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Abstract
In this article we prove that there exists an explicit bijection between nice

d-pre-Calabi-Yau algebras and d-double Poisson differential graded algebras,
where d ∈ Z, extending a result proved by N. Iyudu and M. Kontsevich. We
also show that this correspondence is functorial in a quite satisfactory way, giv-
ing rise to a (partial) functor from the category of d-double Poisson dg algebras
to the partial category of d-pre-Calabi-Yau algebras. Finally, we further gener-
alize it to include double P∞-algebras, as introduced by T. Schedler.
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1 Introduction
Pre-Calabi-Yau algebras were introduced in [8], and further studied in [2] and

[3]. However, these structures (or equivalent ones) have appeared in other works
under different names, such as V∞-algebras in [11], A∞-algebras with boundary in
[13], noncommutative divisors in Remark 2.11 in [14], or weak Calabi-Yau structures
(see [5] for the case of algebras, [16] for differential graded (dg) categories and
[4] for linear∞-categories). These references show that pre-Calabi-Yau structures
play an important role in homological algebra, symplectic geometry, string topol-
ogy, noncommutative geometry and even in Topological Quantum Field Theory
(see [5]). Following [7], a (compact) Calabi-Yau structure (of dimension n) on a com-
pactA∞-algebraA is a nondegenerate cyclically invariant pairing onA of degree n.
In the sense of formal noncommutative geometry, it is the analogue of a symplectic
structure. The problem with this definition is that for applications related to path
spaces, Fukaya categories, open Calabi-Yau manifolds or Fano manifolds, the hy-
pothesis of compactness is too restrictive. This was the reason why pre-Calabi-Yau
algebras were originally introduced in [8].

Roughly speaking, a pre-Calabi-Yau algebra can be regarded as a formal non-
commutative Poisson structure on a non-compact algebra because it is a noncom-
mutative analogue of a solution to the Maurer-Cartan equation for the Schouten
bracket on polyvector fields. More precisely, let A be a Z-graded vector space, and
let C(k)(A) :=

∏
r≥0Hom(A[1]⊗r, A⊗k), for k ≥ 1. A pre-Calabi-Yau structure on

A is a solution m =
∑
k≥0m

(k), m(k) ∈ C(k)(A) of the Maurer-Cartan equation
[m,m]gen.neckl = 0 (see [3], Def. 2.5). Here, [ , ]gen.neckl is the “generalized necklace
bracket", which is a kind of graded commutator (see [3], Def. 2.4). Nevertheless,
for our purposes, we will use a different but equivalent version of this notion (see
[3], Prop. 2.7). A pre-Calabi-Yau algebra essentially is a cyclic A∞-algebra struc-
ture on A ⊕ A#[d − 1] for the natural bilinear form of degree d − 1 induced by
evaluation such that A is an A∞-subalgebra (see Definition 4.2).
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If pre-Calabi-Yau structures are regarded as noncommutative Poisson struc-
tures in the setting of formal noncommutative geometry, double Poisson algebras
are the natural candidates for Poisson structures in the context of noncommutative
differential geometry based on double derivations as developed in [1] and [15].
Indeed, let DerA = Der(A,A ⊗ A) be the A-bimodule of double derivations, and
let DA = TA(DerA) be its tensor algebra. Roughly speaking, a double Poisson
algebra is an algebra endowed with a bivector P ∈ (DA)2 such that {P, P} = 0,
where { , } is a kind of commutator in this context (see [15], Section 4.4). Besides
their similarity with the commutative notion, double Poisson algebras turn out to
be the appropriate noncommutative Poisson algebras in this setting because they
satisfy the Kontsevich-Rosenberg principle (see [6] and [15], Section 7.5), whereby
a structure on an associative algebra has geometric meaning if it induces standard
geometric structures on its representation spaces.

Hence, since pre-Calabi-Yau algebras and double Poisson algebras can be re-
garded as noncommutative Poisson structures, one should expect some relation-
ship between them. For instance, W.-K. Yeung [16] proved that double Poisson
structures on dg categories provide examples of pre-Calabi-Yau structures. Fur-
thermore, given an associative algebra A, N. Iyudu and M. Kontsevich showed
that there exists an explicit one-to-one correspondence between the class of non-
graded double Poisson algebras and that of pre-Calabi-Yau algebras whose mul-
tiplications mi vanish for i ∈ N \ {2, 3}, such that m2 is the usual product of the
square-zero extensionA⊕A#[d−1], andm3 sendsA⊗A#⊗A toA andA#⊗A⊗A#

to A# (see [3], Thm. 1.1).
The first main result of this article is an extension of this correspondence to the

differential graded setting (see Theorem 5.2). Our second main result shows that
such a correspondence satisfies a simple functorial property (see Theorems 5.6 and
5.9), for a suitable notion of morphism of d-pre-Calabi-Yau algebras (Definition 5.8).
We remark that this notion does not define a category but a partial category of d-pre-
Calabi-Yau algebras, since not all pairs (f, g) of morphisms such that the codomain
of f is the domain of g are composable.

Moreover, T. Schedler [12] showed an interesting connection of the classical
and associative Yang-Baxter equations with double Poisson algebras, that he gen-
eralized to L∞-algebras, giving rise to “infinity” versions of Yang-Baxter equa-
tions and double Poisson algebras. The latter arise by relaxing the (double) Jacobi
identity up to homotopies, but not the associativity of the multiplication. We re-
call Schedler’s definition of double P∞-algebras in Definition 6.1, which coincides
with the usual notion of dg double Poisson algebras if the higher brackets van-
ish. The third main result of the article states that there is also a correspondence
between certain pre-CY structures on (nonunitary) graded algebras A and double
P∞-algebras, giving a different extension of Theorem 5.2 if d = 0 (see Theorem
6.3).

We believe that our results can be a powerful tool to define both new dou-
ble Poisson and pre-Calabi-Yau structures. For example, the study of linear and
quadratic double Poisson brackets on free associative algebras, as in [9] or [10],
might be useful to better understand and extend the results obtained by N. Iyudu
in [2], where pre-Calabi-Yau structures on path algebras of quivers with one ver-
tex and a finite number of loops are studied. Moreover, the results obtained in this
article give rise to a more natural study of quasi-isomorphism classes of dg double
Poisson algebras by considering the associated pre-Calabi-Yau A∞-algebras. We
remark that the former problem is in principle specially difficult, as it is usually the
case when dealing with double structures (e.g. double associative algebras, dou-
ble Poisson algebras), since, although transfer theorems for strongly homotopic
structures over dioperads or properads are known to hold, they are not explicit.
Indeed, as a major difference with the theory of (al)gebras over operads we can
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mention that there does not exist in general a Schur functor construction for diop-
erads/properads –so there is in particular no bar construction for (al)gebras over
dioperads/properads–, the category of (al)gebras over dioperads/properads does
not carry any natural model structure, etc.

The contents of the article are as follows. We begin in Section 2 by fixing our no-
tations and conventions, and in Section 3 we review some known definitions and
results related to double Poisson dg algebras. After reviewing the basic defini-
tions and results on A∞-algebras in the first part of Section 4, we recall the crucial
notion of a d-pre-Calabi-Yau structure as well as some additional conditions on
A∞-algebras that we will need to prove our main results.

Section 5 is the core of the article. Subsection 5.1 is devoted to prove the first
main result of our article, Theorem 5.2, that establishes the bijection between fully
manageable nice d-pre-Calabi-Yau structures and double Poisson brackets of de-
gree −d. In Subsection 5.2 we prove our second main result, namely the functori-
ality of the previous correspondence (see Theorems 5.6 and 5.9). Finally, in Section
6, we prove our last main result, Theorem 6.3, that extends the previous bijection
in case d = 0 to include double P∞-algebras.

Acknowledgments. The first author is supported by the Alexander von Hum-
boldt Stiftung in the framework of an Alexander von Humboldt professorship en-
dowed by the German Federal Ministry of Education and Research. The second
author was supported by the GDRI “Representation Theory” 2016-2020 and the
BIREP group, and is deeply thankful to Henning Krause and William Crawley-
Boevey for their hospitality at the University of Bielefeld. We are very grateful to
Yiannis Vlassopoulos for sharing with us the manuscript [8].

2 Notations and conventions
2.1 Generalities

In what follows, k will denote a field of characteristic zero. We recall that, if
V = ⊕n∈ZV n is a (cohomological) graded vector space (resp., dg vector space
with differential ∂V ), V [m] is the graded (resp., dg) vector space over k whose n-th
homogeneous component V [m]n is given by V n+m, for all n,m ∈ Z (resp., and
whose differential ∂V [m] sends a homogeneous v ∈ V n+m to (−1)m∂V (v)). It is
called the shift of V . Given a nonzero element v ∈ V n, we will denote |v| = n the
degree of v. If we refer to the degree of an element, we will be implicitly assuming
that it is nonzero and homogeneous.

We recall that a morphism f : V → W of graded (resp., dg) vector spaces of
degree d ∈ Z is a homogeneous linear map of degree d, i.e. f(V n) ⊆ Wn+d for all
n ∈ Z, (resp., satisfying that f ◦ ∂V = (−1)d∂W ◦ f ). A morphism of degree zero
will be called closed. Moreover, if f : V → W is a morphism of graded (resp., dg)
vector spaces of degree d, f [m] : V [m]→W [m] is the morphism of degree d whose
underlying set-theoretic map is (−1)mdf . In this way, the shift (−)[m] defines an
endofunctor on the category of graded (resp., dg) vector spaces provided with
closed morphisms.

Given any d ∈ Z, we will denote by sV,d : V → V [d] the suspension morphism,
whose underlying map is the identity of V , and sV,1 will be denoted simply by sV .
To simplify notation, we write sv instead of sV (v) for a homogeneous v ∈ V . All
morphisms between vector spaces will be k-linear (satisfying further requirements
if the spaces are further decorated). All unadorned tensor products ⊗ would be
over k. Since graded vector spaces can be considered as dg vector spaces with
trivial differentials, we will proceed to consider the case of dg vector spaces. We
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also remark that N will denote the set of positive integers, whereas N0 will be the
set of nonnegative integers.

2.2 Permutations
Given n ∈ N, we will denote by Sn the group of permutations of n elements

{1, . . . , n}, and given any σ ∈ Sn, sgn(σ) ∈ {±1} will denote its sign. Given two
dg vector spaces V and W , we denote by τV,W : V ⊗ W → W ⊗ V the closed
morphism determined by v ⊗ w 7→ (−1)|v||w|w ⊗ v, for all homogeneous elements
v ∈ V and w ∈ W . Moreover, given any transposition ς = (ij) with i < j in the
group of permutations Sn of n ∈ N elements, it induces a unique closed morphism
τV,n(ς) : V ⊗n → V ⊗n, sending v1 ⊗ · · · ⊗ vn to

(−1)εv1 ⊗ · · · ⊗ vi−1 ⊗ vj ⊗ vi+1 ⊗ · · · ⊗ vj−1 ⊗ vi ⊗ vj+1 ⊗ · · · ⊗ vn,

where ε = |vi||vj | + (|vi| + |vj |)(
∑j−1
`=i+1 |v`|), for all homogeneous v1, . . . , vn in V .

More generally, for any permutation σ ∈ Sn, written as a composition of transpo-
sitions ς1 ◦ · · · ◦ ςm, we define the closed morphism τV,n(σ) : V ⊗n → V ⊗n given by
τV,n(ς1) ◦ · · · ◦ τV,n(ςm). We leave to the reader the verification that this is indepen-
dent of the choice of the transpositions used in the decomposition of σ. In fact, it
is easy to check that τV,n(σ) sends v̄ = v1 ⊗ · · · ⊗ vn to

(−1)ε(σ,v̄)vσ−1(1) ⊗ · · · ⊗ vσ−1(n), (2.1)

where
ε(σ, v̄) =

∑
i < j,

σ−1(i) > σ−1(j)

|vσ−1(i)||vσ−1(j)|. (2.2)

We will usually write σ instead of τV,n(σ) to simplify the notation.

2.3 The closed monoidal structure
Given two dg vector spaces V andW we will denote byHom(V,W ) the dg vec-

tor space whose component of degree d is formed by all morphisms from V toW of
degree d, and whose differential sends an homogeneous element f ∈ Hom(V,W )
to ∂W ◦ f − (−1)|f |f ◦ ∂V . If W = k, we will denote Hom(V,k) by V #. If f :
V → V ′ is a morphism of degree d, thenHom(f,W ) : Hom(V ′,W )→ Hom(V,W )
and Hom(W, f) : Hom(W,V ) → Hom(W,V ′) are defined by Hom(f,W )(g) =
(−1)|f ||g|g ◦ f and Hom(W, f)(g) = f ◦ g, respectively. If W = k, then Hom(f, k)
will be denoted by f#.

It is easy to check that, given homogeneous morphisms f : V → V ′′ and g :
V ′ → V , then

Hom(g,W ) ◦ Hom(f,W ) = (−1)|f ||g|Hom(f ◦ g,W ), (2.3)

and
Hom(W, f) ◦ Hom(W, g) = Hom(W, f ◦ g). (2.4)

The usual tensor product V ⊗W of vector spaces is a dg vector space for the
grading given by V ⊗W = ⊕n∈Z(V ⊗W )n, where (V ⊗W )n = ⊕m∈ZV m⊗Wn−m,
and the differential sends v ⊗ w to ∂V (v) ⊗ w + (−1)|v|v ⊗ ∂W (w), for all homo-
geneous v ∈ V and w ∈ W . Given f ∈ Hom(V,W ) and g ∈ Hom(V ′,W ′), the
map ΛV,V ′,W,W ′(f ⊗ g) ∈ Hom(V ⊗ V ′,W ⊗W ′) is the unique morphism send-
ing v ⊗ w to (−1)|g||v|f(v) ⊗ g(w). This gives a closed morphism ΛV,V ′,W,W ′ :
Hom(V,W )⊗Hom(V ′,W ′)→ Hom(V ⊗ V ′,W ⊗W ′). If W = W ′ = k, we denote
it by λV,V ′ . Moreover, if it is clear from the context, we will denote ΛV,V ′,W,W ′(f⊗g)
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simply by f⊗g. Note that, using this notation, the differential of V ⊗W is precisely
∂V ⊗ idW + idV ⊗ ∂W .

It is easy to check that

ΛV,V ′,W,W ′(f⊗g)◦ΛU,U ′,V,V ′(f ′⊗g′) = (−1)|f
′||g|ΛU,U ′,W,W ′

(
(f◦f ′)⊗(g◦g′)

)
, (2.5)

and
λW,V ◦ τV #,W# = τ#

W,V ◦ λV,W , (2.6)

as well as

λV,W ◦ ΛU#,W#,V #,W#(h# ⊗ idW#) =
(
ΛV,W,U,W (fh⊗ idW )

)# ◦ λU,W , (2.7)

for any homogeneous morphism h : V → U .
For later use, we recall that, given v1, . . . , vn ∈ V homogeneous elements of a

graded vector space, and f1, . . . , fn ∈ V # homogeneous elements, then

(f1 ⊗ · · · ⊗ fn)
(
σ(v1 ⊗ · · · ⊗ vn)

)
=
(
σ−1(f1 ⊗ · · · ⊗ fn)

)
(v1 ⊗ · · · ⊗ vn). (2.8)

2.4 The closed monoidal structure and the suspension
Given d ∈ Z, and V and W two dg vector spaces, define the closed isomor-

phisms LdV,W : Hom(V,W )[d] → Hom(V [−d],W ) and RdV,W : Hom(V,W )[d] →
Hom(V,W [d]) given by sHom(V,W ),df 7→ (−1)d|f |f ◦ sV [−d],d and sHom(V,W ),df 7→
sW,d ◦ f , respectively.

Moreover, define also the closed isomorphisms L d
V,W : (V⊗W )[d]→ (V [d])⊗W

and Rd
V,W : (V ⊗W )[d]→ V ⊗ (W [d]) given by sV⊗W,d(v ⊗ w) 7→ sV,d(v)⊗ w and

sV⊗W,d(v ⊗ w) 7→ (−1)d|v|v ⊗ sW,d(w), respectively.

3 Double Poisson brackets on dg algebras
The definitions of dg algebras (possibly with unit) and dg (bi)modules are sup-

posed to be well-known. We will recall however the definition of a double Poisson
dg algebra, specially to avoid some imprecisions concerning signs that exist in the
literature. The reader might check that the definition coincides with the one intro-
duced in [15], Section 2.7, for the case where the differential vanishes.

Definition 3.1. Let (A,µA, ∂A) be a dg algebra and d ∈ Z. A double Poisson bracket on
A of degree −d is a homogeneous morphism of dg vector spaces

{{ , }}A : A[d]⊗A[d] −→ A⊗A

of degree d satisfying that

(i) −{{ , }}A ◦ τA[d],A[d] = τA,A ◦ {{ , }}A;

(ii) for any a ∈ A, the homogeneous map AD(a) : A → A ⊗ A of degree |a| − d given
by b 7→ {{sA,da, sA,db}}A is a double derivation of A, i.e.

AD(a) ◦ µA = (idA ⊗ µA) ◦ (AD(a)⊗ idA) + (µA ⊗ idA) ◦ (idA ⊗AD(a));

(iii)
∑
σ∈C3

τA,3(σ) ◦ {{ , , }}A,L ◦ τA[d],3(σ−1) = 0;

where C3 ⊆ S3 is the subgroup of cyclic permutations, and {{ , , }}A,L : A[d]⊗3 → A⊗3 is
the map ({{ , }}A ⊗ idA) ◦ (idA[d] ⊗ sA,d ⊗ idA) ◦ (idA[d] ⊗ {{ , }}A).

Usually, the identity in (ii) is called the Leibniz property, and (iii) is the double
Jacobi identity.
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Remark 3.2. Note that {{ , }}A being a homogeneous morphism of dg vector spaces of degree
d means precisely that(

∂A ⊗ idA + idA ⊗ ∂A
)
◦ {{ , }}A = (−1)d{{ , }}A ◦

(
∂A[d] ⊗ idA[d] + idA[d] ⊗ ∂A[d]

)
.

On the other hand, condition (ii) in the previous definition is tantamount to the following
one. Set {{ , }}uA : A ⊗ A → A ⊗ A to be the map {{ , }}uA = {{ , }}A ◦ (sA,d ⊗ sA,d). Then,
condition (ii) is equivalent to

{{ , }}uA◦(idA⊗µA) = (idA⊗µA)◦({{ , }}uA⊗idA)+(µA⊗idA)◦(idA⊗{{ , }}uA)◦(τA,A⊗idA).

Convention 3.3. Note that the usual definition of double bracket in [15], Section 2.7, is a
map of the form {{ , }}vdBA : A⊗A→ A⊗A satisfying some axioms. We leave to the reader
to verify that the conditions in Definition 3.1 for our map {{ , }}A : A[d]⊗ A[d] → A⊗ A
are equivalent to those given in [15], Section 2.7, for the map {{ , }}vdBA : A⊗A→ A⊗A,
where {{a, b}}vdBA = {{sA,da, sA,db}}A, and a, b ∈ A. It is for this reason that, when dealing
with specific elements a, b of A, it will be convenient to simply write {{a, b}}A instead of
{{a, b}}vdBA (= {{sA,da, sA,db}}A).

We recall that, given any dg algebra (A,µA, ∂A), [A,A] denotes the dg vector
subspace of A generated by ab − (−1)|a||b|ba, for all homogeneous a, b ∈ A. Note
that we have the isomorphism of dg vector spaces A[d]/([A,A][d]) ' (A/[A,A])[d]
given by sA,d(a)+([A,A])[d] 7→ sA/[A,A],d(a+[A,A]). The following result is proved
by the same argument as the one in [15], Corollary 2.4.6.

Proposition 3.4. Let (A,µA, ∂A) be a dg algebra provided with a double Poisson bracket
{{ , }}A of degree −d ∈ Z. Set { , }A : A[d] ⊗ A[d] → (A/[A,A])[d] to be the composition
of {{ , }}A, µA, the canonical projection A→ A/[A,A] and sA/[A,A],d. Then, { , }A induces
a map

(A/[A,A])[d]⊗ (A/[A,A])[d]→ (A/[A,A])[d]

of degree zero, which, together with the map

(A/[A,A])[d]→ (A/[A,A])[d]

of degree 1 induced by sA,d ◦ ∂A ◦ sA[d],−d, gives a structure of dg Lie algebra on the space
(A/[A,A])[d].

4 Cyclic A∞-algebras and pre-Calabi-Yau structures
4.1 A∞-algebras

We recall that a nonunitary A∞-algebra is a (cohomologically) graded vector
space A = ⊕n∈ZAn together with a collection of maps {mn}n∈N, where mn :
A⊗n → A is a homogeneous morphism of degree 2− n, satisfying the equation∑

(r,s,t)∈In

(−1)r+stmr+1+t ◦ (id⊗rA ⊗ms ⊗ id⊗tA ) = 0 (SI(n))

for n ∈ N, where In = {(r, s, t) ∈ N0 × N× N0 : r + s+ t = n}. Since we are going
to deal exclusively with nonunitary A∞-algebras, from now on, A∞-algebras will
always be nonunitary, unless otherwise stated.

Definition 4.1. An A∞-algebra (A,m•) is said to be
(i) fully manageable if (A,m2,m1) is a (nonunitary) dg algebra;

(ii) small if the multiplications {mn}n∈N satisfy that mn = 0, for all n ≥ 4;
(iii) essentially odd if m2i = 0, for all i > 1.
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In case (i) we also say that (A,m•) is a fully manageable extension of the dg alge-
bra (A,m2,m1), if we want to emphasize the latter.

Note that given an essentially odd A∞-algebra, SI(2p) is equivalent to

2(p−1)∑
r=0

(−1)rm2p−1◦(id⊗rA ⊗m2⊗id
⊗(2(p−1)−r)
A )−m2◦(m2p−1⊗idA+idA⊗m2p−1) = 0,

(4.1)
for p ∈ N, whereas SI(2p− 1) is equivalent to

δp,2m2 ◦
(
m2 ⊗ idA − idA ⊗m2

)
+

p∑
i=1

2(p−2)∑
r=0

m2i−1 ◦
(
id⊗rA ⊗m2(p−i)+1 ⊗ id

⊗(2(i−2)−r)
A

)
= 0,

(4.2)

for p ∈ N.
A morphism of (nonunitary) A∞-algebras f• : A → A′ between two (nonunitary)

A∞-algebras (A,mA
• ) and (A′,mA′

• ) is a collection of maps {fn}n∈N, where fn :
A⊗n → A′ is a homogeneous morphism of degree 1− n satisfying the equation∑
(r,s,t)∈In

(−1)r+stfr+1+t◦(id⊗rA ⊗m
A
s ⊗ id⊗tA ) =

∑
q∈N

∑
ī∈Nq,n

(−1)wmA′

q ◦(fi1⊗· · ·⊗fiq ),

(MI(n))
for n ∈ N, where w =

∑q
j=1(j− 1)(ij + 1) and Nq,n is the subset of elements ī of Nq

satisfying that |̄i| = i1 + · · ·+ iq = n. A morphism is strict if fn = 0, for all n ≥ 2.

4.2 Cyclic and ultracyclic structures on A∞-algebras
Given d ∈ Z, a d-cyclic (nonunitary) A∞-algebra is an A∞-algebra (A,m•) pro-

vided with a nondegenerate bilinear form γ : A⊗A→ k of degree d satisfying that
γ ◦ τA,A = γ and

γ
(
mn(a1, . . . , an), a0

)
= (−1)n+|a0|(

∑n
i=1 |ai|)γ

(
mn(a0, . . . , an−1), an

)
, (4.3)

for all homogeneous a0, . . . , an ∈ A. If we drop the nondegeneracy assumption on
γ in the previous definition, we will say that A is a degenerate d-cyclic (nonunitary)
A∞-algebra.

We also introduce the following definition, that will be useful in the sequel.
In order to do so, given n ∈ N consider the injective map n : Sn → S2n, sending
ς ∈ Sn to the permutation σ defined by σ(2i) = 2ς(i) and σ(2i−1) = 2ς(i)−1, for all
i ∈ {1, . . . , n}. A d-cyclic (nonunitary) A∞-algebra (A,m•) with a nondegenerate
bilinear form γ : A⊗A→ k of degree d satisfying that (A,m•) is essentially odd is
called d-ultracyclic if, for all n ∈ N and all permutations ς ∈ Sn, we have that

γ
(
m2n−1(aς(1), bς(1), . . . , aς(n−1), bς(n−1), aς(n)), bς(n)

)
= (−1)ε(ς

−1,ā,b̄)γ
(
m2n−1(a1, b1, . . . , an−1, bn−1, an), bn

)
,

(4.4)

for all homogeneous a1, b1, . . . , an, bn ∈ A, where ε(ς−1, ā, b̄) is the sign given in
(2.2) for σ = n(ς−1) and v̄ = a1⊗b1⊗· · ·⊗an⊗bn. As before, if we do not assume
that γ is nondegenerate in the previous definition, we will say thatA is a degenerate
d-ultracyclic (nonunitary) A∞-algebra.

4.3 Natural bilinear forms and pre-Calabi-Yau structures
Moreover, as it will be useful later, given a cyclic A∞-algebra (A,m•) with a

nondegenerate bilinear form γ and n ∈ N, we will define the linear map SI(n)γ :

7



A⊗(n+1) → k by∑
(r,s,t)∈In

(−1)r+stγ ◦
(
mr+1+t ◦ (id⊗rA ⊗ms ⊗ id⊗tA )⊗ idA

)
. (SI(n)γ)

Note that the (A,m•) being a cyclic A∞-algebra is equivalent to the vanishing of
SI(n)γ as well as (4.3), for all n ∈ N.

For the following definition, we first recall the definition of the natural bilinear
form of degree d ∈ Z associated with any (cohomologically) graded vector space
A = ⊕n∈ZAn. First, set ∂dA = A⊕A#[d]. For clarity, we will denote the suspension
map sA#,d : A# → A#[d] simply by t, and any element of A#[d] will be thus
denoted by tf , for f ∈ A#. Define now the bilinear form

A : ∂dA⊗ ∂dA→ k

by

A(tf, a) = (−1)|a||tf | A(a, tf) = f(a), and A(a, b) = A(tf, tg) = 0, (4.5)

for all homogeneous a, b ∈ A and f, g ∈ A#. Note that A has degree d. If there is
no risk of confusion, we shall denote A simply by .

We recall the following crucial definition from [8].

Definition 4.2. Given d ∈ Z, a d-pre-Calabi-Yau (algebra) structure on a (coho-
mologically) graded vector space A = ⊕n∈ZAn is the datum of a (d − 1)-cyclic A∞-
algebra on the graded vector space ∂d−1A = A ⊕ A#[d − 1] for the natural bilinear form
A : ∂d−1A ⊗ ∂d−1A → k of degree d − 1 defined in (4.5) such that the correspond-

ing multiplications {mn}n∈N of ∂d−1A satisfy that mn(A⊗n) ⊆ A, for all n ∈ N. A
0-pre-Calabi-Yau algebra will be simply called a pre-Calabi-Yau algebra.

This implies in particular that the maps {mn|A⊗n}n∈N define an A∞-algebra
structure on A such that its canonical inclusion into ∂d−1A is a strict morphism of
A∞-algebras.

4.4 Good and nice A∞-algebras
We will now introduce the following terminology that will be useful in the

sequel. Let us first fix some notation. Assume that there is a decomposition B0 ⊕
B1 of a graded vector space B. In many of our examples, B0 will be a graded
vector space A and B1 will be A#[d − 1]. Then, for any odd integer n ∈ N, the
decomposition B = B0 ⊕B1 induces a canonical decomposition

B⊗n = Tn,g ⊕ Tn,b,

where

Tn,g =
⊕
ī∈In

Bi1 ⊗ · · · ⊗Bin , Tn,b =
⊕

ī∈{0,1}n\In

Bi1 ⊗ · · · ⊗Bin , (4.6)

and

In =
{
ī = (i1, . . . , in) ∈ {0, 1}n : ij 6= ij+1 for all j ∈ {1, . . . , n− 1}

}
.

Note that T1,b = 0. A map mn : B⊗n → B will be called good if mn|Tn,b vanishes
and mn(Bi1 ⊗ · · · ⊗Bin) ⊆ Bi1 , for all (i1, . . . , in) ∈ In.

Definition 4.3. Let B be an A∞-algebra provided with an extra decomposition B =
B0 ⊕B1. We say that B is
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(i) good if the A∞-algebra structure is essentially odd and for every odd integer n ∈ N
the multiplication map mn is good;

(ii) special if the A∞-algebra structure is essentially odd and (d− 1)-ultracyclic;
(iii) nice if it is good and small (see Definition 4.1, (ii)).

All these definitions apply in particular to a d-pre-Calabi-Yau structure on A,
where we take B = ∂d−1A = A⊕A#[d− 1].

5 Nice pre-Calabi-Yau structures and double Poisson
dg algebras

5.1 Relation between objects
We first recall that, given a (nonunitary) dg algebra A with product µA and

differential ∂A, then A# is naturally a dg bimodule over A via

(a · f · b)(c) = (−1)|a|(|f |+|b|+|c|)f(bca),

for all homogeneous a, b, c ∈ A and f ∈ A#. Moreover, if (M,∂M ) is any dg
bimodule over A and d ∈ Z, then the dg vector space M [d] is a dg bimodule over
A via a · sM,d(m) · b = (−1)d|a|sM,d(a · m · b), for all homogeneous a, b ∈ A and
m ∈ M . In particular, A#[d − 1] is a dg bimodule over A. For simplicity, we will
write the product of A and its action on any dg bimodule M by juxtaposition, or a
small dot.

Moreover, given a dg bimodule M over a (nonunitary) dg algebra A, consider
the dg vector space A⊕M with the product (a,m) · (a′,m′) = (aa′,m · a′ + a ·m′).
It is easy to verify that the dg vector space A ⊕ M provided with the previous
product is a (nonunitary) dg algebra. In particular, we see that A ⊕ A#[d − 1] is
a (nonunitary) dg algebra. We leave to the reader to verify the easy assertion that
this dg algebra together with the natural bilinear form of degree d − 1 defined in
(4.5) is in fact a d-pre-Calabi-Yau structure, by taking m1 to be the differential of
A⊕A#[d− 1], m2 its product, and mn = 0, for all n ≥ 3.

Definition 5.1. Let (A,µA, ∂A) be a locally finite dimensional (nonunitary) dg algebra,
and consider the d-pre-Calabi-Yau structure on A defined by the dg algebra structure of
A ⊕ A#[d − 1] described before, together with the natural bilinear form of degree d − 1
defined in (4.5). A d-pre-Calabi-Yau structure {mn}n∈Z on A is called manageable if m2

coincides with the product of A ⊕ A#[d − 1] considered before, and fully manageable if
we also have that m1 is the differential of A⊕A#[d− 1].

The following result generalizes [3], Theorem 4.2.

Theorem 5.2. Let d ∈ Z, and letA = ⊕n∈ZAn be a (nonunitary) dg algebra with product
µA and differential ∂A. Consider the dg algebra algebra structure on A ⊕ A#[d − 1]
explained above, with product m2 and differential m1, as well as the natural bilinear form
on it of degree d−1 defined in (4.5). Given any nice and fully manageable d-pre-Calabi-Yau
structure {m•}•∈N on A, define the map {{ , }} : A⊗A→ A⊗A by

(f ⊗ g)
(
{{a, b}}

)
= sa,bf,g

(
m3(b, tg, a), tf

)
, (5.1)

for all homogeneous a, b ∈ A and f, g ∈ A#, where sa,bf,g = (−1)|b|(|a|+|g|+1). Then, {{ , }}
is a double Poisson bracket of degree −d on the dg algebra A. Moreover, the map{

fully manageable nice d-pre-CY
structures {m•}•∈N on A

}
−→

{
double Poisson brackets on

A of degree −d

}
(5.2)

given by sending m3 to the double Poisson bracket determined by (5.1) is a bijection.
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Proof. We are only going to consider sa,bf,g when (5.1) is not trivially zero, i.e. if |f |+
|g| = |a|+ |b|+ d. Note that this last identity implies also that sa,bf,g = (−1)|b|(|f |+d).

We will first prove that {{ , }}, as defined in (5.1), is a double Poisson bracket on
the dg algebra A. We remark that we will be using Convention 3.3. Let us start
with the antisymmetric property (i) in Definition 3.1, i.e.

τA,A
(
{{b, a}}

)
= −(−1)(|a|−d)(|b|−d){{a, b}}, (5.3)

for all homogeneous a, b ∈ A. Evaluating g ⊗ f at both sides of the previous equa-
tion, where f, g ∈ A# are homogeneous, it is clear that (5.3) is equivalent to

(g ⊗ f)
(
{{a, b}}

)
= −(−1)(|a||b|+|f ||g|+d(|a|+|b|+1))(f ⊗ g)

(
{{b, a}}

)
, (5.4)

for all homogeneous a, b ∈ A and f, g ∈ A#. Using (5.1) on each side, we obtain
that (5.4) is equivalent to

sa,bg,f
(
m3(b, tf, a), tg

)
= −(−1)(|a||b|+|f ||g|+d(|a|+|b|+1))sb,af,g

(
m3(a, tg, b), tf

)
.

(5.5)

On the left-hand side, using the cyclicity property of , we obtain that

sa,bg,f
(
m3(b, tf, a), tg

)
= sa,bg,f (−1)|tg|(|b|+|tf |+|a|)+3

(
m3(tg, b, tf), a

)
= sa,bg,f (−1)|tg|(|b|+|tf |+|a|)+|a|(|f |+|b|+|g|)

(
m3(a, tg, b), tf

)
.

(5.6)

Hence, comparing (5.5) and (5.6), we see that (5.3) holds if and only if

sa,bg,f = (−1)|a||f |+|g||b|+d(|a|+|b|)sb,af,g, (5.7)

where we have used that |a|+ |b|+ |f |+ |g|+ d = 0 (mod 2). Replacing sa,bg,f by its
definition, we see that (5.7) holds, so (5.3) does it as well, as was to be shown.

Let us now prove the Leibniz property (ii) in Definition 3.1, i.e.

{{c, ab}} = {{c, a}}b+ (−1)(|c|−d)|a|a{{c, b}}, (5.8)

for all homogeneous a, b, c ∈ A. In order to do so, consider the identity (SI(n)) for
n = 4 for the A∞-algebra structure of A ⊕ A#[d − 1] evaluated at a ⊗ b ⊗ tf ⊗ c,
where a, b, c ∈ A and f ∈ A# are homogeneous elements. This gives

m3(ab, tf, c)−m3(a, b.tf, c)− (−1)|a|a.m3(b, tf, c) = 0, (5.9)

for all homogeneous a, b, c ∈ A and f ∈ A#. By applying (−, tg), for a general
homogeneous g ∈ A#, we see that (5.9) is tantamount to(

m3(ab, tf, c), tg
)

=
(
m3(a, b.tf, c), tg

)
+(−1)|a|

(
a.m3(b, tf, c), tg

)
= 0. (5.10)

Using definition (5.1), we see that the first term of (5.10) is precisely

sc,abg,f (g ⊗ f)
(
{{c, ab}}

)
. (5.11)

Similarly, using the identity b.(tf) = (−1)|b|(d−1)t(b.f), for all homogeneous b ∈ A
and f ∈ A#, and (5.1), the second term of (5.10) becomes

sc,ag,b.f (−1)|b|(d−1)
(
g ⊗ (b.f)

)(
{{c, a}}

)
. (5.12)
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Using the identity (g ⊗ (b.f))(v ⊗ w) = (−1)|b|(|f |+|v|+|w|)(g ⊗ f)(v ⊗ (w.b)), for all
homogeneous b, v, w ∈ A and f, g ∈ A#, and the fact that |{{c, a}}| = |c| + |a| − d,
we conclude that (5.12) is equal to

sc,ag,b.f (−1)|b|(|f |+|a|+|c|+1)(g ⊗ f)
(
{{c, a}}b

)
. (5.13)

Finally, using the cyclicity of we see that the third term of (5.10) is

(−1)|a|+|tg|(|a|+|b|+|tf |+|c|−1)
(
tg.a,m3(b, tf, c)

)
= (−1)|a|+|tg|(|a|+|b|+|tf |+|c|−1)+(|a|+|tg|)(|tf |+|b|+|c|−1)

(
m3(b, tf, c), tg.a

)
= (−1)|a|(|c|+|b|+|g|+|f |)sc,bg.a,f

(
(g.a)⊗ f

)(
{{c, b}}

)
,

(5.14)

where we used the super symmetry of in the second identity, and tg.a = t(g.a) in
the last equality. Using the identity ((g.a)⊗ f)(v⊗w) = (−1)|a||f |(g⊗ f)(a.v⊗w),
for all homogeneous a, v, w ∈ A and f, g ∈ A#, we conclude that (5.14) is equal to

(−1)|a|(|c|+|b|+|g|)sc,bg.a,f (g ⊗ f)
(
a{{c, b}}

)
. (5.15)

Then, multiplying (5.10) by sc,abg,f and replacing the corresponding terms by the
ones given by (5.11), (5.13) and (5.15), we get

(g ⊗ f)
(
{{c, ab}}

)
= sc,abg,f s

c,a
g,b.f (−1)|b|(|f |+|c|+|a|+1)(g ⊗ f)

(
{{c, a}}b

)
+ sc,abg,f s

c,b
g.a,f (−1)|a|(|g|+|c|+|b|)(g ⊗ f)

(
a{{c, b}}

)
.

(5.16)

Hence, (5.8) holds if and only if

sc,abg,f = sc,ag,b.f (−1)|b|(|f |+|c|+|a|+1), and (−1)|a|(|c|−d) = sc,abg,f s
c,b
g.a,f (−1)|a|(|g|+|c|+|b|),

(5.17)
Using the definition of sb,ag,f together with |f |+ |g| = |a|+ |b|+ |c| − d and |a| = |a|2
(mod 2), one can easily verify (5.17), so (5.8) holds as was to be shown. This proves
the Leibniz property (ii) in Definition 3.1.

Remark 5.3. Assuming that sa,bg,f is just a function of the degrees |a|, |b|, |f | and |g|
(satisfying that |a|+ |b|+ |f |+ |g|+ d = 0 (mod 2)), one can in fact show that our choice
for sa,bg,f is the unique solution of (5.7) and (5.17), up to multiplicative constant ±1. This
is in fact how we found such an expression.

Let us now show that {{ , }} is a homogeneous morphism of dg vector spaces of
degree d, i.e.(

∂A ⊗ idA + idA ⊗ ∂A
)(
{{a, b}}

)
= {{∂A(a), b}}+ (−1)|a|+d{{a, ∂A(b)}}, (5.18)

for all homogeneous a, b ∈ A. In order to prove this, consider the identity (SI(n))
for n = 3 for the A∞-algebra structure of A ⊕ A#[d − 1] evaluated at b ⊗ tg ⊗ a,
where a, b ∈ A and g ∈ A# are homogeneous elements, which gives

m1

(
m3(b, tg, a)

)
+m3

(
m1(b), tg, a

)
+ (−1)|b|m3

(
b,m1(tg), a

)
+ (−1)|b|+|g|+d−1m3

(
b, tg,m1(a)

)
= 0.

(5.19)

Applying (−, tf), for an arbitrary homogeneous f ∈ A#, we see that (5.19) is
tantamount to(

m1

(
m3(b, tg, a)

)
, tf
)

+
(
m3

(
m1(b), tg, a

)
, tf
)

+ (−1)|b|
(
m3

(
b,m1(tg), a

)
, tf
)

+ (−1)|b|+|g|+d−1
(
m3

(
b, tg,m1(a)

)
, tf
)

= 0.

(5.20)
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Applying the cyclicity and super symmetry properties of in the first term, as well
as the fact that m1(th) = (−1)|h|+dt(h ◦ ∂A) for any homogeneous element h in A#

in the first and third terms, we see that (5.20) is equivalent to

− (−1)|b|+|g|+|a|+|f |
(
m3(b, tg, a), t(f ◦ ∂A)

)
+

(
m3

(
m1(b), tg, a

)
, tf
)

+ (−1)|b|+|g|+d
(
m3

(
b, t(g ◦ ∂A), a

)
, tf
)

+ (−1)|b|+|g|+d−1
(
m3

(
b, tg,m1(a)

)
, tf
)

= 0.

(5.21)

By (5.1) and multiplying (5.21) by (−1)|b|(|a|+|g|)+|g|, we see that (5.21) is tanta-
mount to

− (−1)|a|+|f |
(
(f ◦ ∂A)⊗ g

)(
{{a, b}}

)
− (−1)|a|+|b|(f ⊗ g)

(
{{a, ∂A(b)}}

)
+ (−1)|b|+d

(
f ⊗ (g ◦ ∂A)

)(
{{a, b}}

)
− (−1)|b|+d(f ⊗ g)

(
{{∂A(a), b}}

)
= 0,

(5.22)

where we have used that m1|A = ∂A, and |a| + |b| + |f | + |g| + d + 1 = 0 (mod 2).
Now, using the Koszul sign rule, we obtain that (5.22) is precisely

(f ⊗ g)(∂A⊗ idA + idA⊗ ∂A)
(
{{a, b}}

)
= (f ⊗ g)

(
{{∂A(a), b}}+ (−1)|a|+d{{a, ∂A(b)}}

)
,

(5.23)
for all for all homogeneous a, b ∈ A and f, g ∈ A#, which is clearly equivalent to
(5.18).

We shall now prove the double Jacobi identity (see (iii) in Definition 3.1), which
can be explicitly written as

{{c, {{b, a}}}}L + (−1)(|c|+d)(|a|+|b|)σ{{b, {{a, c}}}}L
+ (−1)(|a|+d)(|b|+|c|)σ2{{a, {{c, b}}}}L = 0,

(5.24)

for arbitrary homogeneous elements a, b, c ∈ A, where σ ∈ S3 is the unique cyclic
permutation sending 1 to 2. In order to do so, consider (SI(n)) for n = 5 evaluated
at a⊗ tf ⊗ b⊗ tg ⊗ c, where a, b, c ∈ A and f, g ∈ A# are homogeneous elements.
It gives

m3

(
m3(a, tf, b), tg, c

)
+ (−1)|a|m3

(
a,m3(tf, b, tg), c

)
+ (−1)|a|+|tf |m3

(
a, tf,m3(b, tg, c)

)
= 0.

(5.25)

It is equivalent to the following identity, when we apply (−, th) for an arbitrary
homogeneous element h ∈ A#,(

m3

(
m3(a, tf, b), tg, c

)
, th
)

+ (−1)|a|
(
m3

(
a,m3(tf, b, tg), c

)
, th
)

+ (−1)|a|+|tf |
(
m3

(
a, tf,m3(b, tg, c)

)
, th
)

= 0.

(5.26)

The following result will be essential to prove the double Jacobi identity.

Fact 5.4. Let a, b, c ∈ A and f, g, h ∈ A# be homogeneous elements. Then,

(f ⊗ g ⊗ h)
(
{{a, {{b, c}}}}L

)
= 2

a,b,c
f,g,h

(
m3

(
m3(c, th, b), tg, a

)
, tf
)
, (5.27)

where
2
a,b,c
f,g,h = (−1)|h|(|f |+|g|)+d(|f |+|h|)+(|b|+|c|+|h|)(|a|+|b|+|g|) (5.28)

12



Proof. First note that, since (f ⊗ g) is a functional applied to {{a, {{b, c}}′}}, we can
assume without loss of generality that |{{a, {{b, c}}′}}| = |f |+ |g|. As a consequence,

(f ⊗ g ⊗ h)
(
{{a, {{b, c}}}}L

)
= (−1)|h|(|f |+|g|)(f ⊗ g)

(
{{a, {{b, c}}′}}

)
h
(
{{b, c}}′′

)
(5.29)

Using (5.1) we see that the right member of (5.29) is given by

(−1)|h(|f |+|g)s
a,{{b,c}}′
f,g

(
m3

(
{{b, c}}′, tg, a

)
, tf
)
h
(
{{b, c}}′′

)
= (−1)|h|(|f |+|g|)+(|b|+|c|−|h|+d)(|a|+|g|+1)

(
m3

(
{{b, c}}′h

(
{{b, c}}′′

)
, tg, a

)
, tf

)
,

where we have used that |{{b, c}}′| = |{{b, c}}| − |{{b, c}}′′| = |b|+ |c|+ d− |h|. Hence,
the previous equalities together with |a|+ |b|+ |c|+ |f |+ |g|+ |h| = 0 (mod 2) tell
us that the identity (5.27) is tantamount to

{{b, c}}′h
(
{{b, c}}′′

)
= (−1)d(|b|+|c|+1)+(|b|+|c|+|h|)(|b|+1)m3(c, th, b), (5.30)

which is equivalent to

l
(
{{b, c}}′

)
h
(
{{b, c}}′′

)
= (−1)d(|b|+|c|+1)+(|b|+|c|+|h|)(|b|+1)l

(
m3(c, th, b)

)
, (5.31)

for all l ∈ A# homogeneous of degree |c|+ |b|+ |h| − d. The left member of (5.31)
is given by

l
(
{{b, c}}′

)
h
(
{{b, c}}′′

)
= (−1)(|c|+|b|+|h|−d)|h|(l ⊗ h)

(
{{b, c}}

)
, (5.32)

whereas, on the right member,

l
(
m3(c, th, b)

)
= (−1)(|c|+|b|+|h|−d)(|c|+|b|+|h|+1)

(
m3(c, th, b), tl

)
, (5.33)

by the super symmetry of . By (5.1) and (5.33), the right member of (5.31) gives

(−1)(|c|+|b|+|h|+d)|h|(l ⊗ h)
(
{{b, c}}

)
,

which coincides with (5.32), proving (5.31), as was to be shown. �

By Fact 5.4, the first term of the left member of (5.26) is precisely(
m3

(
m3(a, tf, b), tg, c

)
, th
)

= 2
c,b,a
h,g,f (h⊗ g ⊗ f)

(
{{c, {{b, a}}}}L

)
,

or, more explicitly,

(−1)d(|f |+|h|)+|f |(|g|+|h|)+(|b|+|c|+|g|)(|a|+|b|+|f |)(h⊗ g ⊗ f)
(
{{c, {{b, a}}}}L

)
. (5.34)

Next, using the cyclicity of twice and the fact that |a|+|b|+|c|+|f |+|g|+|h| = 0
(mod 2), we see that the second term of the left member of (5.26) is

(−1)d|a|+(|b|+|f |+|g|−1)(|a|+|c|+|h|+d−1)
(
m3(c, th, a),m3(tf, b, tg)

)
. (5.35)

By the supersymmetry of , (5.35) coincides with

(−1)d|a|+|b|+|f |+|g|−1
(
m3(tf, b, tg),m3(c, th, a)

)
= (−1)d|a|+(|b|+|f |+|g|)(|a|+|c|+|h|−d+1)

(
m3

(
m3(c, th, a), tf, b

)
, tg
)
,
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where we have used the cyclicity in the second line. Fact 5.4 tells us finally that the
second term of the left member of (5.26) is

(−1)|a|
(
m3

(
a,m3(tf, b, tg), c

)
, th
)

= (−1)d|a|+(|b|+|f |+|g|)(|a|+|c|+|h|−d+1)2
b,a,c
g,f,h(g ⊗ f ⊗ h)

(
{{b, {{a, c}}}}L

)
,

which, by (2.8), is equal to

(−1)|h|(|f |+|g|)+d|a|+(|b|+|f |+|g|)(|a|+|c|+|h|−d+1)2
b,a,c
g,f,h(h⊗ g ⊗ f)

(
σ{{b, {{a, c}}}}L

)
.

(5.36)
Using the definition of 2b,a,cg,f,h as well as |a|+ |b|+ |c|+ f |+ |g|+ |h| = 0 (mod 2) and
|x|2 = |x|(mod 2), one obtains that (5.36) is given by

(−1)d(|c|+|g|)+(|b|+|f |+|g|)(|a|+|b|+|f |)(h⊗ g ⊗ f)
(
σ{{b, {{a, c}}}}L

)
. (5.37)

Finally, using the cyclicity of twice and |a|+|b|+|c|+|f |+|g|+|h| = 0 (mod 2),
we see that the third term of the right member of (5.26) is given by

(−1)d(|a|+|f |)
(
m3

(
m3(b, tg, c), th, a

)
, tf
)
,

which, by Fact 5.4, coincides with

(−1)d(|a|+|f |)2
a,c,b
f,h,g(f ⊗ h⊗ g)

(
{{a, {{c, b}}}}L

)
. (5.38)

By (2.8), we see that (5.38) coincides with

(−1)d(|a|+|f |)+|f |(|g|+|h|)2
a,c,b
f,h,g(h⊗ g ⊗ f)

(
σ2{{a, {{c, b}}}}L

)
,

which can be further reduced to the form

(−1)d(|a|+|g|)+|h|(|f |+|g|)+(|b|+|c|+|g|)(|a|+|c|+|h|)(h⊗ g ⊗ f)
(
σ2{{a, {{c, b}}}}L

)
. (5.39)

Since |a| + |b| + |c| + |f | + |g| + |h| = 0 (mod 2), it is fairly easy to prove
that the product of the sign appearing in (5.34) and the one in (5.37) is precisely
(−1)(|c|+d)(|a|+|b|), whereas the product of the sign appearing in (5.34) and the one
in (5.39) is (−1)(|a|+d)(|b|+|c|). Using these results, plugging (5.34), (5.37) and (5.39)
in (5.26), and multiplying the latter by the sign appearing in (5.34), we obtain pre-
cisely (5.24), as was to be shown.

To sum up, we have proved that, via (5.1), (A,µA, ∂A) is endowed with a double
Poisson dg structure, which in turn means that the map (5.2) is well-defined. Fur-
thermore, notice that, if {m•}•∈N is a small and fully manageable d-pre-Calabi-Yau
structure on A and {{ , }} is the obtained double Poisson bracket on A, in the para-
graph including (5.18) we have showed that (SI(3)) for {m•}•∈N is indeed equiva-
lent to the fact that {{ , }} is a homogeneous morphism of dg vector spaces of degree
d. Similarly, the equivalent version of the Leibniz property given by (5.9) shows
that the latter is in fact tantamount to the vanishing of SI(4) |A⊗A⊗tA#⊗A⊗tA# ,
where write tA# instead of A#[d−1]. Finally, the double Jacobi identity expressed
by (5.24) shows that it is in fact equivalent to the vanishing of SI(5) |(A⊗tA#)⊗3 .
Moreover, we remark that, since A is a dg algebra, it is easy to see that the family
of Stasheff identities (SI(n)) for the multiplications {m•}•∈N on ∂d−1A is equiva-
lent to just (SI(n)) for n ∈ {3, 4, 5}, since (SI(1)) is equivalent to ∂A ◦∂A = 0, (SI(2))
is the Leibniz property of ∂A with respect to the product µA, and (SI(n)) trivially
vanishes for n > 5.

We will finally show that (5.2) is bijective. In order to do so, we first note that,
given any good, small and fully manageable d-pre-Calabi-Yau structure {m•}•∈N

14



onA, it is uniquely determined bym3|A⊗A#[d−1]⊗A. Indeed, the fact that the d-pre-
Calabi-Yau structure on A is good tells us that the full m3 on ∂d−1A is unique, the
manageability hypothesis implies that m1 and m2 are uniquely determined by the
dg algebra structure of A, whereas the smallness assumption tells us mi = 0, for
all i > 3. As a consequence, and using that the identity (5.1) implies that the asso-
ciated double bracket {{ , }} completely determines m3|A⊗A#[d−1]⊗A, we conclude
that (5.2) is injective.

We will finally show that it is surjective. By the comments in the previous para-
graph, it suffices to show that, given any morphism m3 : ∂d−1A

⊗3 → ∂d−1A of
degree −1 on the dg algebra ∂d−1A described at the beginning of Subsection 5.1,
whose product and differential are denoted by m2 and m1, respectively, satisfy-
ing that m3|T3,b

= 0, m3(A ⊗ A#[d − 1] ⊗ A) ⊆ A, m3(A#[d − 1] ⊗ A ⊗ A#[d −
1]) ⊆ A#[d − 1], and the cyclic identities (4.3), for the natural bilinear form
of degree d − 1, then the vanishing of SI(4) |A⊗A⊗tA#⊗A⊗tA# is equivalent to
SI(4) = 0; furthermore, SI(5) |A⊗tA#⊗A⊗tA#⊗A⊗tA# = 0 is tantamount to the
vanishing of SI(5) . We leave the reader the tedious but straightforward verifica-
tion that SI(4) |A⊗A⊗tA#⊗A⊗tA# = 0 is equivalent to SI(4) |σ(A⊗A⊗tA#⊗A⊗tA#),
where σ ∈ C5 ⊆ S5 is any cyclic permutation, whereas SI(4) |σ(A⊗A⊗tA#⊗A⊗tA#)

trivially vanishes if σ ∈ S5 \ C5. Analogously, it is long but easy to verify that
SI(5) |A⊗tA#⊗A⊗tA#⊗A⊗tA# = 0 is equivalent to SI(5) |σ(A⊗tA#⊗A⊗tA#⊗A⊗tA#),
for any cyclic permutation σ ∈ C6 ⊆ S6, and SI(5) |σ(A⊗tA#⊗A⊗tA#⊗A⊗tA#) is
trivially zero if σ ∈ S6 \ C6. This concludes the proof of the theorem. �

5.2 Relation between morphisms
Let (A,µA, ∂A) and (B,µB , ∂B) be two double Poisson dg algebras, with brack-

ets {{ , }}A and {{ , }}B of degree −d, respectively. A morphism of double Poisson dg
algebras φ : A → B is a morphism of dg algebras satisfying that (φ ⊗ φ) ◦ {{ , }}A =
{{ , }}B ◦ (φ[d] ⊗ φ[d]). Since φ : A → B is a morphism of dg algebras, B is a dg
bimodule over A, so

∂d−1φ := A⊕B#[d− 1]

has a dg algebra structure, as explained in the first two paragraphs of Subsection
5.1.

Moreover, ∂d−1φ is naturally endowed with a super symmetric bilinear form

φ : (∂d−1φ)⊗2 → k

of degree d− 1 given by

φ(tf, a) = (−1)|a|(|f |−d+1)
φ(a, tf) = f(φ(a)) and φ(a, b) = φ(tf, tg) = 0,

(5.40)
for all homogeneous a, b ∈ A and f, g ∈ B#.

Lemma 5.5. Let (A,µA, ∂A) and (B,µB , ∂B) be two dg algebras and let φ : A→ B be a
morphism of dg algebras. Consider the dg algebra structure on ∂d−1φ = A ⊕ B#[d − 1]

recalled before, whose product and differential will be denoted by mφ
2 and mφ

1 , respectively.
Then, ∂d−1φ provided with φ defined in (5.40) is a degenerate d-cyclic dg algebra.

Proof. We first remark that, by definition, ∂d−1φ provided with φ is a degenerate
d-cyclic dg algebra if and only if (4.3) is verified for n = 1, 2, i.e.

φ

(
mφ

1 (x), y
)

= −(−1)|x||y| φ

(
mφ

1 (y), x
)
,

φ

(
mφ

2 (x, y), z
)

= (−1)|x|(|y|+|z|) φ

(
mφ

2 (y, z), x
)
,

(5.41)
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for all homogeneous x, y, z ∈ ∂d−1φ.
The first equation is trivially verified for x, y ∈ A or x, y ∈ B#[d− 1], and using

a symmetry argument it suffices to consider the case x = a ∈ A and y = tf , with
f ∈ B#, i.e. φ(∂A(a), tf) = (−1)|tf |(|a|+1)

φ(t(f ◦ ∂B), a), which is equivalent to
f ◦ φ ◦ ∂A(a) = f ◦ ∂B ◦ φ(a). Since φ is a morphism of dg algebras, we conclude
that (4.3) for n = 1 is always verified.

The definition of φ tells us that the second equation in (5.41) trivially holds
if x, y, z ∈ A, or if there are at least two arguments among x, y, z that belong to
B#[d − 1]. Finally, the three cases where two arguments of (5.41) are elements of
A and the other is in B#[d − 1] are clearly equivalent to the identity φ(ab, tf) =

(−1)|a|(|b|+|tf |) φ(b ·tf, a) = (−1)|tf |(|a|+|b|) φ(btf ·a, b), for all homogeneous a, b ∈
A and f ∈ B#. The latter is tantamount to f◦φ(ab) = f(φ(a)φ(b)), which is trivially
verified for φ, since it is a morphism of dg algebras. �

Remarkably, the construction provided in Theorem 5.2 is functorial in the fol-
lowing sense:

Theorem 5.6. Let d ∈ Z, and let (A,µA, ∂A) and (B,µB , ∂B) be two locally finite di-
mensional double Poisson dg algebras, with brackets {{ , }}A and {{ , }}B of degree −d, re-
spectively. Let φ : A → B be a morphism of double Poisson dg algebras. By Theorem
5.2, ∂d−1A and ∂d−1B are provided with the corresponding cyclic A∞-algebra structures
{mA
• }•∈N and {mB

• }•∈N, respectively. Consider the dg algebra ∂d−1φ = A⊕B#[d−1] de-
scribed previously, and define the unique good map mφ

3 : (∂d−1φ)⊗3 → ∂d−1φ satisfying
that

mφ
3 (a, tf, b) = mA

3

(
a, t(f ◦ φ), b

)
, and mφ

3 (tf, b, tg) = mB
3

(
tf, φ(b), tg

)
, (5.42)

for all homogeneous a, b ∈ A and f, g ∈ B#.
Then, ∂d−1φ is a fully manageable nice degenerate d-cyclic A∞-algebra, such that the

maps ΦA : ∂d−1φ→ ∂d−1A and ΦB : ∂d−1φ→ ∂d−1B defined by (a, tf) 7→ (a, t(f ◦φ))
and (a, tf) 7→ (φ(a), tf) for all a ∈ A and f ∈ B#, respectively, are strict morphisms of
A∞-algebras preserving the corresponding bilinear forms.

Proof. We first remark that the fact that {{ , }}B ◦ (φ[d] ⊗ φ[d]) = (φ ⊗ φ) ◦ {{ , }}A
implies that

φ
(
mA

3

(
a, t(f ◦ φ), b

))
= mB

3

(
φ(a), tf, φ(b)

)
,

t−1mA
3

(
t(f ◦ φ), a, t(g ◦ φ)

)
=
(
t−1mB

3

(
tf, φ(a), tg

))
◦ φ,

(5.43)

for all homogeneous a, b ∈ A and f, g ∈ B#. Indeed, the first identity follows from

(g ◦ φ)
(
mA

3

(
a, t(f ◦ φ), b

))
= (−1)|tg|(|tf |+|a|+|b|) A

(
mA

3

(
a, t(f ◦ φ), b

)
, t(g ◦ φ)

)
= (−1)|a|(|f |+|b|+1)+|tg|(|tf |+|a|+|b|)((g ◦ φ)⊗ (f ◦ φ)

)(
{{b, a}}A

)
= (−1)|a|(|f |+|b|+1)+|tg|(|tf |+|a|+|b|)(g ⊗ f)

(
{{φ(b), φ(a)}}B

)
= (−1)|tg|(|tf |+|a|+|b|) B

(
mB

3

(
φ(a), tf, φ(b)

)
, tg
)

= g
(
mB

3

(
φ(a), tf, φ(b)

))
,
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whereas the second follows from

t−1mA
3

(
t(f ◦ φ), a, t(g ◦ φ)

)
(b) = A

(
mA

3

(
t(f ◦ φ), a, t(g ◦ φ)

)
, b
)

= −(−1)|tf |(|tg|+|a|+|b|) A

(
mA

3

(
a, t(g ◦ φ), b

)
, t(f ◦ φ)

)
= −(−1)|a|(|g|+|b|+1)+|tf |(|tg|+|a|+|b|)((f ◦ φ)⊗ (g ◦ φ)

)(
{{b, a}}A

)
= −(−1)|a|(|g|+|b|+1)+|tf |(|tg|+|a|+|b|)(f ⊗ g)

(
{{φ(b), φ(a)}}B

)
= −(−1)|tf |(|tg|+|a|+|b|) B

(
mB

3

(
φ(a), tg, φ(b)

)
, tf
)

= B

(
mB

3

(
tf, φ(a), tg

)
, φ(b)

)
=
(
t−1mB

3

(
tf, φ(a), tg

))(
φ(b)

)
.

We now show that ∂d−1φ is an A∞-algebra. The first two Stasheff identities
(SI(n)) are clearly verified, since they only involve the differential and the product
of the dg algebras A and B. Moreover, the Stasheff identity (SI(n)) for n = 3 is also
trivially verified. Indeed, since ∂d−1φ provided with mφ

1 and mφ
2 is a dg algebra,

it suffices to show that the contribution of the terms involving mφ
3 in the Stasheff

identity for n = 3 at an element x1 ⊗ x2 ⊗ x3, where xi ∈ A or xi ∈ B#[d − 1]
are homogeneous elements, vanish. It is easy to see that in this case the Stasheff
identity for n = 3 of ∂d−1φ is a consequence of the corresponding Stasheff identity
for n = 3 of either ∂d−1A or ∂d−1B.

We now prove the Stasheff identity (SI(n)) for n = 4 at an element x1⊗· · ·⊗x4,
where xi ∈ A or xi ∈ B#[d−1] are homogeneous elements. It is easy to see that the
only cases where there is at least one possibly nonvanishing term are the following

(a) x2 ∈ B#[d− 1] and x1, x3, x4 ∈ A;

(b) x3 ∈ B#[d− 1] and x1, x2, x4 ∈ A;

(c) x1, x3 ∈ A and x2, x4 ∈ B#[d− 1];

(d) x2, x4 ∈ A and x1, x3 ∈ B#[d− 1].

The cases (a) and (b) only involve mA
3 and mB

3 , respectively, so they follow from
the Stasheff identity (SI(n)) for n = 4 of ∂d−1A and ∂d−1B, respectively. The proof
for cases (c) and (d) uses the precise same arguments, so we focus on the latter. We
write x1 = tf , x3 = tg with f, g ∈ B#, and x2 = a and x4 = b. It is easy to see that
the fourth Stasheff identity evaluated at tf ⊗ a⊗ tg ⊗ b is precisely

mB
3

(
tf, φ(a), tg.φ(b)

)
−mB

3

(
tf, φ(a), tg

)
.φ(b)− (−1)|tf |tf.φ

(
mA

3

(
a, t(g ◦φ), b

))
= 0,

(5.44)
or, equivalently,

mB
3

(
tf, φ(a), tg.φ(b)

)
−mB

3

(
tf, φ(a), tg

)
.φ(b)− (−1)|tf |tf.mB

3

(
φ(a), tg, φ(b)

)
= 0,
(5.45)

where we have used the first identity of (5.43) in the last term of (5.44). Since (5.45)
is precisely a particular instance of the Stasheff identity for n = 4 of ∂d−1B, the
Stasheff identity for n = 4 of ∂d−1φ in the case (c) follows.

We finally prove the Stasheff identity (SI(n)) for n = 5 at an element x1⊗· · ·⊗x5,
where xi ∈ A or xi ∈ B#[d − 1] are homogeneous elements. It is easy to see that
the only cases where there are possibly nonvanishing terms are either if x2, x4 ∈
B#[d − 1] and x1, x3, x5 ∈ A, or if x1, x3, x5 ∈ B#[d − 1] and x2, x4 ∈ A. Since
the arguments for both cases are the same, we only consider the former case, for
which we write x2 = tf , x4 = tg, with f, g ∈ B#[d− 1], and x1 = a, x3 = b, x5 = c.
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The corresponding Stasheff identity then reads

mA
3

(
mA

3

(
a, t(f ◦ φ), b

)
, t(g ◦ φ), c

)
− (−1)|a|mA

3

(
a, t
(
t−1mB

3

(
tf, φ(b), tg

))
◦ φ, c

)
+ (−1)|a|+|tf |mA

3

(
a, t(f ◦ φ),mA

3

(
b, t(g ◦ φ), c

))
= 0,

(5.46)

or, equivalently,

mA
3

(
mA

3

(
a, t(f ◦ φ), b

)
, t(g ◦ φ), c

)
− (−1)|a|mA

3

(
a,mA

3

(
t(f ◦ φ), b, t(g ◦ φ)

)
, c
)

+ (−1)|a|+|tf |mA
3

(
a, t(f ◦ φ),mA

3

(
b, t(g ◦ φ), c

))
= 0,

(5.47)

where we have used the second identity of (5.43) in the second term of (5.46). Since
(5.47) is precisely a particular case of the Stasheff identity of ∂d−1A for n = 5, the
Stasheff identity of ∂d−1φ for n = 5 follows. Taking into account that the Stash-
eff identities for n ≥ 6 trivially vanish, because the higher products mφ

n of ∂d−1φ
vanish for n ≥ 4, we conclude that ∂d−1φ is an A∞-algebra. Moreover, ∂d−1φ is by
definition small, and it is clearly fully manageable with respect to the dg algebra
structure fixed at the beginning of this subsection.

We now show that φ satisfies the cyclicity property (4.3) with respect to mφ
3 ,

i.e.
φ

(
mφ

3 (x, y, z), w
)

= −(−1)|w|(|x|+|y|+|z|) φ

(
mφ

3 (w, x, y), z
)
,

for all homogeneous w, x, y, z ∈ ∂d−1φ. It is easy to see that the only nontrivial
cases are either if x, z ∈ A and w, y ∈ B#[d− 1], or if x, z ∈ B#[d− 1] and w, y ∈ A,
both of which are tantamount to

φ

(
mφ

3 (a, tf, b), tg
)

= −(−1)|tg|(|a|+|b|+|tf |) φ

(
mφ

3 (tg, a, tf), b
)
, (5.48)

for all homogeneous a, b ∈ A and f, g ∈ B#. By definition, the left member of (5.48)
is precisely (−1)|a|(|b|+|f |+1)((g ◦φ)⊗ (f ◦φ))({{b, a}}), whereas the right member is

−(−1)|tg|(|a|+|b|+|tf |) φ

(
mB

3

(
tg, φ(a), tf

)
, φ(b)

)
= φ

(
mB

3

(
φ(a), tf, φ(b)

)
, tg
)

= (−1)|a|(|b|+|f |+1)(g ⊗ f)
(
{{φ(b), φ(a)}}

)
.

They clearly coincide, since φ is a morphism of double Poisson dg algebras. Com-
bining this with the previous lemma we see that φ satisfies the cyclicity property
(4.3) with respect to mφ

n, for all n ∈ N.
It is easy to verify that ΦA and ΦB commute with the corresponding differen-

tials and the corresponding products, since φ is a morphism of dg algebras. To
prove that they are strict morphisms A∞-algebras, it suffices to show that ΦA ◦
mφ

3 = mA
3 ◦ Φ⊗3

A and ΦB ◦ mφ
3 = mB

3 ◦ Φ⊗3
B . Since both identities are proved by

the same arguments, we will only consider the former, evaluated at x1 ⊗ x2 ⊗ x3,
for homogeneous x1, x2, x3 ∈ ∂d−1φ. By definition of mφ

3 and mA
3 , the only non-

trivial cases are either when x1, x3 ∈ A and x2 ∈ B#[d − 1], or x1, x3 ∈ B#[d − 1]
and x2 ∈ A. The first case is direct from the definition of ΦA, whereas the second
follows from the second identity in (5.43).

It remains to show that ΦA and ΦB commute with the corresponding bilinear
forms, i.e. φ = A ◦ Φ⊗2

A = B ◦ Φ⊗2
B , but this is straightforward. The theorem is

thus proved. �

A direct consequence of the previous theorem is the following result.
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Corollary 5.7. Assume the same hypotheses as in Theorem 5.6. If the morphism of double
Poisson dg algebras φ : A → B is a quasi-isomorphism, then the strict morphisms of
degenerate cyclic A∞-algebras ΦA : ∂d−1φ→ ∂d−1A and ΦB : ∂d−1φ→ ∂d−1B are also
quasi-isomorphisms.

Motivated by the previous theorem, we introduce the following.

Definition 5.8. Let A and A′ be two d-pre-Calabi-Yau algebra structures on the graded
vector spaces A and A′, respectively. A morphism from A to A′ is a triple (C,Φ,Ψ),
where C is a degenerate (d− 1)-ultracyclic A∞-algebra, and Φ : C → A and Ψ : C → A′

are strict morphisms of A∞-algebras that preserve the corresponding bilinear forms.
We say that a morphism (C,Φ,Ψ) from A to A′ and a morphism (C ′,Φ′,Ψ′) from

A′ to A′′ are composable if there exists a triple (C ′′,Φ′′,Ψ′′), where C ′′ is a degenerate
(d − 1)-ultracyclic A∞-algebra, Φ′′ : C ′′ → C and Ψ′′ : C ′′ → C ′ are strict morphisms
of A∞-algebras that preserve the corresponding bilinear forms and Ψ ◦Φ′′ = Φ′ ◦Ψ′′. The
composition of (C,Φ,Ψ) and (C ′,Φ′,Ψ′) is then defined to be (C ′′,Φ ◦ Φ′′,Ψ′ ◦Ψ′′).

The proof of the following result follows exactly the same pattern as the (last
part of the proof of) Theorem 5.6, so we leave it to the reader.

Theorem 5.9. Let d ∈ Z, and let (A,µA, ∂A), (B,µB , ∂B) and (C, µC , ∂C) be three
locally finite dimensional double Poisson dg algebras, with brackets {{ , }}A, {{ , }}B and
{{ , }}C of degree −d, respectively. Let φ : A → B and ψ : B → C be two morphisms
of double Poisson dg algebras, and let υ = ψ ◦ φ. Following Theorem 5.6, consider the
morphisms (∂d−1φ,ΦA,ΦB) and (∂d−1ψ,ΨA,ΨB) induced by φ and ψ, respectively.

Consider the fully manageable nice degenerate d-cyclic A∞-algebra ∂d−1υ on A ⊕
C#[d − 1]. Then the maps Υφ : ∂d−1υ → ∂d−1φ and Υψ : ∂d−1υ → ∂d−1ψ de-
fined by (a, tf) 7→ (a, t(f ◦ ψ)) and (a, tf) 7→ (φ(a), tf) for all a ∈ A and f ∈ C#,
respectively, are strict morphisms of A∞-algebras preserving the corresponding bilinear
forms, and satisfying that ΦB ◦ Υφ = ΨA ◦ Υψ . As a consequence, (∂d−1φ,ΦA,ΦB)
and (∂d−1ψ,ΨA,ΨB) are composable morphisms and their composition is (∂d−1υ,ΦA ◦
Υφ,ΨB ◦Υψ).

This result tells us that the constructions in Theorems 5.2 and 5.6 define a (par-
tial) functor from the category of locally finite dimensional d-double Poisson dg
algebras to the partial category of d-pre-Calabi-Yau algebras provided with the
morphisms introduced in Definition 5.8, that preserves quasi-isomorphisms.

6 Pre-Calabi-Yau structures and double P∞-algebras
We now introduce the definition of a double P∞-algebra. It is essentially the

same as the one presented in [12], Def. 4.1, up to some sign differences.

Definition 6.1. A double P∞-algebra is a (nonunitary) graded algebra A = ⊕n∈ZAn
provided with a family of homogeneous maps {{. . .}}p : A⊗p → A⊗p indexed by p ∈ N,
where {{. . .}}p has degree 2− p, satisfying that

(i) τA,p(σ) ◦ {{. . .}}p ◦ τA,p(σ−1) = sgn(σ){{. . .}}p, for all σ ∈ Sp;
(ii) for all p ∈ N and homogeneous elements a1, . . . , ap−1 ∈ A, the homogeneous map

AD(a1, . . . , ap−1) : A→ A⊗p

of degree |a1|+ · · ·+ |ap−1|+ 2− p given by a 7→ {{a1, . . . , ap−1, a}}p is a double
derivation of A, i.e.

{{a1, . . . , ap−1, ab}}p = {{a1, . . . , ap−1, a}}pb

+ (−1)
|a|(p+

p−1∑
j=1
|aj |)

a{{a1, . . . , ap−1, b}}p,
(DLeib∞(p))

for all homogeneous a, b ∈ A;
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(iii) for all p ∈ N,

p∑
i=1

(−1)i(p+1)
∑
σ∈Cp

sgn(σ)τA,p(σ) ◦ {{. . .}}i,p−i+1 ◦ τA,p(σ−1) = 0,

(DJac∞(p))

where

{{. . .}}i,p−i+1 =
(
{{. . .}}i ⊗ id

⊗(p−i)
A

)
◦
(
id
⊗(i−1)
A ⊗ {{. . .}}p−i+1

)
.

Let A be a double P∞-algebra with brackets {{. . .}}p : A⊗p → A⊗p for p ∈ N.
Given p ∈ N and n ≥ p, we define {{. . .}}p,L : A⊗n → A⊗n as {{. . .}}p ⊗ id

⊗(n−p)
A .

Remark 6.2. We leave to the reader the straightforward verification that a double P∞-
algebra (A,µA) with brackets {{{. . .}}p}p∈N satisfying that {{. . .}}p = 0 for all p > 2 is a
double Poisson dg algebra of degree zero, with {{ , }}A = {{. . .}}2 and ∂A = {{. . .}}1. In-
deed, Jac∞(1) means exactly that ∂A is a differential, Jac∞(2) is precisely the fact that
{{ , }}A is a morphism of closed dg vector spaces, Jac∞(3) is the double Jacobi identity for
{{ , }}A, Leib∞(1) means exactly that ∂A is a derivation of the graded algebra (A,µA) and
Leib∞(2) is the Leibniz identity for {{ , }}A. The antisymmetry conditions given in the pre-
vious definition and in Definition 3.1 (i) are clearly equivalent. The identities (DLeib∞(p))
for p > 2 and (DJac∞(p)) for p > 3 are trivially verified.

Theorem 6.3. Let A = ⊕n∈ZAn be a (nonunitary) graded algebra with product µA.
Consider the graded algebra structure on ∂−1A = A ⊕ A#[−1] described in the first
two paragraphs of Subsection 5.1, with product m2, as well as the natural nondegenerate
bilinear form of degree −1 given by (4.5). Then, given a good manageable special pre-
Calabi-Yau structure {m•}•∈N on A, we define the family of maps {{{. . .}}p}p∈N with
{{. . .}}p : A⊗p → A⊗p given by

(f1 ⊗ · · · ⊗ fp)
(
{{a1, . . . , ap}}p

)
= s

a1,...,ap
f1,...,fp

(
m2p−1(ap, tfp, . . . , a2, tf2, a1), tf1

)
,

(6.1)
for p ∈ N and all homogeneous a1, . . . , ap ∈ A and f1, . . . , fp ∈ A#, where

s
a1,...,ap
f1,...,fp

=(−1)
|ap||f1|+(p+1)(|ap|+|f1|)+

p∑
j=1

(p−j)|aj |+
p∑
j=1

(j−1)|fj |

(−1)

∑
1≤i<j<p

|ai||aj |+
∑

1<i<j≤p
|fi||fj |+

∑
1<i≤j<p

|fi||aj |
.

(6.2)

Then, {{{. . .}}p}p∈N determines a structure of a double P∞-algebra on the graded algebra
A. Moreover, the map{

good manageable special
pre-CY structures {m•}•∈N on A

}
−→

{
double P∞-algebra

structures {{{. . .}}•}•∈N on A

}
(6.3)

given by sending {m•}•∈N to the family of maps {{{. . .}}•}•∈N determined by (6.1) is a
bijection.

Proof. We will first prove that the family of brackets {{{. . .}}p}p∈N defined by (6.1)
gives indeed a double P∞-algebra structure on the graded algebra A. In other
words, we shall prove that this bracket satisfies the conditions of Definition 6.1.
As explained in the first paragraph of the proof of Theorem 5.2, we can assume
without loss of generality that

∑p
j=1 |aj |+2−p =

∑p
j=1 |fj | in (6.2), else the identity

(6.1) trivially holds.
We will first prove the antisymmetric condition (i) given in Definition 6.1, i.e.

(−1)ε(σ,ā)σ
(
{{aσ(1), . . . , aσ(p)}}p

)
= sgn(σ){{a1, . . . , ap}}p, (6.4)
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for all homogeneous a1, . . . , ap ∈ A, where ā = a1⊗· · ·⊗ap and ε(σ, ā) was defined
in (2.2). Evaluating f1 ⊗ · · · ⊗ fp at both members of the previous equation, where
f1, . . . , fp ∈ A# are homogeneous, it is clear that (6.4) is equivalent to

(f1 ⊗ · · · ⊗ fp)
(
σ{{aσ(1), . . . , aσ(p)}}p

)
= sgn(σ)(−1)ε(σ,ā)(f1 ⊗ · · · ⊗ fp)

(
{{a1, . . . , ap}}p

)
,

(6.5)

for all homogeneous a1, . . . , ap ∈ A and f1, . . . , fp ∈ A#. Using (2.8) on the left
member as well as (6.1) on each side, we obtain that (6.5) is equivalent to

s
aσ(1),...,aσ(p)
fσ(1),...,fσ(p)

(−1)ε(σ,f̄)
(
m2p−1(aσ(p), tfσ(p), . . . , aσ(1)), tfσ(1)

)
= sgn(σ)(−1)ε(σ,ā)s

a1,...,ap
f1,...,fp

(
m2p−1(ap, tfp, . . . , a1), tf1

)
,

(6.6)

where f̄ = f1 ⊗ · · · ⊗ fp. By the ultracyclicity property of , the left member of the
previous equation is precisely (m2p−1(ap, tfp, . . . , a1), tf1) multiplied by

s
aσ(1),...,aσ(p)
fσ(1),...,fσ(p)

(−1)ε(σ,f̄)(−1)ε( p(σ),fa), (6.7)

where fa = f1 ⊗ a1 ⊗ · · · ⊗ fp ⊗ ap. Hence, comparing (6.6) and (6.7), we see that
(6.4) holds if and only if

s
aσ(1),...,aσ(p)
fσ(1),...,fσ(p)

= (−1)ε(σ,f̄)(−1)ε( p(σ),fa) sgn(σ)(−1)ε(σ,ā)s
a1,...,ap
f1,...,fp

. (6.8)

Replacing sa1,...,apf1,...,fp
by its definition and considering the case where σ is any trans-

position of two successive elements, it is easy but lengthy to show that the anti-
symmetric condition (6.8) holds, which in turn implies that (6.4) holds, as was to
be shown.

We shall now prove the Leibniz identity given in Definition 6.1, (ii) for a fixed
p ∈ N. In order to do so, let us consider the identity (SI(n)) of the A∞-algebra
structure of ∂−1A for n = 2p. Since theA∞-algebra structure on ∂−1A is essentially
odd, (SI(n)) for n = 2p reduces to (4.1), which, evaluated at a0 ⊗ b0 ⊗ tf1 ⊗ a1 ⊗
· · · ⊗ tfp−1 ⊗ ap−1, gives

− (−1)|a0|a0.m2p−1(b0, tf1, a1, . . . , tfp−1, ap−1)

+m2p−1(a0b0,tf1, a1, . . . , tfp−1, ap−1)−m2p−1(a0, b0.tf1, a1, . . . , tfp−1, ap−1) = 0,

where a0, b0, a1, . . . , ap−1 ∈ A, and f1, . . . , fp−1 ∈ A# are homogeneous elements.
Applying (−, tfp) to the previous equation, for an arbitrary homogeneous fp ∈
A#, we get

− (−1)|a0|
(
a0.m2p−1(b0, tf1, a1, . . . , tfp−1, ap−1), tfp

)
+

(
m2p−1(a0b0, tf1, a1, . . . , tfp−1, ap−1), tfp

)
−

(
m2p−1(a0, b0.tf1, a1, . . . , tfp−1, ap−1), tfp

)
= 0.

(6.9)

By the cyclicity property of , the identity (tfp).a0 = t(fp.a0) as well as (6.1),
we see that the first term in the left member of (6.9) is

−sap−1,...,a1,b0
fpa0,fp−1,...,f1

(−1)ε(fp.a0 ⊗ fp−1 ⊗ · · · ⊗ f1)
(
{{ap−1, . . . , a1, b0}}p

)
,

where

ε = |a0|(p+ |b0|+ |fp|+
p−1∑
j=1

(|aj |+ |fj |)).
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Taking into account the identity

(f1.a⊗f2⊗· · ·⊗fm)(v1⊗· · ·⊗vm) = (−1)
|a|

m∑
j=2
|fj |

(f1⊗· · ·⊗fm)(a.v1⊗v2⊗· · ·⊗vm),

for all homogeneous a ∈ A, v1, . . . , vm ∈ M and f1, . . . , fm ∈ M#, where M is a
graded A-bimodule, we conclude that the first term in the left member of (6.9) is
precisely

− sap−1,...,a1,b0
fp.a0,fp−1,...,f1

(−1)
|a0|(p+|b0|+|fp|+

p−1∑
j=1
|aj |)

(fp ⊗ · · · ⊗ f1)
(
a0{{ap−1, . . . , a1, b0}}p

)
.

(6.10)
On the other hand, using (6.1), we see that the second term of the left member of
(6.9) is precisely

s
ap−1,...,a1,a0b0
fp,...,f1

(fp ⊗ · · · ⊗ f1)
(
{{ap−1, . . . , a1, a0b0}}p

)
. (6.11)

Similarly, by the identity b0.tf1 = (−1)|b0|t(b0.f1) and (6.1), the third term of the
left member of (6.9) is

−sap−1,...,a0
fp,...,f2,b0.f1

(−1)
|b0|(p+|b0|+|f1|+

p−1∑
j=0
|aj |)

(fp⊗· · ·⊗f1)
(
{{ap−1, . . . , a0}}pb0

)
, (6.12)

where we have used that

(f1⊗· · ·⊗fm−1⊗a.fm)(v1⊗· · ·⊗vm) = (−1)ε
′
(f1⊗· · ·⊗fm)(v1⊗· · ·⊗vm−1⊗vm.a),

for all homogeneous a ∈ A, v1, . . . , vm ∈ M and f1, . . . , fm ∈ M#, where M is a
graded A-bimodule, and ε′ = |a|(|fm|+ |

∑m
j=2 |vj |).

Replacing (6.10), (6.11) and (6.12) into (6.9) and comparing it with equation
(DLeib∞(p)), we see that the latter holds if and only if

s
ap−1,...,a1,a0b0
fp,...,f1

= s
ap−1,...,a0
fp,...,f2,b0.f1

(−1)
|b0|(p+|b0|+|f1|+

p−1∑
j=0
|aj |)

,

s
ap−1,...,a1,a0b0
fp,...,f1

= (−1)|a0|(|b0|+|fp|)s
ap−1,...,a1,b0
fp.a0,fp−1,...,f1

.

(6.13)

It is rather tedious but straightforward to check that our choice (6.2) satisfies the
previous identities, so the Leibniz property is verified.

Remark 6.4. As in Theorem 5.2, assuming that sa1,...,apf1,...,fp
is just a function of the degrees

|a1|, . . . , |ap| and |f1|, . . . , |fp| (satisfying that
∑p
j=1 |aj | + |fj | = p − 2 (mod 2)), one

can also show that our choice for sa1,...,apf1,...,fp
is the unique solution of (6.8) and (6.13), up to

a multiplicative constant ±1. This is again how we found such an involved expression. In
fact, the uniqueness of such a solution (up to multiplicative constant) already holds if one
considers (6.8) for only cyclic permutations and (6.13).

We will now prove (DJac∞(p)) for p ∈ N. In order to do so, we consider (SI(n))
for n = 2p−1. Since theA∞-algebra structure on ∂−1A is essentially odd, it reduces
to (4.2). Since m2 is associative, the first term in the left member of (4.2) vanishes,
so it is equivalent to

p∑
i=1

i−1∑
r=0

m2i−1 ◦
(
id⊗2r
A ⊗m2(p−i)+1 ⊗ id

⊗(2(i−1−r))
A

)
+

p∑
i=1

i−2∑
r=0

m2i−1 ◦
(
id
⊗(2r+1)
A ⊗m2(p−i)+1 ⊗ id

⊗(2(i−1−r)−1)
A

)
= 0.
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If we evaluate it at a1 ⊗ tf1 ⊗ · · · ⊗ ap−1 ⊗ tfp−1 ⊗ ap and we apply (−, tfp), for
homogeneous a1, . . . , ap ∈ A and f1, . . . , fp ∈ A#, it gives

p∑
i=1

i−1∑
r=0

(−1)
r+

r∑
j=1

(|aj |+|fj |) (
m2i−1

(
a1, tf1, . . . , ar, tfr,

m2(p−i)+1(ar+1, tfr+1, . . . , ar+p−i+1), tfr+p−i+1, . . . , ap
)
, tfp

)
+

p∑
i=1

i−2∑
r=0

(−1)
r+|ar+1|+

r∑
i=1

(|ai|+|fi|) (
m2i−1

(
a1, tf1, . . . , ar, tfr, ar+1,

m2(p−i)+1(tfr+1, ar+2, . . . , tfr+p−i+1), ar+p−i+2, . . . , ap
)
, tfp

)
= 0.

(6.14)

Using the cyclicity of , the terms appearing in the first two lines of (6.14) can
be rewritten as

p∑
i=1

i−1∑
r=0

(−1)α
(
m2i−1

(
m2(p−i)+1(ar+1, tfr+1, . . . , ar+p−i+1),

tfr+p−i+1, . . . , ap, tfp, a1, tf1, . . . , ar
)
, tfr

)
,

(6.15)

where α = (r +
∑r
j=1(|aj |+ |fj |))(p− r +

∑p
j=r+1(|aj |+ |fj |)).

Concerning the terms in the last two lines of (6.14), we first use the cyclicity of
to move m2(p−i)+1(tfr+1, ar+2, . . . , tfr+p−i+1) to the last argument of . Then,

we apply the super symmetry of to flip its two arguments, and then again the
cyclicity of . After these computations, the terms in the last two lines of the left
member of (6.14) become

p∑
i=1

i−2∑
r=0

(−1)β
(
m2(p−i)+1

(
m2i−1(ar+p−i+2, tfr+p−i+2, . . . , ap, tfp, a1, tf1, . . . ,

ar, tfr, ar+1), tfr+1, . . . , ar+p−i+1

)
, tfr+p−i+1

)
,

(6.16)

where β = (r+p−i+1+
∑r+p−i+1
j=1 (|aj |+ |fj |))(i+r+1+

∑p
j=r+p−i+2(|aj |+ |fj |)).

Before proceeding further, we will provide the following useful result:

Fact 6.5. Let a1, . . . , ap ∈ A and f1, . . . , fp ∈ A# be homogeneous elements. Then, given
any i ∈ {1, . . . , p},

i2
a1,...,ap
f1,...,fp

(f1 ⊗ · · · ⊗ fp)
(
{{a1, . . . , ai−1, {{ai, . . . , ap}}p−i+1}}i,L

)
=

(
m2i−1

(
m2(p−i)+1(ap, tfp, . . . , ai+1, tfi+1, ai), tfi, . . . , a2, tf2, a1

)
, tf1

)
,

(6.17)

where

i2
a1,...,ap
f1,...,fp

=(−1)
(p+1)(i+1)+

i−1∑
j=1

(i−j)|aj |+
p∑
j=i

(j−1)|aj |+p|f1|+
p∑
j=2

(j−1)|fj |

(−1)

∑
1≤j<k<i

|aj ||ak|+
∑

i≤j<k≤p
|aj ||ak|+

∑
1<j<k≤p

|fj ||fk|+|f1|
p∑
j=i
|aj |

(−1)

∑
1<j≤k<i

|ak||fj |+
∑

i<j≤k<p
|ak||fj |+

p−1∑
j=i

p∑
k=i+1

|aj ||fk|
.

(6.18)

Proof. By (6.1), the right member of (6.17) coincides with

s
a1,...,ai−1,bi
f1,...,fi

(f1 ⊗ · · · ⊗ fi)
(
{{a1, . . . , ai−1, bi}}i

)
(6.19)
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where bi = m2(p−i)+1(ap, tfp, . . . , ai+1, tfi+1, ai), whereas the left member of (6.17)
is by definition i2

a1,...,ap
f1,...,fp

times

(−1)

p∑
j=i+1

i∑
k=1

|fj ||fk|+
∑

i<j<k≤p
|fj ||fk|

(f1 ⊗ · · · ⊗ fi)
(
{{a1, . . . , ai−1, c1}}i

) p∏
j=i+1

fj(cj−i+1),

(6.20)
where c1⊗· · ·⊗cp−i+1 = {{ai, . . . , ap}}p−i+1. As a consequence, (6.17) is tantamount
to

i2
a1,...,ap
f1,...,fp

s
a1,...,ai−1,bi
f1,...,fi

(
m2(p−i)+1(ap, tfp, . . . , ai+1, tfi+1, ai), tgi

)
= (−1)z(gi ⊗ fi+1 ⊗ · · · ⊗ fp)

(
{{ai, . . . , ap}}p−i+1

)
,

(6.21)

for all gi ∈ A# homogeneous of degree i+ 1− p+ |ai|+
∑p
j=i+1(|aj | − |fj |), where

z =

p∑
j=i+1

i∑
k=1

|fj ||fk|+
(
i+ 1− p+ |ai|+

p∑
j=i+1

(|aj | − |fj |)
)( p∑

j=i+1

|fj |
)
.

Using (6.1) on the left member of (6.21) we conclude that

i2
a1,...,ap
f1,...,fp

= (−1)zs
a1,...,ai−1,bi
f1,...,fi

s
ai,...,ap
gi,fi+1,...,fp

.

After using (6.2) in the previous identity and a lengthy but straightforward com-
putation, the statement follows. �

Applying Fact 6.5 to (6.15) we obtain that the first two lines in (6.14) give exactly

p∑
i=1

i−1∑
r=0

i2
ar,...,a1,ap,...,ar+1

fr,...,f1,fp,...,fr+1
(−1)α(fr ⊗ · · · ⊗ f1 ⊗ fp ⊗ · · · ⊗ fr+1)(

{{ar, . . . , a1, ap, . . . , ar+p−i+2, {{ar+p−i+1, . . . , ai+1}}p−i+1}}i,L
)
,

(6.22)

where α = (r +
∑r
j=1(|aj |+ |fj |))(p− r +

∑p
j=r+1(|aj |+ |fj |)), whereas the same

result applied to (6.16) tells us that the latter is precisely

p∑
i=1

i−2∑
r=0

i2
ar+p−i+1,...,a1,ap,...,ar+p−i+2

fr+p−i+1,...,f1,fp,...,fr+p−i+2
(fr+p−i+1 ⊗ · · · ⊗ f1 ⊗ fp ⊗ · · · ⊗ fr+p−i+2)(

{{ar+p−i+1, . . . , ar+2, {{ar+1, . . . , a1, ap, . . . , ar+p−i+2}}i}}p−i+1,L

)
(−1)β ,

(6.23)

where β = (r+p− i+1+
∑r+p−i+1
j=1 (|aj |+ |fj |))(i+r+1+

∑p
j=r+p−i+2(|aj |+ |fj |)).

Let σ ∈ Sp be the unique cyclic permutation sending 1 to 2. Using (2.8), we see
that (6.22) and (6.23) are equivalent to

p∑
i=1

i−1∑
r=0

i2
ar,...,a1,ap,...,ar+1

fr,...,f1,fp,...,fr+1
(−1)α

′
(fp ⊗ · · · ⊗ f1)(

σ−r{{ar, . . . , a1, ap, . . . , ar+p−i+2, {{ar+p−i+1, . . . , ai+1}}p−i+1}}i,L
)
,

(6.24)

where

α′ =
(
r +

r∑
j=1

(|aj |+ |fj |)
)(
p− r +

p∑
j=r+1

(|aj |+ |fj |)
)

+

r∑
j=1

p∑
k=r+1

|fj ||fk|,

24



and
p∑
i=1

i−2∑
r=0

i2
ar+p−i+1,...,a1,ap,...,ar+p−i+2

fr+p−i+1,...,f1,fp,...,fr+p−i+2
(−1)β

′
(fp ⊗ · · · ⊗ f1)(

σ−(r+p−i+1){{ar+p−i+1, . . . , ar+2, {{ar+1, . . . , a1, ap, . . . , ar+p−i+2}}i}}p−i+1,L

)
,

(6.25)

where

β′ =
(
r + p− i+ 1 +

r+p−i+1∑
j=1

(|aj |+ |fj |)
)(
i+ r + 1

+

p∑
j=r+p−i+2

(|aj |+ |fj |)
)

+

r+p−i+1∑
j=1

p∑
k=r+p−i+2

|fj ||fk|,

respectively. Furthermore, if we reindex (6.25) by setting i′ = p − i + 1 and r′ =
r + p− i+ 1, the former becomes

p∑
i′=1

p−1∑
r′=i′

i2
ar′ ,...,a1,ap,...,ar′+1

fr′ ,...,f1,fp,...,fr′+1
(−1)β

′′
(fp ⊗ · · · ⊗ f1)

(
σ−r

′
{{ar′ , . . . , ar′−i′+2, {{ar′−i′+1, . . . , a1, ap, . . . , ar′+1}}p−i′+1}}i′,L

)
,

(6.26)

where

β′′ =
(
r′ +

r′∑
j=1

(|aj |+ |fj |)
)(
r′ + p+

p∑
j=r′+1

(|aj |+ |fj |)
)

+

r′∑
j=1

p∑
k=r′+1

|fj ||fk|.

On the other hand, after a tedious but straightforward calculation, we see that,
for all i ∈ {1, . . . , p} and r ∈ {0, . . . , i− 1},

i2
ar,...,a1,ap,...,ar+1

fr,...,f1,fp,...,fr+1
(−1)α

′′

= (−1)
(p+1)(i+r)+

r∑
j=1

(i−j)|aj |+
r+p−i+1∑
j=r+1

(j−1)|aj |+
p∑

j=r+p−i+2
(i−j)|aj |

(−1)

p∑
j=1

(j−1)|fj |+
∑

1≤j<k≤p
|aj ||ak|+

r+p−i+1∑
j=1

p∑
k=r+p−i+2

|aj ||ak|

(−1)

∑
1≤j<k≤p

|fj ||fk|+
∑

1≤j≤k≤p
|aj ||fk|+

r+p−i+1∑
j=r+1

p∑
k=1

|aj ||fk|
,

(6.27)

and for all i ∈ {1, . . . , p} and r ∈ {i, . . . , p− 1}

i2
ar,...,a1,ap,...,ar+1

fr,...,f1,fp,...,fr+1
(−1)β

′′

= (−1)
(p+1)(i+r)+

r−i+1∑
j=1

(j−1)|aj |+
r∑

j=r−i+2
(i−j)|aj |+

p∑
j=r+1

(j−1)|aj |

(−1)

p∑
j=1

(j−1)|fj |+
∑

1≤j<k≤p
|aj ||ak|+

r−i+1∑
j=1

p∑
k=r−i+2

|aj ||ak|

(−1)

∑
1≤j<k≤p

|fj ||fk|+
∑

1≤j≤k≤p
|aj ||fk|+(

r−i+1∑
j=1

|aj |+
p∑

j=r+1
|aj |)(

p∑
k=1

|fk|)
.

(6.28)

The Koszul sign rule tells us that, for i ∈ {1, . . . , p} and r ∈ {0, . . . , i− 1},

{{ar, . . . , a1, ap, . . . , ar+p−i+2, {{ar+p−i+1, . . . , ai+1}}p−i+1}}i,L
= (−1)ᾱ

(
{{. . .}}i,p−i+1 ◦ σr

)
(ap ⊗ · · · ⊗ a1),

(6.29)
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where

ᾱ = (p− i− 1)
( r∑
j=1

|aj |+
p∑

j=r+p−i+2

|aj |
)

+

r∑
j=1

p∑
k=r+1

|aj ||ak|,

whereas, for i ∈ {1, . . . , p} and r ∈ {i, . . . , p− 1}, we have that

{{ar, . . . , ar−i+2, {{ar−i+1, . . . , a1, ap, . . . , ar+1}}p−i+1}}i,L
= (−1)β̄

(
{{. . .}}i,p−i+1 ◦ σr

)
(ap ⊗ · · · ⊗ a1),

(6.30)

where

β̄ = (p− i− 1)
( r∑
j=r−i+2

|aj |
)

+

r∑
j=1

p∑
k=r+1

|aj ||ak|.

Using
∑p
j=1 |fj | = p− 1 +

∑p
j=1 |aj | (mod 2) in the last term of the right member of

(6.27) and utilizing this result together with (6.29) in (6.24), we see that the latter is
equivalent to

p∑
i=1

i−1∑
r=0

(−1)(p+1)(i+r)+α̂(fp ⊗ · · · ⊗ f1)
((
σ−r ◦ {{. . .}}i,p−i+1 ◦ σr

)
(ap ⊗ · · · ⊗ a1)

)
,

(6.31)
where α̂ is given by

p∑
j=1

(p−j−1)|aj |+
p∑
j=1

(j−1)|fj |+
∑

1≤j<k≤p

|aj ||ak|+
∑

1≤j<k≤p

|fj ||fk|+
∑

1≤j≤k≤p

|aj ||fk|.

The precise same argument but involving instead (6.30) and (6.28) in (6.26) yields
that the latter is tantamount to

p∑
i=1

p−1∑
r=i

(−1)(p+1)(i+r)+α̂(fp ⊗ · · · ⊗ f1)
((
σ−r ◦ {{. . .}}i,p−i+1 ◦ σr

)
(ap ⊗ · · · ⊗ a1)

)
.

(6.32)
As a consequence, (6.14) is exactly

(−1)α̂
p∑
i=1

p−1∑
r=i

(−1)(p+1)(i+r)(fp⊗· · ·⊗ f1)
((
σ−r ◦ {{. . .}}i,p−i+1 ◦σr

)
(ap⊗· · ·⊗a1)

)
.

(6.33)
Since sgn(σ) = (−1)p+1, we obtain precisely (DJac∞(p)), as was to be shown.

We will show that (6.3) is bijective. Note first that, given any good and man-
ageable d-pre-Calabi-Yau structure {m•}•∈N on A, it is uniquely determined by
m2q+1|(A⊗A#[−1])⊗q⊗A, for all q ∈ N0. Indeed, the fact that the pre-Calabi-Yau
structure on A is good tells us that the full m2q+1 on ∂−1A is unique, and the man-
ageability hypothesis implies that m2 is uniquely determined by the algebra struc-
ture ofA. As a consequence, and using that the identity (6.1) implies that the corre-
sponding double bracket {{. . .}}q+1 completely determines m2q+1|(A⊗A#[−1])⊗q⊗A,
we conclude that (6.3) is injective.

We will finally show that (6.3) is surjective. It suffices to prove that, given any
collection of good morphisms m2q+1 : ∂−1A

⊗(2q+1) → ∂−1A of degree 1 − 2q
for q ∈ N0 on the graded algebra ∂−1A, whose product is denoted by m2, sat-
isfying the cyclic identities (4.3), for the natural bilinear form of degree −1,
then the vanishing of SI(2p) |A⊗(A⊗A#[−1])⊗p is equivalent to SI(2p) = 0, and
SI(2p − 1) |(A⊗A#[−1])⊗p = 0 is tantamount to the vanishing of SI(2p − 1) , for
all p ∈ N. We leave to the reader the tedious but straightforward verification that

26



the vanishing of SI(2p) |A⊗(A⊗A#[−1])⊗p and that of SI(2p) |σ(A⊗(A⊗A#[−1])⊗p) are
equivalent, for any σ ∈ C2p+1, whereas SI(2p) |σ(A⊗(A⊗A#[−1])⊗p) trivially van-
ishes if σ ∈ S2p+1 \ C2p+1. Similarly, it is long but easy to verify that SI(2p −
1) |(A⊗A#[−1])⊗p = 0 is equivalent to SI(2p−1) |σ((A⊗A#[−1])⊗p) = 0, for any cyclic
permutation σ ∈ C2p ⊆ S2p, and SI(2p − 1) |σ((A⊗A#[−1])⊗p) is trivially zero if
σ ∈ S2p \ C2p. This concludes the proof of the theorem. �
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