MAT332 - Series and integration Fall term — 2022-2023

Exercise sheet 1: Sequences, comparison of sequences and Taylor polynomials

1. Existence and computations of limits. Decide whether the following sequences $(u_n)_{n\in\mathbb{N}_0}$ given by

- (a) $u_n = 1/(2n+1)$,
- (b) $u_n = (n+2)/(2n+3),$ (c) $u_n = n^2/(n+1),$ (c) $u_n = n^2/(n+1)$,
- (e) $u_n = 1/(\sqrt{n+1} \sqrt{n}),$ (f) $u_n = (n+1)^2/((n+1)^3 - n^3),$ (d) $u_n = (10n^2 + 1)/(n^3 - 1),$ (g) $u_n = n^{10}/1.01^n,$

converge or diverge. In the first case, compute the limit.

Solution.

(a) It is easy to see that

 $\lim_{n \to +\infty} \frac{1}{2n+1} = 0,$ since, given $\epsilon > 0$, we pick $n_0 = \lfloor 1/\epsilon \rfloor + 1$, so

$$\left|\frac{1}{2n+1}\right| = \frac{1}{2n+1} \le \frac{1}{n} \le \epsilon,$$

for all integers $n \ge n_0$.

(*b*) We see that

$$\lim_{n \to +\infty} \frac{n+2}{2n+3} = \lim_{n \to +\infty} \frac{1+2/n}{2+3/n} = \frac{1}{2},$$

since c/n converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$.

(c) We have that

$$\lim_{n \to +\infty} \frac{n^2}{n+1} = \lim_{n \to +\infty} \frac{n}{1+1/n} = +\infty,$$

since c/n converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$.

(*d*) We see that

n-

$$\lim_{n \to +\infty} \frac{10n^2 + 1}{n^3 - 1} = \lim_{n \to +\infty} \frac{10 + 1/n^2}{n(1 - 1/n^3)} = 0$$

since c/n^k converges to zero as n goes to $+\infty$, for $c \in \mathbb{R}$ and $k \in \mathbb{N}$.

(e) We have that

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n+1} - \sqrt{n}} = \lim_{n \to +\infty} \frac{\sqrt{n+1} + \sqrt{n}}{(n+1) - n} = \lim_{n \to +\infty} \sqrt{n+1} + \sqrt{n} = +\infty,$$

since $\sqrt{n+c}$ converges to zero as *n* goes to $+\infty$, for $c \in \mathbb{R}_{>0}$.

(f) We see that

$$\lim_{n \to +\infty} \frac{(n+1)^2}{(n+1)^3 - n^3} = \lim_{n \to +\infty} \frac{n^2 + 2n + 1}{3n^2 + 3n + 1} = \lim_{n \to +\infty} \frac{1 + 2/n + 1/n^2}{3 + 3/n + 1/n^2} = \frac{1}{3},$$

since c/n^k converges to zero as *n* goes to $+\infty$, for $c \in \mathbb{R}$ and $k \in \mathbb{N}$.

(g) We have that

$$\lim_{n \to +\infty} \frac{n^{10}}{1.01^n} = \lim_{n \to +\infty} \frac{e^{10\ln(n)}}{e^{n\ln(1.01)}} = \lim_{n \to +\infty} e^{n\left(10\frac{\ln(n)}{n} - \ln(1.01)\right)} = 0,$$

since $\ln(n)/n$ converges to zero as *n* goes to $+\infty$, $\ln(1.01) > 0$ and e^y goes to zero as y goes to $-\infty$.

2. Equivalence, domination and negligibility. For each of the following pair of sequences $(u_n)_{n \in \mathbb{N}_0}$ and $(v_n)_{n \in \mathbb{N}_0}$, verify whether $u_n \sim v_n$, $u_n = O(v_n)$, $u_n = o(v_n)$, $v_n = O(u_n)$, and/or $v_n = o(u_n)$ when *n* tends to $+\infty$ hold/s :

- (a) $u_n = 2^{-n}, v_n = 3^{-n};$ (b) $u_n = 1/n, v_n = 1/\sqrt{n};$ (c) $u_n = n^2, v_n = 2^n;$ (d) $u_n = \cos(1/n), v_n = e^{1/n};$
- Solution.
- (a) Since

$$\lim_{n \to +\infty} \frac{v_n}{u_n} = \lim_{n \to +\infty} \frac{2^n}{3^n} = \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$$

as c^n goes to zero when *n* tends to $+\infty$ provided for $c \in [0, 1[$, we see that $v_n = o(u_n)$ when *n* tends to $+\infty$, and in particular $v_n = O(u_n)$ when *n* tends to $+\infty$. The other relations are not verified.

(b) Since

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\sqrt{n}}{n} = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0,$$

we see that $u_n = o(v_n)$ when n tends to $+\infty$, and in particular $u_n = O(v_n)$ when n tends to $+\infty$. The other relations are not verified.

Since (c)

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{n^2}{2^n} = \lim_{n \to +\infty} \frac{e^{2\ln(n)}}{e^{n\ln(2)}} = \lim_{n \to +\infty} e^{n\left(2\frac{\ln(n)}{n} - \ln(2)\right)} = 0,$$

where we used that $\ln(n)/n$ converges to zero as *n* goes to $+\infty$, $\ln(2) > 0$ and e^y goes to zero as y goes to $-\infty$, we see that $u_n = o(v_n)$ when n tends to $+\infty$, and in particular $u_n = O(v_n)$ when *n* tends to $+\infty$. The other relations are not verified. (d) Note first that $u_n = \cos(1/n) \neq 0$ for all $n \in \mathbb{N}$. Since

 $\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\cos(1/n)}{e^{1/n}} = 1$

Exercise sheet 1

- (e) $u_n = \cos(n), v_n = 1;$
- (f) $u_n = \ln(n), v_n = \sqrt{n};$
- (g) $u_n = \sin(1/n), v_n = 1/n.$

we see that $u_n \sim v_n$ when *n* tends to $+\infty$. In consequence, $u_n = O(v_n)$ when *n* tends to $+\infty$ and $v_n = O(u_n)$ when *n* tends to $+\infty$. The other relations are not verified.

(e) Note first that $u_n = \cos(n) \neq 0$ for all $n \in \mathbb{N}$. Since

$$\left|\frac{u_n}{v_n}\right| = |\cos(n)| \le 1,$$

for all $n \in \mathbb{N}$, we see that $u_n = O(v_n)$ when n tends to $+\infty$. Note however that the limit

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \cos(n)$$

does not exist, so it is not true that $u_n = o(v_n)$ when *n* tends to $+\infty$. The relation $u_n \sim v_n$ when *n* tends to $+\infty$ is not verified either by the same reason. Moreover, since $\mathbb{Z} + 2\pi\mathbb{Z}$ is dense in \mathbb{R} and cos is continuous, $\{\cos(n) : n \in \mathbb{N}\}$ is dense in [-1, 1], so

$$\left|\frac{v_n}{u_n}\right| = \left|\frac{1}{\cos(n)}\right|$$

is not bounded for $n \in \mathbb{N}$. As a consequence, the other relations are not verified either. (f) Using that

 $\ln^p(x)$

$$\lim_{x \to 0} \frac{1}{x^q} = 0$$

for all p, q > 0, we see that

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\ln(n)}{\sqrt{n}} = 0,$$

Hence, $u_n = o(u_n)$ when *n* tends to $+\infty$, and in particular $u_n = O(v_n)$ when *n* tends to $+\infty$. The other relations are not verified.

(g) Using that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \sin'(0) = \cos(0) = 1,$$

we see that

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\sin(1/n)}{1/n} = 1,$$

as 1/n goes to zero when *n* tends to $+\infty$. In consequence, $u_n \sim v_n$ when *n* tends to $+\infty$. In particular, $u_n = O(v_n)$ when *n* tends to $+\infty$ and $v_n = O(u_n)$ when *n* tends to $+\infty$. The other relations are not verified.

3. A few examples. Give examples of the following situations :

- (a) an increasing positive sequence not converging to 0;
- (b) a bounded sequence which is not convergent;
- (c) a positive sequence which is not bounded and not tending to ∞ ;
- (d) a non monotone sequence not converging to 0;
- (e) two divergent sequences $(u_n)_{n \in \mathbb{N}_0}$ and $(v_n)_{n \in \mathbb{N}_0}$ such that the product sequence $(u_n v_n)_{n \in \mathbb{N}_0}$ is convergent.

Solution.

- (a) The sequence $(u_n)_{n\in\mathbb{N}}$ given by $u_n = n$ for $n \in \mathbb{N}$ is positive, since $u_n = n > 0$ for $n \in \mathbb{N}$, and tends to $+\infty$.
- (b) The sequence (u_n)_{n∈ℕ} given by u_n = (-1)ⁿ for n ∈ ℕ is bounded, since |u_n| = |(-1)ⁿ| = 1 ≤ 1 for all n ∈ ℕ, and it has no limit. Indeed, we note that the subsequences (u_{2n})_{n∈ℕ} and (u_{2n+1})_{n∈ℕ} are convergent, with limits 1 and -1 respectively. As a consequence, (u_n)_{n∈ℕ} is not convergent, since every subsequence of a convergent sequence is also convergent with the same limit.
- (c) The sequence $(u_n)_{n \in \mathbb{N}_0}$ given by $u_{2n} = n + 1$ and $u_{2n+1} = 1$ for $n \in \mathbb{N}_0$ is positive, is not bounded, as the subsequence $(u_{2n})_{n \in \mathbb{N}}$ tends to $+\infty$ when n tends to $+\infty$, but it is not convergent, since the subsequence $(u_{2n+1})_{n \in \mathbb{N}}$ converges to 1 when n tends to $+\infty$, whereas the subsequence $(u_{2n})_{n \in \mathbb{N}}$ tends to $+\infty$ when n tends to $+\infty$.
- (d) The sequence $(u_n)_{n\in\mathbb{N}}$ given by $u_n = (-1)^n$ for $n \in \mathbb{N}$ does not converge to 0, as we saw in the second item, and it is not monotone either, since $u_1 = -1 < 1 = u_2$ but $u_2 = 1 > -1 = u_3$.
- (e) The sequences $(u_n)_{n \in \mathbb{N}_0}$ (resp., $(v_n)_{n \in \mathbb{N}_0}$) given by $u_{2n} = n$ and $u_{2n+1} = 0$ (resp., $v_{2n+1} = n$ and $v_{2n} = 0$) for $n \in \mathbb{N}_0$ is not convergent, since the subsequences $(u_{2n})_{n \in \mathbb{N}}$ (resp., $(v_{2n+1})_{n \in \mathbb{N}}$) and $(u_{2n+1})_{n \in \mathbb{N}}$ (resp., $(v_{2n})_{n \in \mathbb{N}}$) tend to $= \infty$ and 0, respectively. On the other hand, the sequence $(u_n v_n)_{n \in \mathbb{N}_0}$ satisfies that $u_n v_n = 0$ for all $n \in \mathbb{N}_0$, so it converges to 0 as n goes to $+\infty$.

4. Limit of a product of sequences. Let $(u_n)_{n \in \mathbb{N}_0}$ and $(v_n)_{n \in \mathbb{N}_0}$ be complex sequences. Assume that $(u_n)_{n \in \mathbb{N}_0}$ and $(v_n)_{n \in \mathbb{N}_0}$ are convergent. Prove that the product sequence $(u_n v_n)_{n \in \mathbb{N}_0}$ also converges and moreover

$$\lim_{n\to\infty}u_nv_n=\left(\lim_{n\to\infty}u_n\right)\cdot\left(\lim_{n\to\infty}v_n\right).$$

Solution. By assumption, there exist real numbers ℓ_1 and ℓ_2 such that, given $\epsilon > 0$, there exist positive integers $n_1 = n_1(\epsilon)$ and $n_2 = n_2(\epsilon)$ such that

 $|u_n - \ell_1| \le \epsilon$ and $|v_n - \ell_2| \le \epsilon$

for all $n \ge n_1$ and $n \ge n_2$, respectively. Let

$$n_0 = \max\left(n_1\left(\frac{\epsilon}{2(|\ell_2|+1)}\right), n_1(1), n_2\left(\frac{\epsilon}{2(|\ell_1|+1)}\right)\right).$$

Then, using the reversed triangle inequality given by $|a| - |b| \le |a - b|$, for $a, b \in \mathbb{R}$, we get that $|u_n - \ell_1| \le 1$ for $n \ge n_1(1)$, which implies that $|u_n| - |\ell_1| \le 1$ for $n \ge n_1(1)$, *i.e.* $|u_n| \le |\ell_1| + 1$ for $n \ge n_1(1)$. Now, we see that

$$\begin{aligned} |u_n v_n - \ell_1 \ell_2| &= |u_n v_n - u_n \ell_2 + u_n \ell_2 - \ell_1 \ell_2| \le |u_n v_n - u_n \ell_2| + |u_n \ell_2 - \ell_1 \ell_2| \\ &= |u_n| |v_n - \ell_2| + |u_n - \ell_1| |\ell_2| \end{aligned}$$

where we used the triangle inequality given by $|a + b| \le |a + b|$, for $a, b \in \mathbb{R}$. If $n \ge n_0$, then $|u_n - \ell_1| \le \epsilon/(2(|\ell_2| + 1)), |v_n - \ell_2| \le \epsilon/(2(|\ell_1| + 1))$ and $|u_n| \le |\ell_1| + 1$, which implies that

$$|u_n| |v_n - \ell_2| + |u_n - \ell_1| |\ell_2| \le (|\ell_1| + 1)\frac{\epsilon}{2(|\ell_1| + 1)} + \frac{\epsilon}{2(|\ell_2| + 1)} |\ell_2| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

which in turn implies that $|u_nv_n - \ell_1\ell_2| \le \epsilon$ for all $n \ge n_0$. This proves the claim of the exercise.

- **5.** Subsequences. Let $(u_n)_{n \in \mathbb{N}_0}$ be a sequence of complex numbers.
- (a) Show that if $(u_{2n})_{n \in \mathbb{N}_0}$ and $(u_{2n+1})_{n \in \mathbb{N}_0}$ both converge to the same limit, then $(u_n)_{n\in\mathbb{N}_0}$ also converges.
- (b) Show that if the sequences $(u_{2n})_{n \in \mathbb{N}_0}$, $(u_{2n+1})_{n \in \mathbb{N}_0}$ and $(u_{3n})_{n \in \mathbb{N}_0}$ are convergent, then $(u_n)_{n \in \mathbb{N}_0}$ also converges.

Solution.

(a) Since $(u_{2n})_{n\in\mathbb{N}_0}$ and $(u_{2n+1})_{n\in\mathbb{N}_0}$ converge to the same limit $\ell\in\mathbb{R}$, then, given $\epsilon>0$, there exits nonnegative integers $n_1 = n_1(\epsilon)$ and $n_2 = n_2(\epsilon)$, such that

 $|u_{2n} - \ell| \le \epsilon$ and $|u_{2n+1} - \ell| \le \epsilon$

for all $n \ge n_1$ and $n \ge n_2$, respectively. Given ϵ , let $N_0 = \max(2n_1(\epsilon), 2n_2(\epsilon) + 1)$. We will prove that $|u_N - \ell| \le \epsilon$ for all $N \ge N_0$. If $N \ge N_0$ is even, we can write N = 2n, for $n \in \mathbb{N}_0$. Since $N \ge N_0 \ge 2n_1(\epsilon)$, we conclude that $|u_N - \ell| = |u_{2n} - \ell| \le \epsilon$. Analogously, if $N \ge N_0$ is odd, we can write N = 2n + 1, for $n \in \mathbb{N}_0$. Since $N \ge N_0 \ge 2n_2(\epsilon) + 1$, we conclude that $|u_N - \ell| = |u_{2n+1} - \ell| \le \epsilon$. Hence, $(u_N)_{N \in \mathbb{N}_0}$ also converges to ℓ .

(b) Let ℓ_1 (resp., ℓ_2 , ℓ_3) be the limit of the sequence $(u_{2n})_{n \in \mathbb{N}_0}$ (resp., $(u_{2n+1})_{n \in \mathbb{N}_0}$, $(u_{3n})_{n \in \mathbb{N}_0}$). Recall that a subsequence of sequence $(u_n)_{n \in \mathbb{N}_0}$ is defined by a strictly increasing map $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ as $(u_{\varphi(n)})_{n \in \mathbb{N}_0}$. The increasing map $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ sending k to 3k for $k \in \mathbb{N}_0$ tells us that $(u_{6n})_{n \in \mathbb{N}_0}$ is a subsequence of $(u_{2n})_{n \in \mathbb{N}_0}$, whereas the increasing map $\psi : \mathbb{N}_0 \to \mathbb{N}_0$ sending j to 2j for $j \in \mathbb{N}_0$ tells us that $(u_{6n})_{n \in \mathbb{N}_0}$ is a subsequence of $(u_{3n})_{n\in\mathbb{N}_0}$. Since a subsequence of a convergent sequence is also convergent with the same limit, we conclude that

$$\ell_1 = \lim_{n \to \infty} u_{6n} = \ell_3.$$

Analogously, the increasing map $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ sending k to 3k for $k \in \mathbb{N}_0$ tells us that $(u_{6n+3})_{n\in\mathbb{N}_0}$ is a subsequence of $(u_{2n+1})_{n\in\mathbb{N}_0}$, whereas the increasing map $\psi:\mathbb{N}_0\to\mathbb{N}_0$ sending j to 2j + 3 for $j \in \mathbb{N}_0$ tells us that $(u_{6n+3})_{n \in \mathbb{N}_0}$ is a subsequence of $(u_{3n})_{n \in \mathbb{N}_0}$. Since a subsequence of a convergent sequence is also convergent with the same limit, we conclude that

 $\ell_2 = \lim_{n \to +\infty} u_{6n+3} = \ell_3.$

As a consequence, $\ell_1 = \ell_2$, and by the previous item we conclude that $(u_n)_{n \in \mathbb{N}_0}$ is also convergent with limit $\ell_1 = \ell_2$.

6. Computation of limits using usual functions. Compute the limit, if it exists, of the following sequences $(u_n)_{n \in \mathbb{N}}$ given by :

- (a) $u_n = n^4 (\ln(1 1/n^2) + 1/n^2),$
- (d) $u_n = \tan(1/n)\cos(2n+1)$,
- (b) $u_n = n(e^{2/n} 1),$
- (c) $u_n = n!/n^n$,

- (e) $u_n = (\sqrt{n-3} + i \ln(2n)) / \ln(n),$
- (f) $u_n = \ln(n^2 + 3n 2) / \ln(n^{1/3}).$

Solution.

(a) Consider the function $f : \mathbb{R}_{<1} \to \mathbb{R}$ given by

$$f(x) = \frac{\ln(1-x) + x}{x^2}$$

for $x \in \mathbb{R}_{<1}$. Then, using the Bernoulli-L'Hospital rule we see that

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1-x) + x}{x^2} = \lim_{x \to 0} \frac{-\frac{1}{1-x} + 1}{2x} = \lim_{x \to 0} \frac{1}{2(x-1)} = -\frac{1}{2}.$$

Since

$$u_n = n^4 \left(\ln \left(1 - \frac{1}{n^2} \right) + \frac{1}{n^2} \right) = f(1/n)$$

for $n \in \mathbb{N}$, we conclude that

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(1/n) = \lim_{x \to 0} f(x) = -\frac{1}{2}.$$

(b) Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{e^{2x} - 1}{x},$$

for $x \in \mathbb{R}$. Then, using the Bernoulli-L'Hospital rule we see that

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{2e^{2x}}{1} = 2.$$

 $u_n = n(e^{2/n} - 1) = f(1/n^2)$

for $n \in \mathbb{N}$, we conclude that

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(1/n^2) = \lim_{x \to 0} f(x) = 2.$$

(c) Note that $0 \le u_n$ and

$$u_n = \frac{1 \cdot 2 \cdot \dots (n-1) \cdot n}{\underbrace{n \cdot n \cdot \dots n \cdot n}_{n \text{ factors}}} = \frac{1}{n} \frac{2}{n} \dots \frac{n-1}{n} \frac{n}{n} \le \frac{1}{n} \cdot \underbrace{1 \cdots 1 \cdot 1}_{n-1 \text{ factors}} = \frac{1}{n},$$

for all $n \in \mathbb{N}$, where we have used that $k/n \leq 1$ for all $k \in [\![2, n]\!]$. In other words, $0 \leq u_n \leq 1/n$ for all $n \in \mathbb{N}$. Since the limit of 1/n is zero, we conclude that $(u_n)_{n \in \mathbb{N}}$ converges to zero as n goes to $+\infty$ as well, by the sandwich theorem.

- (d) Since the sequence $(v_n)_{n \in \mathbb{N}}$ given by $v_n = \tan(1/n)$ converges to zero as n goes to $+\infty$ and the sequence $(w_n)_{n \in \mathbb{N}}$ given by $w_n = \cos(2n+1)$ is bounded, for $|\cos(2n+1)| \le 1$, we conclude that the sequence $(u_n)_{n \in \mathbb{N}}$ given by $u_n = v_n w_n$ converges to zero as n goes to $+\infty$ as well.
- (e) Recall that a sequence $(u_n)_{n\in\mathbb{N}}$ of complex numbers converges (to u = a + ib, with $a, b \in \mathbb{R}$) if and only if the sequences of real numbers given by $(\operatorname{Re}(u_n))_{n\in\mathbb{N}}$ and $(\operatorname{Im}(u_n))_{n\in\mathbb{N}}$ converge (to a and b, respectively). We thus consider the sequences $(\operatorname{Re}(u_n))_{n\in\mathbb{N}}$ and $(\operatorname{Im}(u_n))_{n\in\mathbb{N}}$ and $(\operatorname{Im}(u_n))_{n\in\mathbb{N}}$ given by

$$\operatorname{Re}(u_n) = \frac{\sqrt{n-3}}{\ln(n)}$$
 and $\operatorname{Im}(u_n) = \frac{\ln(2n)}{\ln(n)}$

Since

$$\mathsf{m}(u_n) = \frac{\mathsf{ln}(2n)}{\mathsf{ln}(n)} = \frac{\mathsf{ln}(2) + \mathsf{ln}(n)}{\mathsf{ln}(n)} = 1 + \frac{\mathsf{ln}(2)}{\mathsf{ln}(n)}$$

for $n \in \mathbb{N}$, we conclude that

$$\lim_{n \to \infty} \operatorname{Im}(u_n) = 1.$$

However, we note that

$$\lim_{n \to +\infty} \operatorname{Re}(u_n) = \lim_{n \to +\infty} \frac{\sqrt{n-3}}{\ln(n)} = +\infty.$$
(1)

Indeed, consider the function $f : \mathbb{R}_{>0} \to \mathbb{R}$ given by

$$f(x) = \frac{\sqrt{x-3}}{\ln(x)}$$

for $x \in \mathbb{R}_{>0}$. Then, using the Bernoulli-L'Hospital rule we see that

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x-3}}{\ln(x)} = \lim_{x \to +\infty} \frac{\frac{1}{2\sqrt{x-3}}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{x}{2\sqrt{x-3}}$$
$$= \lim_{x \to +\infty} \frac{\sqrt{x}}{2\sqrt{1-3/x}} = +\infty.$$

The identity $\operatorname{Re}(u_n) = f(n)$ for $n \in \mathbb{N}$ gives us (1). In consequence, the limit of $(u_n)_{n \in \mathbb{N}}$ does not exist.

(f) Note that

$$u_n = \frac{\ln(n^2 + 3n - 2)}{\ln(n^{1/3})} = \frac{\ln\left(n^2(1 + 3/n - 2/n^2)\right)}{\ln(n)/3} = 3\frac{\ln(n^2) + \ln(1 + 3/n - 2/n^2)}{\ln(n)}$$
$$= 3\frac{2\ln(n) + \ln(1 + 3/n - 2/n^2)}{\ln(n)} = 6\frac{\ln(n)}{\ln(n)} + 3\frac{\ln(1 + 3/n - 2/n^2)}{\ln(n)}$$
$$= 6 + 3\frac{\ln(1 + 3/n - 2/n^2)}{\ln(n)}$$

for all $n \in \mathbb{N}$. Since the numerator of the last summand goes to zero as n goes to $+\infty$ and the denominator goes to $+\infty$ as *n* goes to $+\infty$, we conclude that

$$\lim_{n \to +\infty} u_n = 6$$

7. Adjacent sequences.

(a) Prove that each of the following pair of sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent.

(i)
$$u_n = \sum_{k=1}^n 1/k^2$$
 and $v_n = u_n + 1/n$.

- (i) $u_n = \sum_{k=1}^n 1/k^3$ and $v_n = u_n + 1/n^2$. (ii) $u_0 = a > 0, v_0 = b > a, v_{n+1} = (u_n + v_n)/2$ and $u_{n+1} = \sqrt{u_n v_n}$.

(b) Define the real sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ by

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 and $v_n = u_n + \frac{1}{n!n}$.

- (i) Show that these sequences are adjacent, with a common limit *e* (it's a possible definition of *e*).
- (ii) Show that *e* is not rational.
 Hint : Suppose that *e* = *p*/*q* and note that for *n* ∈ N we have the inequalities *n*!*u_n* < *n*!*p*/*q* < *n*!*v_n*. Then choose *n* such that *n*!*p*/*q* is an integer.

Solution.

(a) Recall that two sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are said to be **adjacent** if

 $\lim_{n\to+\infty}(u_n-v_n)=0.$

- (i) Since $v_n u_n = 1/n$ for all $n \in \mathbb{N}$, we conclude that $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent. Note moreover that $u_n \leq v_n$ for all $n \in \mathbb{N}$.
- (ii) Since $v_n u_n = 1/n^2$ for all $n \in \mathbb{N}$, we conclude that $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent. Note moreover that $u_n \leq v_n$ for all $n \in \mathbb{N}$.
- (iii) We will first prove the identity

$$\sqrt{xy} \le \frac{x+y}{2} \tag{2}$$

for all $x, y \in \mathbb{R}_{\geq 0}$. It is clear that (2) holds for x = 0 or y = 0. Assume that x, y > 0. Then, by dividing (2) by y, we see that (2) for x, y > 0 is tantamount to

$$\sqrt{\frac{x}{y}} \le \frac{x/y+1}{2} \tag{3}$$

for all x, y > 0. By setting t = x/y, we see thus that (3) for x, y > 0 is equivalent to

$$\sqrt{t} \le \frac{t+1}{2} \tag{4}$$

for all t > 0. Note however that, by multiplying by 2 and taking the square, (4) is tantamount to $4t \le (t + 1)^2$, *i.e.* $4t \le t^2 + 2t + 1$, which is equivalent to $0 \le t^2 - 2t + 1 = (t - 1)^2$, which is a tautology. We have thus proved (2).

We now claim that

$$0 \le u_n \le v_n \tag{5}$$

for all $n \in \mathbb{N}_0$. Indeed, the case for n = 0 follows from the assumptions. Assume that $0 \le u_n \le v_n$ holds for $n \in \mathbb{N}_0$. Then,

$$u_{n+1} = \sqrt{u_n v_n} \ge 0$$
 and $u_{n+1} = \sqrt{u_n v_n} \le \frac{u_n + v_n}{2} = v_{n+1}$

where we used (2). This proves (5). Moreover, (5) tells us that

$$u_n \le u_{n+1} \text{ and } v_{n+1} \le v_n \tag{6}$$

for all $n \in \mathbb{N}_0$. Indeed, using (5) we get

$$u_{n+1} = \sqrt{u_n v_n} \ge \sqrt{u_n u_n} = u$$

and

$$v_{n+1} = \frac{u_n + v_n}{2} \le \frac{v_n + v_n}{2} = v_n$$

for all $n \in \mathbb{N}_0$. Hence, $(u_n)_{n \in \mathbb{N}}$ is an increasing sequence with upper bound v_1 and $(v_n)_{n \in \mathbb{N}}$ is a decreasing sequence with lower bound u_1 . In consequence, $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are convergent. Let *c* be the limit of $(u_n)_{n \in \mathbb{N}}$ and *d* be the limit of $(v_n)_{n \in \mathbb{N}}$. Moreover,

$$d = \lim_{n \to +\infty} v_{n+1} = \lim_{n \to +\infty} \frac{u_n + v_n}{2} = \frac{c+d}{2}$$

tells us that c = d. As a consequence,

$$\lim_{n \to +\infty} (u_n - v_n) = \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n = c - d = 0,$$

i.e. the sequences are adjacent.

(b) (i) Since

$$\lim_{n \to +\infty} (u_n - v_n) = \lim_{n \to +\infty} \frac{1}{n!n} = 0$$

the sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are adjacent. Moreover, the sequence $(u_n)_{n\in\mathbb{N}}$ is clearly strictly increasing. Analogously, the sequence $(v_n)_{n\in\mathbb{N}}$ is strictly decreasing, since

$$\begin{split} \nu_{n+1} - \nu_n &= u_{n+1} - u_n + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n} \\ &= \frac{1}{(n+1)!} + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n} = \frac{n+2}{(n+1)!(n+1)} - \frac{1}{n!n} \\ &= \frac{1}{n!} \bigg[\frac{n+2}{(n+1)^2} - \frac{1}{n} \bigg] = \frac{1}{n!} \frac{-1}{n(n+1)^2} < 0, \end{split}$$

for all $n \in \mathbb{N}$.

(ii) Since $(u_n)_{n\in\mathbb{N}}$ is increasing, $(v_n)_{n\in\mathbb{N}}$ is decreasing, $u_n \leq v_n$ for all $n \in \mathbb{N}$, and they are adjacent, we conclude that

$$u_n < \lim_{n \to +\infty} u_n = e = \lim_{n \to +\infty} v_n < v_n \tag{7}$$

for all $n \in \mathbb{N}$. Suppose that e = p/q for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Choose $n \in \mathbb{N}$ such that q divides n! (*e.g.* n = q). Hence, n!p/q is an integer and multiplying (7) by n! we get

$$\sum_{k=0}^{n} \frac{n!}{k!} = n! u_n < n! \frac{p}{q} = n! e < n! v_n = n! u_n + \frac{1}{n}$$

Note that $n!u_n \in \mathbb{N}$ and since n > 1, $0 < n!(e-u_n) < n!(v_n-u_n) < 1/n \le 1$. Since $n!e-u_n$ is an integer, but there are no integers strictly larger than 0 and strictly less than 1, we conclude that *e* cannot be a rational number.

- **8.** Sequences defined recursively.
- (a) Let $f : [0,1] \rightarrow [0,1]$ be a continuous function such that f(0) = 0, f(1) = 1and f(x) < x for all $x \in]0,1[$. Define recursively a sequence $(u_n)_{n \in \mathbb{N}_0}$ by

$$\begin{cases} u_0 \in [0, 1], \\ u_{n+1} = f(u_n), \text{ for all } n \in \mathbb{N}_0 \end{cases}$$

Show that the sequence $(u_n)_{n \in \mathbb{N}_0}$ converges and compute its limit.

(b) Define recursively a sequence $(v_n)_{n \in \mathbb{N}_0}$ by

$$\begin{cases} \nu_0 = \frac{1}{2}, \\ \nu_{n+1} = \frac{\nu_n}{2 - \sqrt{\nu_n}}, \text{ for all } n \in \mathbb{N}_0. \end{cases}$$

Show that the sequence $(v_n)_{n \in \mathbb{N}_0}$ converges and compute its limit.

Solution.

(a) Assume that $u_0 = 1$, then $u_n = 1$ for all $n \in \mathbb{N}_0$, since f(1) = 1. In this case, $(u_n)_{n \in \mathbb{N}_0}$ converges to 1. Analogously, if $u_0 = 0$, then $u_n = 0$ for all $n \in \mathbb{N}_0$, since f(0) = 0. In this case, $(u_n)_{n \in \mathbb{N}_0}$ converges to 0.

Finally, assume that $u_0 \in]0, 1[$. We claim that $u_{n+1} \leq u_n$ for all $n \in \mathbb{N}_0$. Indeed, note that the statement holds for n = 0, since $u_1 = f(u_0) < u_0$. If the previous statement holds for $n \in \mathbb{N}_0$, then $u_{n+1} \leq u_0 < 1$ is either zero or lies in]0, 1[. If it vanishes, then $u_{n+2} = f(u_{n+1}) = 0 \leq 0 = u_{n+1}$. If $u_{n+1} \in]0, 1[$, then $u_{n+2} = f(u_{n+1}) < u_{n+1}$. We conclude that the sequence $(u_n)_{n \in \mathbb{N}_0}$ is decreasing and bounded below (by 0), so it is convergent. Let *c* be its limit, which is strictly less than 1, since $c \leq u_0 < 1$. Since *f* is continuous, then

$$c = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n) = f\left(\lim_{n \to +\infty} u_n\right) = f(c),$$

so *c* is a fixed point of *f*. Since the only fixed point of *f* in [0, 1[is 0, we conclude that c = 0.

(b) ejitems It is clear that the function $f : [0, 1] \rightarrow [0, 1]$

$$f(x) = \frac{x}{2 - \sqrt{x}}$$

is continuous and satisfies that f(0) = 0, f(1) = 1 and f(x) < x for all $x \in]0,1[$, since the latter is tantamount to $1 < 2 - \sqrt{x}$ for all $x \in]0,1[$, *i.e.* $\sqrt{x} < 1$ for all $x \in]0,1[$. Since $u_0 \in]0,1[$, we conclude that the sequence $(v_n)_{n \in \mathbb{N}_0}$ converges and its limit is zero.

9. Cesàro average. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Define

$$S_n = \frac{u_1 + \ldots + u_n}{n}$$

for all $n \in \mathbb{N}$.

- (a) Show that if $(u_n)_{n \in \mathbb{N}}$ converges in \mathbb{C} , then $(S_n)_{n \in \mathbb{N}}$ converges to the same limit.
- (b) Give an example of a divergent sequence $(u_n)_{n \in \mathbb{N}}$ such that $(S_n)_{n \in \mathbb{N}}$ converges.
- (c) Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of (strictly) positive real numbers such that u_{n+1}/u_n converges. Show that $(u_n^{1/n})_{n \in \mathbb{N}}$ converges to the same limit.

Solution.

(a) We note first that

$$\left|S_n-\ell\right| = \left|\frac{\sum_{k=1}^n u_k}{n}-\ell\right| = \left|\frac{\left(\sum_{k=1}^n u_k\right)-n\ell}{n}\right| = \frac{\left|\sum_{k=1}^n (u_k-\ell)\right|}{n} \le \frac{\sum_{k=1}^n |u_k-\ell|}{n},$$

for all $n \in \mathbb{N}$. Assume that $(u_n)_{n \in \mathbb{N}}$ converges to $\ell \in \mathbb{C}$. This implies that, given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|u_n - \ell| \le \epsilon/2$ for all $n \ge n_0$. Then,

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} |u_k - \ell| &= \frac{1}{n} \sum_{k=1}^{n_0} |u_k - \ell| + \frac{1}{n} \sum_{k=n_0+1}^{n} |u_k - \ell| \le \frac{1}{n} \sum_{k=1}^{n_0} |u_k - \ell| + \frac{\epsilon(n-n_0)}{2n} \\ &\le \frac{1}{n} \sum_{k=1}^{n_0} |u_k - \ell| + \frac{\epsilon}{2}, \end{split}$$

for all $n \ge n_0$. Now, since $C = \sum_{k=1}^{n_0} |u_k - \ell|$ is a finite value, let $n_1 \in \mathbb{N}$ be such that $C/n \le \epsilon/2$ (take for instance $n_1 = \lfloor 2C/\epsilon \rfloor + 1$). Set $N_0 = \max(n_0, n_1)$. Then,

$$\frac{1}{n}\sum_{k=1}^{n_0}|u_k-\ell|+\frac{\epsilon}{2}\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

for all $n \ge N_0$, which implies that $|S_n - \ell| \le \epsilon$, for all $n \ge N_0$. This proves that $(S_n)_{n \in \mathbb{N}}$ converges to ℓ as n goes to $+\infty$.

(b) Let $(u_n)_{n \in \mathbb{N}}$ be given by $u_n = (1 + (-1)^n)/2$ for $n \in \mathbb{N}$, *i.e.*

$$u_n = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ 1, & \text{if } n \text{ is even.} \end{cases}$$

It is easy to see that $(u_n)_{n\in\mathbb{N}}$ is not convergent, since $(u_{2n})_{n\in\mathbb{N}}$ converges to 1 whereas $(u_{2n+1})_{n\in\mathbb{N}_0}$ converges to 0. Note in this case that

$$S_n = \begin{cases} \frac{m}{2m+1}, & \text{if } n = 2m+1 \text{ is odd with } m \in \mathbb{N}_0 \\ \frac{1}{2}, & \text{if } n = 2m \text{ is even with } m \in \mathbb{N}. \end{cases}$$

Since both subsequence $(S_{2m})_{m \in \mathbb{N}}$ and $(S_{2m+1})_{m \in \mathbb{N}_0}$ converge to 1/2, we see that $(S_n)_{n \in \mathbb{N}}$ converges.

(c) Assume that u_{n+1}/u_n converges to ℓ as n goes to $+\infty$. Note that $\ell \ge 0$. Then, given $\epsilon > 0$ such that $\epsilon < \ell$, there exists n_0 such that

$$\left|\frac{u_{n+1}}{u_n} - \ell\right| \le \frac{\epsilon}{2}$$

for all $n \ge n_0$. To reduce some expressions, we will write $\epsilon' = \epsilon/2$. This implies that $(\ell - \epsilon') \le u_{n+1}/u_n \le (\ell + \epsilon')$ for all $n \ge n_0$, *i.e.* $(\ell - \epsilon')u_n \le u_{n+1} \le (\ell + \epsilon')u_n$ for all $n \ge n_0$. Note that $0 < \ell - \epsilon' < \ell + \epsilon'$, since $\epsilon < \ell$. By a recursive argument we conclude that

$$(\ell - \epsilon')^k u_n \le u_{n+k} \le (\ell + \epsilon')^k u_n,\tag{8}$$

for all $n \ge n_0$ and $k \in \mathbb{N}_0$. Indeed, this is trivially verified if k = 0 and any $n \ge n_0$. Assuming that it holds for k and a fixed $n \ge n_0$ tells us that

$$(\ell - \epsilon')^{k+1} u_n \le (\ell - \epsilon') u_{n+k} \le u_{n+k+1} \le (\ell + \epsilon') u_{n+k} \le (\ell + \epsilon')^{k+1} u_n,$$

as we wanted to show. In particular, (8) tells us that

$$(\ell - \epsilon')^{n - n_0} u_{n_0} \le u_n \le (\ell + \epsilon')^{n - n_0} u_{n_0},\tag{9}$$

for all $n \ge n_0$, which yields

$$(\ell - \epsilon') \frac{u_{n_0}^{1/n}}{(\ell - \epsilon')^{n_0/n}} = (\ell - \epsilon')^{1 - n_0/n} u_{n_0}^{1/n} \le u_n^{1/n} \le (\ell + \epsilon')^{1 - n_0/n} u_{n_0}^{1/n} = (\ell + \epsilon') \frac{u_{n_0}^{1/n}}{(\ell + \epsilon')^{n_0/n}},$$
(10)

for all $n \ge n_0$. Pick $n_1 \ge n_0$ such that

$$\frac{u_{n_0}^{1/n}}{(\ell+\epsilon')^{n_0/n}} \leq \frac{\ell+\epsilon}{\ell+\epsilon'} \text{ and } \frac{u_{n_0}^{1/n}}{(\ell-\epsilon')^{n_0/n}} \geq \frac{\ell-\epsilon}{\ell-\epsilon'}$$

for all $n \ge n_1$. This is possible since

$$\lim_{n \to +\infty} \frac{u_{n_0}^{1/n}}{(\ell + \epsilon')^{n_0/n}} = \lim_{n \to +\infty} \frac{u_{n_0}^{1/n}}{(\ell - \epsilon')^{n_0/n}} = 1,$$

but

$$0 < \frac{\ell - \epsilon}{\ell - \epsilon'} < 1 < \frac{\ell + \epsilon}{\ell + \epsilon'}.$$

Hence,

$$(\ell + \epsilon') \frac{u_{n_0}^{1/n}}{(\ell + \epsilon')^{n_0/n}} \le \ell + \epsilon$$

and

$$(\ell - \epsilon') \frac{u_{n_0}^{1/n}}{(\ell - \epsilon')^{n_0/n}} \ge \ell - \epsilon$$

for all $n \ge n_1$. Using the previous inequalities together with (10), we obtain that

 $\ell-\epsilon \leq u_n^{1/n} \leq \ell+\epsilon$

for all $n \ge n_1$. As a consequence, the sequence $(u_n^{1/n})_{n \in \mathbb{N}}$ converges to ℓ as n goes to $+\infty$.

10. Lim sup and lim inf. Let $(u_n)_{n \in \mathbb{N}_0}$ be a bounded sequence of real numbers. Define sequences $(i_n)_{n \in \mathbb{N}_0}$ and $(s_n)_{n \in \mathbb{N}_0}$ by

$$i_n = \inf\{u_k : k \ge n\}$$
 and $s_n = \sup\{u_k : k \ge n\}$

for all $n \in \mathbb{N}_0$.

(a) Show that both $(i_n)_{n \in \mathbb{N}_0}$ and $(s_n)_{n \in \mathbb{N}_0}$ converge. The limit of $(i_n)_{n \in \mathbb{N}_0}$ is called **limit inferior** or **lower limit** of the sequence $(u_n)_{n \in \mathbb{N}_0}$, and is denoted by

 $\liminf_{n\to\infty} u_n.$

The limit of $(s_n)_{n \in \mathbb{N}_0}$ is called **limit superior** or **upper limit** of the sequence

 $(u_n)_{n\in\mathbb{N}_0}$, and is written

 $\limsup_{n\to\infty} u_n.$

- (b) Show that there exists a subsequence of (u_n)_{n∈N₀} converging to the limit inferior of (u_n)_{n∈N₀} and another subsequence of (u_n)_{n∈N₀} converging to the limit superior of (u_n)_{n∈N₀}.
- (c) Prove that $(u_n)_{n \in \mathbb{N}_0}$ converges if and only if $(i_n)_{n \in \mathbb{N}_0}$ and $(s_n)_{n \in \mathbb{N}_0}$ converge to the same limit in \mathbb{R} .

Solution.

(a) Let $a, b \in \mathbb{R}$ satisfy that $a \le u_n \le b$ for all $n \in \mathbb{N}_0$. Then $\{u_k : k \ge n\} \subseteq [a, b]$ for all $n \in \mathbb{N}_0$, which implies that

$$i_n = \inf\{u_k : k \ge n\} \in [a, b] \text{ and } s_n = \sup\{u_k : k \ge n\} \in [a, b]$$

In consequence, the sequences $(i_n)_{n \in \mathbb{N}_0}$ and $(s_n)_{n \in \mathbb{N}_0}$ are bounded. Moreover, $(i_n)_{n \in \mathbb{N}_0}$ is an increasing sequence and $(s_n)_{n \in \mathbb{N}_0}$ is a decreasing sequence, since the inclusion $\{u_k : k \ge n+1\} \subseteq \{u_k : k \ge n\}$ implies that

$$i_{n+1} = \inf\{u_k : k \ge n+1\} \le \inf\{u_k : k \ge n\} = i_n$$

and

$$s_{n+1} = \sup\{u_k : k \ge n+1\} \ge \inf\{u_k : k \ge n\} = s_n$$

for all $n \in \mathbb{N}_0$. Since bounded monotone sequences are convergent, we conclude that $(i_n)_{n \in \mathbb{N}_0}$ and $(s_n)_{n \in \mathbb{N}_0}$ converge.

- (b) We prove the case or $(i_n)_{n \in \mathbb{N}_0}$, since the one for $(s_n)_{n \in \mathbb{N}_0}$ is analogous. We construct a strictly increasing map $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ satisfying that $u_{\varphi(n)} \leq i_{\varphi(n-1)} + 1/2^n$ by recursion. Assume we have constructed $\varphi(0), \ldots, \varphi(n-1)$ as before, for some $n \in \mathbb{N}_0$. Since $i_{\varphi(n-1)+1} = \inf\{u_k : k \geq \varphi(n-1)+1\}$, then there exists $\varphi(n) > \varphi(n-1)$ such that $u_{\varphi(n)} \leq i_{\varphi(n-1)} + 1/2^n$. Note also that $i_{\varphi(n)} \leq u_{\varphi(n)}$, by definition of the sequence $(i_n)_{n \in \mathbb{N}_0}$. Since the sequence $(i_n)_{n \in \mathbb{N}_0}$ is convergent, its subsequence $(i_{\varphi(n)})_{n \in \mathbb{N}_0}$ is also convergent with the same limit, and the inequalities $i_{\varphi(n)} \leq u_{\varphi(n)} \leq i_{\varphi(n-1)} + 1/2^n$ for all $n \in \mathbb{N}_0$ then tell us that the sequence $(u_{\varphi(n)})_{n \in \mathbb{N}_0}$ also converges to the limit of $(i_{\varphi(n)})_{n \in \mathbb{N}_0}$, *i.e.* $(u_{\varphi(n)})_{n \in \mathbb{N}_0}$ converges to the lower limit of $(u_n)_{n \in \mathbb{N}_0}$.
- (c) Assume that (u_n)_{n∈N₀} converges to ℓ ∈ ℝ. The previous item tells us that there exists subsequences (u_{φ(n)})_{n∈N₀} and (u_{ψ(n)})_{n∈N₀} of (u_n)_{n∈N₀} converging to the lower limit inferior and the upper limit of (u_n)_{n∈N₀}, respectively. Since (u_n)_{n∈N₀} is convergent, the limits of the subsequences (u_{φ(n}))_{n∈N₀} and (u_{ψ(n}))_{n∈N₀} should coincide with ℓ. Conversely, assume that (i_n)_{n∈N₀} and (s_n)_{n∈N₀} converge to the same limit ℓ in ℝ. Since

 $i_n = \inf\{u_k : k \ge n\} \le u_n \le \sup\{u_k : k \ge n\} = s_n$

for all $n \in \mathbb{N}_0$, the Sandwich Theorem tells that $(u_n)_{n \in \mathbb{N}_0}$ converges to ℓ .