ∈ R and k ∈ N.

(g) We have that

lim
n→+∞

n10

1.01n
= lim

n→+∞

e10 ln(n)

en ln(1.01)
= lim

n→+∞
en
�

10 ln(n)
n −ln(1.01)
�

= 0,

since ln(n)/n converges to zero as n goes to +∞, ln(1.01) > 0 and e y goes to zero as
y goes to −∞.

2. Equivalence, domination and negligibility. For each of the following pair of se-
quences (un)n∈N0

and (vn)n∈N0
, verify whether un ∼ vn, un = O(vn), un = o(vn),

vn =O(un), and/or vn = o(un) when n tends to +∞ hold/s :

(a) un = 2−n, vn = 3−n ;
(b) un = 1/n, vn = 1/

p
n ;

(c) un = n2, vn = 2n ;
(d) un = cos(1/n), vn = e1/n ;

(e) un = cos(n), vn = 1 ;

(f) un = ln(n), vn =
p

n ;

(g) un = sin(1/n), vn = 1/n.

Solution.

(a) Since

lim
n→+∞

vn

un
= lim

n→+∞

2n

3n
= lim

n→+∞

�

2
3

�n

= 0,

as cn goes to zero when n tends to +∞ provided for c ∈ ] 0,1 [, we see that vn = o(un)
when n tends to +∞, and in particular vn = O(un) when n tends to +∞. The other
relations are not verified.

(b) Since

lim
n→+∞

un

vn
= lim

n→+∞

p
n

n
= lim

n→+∞

1
p

n
= 0,

we see that un = o(vn) when n tends to +∞, and in particular un = O(vn) when n
tends to +∞. The other relations are not verified.

(c) Since

lim
n→+∞

un

vn
= lim

n→+∞

n2

2n
= lim

n→+∞

e2 ln(n)

en ln(2)
= lim

n→+∞
en
�

2 ln(n)
n −ln(2)
�

= 0,

where we used that ln(n)/n converges to zero as n goes to +∞, ln(2) > 0 and e y

goes to zero as y goes to −∞, we see that un = o(vn) when n tends to +∞, and in
particular un =O(vn) when n tends to +∞. The other relations are not verified.

(d) Note first that un = cos(1/n) ̸= 0 for all n ∈ N. Since

lim
n→+∞

un

vn
= lim

n→+∞

cos(1/n)
e1/n

= 1
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we see that un ∼ vn when n tends to +∞. In consequence, un = O(vn) when n tends
to +∞ and vn =O(un) when n tends to +∞. The other relations are not verified.

(e) Note first that un = cos(n) ̸= 0 for all n ∈ N. Since
�

�

�

�

un

vn

�

�

�

�

= |cos(n)| ≤ 1,

for all n ∈ N, we see that un =O(vn)when n tends to +∞. Note however that the limit

lim
n→+∞

un

vn
= lim

n→+∞
cos(n)

does not exist, so it is not true that un = o(vn) when n tends to +∞. The relation
un ∼ vn when n tends to +∞ is not verified either by the same reason. Moreover, since
Z+ 2πZ is dense in R and cos is continuous, {cos(n) : n ∈ N} is dense in [−1,1], so
�

�

�

�

vn

un

�

�

�

�

=

�

�

�

�

1
cos(n)

�

�

�

�

is not bounded for n ∈ N. As a consequence, the other relations are not verified either.

(f) Using that

lim
x→0

lnp(x)
xq

= 0

for all p, q > 0, we see that

lim
n→+∞

un

vn
= lim

n→+∞

ln(n)
p

n
= 0,

Hence, un = o(un) when n tends to +∞, and in particular un =O(vn) when n tends to
+∞. The other relations are not verified.

(g) Using that

lim
x→0

sin(x)
x

= sin′(0) = cos(0) = 1,

we see that

lim
n→+∞

un

vn
= lim

n→+∞

sin(1/n)
1/n

= 1,

as 1/n goes to zero when n tends to +∞. In consequence, un ∼ vn when n tends to
+∞. In particular, un = O(vn) when n tends to +∞ and vn = O(un) when n tends to
+∞. The other relations are not verified.

3. A few examples. Give examples of the following situations :

(a) an increasing positive sequence not converging to 0 ;
(b) a bounded sequence which is not convergent ;
(c) a positive sequence which is not bounded and not tending to∞ ;
(d) a non monotone sequence not converging to 0 ;
(e) two divergent sequences (un)n∈N0

and (vn)n∈N0
such that the product sequence

(unvn)n∈N0
is convergent.

3/13



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 1

Solution.

(a) The sequence (un)n∈N given by un = n for n ∈ N is positive, since un = n> 0 for n ∈ N,
and tends to +∞.

(b) The sequence (un)n∈N given by un = (−1)n for n ∈ N is bounded, since
|un| = |(−1)n| = 1 ≤ 1 for all n ∈ N, and it has no limit. Indeed, we note that the sub-
sequences (u2n)n∈N and (u2n+1)n∈N are convergent, with limits 1 and −1 respectively.
As a consequence, (un)n∈N is not convergent, since every subsequence of a convergent
sequence is also convergent with the same limit.

(c) The sequence (un)n∈N0
given by u2n = n + 1 and u2n+1 = 1 for n ∈ N0 is positive, is

not bounded, as the subsequence (u2n)n∈N tends to +∞ when n tends to +∞, but it is
not convergent, since the subsequence (u2n+1)n∈N converges to 1 when n tends to +∞,
whereas the subsequence (u2n)n∈N tends to +∞ when n tends to +∞.

(d) The sequence (un)n∈N given by un = (−1)n for n ∈ N does not converge to 0, as we
saw in the second item, and it is not monotone either, since u1 = −1 < 1 = u2 but
u2 = 1> −1= u3.

(e) The sequences (un)n∈N0
(resp., (vn)n∈N0

) given by u2n = n and u2n+1 = 0 (resp., v2n+1 = n
and v2n = 0) for n ∈ N0 is not convergent, since the subsequences (u2n)n∈N (resp.,
(v2n+1)n∈N) and (u2n+1)n∈N (resp., (v2n)n∈N) tend to =∞ and 0, respectively. On the
other hand, the sequence (unvn)n∈N0

satisfies that unvn = 0 for all n ∈ N0, so it converges
to 0 as n goes to +∞.

4. Limit of a product of sequences. Let (un)n∈N0
and (vn)n∈N0

be complex sequences.
Assume that (un)n∈N0

and (vn)n∈N0
are convergent. Prove that the product sequence

(unvn)n∈N0
also converges and moreover

lim
n→∞

unvn =
�

lim
n→∞

un

�

.
�

lim
n→∞

vn

�

.

Solution. By assumption, there exist real numbers ℓ1 and ℓ2 such that, given ε > 0, there
exist positive integers n1 = n1(ε) and n2 = n2(ε) such that
�

�un − ℓ1

�

�≤ ε and
�

�vn − ℓ2

�

�≤ ε

for all n≥ n1 and n≥ n2, respectively. Let

n0 =max

�

n1

� ε

2(|ℓ2|+ 1)

�

, n1(1), n2

� ε

2(|ℓ1|+ 1)

�

�

.

Then, using the reversed triangle inequality given by |a| − |b| ≤ |a − b|, for a, b ∈ R, we
get that |un − ℓ1| ≤ 1 for n ≥ n1(1), which implies that |un| − |ℓ1| ≤ 1 for n ≥ n1(1), i.e.
|un| ≤ |ℓ1|+ 1 for n≥ n1(1). Now, we see that
�

�unvn − ℓ1ℓ2

�

�=
�

�unvn − unℓ2 + unℓ2 − ℓ1ℓ2

�

�≤
�

�unvn − unℓ2

�

�+
�

�unℓ2 − ℓ1ℓ2

�

�

=
�

�un

�

�

�

�vn − ℓ2

�

�+
�

�un − ℓ1

�

�

�

�ℓ2

�

�

where we used the triangle inequality given by |a+ b| ≤ |a+ b|, for a, b ∈ R. If n≥ n0, then
|un − ℓ1| ≤ ε/(2(|ℓ2|+ 1)), |vn − ℓ2| ≤ ε/(2(|ℓ1|+ 1)) and |un| ≤ |ℓ1|+ 1, which implies that
�

�un

�

�

�

�vn − ℓ2

�

�+
�

�un − ℓ1

�

�

�

�ℓ2

�

�≤ (|ℓ1|+ 1)
ε

2(|ℓ1|+ 1)
+

ε

2(|ℓ2|+ 1)

�

�ℓ2

�

�≤
ε

2
+
ε

2
= ε,

which in turn implies that |unvn − ℓ1ℓ2| ≤ ε for all n ≥ n0. This proves the claim of the
exercise.
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5. Subsequences. Let (un)n∈N0
be a sequence of complex numbers.

(a) Show that if (u2n)n∈N0
and (u2n+1)n∈N0

both converge to the same limit, then
(un)n∈N0

also converges.
(b) Show that if the sequences (u2n)n∈N0

, (u2n+1)n∈N0
and (u3n)n∈N0

are convergent,
then (un)n∈N0

also converges.

Solution.

(a) Since (u2n)n∈N0
and (u2n+1)n∈N0

converge to the same limit ℓ ∈ R, then, given ε > 0,
there exits nonnegative integers n1 = n1(ε) and n2 = n2(ε), such that

|u2n − ℓ| ≤ ε and |u2n+1 − ℓ| ≤ ε

for all n ≥ n1 and n ≥ n2, respectively. Given ε, let N0 =max(2n1(ε), 2n2(ε) + 1). We
will prove that |uN − ℓ| ≤ ε for all N ≥ N0. If N ≥ N0 is even, we can write N = 2n, for
n ∈ N0. Since N ≥ N0 ≥ 2n1(ε), we conclude that |uN − ℓ|= |u2n− ℓ| ≤ ε. Analogously,
if N ≥ N0 is odd, we can write N = 2n+ 1, for n ∈ N0. Since N ≥ N0 ≥ 2n2(ε) + 1, we
conclude that |uN − ℓ|= |u2n+1 − ℓ| ≤ ε. Hence, (uN )N∈N0

also converges to ℓ.

(b) Let ℓ1 (resp., ℓ2, ℓ3) be the limit of the sequence (u2n)n∈N0
(resp., (u2n+1)n∈N0

, (u3n)n∈N0
).

Recall that a subsequence of sequence (un)n∈N0
is defined by a strictly increasing map

ϕ : N0 → N0 as (uϕ(n))n∈N0
. The increasing map ϕ : N0 → N0 sending k to 3k for

k ∈ N0 tells us that (u6n)n∈N0
is a subsequence of (u2n)n∈N0

, whereas the increasing map
ψ : N0 → N0 sending j to 2 j for j ∈ N0 tells us that (u6n)n∈N0

is a subsequence of
(u3n)n∈N0

. Since a subsequence of a convergent sequence is also convergent with the
same limit, we conclude that

ℓ1 = lim
n→+∞

u6n = ℓ3.

Analogously, the increasing map ϕ : N0 → N0 sending k to 3k for k ∈ N0 tells us that
(u6n+3)n∈N0

is a subsequence of (u2n+1)n∈N0
, whereas the increasing map ψ : N0 → N0

sending j to 2 j + 3 for j ∈ N0 tells us that (u6n+3)n∈N0
is a subsequence of (u3n)n∈N0

.
Since a subsequence of a convergent sequence is also convergent with the same limit,
we conclude that

ℓ2 = lim
n→+∞

u6n+3 = ℓ3.

As a consequence, ℓ1 = ℓ2, and by the previous item we conclude that (un)n∈N0
is also

convergent with limit ℓ1 = ℓ2.

6. Computation of limits using usual functions. Compute the limit, if it exists, of the
following sequences (un)n∈N given by :

(a) un = n4(ln(1− 1/n2) + 1/n2),
(b) un = n(e2/n − 1),
(c) un = n!/nn,

(d) un = tan(1/n)cos(2n+ 1),
(e) un = (

p
n− 3+ i ln(2n))/ ln(n),

(f) un = ln(n2 + 3n− 2)/ ln(n1/3).

Solution.
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(a) Consider the function f : R<1→ R given by

f (x) =
ln(1− x) + x

x2
,

for x ∈ R<1. Then, using the Bernoulli-L’Hospital rule we see that

lim
x→0

f (x) = lim
x→0

ln(1− x) + x
x2

= lim
x→0

− 1
1−x + 1

2x
= lim

x→0

1
2(x − 1)

= −
1
2

.

Since

un = n4
�

ln
�

1−
1
n2

�

+
1
n2

�

= f (1/n)

for n ∈ N, we conclude that

lim
n→+∞

un = lim
n→+∞

f (1/n) = lim
x→0

f (x) = −
1
2

.

(b) Consider the function f : R→ R given by

f (x) =
e2x − 1

x
,

for x ∈ R. Then, using the Bernoulli-L’Hospital rule we see that

lim
x→0

f (x) = lim
x→0

e2x − 1
x

= lim
x→0

2e2x

1
= 2.

Since

un = n
�

e2/n − 1
�

= f (1/n2)

for n ∈ N, we conclude that

lim
n→+∞

un = lim
n→+∞

f (1/n2) = lim
x→0

f (x) = 2.

(c) Note that 0≤ un and

un =
1 · 2 · . . . (n− 1) · n

n · n · . . . n · n
︸ ︷︷ ︸

n factors

=
1
n

2
n

. . .
n− 1

n
n
n
≤

1
n
· 1 · · · · · 1 · 1
︸ ︷︷ ︸

n− 1 factors

=
1
n

,

for all n ∈ N, where we have used that k/n ≤ 1 for all k ∈ ⟦2, n⟧. In other words,
0 ≤ un ≤ 1/n for all n ∈ N. Since the limit of 1/n is zero, we conclude that (un)n∈N
converges to zero as n goes to +∞ as well, by the sandwich theorem.

(d) Since the sequence (vn)n∈N given by vn = tan(1/n) converges to zero as n goes to +∞
and the sequence (wn)n∈N given by wn = cos(2n+1) is bounded, for |cos(2n+1)| ≤ 1,
we conclude that the sequence (un)n∈N given by un = vnwn converges to zero as n goes
to +∞ as well.

(e) Recall that a sequence (un)n∈N of complex numbers converges (to u = a + i b, with
a, b ∈ R) if and only if the sequences of real numbers given by (Re(un))n∈N and
(Im(un))n∈N converge (to a and b, respectively). We thus consider the sequences
(Re(un))n∈N and (Im(un))n∈N given by

Re(un) =
p

n− 3
ln(n)

and Im(un) =
ln(2n)
ln(n)

.
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Since

Im(un) =
ln(2n)
ln(n)

=
ln(2) + ln(n)

ln(n)
= 1+

ln(2)
ln(n)

for n ∈ N, we conclude that

lim
n→+∞

Im(un) = 1.

However, we note that

lim
n→+∞

Re(un) = lim
n→+∞

p
n− 3
ln(n)

= +∞. (1)

Indeed, consider the function f : R>0→ R given by

f (x) =
p

x − 3
ln(x)

,

for x ∈ R>0. Then, using the Bernoulli-L’Hospital rule we see that

lim
x→+∞

f (x) = lim
x→+∞

p
x − 3
ln(x)

= lim
x→+∞

1
2
p

x−3
1
x

= lim
x→+∞

x

2
p

x − 3

= lim
x→+∞

p
x

2
p

1− 3/x
= +∞.

The identity Re(un) = f (n) for n ∈ N gives us (1). In consequence, the limit of (un)n∈N
does not exist.

(f) Note that

un =
ln(n2 + 3n− 2)

ln(n1/3)
=

ln
�

n2(1+ 3/n− 2/n2)
�

ln(n)/3
= 3

ln(n2) + ln(1+ 3/n− 2/n2)
ln(n)

= 3
2 ln(n) + ln(1+ 3/n− 2/n2)

ln(n)
= 6

ln(n)
ln(n)

+ 3
ln(1+ 3/n− 2/n2)

ln(n)

= 6+ 3
ln(1+ 3/n− 2/n2)

ln(n)

for all n ∈ N. Since the numerator of the last summand goes to zero as n goes to +∞
and the denominator goes to +∞ as n goes to +∞, we conclude that

lim
n→+∞

un = 6.

7. Adjacent sequences.

(a) Prove that each of the following pair of sequences (un)n∈N and (vn)n∈N are
adjacent.

(i) un =
∑n

k=1 1/k2 and vn = un + 1/n.

(ii) un =
∑n

k=1 1/k3 and vn = un + 1/n2.
(iii) u0 = a > 0, v0 = b > a, vn+1 = (un + vn)/2 and un+1 =

p
unvn.
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(b) Define the real sequences (un)n∈N and (vn)n∈N by

un =
n
∑

k=0

1
k!

and vn = un +
1

n!n
.

(i) Show that these sequences are adjacent, with a common limit e (it’s a
possible definition of e).

(ii) Show that e is not rational.
Hint : Suppose that e = p/q and note that for n ∈ N we have the inequa-
lities n!un < n!p/q < n!vn. Then choose n such that n!p/q is an integer.

Solution.

(a) Recall that two sequences (un)n∈N and (vn)n∈N are said to be adjacent if

lim
n→+∞

(un − vn) = 0.

(i) Since vn − un = 1/n for all n ∈ N, we conclude that (un)n∈N and (vn)n∈N are
adjacent. Note moreover that un ≤ vn for all n ∈ N.

(ii) Since vn − un = 1/n2 for all n ∈ N, we conclude that (un)n∈N and (vn)n∈N are
adjacent. Note moreover that un ≤ vn for all n ∈ N.

(iii) We will first prove the identity

p
x y ≤

x + y
2

(2)

for all x , y ∈ R≥0. It is clear that (2) holds for x = 0 or y = 0. Assume that
x , y > 0. Then, by dividing (2) by y , we see that (2) for x , y > 0 is tantamount
to
√

√ x
y
≤

x/y + 1
2

(3)

for all x , y > 0. By setting t = x/y , we see thus that (3) for x , y > 0 is equivalent
to

p
t ≤

t + 1
2

(4)

for all t > 0. Note however that, by multiplying by 2 and taking the square,
(4) is tantamount to 4t ≤ (t + 1)2, i.e. 4t ≤ t2 + 2t + 1, which is equivalent
to 0≤ t2 − 2t + 1= (t − 1)2, which is a tautology. We have thus proved (2).

We now claim that

0≤ un ≤ vn (5)

for all n ∈ N0. Indeed, the case for n = 0 follows from the assumptions. Assume
that 0≤ un ≤ vn holds for n ∈ N0. Then,

un+1 =
p

unvn ≥ 0 and un+1 =
p

unvn ≤
un + vn

2
= vn+1,

where we used (2). This proves (5). Moreover, (5) tells us that

un ≤ un+1 and vn+1 ≤ vn (6)
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for all n ∈ N0. Indeed, using (5) we get

un+1 =
p

unvn ≥
p

unun = un

and

vn+1 =
un + vn

2
≤

vn + vn

2
= vn

for all n ∈ N0. Hence, (un)n∈N is an increasing sequence with upper bound v1 and
(vn)n∈N is a decreasing sequence with lower bound u1. In consequence, (un)n∈N
and (vn)n∈N are convergent. Let c be the limit of (un)n∈N and d be the limit of
(vn)n∈N. Moreover,

d = lim
n→+∞

vn+1 = lim
n→+∞

un + vn

2
=

c + d
2

tells us that c = d. As a consequence,

lim
n→+∞

(un − vn) = lim
n→+∞

un − lim
n→+∞

vn = c − d = 0,

i.e. the sequences are adjacent.

(b) (i) Since

lim
n→+∞

(un − vn) = lim
n→+∞

1
n!n
= 0

the sequences (un)n∈N and (vn)n∈N are adjacent. Moreover, the sequence (un)n∈N is
clearly strictly increasing. Analogously, the sequence (vn)n∈N is strictly decreasing,
since

vn+1 − vn = un+1 − un +
1

(n+ 1)!(n+ 1)
−

1
n!n

=
1

(n+ 1)!
+

1
(n+ 1)!(n+ 1)

−
1

n!n
=

n+ 2
(n+ 1)!(n+ 1)

−
1

n!n

=
1
n!

�

n+ 2
(n+ 1)2

−
1
n

�

=
1
n!

−1
n(n+ 1)2

< 0,

for all n ∈ N.
(ii) Since (un)n∈N is increasing, (vn)n∈N is decreasing, un ≤ vn for all n ∈ N, and they

are adjacent, we conclude that

un < lim
n→+∞

un = e = lim
n→+∞

vn < vn (7)

for all n ∈ N. Suppose that e = p/q for some p ∈ Z and q ∈ N. Choose n ∈ N such
that q divides n! (e.g. n = q). Hence, n!p/q is an integer and multiplying (7) by
n! we get

n
∑

k=0

n!
k!
= n!un < n!

p
q
= n!e < n!vn = n!un +

1
n

.

Note that n!un ∈ N and since n> 1, 0< n!(e−un)< n!(vn−un)< 1/n≤ 1. Since
n!e − un is an integer, but there are no integers strictly larger than 0 and strictly
less than 1, we conclude that e cannot be a rational number.
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8. Sequences defined recursively.

(a) Let f : [0,1]→ [0,1] be a continuous function such that f (0) = 0, f (1) = 1
and f (x)< x for all x ∈ ] 0,1 [. Define recursively a sequence (un)n∈N0

by
¨

u0 ∈ [0,1],
un+1 = f (un), for all n ∈ N0.

Show that the sequence (un)n∈N0
converges and compute its limit.

(b) Define recursively a sequence (vn)n∈N0
by

¨

v0 =
1
2 ,

vn+1 =
vn

2−pvn
, for all n ∈ N0.

Show that the sequence (vn)n∈N0
converges and compute its limit.

Solution.

(a) Assume that u0 = 1, then un = 1 for all n ∈ N0, since f (1) = 1. In this case, (un)n∈N0

converges to 1. Analogously, if u0 = 0, then un = 0 for all n ∈ N0, since f (0) = 0. In
this case, (un)n∈N0

converges to 0.
Finally, assume that u0 ∈ ] 0, 1 [. We claim that un+1 ≤ un for all n ∈ N0. Indeed,

note that the statement holds for n= 0, since u1 = f (u0)< u0. If the previous statement
holds for n ∈ N0, then un+1 ≤ u0 < 1 is either zero or lies in ] 0,1 [. If it vanishes, then
un+2 = f (un+1) = 0 ≤ 0 = un+1. If un+1 ∈ ] 0,1 [, then un+2 = f (un+1) < un+1. We
conclude that the sequence (un)n∈N0

is decreasing and bounded below (by 0), so it is
convergent. Let c be its limit, which is strictly less than 1, since c ≤ u0 < 1. Since f is
continuous, then

c = lim
n→+∞

un+1 = lim
n→+∞

f (un) = f
�

lim
n→+∞

un

�

= f (c),

so c is a fixed point of f . Since the only fixed point of f in [0,1 [ is 0, we conclude that
c = 0.

(b) ejitems It is clear that the function f : [0, 1]→ [0,1]

f (x) =
x

2−
p

x

is continuous and satisfies that f (0) = 0, f (1) = 1 and f (x) < x for all x ∈ ] 0, 1 [,
since the latter is tantamount to 1 < 2 −

p
x for all x ∈ ] 0,1 [, i.e.

p
x < 1 for all

x ∈ ] 0, 1 [. Since u0 ∈ ] 0, 1 [, we conclude that the sequence (vn)n∈N0
converges and

its limit is zero.

9. Cesàro average. Let (un)n∈N be a sequence of complex numbers. Define

Sn =
u1 + . . .+ un

n

for all n ∈ N.

(a) Show that if (un)n∈N converges in C, then (Sn)n∈N converges to the same limit.
(b) Give an example of a divergent sequence (un)n∈N such that (Sn)n∈N converges.
(c) Let (un)n∈N be a sequence of (strictly) positive real numbers such that un+1/un

converges. Show that (u1/n
n )n∈N converges to the same limit.
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Solution.

(a) We note first that

�

�Sn − ℓ
�

�=

�

�

�

�

�

∑n
k=1 uk

n
− ℓ

�

�

�

�

�

=

�

�

�

�

�

�

�

∑n
k=1 uk

�

− nℓ

n

�

�

�

�

�

�

=

�

�

�

∑n
k=1(uk − ℓ)
�

�

�

n
≤

∑n
k=1 |uk − ℓ|

n
,

for all n ∈ N. Assume that (un)n∈N converges to ℓ ∈ C. This implies that, given ε > 0,
there exists n0 ∈ N such that |un − ℓ| ≤ ε/2 for all n≥ n0. Then,

1
n

n
∑

k=1

|uk − ℓ|=
1
n

n0
∑

k=1

|uk − ℓ|+
1
n

n
∑

k=n0+1

|uk − ℓ| ≤
1
n

n0
∑

k=1

|uk − ℓ|+
ε(n− n0)

2n

≤
1
n

n0
∑

k=1

|uk − ℓ|+
ε

2
,

for all n ≥ n0. Now, since C =
∑n0

k=1 |uk − ℓ| is a finite value, let n1 ∈ N be such that
C/n≤ ε/2 (take for instance n1 = ⌊2C/ε⌋+ 1). Set N0 =max(n0, n1). Then,

1
n

n0
∑

k=1

|uk − ℓ|+
ε

2
≤
ε

2
+
ε

2
= ε

for all n ≥ N0, which implies that |Sn − ℓ| ≤ ε, for all n ≥ N0. This proves that (Sn)n∈N
converges to ℓ as n goes to +∞.

(b) Let (un)n∈N be given by un = (1+ (−1)n)/2 for n ∈ N, i.e.

un =

¨

0, if n is odd,

1, if n is even.

It is easy to see that (un)n∈N is not convergent, since (u2n)n∈N converges to 1 whereas
(u2n+1)n∈N0

converges to 0. Note in this case that

Sn =

¨

m
2m+1 , if n= 2m+ 1 is odd with m ∈ N0,
1
2 , if n= 2m is even with m ∈ N.

Since both subsequence (S2m)m∈N and (S2m+1)m∈N0
converge to 1/2, we see that (Sn)n∈N

converges.
(c) Assume that un+1/un converges to ℓ as n goes to +∞. Note that ℓ ≥ 0. Then, given

ε > 0 such that ε < ℓ, there exists n0 such that
�

�

�

�

un+1

un
− ℓ
�

�

�

�

≤
ε

2

for all n ≥ n0. To reduce some expressions, we will write ε′ = ε/2. This implies that
(ℓ− ε′) ≤ un+1/un ≤ (ℓ+ ε′) for all n ≥ n0, i.e. (ℓ− ε′)un ≤ un+1 ≤ (ℓ+ ε′)un for all
n≥ n0. Note that 0< ℓ−ε′ < ℓ+ε′, since ε < ℓ. By a recursive argument we conclude
that

(ℓ− ε′)kun ≤ un+k ≤ (ℓ+ ε′)kun, (8)

for all n ≥ n0 and k ∈ N0. Indeed, this is trivially verified if k = 0 and any n ≥ n0.
Assuming that it holds for k and a fixed n≥ n0 tells us that

(ℓ− ε′)k+1un ≤ (ℓ− ε′)un+k ≤ un+k+1 ≤ (ℓ+ ε′)un+k ≤ (ℓ+ ε′)k+1un,

11/13



MAT332 - Series and integration — Fall term — 2022-2023 Exercise sheet 1

as we wanted to show. In particular, (8) tells us that

(ℓ− ε′)n−n0 un0
≤ un ≤ (ℓ+ ε′)n−n0 un0

, (9)

for all n≥ n0, which yields

(ℓ−ε′)
u1/n

n0

(ℓ− ε′)n0/n
= (ℓ−ε′)1−n0/nu1/n

n0
≤ u1/n

n ≤ (ℓ+ε
′)1−n0/nu1/n

n0
= (ℓ+ε′)

u1/n
n0

(ℓ+ ε′)n0/n
,

(10)

for all n≥ n0. Pick n1 ≥ n0 such that

u1/n
n0

(ℓ+ ε′)n0/n
≤
ℓ+ ε
ℓ+ ε′

and
u1/n

n0

(ℓ− ε′)n0/n
≥
ℓ− ε
ℓ− ε′

for all n≥ n1. This is possible since

lim
n→+∞

u1/n
n0

(ℓ+ ε′)n0/n
= lim

n→+∞

u1/n
n0

(ℓ− ε′)n0/n
= 1,

but

0<
ℓ− ε
ℓ− ε′

< 1<
ℓ+ ε
ℓ+ ε′

.

Hence,

(ℓ+ ε′)
u1/n

n0

(ℓ+ ε′)n0/n
≤ ℓ+ ε

and

(ℓ− ε′)
u1/n

n0

(ℓ− ε′)n0/n
≥ ℓ− ε

for all n≥ n1. Using the previous inequalities together with (10), we obtain that

ℓ− ε≤ u1/n
n ≤ ℓ+ ε

for all n ≥ n1. As a consequence, the sequence (u1/n
n )n∈N converges to ℓ as n goes to

+∞.

10. Lim sup and lim inf. Let (un)n∈N0
be a bounded sequence of real numbers. Define

sequences (in)n∈N0
and (sn)n∈N0

by

in = inf{uk : k ≥ n} and sn = sup{uk : k ≥ n}

for all n ∈ N0.

(a) Show that both (in)n∈N0
and (sn)n∈N0

converge. The limit of (in)n∈N0
is called

limit inferior or lower limit of the sequence (un)n∈N0
, and is denoted by

lim inf
n→∞

un.

The limit of (sn)n∈N0
is called limit superior or upper limit of the sequence
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(un)n∈N0
, and is written

limsup
n→∞

un.

(b) Show that there exists a subsequence of (un)n∈N0
converging to the limit infe-

rior of (un)n∈N0
and another subsequence of (un)n∈N0

converging to the limit
superior of (un)n∈N0

.
(c) Prove that (un)n∈N0

converges if and only if (in)n∈N0
and (sn)n∈N0

converge to
the same limit in R.

Solution.

(a) Let a, b ∈ R satisfy that a ≤ un ≤ b for all n ∈ N0. Then {uk : k ≥ n} ⊆ [a, b] for all
n ∈ N0, which implies that

in = inf{uk : k ≥ n} ∈ [a, b] and sn = sup{uk : k ≥ n} ∈ [a, b].

In consequence, the sequences (in)n∈N0
and (sn)n∈N0

are bounded. Moreover, (in)n∈N0

is an increasing sequence and (sn)n∈N0
is a decreasing sequence, since the inclusion

{uk : k ≥ n+ 1} ⊆ {uk : k ≥ n} implies that

in+1 = inf{uk : k ≥ n+ 1} ≤ inf{uk : k ≥ n}= in

and

sn+1 = sup{uk : k ≥ n+ 1} ≥ inf{uk : k ≥ n}= sn

for all n ∈ N0. Since bounded monotone sequences are convergent, we conclude that
(in)n∈N0

and (sn)n∈N0
converge.

(b) We prove the case for (in)n∈N0
, since the one for (sn)n∈N0

is analogous. We construct a
strictly increasing map ϕ : N0 → N0 satisfying that uϕ(n) ≤ iϕ(n−1) + 1/2n by recursion.
Assume we have constructed ϕ(0), . . . ,ϕ(n − 1) as before, for some n ∈ N0. Since
iϕ(n−1)+1 = inf{uk : k ≥ ϕ(n − 1) + 1}, then there exists ϕ(n) > ϕ(n − 1) such that
uϕ(n) ≤ iϕ(n−1)+1/2n. Note also that iϕ(n) ≤ uϕ(n), by definition of the sequence (in)n∈N0

.
Since the sequence (in)n∈N0

is convergent, its subsequence (iϕ(n))n∈N0
is also convergent

with the same limit, and the inequalities iϕ(n) ≤ uϕ(n) ≤ iϕ(n−1) + 1/2n for all n ∈ N0

then tell us that the sequence (uϕ(n))n∈N0
also converges to the limit of (iϕ(n))n∈N0

, i.e.
(uϕ(n))n∈N0

converges to the lower limit of (un)n∈N0
.

(c) Assume that (un)n∈N0
converges to ℓ ∈ R. The previous item tells us that there exists

subsequences (uϕ(n))n∈N0
and (uψ(n))n∈N0

of (un)n∈N0
converging to the lower limit in-

ferior and the upper limit of (un)n∈N0
, respectively. Since (un)n∈N0

is convergent, the
limits of the subsequences (uϕ(n))n∈N0

and (uψ(n))n∈N0
should coincide with ℓ. Conver-

sely, assume that (in)n∈N0
and (sn)n∈N0

converge to the same limit ℓ in R. Since

in = inf{uk : k ≥ n} ≤ un ≤ sup{uk : k ≥ n}= sn

for all n ∈ N0, the Sandwich Theorem tells that (un)n∈N0
converges to ℓ.
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