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Abstract
If A = TV/〈R〉 is a monomial K-algebra, it is well-known that TorAp (K,K)

is isomorphic to the space V (p−1) of (Anick) (p − 1)-chains for p ≥ 1. The
goal of this short note is to show that the next result follows directly from well-
established theorems on A∞-algebras, without computations: there is an A∞-
coalgebra model on TorA• (K,K) satisfying that, for n ≥ 3 and c ∈ V (p), ∆n(c)
is a linear combination of c1 ⊗ · · · ⊗ cn, where ci ∈ V (pi), p1 + · · ·+ pn = p− 1
and c1 . . . cn = c. The proof follows essentially from noticing that the Merkulov
procedure is compatible with an extra grading over a suitable category. By a
simple argument based on a result by Keller we immediately deduce that some
of these coefficients are ±1.
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1 The results
This article arose from discussions with A. Solotar and M. Suárez-Álvarez in

2014, and more recently with V. Dotsenko and P. Tamaroff, on the A∞-algebra
structure on the Yoneda algebra of a monomial algebra. I want to thank them for
the exchange and in particular the last two for lately renewing my interest in the
problem. My aim is to explain some results describing such A∞-algebras that do
not seem to be well-known, but follow rather easily from the general theory, and
were meant to be included in the Master thesis of my former student E. Sérandon
in 2016.

In what follows,K will denote a finite product of r copies of a field k. By module
we will mean a (not necessarily symmetric) bimodule over K (see [3], Section 2).
All unadorned tensor products ⊗ will be over K, unless otherwise stated. For the
conventions on A∞-(co)algebras we refer the reader to [5], Subsection 2.1.

Let M be a small category with a finite set of objects {o1, . . . , or}. As usual,
we denote the set of all arrows of M by M itself, the composition by ?, and the
identity of oi by ei. We remark thatm′ ?m′′ implies thatm′ andm′′ are composable
morphisms. Let M Mod be the category of modules V provided with anM -grading
(i.e. a decomposition of modules V = ⊕m∈MVm) and linear morphisms preserving
the degree. This is a monoidal category with the tensor product V ⊗W whose m-
th homogeneous component is ⊕m′?m′′=mVm′ ⊗Wm′′ , and the unit K = ⊕ri=1kei ,
where ej .kei = kei .ej = δi,jkei . Furthermore, it is easy to see that M Mod is a
semisimple category. We say that a unitaryA∞-algebra (A,m•) has anM -grading if
(A,m•) is a unitaryA∞-algebra in the monoidal categoryM Mod. The same applies
to M -graded augmented A∞-algebras, and to morphisms of M -graded unitary or
augmented A∞-algebras. Moreover, the definitions of M -graded counitary and
coaugmentedA∞-coalgebra as well as the morphisms between them are also clear.
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Proposition 1.1. LetA = TV/〈R〉 is a monomial algebra over a field k, i.e. V is a module
of finite dimension over k and R is a space of relations of monomial type. Then, there is
a small category (M,?) with r objects such that A is an M -graded unitary algebra with
dimk(Am) ≤ 1, for all m ∈M .

Proof. LetB be a basis of the underlying vector space of V such that ej .v.ei vanishes
or it is v, for all v ∈ B and all i, j ∈ {1, . . . , r}, and define M as the free small cate-
gory generated by B. Note that TV identifies with the unitary semigroup algebra
associated with M . Given m ∈ M , set Am as the vector subspace of A generated
by the element m̄ of A given as the image of m ∈ TV under TV → A. It is clear
that A = ⊕m∈MAm is an M -grading of A and dimk(Am) ≤ 1, for all m ∈M . �

The next result follows directly from the definition of the bar construction.

Fact 1.2. If A is an augmented A∞-algebra over K with an M -grading, then the coaug-
mented dg coalgebraB+(A) given by the bar construction isM -graded for the canonically
induced grading.

We present now the main result of this short note.

Theorem 1.3. LetA = TV/〈R〉 be a monomialK-algebra and letM be the small category
defined in Proposition 1.1. Then, there is an M -graded coaugmented A∞-coalgebra struc-
ture on TorA• (K,K) together with a quasi-equivalence from it to the M -graded coaug-
mented dg coalgebra B+(A).

Proof. We first remark that [4], Thm. 4.5, holds verbatim if we replace Adams grad-
ing by M -grading, since M Mod is a semisimple category. Using a grading argu-
ment based on the fact that both B+(A) and TorA• (K,K) are Adams connected
modules (see [5], Section 2, for the definition for vector spaces), we see that the
operator Q in [4], Thm. 4.5, is locally finite (see [3], Addendum 2.9). Hence,
applying [4], Thm. 4.5, to the coaugmented dg coalgebra B+(A), which projects
onto its homology TorA• (K,K), we see that the latter has a structure of M -graded
coaugmented A∞-coalgebra. Moreover, by the same theorem, there is a quasi-
isomorphism of coaugmented A∞-coalgebras from B+(A) to TorA• (K,K), which
is trivially a quasi-equivalence by a grading argument. �

Remark 1.4. The previous theorem and its proof hold more generally for any M -graded
K-algebraA that is connected, i.e. Aei = k for all i ∈ {1, . . . , r}, and such thatA/K has
a compatible (strictly) positive grading. This occurs e.g. if there is a functor ` : M → N0

such that `(m) = 0 if and only if m is an identity of M , where the monoid N0 is regarded
as a category with one object.

The result in the abstract is obtained from the previous theorem by identifying
TorAp (K,K) with the module V (p−1) generated by the (Anick) (p − 1)-chains for
p ≥ 1 (see [1], Lemma 3.3, for the case K is a field, and [2], Thm 4.1, for the general
case), i.e. given c ∈ V (p) and n ≥ 3,

∆n(c) =
∑

ci ∈ V (pi), c1 . . . cn = c
pi ∈ N0, p1 + · · · + pn = p − 1

λ(c1⊗···⊗cn)c1 ⊗ · · · ⊗ cn, where λ(c1⊗···⊗cn) ∈ k.

(1.1)
Note that ∆2 is given by the usual coproduct of TorA• (K,K). The (left or right)
dual of this A∞-coalgebra structure on TorA• (K,K) gives an A∞-algebra model on
Ext•A(K,K) (see [3], Prop. 2.13).

With no extra effort we can say a little more about the coefficients in (1.1) 1.

1. P. Tamaroff has told me that, by carefully choosing the SDR data for B+(A) and following all the
steps in the recursive Merkulov procedure, he can even prove that all nonzero coefficients are ±1, at
least if K is a field (see [7]). Our results are not so general but they are immediate, since we did not
need to look at the interior of the Merkulov construction.
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Theorem 1.5. Assume the same hypotheses as in the previous theorem. Given c ∈ V (p),
n ≥ 3, and ci ∈ V (pi) (pi ∈ N0) such that c1 . . . cn = c, p1 + · · · + pn = p − 1 and
p = pj + 1 for some j ∈ {1, . . . , n}, then λ(c1⊗···⊗cn) = ±1.

Proof. By [5], Thm. 4.2, (or [3], Thm. 4.1) the twisted tensor product Ae ⊗τ C
is isomorphic to the minimal projective resolution of the regular A-bimodule A,
where C = TorA• (K,K) is the previous coaugmented A∞-algebra and τ is the
twisting cochain given in that theorem. Comparing the differential of Ae ⊗τ C
given in [5], (4.1), with the one in [2], Thm. 4.1, (see also [6], Section 3), it follows
that the mentioned coefficient is ±1. �

Remark 1.6. In the examples, the computation of the remaining coefficients in (1.1) is in
general rather simple to carry out, by imposing that the Stasheff identities are fulfilled.
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