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1 Introduction
The objective of this short note is twofold:

(i) Complete some aspects of a theorem of S. Merkulov – which in principle
produces an A∞-algebra from a certain dg submodule of a dg algebra –,
showing that the construction also gives a morphism of A∞-algebras and
that both are strictly unitary under some further assumptions (see Theorem
3.1). These last extra components were not considered in the original state-
ment by Merkulov, but the existence of the morphism of A∞-algebras ap-
pears in a particular case in [6], Prop. 2.3.

(ii) Provide a precise statement together with a complete proof of a dual version
of the previous theorem for dg coalgebras. This is done in Theorem 4.5.

We are mainly interested in (ii), because we need such a result in [1] for our
study of the A∞-coalgebra structure on the group TorA• (K,K) of a nonnegatively
graded algebra A and some of their associated A∞-comodules (e.g. in Thm. 2.11
and Prop. 2.16 of that article). It was used in particular to compute theA∞-module
structure of Ext•A(M,k) over the Yoneda algebra of a generalized Koszul algebra
A, where M is a generalized Koszul module over A. Incidentally, we find more
convenient to work with the formulation in [7], for in [1] we need to deal with the
slightly greater generality of (nonsymmetric) bimodules over a (noncommutative)
algebra.

The proof of the statements added to the result of Merkulov follows the usual
philosophy of specific manipulations of equations. However, these new results,
which appear in Theorem 3.1, cannot be directly deduced from [7], Thm. 3.4. In
particular, the construction of the morphism of A∞-algebras added to the result
by Merkulov allows to compare the dg algebra one starts with and the constructed
A∞-algebra, which seems relevant to us, and it was indeed needed in in [6]. Fi-
nally, let us add that the proof of Theorem 4.5 is parallel to the one for dg algebras,
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and, as in the case of dg algebras, the result obtained for dg coalgebras is slightly
more general than those obtained in homological perturbation theory, since our as-
sumptions are in general weaker than those of a SDR (cf. [3], or the nice exposition
in [4], Section 6).

2 Preliminaries on basic algebraic structures
In what follows, k will denote a field and K will be a noncommutative unitary k-
algebra. By module (sometimes decorated by adjectives such as graded, or dg) we
mean a (not necessarily symmetric) bimodule overK (correspondingly decorated),
such that the induced bimodule structure over k is symmetric. For dg algebras, dg
coalgebras and A∞-algebras, we follow the sign conventions of [5], whereas for
A∞-coalgebras we shall use the ones given in [2], Subsection 2.1. We also recall
that, if V = ⊕n∈ZV

n is a (cohomological) graded K-module, V [m] is the graded
module overK whose n-th homogeneous component V [m]n is given by V m+n, for
all n,m ∈ Z, and it is called the shift of V . We are not going to consider any shift
on other gradings, such as the Adams grading. All morphisms between modules
will be K-linear on both sides (satisfying further requirements if the modules are
decorated as before). One trivially sees that all the standard definitions of graded
or dg (co)algebra, or even A∞-(co)algebra, eventually provided with an Adams
grading, and (co)modules over them make perfect sense in the monoidal category
of graded K-bimodules, correspondingly provided with an Adams grading. All
unadorned tensor products ⊗would be over K.

Finally, N will denote the set of (strictly) positive integers, whereas N0 will be
the set of nonnegative integers. Similarly, for N ∈ N, we denote by N≥N the set of
positive integers greater than or equal to N .

3 On the theorem of Merkulov
Let (A,µA, dA) be a dg algebra provided with an Adams grading and let W ⊆ A
be a dg submodule of A respecting the Adams degree. We assume that there is
a linear map Q : A → A[−1] of total degree zero, where A[−1] denotes the shift
of the cohomological degree, satisfying that the image of idA − [dA, Q] lies in W ,
where [dA, Q] = dA ◦Q+Q ◦ dA is the graded commutator. For all n ≥ 2, construct
λn : A⊗n → A as follows. Setting formally λ1 = −Q−1, define

λn =

n−1∑
i=1

(−1)i+1µA ◦
(
(Q ◦ λi)⊗ (Q ◦ λn−i)

)
, (3.1)

for n ≥ 2. We have the following result, whose first part is [7], Thm. 3.4, whereas
the rest is a slightly more general version of [6], Prop. 2.3 and Lemma 2.5.

Theorem 3.1. Let (A,µA, dA) be a dg algebra provided with an Adams grading and let
ι : (W,dW ) → (A, dA) be a dg submodule of A (respecting the Adams degree). Suppose
there is a linear map Q : A → A[−1] of total degree zero, where A[−1] denotes the
shift of the cohomological degree, satisfying that the image of idA − [dA, Q] lies in ι(W ).
For all n ∈ N, define mn : W⊗n → W as follows. Set m1 = dW = dA ◦ ι and
mn = (idA − [dA, Q]) ◦ λn ◦ ι⊗n, for n ≥ 2. Then, (W,m•) is an Adams graded A∞-
algebra.

Define the collection f• : W → A, where fn : W⊗n → A is the linear map of total
degree (1 − n, 0) given by fn = −Q ◦ λn ◦ ι⊗n, for n ∈ N. Then f• is a morphism of
Adams graded A∞-algebras, and it is a quasi-isomorphism if and only if ι is so.

Furthermore, assumeA has a unit 1A, there is an element 1W ∈W such that ι(1W ) =
1A, Q ◦Q = 0 and Q ◦ ι = 0. Then, 1W is a strict unit of the Adams graded A∞-algebra
(W,m•), and f• : W → A is a morphism of strictly unitary Adams graded A∞-algebras.
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Proof. For the first part, the proof given in [7], based on that of the corresponding
Lemmas 3.2 and 3.3, applies verbatim in this context. We also note that the sign
convention of that article agrees with the one we follow here.

To prove the second assertion we proceed as follows. It suffices to prove that f•
is a morphism of A∞-algebras, for the quasi-isomorphism property is immediate.
We have thus to show the following reduced form of the Stasheff identities on
morphisms MI(n) (see [5], Def. 4.1)∑

(r,s,t)∈In

(−1)r+stfr+1+t ◦ (id⊗rW ⊗ms ⊗ id⊗tW )

= dA ◦ fn +

n−1∑
p=1

(−1)p−1µA ◦
(
(Q ◦ λp ◦ ι⊗p)⊗ (Q ◦ λn−p ◦ ι⊗(n−p))

)
, (3.2)

for all n ∈ N, where In = {(r, s, t) ∈ N0 × N × N0 : r + s + t = n}. The case n = 1
is trivial since ι is a morphism of complexes. Moreover, the case n = 2 is also clear,
since the left member of (3.2) gives

f1 ◦m2 − f2 ◦ (idW ⊗m1 +m1 ⊗ idW )

= (idA − [dA, Q]) ◦ µA ◦ ι⊗2 +Q ◦ µA ◦ ι⊗2 ◦ (idW ⊗ dW + dW ⊗ idW )

= µA ◦ ι⊗2 − dA ◦Q ◦ µA ◦ ι⊗2,
(3.3)

where we have used the Leibniz property for the derivation dA. The right member
of (3.2) gives

dA ◦ f2 + µA ◦
(
(Q ◦ λ1 ◦ ι)⊗ (Q ◦ λ1 ◦ ι)

)
= −dA ◦Q ◦ µA ◦ ι⊗2 + µA ◦ ι⊗2,

which clearly coincides with (3.3). We shall now consider n > 2. Using the same
notation as in [7], by the definition of the tensors Φn and Θn given in Lemmas 3.2
and 3.3, respectively, we see that

Q◦(Φn+Θn)◦ι⊗n = Q◦dA ◦λn ◦ι⊗n−
∑

(r,s,t)∈I∗n

(−1)r+stfr+1+t ◦(id⊗rW ⊗ms⊗ id⊗tW ),

for all n ∈ N, where I∗n = {(r, s, t) ∈ N0×N×N0 : r+s+t = n, r+t > 0}. Moreover,
by the previously mentioned lemmas, the tensor Φn and Θn vanish, which implies
that ∑

(r,s,t)∈In

(−1)r+stfr+1+t ◦ (id⊗rW ⊗ms ⊗ id⊗tW ) = f1 ◦mn +Q ◦ dA ◦ λn ◦ ι⊗n.

On the other hand,

f1 ◦mn +Q ◦ dA ◦ λn ◦ ι⊗n = λn ◦ ι⊗n − dA ◦Q ◦ λn ◦ ι⊗n

=

n−1∑
i=1

(−1)i+1µA ◦
(
(Q ◦ λi ◦ ι⊗i)⊗ (Q ◦ λn−i ◦ ι⊗(n−i))

)
− dA ◦Q ◦ λn ◦ ι⊗n,

where we have used the definition of mn in the first equality and equation (3.1)
in the last one. It is clear that the last member of the previous chain of identities
coincides with the right member of (3.2), as was to be shown.

The proof of the third assertion follows the same pattern as the one given in
[6], Lemma 2.5, but since we are assuming a weaker assumption on Q (called G
in that article), we describe roughly how it is done. By the definition of f2, we see
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that the condition Q ◦ ι = 0 implies that f2(1W ⊗ w) = f2(w ⊗ 1W ) = 0. The fact
ι is a morphism of dg modules and dA(1A) = 0 imply that m1(1W ) = 0. Suppose
now that we have proved that, for 2 ≤ i ≤ n − 1, fi(w1, . . . , wi) vanishes if there
exists j ∈ {1, . . . , i} such that wj = 1W . By (3.1) and the inductive hypothesis,
we see that λn(w1, . . . , wn) vanishes if there exists j ∈ {2, . . . , n − 1} such that
wj = 1W , λn(1W , w2, . . . , wn) = fn−1(w2, . . . , wn), and λn(w1, . . . , wn−1, 1W ) =
(−1)nfn−1(w1, . . . , wn−1), for all w1, . . . , wn ∈ W . From the definition of fn and
the assumption that Q ◦ Q = 0 we conclude that fn(w1, . . . , wn) vanishes if there
exists j ∈ {1, . . . , n} such thatwj = 1W . Moreover, since the image of (idA−[dA, Q])
lies in ι(W ) and Q ◦ ι = 0, we see that

0 = Q ◦ (idA − [dA, Q]) = Q−Q ◦ dA ◦Q = (idA − [dA, Q]) ◦Q, (3.4)

where we have used in the last two equalities that Q ◦ Q vanishes. Using our
previous description of λn in terms of fn−1 = −Q ◦ λn−1 ◦ ι⊗(n−1) for n ≥ 3 (if
it does not vanish already) and (3.4), we get that mn(w1, . . . , wn) vanishes if there
exists j ∈ {1, . . . , n} such that wj = 1W . �

4 The dual result
We shall briefly present the dual procedure to the one introduced by S. Merkulov in
[7] to produce an A∞-algebra structure from a particular data on a dg submodule
of a dg algebra. In our case, we produce an A∞-coalgebra structure on a quotient
dg module of a dg coalgebra. We also note that, even though the results of the
article of Merkulov are stated for vector spaces, they are clearly seen to be true (by
exactly the same arguments) in our more general situation of bimodules over the
k-algebra K.

Let (C,∆C , dC) be a dg coalgebra provided with an Adams grading and let
(C, dC) � (W,dW ) be a dg module quotient of C respecting the Adams degree.
Denote by K the kernel of the previous quotient and assume that there is a linear
map Q : C → C[−1] of total degree zero, where C[−1] denotes the shift of the
cohomological degree whereas the Adams degree remains unchanged, satisfying
that idC − [dC , Q] vanishes on K, where [dC , Q] = dC ◦ Q + Q ◦ dC is the graded
commutator. For all n ≥ 2, define γn : C → C⊗n as follows. Setting formally
γ1 = −Q−1, define

γn =

n−1∑
i=1

(−1)i+1
(
(γn−i ◦Q)⊗ (γi ◦Q)

)
◦∆C , (4.1)

for n ≥ 2. We shall say that Q is admissible if the family {γn}n∈N≥2
is locally finite,

i.e. it satisfies that the induced map C →
∏

n≥2 C
⊗n factors through the canonical

inclusion ⊕n≥2C
⊗n →

∏
n≥2 C

⊗n.

Fact 4.1. The following identity

−
n−1∑
p=2

(
γp ⊗ (γn−p ◦Q)

)
◦ γ2 +

n−1∑
p=2

(−1)p
(
(γn−p ◦Q)⊗ γp

)
◦ γ2 = 0

holds.

Proof. The identity just follows by replacing the two occurrences of γp by the re-
current expression given by (4.1) and simplifying the corresponding terms. �

Fact 4.2. Let e be an endomorphism of C of degree zero and define

En(e) =
∑

(r,s,t)∈I∗n

(−1)rs+t(id⊗rC ⊗ (γs ◦ e)⊗ id⊗tC ) ◦ γr+1+t,
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where I∗n = {(r, s, t) ∈ N0 × N≥2 × N0 : r + s+ t = n and r + t > 0}. Then

En(e) =

n−2∑
t=1

t∑
i=1

(−1)i(γn−te⊗ id⊗t
C )(γiQ⊗ γt−i+1Q)∆C

+

n−2∑
r=1

r∑
i=1

(−1)r(n−r)+r−i(id⊗r
C ⊗ γn−re)(γiQ⊗ γ1+r−iQ)∆C

+
∑

(r,s,t)∈În

r+t∑
i=r+1

(−1)rs+r−i
((

(id⊗r
C ⊗ γse⊗ id

⊗(i−r−1)
C )γiQ

)
⊗ γr+1+t−iQ

)
∆C

+
∑

(r,s,t)∈În

r∑
i=1

(−1)rs+r+s−i(s+1)
(
γiQ⊗

(
(id
⊗(r−i)
C ⊗ γse⊗ id⊗t

C )γr+1+t−iQ
))

∆C ,

(4.2)

where În = {(r, s, t) ∈ N × N≥2 × N : r + s + t = n}, and we have omitted the
composition symbol ◦ to economize space.

Proof. The statement follows from the following chain of identities, which uses the
definition (4.1),

En(e) =

n−2∑
t=1

(−1)t(γn−te⊗ id⊗t
C )γ1+t +

n−2∑
r=1

(−1)r(n−r)(id⊗r
C ⊗ γn−re)γr+1

+
∑

(r,s,t)∈În

(−1)rs+t(id⊗r
C ⊗ γse⊗ id⊗t

C )γr+1+t

=

n−2∑
t=1

t∑
i=1

(−1)i(γn−te⊗ id⊗t
C )(γiQ⊗ γt−i+1Q)∆C

+

n−2∑
r=1

r∑
i=1

(−1)r(n−r)+r−i(id⊗r
C ⊗ γn−re)(γiQ⊗ γ1+r−iQ)∆C

+
∑

(r,s,t)∈În

r+t∑
i=r+1

(−1)rs+r−i
((

(id⊗r
C ⊗ γse⊗ id

⊗(i−r−1)
C )γiQ

)
⊗ γr+1+t−iQ

)
∆C

+
∑

(r,s,t)∈În

r∑
i=1

(−1)rs+r+s−i(s+1)
(
γiQ⊗

(
(id
⊗(r−i)
C ⊗ γse⊗ id⊗t

C )γr+1+t−iQ
))

∆C ,

where we have omitted the composition symbol ◦ to reduce space. �

Lemma 4.3. For n ∈ N≥3, define

Γn =
∑

(r,s,t)∈I∗n

(−1)rs+t(id⊗rC ⊗ γs ⊗ id⊗tC ) ◦ γr+1+t,

where I∗n = {(r, s, t) ∈ N0 × N≥2 × N0 : r + s + t = n and r + t > 0}. Then Γn ≡ 0,
for all n ≥ 3.

Proof. First note that Γ3 = (idC ⊗∆C −∆C ⊗ idC) ◦∆C , so the coassociativity of C
implies that Γ3 vanishes.

Let us now consider n > 3. We note that Γn = En(idC), so it can be written as
indicated in equation (4.2). Moreover, the terms corresponding to i = 1 in the first
sum and to i = r in the second sum in that latter expression of Γn cancel due to
Fact 4.1. Using the definition of Γm for 3 ≤ m ≤ n − 1 in the remaining terms of
the new expression of Γn we get that

Γn =

n−3∑
i=1

(−1)n−i
(
(γi ◦Q)⊗ (Γn−i ◦Q)

)
◦∆C −

n−3∑
j=1

(
(Γn−j ◦Q)⊗ (γj ◦Q)

)
◦∆C .

The lemma thus follows from an inductive argument. �
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Lemma 4.4. For n ∈ N≥2, define

Hn = γn ◦ dC + (−1)n−1
n−1∑
r=0

(id⊗rC ⊗ dC ⊗ id
⊗(n−r−1)
C ) ◦ γn

−
∑

(r,s,t)∈I∗n

(−1)rs+t
(
id⊗rC ⊗ (γs ◦ [dC , Q])⊗ id⊗tC

)
◦ γr+1+t,

where I∗n = {(r, s, t) ∈ N0 × N≥2 × N0 : r + s + t = n and r + t > 0}. Then Hn ≡ 0,
for all n ≥ 2.

Proof. Note that H2 = ∆C ◦ dC − (idC ⊗ dC + dC ⊗ idC) ◦∆C , so it vanishes by the
Leibniz identity for C.

Assume now that n > 2. Note that

Hn = γn ◦ dC − (−1)n
n−1∑
r=0

(id⊗rC ⊗ dC ⊗ id
⊗(n−r−1)
C ) ◦ γn − En([dC , Q]).

Using the definition (4.1), we can write

Hn =

n−1∑
i=1

(
(γi ◦Q ◦ dC)⊗ (γn−i ◦Q)

)
◦∆C

−
n−1∑
i=1

(−1)n−i
(
(γi ◦Q)⊗ (γn−i ◦Q ◦ dC)

)
◦∆C

+

n−1∑
i=0

i−1∑
r=0

(−1)i
((

(id⊗rC ⊗ dC ⊗ id
⊗(i−r−1)
C ) ◦ (γi ◦Q)

)
⊗ (γn−i ◦Q)

)
◦∆C

−
n−1∑
i=0

n−i−1∑
r=0

(
(γi ◦Q)⊗

(
(id⊗rC ⊗ dC ⊗ id

⊗(n−i−r−1)
C ) ◦ (γn−i ◦Q)

))
◦∆C

− En(dC ◦Q)− En(Q ◦ dC).

(4.3)

Fact 4.2 expresses En(Q ◦ dC) as a linear combination of sums satisfying that the
terms corresponding to i = 1 of its first sum and the terms corresponding to i = r
of its second sum cancel the first two sums in (4.3). Combining the remaining
terms of (4.3) and using the definition of Hm, for 3 ≤ m ≤ n− 1, we get that

Hn =

n−2∑
i=1

(−1)n−i
(
(γi ◦Q)⊗ (Hn−i ◦Q)

)
⊗∆C −

n−2∑
j=1

(
(Hn−j ◦Q)⊗ (γj ◦Q)

)
◦∆C .

The lemma thus follows from an inductive argument. �

Theorem 4.5. Let (C,∆C , dC) be a dg coalgebra provided with an Adams grading and let
ρ : (C, dC)→ (W,dW ) be a quotient dg module of C (respecting the Adams degree) with
kernel K. Suppose there is an admissible linear map Q : C → C[−1] of total degree zero,
where C[−1] denotes the shift of the cohomological degree, satisfying that idC − [dC , Q]
vanishes on K. For all n ∈ N, define ∆n : W → W⊗n as follows. Set ∆1 = dW and ∆n

to be the unique map satisfying that ∆n ◦ρ = ρ⊗n ◦γn ◦ (idC− [dC , Q]), for n ≥ 2. Then,
(W,∆•) is an Adams graded A∞-coalgebra.

Define the collection f• : C → W , where fn : C → W⊗n is the linear map of
homological degree n−1 and zero Adams degree given by fn = −ρ⊗n ◦γn ◦Q, for n ∈ N.
Then f• is a morphism of Adams graded A∞-coalgebras.
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Furthermore, assume C has a counit εC , there a linear map εW : W → K such that
εW ◦ ρ = εC , Q ◦Q = 0 and ρ ◦Q = 0. Then, εW is a strict counit of the Adams graded
A∞-coalgebra (W,∆•), and f• : C → W is a morphism of strictly counitary Adams
graded A∞-coalgebras.

Proof. The first part follows from the fact that the Stasheff identity SI(n) for n ≥ 3
for the operations ∆• is by definition given by ρ⊗n ◦ (Γn +Hn) ◦ (id− [dC , Q]), so
it vanishes. The two first Stasheff identities SI(1) and SI(2) are trivial, for W is a
quotient of C.

To prove the second assertion we proceed as follows. We have thus to prove
the following reduced form of the Stasheff identities on morphisms MI(n) (see [2],
eq. (2.2))∑

(r,s,t)∈In

(−1)rs+t(id⊗rW ⊗∆s ⊗ id⊗tW ) ◦ fr+1+t

= fn ◦ dC +

n−1∑
p=1

(−1)n−p−1
(
(ρ⊗p ◦ γp ◦Q)⊗ (ρ⊗(n−p) ◦ γn−p ◦Q)

)
◦∆C , (4.4)

for all n ∈ N, where In = {(r, s, t) ∈ N0 ×N×N0 : r+ s+ t = n}. The case n = 1 is
trivial since ρ is a morphism of complexes. Moreover, the case n = 2 is also clear,
since the left member of (4.4) gives

∆2 ◦ f1 − (idW ⊗∆1 + ∆1 ⊗ idW ) ◦ f2
= ρ⊗2 ◦∆C ◦ (idA − [dC , Q]) + ρ⊗2 ◦ (idC ⊗ dC + dC ⊗ idC) ◦∆C ◦Q
= ρ⊗2 ◦∆C − ρ⊗2 ◦∆C ◦Q ◦ dC ,

(4.5)

where we have used the Leibniz property for the coderivation dC . The right mem-
ber of (4.4) gives

f2 ◦ dC +
(
(ρ ◦ γ1 ◦Q)⊗ (ρ ◦ γ1 ◦Q)

)
◦∆C = −ρ⊗2 ◦∆C ◦Q ◦ dC + ρ⊗2 ◦∆C ,

which clearly coincides with (4.5). We shall now consider n > 2. By the definition
of the tensors Γn and Hn given in Lemmas 4.3 and 4.4, respectively, we see that

ρ⊗n◦(Γn+Hn)◦Q = ρ⊗n◦γn◦dC ◦Q+
∑

(r,s,t)∈I∗n

(−1)rs+t(id⊗rW ⊗∆s⊗ id⊗tW )◦fr+1+t,

for all n ∈ N, where we recall that I∗n = {(r, s, t) ∈ N0×N×N0 : r+s+t = n, r+t >
0}. Moreover, by the previously mentioned lemmas, the tensor Γn and Hn vanish,
which implies that∑

(r,s,t)∈In

(−1)rs+t(id⊗rW ⊗∆s ⊗ id⊗tW ) ◦ fr+1+t = ∆n ◦ f1 − ρ⊗n ◦ γn ◦ dC ◦Q.

On the other hand,

∆n ◦ f1 − ρ⊗n ◦ γn ◦ dC ◦Q = ρ⊗n ◦ γn − ρ⊗n ◦ γn ◦Q ◦ dC

=

n−1∑
i=1

(−1)n−i−1
(
(ρ⊗i ◦ γi ◦Q)⊗ (ρ⊗(n−i) ◦ γn−i ◦Q)

)
◦∆C − ρ⊗n ◦ γn ◦Q ◦ dC ,

where we have used the definition of ∆n in the first equality, and equation (4.1)
in the last one. It is clear that the last member of the previous chain of identities
coincides with the right member of (4.4), as was to be shown.
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The proof of the third assertion is parallel to the one given to Theorem 3.1.
Using the definition of f2, we see that the condition ρ ◦ Q = 0 implies that (εW ⊗
idW ) ◦ f2 = (idW ⊗ εW ) ◦ f2 = 0. The fact ρ is a morphism of dg modules and
εC ◦ dC = 0 imply that εW ◦ ∆1 = 0. Suppose now that we have proved that, for
2 ≤ i ≤ n − 1, (id⊗jW ⊗ εW ⊗ id

⊗(i−j−1)
W ) ◦ fi vanishes for all j ∈ {0, . . . , i − 1}. By

(4.1) and the inductive hypothesis, we see that (id⊗jW ⊗ εW ⊗ id
⊗(n−j−1)
W ) ◦ ρ⊗n ◦ γn

vanishes for all j ∈ {1, . . . , n− 2}, (εW ⊗ id
⊗(n−1)
W ) ◦ ρ⊗n ◦ γn = (−1)n−1fn−1, and

(id
⊗(n−1)
W ⊗ εW ) ◦ ρ⊗n ◦ γn = fn−1. By the definition of fn and the assumption

that Q ◦ Q = 0 we conclude that (id⊗jW ⊗ εW ⊗ id
⊗(n−j)
W ) ◦ fn vanishes for all j ∈

{0, . . . , n− 1}. Moreover, since the image of (idC − [dC , Q]) vanishes on the kernel
of ρ and ρ ◦Q = 0, we see that

0 = (idC − [dC , Q]) ◦Q = Q−Q ◦ dC ◦Q = Q ◦ (idC − [dC , Q]), (4.6)

where we have used in the last two equalities that Q ◦ Q vanishes. Using our
previous description of (id⊗jW ⊗ εW ⊗ id

⊗(n−j−1)
W ) ◦ ρ⊗n ◦ γn in terms of fn−1 =

−ρ⊗(n−1) ◦ γn−1 ◦Q for n ≥ 3 (if it does not vanish already) and (4.6), we get that
(id⊗jW ⊗ εW ⊗ id

⊗(n−j)
W ) ◦∆n vanishes for all j ∈ {0, . . . , n− 1}. �

The structure of A∞-coalgebra on W given by the previous theorem is called a
Merkulov model on W , or simply a model. As in the case of dg algebras, note that
the result stated in the first two paragraphs of the previous theorem is slightly
more general than those obtained in homological perturbation theory, since the
conditions of a SDR are not necessarily satisfied (cf. [3], or [4], Section 6).
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