MAT332 - SERIES AND INTEGRATION Fall term - 2022-2023

Exercise sheet 1: Sequences, comparison of sequences and Taylor polynomials

1. Existence and computations of limits. Decide whether the following sequences $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ given by
(a) $u_{n}=1 /(2 n+1)$,
(e) $u_{n}=1 /(\sqrt{n+1}-\sqrt{n})$,
(b) $u_{n}=(n+2) /(2 n+3)$,
(c) $u_{n}=n^{2} /(n+1)$,
(f) $u_{n}=(n+1)^{2} /\left((n+1)^{3}-n^{3}\right)$,
(d) $u_{n}=\left(10 n^{2}+1\right) /\left(n^{3}-1\right)$,
(g) $u_{n}=n^{10} / 1.01^{n}$,
converge or diverge. In the first case, compute the limit.

Solution.

(a) It is easy to see that

$$
\lim _{n \rightarrow+\infty} \frac{1}{2 n+1}=0
$$

since, given $\epsilon>0$, we pick $n_{0}=\lfloor 1 / \epsilon\rfloor+1$, so
$\left|\frac{1}{2 n+1}\right|=\frac{1}{2 n+1} \leq \frac{1}{n} \leq \epsilon$,
for all integers $n \geq n_{0}$.
(b) We see that

$$
\lim _{n \rightarrow+\infty} \frac{n+2}{2 n+3}=\lim _{n \rightarrow+\infty} \frac{1+2 / n}{2+3 / n}=\frac{1}{2}
$$

since c / n converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$.
(c) We have that

$$
\lim _{n \rightarrow+\infty} \frac{n^{2}}{n+1}=\lim _{n \rightarrow+\infty} \frac{n}{1+1 / n}=+\infty
$$

since c / n converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$.
(d) We see that

$$
\lim _{n \rightarrow+\infty} \frac{10 n^{2}+1}{n^{3}-1}=\lim _{n \rightarrow+\infty} \frac{10+1 / n^{2}}{n\left(1-1 / n^{3}\right)}=0,
$$

since c / n^{k} converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$ and $k \in \mathbb{N}$.
(e) We have that

$$
\lim _{n \rightarrow+\infty} \frac{1}{\sqrt{n+1}-\sqrt{n}}=\lim _{n \rightarrow+\infty} \frac{\sqrt{n+1}+\sqrt{n}}{(n+1)-n}=\lim _{n \rightarrow+\infty} \sqrt{n+1}+\sqrt{n}=+\infty,
$$

since $\sqrt{n+c}$ converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}_{>0}$.
(f) We see that

$$
\lim _{n \rightarrow+\infty} \frac{(n+1)^{2}}{(n+1)^{3}-n^{3}}=\lim _{n \rightarrow+\infty} \frac{n^{2}+2 n+1}{3 n^{2}+3 n+1}=\lim _{n \rightarrow+\infty} \frac{1+2 / n+1 / n^{2}}{3+3 / n+1 / n^{2}}=\frac{1}{3}
$$

since c / n^{k} converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$ and $k \in \mathbb{N}$.
(g) We have that
$\lim _{n \rightarrow+\infty} \frac{n^{10}}{1.01^{n}}=\lim _{n \rightarrow+\infty} \frac{e^{10 \ln (n)}}{e^{n \ln (1.01)}}=\lim _{n \rightarrow+\infty} e^{n\left(10 \frac{\ln (n)}{n}-\ln (1.01)\right)}=0$,
since $\ln (n) / n$ converges to zero as n goes to $+\infty, \ln (1.01)>0$ and e^{y} goes to zero as y goes to $-\infty$.
2. Equivalence, domination and negligibility. For each of the following pair of sequences $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$, verify whether $u_{n} \sim v_{n}, u_{n}=\mathrm{O}\left(v_{n}\right), u_{n}=\mathrm{o}\left(v_{n}\right)$, $v_{n}=\mathrm{O}\left(u_{n}\right)$, and/or $v_{n}=\mathrm{o}\left(u_{n}\right)$ when n tends to $+\infty$ hold/s :
(a) $u_{n}=2^{-n}, v_{n}=3^{-n}$;
(e) $u_{n}=\cos (n), v_{n}=1$;
(b) $u_{n}=1 / n, v_{n}=1 / \sqrt{n}$;
(f) $u_{n}=\ln (n), v_{n}=\sqrt{n}$;
(c) $u_{n}=n^{2}, v_{n}=2^{n}$;
(g) $u_{n}=\sin (1 / n), v_{n}=1 / n$.

Solution.

(a) Since

$$
\lim _{n \rightarrow+\infty} \frac{v_{n}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{2^{n}}{3^{n}}=\lim _{n \rightarrow+\infty}\left(\frac{2}{3}\right)^{n}=0
$$

as c^{n} goes to zero when n tends to $+\infty$ provided for $\left.c \in\right] 0,1\left[\right.$, we see that $v_{n}=\mathrm{o}\left(u_{n}\right)$ when n tends to $+\infty$, and in particular $v_{n}=\mathrm{O}\left(u_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
(b) Since

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \frac{\sqrt{n}}{n}=\lim _{n \rightarrow+\infty} \frac{1}{\sqrt{n}}=0
$$

we see that $u_{n}=\mathrm{o}\left(v_{n}\right)$ when n tends to $+\infty$, and in particular $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
(c) Since

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \frac{n^{2}}{2^{n}}=\lim _{n \rightarrow+\infty} \frac{e^{2 \ln (n)}}{e^{n \ln (2)}}=\lim _{n \rightarrow+\infty} e^{n\left(2 \frac{\ln (n)}{n}-\ln (2)\right)}=0,
$$

where we used that $\ln (n) / n$ converges to zero as n goes to $+\infty, \ln (2)>0$ and e^{y} goes to zero as y goes to $-\infty$, we see that $u_{n}=\mathrm{o}\left(v_{n}\right)$ when n tends to $+\infty$, and in particular $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
(d) Note first that $u_{n}=\cos (1 / n) \neq 0$ for all $n \in \mathbb{N}$. Since

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \frac{\cos (1 / n)}{e^{1 / n}}=1
$$

we see that $u_{n} \sim v_{n}$ when n tends to $+\infty$. In consequence, $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$ and $v_{n}=\mathrm{O}\left(u_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
(e) Note first that $u_{n}=\cos (n) \neq 0$ for all $n \in \mathbb{N}$. Since
$\left|\frac{u_{n}}{v_{n}}\right|=|\cos (n)| \leq 1$,
for all $n \in \mathbb{N}$, we see that $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$. Note however that the limit
$\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \cos (n)$
does not exist, so it is not true that $u_{n}=\mathrm{o}\left(v_{n}\right)$ when n tends to $+\infty$. The relation $u_{n} \sim v_{n}$ when n tends to $+\infty$ is not verified either by the same reason. Moreover, since $\mathbb{Z}+2 \pi \mathbb{Z}$ is dense in \mathbb{R} and \cos is continuous, $\{\cos (n): n \in \mathbb{N}\}$ is dense in $[-1,1]$, so
$\left|\frac{v_{n}}{u_{n}}\right|=\left|\frac{1}{\cos (n)}\right|$
is not bounded for $n \in \mathbb{N}$. As a consequence, the other relations are not verified either.
(f) Using that
$\lim _{x \rightarrow 0} \frac{\ln ^{p}(x)}{x^{q}}=0$
for all $p, q>0$, we see that

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \frac{\ln (n)}{\sqrt{n}}=0
$$

Hence, $u_{n}=\mathrm{o}\left(u_{n}\right)$ when n tends to $+\infty$, and in particular $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
(g) Using that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\sin ^{\prime}(0)=\cos (0)=1
$$

we see that

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow+\infty} \frac{\sin (1 / n)}{1 / n}=1
$$

as $1 / n$ goes to zero when n tends to $+\infty$. In consequence, $u_{n} \sim v_{n}$ when n tends to $+\infty$. In particular, $u_{n}=\mathrm{O}\left(v_{n}\right)$ when n tends to $+\infty$ and $v_{n}=\mathrm{O}\left(u_{n}\right)$ when n tends to $+\infty$. The other relations are not verified.
3. A few examples. Give examples of the following situations :
(a) an increasing positive sequence not converging to 0 ;
(b) a bounded sequence which is not convergent;
(c) a positive sequence which is not bounded and not tending to ∞;
(d) a non monotone sequence not converging to 0 ;
(e) two divergent sequences $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ such that the product sequence $\left(u_{n} v_{n}\right)_{n \in \mathbb{N}_{0}}$ is convergent.

Solution.

(a) The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by $u_{n}=n$ for $n \in \mathbb{N}$ is positive, since $u_{n}=n>0$ for $n \in \mathbb{N}$, and tends to $+\infty$.
(b) The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by $u_{n}=(-1)^{n}$ for $n \in \mathbb{N}$ is bounded, since $\left|u_{n}\right|=\left|(-1)^{n}\right|=1 \leq 1$ for all $n \in \mathbb{N}$, and it has no limit. Indeed, we note that the subsequences $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ are convergent, with limits 1 and -1 respectively. As a consequence, $\left(u_{n}\right)_{n \in \mathbb{N}}$ is not convergent, since every subsequence of a convergent sequence is also convergent with the same limit.
(c) The sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ given by $u_{2 n}=n+1$ and $u_{2 n+1}=1$ for $n \in \mathbb{N}_{0}$ is positive, is not bounded, as the subsequence $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ tends to $+\infty$ when n tends to $+\infty$, but it is not convergent, since the subsequence $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ converges to 1 when n tends to $+\infty$, whereas the subsequence $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ tends to $+\infty$ when n tends to $+\infty$.
(d) The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by $u_{n}=(-1)^{n}$ for $n \in \mathbb{N}$ does not converge to 0 , as we saw in the second item, and it is not monotone either, since $u_{1}=-1<1=u_{2}$ but $u_{2}=1>-1=u_{3}$.
(e) The sequences $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ (resp., $\left.\left(v_{n}\right)_{n \in \mathbb{N}_{0}}\right)$ given by $u_{2 n}=n$ and $u_{2 n+1}=0$ (resp., $v_{2 n+1}=n$ and $v_{2 n}=0$) for $n \in \mathbb{N}_{0}$ is not convergent, since the subsequences $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ (resp., $\left.\left(v_{2 n+1}\right)_{n \in \mathbb{N}}\right)$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ (resp., $\left.\left(v_{2 n}\right)_{n \in \mathbb{N}}\right)$ tend to $=\infty$ and 0 , respectively. On the other hand, the sequence $\left(u_{n} v_{n}\right)_{n \in \mathbb{N}_{0}}$ satisfies that $u_{n} v_{n}=0$ for all $n \in \mathbb{N}_{0}$, so it converges to 0 as n goes to $+\infty$.
4. Limit of a product of sequences. Let $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ be complex sequences. Assume that $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ are convergent. Prove that the product sequence $\left(u_{n} v_{n}\right)_{n \in \mathbb{N}_{0}}$ also converges and moreover

$$
\lim _{n \rightarrow \infty} u_{n} v_{n}=\left(\lim _{n \rightarrow \infty} u_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} v_{n}\right)
$$

Solution. By assumption, there exist real numbers ℓ_{1} and ℓ_{2} such that, given $\epsilon>0$, there exist positive integers $n_{1}=n_{1}(\epsilon)$ and $n_{2}=n_{2}(\epsilon)$ such that

$$
\left|u_{n}-\ell_{1}\right| \leq \epsilon \text { and }\left|v_{n}-\ell_{2}\right| \leq \epsilon
$$

for all $n \geq n_{1}$ and $n \geq n_{2}$, respectively. Let

$$
n_{0}=\max \left(n_{1}\left(\frac{\epsilon}{2\left(\left|\ell_{2}\right|+1\right)}\right), n_{1}(1), n_{2}\left(\frac{\epsilon}{2\left(\left|\ell_{1}\right|+1\right)}\right)\right) .
$$

Then, using the reversed triangle inequality given by $|a|-|b| \leq|a-b|$, for $a, b \in \mathbb{R}$, we get that $\left|u_{n}-\ell_{1}\right| \leq 1$ for $n \geq n_{1}(1)$, which implies that $\left|u_{n}\right|-\left|\ell_{1}\right| \leq 1$ for $n \geq n_{1}(1)$, i.e. $\left|u_{n}\right| \leq\left|\ell_{1}\right|+1$ for $n \geq n_{1}(1)$. Now, we see that

$$
\begin{aligned}
\left|u_{n} v_{n}-\ell_{1} \ell_{2}\right| & =\left|u_{n} v_{n}-u_{n} \ell_{2}+u_{n} \ell_{2}-\ell_{1} \ell_{2}\right| \leq\left|u_{n} v_{n}-u_{n} \ell_{2}\right|+\left|u_{n} \ell_{2}-\ell_{1} \ell_{2}\right| \\
& =\left|u_{n}\right|\left|v_{n}-\ell_{2}\right|+\left|u_{n}-\ell_{1}\right|\left|\ell_{2}\right|
\end{aligned}
$$

where we used the triangle inequality given by $|a+b| \leq|a+b|$, for $a, b \in \mathbb{R}$. If $n \geq n_{0}$, then $\left|u_{n}-\ell_{1}\right| \leq \epsilon /\left(2\left(\left|\ell_{2}\right|+1\right)\right),\left|v_{n}-\ell_{2}\right| \leq \epsilon /\left(2\left(\left|\ell_{1}\right|+1\right)\right)$ and $\left|u_{n}\right| \leq\left|\ell_{1}\right|+1$, which implies that

$$
\left|u_{n}\right|\left|v_{n}-\ell_{2}\right|+\left|u_{n}-\ell_{1}\right|\left|\ell_{2}\right| \leq\left(\left|\ell_{1}\right|+1\right) \frac{\epsilon}{2\left(\left|\ell_{1}\right|+1\right)}+\frac{\epsilon}{2\left(\left|\ell_{2}\right|+1\right)}\left|\ell_{2}\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
$$

which in turn implies that $\left|u_{n} v_{n}-\ell_{1} \ell_{2}\right| \leq \epsilon$ for all $n \geq n_{0}$. This proves the claim of the exercise.
5. Subsequences. Let $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of complex numbers.
(a) Show that if $\left(u_{2 n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}}$ both converge to the same limit, then $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ also converges.
(b) Show that if the sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}_{0}},\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}}$ and $\left(u_{3 n}\right)_{n \in \mathbb{N}_{0}}$ are convergent, then $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ also converges.

Solution.

(a) Since $\left(u_{2 n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}}$ converge to the same limit $\ell \in \mathbb{R}$, then, given $\epsilon>0$, there exits nonnegative integers $n_{1}=n_{1}(\epsilon)$ and $n_{2}=n_{2}(\epsilon)$, such that
$\left|u_{2 n}-\ell\right| \leq \epsilon$ and $\left|u_{2 n+1}-\ell\right| \leq \epsilon$
for all $n \geq n_{1}$ and $n \geq n_{2}$, respectively. Given ϵ, let $N_{0}=\max \left(2 n_{1}(\epsilon), 2 n_{2}(\epsilon)+1\right)$. We will prove that $\left|u_{N}-\ell\right| \leq \epsilon$ for all $N \geq N_{0}$. If $N \geq N_{0}$ is even, we can write $N=2 n$, for $n \in \mathbb{N}_{0}$. Since $N \geq N_{0} \geq 2 n_{1}(\epsilon)$, we conclude that $\left|u_{N}-\ell\right|=\left|u_{2 n}-\ell\right| \leq \epsilon$. Analogously, if $N \geq N_{0}$ is odd, we can write $N=2 n+1$, for $n \in \mathbb{N}_{0}$. Since $N \geq N_{0} \geq 2 n_{2}(\epsilon)+1$, we conclude that $\left|u_{N}-\ell\right|=\left|u_{2 n+1}-\ell\right| \leq \epsilon$. Hence, $\left(u_{N}\right)_{N \in \mathbb{N}_{0}}$ also converges to ℓ.
(b) Let ℓ_{1} (resp., ℓ_{2}, ℓ_{3}) be the limit of the sequence $\left(u_{2 n}\right)_{n \in \mathbb{N}_{0}}\left(\right.$ resp., $\left.\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}},\left(u_{3 n}\right)_{n \in \mathbb{N}_{0}}\right)$. Recall that a subsequence of sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ is defined by a strictly increasing map $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ as $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$. The increasing map $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ sending k to $3 k$ for $k \in \mathbb{N}_{0}$ tells us that $\left(u_{6 n}\right)_{n \in \mathbb{N}_{0}}$ is a subsequence of $\left(u_{2 n}\right)_{n \in \mathbb{N}_{0}}$, whereas the increasing map $\psi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ sending j to $2 j$ for $j \in \mathbb{N}_{0}$ tells us that $\left(u_{6 n}\right)_{n \in \mathbb{N}_{0}}$ is a subsequence of $\left(u_{3 n}\right)_{n \in \mathbb{N}_{0}}$. Since a subsequence of a convergent sequence is also convergent with the same limit, we conclude that

$$
\ell_{1}=\lim _{n \rightarrow+\infty} u_{6 n}=\ell_{3}
$$

Analogously, the increasing map $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ sending k to $3 k$ for $k \in \mathbb{N}_{0}$ tells us that $\left(u_{6 n+3}\right)_{n \in \mathbb{N}_{0}}$ is a subsequence of $\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}}$, whereas the increasing map $\psi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ sending j to $2 j+3$ for $j \in \mathbb{N}_{0}$ tells us that $\left(u_{6 n+3}\right)_{n \in \mathbb{N}_{0}}$ is a subsequence of $\left(u_{3 n}\right)_{n \in \mathbb{N}_{0}}$. Since a subsequence of a convergent sequence is also convergent with the same limit, we conclude that

$$
\ell_{2}=\lim _{n \rightarrow+\infty} u_{6 n+3}=\ell_{3} .
$$

As a consequence, $\ell_{1}=\ell_{2}$, and by the previous item we conclude that $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ is also convergent with limit $\ell_{1}=\ell_{2}$.
6. Computation of limits using usual functions. Compute the limit, if it exists, of the following sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by :
(a) $u_{n}=n^{4}\left(\ln \left(1-1 / n^{2}\right)+1 / n^{2}\right)$,
(d) $u_{n}=\tan (1 / n) \cos (2 n+1)$,
(b) $u_{n}=n\left(e^{2 / n}-1\right)$,
(e) $u_{n}=(\sqrt{n-3}+i \ln (2 n)) / \ln (n)$,
(c) $u_{n}=n!/ n^{n}$,
(f) $u_{n}=\ln \left(n^{2}+3 n-2\right) / \ln \left(n^{1 / 3}\right)$.

Solution.
(a) Consider the function $f: \mathbb{R}_{<1} \rightarrow \mathbb{R}$ given by
$f(x)=\frac{\ln (1-x)+x}{x^{2}}$,
for $x \in \mathbb{R}_{<1}$. Then, using the Bernoulli-L'Hospital rule we see that
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\frac{1}{1-x}+1}{2 x}=\lim _{x \rightarrow 0} \frac{1}{2(x-1)}=-\frac{1}{2}$.
Since
$u_{n}=n^{4}\left(\ln \left(1-\frac{1}{n^{2}}\right)+\frac{1}{n^{2}}\right)=f(1 / n)$
for $n \in \mathbb{N}$, we conclude that
$\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} f(1 / n)=\lim _{x \rightarrow 0} f(x)=-\frac{1}{2}$.
(b) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by
$f(x)=\frac{e^{2 x}-1}{x}$,
for $x \in \mathbb{R}$. Then, using the Bernoulli-L'Hospital rule we see that
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{1}=2$.
Since
$u_{n}=n\left(e^{2 / n}-1\right)=f\left(1 / n^{2}\right)$
for $n \in \mathbb{N}$, we conclude that
$\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} f\left(1 / n^{2}\right)=\lim _{x \rightarrow 0} f(x)=2$.
(c) Note that $0 \leq u_{n}$ and
$u_{n}=\frac{1 \cdot 2 \cdot \ldots(n-1) \cdot n}{\underbrace{n \cdot n \cdot \ldots n \cdot n}_{n \text { factors }}}=\frac{1}{n} \frac{2}{n} \ldots \frac{n-1}{n} \frac{n}{n} \leq \frac{1}{n} \cdot \underbrace{1 \cdots \cdots 1 \cdot 1}_{n-1 \text { factors }}=\frac{1}{n}$,
for all $n \in \mathbb{N}$, where we have used that $k / n \leq 1$ for all $k \in \llbracket 2, n \rrbracket$. In other words, $0 \leq u_{n} \leq 1 / n$ for all $n \in \mathbb{N}$. Since the limit of $1 / n$ is zero, we conclude that $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to zero as n goes to $+\infty$ as well, by the sandwich theorem.
(d) Since the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ given by $v_{n}=\tan (1 / n)$ converges to zero as n goes to $+\infty$ and the sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ given by $w_{n}=\cos (2 n+1)$ is bounded, for $|\cos (2 n+1)| \leq 1$, we conclude that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by $u_{n}=v_{n} w_{n}$ converges to zero as n goes to $+\infty$ as well.
(e) Recall that a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ of complex numbers converges (to $u=a+i b$, with $a, b \in \mathbb{R}$) if and only if the sequences of real numbers given by $\left(\operatorname{Re}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ and $\left(\operatorname{Im}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ converge (to a and b, respectively). We thus consider the sequences $\left(\operatorname{Re}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ and $\left(\operatorname{Im}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ given by
$\operatorname{Re}\left(u_{n}\right)=\frac{\sqrt{n-3}}{\ln (n)}$ and $\operatorname{Im}\left(u_{n}\right)=\frac{\ln (2 n)}{\ln (n)}$.

Since
$\operatorname{Im}\left(u_{n}\right)=\frac{\ln (2 n)}{\ln (n)}=\frac{\ln (2)+\ln (n)}{\ln (n)}=1+\frac{\ln (2)}{\ln (n)}$
for $n \in \mathbb{N}$, we conclude that
$\lim _{n \rightarrow+\infty} \operatorname{Im}\left(u_{n}\right)=1$.
However, we note that
$\lim _{n \rightarrow+\infty} \operatorname{Re}\left(u_{n}\right)=\lim _{n \rightarrow+\infty} \frac{\sqrt{n-3}}{\ln (n)}=+\infty$.
Indeed, consider the function $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ given by
$f(x)=\frac{\sqrt{x-3}}{\ln (x)}$,
for $x \in \mathbb{R}_{>0}$. Then, using the Bernoulli-L'Hospital rule we see that

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{\sqrt{x-3}}{\ln (x)}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{2 \sqrt{x-3}}}{\frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{x}{2 \sqrt{x-3}} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{2 \sqrt{1-3 / x}}=+\infty .
\end{aligned}
$$

The identity $\operatorname{Re}\left(u_{n}\right)=f(n)$ for $n \in \mathbb{N}$ gives us (1). In consequence, the limit of $\left(u_{n}\right)_{n \in \mathbb{N}}$ does not exist.
(f) Note that

$$
\begin{aligned}
u_{n} & =\frac{\ln \left(n^{2}+3 n-2\right)}{\ln \left(n^{1 / 3}\right)}=\frac{\ln \left(n^{2}\left(1+3 / n-2 / n^{2}\right)\right)}{\ln (n) / 3}=3 \frac{\ln \left(n^{2}\right)+\ln \left(1+3 / n-2 / n^{2}\right)}{\ln (n)} \\
& =3 \frac{2 \ln (n)+\ln \left(1+3 / n-2 / n^{2}\right)}{\ln (n)}=6 \frac{\ln (n)}{\ln (n)}+3 \frac{\ln \left(1+3 / n-2 / n^{2}\right)}{\ln (n)} \\
& =6+3 \frac{\ln \left(1+3 / n-2 / n^{2}\right)}{\ln (n)}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Since the numerator of the last summand goes to zero as n goes to $+\infty$ and the denominator goes to $+\infty$ as n goes to $+\infty$, we conclude that

$$
\lim _{n \rightarrow+\infty} u_{n}=6
$$

7. Adjacent sequences.

(a) Prove that each of the following pair of sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent.
(i) $u_{n}=\sum_{k=1}^{n} 1 / k^{2}$ and $v_{n}=u_{n}+1 / n$.
(ii) $u_{n}=\sum_{k=1}^{n} 1 / k^{3}$ and $v_{n}=u_{n}+1 / n^{2}$.
(iii) $u_{0}=a>0, v_{0}=b>a, v_{n+1}=\left(u_{n}+v_{n}\right) / 2$ and $u_{n+1}=\sqrt{u_{n} v_{n}}$.
(b) Define the real sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ by

$$
u_{n}=\sum_{k=0}^{n} \frac{1}{k!} \text { and } v_{n}=u_{n}+\frac{1}{n!n}
$$

(i) Show that these sequences are adjacent, with a common limit e (it's a possible definition of e).
(ii) Show that e is not rational.

Hint : Suppose that $e=p / q$ and note that for $n \in \mathbb{N}$ we have the inequalities $n!u_{n}<n!p / q<n!v_{n}$. Then choose n such that $n!p / q$ is an integer.

Solution.

(a) Recall that two sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are said to be adjacent if

$$
\lim _{n \rightarrow+\infty}\left(u_{n}-v_{n}\right)=0
$$

(i) Since $v_{n}-u_{n}=1 / n$ for all $n \in \mathbb{N}$, we conclude that $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent. Note moreover that $u_{n} \leq v_{n}$ for all $n \in \mathbb{N}$.
(ii) Since $v_{n}-u_{n}=1 / n^{2}$ for all $n \in \mathbb{N}$, we conclude that $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent. Note moreover that $u_{n} \leq v_{n}$ for all $n \in \mathbb{N}$.
(iii) We will first prove the identity

$$
\begin{equation*}
\sqrt{x y} \leq \frac{x+y}{2} \tag{2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}_{\geq 0}$. It is clear that (2) holds for $x=0$ or $y=0$. Assume that $x, y>0$. Then, by dividing (2) by y, we see that (2) for $x, y>0$ is tantamount to

$$
\begin{equation*}
\sqrt{\frac{x}{y}} \leq \frac{x / y+1}{2} \tag{3}
\end{equation*}
$$

for all $x, y>0$. By setting $t=x / y$, we see thus that (3) for $x, y>0$ is equivalent to

$$
\begin{equation*}
\sqrt{t} \leq \frac{t+1}{2} \tag{4}
\end{equation*}
$$

for all $t>0$. Note however that, by multiplying by 2 and taking the square, (4) is tantamount to $4 t \leq(t+1)^{2}$, i.e. $4 t \leq t^{2}+2 t+1$, which is equivalent to $0 \leq t^{2}-2 t+1=(t-1)^{2}$, which is a tautology. We have thus proved (2).

We now claim that

$$
\begin{equation*}
0 \leq u_{n} \leq v_{n} \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. Indeed, the case for $n=0$ follows from the assumptions. Assume that $0 \leq u_{n} \leq v_{n}$ holds for $n \in \mathbb{N}_{0}$. Then,

$$
u_{n+1}=\sqrt{u_{n} v_{n}} \geq 0 \text { and } u_{n+1}=\sqrt{u_{n} v_{n}} \leq \frac{u_{n}+v_{n}}{2}=v_{n+1}
$$

where we used (2). This proves (5). Moreover, (5) tells us that

$$
\begin{equation*}
u_{n} \leq u_{n+1} \text { and } v_{n+1} \leq v_{n} \tag{6}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. Indeed, using (5) we get

$$
u_{n+1}=\sqrt{u_{n} v_{n}} \geq \sqrt{u_{n} u_{n}}=u_{n}
$$

and
$v_{n+1}=\frac{u_{n}+v_{n}}{2} \leq \frac{v_{n}+v_{n}}{2}=v_{n}$
for all $n \in \mathbb{N}_{0}$. Hence, $\left(u_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence with upper bound v_{1} and $\left(v_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence with lower bound u_{1}. In consequence, $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are convergent. Let c be the limit of $\left(u_{n}\right)_{n \in \mathbb{N}}$ and d be the limit of $\left(v_{n}\right)_{n \in \mathbb{N}}$. Moreover,

$$
d=\lim _{n \rightarrow+\infty} v_{n+1}=\lim _{n \rightarrow+\infty} \frac{u_{n}+v_{n}}{2}=\frac{c+d}{2}
$$

tells us that $c=d$. As a consequence,
$\lim _{n \rightarrow+\infty}\left(u_{n}-v_{n}\right)=\lim _{n \rightarrow+\infty} u_{n}-\lim _{n \rightarrow+\infty} v_{n}=c-d=0$,
i.e. the sequences are adjacent.
(b) (i) Since

$$
\lim _{n \rightarrow+\infty}\left(u_{n}-v_{n}\right)=\lim _{n \rightarrow+\infty} \frac{1}{n!n}=0
$$

the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent. Moreover, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is clearly strictly increasing. Analogously, the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is strictly decreasing, since

$$
\begin{aligned}
v_{n+1}-v_{n} & =u_{n+1}-u_{n}+\frac{1}{(n+1)!(n+1)}-\frac{1}{n!n} \\
& =\frac{1}{(n+1)!}+\frac{1}{(n+1)!(n+1)}-\frac{1}{n!n}=\frac{n+2}{(n+1)!(n+1)}-\frac{1}{n!n} \\
& =\frac{1}{n!}\left[\frac{n+2}{(n+1)^{2}}-\frac{1}{n}\right]=\frac{1}{n!} \frac{-1}{n(n+1)^{2}}<0,
\end{aligned}
$$

for all $n \in \mathbb{N}$.
(ii) Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ is increasing, $\left(v_{n}\right)_{n \in \mathbb{N}}$ is decreasing, $u_{n} \leq v_{n}$ for all $n \in \mathbb{N}$, and they are adjacent, we conclude that

$$
\begin{equation*}
u_{n}<\lim _{n \rightarrow+\infty} u_{n}=e=\lim _{n \rightarrow+\infty} v_{n}<v_{n} \tag{7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Suppose that $e=p / q$ for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Choose $n \in \mathbb{N}$ such that q divides $n!(e . g . n=q)$. Hence, $n!p / q$ is an integer and multiplying (7) by n ! we get
$\sum_{k=0}^{n} \frac{n!}{k!}=n!u_{n}<n!\frac{p}{q}=n!e<n!v_{n}=n!u_{n}+\frac{1}{n}$.
Note that $n!u_{n} \in \mathbb{N}$ and since $n>1,0<n!\left(e-u_{n}\right)<n!\left(v_{n}-u_{n}\right)<1 / n \leq 1$. Since $n!e-u_{n}$ is an integer, but there are no integers strictly larger than 0 and strictly less than 1 , we conclude that e cannot be a rational number.
8. Sequences defined recursively.
(a) Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(0)=0, f(1)=1$ and $f(x)<x$ for all $x \in] 0,1\left[\right.$. Define recursively a sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ by

$$
\left\{\begin{array}{l}
u_{0} \in[0,1] \\
u_{n+1}=f\left(u_{n}\right), \text { for all } n \in \mathbb{N}_{0}
\end{array}\right.
$$

Show that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges and compute its limit.
(b) Define recursively a sequence $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ by

$$
\left\{\begin{array}{l}
v_{0}=\frac{1}{2} \\
v_{n+1}=\frac{v_{n}}{2-\sqrt{v_{n}}}, \text { for all } n \in \mathbb{N}_{0}
\end{array}\right.
$$

Show that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ converges and compute its limit.

Solution.

(a) Assume that $u_{0}=1$, then $u_{n}=1$ for all $n \in \mathbb{N}_{0}$, since $f(1)=1$. In this case, $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges to 1 . Analogously, if $u_{0}=0$, then $u_{n}=0$ for all $n \in \mathbb{N}_{0}$, since $f(0)=0$. In this case, $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges to 0 .

Finally, assume that $\left.u_{0} \in\right] 0,1$. We claim that $u_{n+1} \leq u_{n}$ for all $n \in \mathbb{N}_{0}$. Indeed, note that the statement holds for $n=0$, since $u_{1}=f\left(u_{0}\right)<u_{0}$. If the previous statement holds for $n \in \mathbb{N}_{0}$, then $u_{n+1} \leq u_{0}<1$ is either zero or lies in] 0,1 [. If it vanishes, then $u_{n+2}=f\left(u_{n+1}\right)=0 \leq 0=u_{n+1}$. If $\left.u_{n+1} \in\right] 0,1\left[\right.$, then $u_{n+2}=f\left(u_{n+1}\right)<u_{n+1}$. We conclude that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ is decreasing and bounded below (by 0), so it is convergent. Let c be its limit, which is strictly less than 1 , since $c \leq u_{0}<1$. Since f is continuous, then

$$
c=\lim _{n \rightarrow+\infty} u_{n+1}=\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=f\left(\lim _{n \rightarrow+\infty} u_{n}\right)=f(c)
$$

so c is a fixed point of f. Since the only fixed point of f in $[0,1[$ is 0 , we conclude that $c=0$.
(b) ejitems It is clear that the function $f:[0,1] \rightarrow[0,1]$

$$
f(x)=\frac{x}{2-\sqrt{x}}
$$

is continuous and satisfies that $f(0)=0, f(1)=1$ and $f(x)<x$ for all $x \in] 0,1[$, since the latter is tantamount to $1<2-\sqrt{x}$ for all $x \in] 0,1[$, i.e. $\sqrt{x}<1$ for all $x \in] 0,1\left[\right.$. Since $\left.u_{0} \in\right] 0,1\left[\right.$, we conclude that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}_{0}}$ converges and its limit is zero.
9. Cesàro average. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Define

$$
S_{n}=\frac{u_{1}+\ldots+u_{n}}{n}
$$

for all $n \in \mathbb{N}$.
(a) Show that if $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges in \mathbb{C}, then $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges to the same limit.
(b) Give an example of a divergent sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges.
(c) Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of (strictly) positive real numbers such that u_{n+1} / u_{n} converges. Show that $\left(u_{n}^{1 / n}\right)_{n \in \mathbb{N}}$ converges to the same limit.

Solution.

(a) We note first that

$$
\left|S_{n}-\ell\right|=\left|\frac{\sum_{k=1}^{n} u_{k}}{n}-\ell\right|=\left|\frac{\left(\sum_{k=1}^{n} u_{k}\right)-n \ell}{n}\right|=\frac{\left|\sum_{k=1}^{n}\left(u_{k}-\ell\right)\right|}{n} \leq \frac{\sum_{k=1}^{n}\left|u_{k}-\ell\right|}{n}
$$

for all $n \in \mathbb{N}$. Assume that $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to $\ell \in \mathbb{C}$. This implies that, given $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|u_{n}-\ell\right| \leq \epsilon / 2$ for all $n \geq n_{0}$. Then,

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n}\left|u_{k}-\ell\right| & =\frac{1}{n} \sum_{k=1}^{n_{0}}\left|u_{k}-\ell\right|+\frac{1}{n} \sum_{k=n_{0}+1}^{n}\left|u_{k}-\ell\right| \leq \frac{1}{n} \sum_{k=1}^{n_{0}}\left|u_{k}-\ell\right|+\frac{\epsilon\left(n-n_{0}\right)}{2 n} \\
& \leq \frac{1}{n} \sum_{k=1}^{n_{0}}\left|u_{k}-\ell\right|+\frac{\epsilon}{2}
\end{aligned}
$$

for all $n \geq n_{0}$. Now, since $C=\sum_{k=1}^{n_{0}}\left|u_{k}-\ell\right|$ is a finite value, let $n_{1} \in \mathbb{N}$ be such that $C / n \leq \epsilon / 2$ (take for instance $n_{1}=\lfloor 2 C / \epsilon\rfloor+1$). Set $N_{0}=\max \left(n_{0}, n_{1}\right)$. Then,

$$
\frac{1}{n} \sum_{k=1}^{n_{0}}\left|u_{k}-\ell\right|+\frac{\epsilon}{2} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

for all $n \geq N_{0}$, which implies that $\left|S_{n}-\ell\right| \leq \epsilon$, for all $n \geq N_{0}$. This proves that $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges to ℓ as n goes to $+\infty$.
(b) Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be given by $u_{n}=\left(1+(-1)^{n}\right) / 2$ for $n \in \mathbb{N}$, i.e.
$u_{n}= \begin{cases}0, & \text { if } n \text { is odd, } \\ 1, & \text { if } n \text { is even. }\end{cases}$
It is easy to see that $\left(u_{n}\right)_{n \in \mathbb{N}}$ is not convergent, since $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ converges to 1 whereas $\left(u_{2 n+1}\right)_{n \in \mathbb{N}_{0}}$ converges to 0 . Note in this case that
$S_{n}= \begin{cases}\frac{m}{2 m+1}, & \text { if } n=2 m+1 \text { is odd with } m \in \mathbb{N}_{0}, \\ \frac{1}{2}, & \text { if } n=2 m \text { is even with } m \in \mathbb{N} .\end{cases}$
Since both subsequence $\left(S_{2 m}\right)_{m \in \mathbb{N}}$ and $\left(S_{2 m+1}\right)_{m \in \mathbb{N}_{0}}$ converge to $1 / 2$, we see that $\left(S_{n}\right)_{n \in \mathbb{N}}$ converges.
(c) Assume that u_{n+1} / u_{n} converges to ℓ as n goes to $+\infty$. Note that $\ell \geq 0$. Then, given $\epsilon>0$ such that $\epsilon<\ell$, there exists n_{0} such that
$\left|\frac{u_{n+1}}{u_{n}}-\ell\right| \leq \frac{\epsilon}{2}$
for all $n \geq n_{0}$. To reduce some expressions, we will write $\epsilon^{\prime}=\epsilon / 2$. This implies that $\left(\ell-\epsilon^{\prime}\right) \leq u_{n+1} / u_{n} \leq\left(\ell+\epsilon^{\prime}\right)$ for all $n \geq n_{0}$, i.e. $\left(\ell-\epsilon^{\prime}\right) u_{n} \leq u_{n+1} \leq\left(\ell+\epsilon^{\prime}\right) u_{n}$ for all $n \geq n_{0}$. Note that $0<\ell-\epsilon^{\prime}<\ell+\epsilon^{\prime}$, since $\epsilon<\ell$. By a recursive argument we conclude that

$$
\begin{equation*}
\left(\ell-\epsilon^{\prime}\right)^{k} u_{n} \leq u_{n+k} \leq\left(\ell+\epsilon^{\prime}\right)^{k} u_{n} \tag{8}
\end{equation*}
$$

for all $n \geq n_{0}$ and $k \in \mathbb{N}_{0}$. Indeed, this is trivially verified if $k=0$ and any $n \geq n_{0}$. Assuming that it holds for k and a fixed $n \geq n_{0}$ tells us that

$$
\left(\ell-\epsilon^{\prime}\right)^{k+1} u_{n} \leq\left(\ell-\epsilon^{\prime}\right) u_{n+k} \leq u_{n+k+1} \leq\left(\ell+\epsilon^{\prime}\right) u_{n+k} \leq\left(\ell+\epsilon^{\prime}\right)^{k+1} u_{n}
$$

as we wanted to show. In particular, (8) tells us that

$$
\begin{equation*}
\left(\ell-\epsilon^{\prime}\right)^{n-n_{0}} u_{n_{0}} \leq u_{n} \leq\left(\ell+\epsilon^{\prime}\right)^{n-n_{0}} u_{n_{0}} \tag{9}
\end{equation*}
$$

for all $n \geq n_{0}$, which yields
$\left(\ell-\epsilon^{\prime}\right) \frac{u_{n_{0}}^{1 / n}}{\left(\ell-\epsilon^{\prime}\right)^{n_{0} / n}}=\left(\ell-\epsilon^{\prime}\right)^{1-n_{0} / n} u_{n_{0}}^{1 / n} \leq u_{n}^{1 / n} \leq\left(\ell+\epsilon^{\prime}\right)^{1-n_{0} / n} u_{n_{0}}^{1 / n}=\left(\ell+\epsilon^{\prime}\right) \frac{u_{n_{0}}^{1 / n}}{\left(\ell+\epsilon^{\prime}\right)^{n_{0} / n}}$,
for all $n \geq n_{0}$. Pick $n_{1} \geq n_{0}$ such that

$$
\frac{u_{n_{0}}^{1 / n}}{\left(\ell+\epsilon^{\prime}\right)^{n_{0} / n}} \leq \frac{\ell+\epsilon}{\ell+\epsilon^{\prime}} \text { and } \frac{u_{n_{0}}^{1 / n}}{\left(\ell-\epsilon^{\prime}\right)^{n_{0} / n}} \geq \frac{\ell-\epsilon}{\ell-\epsilon^{\prime}}
$$

for all $n \geq n_{1}$. This is possible since

$$
\lim _{n \rightarrow+\infty} \frac{u_{n_{0}}^{1 / n}}{\left(\ell+\epsilon^{\prime}\right)^{n_{0} / n}}=\lim _{n \rightarrow+\infty} \frac{u_{n_{0}}^{1 / n}}{\left(\ell-\epsilon^{\prime}\right)^{n_{0} / n}}=1
$$

but

$$
0<\frac{\ell-\epsilon}{\ell-\epsilon^{\prime}}<1<\frac{\ell+\epsilon}{\ell+\epsilon^{\prime}}
$$

Hence,
$\left(\ell+\epsilon^{\prime}\right) \frac{u_{n_{0}}^{1 / n}}{\left(\ell+\epsilon^{\prime}\right)^{n_{0} / n}} \leq \ell+\epsilon$
and
$\left(\ell-\epsilon^{\prime}\right) \frac{u_{n_{0}}^{1 / n}}{\left(\ell-\epsilon^{\prime}\right)^{n_{0} / n}} \geq \ell-\epsilon$
for all $n \geq n_{1}$. Using the previous inequalities together with (10), we obtain that

$$
\ell-\epsilon \leq u_{n}^{1 / n} \leq \ell+\epsilon
$$

for all $n \geq n_{1}$. As a consequence, the sequence $\left(u_{n}^{1 / n}\right)_{n \in \mathbb{N}}$ converges to ℓ as n goes to $+\infty$.
10. Lim sup and lim \inf. Let $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ be a bounded sequence of real numbers. Define sequences $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ by

$$
i_{n}=\inf \left\{u_{k}: k \geq n\right\} \text { and } s_{n}=\sup \left\{u_{k}: k \geq n\right\}
$$

for all $n \in \mathbb{N}_{0}$.
(a) Show that both $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ converge. The limit of $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ is called limit inferior or lower limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$, and is denoted by

$$
\liminf _{n \rightarrow \infty} u_{n}
$$

The limit of $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ is called limit superior or upper limit of the sequence
$\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$, and is written

$$
\limsup _{n \rightarrow \infty} u_{n} .
$$

(b) Show that there exists a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converging to the limit inferior of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ and another subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converging to the limit superior of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$.
(c) Prove that $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges if and only if $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ converge to the same limit in \mathbb{R}.

Solution.

(a) Let $a, b \in \mathbb{R}$ satisfy that $a \leq u_{n} \leq b$ for all $n \in \mathbb{N}_{0}$. Then $\left\{u_{k}: k \geq n\right\} \subseteq[a, b]$ for all $n \in \mathbb{N}_{0}$, which implies that
$i_{n}=\inf \left\{u_{k}: k \geq n\right\} \in[a, b]$ and $s_{n}=\sup \left\{u_{k}: k \geq n\right\} \in[a, b]$.
In consequence, the sequences $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ are bounded. Moreover, $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ is an increasing sequence and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ is a decreasing sequence, since the inclusion $\left\{u_{k}: k \geq n+1\right\} \subseteq\left\{u_{k}: k \geq n\right\}$ implies that

$$
i_{n+1}=\inf \left\{u_{k}: k \geq n+1\right\} \leq \inf \left\{u_{k}: k \geq n\right\}=i_{n}
$$

and

$$
s_{n+1}=\sup \left\{u_{k}: k \geq n+1\right\} \geq \inf \left\{u_{k}: k \geq n\right\}=s_{n}
$$

for all $n \in \mathbb{N}_{0}$. Since bounded monotone sequences are convergent, we conclude that $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ converge.
(b) We prove the case for $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$, since the one for $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ is analogous. We construct a strictly increasing map $\varphi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ satisfying that $u_{\varphi(n)} \leq i_{\varphi(n-1)}+1 / 2^{n}$ by recursion. Assume we have constructed $\varphi(0), \ldots, \varphi(n-1)$ as before, for some $n \in \mathbb{N}_{0}$. Since $i_{\varphi(n-1)+1}=\inf \left\{u_{k}: k \geq \varphi(n-1)+1\right\}$, then there exists $\varphi(n)>\varphi(n-1)$ such that $u_{\varphi(n)} \leq i_{\varphi(n-1)}+1 / 2^{n}$. Note also that $i_{\varphi(n)} \leq u_{\varphi(n)}$, by definition of the sequence $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$. Since the sequence $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ is convergent, its subsequence $\left(i_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$ is also convergent with the same limit, and the inequalities $i_{\varphi(n)} \leq u_{\varphi(n)} \leq i_{\varphi(n-1)}+1 / 2^{n}$ for all $n \in \mathbb{N}_{0}$ then tell us that the sequence $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$ also converges to the limit of $\left(i_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$, i.e. $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$ converges to the lower limit of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$.
(c) Assume that $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges to $\ell \in \mathbb{R}$. The previous item tells us that there exists subsequences $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$ and $\left(u_{\psi(n)}\right)_{n \in \mathbb{N}_{0}}$ of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converging to the lower limit inferior and the upper limit of $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$, respectively. Since $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ is convergent, the limits of the subsequences $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}_{0}}$ and $\left(u_{\psi(n)}\right)_{n \in \mathbb{N}_{0}}$ should coincide with ℓ. Conversely, assume that $\left(i_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ converge to the same limit ℓ in \mathbb{R}. Since

$$
i_{n}=\inf \left\{u_{k}: k \geq n\right\} \leq u_{n} \leq \sup \left\{u_{k}: k \geq n\right\}=s_{n}
$$

for all $n \in \mathbb{N}_{0}$, the Sandwich Theorem tells that $\left(u_{n}\right)_{n \in \mathbb{N}_{0}}$ converges to ℓ.

