MAT332 - SERIES AND INTEGRATION
Fall term — 2022-2023

Exercise sheet 1: Sequences, comparison of sequences
and Taylor polynomials

1. Existence and computations of limits. Decide whether the following sequences
(Un)nen, given by

(@ u,=1/(2n+1), (@ u,=1/(v/n+1—vn),

®) u,=(Mm+2)/(2n+3), B

© u, =n2/(n+1)’ @) u, —(n+1)2/((n+1)3—n3),
(d u,=10n*>+1)/(n®-1), (@ u,=n'/1.017,

converge or diverge. In the first case, compute the limit.

Solution.
(a) Itis easy to see that

. 1
lim =
n—>+oc02n + 1

since, given € > 0, we pick no =|1/€|+ 1, so

1
2n+1

1 1
<-<e¢
2n+1 n

>

for all integers n > n,.
(b) We see that

n+2 . 1+42/n 1

im = lim ==,
n—>too2n+3 n->+02+43/n 2

since c/n converges to zero as n goes to +oo, for ¢ € R.
(c) We have that
2

. n .
lim = |im =
notoon+1  noteol+1/n

+00

>

since c/n converges to zero as n goes to +o0, for c € R.
(d) We see that
lim 10n°+1 . 10+1/n*
notoo p3—1  no+oon(l—1/n3)

since c/n* converges to zero as n goes to +00, for c € R and k € N.
(e) We have that

. 1 . vYn+l+4/n .
lim ————= lim ————— = lim Vn+1++vn=+o0c0,
n—+o0 ,/n + _ﬁ n—+00 (n+]_)—n n—+00

since v/n + c converges to zero as n goes to +09, for c € R_,.
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(f) We see that

(n+1> . n’*4+2n+1 . 14+2/n+1/n* 1

= lim = lim ==,
notoo(n+1)3—n3 n-o+o3n2+3n+1 no+e3+3/n+1/n2 3

since ¢/n¥ converges to zero as n goes to +00, for c € R and k € N.
(g) We have that
10 _ eloin@m

In(n)
lim = lim — = |im en(IOT—In(l.Ol)) =0,
n—+o0 1.01" n—+00 enin(1.01) n—+00

since In(n)/n converges to zero as n goes to +00, In(1.01) > 0 and e” goes to zero as
Y goes to —o0.

2. Equivalence, domination and negligibility. For each of the following pair of se-
quences (Uy)nen, and (Vp)nen,, verify whether u, ~ v,, u, = O(v,), u, = o(v,),
v, = O(u,), and/or v, = o(u,,) when n tends to +oo hold/s :

(@ u,=2",v,=3""; (e) u,=cos(n),v,=1;

®) u,=1/n,v,=1/yn; @ u,=In(n), v, =yn;

© u, =n?, v, =2";

(d) u,=cos(1/n), v, =e'/"; (@ u,=sin(1/n), v, =1/n.
Solution.
(a) Since
.V, .o . 2\"
lim —= lim — = lim [ =] =0,
n—o+oo n—+oo 3n n—+oo\ 3

as c" goes to zero when n tends to +o0 provided for c €] 0, 1 [, we see that v, = o(u,,)
when n tends to +00, and in particular v, = O(u,) when n tends to +00. The other
relations are not verified.

(b) Since
.Uy " n . 1
lim —= lim — = |lim — =0,
n—+00 Vy n—+00 n n—+00 ,/n

we see that u, = o(v,) when n tends to +00, and in particular u, = O(v,) when n
tends to +00. The other relations are not verified.

(c) Since
2 2In(n)
. u . n . e . 2@ 4o
lim == lim — = lim = lim e"( i In( ))=O,
n—+oo y, n—-+0o N n—+oo enln(2) n—-+00

where we used that In(n)/n converges to zero as n goes to +00, In(2) > 0 and e”
goes to zero as y goes to —oo, we see that u,, = o(v,) when n tends to +00, and in
particular u, = O(v,) when n tends to +00. The other relations are not verified.

(d) Note first that u, = cos(1/n) # 0 for all n € N. Since

. Uy . cos(1/n)
lim — = |lim ———— =

n—+00 Y, n—+0o el/n

1
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)

(€9)

we see that u, ~ v, when n tends to +00. In consequence, u, = O(v,) when n tends
to +00 and v, = O(u,,) when n tends to +00. The other relations are not verified.

Note first that u, = cos(n) # 0 for all n € N. Since
un

=|cos(n)| <1,

n

for all n € N, we see that u, = O(v,) when n tends to +00. Note however that the limit

. u .
lim — = lim cos(n)
n—+0o Vn n—+00

does not exist, so it is not true that u, = o(v,) when n tends to +oo. The relation
u, ~ v, when n tends to +00 is not verified either by the same reason. Moreover, since
Z + 27Z is dense in R and cos is continuous, {cos(n) : n € N} is dense in [—1,1], so

1
cos(n)

Vn

u

n
is not bounded for n € N. As a consequence, the other relations are not verified either.

Using that

. InP(x)
lim——— =
x—0 x4

0

for all p,q > 0, we see that

.u . In(n
lim —= = lim @)

=0
no+oo Yy, n—+oo ,/n ?

Hence, u,, = o(u,) when n tends to +00, and in particular u, = O(v,) when n tends to
+00. The other relations are not verified.

Using that

lim——= =sin’(0) = cos(0) =1,

x—0

sin(x)
X

we see that

.U, . sin(1/n)
lim == lim ————= =

n—>+coy  n—+00 1/n

1,

as 1/n goes to zero when n tends to +00. In consequence, u, ~ v, when n tends to
+00. In particular, u,, = O(v,) when n tends to +o0 and v, = O(u,) when n tends to
+00. The other relations are not verified.

3. A few examples. Give examples of the following situations :

(a)
)]
(©)
@)
(e)

an increasing positive sequence not converging to 0;

a bounded sequence which is not convergent ;

a positive sequence which is not bounded and not tending to oo ;
a non monotone sequence not converging to 0;

two divergent sequences (i, )nen, and (V,)nen, such that the product sequence
(UnVn)nen, is convergent.
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Solution.

(a) The sequence (u,),cy given by u, = n for n € N is positive, since u, =n > 0 for n €N,
and tends to +00.

(b) The sequence (u,),ey given by u, = (—1)" for n € N is bounded, since
|u,| =|(—1)"| =1 < 1 for all n € N, and it has no limit. Indeed, we note that the sub-
sequences (Us,)nen and (Us,iq)nen are convergent, with limits 1 and —1 respectively.
As a consequence, (u,),ey iS DOt convergent, since every subsequence of a convergent
sequence is also convergent with the same limit.

(c) The sequence (u,),ey, given by u,, = n+1 and u,,; = 1 for n € N; is positive, is
not bounded, as the subsequence (u,, ),y tends to +00 when n tends to +00, but it is
not convergent, since the subsequence (1) ey cONvVerges to 1 when n tends to +00,
whereas the subsequence (u,, ),y tends to +00 when n tends to +00.

(d) The sequence (u,),ey given by u,, = (—1)" for n € N does not converge to 0, as we
saw in the second item, and it is not monotone either, since u; = —1 < 1 = u, but
U =1>-1=us,.

(e) Thesequences (u,)nen, (T€SP., (V)nen,) given by u,, = nandu,,,; = 0 (resp., Vo =1
and v,, = 0) for n € N, is not convergent, since the subsequences (u,)ney (re€sp.,
(Vont1dnen) and (Upny1)nen @esp., (Von)nen) tend to = oo and 0, respectively. On the
other hand, the sequence (w,v;,),en, satisfies thatu, v, = 0 for alln € N, so it converges
to 0 as n goes to +00.

4. Limit of a product of sequences. Let (i, )nen, and (v,)nen, be complex sequences.
Assume that (u,),en, and (v, )nen, are convergent. Prove that the product sequence
(tyVn)nen, also converges and moreover

limu, v, = limu, |.| limv,|.
H—’OO”H H—’OOn n—>00n

Solution. By assumption, there exist real numbers ¢; and ¢, such that, given € > 0, there
exist positive integers n; = n;(€) and n, = n,(€e) such that

|un—£1| <€ and vn—Z2| <e

for all n > n; and n > n,, respectively. Let

e €
ny = max(nl(m), n, (1), nz(m))

Then, using the reversed triangle inequality given by |a| — |b| < |a — b|, for a,b € R, we
get that |u, —£;| < 1 for n = n;(1), which implies that |u,| — |¢;] < 1 for n = n;(1), i.e.
lu,| < |€;] + 1 for n = n;(1). Now, we see that

[tV — €185 | = [tV — 1y + 1y — 4| < [tV — | + |18y — €10, |

u

Vo= o] + [t — &3] £

n

where we used the triangle inequality given by |a + b| < |a + b, for a, b € R. If n > n,, then
lu, — £, < €/(2(J€5] + 1)), |v, — 5| < €/(2(]¢1| + 1)) and |u,| < |¢,] + 1, which implies that
€ €

+ lo]<S+E=e
2(16,1+1) - 2(16] +1)

[ttn| [V = o] + [tta — £4] [€2] < Q131 + 1) s+

which in turn implies that |u,v, —£,£,| < € for all n > n,. This proves the claim of the
exercise.
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5. Subsequences. Let (u,)nen, be a sequence of complex numbers.

(@) Show that if (us,)pen, and (Upni1)nen, both converge to the same limit, then

(Un)nen, also converges.

(b) Show that if the sequences (Uy,)nen, > (Uon+1)nen, a0d (U, )nen, are convergent,

then (u,)nen, also converges.

Solution.

(a)

)

Since (uy,)nen, and (Uz;41)nen, converge to the same limit £ € R, then, given € > 0,
there exits nonnegative integers n; = n;(€) and n, = n,(e), such that

|z, — €] < € and [up,yy — L] < €

for all n > n; and n > n,, respectively. Given e, let N, = max(2n,(€),2n,(€) + 1). We
will prove that |luy —£| < € for all N > N,. If N > Nj is even, we can write N = 2n, for
n € N,. Since N > N, > 2n,(e€), we conclude that |uy —£| = |u,, —£| < €. Analogously,
if N > N, is odd, we can write N = 2n + 1, for n € N;. Since N > N, > 2n,(e) + 1, we
conclude that [uy — €| = [uy,4q —£] < €. Hence, (uy )yey, also converges to £.

Let£; (resp., £,, £3) be the limit of the sequence (u,,)en, (X€SP., (Ua+1)neny> (Usndnen,)-
Recall that a subsequence of sequence (u,,),ey, is defined by a strictly increasing map
¢ : Ny = Ny as (ty(m)nen,- The increasing map ¢ : Ny — Nj sending k to 3k for
k € N, tells us that (ug, ) ey, is @ subsequence of (u,,),e,, Whereas the increasing map
Y : Ny — Nj sending j to 2j for j € Ny tells us that (ug,),ey, is @ subsequence of
(t3)ne, - Since a subsequence of a convergent sequence is also convergent with the
same limit, we conclude that
=i e =
Analogously, the increasing map ¢ : N, — N, sending k to 3k for k € N, tells us that
(t6n+3)nen, is @ subsequence of (uy,41)nen,> Whereas the increasing map v : Ny — N,
sending j to 2j + 3 for j € N tells us that (Ugn43)nen, iS @ subsequence of (us,)yen, -
Since a subsequence of a convergent sequence is also convergent with the same limit,
we conclude that
L= lim ug3 =145.

2= M Ugnis = L3
As a consequence, £; = {,, and by the previous item we conclude that (i), is also
convergent with limit £; = £,.

6. Computation of limits using usual functions. Compute the limit, if it exists, of the
following sequences (u,),ey given by :

(@ u,=n*(n(1—1/n2)+1/n?), (@) u, =tan(1/n)cos(2n+ 1),

() u, =n(e*"—1), (e u,=((n—3+iln(2n))/In(n),
(©) u,=n!/n", " u, =In(n*+3n—2)/In(n'/?).
Solution.
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Exercise sheet 1

(@)

®)

@

(e

Consider the function f : R_; — R given by

In(1—x)+x
X2

fx)=

for x € R_;. Then, using the Bernoulli-L’'Hospital rule we see that

1
= t1 1 1

= lim = lim

. . In(l—x)+x
LIORILESS

Since
1 1
_ 4 AV 2N\
u,=n (In(l— n2)+ nz)—f(l/n)
for n € N, we conclude that
. . . 1
Jim w, = lim f(1/n) =limf(x) = —3

Consider the function f : R — R given by

2x
e —1
flx)= ,
X
for x € R. Then, using the Bernoulli-L'Hospital rule we see that
2x 2x
. e =1 . 2e
=T TN =

Since
u, =n(e’"—1) = f(1/n%
for n € N, we conclude that
. . PN _
Jim w, = lim f(1/n%) = limf(x) = 2.

Note that 0 < u,, and

1-2-...(n—1)- 12 =1l 1 1

212 zlen 12 nmin 1 g1

n-n-...n-n nn n n n S~—— - —— n
N— n—1 factors

n factors

00 2x D02(x—1) 2

for all n € N, where we have used that k/n < 1 for all k € [2,n]. In other words,
0 < u, < 1/n for all n € N. Since the limit of 1/n is zero, we conclude that (u,),cy
converges to zero as n goes to +00 as well, by the sandwich theorem.

Since the sequence (v, ),y given by v, = tan(1/n) converges to zero as n goes to +00
and the sequence (w,),cy given by w, = cos(2n+ 1) is bounded, for | cos(2n+1)| < 1,
we conclude that the sequence (u,),ey given by u,, = v,w,, converges to zero as n goes

to +00 as well.

Recall that a sequence (u,),ey Of complex numbers converges (to u = a + ib, with
a,b € R) if and only if the sequences of real numbers given by (Re(u,)),ey and
(Im(u,)) ey converge (to a and b, respectively). We thus consider the sequences

(Re(u,))nen and (Im(uy,)),en given by

Re(u,) = VI:(;)B and Im(u,) = 'Inn((zn’;).
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Since

In(2n) In(2)+In(n) In(2)
In(n) In(n) - In(n)

for n € N, we conclude that

Im(u,) =

lim Im(u,)=1.
n—+00

However, we note that

lim_Re(u,) = +w¥%§—+w. 1)

Indeed, consider the function f : R,, — R given by

f=222,
for x € R.,. Then, using the Bernoulli-L’'Hospital rule we see that
1
Jim 0= i 3T = i = i
X
= lim f = +o0.

x~>+002 /1_3/x

The identity Re(u,) = f(n) for n € N gives us (1). In consequence, the limit of (u,),ex
does not exist.

(f) Note that

_In(m2+3n—2) In(n®(1+3/n—2/n%)) In(n2)+In(1+3/n—2/n2)

N e In(n)/3 - In(n)
2In(n)+In(1+3/n—2/n*) __In(n) , _In(1+3/n—2/n%)
In(n) " lIn(n) In(n)
:6+3|n(1+3/n—2/n2)
In(n)

for all n € N. Since the numerator of the last summand goes to zero as n goes to +00
and the denominator goes to +00 as n goes to +00, we conclude that

lim u, =6.
n—+o00

7. Adjacent sequences.

(a) Prove that each of the following pair of sequences (u,,),en and (v, ) ey are
adjacent.

@ u, =2, 1/k*and v, =u, +1/n.
(i) u, =>,_,1/k* and v, =u, + 1/n.
(iii)) up=a>0,vy=>b>a, v,y = (U, +v,)/2 and u, ., = /U, V,.
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(b) Define the real sequences (u,,),ey and (v,)pen by

@

(i1)

Solution.

=1 1
u”:ZE andvnzun+T.
= k! nln

Show that these sequences are adjacent, with a common limit e (it’s a
possible definition of e).
Show that e is not rational.
Hint : Suppose that e = p/q and note that for n € N we have the inequa-
lities n'u,, < n!p/q < n!v,. Then choose n such that n!p/q is an integer.

(@) Recall that two sequences (i, ) ey and (v, ),en are said to be adjacent if

nl—!Too(u" B Vn) =

@

(i)

(iii)

Since v, —u, = 1/n for all n € N, we conclude that (u,),ey and (v,),ey are
adjacent. Note moreover that u, < v, foralln €N.

Since v, —u, = 1/n? for all n € N, we conclude that (u,),ey and (v,),ey are
adjacent. Note moreover that u,, <v, foralln €N.

We will first prove the identity

X+

Jxy < Ty 2)
for all x,y € Ry. It is clear that (2) holds for x = 0 or y = 0. Assume that
x,y > 0. Then, by dividing (2) by y, we see that (2) for x, y > 0 is tantamount

to

\IESM @)
y 2

for all x, y > 0. By setting t = x/y, we see thus that (3) for x, y > 0 is equivalent
to

JEs-igl 4

for all t > 0. Note however that, by multiplying by 2 and taking the square,
(4) is tantamount to 4t < (t + 1), i.e. 4t < t2 + 2t + 1, which is equivalent
to 0 < t2—2t + 1 = (t — 1)?, which is a tautology. We have thus proved (2).

We now claim that

0<u,<v, (5)

for all n € N,. Indeed, the case for n = 0 follows from the assumptions. Assume
that 0 < u, < v, holds for n € N,,. Then,

u, +v,

Upp1 = o/ UpVy 20 and Upp1 = UpVn < = Vi1,

where we used (2). This proves (5). Moreover, (5) tells us that

u, <u,; and v, <v, (6)
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for all n € N,. Indeed, using (5) we get
Uppr = UpVn = Uply = Uy
and
u,+v, v,+v,
T TR STy T
for all n € N,,. Hence, (u,),ey is an increasing sequence with upper bound v, and
(V)nen is @ decreasing sequence with lower bound u;. In consequence, (i,)qey
and (v,),ey are convergent. Let ¢ be the limit of (u,),y and d be the limit of
(v, )nen- Moreover,
o . U tv, c+d
o= nl~l>£noovn+l - n|~|>£noo 2 2
tells us that ¢ = d. As a consequence,
lim (u,—v,)= lim u,— lim v,=c—d =0,
n—+o0o n—+00 n—+o0Qo
i.e. the sequences are adjacent.
(b) (@) Since
. . 1
lim (u,—v,)= lim — =0
n—+00 n—>+oonln
the sequences (u,) ey and (v, ) ey are adjacent. Moreover, the sequence (u,,),cy iS
clearly strictly increasing. Analogously, the sequence (v,),.«y is strictly decreasing,
since
+ 1 1
V. —V, =UuU —Uu _—
il Tl T s DI(n+1)  nln
I 1 1 n+2 1
T (n+1)! (m+Dn+1) nln (+DN(n+1) nln
1 [ n+2 1 ] 1 =l
== --|==—= <0,
n'[(n+1)2 n n! n(n+1)2
foralln e N.
(i) Since (u,),ey is increasing, (v,),cy is decreasing, u, < v, for all n € N, and they

are adjacent, we conclude that

u, < lim u,=e= lim v, <v, )
n—+oo n—+00

for all n € N. Suppose that e = p/q for some p € Z and q € N. Choose n € N such

that q divides n! (e.g. n = q). Hence, n!p/q is an integer and multiplying (7) by

n! we get

n
n! 1
Z— =nlu, < n!}—) =nle <nlv, =nlu, + —.
k! q n

Note that n'u, € N and since n> 1, 0 < n!(e—u,) < n!(v,—u,) < 1/n < 1. Since
nle —u, is an integer, but there are no integers strictly larger than 0 and strictly
less than 1, we conclude that e cannot be a rational number.
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8. Sequences defined recursively.

(@) Let f :[0,1] — [0,1] be a continuous function such that f(0) =0, f(1) =1
and f(x) < x for all x € ]0, 1[. Define recursively a sequence (u,) ey, by

{uoe[Q1L

U1 = f(u,), for all n € N,,.

Show that the sequence (u,) ey, converges and compute its limit.
(b) Define recursively a sequence (v,) ey, by

1
VOZ b
Vol = #Hﬁn’ for all n € Ny,

Show that the sequence (v,),ey, converges and compute its limit.

Solution.

(@) Assume that u, = 1, then u, = 1 for all n € Ny, since f(1) = 1. In this case, (¢, )en,
converges to 1. Analogously, if u, = 0, then u, = 0 for all n € N, since f(0) = 0. In
this case, (u,),ey, converges to 0.

Finally, assume that u, € 10,1 [. We claim that u, ; < u, for all n € N,. Indeed,
note that the statement holds for n = 0, since u; = f (u,) < u,. If the previous statement
holds for n € Ny, then u,,,; < u, <1 is either zero or lies in ]0,1[. If it vanishes, then
Uppo = f(un+1) =0<0= Upiq- If Uny1 6]0’1 [: then Uppo = f(un+1) < Uny- We
conclude that the sequence (u,),ey, is decreasing and bounded below (by 0), so it is
convergent. Let ¢ be its limit, which is strictly less than 1, since ¢ < u, < 1. Since f is
continuous, then

e= lim uy; = lim f(u)=F( lim u,)=F(),
so c is a fixed point of f. Since the only fixed point of f in [0, 1 [ is 0, we conclude that
c=0.
(b) ejitems It is clear that the function f : [0,1] — [0, 1]
x
2—/x

is continuous and satisfies that f(0) = 0, f(1) = 1 and f(x) < x for all x €]0,1[,
since the latter is tantamount to 1 < 2— 4/x for all x €]0,1[, i.e. 4/x < 1 for all
x €]0,1[. Since u, €]0,1[, we conclude that the sequence (v,,),ey, converges and
its limit is zero.

fx)=

9. Cesaro average. Let (u,),ey be a sequence of complex numbers. Define

Uy +...+u
Sn= 1 - n

for alln e N.
(@) Show that if (u,),ey converges in C, then (S,,) ey converges to the same limit.
(b) Give an example of a divergent sequence (u,),ey Such that (S, ),y converges.

(c) Let (u,),en be a sequence of (strictly) positive real numbers such that u,,,; /u,
converges. Show that (urll/ Mpen converges to the same limit.
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Solution.
(a) We note first that

se-t]-

‘Ziﬂuk_z‘: (ZZ=1“’<)_"£ _ ‘ZZ:I(U"_[)) - Dt w1l
S ,

n n - n

for all n € N. Assume that (u,, ),y converges to £ € C. This implies that, given € > 0,
there exists n, € N such that |u,, —£| < €/2 for all n > n,. Then,

%Z":hlk—“ Z|uk—€|+— Z lu,— €] < = Zluk_e“_e(n ny)
k=1

k=ng+1
1 €
<- u —l|+ =,
n;n I+

for all n > n,. Now, since C = >,,°, |u; —£| is a finite value, let n, € N be such that
C/n < €/2 (take for instance n; = |[2C/e] + 1). Set N, = max(ny,n;). Then,

€€
= u—£+ =t €
§|k +fei+s

for all n > N, which implies that |S, —£| < €, for all n > N,. This proves that (S, ),y
converges to £ as n goes to +00.

(b) Let (u,),en be given by u, = (1 +(—1)")/2 forn €N, i.e.

u, =

0, ifnisodd,
1, ifniseven.

It is easy to see that (u,),ey iS DOt convergent, since (U,, ),y converges to 1 whereas
(tzn41)nen, converges to 0. Note in this case that

1

5 Z{Tmﬂ’ if n=2m+1 is odd with m € N,
2

if n = 2m is even with m € N.

Since both subsequence (Sy,,)iney and (Sy11)men, COnverge to 1/2, we see that (S,) e
converges.

(¢) Assume that u,,,/u, converges to £ as n goes to +00. Note that £ > 0. Then, given
€ > 0 such that € < ¢, there exists n, such that

Unir
u

<

N

n

for all n > n,. To reduce some expressions, we will write €’ = €/2. This implies that
(€ —€)<up/u, <(+€)forall n>ngy, ie (£ —e)u, <uyy <€+ €)u, for all
n > n,. Note that 0 < £ —€’ < £ + €/, since € < £. By a recursive argument we conclude
that

(E - el)kun < Un ik < (e + el)kuns (8

for all n > n, and k € N,. Indeed, this is trivially verified if k = 0 and any n > n,.
Assuming that it holds for k and a fixed n > n,, tells us that

(€ =€)ty < (€= Nt < Upain < €+ Nt < (C+€) My,
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as we wanted to show. In particular, (8) tells us that
(£ —eyou, <u, < +e)Tu,, 9)

for all n > n,, which yields

ul/n ul/n
_ o — (f — "\ 1-no/ny,1/n 1/n N\1=ng/n, 1/n _ / o
(4 6)(4—6’)"0/" L—€) u, " <t < (E+€) u,! (€+e)—(£+6,)n0/n,

(10)

for all n > n,,. Pick n; > n, such that

1/
unon L+e ung {—e

>
Creyorn = tre ™M@ ey Z1—e

1/n

for all n > n,. This is possible since

1/ 1/
i u"—on_ lim u”—on
n—+o00 ({ 4 ¢’)no/n T notoo (€ —e’)no/n -

>

but
L— L+
0<—S<c1<——%,
{—e€ {+e€
Hence,
ul/n

/ no
(£+6)—(£+e’)ﬂo/ﬂ <l+e

and
ul/n
/ o
(f —€ )m >[—e¢

for all n > n,. Using the previous inequalities together with (10), we obtain that
(—e<u"<l+e

for all n > n;. As a consequence, the sequence (urll/ Mpen converges to £ as n goes to
+00.

10. Lim sup and lim inf. Let (u,) ey, be @ bounded sequence of real numbers. Define
sequences (iy)ycr, and (s,)yen, by

i, =inf{u, : k > n} and s, = sup{u; : k > n}

for all n € N,.

(@) Show that both (i, ),ey, and (s,)en, converge. The limit of (i,),ey, is called
limit inferior or lower limit of the sequence (u,)nen,, and is denoted by

liminfu,.

n—oo

The limit of (s,),ey, is called limit superior or upper limit of the sequence
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(Un)nen,»> and is written

limsupu,.
n—oo

(b) Show that there exists a subsequence of (u,),ey, converging to the limit infe-

)

rior of (u,),en, and another subsequence of (u,),ey, converging to the limit
superior of (u,),en, -
Prove that (u,),ey, converges if and only if (i,)en, and (s,)ney, converge to
the same limit in R.

Solution.

(a)

)

©

Let a,b € R satisfy that a < u,, < b for all n € N,. Then {u; : k > n} C [a, b] for all
n € Ny, which implies that

i, =inf{u, : k >n} €[a,b] and s, = sup{y, : k = n} € [a, b].

In consequence, the sequences (i,) ey, and (s,)qen, are bounded. Moreover, (i,)qen,
is an increasing sequence and (s,),ey, iS @ decreasing sequence, since the inclusion
{u; : k= n+1} € {u, : k = n} implies that

I =inf{y :k>n+1} <inf{u, :k>n} =i,
and
Sppr =sup{y :k=>n+1} >inf{y, : k>n}=s,

for all n € N,. Since bounded monotone sequences are convergent, we conclude that
(i)nen, and (s,)qey, converge.

We prove the case for (i,),ey,, Since the one for (s,),ey, is analogous. We construct a
strictly increasing map ¢ : N, — N satisfying that u,,) < i,,—1) + 1/2" by recursion.
Assume we have constructed (0),...,p(n — 1) as before, for some n € N,. Since
ioe1yr1 = inf{u, : k = p(n—1) + 1}, then there exists p(n) > ¢(n — 1) such that
Up(ny < Ty(n_1)+1/2". Note also that i,y < U, by definition of the sequence (i,,) e, -
Since the sequence (i, )y, iS convergent, its subsequence (i, )nen, iS also convergent
with the same limit, and the inequalities i,y < Uy < ipp-1) + 1 /2" f(?r alln e .NO
then tell us that the sequence (t,(n))nen, also converges to the limit of (i ,))nen,» i-€-
(Uy(n)nen, converges to the lower limit of (u,)nen, -

Assume that (u,),ey, converges to £ € R. The previous item tells us that there exists
subsequences (Uy(;))nen, aNd (Uy)Inen, Of (Uy)ne, converging to the lower limit in-
ferior and the upper limit of (u,),cy,, respectively. Since (u,) ey, is convergent, the
limits of the subsequences (Uy(y))nen, a0d (Uy(m))ney, should coincide with £. Conver-
sely, assume that (i,),en, and (s;),ey, converge to the same limit £ in R. Since

i, =inf{u, :k>n} <u, <sup{uy :k=>n}=s,

for all n € Ny, the Sandwich Theorem tells that (u,),cy, converges to £.
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