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MAT332
Fall 2021

Final examination - June 2023

Unjustified answers will be automatically excluded.

The grading is only approximate.

1.4,5pt Determine if following series are convergent or divergent :

(a)
+∞
∑

n=2

(−2)n cos(n)
3n+n , (b)

+∞
∑

n=2

en+1

n! , (c)
+∞
∑

n=2

�

1− 2
n

�n2

.

Solution.
(a) Let un = 2n/(3n + n) and vn = (−1)n cos(n) for n ≥ 2. Note that un+1 ≤ un for

all integers n ≥ 2, since the latter is equivalent to n ≤ 3n + 1 for n ≥ 2, which is
trivially proved by induction. Let wn = ein(1+π) for n≥ 2. Hence, vn = Re(wn) for
all integers n≥ 2, which implies that
�

�

�

�

N+2
∑

n=2

vn

�

�

�

�

=

�

�

�

�

N+2
∑

n=2

Re(wn)

�

�

�

�

=

�

�

�

�

Re

� N+2
∑

n=2

wn

�

�

�

�

�

=

�

�

�

�

Re

�

ei2(1+π) 1− ei(N+1)(1+π)

1− ei(1+π)

�

�

�

�

�

≤
�

�

�

�

ei2(1+π) 1− ei(N+1)(1+π)

1− ei(1+π)

�

�

�

�

≤
2

|1− ei(1+π)|

for all nonnegative integers N , where we used the sum of the geometric series of
ratio ei(1+π) in the third equality and that |Re(z)| ≤ |z| for all z ∈ C in the first
inequality. The Leibniz’s criterion tells us that the series

∑+∞
n=2 unvn is convergent.

(b) Let un = en+1/n! for n≥ 2. Since un > 0 for all integers n≥ 2 and

lim
n→+∞

un+1

un
= lim

n→+∞

e
n+ 1

= 0< 1,

the ratio test tells us that the series
∑+∞

n=2 un is (absolutely) convergent.
(c) Recall that

lim
x→0
(1+ x)1/x = e > 1

Let

un =
�

1−
2
n

�n2

for n≥ 2. Since un > 0 for all integers n≥ 2 and

lim
n→+∞

n
p

un = lim
n→+∞

�

1−
2
n

�n

=
�

lim
n→+∞

�

1−
2
n

�−n/2�−2

= e−2 < 1,
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the ratio test tells us that the series
∑+∞

n=2 un is (absolutely) convergent.

2.3pt Let α ∈ R>0. Consider the sequence (uα,n)n∈N≥2
given by

uα,n =
(−1)n

nα + (−1)n

for all integers n≥ 2.

(a) Determine the set

AC=
§

α ∈ R>0 :
+∞
∑

n=2

uα,n is absolutely convergent
ª

.

(b) Determine the set

C=
§

α ∈ R>0 :
+∞
∑

n=2

uα,n is convergent
ª

.

Solution.

(a) Note first that

|uα,n|=
1

nα + (−1)n
(1)

if n≥ 2, since in that case nα ≥ 2α = eα ln(2) > e0 = 1. Moreover, the series

+∞
∑

n=2

1
nα + (−1)n

(2)

is convergent if and only if it is bounded, since all their terms are nonnegative.
Note now that

lim
n→+∞

1
nα+(−1)n

1
nα

= 1

for all α > 0. Hence, for α > 1, since
∑+∞

n=1 n−α is convergent, we conclude that
(2) is convergent, whereas, for α ≤ 1, since

∑+∞
n=1 n−α is divergent, we conclude

that (2) is divergent. As a consequence,

AC= R>1.

(b) Recall that AC ⊆ C, so R>1 ⊆ C. Moreover, we claim that α = 1 also belongs to
C. Indeed, doing a block summation we see that

+∞
∑

n=2

(−1)n

n+ (−1)n
=
+∞
∑

k=1

�

1
(2k) + 1

−
1

(2k+ 1)− 1

�

= −
+∞
∑

k=1

1
2k(2k+ 1)
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is convergent, since

lim
k→+∞

1
2k(2k+1)

1
4k2

= 1,

and the series
∑+∞

k=1 (4k)−2 is convergent. Hence, R≥1 ⊆ C.
Let us assume that α < 1. Doing a block summation we see that

+∞
∑

n=2

(−1)n

nα + (−1)n
=
+∞
∑

k=1

�

1
(2k)α + 1

−
1

(2k+ 1)α − 1

�

=
+∞
∑

k=1

(2k+ 1)α − (2k)α − 2
(2k)α(2k+ 1)α

.

Let

vα,k =
(2k+ 1)α − (2k)α − 2
(2k)α(2k+ 1)α

for all positive integers k. Given x ∈ R>1, recall that (x + 1)α − xα = αyα−1 for
all some y ∈ [x , x + 1], by the Mean Value Theorem. This implies that

lim
k→+∞

(2k+ 1)α − (2k)α = lim
k→+∞

α(2k+ θk)
α−1 = 0,

where we used the Mean Value Theorem to write (2k+1)α−(2k)α = α(2k+θk)α−1

for some θk ∈ [0,1]. This in turn implies that there exists kα ∈ N such that vα,k ≤ 0
for all integers k ≥ kα. Moreover, this also tells us that

lim
k→+∞

vα,k
2

(2k)2α
= lim

k→+∞

((2k+ 1)α − (2k)α)/2− 1
((2k+ 1)/(2k))α

= 1.

Since the series
∑+∞

k=1 (2k)−β is convergent if and only if β > 1, we conclude that

+∞
∑

n=2

(−1)n

nα + (−1)n

is convergent if and only if 2α > 1, i.e. α > 1/2. In consequence,

AC= R>1/2.

3.3,5pt Determine if the following integrals are convergent or divergent :

(a)
∫ +∞

2
1

x2/3(x−2)2/3 d x , (b)
∫ +∞

1

p
xe−x d x .

Solution.
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(a) Note that the integrand is a continuous function over R>2. Since

lim
x→+∞

1
x2/3(x−2)2/3

1
x4/3

= 1,

and
∫ +∞

3 x−4/3d x converges,

∫ +∞

3

d x
x2/3(x − 2)2/3

converges as well. Moreover, since

lim
x→2+

1
x2/3(x−2)2/3

1
22/3(x−2)2/3

= 1,

and
∫ 3

2 (x − 2)−2/3d x converges, for

∫ 3

2

(x − 2)−2/3d x = lim
ε→0+

�

3(x − 2)1/3
�3

2+ε
= 3,

then
∫ 3

2

d x
x2/3(x − 2)2/3

converges as well. As a consequence,

∫ +∞

2

1
x2/3(x − 2)2/3

d x

converges.
(b) Note that the integrand is a continuous and nonnegative function overR≥1. Then,

the integral we are interested in converges if and only if it is bounded. Note first
that
p

xe−x ≤ xe−x for all x ≥ 1. Moreover, since

∫ +∞

1

xe−x d x = lim
x→+∞

�

−
1+ x

ex

�M

1
=

2
e

,

we conclude that
∫ +∞

1

p
xe−x d x ≤
∫ +∞

1

xe−x d x =
2
e

,

so the required integral is bounded and thus convergent.
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4.9pt Consider the functional expression given by

f (x) =
ln
�

|1− x3|
�

x3
.

(a) Determine the maximal domain of definition of f within R≥0.
(b) Prove that the integral
∫ x

0

f (t)d t (3)

converges for all x ∈ [0, 1]. Define thus the function F : [0, 1]→ R whose
value at x ∈ [0, 1] is given by the integral (3).

(c) Let x ∈ ]0, 1 [. Using integration by parts, express the value of F(x) in
terms of an integral between 0 and 1 of a rational fraction to be determi-
ned.

(d) Let g : [0, 1 [→ R be the function given by g(x) = 3/(1−x3) for x ∈ [0, 1 [.
Determine the partial fraction decomposition of g(x).

(e) Compute a primitive of the function g.
(f) Obtain an explicit expression of F(x) for x ∈ [0,1 [ in terms of elementary

functions.
(g) Prove that

F(1) = −
3
4
ln(3)−

π

4
p

3
.

Solution.

(a) It is clear that the maximal domain of definition within R≥0 of the functional
expression f is R>0 \ {1}. We also note that the function f : R>0 \ {1} → R it
defines is continuous, since it is the quotient of continuous functions with nonzero
denominator.

(b) We note first that

lim
x→0+

ln(1− x3)
x3

= lim
x→0+

−3x2

1−x3

3x2
= − lim

x→0+

1
1− x3

= −1,

where the second identity follows from the Bernoulli-L’Hospital rule. This implies
that the function f̄ : R≥0 \ {1} → R given by f̄ (x) = f (x) for x ∈ R>0 \ {1} and
f̄ (0) = −1 is continuous. As a consequence, the definite integral
∫ x

0

f̄ (t)d t =

∫ x

0

f (t)d t = F(x)

exists for all x ∈ [0, 1 [ . Note that F(0) = 0 by definition of the integral. It remains
to consider the case x ∈ R≥1.
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We will finally show that
∫ 1

0

ln
�

|1− t3|
�

t3
d t =

∫ 1/2

0

ln
�

|1− t3|
�

t3
d t +

∫ 1

1/2

ln
�

|1− t3|
�

t3
d t (4)

converges. Since the integrand is a nonnegative function, it suffices to show that
the integral is bounded. Moreover, by the argument in the previous paragraph, the
integral (4) converges if and only if the last integral in (4) converges. Moreover
since the integrand has a continuous at every point of Note that

ln
�

|1− t3|
�

t3
=

ln
�

|1− t|
�

t3
+
ln(t2 + t + 1)

t3
,

where we used that 1− t3 = (1− t)(t2+ t +1). This implies that the last integral
in (4) converges if and only if
∫ 1

1/2

ln
�

|1− t|
�

t3
d t (5)

converges. Applying the change of variables u= 1− t to the previous expression,
we get that
∫ 1

1/2

�

�

�

�

ln(1− t)
t3

�

�

�

�

d t =

∫ 1/2

0

�

� ln(u)
�

�

(1− u)3
du≤ 8

∫ 1/2

0

�

� ln(u)
�

�du

= −8 lim
ε→0+

�

u
�

ln(u)− 1)
�1/2

ε

= 4
�

ln(2) + 1
�

,

where we used that (1 − u)3 ≥ 1/8 for all u ∈ [0, 1/2]. Hence, the integral (5)
converges, which in turn implies that the integral (4) converges

(c) We have that

F(x) =

∫ x

0

ln
�

|1− t3|
�

t3
d t = lim

ε→0+

�

−
ln
�

|1− t3|
�

2t2

�x

ε

−
3
2

∫ x

0

1
1− t3

d t

= −
ln
�

|1− x3|
�

2x2
−

3
2

∫ x

0

1
1− t3

d t,

where we used integration by parts in the second equality with u = ln(|1− t3|)
and v′ = t−3 (and v = −t−2/2), and that

lim
ε→0+

ln(1− ε3)
2ε2

= lim
ε→0+

−3ε2

1−ε3

4ε
= lim
ε→0+

−3ε
4(1− ε3)

= 0,

where the second identity follows from the Bernoulli-L’Hospital rule.
(d) It is easy to check that

g(x) =
3

1− x3
=

x + 2
x2 + x + 1

+
1

1− x
,

for all x ∈ [0,1 [.
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(e) Using the previous item we see that a primitive of g is given by

G(x) =

∫

g(x)d x =

∫

x + 2
x2 + x + 1

d x +

∫

d x
1− x

=
1
2

∫

2x + 1
x2 + x + 1

d x +
3
2

∫

1
x2 + x + 1

d x +

∫

d x
1− x

=
1
2

∫

2x + 1
x2 + x + 1

d x +
3
2

∫

1
(x + 1/2)2 + 3/4

d x +

∫

d x
1− x

=
ln(x2 + x + 1)

2
+
p

3arctan
�

2x + 1
p

3

�

− ln
�

|1− x |
�

for all x ∈ [0, 1 [. In particular,

G(0) =
p

3arctan
�

1
p

3

�

=
π

2
p

3
.

(f) By the three previous items we have that

F(x) = −
ln(1− x3)

2x2
−

G(x)− G(0)
2

= −
ln(1− x3)

2x2
−
ln(x2 + x + 1)

4
−
p

3
2

arctan

�

2x + 1
p

3

�

+
ln(1− x)

2

+
π

4
p

3

= −
(1− x2) ln(1− x)

2x2
−
(2+ x2) ln(x2 + x + 1)

4x2
−
p

3
2

arctan

�

2x + 1
p

3

�

+
π

4
p

3

for all x ∈ [0, 1 [, where we used that 1 − x3 = (1 − x)(x2 + x + 1) in the last
identity.

(g) Recall that
p

3
2

arctan

�

3
p

3

�

=
π

2
p

3

and that

lim
x→1−

(1− x2) ln(1− x)
2x2

= lim
x→1−

1+ x
2x2

ln(1− x)
(1− x)−1

= lim
x→1−

ln(1− x)
(1− x)−1

= − lim
x→1−

(1− x)−1

(1− x)−2
= − lim

x→1−
(1− x) = 0,

where the third identity follows from the Bernoulli-L’Hospital rule. Using the two
previous identities and the previous item we get that

lim
x→1−

F(x) = −
3
4
ln(3)−

π

4
p

3
.
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Since F is continuous at every point of R≥0, by the definition of generalized inte-
gral, we conclude that

F(1) = −
3
4
ln(3)−

π

4
p

3
.


