| MAT332 |
| :---: | :--- |
| Fall 2022 |
| Midterm examination |
| Unjustified answers will be automatically excluded. |
| The grading is only approximative. |\quad| 1 |
| :--- |

1. Let $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of complex numbers.
(a) Recall the definition of convergence for the series $\sum_{n=1}^{+\infty} z_{n}$.
(b) Recall the definition of absolute convergence for the series $\sum_{n=1}^{+\infty} z_{n}$.
(c) Prove that $\sum_{n=1}^{+\infty} z_{n}$ is convergent if it is absolutely convergent.

Solution.

(a) Let $S_{N}=\sum_{n=1}^{N} z_{n}$ for $N \in \mathbb{N}$. If $\lim _{N \rightarrow+\infty} S_{N}=S$ for some $S \in \mathbb{C}$, we say that the series $\sum_{n=1}^{+\infty} z_{n}$ converges.

More specifically, the series $\sum_{n=1}^{+\infty} z_{n}$ converges if there exists a complex number S satisfying that for any $\epsilon>0$, there exists $N_{0} \in \mathbb{N}$ such that $\left|\sum_{n=1}^{N} z_{n}-S\right|<\epsilon$ for all $N \geqslant N_{0}$.
(b) We say that the series $\sum_{n=1}^{+\infty} z_{n}$ is absolutely convergent if the series $\sum_{n=1}^{+\infty}\left|z_{n}\right|$ converges.

More specifically, the series $\sum_{n=1}^{+\infty} z_{n}$ is absolutely convergent if there exists a real number S satisfying that for any $\epsilon>0$, there exists $N_{0} \in \mathbb{N}$ such that $\left|\sum_{n=1}^{N}\right| z_{n}|-S|<\epsilon$ for all $N \geqslant N_{0}$.
(c) Consider the sequence $\left\{s_{N}\right\}_{N \in \mathbb{N}}$ of partial sums $s_{N}=\sum_{n=1}^{N} z_{n}$ for $N \in \mathbb{N}$.

Since $\sum_{n \in \mathbb{N}} z_{n}$ converges absolutely, the sequence $\left\{S_{N}\right\}_{N \in \mathbb{N}}$ of partial sums given by $S_{N}=\sum_{n=1}^{N}\left|z_{n}\right|$ for $N \in \mathbb{N}$ is a Cauchy sequence.

Given $\epsilon>0$, there exists $N_{0} \in \mathbb{N}$ such that

$$
\sum_{n=N+1}^{M}\left|z_{n}\right|=\left|S_{M}-S_{N}\right|<\epsilon
$$

for all $M>N \geqslant N_{0}$.
Using the triangle inequality we see that

$$
\left|s_{M}-s_{N}\right|=\left|\sum_{n=N+1}^{M} z_{n}\right| \leqslant \sum_{n=N+1}^{M}\left|z_{n}\right|=\left|S_{M}-S_{N}\right|<\epsilon
$$

for all $M>N \geqslant N_{0}$.
This tells us that $\left\{s_{N}\right\}_{N \in \mathbb{N}}$ is a Cauchy sequence of complex numbers.
Since any Cauchy sequence of complex numbers is convergent, then $\left\{s_{N}\right\}_{N \in \mathbb{N}}$ is convergent, i.e. $\sum_{n \in \mathbb{N}} z_{n}$ converges.
2. Prove that the series

$$
\sum_{n=2}^{+\infty} \frac{n+1}{n!}
$$

converges and compute the sum of the series.

Solution. Let $u_{n}=\frac{n+1}{n!}$ for $n \geqslant 2$. Then $u_{n}>0$ and

$$
\frac{u_{n+1}}{u_{n}}=\frac{\frac{n+2}{(n+1)!}}{\frac{n+1}{n!}}=\frac{n+2}{(n+1)^{2}}
$$

for $n \geqslant 2$. Since

$$
\lim _{n \rightarrow+\infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow+\infty} \frac{n+2}{n^{2}+2 n+1}=\lim _{n \rightarrow+\infty} \frac{1+\frac{2}{n}}{n+2+\frac{1}{n}}=0
$$

we obtain that the series $\sum_{n=2}^{+\infty} u_{n}$ converges by D'Alembert rule.
Note that $e=\sum_{n=0}^{+\infty} \frac{1}{n!}$.
Then

$$
\sum_{n=2}^{+\infty} \frac{n}{n!}=\sum_{n=2}^{+\infty} \frac{1}{(n-1)!}=\sum_{n=1}^{+\infty} \frac{1}{n!}
$$

So,

$$
\begin{aligned}
\sum_{n=2}^{+\infty} \frac{n+1}{n!} & =\sum_{n=2}^{+\infty} \frac{n}{n!}+\sum_{n=2}^{+\infty} \frac{1}{n!}=\sum_{n=1}^{+\infty} \frac{1}{n!}+\sum_{n=2}^{+\infty} \frac{1}{n!} \\
& =\sum_{n=0}^{+\infty} \frac{1}{n!}-1+\sum_{n=0}^{+\infty} \frac{1}{n!}-1-1 \\
& =2 e-3 .
\end{aligned}
$$

3. Consider the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by
(i) $u_{n}=\frac{2-\cos (n)}{\sqrt{n}}$,
(iv) $u_{n}=\frac{4^{n+1}(n+1)!}{(2 n-1)!}$,
(ii) $u_{n}=\sin \left(1+e^{-n}\right)$,
(iii) $u_{n}=\left(1-\frac{1}{\sqrt{n}}\right)^{n^{3 / 2}}$,
(v) $u_{n}=\frac{(-1)^{n}}{5+\sqrt{\ln (n)}}$,
(vi) $u_{n}=\frac{(-1)^{n}}{n+2 \sin \left(n^{3}\right)}$,
for $n \in \mathbb{N}$, respectively. Determine if the series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely convergent, convergent or none of them.

Solution. Note that absolutely convergence implies convergence, and divergence implies absolutely divergence.
(i) The series $\sum_{n=1}^{+\infty} u_{n}$ is divergent.

Since $\cos (n) \in[-1,1]$, we have $2-\cos (n) \in[1,3]$ for $n \in \mathbb{N}$. So, $u_{n}>0$ and

$$
u_{n} \geqslant \frac{1}{\sqrt{n}}
$$

for $n \in \mathbb{N}$. The Riemann series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$ is divergent. We get that the series $\sum_{n=1}^{+\infty} u_{n}$ is divergent by comparison criteria.
(ii) The series $\sum_{n=1}^{+\infty} u_{n}$ is divergent.

We have that e^{-n} tends to 0 when n tends to infinity. So, the general term u_{n} tends to $\sin (1) \neq 0$ when n tends to infinity. Since the sequence of general terms of a convergent series converges to 0 , we get that the series $\sum_{n=1}^{+\infty} u_{n}$ is divergent.
(iii) The series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely convergent.

Let $f(x)=(1-x)^{\frac{1}{x}}$ for $x \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+} e^{\frac{1}{x} \ln (1-x)}
$$

By L'Hospital rule,

$$
\lim _{x \rightarrow 0+} \frac{\ln (1-x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{-1}{1-x}}{1}=-1
$$

Then, $\lim _{x \rightarrow 0+} f(x)=e^{-1}$. Take $x=\frac{1}{\sqrt{n}}$, we obtain

$$
\lim _{n \rightarrow+\infty}\left(1-\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}=e^{-1}
$$

Note that $\left(1-\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}$ is increasing. Then $\left(1-\frac{1}{\sqrt{n}}\right)^{\sqrt{n}} \leqslant e^{-1}$ for $n \in \mathbb{N}$. Hence,

$$
0 \leqslant u_{n}=\left(1-\frac{1}{\sqrt{n}}\right)^{n^{3 / 2}}=\left(\left(1-\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{n} \leqslant\left(\frac{1}{e}\right)^{n}
$$

for $n \in \mathbb{N}$. Since the geometric series $\sum_{n \in \mathbb{N}} e^{-n}$ converges, the series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely convergent by comparison criteria.
(iv) The series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely convergent.

We have $u_{n}>0$ and

$$
\frac{u_{n+1}}{u_{n}}=\frac{\frac{4^{n+2}(n+2)!}{(2 n+1)!}}{\frac{4^{n+1}(n+1)!}{(2 n-1)!}}=\frac{4^{n+2}(n+2)!}{(2 n+1)!} \frac{(2 n-1)!}{4^{n+1}(n+1)!}=\frac{2 n+4}{2 n^{2}+n}
$$

for $n \in \mathbb{N}$. Then $\lim _{n \rightarrow+\infty} \frac{u_{n+1}}{u_{n}}=0$. By D'Alembert rule, the series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely convergent.
(v) The series $\sum_{n=1}^{+\infty} u_{n}$ is convergent, but absolutely divergent.

The series $\sum_{n=1}^{+\infty} u_{n}$ is an alternate series. Since $\frac{1}{5+\sqrt{\ln (n)}}>0$ is decreasing and convergent to 0 , the series $\sum_{n=1}^{+\infty} u_{n}$ is convergent by Leibniz criteria.

Note that $\ln (n)<n$ for $n \in \mathbb{N}$. Then

$$
\left|u_{n}\right|=\frac{1}{5+\sqrt{\ln (n)}}>\frac{1}{5+\sqrt{n}}
$$

for $n \in \mathbb{N}$. Since $\frac{1}{5+\sqrt{n}} \sim \frac{1}{\sqrt{n}}$ when n tends to infinity, and the Riemann series $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$ is divergent, we get that the series $\sum_{n=1}^{+\infty} \frac{1}{5+\sqrt{n}}$ is divergent. Hence, the series $\sum_{n=1}^{+\infty} u_{n}$ is absolutely divergent by comparison criteria.
(vi) The series $\sum_{n=1}^{+\infty} u_{n}$ is convergent, but absolutely divergent.

Note that $\sin (x) \in[-1,1]$ for $x \in \mathbb{R}$. For $n \geqslant 3$, we have

$$
\left|u_{n}\right|=\frac{1}{n+2 \sin \left(n^{3}\right)} \geqslant \frac{1}{n+2} .
$$

The series $\sum_{n \geqslant 3} \frac{1}{n+2}$ is divergent. By comparison criteria, the series $\sum_{n \geqslant 3}\left|u_{n}\right|$ is divergent, i.e. the series $\sum_{n \in \mathbb{N}} u_{n}$ is absolutely divergent.

Let $v_{n}=u_{2 n-1}+u_{n}$ for $n \in \mathbb{N}$. Note that $\lim _{n \rightarrow+\infty} u_{n}=0$. By the technique of block summation, the series $\sum_{n \in \mathbb{N}} u_{n}$ and $\sum_{n \in \mathbb{N}} v_{n}$ simultaneously converge or diverge. We have

$$
\begin{aligned}
v_{n} & =u_{2 n-1}+u_{2 n}=\frac{-1}{2 n-1+2 \sin \left((2 n-1)^{3}\right)}+\frac{1}{2 n+2 \sin \left((2 n)^{3}\right)} \\
& =\frac{-1-2 \sin \left((2 n)^{3}\right)+2 \sin \left((2 n-1)^{3}\right)}{\left(2 n-1+2 \sin \left((2 n-1)^{3}\right)\right)\left(2 n+2 \sin \left((2 n)^{3}\right)\right)} .
\end{aligned}
$$

Then for $n \geqslant 2$,

$$
\begin{aligned}
\left|v_{n}\right| & \leqslant \frac{|-1|+\left|2 \sin \left((2 n)^{3}\right)\right|+\left|2 \sin \left((2 n-1)^{3}\right)\right|}{\left(|2 n-1|-\left|2 \sin \left((2 n-1)^{3}\right)\right|\right)\left(|2 n|-\left|2 \sin \left((2 n)^{3}\right)\right|\right)} \\
& \leqslant \frac{5}{(2 n-3)(2 n-2)} .
\end{aligned}
$$

Since $\frac{5}{(2 n-3)(2 n-2)} \sim \frac{5}{4 n^{2}}$ when n tends to infinity, the series $\sum_{n \geqslant 2} \frac{5}{(2 n-3)(2 n-2)}$ converges. Then the series $\sum_{n \geqslant 2}\left|v_{n}\right|$ converges by comparison criteria, i.e. the series $\sum_{n \in \mathbb{N}} v_{n}$ is absolutely convergent. This implies that the series $\sum_{n \in \mathbb{N}} v_{n}$ is convergent. Hence, the series $\sum_{n \in \mathbb{N}} u_{n}$ converges.
4. Consider the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by

$$
u_{n}=\frac{(-1)^{n+1}}{\sqrt{n}}
$$

for $n \in \mathbb{N}$.
(a) Define $v_{k}=u_{2 k-1}+u_{2 k}$ for $k \in \mathbb{N}$. Determine if the series

$$
\sum_{k=1}^{+\infty} v_{k}
$$

is convergent or divergent.
(b) Using the previous item, determine if the series

$$
\sum_{n=1}^{+\infty} u_{n}
$$

is convergent or divergent.

Solution.

(a) The series $\sum_{k=1}^{+\infty} v_{k}$ is convergent.

We have

$$
\begin{aligned}
v_{k} & =u_{2 k-1}+u_{2 k}=\frac{1}{\sqrt{2 k-1}}-\frac{1}{\sqrt{2 k}}=\frac{\sqrt{2 k}-\sqrt{2 k-1}}{\sqrt{2 k(2 k-1)}} \\
& =\frac{(\sqrt{2 k}-\sqrt{2 k-1})(\sqrt{2 k}+\sqrt{2 k-1})}{\sqrt{2 k(2 k-1)}(\sqrt{2 k}+\sqrt{2 k-1})}=\frac{1}{\sqrt{2 k(2 k-1)}(\sqrt{2 k}+\sqrt{2 k-1})}
\end{aligned}
$$

for $k \in \mathbb{N}$.
Then $v_{k}>0$ and

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \frac{v_{k}}{\frac{1}{4 \sqrt{2} k^{3 / 2}}} & =\lim _{k \rightarrow+\infty} \frac{4 \sqrt{2} k^{3 / 2}}{\sqrt{2 k(2 k-1)}(\sqrt{2 k}+\sqrt{2 k-1})} \\
& =\lim _{k \rightarrow+\infty} \frac{4 \sqrt{2}}{\sqrt{4-\frac{2}{k}}\left(\sqrt{2}+\sqrt{2-\frac{1}{k}}\right)}=1 .
\end{aligned}
$$

This implies that the general terms of two positive series $\sum_{k=1}^{+\infty} v_{k}$ and $\frac{1}{4 \sqrt{2}} \sum_{k=1}^{+\infty} \frac{1}{k^{3 / 2}}$ are equivalent. Since the Riemann series $\sum_{k=1}^{+\infty} \frac{1}{k^{3 / 2}}$ converges, we obtain that the series $\sum_{k=1}^{+\infty} v_{k}$ is convergent.
(b) The series $\sum_{n=1}^{+\infty} u_{n}$ is convergent, since a summation by blocks of it gives the series $\sum_{k=1}^{+\infty} v_{k}$, which is convergent by the previous item.
5. Consider the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ given by

$$
u_{n}=\frac{e^{1 / n}}{n^{2}}
$$

for $n \in \mathbb{N}$.
(a) Show that the map $f: \mathbb{R}_{\geq 1} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{e^{1 / x}}{x^{2}}
$$

for $x \in \mathbb{R}_{\geq 1}$ is decreasing and compute

$$
\lim _{x \rightarrow+\infty} f(x) .
$$

(b) Determine if the series $\sum_{n=1}^{+\infty} u_{n}$ is convergent or divergent.
(c) Show that

$$
\sum_{n=p+1}^{q} \frac{e^{1 / n}}{n^{2}} \leq \int_{p}^{q} \frac{e^{1 / x}}{x^{2}} d x \leq \sum_{n=p}^{q-1} \frac{e^{1 / n}}{n^{2}}
$$

for all $p, q \in \mathbb{N}$ such that $p<q$.
(d) Given $N \in \mathbb{N}$, set $R_{N}=\sum_{n=N+1}^{+\infty} u_{n}$. Using the previous item, show that

$$
e^{1 /(N+1)}-1 \leq R_{N} \leq e^{1 / N}-1 .
$$

and from this prove that $R_{N} \sim e^{1 / N}-1$ as $N \rightarrow+\infty$.

Solution.

(a) It is clear that f is differentiable, since it is obtained as the quotient with nonzero denominator and composition of differentiable functions. Moreover, we also have

$$
f^{\prime}(x)=-\frac{2 x+1}{x^{4}} e^{1 / x}<0
$$

for all $x \in \mathbb{R}_{>_{1}}$, which in turn implies that f is strictly decreasing. Finally, since $1 \leq e^{1 / x} \leq e$ for all $x \in \mathbb{R}_{\geq 1}$, we see immediately that

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{e^{1 / x}}{x^{2}}=0 .
$$

(b) Note that $u_{n}=f(n)$ for all $n \in \mathbb{N}$. It is clear that f is a nonnegrative function and we have showed that f is decreasing with limit equal to zero at $+\infty$. Moreover,

$$
\begin{equation*}
\int_{a}^{+\infty} f(x) d x=\lim _{M \rightarrow+\infty}\left[-e^{1 / x}\right]_{a}^{M}=e^{1 / a}-\lim _{M \rightarrow+\infty} e^{1 / M}=e^{1 / a}-1 \tag{1}
\end{equation*}
$$

for all $a \in \mathbb{R}_{\geq 1}$. Using the integral test and (1) for $a=1$, we conclude that $\sum_{n=1}^{+\infty} u_{n}$ converges.
(c) Since f is decreasing, we have that $f(n+1) \leq f(x) \leq f(n)$ for all $x \in[n, n+1]$ and $n \in \mathbb{N}$. In consequence,

$$
\frac{e^{1 /(n+1)}}{(n+1)^{2}}=\int_{n}^{n+1} \frac{e^{1 /(n+1)}}{(n+1)^{2}} d x \leq \int_{n}^{n+1} \frac{e^{1 / x}}{x^{2}} d x \leq \int_{n}^{n+1} \frac{e^{1 / n}}{n^{2}} d x=\frac{e^{1 / n}}{n^{2}},
$$

for all $n \in \mathbb{N}$, which in turn implies that

$$
\sum_{n=p+1}^{q} \frac{e^{1 / n}}{n^{2}}=\sum_{n=p}^{q-1} \frac{e^{1 /(n+1)}}{(n+1)^{2}} \leq \underbrace{\sum_{n=p}^{q-1} \int_{n}^{n+1} \frac{e^{1 / x}}{x^{2}} d x}_{=\int_{p}^{q} \frac{e^{1 / x}}{x^{2}} d x} \leq \sum_{n=p}^{q-1} \frac{e^{1 / n}}{n^{2}}
$$

for all $p, q \in \mathbb{N}$ such that $p<q$.
(d) Fixing $p=N$ and letting q go to $+\infty$ in the previous item, we have that

$$
R_{N}=\sum_{n=N+1}^{+\infty} \frac{e^{1 /(n+1)}}{(n+1)^{2}} \leq \underbrace{\int_{N}^{+\infty} \frac{e^{1 / x}}{x^{2}} d x}_{=e^{1 / N}-1} \leq \sum_{n=N}^{+\infty} \frac{e^{1 /(n+1)}}{(n+1)^{2}}=R_{N-1}
$$

for all $N \in \mathbb{N}$, where we used (1). The first inequality tells us that

$$
R_{N} \leq e^{1 / N}-1,
$$

for all $N \in \mathbb{N}$, whereas the second can be rewritten as

$$
R_{N-1} \geq e^{1 / N}-1
$$

for all $N \in \mathbb{N}$. Replacing N by $N+1$, we have thus

$$
R_{N} \geq e^{1 /(N+1)}-1
$$

for all $N \in \mathbb{N}$, as was to be shown. Putting together these inequalities we get

$$
\frac{e^{1 /(N+1)}-1}{e^{1 / N}-1} \leq \frac{R_{N}}{e^{1 / N}-1} \leq 1
$$

for all $N \in \mathbb{N}$, which implies that

$$
\lim _{N \rightarrow+\infty} \frac{R_{N}}{e^{1 / N}-1}=1
$$

since

$$
\begin{aligned}
\lim _{N \rightarrow+\infty} \frac{e^{1 /(N+1)}-1}{e^{1 / N}-1} & =\lim _{x \rightarrow+\infty} \frac{e^{1 /(x+1)}-1}{e^{1 / x}-1}=\lim _{x \rightarrow+\infty} \frac{-\frac{e^{1 /(x+1)}}{(x+1)^{2}}}{-\frac{e^{1 / x}}{x^{2}}} \\
& =\lim _{x \rightarrow+\infty} \frac{e^{1 /(x+1)} x^{2}}{e^{1 / x}(x+1)^{2}}=1,
\end{aligned}
$$

where we have used the Bernoulli-L'Hospital in the second equality. In particular, we conclude that $R_{N} \sim e^{1 / N}-1$ as $N \rightarrow+\infty$.

