A simple note on the Yoneda (co)algebra of a monomial algebra

Estanislao Herscovich

Abstract

If $A=T V /\langle R\rangle$ is a monomial K-algebra, it is well-known that $\operatorname{Tor}_{p}^{A}(K, K)$ is isomorphic to the space $V^{(p-1)}$ of (Anick) $(p-1)$-chains for $p \geq 1$. The goal of this short note is to show that the next result follows directly from wellestablished theorems on A_{∞}-algebras, without computations: there is an A_{∞} coalgebra model on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ satisfying that, for $n \geq 3$ and $c \in V^{(p)}, \Delta_{n}(c)$ is a linear combination of $c_{1} \otimes \cdots \otimes c_{n}$, where $c_{i} \in V^{\left(\overline{\left.p_{i}\right)}\right.}, p_{1}+\cdots+p_{n}=p-1$ and $c_{1} \ldots c_{n}=c$. The proof follows essentially from noticing that the Merkulov procedure is compatible with an extra grading over a suitable category. By a simple argument based on a result by Keller we immediately deduce that some of these coefficients are ± 1.

Mathematics subject classification 2010: 16E45, 16 T 15.
Keywords: homological algebra, dg (co)algebras, A_{∞}-(co)algebras.

1 The results

This article arose from discussions with A. Solotar and M. Suárez-Álvarez in 2014, and more recently with V. Dotsenko and P. Tamaroff, on the A_{∞}-algebra structure on the Yoneda algebra of a monomial algebra. I want to thank them for the exchange and in particular the last two for lately renewing my interest in the problem. My aim is to explain some results describing such A_{∞}-algebras that do not seem to be well-known, but follow rather easily from the general theory, and were meant to be included in the Master thesis of my former student E. Sérandon in 2016.

In what follows, K will denote a finite product of r copies of a field k. By module we will mean a (not necessarily symmetric) bimodule over K (see [3], Section 2). All unadorned tensor products \otimes will be over K, unless otherwise stated. For the conventions on A_{∞}-(co)algebras we refer the reader to [5], Subsection 2.1.

Let M be a small category with a finite set of objects $\left\{o_{1}, \ldots, o_{r}\right\}$. As usual, we denote the set of all arrows of M by M itself, the composition by \star, and the identity of o_{i} by e_{i}. We remark that $m^{\prime} \star m^{\prime \prime}$ implies that m^{\prime} and $m^{\prime \prime}$ are composable morphisms. Let ${ }^{M}$ Mod be the category of modules V provided with an M-grading (i.e. a decomposition of modules $V=\oplus_{m \in M} V_{m}$) and linear morphisms preserving the degree. This is a monoidal category with the tensor product $V \otimes W$ whose m th homogeneous component is $\oplus_{m^{\prime} \star m^{\prime \prime}=m} V_{m^{\prime}} \otimes W_{m^{\prime \prime}}$, and the unit $K=\oplus_{i=1}^{r} k_{e_{i}}$, where $e_{j} \cdot k_{e_{i}}=k_{e_{i}} \cdot e_{j}=\delta_{i, j} k_{e_{i}}$. Furthermore, it is easy to see that ${ }^{M} \operatorname{Mod}$ is a semisimple category. We say that a unitary A_{∞}-algebra (A, m_{\bullet}) has an M-grading if $\left(A, m_{\bullet}\right)$ is a unitary A_{∞}-algebra in the monoidal category ${ }^{M}$ Mod. The same applies to M-graded augmented A_{∞}-algebras, and to morphisms of M-graded unitary or augmented A_{∞}-algebras. Moreover, the definitions of M-graded counitary and coaugmented A_{∞}-coalgebra as well as the morphisms between them are also clear.

Proposition 1.1. Let $A=T V /\langle R\rangle$ is a monomial algebra over a field k, i.e. V is a module of finite dimension over k and R is a space of relations of monomial type. Then, there is a small category (M, \star) with r objects such that A is an M-graded unitary algebra with $\operatorname{dim}_{k}\left(A_{m}\right) \leq 1$, for all $m \in M$.
Proof. Let \mathcal{B} be a basis of the underlying vector space of V such that $e_{j} \cdot v . e_{i}$ vanishes or it is v, for all $v \in \mathcal{B}$ and all $i, j \in\{1, \ldots, r\}$, and define M as the free small category generated by \mathcal{B}. Note that $T V$ identifies with the unitary semigroup algebra associated with M. Given $m \in M$, set A_{m} as the vector subspace of A generated by the element \bar{m} of A given as the image of $m \in T V$ under $T V \rightarrow A$. It is clear that $A=\oplus_{m \in M} A_{m}$ is an M-grading of A and $\operatorname{dim}_{k}\left(A_{m}\right) \leq 1$, for all $m \in M$.

The next result follows directly from the definition of the bar construction.
Fact 1.2. If A is an augmented A_{∞}-algebra over K with an M-grading, then the coaugmented dg coalgebra $B^{+}(A)$ given by the bar construction is M-graded for the canonically induced grading.

We present now the main result of this short note.
Theorem 1.3. Let $A=T V /\langle R\rangle$ be a monomial K-algebra and let M be the small category defined in Proposition 1.1 Then, there is an M-graded coaugmented A_{∞}-coalgebra structure on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ together with a quasi-equivalence from it to the M-graded coaugmented dg coalgebra $B^{+}(A)$.

Proof. We first remark that [4], Thm. 4.5, holds verbatim if we replace Adams grading by M-grading, since ${ }^{M}$ Mod is a semisimple category. Using a grading argument based on the fact that both $B^{+}(A)$ and $\operatorname{Tor}_{\bullet}^{A}(K, K)$ are Adams connected modules (see [5], Section 2, for the definition for vector spaces), we see that the operator Q in [4], Thm. 4.5, is locally finite (see [3], Addendum 2.9). Hence, applying [4], Thm. 4.5, to the coaugmented dg coalgebra $B^{+}(A)$, which projects onto its homology $\operatorname{Tor}_{\bullet}^{A}(K, K)$, we see that the latter has a structure of M-graded coaugmented A_{∞}-coalgebra. Moreover, by the same theorem, there is a quasiisomorphism of coaugmented A_{∞}-coalgebras from $B^{+}(A)$ to $\operatorname{Tor}_{\bullet}^{A}(K, K)$, which is trivially a quasi-equivalence by a grading argument.

Remark 1.4. The previous theorem and its proof hold more generally for any M-graded K-algebra A that is connected, i.e. $A_{e_{i}}=k$ for all $i \in\{1, \ldots, r\}$, and such that A / K has a compatible (strictly) positive grading. This occurs e.g. if there is a functor $\ell: M \rightarrow \mathbb{N}_{0}$ such that $\ell(m)=0$ if and only if m is an identity of M, where the monoid \mathbb{N}_{0} is regarded as a category with one object.

The result in the abstract is obtained from the previous theorem by identifying $\operatorname{Tor}_{p}^{A}(K, K)$ with the module $V^{(p-1)}$ generated by the (Anick) $(p-1)$-chains for $p \geq 1$ (see [1], Lemma 3.3, for the case K is a field, and |2|, Thm 4.1, for the general case), i.e. given $c \in V^{(p)}$ and $n \geq 3$,

$$
\begin{equation*}
\Delta_{n}(c)=\sum_{\substack{c_{i} \in V^{\left(p_{i}\right), c_{1} \cdots c_{n}=c} \\ p_{i} \in \mathbb{N}_{0}, p_{1}+\cdots+p_{n}=p-1}} \lambda_{\left(c_{1} \otimes \cdots \otimes c_{n}\right)} c_{1} \otimes \cdots \otimes c_{n}, \text { where } \lambda_{\left(c_{1} \otimes \cdots \otimes c_{n}\right)} \in k . \tag{1.1}
\end{equation*}
$$

Note that Δ_{2} is given by the usual coproduct of $\operatorname{Tor}_{\bullet}^{A}(K, K)$. The (left or right) dual of this A_{∞}-coalgebra structure on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ gives an A_{∞}-algebra model on $\operatorname{Ext}_{A}^{\bullet}(K, K)$ (see [3], Prop. 2.13).

With no extra effort we can say a little more about the coefficients in (1.1) ${ }^{1}$

[^0]Theorem 1.5. Assume the same hypotheses as in the previous theorem. Given $c \in V^{(p)}$, $n \geq 3$, and $c_{i} \in V^{\left(p_{i}\right)}\left(p_{i} \in \mathbb{N}_{0}\right)$ such that $c_{1} \ldots c_{n}=c, p_{1}+\cdots+p_{n}=p-1$ and $p=p_{j}+1$ for some $j \in\{1, \ldots, n\}$, then $\lambda_{\left(c_{1} \otimes \cdots \otimes c_{n}\right)}= \pm 1$.

Proof. By [5], Thm. 4.2, (or [3], Thm. 4.1) the twisted tensor product $A^{e} \otimes_{\tau} C$ is isomorphic to the minimal projective resolution of the regular A-bimodule A, where $C=\operatorname{Tor}_{\bullet}^{A}(K, K)$ is the previous coaugmented A_{∞}-algebra and τ is the twisting cochain given in that theorem. Comparing the differential of $A^{e} \otimes_{\tau} C$ given in [5], (4.1), with the one in [2], Thm. 4.1, (see also [6], Section 3), it follows that the mentioned coefficient is ± 1.

Remark 1.6. In the examples, the computation of the remaining coefficients in 1.1) is in general rather simple to carry out, by imposing that the Stasheff identities are fulfilled.

References

[1] David J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641-659. $\uparrow 2$
[2] Michael J. Bardzell, The alternating syzygy behavior of monomial algebras, J. Algebra 188 (1997), no. 1, 69-89. $\uparrow 2,3$
[3] Estanislao Herscovich, Applications of one-point extensions to compute the $A_{\infty^{-}}$(co)module structure of several Ext (resp., Tor) groups (2016), 20 pp., available athttps://www-fourier.ujf-grenoble. fr/~eherscov/Articles/Applications-of-one-point-extensions.pdf $\uparrow 1,2,3$
[4] _, On the Merkulov construction of A_{∞}-(co)algebras (2017), 8 pp., available at https://www-fourier.ujf-grenoble.fr/~eherscov/Articles/ On-the-Merkulov-construction.pdf Accepted for publication in Ukrainian Math. J. $\uparrow 2$
[5] , Using torsion theory to compute the algebraic structure of Hochschild (co)homology, Homology Homotopy Appl. 20 (2018), no. 1, 117-139. $\uparrow 1,2,3$
[6] Emil Sköldberg, A contracting homotopy for Bardzell's resolution, Math. Proc. R. Ir. Acad. 108 (2008), no. 2, 111-117. $\uparrow 3$
[7] Pedro Tamaroff, Minimal models for monomial algebras (2018), 28 pp., available at https://arxiv. org/abs/1804.01435 $\uparrow 2$

[^0]: 1. P. Tamaroff has told me that, by carefully choosing the SDR data for $B^{+}(A)$ and following all the steps in the recursive Merkulov procedure, he can even prove that all nonzero coefficients are ± 1, at least if K is a field (see [7|). Our results are not so general but they are immediate, since we did not need to look at the interior of the Merkulov construction.
