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MAT332
Fall 2022

Final examination - January 2023

Unjustified answers will be automatically excluded.

The grading is only approximate.

1.5pt Determine if the following series are convergent or divergent :

(a)
+∞
∑

n=1

sin(n)
n2+sin2(n)

, (b)
+∞
∑

n=1

q

2+n
2+5n , (c)

+∞
∑

n=1

1
4+(−1)nn2/3 .

Solution.
(a) The series

∑+∞
n=1 sin(n)/(n

2+sin2(n)) is absolutely convergent, so it is convergent.
To prove this, note first that
�

�

�

�

sin(n)
n2 + sin2(n)

�

�

�

�

≤
1

n2 + sin2(n)
≤

1
n2

for all n ∈ N, where we used that n2 + sin2(n)≥ n2. In consequence, the series

+∞
∑

n=1

�

�

�

�

sin(n)
n2 + sin2(n)

�

�

�

�

is convergent, since it has the upper bound given by
∑+∞

n=1 1/n2, which is a
convergent series.

(b) The series
∑+∞

n=1

p

(2+ n)/(2+ 5n) is convergent. To prove this, note first that

lim
n→+∞

q

2+n
2+5n

�q

2
5

�n = lim
n→+∞

q

2+n
2+5n

q

2n

5n

= lim
n→+∞

√

√ (2+ n)5n

2n(2+ 5n)
= lim

n→+∞

√

√ (2+ n)/2n

1+ 2/5n
= 0.

In consequence,
p

(2+ n)/(2+ 5n) = o((
p

2/5)n) as n→ +∞. Since
p

2/5< 1,
the geometric series

∑+∞
n=1 (
p

2/5)n converges, which implies that the required
series is also convergent.

(c) The series
∑+∞

n=1 1/(4+ (−1)nn2/3) is convergent. Since

+∞
∑

n=1

1
4+ (−1)nn2/3

converges if and only if

+∞
∑

n=n0

1
4+ (−1)nn2/3
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converges for some n0 ∈ N, we will focus on the latter, for some n0 ∈ N to be
determined later.

Consider the map f : R \ {−1/4} → R given by f (x) = x/(1 + 4x) for all
x ∈ R \ {−1/4}. Then, f ′(x) = 1/(1 + 4x)2 and f ′′(x) = −8/(1 + 4x)3 for all
x ∈ R \ {−1/4}. Note in particular that f (0) = 0 and f ′(0) = 1. Moreover, let
un = (−1)n/n2/3 for all n ∈ N. We see that |un| is decreasing as a function of n, and
that u8 = 1/4, so un ∈ ] 1/4, 1/4 [⊆ R \ {−1/4} for all integers n ≥ 9. Moreover,
a simple computation shows that un ∈ R \ {−1/4} for all positive integers n < 9.
Furthermore, we note that

f (un) =
(−1)n

n2/3

1+ 4(−1)n
n2/3

=
1

4+ (−1)nn2/3

for all integers n ∈ N. By the mean value theorem we have that

| f (x)− x |= | f (x)− f (0)− f ′(0)x | ≤ sup
y∈Ix

| f ′′(y)|
|x |2

2
= sup

y∈Ix

4x2

|1+ 4y|3
(1)

for all x ∈ ] 1/4, 1/4 [ , where Ix is the interval with limits 0 and x .
Since (un)n∈N converges to zero as n goes to +∞, let n0 ∈ N satisfy that

|un| < 1/8 for all n ≥ n0. Note that |1 + 4y| > 1/2 for all y ∈ R such that
|y| < 1/8, since the latter is tantamount to −1/8 < y < 1/8, which implies
1/2 < 1 + 4y < 3/2, giving the result. In consequence, |1 + 4un| > 1/2 for all
n≥ n0, which together with (1) implies that

| f (un)− un| ≤ 32u2
n =

32
n4/3

(2)

for all n ≥ n0. Since the series 32
∑+∞

n=n0
1/n4/3 converges, the series

∑+∞
n=n0
( f (un)−un) is absoultely convergent, and in particular convergent. On the

other hand, since the series
∑+∞

n=n0
un is convergent, by a direct application of the

Leibniz criterion (since the partial sums
∑N

n=n0
(−1)n ∈ {−1,0, 1} are bounded for

all integers N ≥ n0 and (1/n2/3)n∈N is a decreasing sequence converging to zero),
the series

+∞
∑

n=n0

f (un) =
+∞
∑

n=n0

( f (un)− un) +
+∞
∑

n=n0

un

is also convergent, as was to be shown.

2.2, 5pt Compute the value of the integral

∫ 2

1

d x
x2(3− x)

.
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Solution. We note first that

1
x2(3− x)

=
1

3x2
+

1
9x
+

1
9(3− x)

for all x ∈ R \ {0, 3}. Then,
∫

d x
x2(3− x)

=

∫

d x
3x2

+

∫

d x
9x
+

∫

d x
9(3− x)

=

∫

d x
3x2

+

∫

d x
9x
−
∫

d y
9y

= −
1

3x
+
ln
�

|x |
�

9
−
ln
�

|y|
�

9
+ C = −

1
3x
+
ln
�

|x |
�

9
−
ln
�

|3− x |
�

9
+ C .

where we used the change of variables y = 3− x (so d y = −d x) in the third integral
of the second member. As a consequence,

∫ 2

1

d x
x2(3− x)

=
�

−
1

3x
+
ln
�

|x |
�

9
−
ln
�

|3− x |
�

9
+ C
�2

1
=

1
6
+
ln(4)

9
.

3.2,5pt Consider the following integrals

(a)
∫ 1

0

p
1−x

ln(x) d x , (b)
∫ +∞

0
sin(x)

ex2 d x .

Determine if they are divergent or convergent.

Solution.

(a) We claim that the required integral is convergent. Let f : ] 0, 1 [→ R be the map
given by f (x) = −

p
1− x/ ln(x) for x ∈ ] 0,1 [. Note that f is continuous and

positive on its domain. Since

∫ 1

0

f (x)d x = −
∫ 1

0

p
1− x
ln(x)

d x ,

∫ 1

0 f̄ (x)d x converges if and only if the required integral converges. We will thus
work with f from now on. Since

lim
x→0+

f (x) = − lim
x→0+

p
1− x
ln(x)

= 0,

the function f admits a continuous extension f̄ : [0,1 [→ R such that f̄ (0) = 0
(and f̄ (x) = f (0) for x ∈ ] 0,1 [, by definition). Further, note that

lim
x→1−

f̄ (x)
1p
1−x

= lim
x→1−
−

1− x
ln(x)

= lim
x→1−

1
1/x

= 1,

where we used the Bernoulli-L’Hospital rule for the second equality. Hence,
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∫ 1

0 f̄ (x)d x converges if and only if the integral
∫ 1

0 1/
p

1− xd x converges. Mo-
reover, the latter integral converges, since

∫ 1

0

1
p

1− x
d x = lim

ℓ→1−

�

− 2
p

1− x
�ℓ

0
= lim
ℓ→1−
− 2
p

1− ℓ+ 2= 2,

so the required integral converges as well.

(b) We claim that the integral
∫ +∞

0 sin(x)/ex2
d x is absolutely convergent, so it is

convergent. To prove this, note first that
�

�

�

�

sin(x)
ex2

�

�

�

�

≤
1

ex2 ≤
1
ex
= e−x

for all x ∈ R≥1, where the second inequality follows from the fact that in this
x2 ≥ x so ex2

≥ ex , as the exponential function is strictly increasing. Since the
integral
∫ +∞

1 e−x = e−1 is convergent, we conclude that the integral

∫ +∞

1

�

�

�

�

sin(x)
ex2

�

�

�

�

d x

is also convergent. Moreover, since

∫ 1

0

�

�

�

�

sin(x)
ex2

�

�

�

�

d x

is the integral of a continuous function over a bounded and closed interval, it
exists. As a consequence,

∫ +∞

0

�

�

�

�

sin(x)
ex2

�

�

�

�

d x =

∫ 1

0

�

�

�

�

sin(x)
ex2

�

�

�

�

d x +

∫ +∞

1

�

�

�

�

sin(x)
ex2

�

�

�

�

d x

also exists, as was to be shown.

4.3pt Given α ∈ R, consider the integral

Iα =

∫ +∞

1

d x
x(1+ xα)

.

(a) Determine the set C= {α ∈ R : Iα converges}.
(b) Compute the value of Iα for every α ∈ C.

Hint : use the change of variables y = xα.

Solution.

(a) We claim that C = R>0. Indeed, note first that the integrand in the definition of
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Iα is a continuous function on R≥1. Moreover, if α > 0, we note that

lim
x→+∞

1
x(1+xα)

1
x1+α

= lim
x→+∞

xα

1+ xα
= lim

x→+∞

1
1+ 1/xα

= 1.

As a consequence, for α > 0, Iα is convergent if and only if
∫ +∞

1 d x/x1+α

converges, which in turn implies that Iα is convergent for all α > 0. We further
note that I0 = 2−1

∫ +∞
1 d x/x , which is divergent. Finally, if α < 0, we note that

lim
x→+∞

1
x(1+xα)

1
x

= lim
x→+∞

1
1+ xα

= 1.

In consequence, for α < 0, Iα is convergent if and only if
∫ +∞

1 d x/x converges.
Since the latter is a divergent integral, Iα is divergent for all α < 0.

(b) Assume α ∈ C, i.e. α > 0. Consider the change of variables y = xα. Then, d y =
αxα−1d x , which in turn implies that d y = αxαd x/x = αyd x/x , i.e. d y/y =
αd x/x . Then,
∫

d x
x(1+ xα)

=

∫

d y
αy(1+ y)

=
1
α

∫

�

1
y
−

1
1+ y

�

d y

=
ln
�

|y|
�

α
−
ln
�

|1+ y|
�

α
+ C =

1
α
ln

� |y|
|1+ y|

�

+ C

=
1
α
ln

�

|xα|
|1+ xα|

�

+ C .

As a consequence,

∫ +∞

1

d x
x(1+ xα)

= lim
A→+∞

�

1
α
ln

�

|xα|
|1+ xα|

��A

1
= lim

A→+∞

1
α
ln

�

Aα

1+ Aα

�

−
1
α
ln

�

1
2

�

= lim
A→+∞

1
α
ln

�

1
1+ 1/Aα

�

−
1
α
ln

�

1
2

�

= −
1
α
ln

�

1
2

�

=
ln(2)
α

.

5.7pt Given n ∈ N0, let

un =
π

4
−

n
∑

i=0

(−1)i

2i + 1
. (3)

(a) Show that

un = (−1)n+1

∫ 1

0

t2n+2

1+ t2
d t.
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Hint : Use that

π

4
=

∫ 1

0

d t
1+ t2

and
1

2i + 1
=

∫ 1

0

t2id t

for i ∈ N0.
(b) Show that, given N ∈ N0, there exists mN ∈ N0 with mN > N such that

N
∑

n=0

un = −
∫ 1

0

t2 + (−t2)mN

(1+ t2)2
d t.

(c) Show that

lim
m→+∞

∫ 1

0

(−t2)m

(1+ t2)2
d t = 0.

(d) Using the previous items, prove that the series
∑+∞

n=0 un converges, and
that its sum is equal to

−
∫ 1

0

t2

(1+ t2)2
d t.

(e) Show that
∫ 1

0

t2

(1+ t2)2
d t =

∫ π/4

0

sin2(s)ds

and determine the numeric value of the sum
∑+∞

n=0 un.
Hint : Use the change of variables t = tan(s).

(f) Using the previous items, show that the series

+∞
∑

n=0

(−1)n

2n+ 1

converges and that its sum is π/4.

Solution.

(a) Using the hint we get that

un =
π

4
−

n
∑

i=0

(−1)i

2i + 1
=

∫ 1

0

1
1+ t2

d t −
n
∑

i=0

(−1)i
∫ 1

0

t2id t

=

∫ 1

0

�

1
1+ t2

−
n
∑

i=0

(−t2)i
�

d t =

∫ 1

0

�

1
1+ t2

−
1− (−t2)n+1)

1+ t2

�

d t

=

∫ 1

0

(−t2)n+1

1+ t2
d t = (−1)n+1

∫ 1

0

t2n+2

1+ t2
d t,
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where we used the geometric sum
∑n

i=0 qi = (1−qn+1)/(1−q), which is valid for
all q ∈ R \ {1}, for the particular case q = −t2. Note that t ∈ [0,1] implies that
−t2 ̸= 1.

(b) Using the previous item we see that

N
∑

n=0

un =
N
∑

n=0

(−1)n+1

∫ 1

0

t2n+2

1+ t2
d t =

∫ 1

0

N
∑

n=0

(−t2)n+1

1+ t2
d t

=

∫ 1

0

(−t2)− (−t2)N+2

(1+ t2)2
d t = −
∫ 1

0

t2 + (−t2)N+2

(1+ t2)2
d t,

where we used in the third equality the expression of the geometric sum recalled
in the previous item. Hence, we obtained the required expression for

∑N
n=0 un

with mN = N + 2> N .
(c) Note that
�

�

�

�

(−t2)m

(1+ t2)2

�

�

�

�

≤ |− t2|m = t2m

for all t ∈ R, since (1+ t2)2 ≥ 1, which implies that

0≤
�

�

�

�

∫ 1

0

(−t2)m

(1+ t2)2
d t

�

�

�

�

≤
∫ 1

0

�

�

�

�

(−t2)m

(1+ t2)2

�

�

�

�

d t

≤
∫ 1

0

t2md t =
1

2m+ 1
,

for all m ∈ N0. Using the sandwich theorem we conclude that

lim
m→+∞

∫ 1

0

(−t2)m

(1+ t2)2
d t = 0.

(d) The second item tells us that

0≤
�

�

�

�

N
∑

n=0

un +

∫ 1

0

t2

(1+ t2)2
d t

�

�

�

�

=

�

�

�

�

∫ 1

0

(−t2)N+2

(1+ t2)2
d t

�

�

�

�

for all N ∈ N0. Since the latter term converges to zero as N goes to +∞, by the
previous item, we conclude that

+∞
∑

n=0

un = lim
N→+∞

N
∑

n=0

un = −
∫ 1

0

t2

(1+ t2)2
,

as was to be shown.
(e) Using the change of variables t = tan(s), so d t = ds/cos2(s), we see that
∫

t2

(1+ t2)2
d t =

∫

tan(s)2

(1+ tan2(s))2 cos2(s)
ds =

∫

sin2(s)ds

=

∫

1− cos(2s)
2

d t =
2s− sin(2s)

4
+ C .
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Hence, since the tangent function restricted to [0,π/4] is a strictly increasing
map, whocse image is precisely [0, 1], we further conclude that

∫ 1

0

t2

(1+ t2)2
d t =

∫ π/4

0

sin2(s)ds =
�

2s− sin(2s)
4

�π/4

0
=
π

8
−

1
4

.

In consequence,

+∞
∑

n=0

un = −
∫ 1

0

t2

(1+ t2)2
d t =

1
4
−
π

8
.

(f) Since the series
∑+∞

n=0 un converges, its general term converges to zero, i.e.

0= lim
n→+∞

un = lim
n→+∞

π

4
−

n
∑

i=0

(−1)i

2i + 1
=
π

4
− lim

n→+∞

n
∑

i=0

(−1)i

2i + 1
=
π

4
−
+∞
∑

i=0

(−1)i

2i + 1
,

which implies that

π

4
=
+∞
∑

i=0

(−1)i

2i + 1
,

as was to be shown.


