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Abstract

We compute the posterior distributions of the initial population and parameter
of binary branching processes, in the limit of a large number of generations. We
compare this Bayesian procedure with a more näıve one, based on hitting times
of some random walks. In both cases, central limit theorems are available, with
explicit variances.
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1. Introduction

This paper is devoted to some estimation procedures of binary branching processes
in a Bayesian setting. To be more specific, let (Xn)n≥0 denote a Galton-Watson process
which starts from the initial population X0 ≥ 1 and whose offspring is ruled by the
distribution

(1− U) δ1 + Uδ2 with 0 < U < 1,

where δx denotes the Dirac mass at x. This means that, at every generation, each
individual dies and is replaced by 1 or 2 individuals, with probability 1 − U and U
respectively, independently of the fate of the other individuals, and that Xn counts
generation n.

In a Bayesian framework, the initial population X0 and the offspring parameter U
are both random and unknown. To keep things simple, we also assume that X0 and U
are independent, and we wish to estimate them from the observation of a finite path
x1:n = (xk)1≤k≤n of the process X1:n = (Xk)1≤k≤n up to a given time n ≥ 1.

Well known motivations for such a study are various biological settings where one
observes X1:n but X0 and U are unknown. One example is the modeling of polymerase
chain reaction. Probabilistic models of polymerase chain reactions were proposed
and studied by Sun (1995), Weiss and von Haeseler (1995) and (1997), Peccoud and
Jacob (1996), Piau (2002), (2004), (2005), and Jagers and Klebaner (2003). Recently,
Lalam and Jacob (2007) introduced and studied the Bayesian setting above, see also
Lalam (2007). For other Bayesian approaches of branching processes, see Scott (1987),
Prakasa Rao (1992), Mendoza and Gutiérrez-Peña (2000), and, for the interesting
model of bisexual branching process, Molina, González and Mota (1998) for example.
Finally, the idea of studying a branching process backwards, but to estimate its age
rather than its initial population, is in Klebaner and Sagitov (2002).
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In models of polymerase chain reactions and in similar contexts, the initial pop-
ulation X0 is the size of a small sample, extracted at random from a much larger
population. This suggests that the initial population X0 should be Poisson distributed,
say with parameter Λ. We assume that Λ is random as well. Jeffreys’ principle, see
Kass and Wasserman (1996), then indicates that the prior distributions of Λ and U
should be proportional to measures which we compute below. To sum up the result of
these computations, the prior of Λ is easy to write down but improper and the prior of
U is awkward but proper. However, the posterior of (X0, U) conditionally on X1:n is
a proper distribution, which can be computed explicitly. In particular, this posterior
distribution depends only on X1, Xn and Sn = X1 + · · ·+Xn. Unfortunately, it is also
rather unwieldy.

In such situations, one may rely on numerical algorithms, based on MCMC for
example, to simulate the posterior distributions with any prescribed degree of accuracy.
Rather, we look for simple asymptotics in realistic regimes. Namely, we assume that
n is large and we are interested in the asymptotic posterior distribution of (X0, U)
assuming that Xn is large and that the ratio Sn/Xn converges to a finite limit. This
assumption is almost surely fulfilled by the paths of binary branching processes since
these are supercritical. In this setting, we show that the posterior distributions indeed
converge and we compute explicitly their limit.

2. Results

To describe our results, we introduce some notations. Let x0:∞ = (xn)n≥0 denote a
sequence of positive integers. We say that such a sequence is admissible if, for every
nonnegative n, xn ≤ xn+1 ≤ 2xn. We say that an admissible sequence is regular
if furthermore, xn/sn converges to a positive limit when n goes to infinity, where
sn = x1 + · · · + xn. The binary index B(x0:∞) of a regular admissible sequence x0:∞
is the real number in ]0, 1] defined by

B(x0:∞) = lim
n→∞

xn+1

sn
.

The renormalized index R(x0:∞) of a regular admissible sequence x0:∞ is the real
number in [0,+∞[ defined by

R(x0:∞) = lim
n→∞

(sn − xn+1)2

4xn+1sn
.

Almost every (sequence which can be realized as a) path of a binary branching process
is admissible and regular. The renormalized index is a function of the binary index,
namely R(x0:∞) = %(B(x0:∞)) where, for every u in ]0, 1],

%(u) =
(1− u)2

4u
.

The binary index and the normalized index are asymptotic quantities, in the sense
that, for every nonnegative integer n, the indexes of a regular admissible sequence
x0:∞ do not depend on the first values x0:n.

From now on, letters k and n are used to enumerate generations of the process (that
is, the time) and symbols x, xk, xn and y are used to measure population sizes.
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Definition 1. (Distributions.) For every positive real number r and every positive
integer x, the finite discrete measure ν(r, x) and the discrete probability measure
µ(r, x), both on the positive integers, are defined by

ν(r, x) =
x∑

y=h(x)

(
2y
y

)(
y

x− y

)
ry δy, µ(r, x) =

ν(r, x)
|ν(r, x)|

.

For every positive integer x, the integer h(x) in the formula above is the upper half of x,
that is, the smallest integer such that 2h(x) ≥ x. In other words, h(2x) = h(2x−1) = x
for every positive integer x.

Our main result is as follows.

Theorem 1. (Posterior distributions.) (1) The path X0:∞ of a binary branching
process with parameter U is almost surely regular admissible and its binary index is
almost surely B(X0:∞) = U .

(2) Assume that the prior distribution of (X0, U) satisfies Jeffreys’ principle. Then,
for every regular admissible sequence x1:∞ with binary index u = B(x1:∞) in ]0, 1[, the
posterior distribution of (X0, U) conditionally on X1:n = x1:n converges when n goes
to infinity to the distribution µ(%(u), x1)⊗ δu.

Theorem 1 shows that the limit posterior distribution of X0 when n goes to infinity
is almost surely µ(r, x) with r = %(U) and x = X1. Unless r = 0, r = 1 or x = 1,
µ(r, x) is not degenerate, hence the value of X0 can be determined only with some
uncertainty, even from an infinite trajectory X1:∞. On the contrary, U is a function of
the infinite trajectory X1:∞.

The limit distribution µ(%(u), x1) ⊗ δu in theorem 1 converges to the Dirac distri-
bution at (x1, 0) when u converges to 0 and to the Dirac distribution at (h(x1), 1)
when u converges to 1. Our next result describes the intuitively obvious variations of
µ(r, x) with respect to r and x. First, since r = %(u) is a decreasing function of u and
the offspring distribution of the branching process is stochastically increasing with u,
one should expect µ(r, x) to increase stochastically when r increases. Likewise, since
x represents the population at time 1, one should expect µ(r, x), which represents the
population at time 0, to increase stochastically when x increases.

We recall that a measure µ1 is stochastically larger than a measure µ2 if and only
if µ1([z,+∞)) ≥ µ2([z,+∞)) for every real number z.

Proposition 1. (Ordering of limit posterior distributions.) For every positive integer
x, the family (µ(r, x))r≥0 is stochastically increasing. For every positive real number
r, the family (µ(r, x))x≥1 is stochastically increasing.

We now characterize the limit of µ(r, x) for every fixed value of r, when x converges
to infinity.

Theorem 2. (Limit posterior distributions of initial populations.) Fix u in ]0, 1[. For
every positive integer x, let ξx denote a random variable with distribution µ(%(u), x).
When x converges to infinity, the expectation and the mode of ξx/x both converge to

mu = 1/(1 + u),
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and the random variables (ξx −mux) /
√
x converge in distribution to a centered Gaus-

sian distribution with variance

σ2
u = u(1− u)/(1 + u)3.

For the sake of comparison, we turn to another natural way to estimate initial
populations of branching processes with known offspring distributions, based on hitting
times. To describe this in the setting of binary branching processes, we first introduce
some notations.

Definition 2. (Hitting times.) Fix a real number u in ]0, 1[, and let (εx)x≥1 denote a
sequence of independent Bernoulli random variables with distribution (1−u) δ1 +u δ2.
For every positive integer x, let σx := ε1 + · · · + εx. Define the distribution of the
hitting time ηx by the relation

P(ηx = y) = P(σy = x |Hx), where Hx = {∃z ≥ 1 ; σz = x}.

When the value of u is known, an estimation procedure of X0 based on X1 = x is to
propose the value y for X0 with probability P(ηx = y), thus an estimator of X0 when
X1 = x is the distribution of ηx.

Recall that mu = 1/(1 + u) and σ2
u = u(1− u)/(1 + u)3.

Theorem 3. (Initial populations through hitting times.) Fix a real number u in ]0, 1[.
For every positive integer x,

|E(ηx)−mux| ≤ 2u/(1 + u)2 ≤ 1/2.

Furthermore, when x converges to infinity, (ηx −mux)/
√
x converges in distribution

to a centered Gaussian variable with variance σ2
u.

The rest of the paper is organized as follows. We prove theorem 1 and proposition 1
in section 3 and theorem 2 in section 4. Finally, the proof of theorem 3, sharper bounds
on E(ηx) and a brief comparison with another, non Bayesian, estimation procedure are
in section 5.

3. Posterior distributions

3.1. Preliminaries

Jeffreys’ principle, see Kass and Wasserman (1996), indicates that the prior measure
for a parameter θ governing the distribution νθ of a random variable Z should have a
density proportional to J(θ)1/2, where

J(θ) = −Eθ
(
∂2

∂θ2
log νθ(Z)

)
.

We apply this to the parameter (Λ, U). Parts of lemma 1 are in Lalam and Jacob (2007).

Lemma 1. For every positive integer n, the prior measure for (Λ, U) according to
Jeffreys’ principle and based on X0:n is the product of the prior measures for Λ and
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U . The prior measures for Λ and for U are respectively proportional to the measures
dλ/
√
λ on λ > 0 and πn(u) du on 0 < u < 1, where

πn(u) =

√
(1 + u)n − 1
u2(1− u)

.

In particular, the prior of U is proper.

Proof of lemma 1. Assume that X0 is Poisson distributed with parameter Λ and
that X0:n is a binary branching process with parameter U . Then the distribution νΛ,U

of X0:n is such that

νΛ,U (x0:n) = e−Λ Λx0

x0!

n∏
k=1

(
xk−1

xk − xk−1

)
Uxk−xk−1(1− U)2xk−1−xk .

Up to a factor C(x0:n) which does not depend on (Λ, U), log νΛ,U (x0:n) is

−Λ + x0 log Λ + (xn − x0) logU + (sn − 2xn + 2x0) log(1− U) + C(x0:n).

This is the sum of a function of Λ and a function of U , hence the prior measures are
product measures. As regards the prior for Λ,

∂2

∂Λ2
log νΛ(x0:n) = − x0

Λ2
, hence J(Λ) =

EΛ(X0)
Λ2

=
1
Λ
.

As regards the prior for U ,

∂2

∂U2
log νU (x0:n) = −(xn − x0)/U2 − (sn − 2xn + 2x0)/(1− U)2,

hence

Jn(U) =
EU (Xn −X0)

U2
+

EU (Sn − 2Xn + 2X0)
(1− U)2

,

where Sn = X1 + · · · + Xn. Since EU (Xk) = (1 + U)kE(X0) for every nonnegative
integer k, one finds that Jn(U) = E(X0)πn(U)2 with the notations of the lemma.

Finally, up to multiplicative constants, πn(u) behaves like 1/
√
u when u converges

to 0 and like 1/
√

1− u when u converges to 1. Hence, πn is integrable and there exists
a (proper) prior distribution for U . This concludes the proof of lemma 1.

From now on, we fix a positive integer n, we assume that the observations are
X1:n = x1:n with x1:n = (xk)1≤k≤n and we recall that sn = x1 + · · · + xn. The
posterior distribution in lemma 2 is similar, but not equal, to a posterior distribution
computed in Lalam and Jacob (2007).

Lemma 2. The posterior distribution of (X0, U) conditionally on X1:n = x1:n depends
only on x1, xn and sn, and is proportional to the measure

x1∑
x=h(x1)

2−2x

(
2x
x

)(
x

x1 − x

)
uxn−x (1− u)sn−2xn+2x πn(u) δx ⊗ du.
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Proof of lemma 2. Fix u, x1:n and x such that h(x1) ≤ x ≤ x1. Then, the condi-
tional probability P(U ∈ du,X0 = x |X1:n = x1:n) is proportional to

νU (du)
∫
νΛ(dλ)Pλ(X0 = x)Pu(X1:n = x1:n |X0 = x),

where νU (du) = πn(u)du and νΛ(dλ) = dλ/
√
λ. Hence,∫

νΛ(dλ)Pλ(X0 = x) =
Γ(x+ 1/2)
Γ(x+ 1)

=
√
π 2−2x

(
2x
x

)
.

Likewise, using the computations in the proof of lemma 1, one gets

Pu(X1:n = x1:n |X0 = x) = C(x1:n)
(

x

x1 − x

)
uxn−x (1− u)sn−2xn+2x,

where C(x1:n) does not depend on (x, u). This concludes the proof of lemma 2.

3.2. Proof of theorem 1

Part (1) follows from the fact that, when n converges to infinity, Xn/(1 + U)n

converges almost surely to a random positive and finite limit.
A sketch of the proof of part (2) is as follows. Consider the distribution in lemma 2

and assume that xn converges to infinity and that xn/(sn − xn) converges to v. Then
sn − xn is equivalent to xn/v, hence

uxn(1− u)sn−2xn =
(
uv(1− u)1−v)sn−xn+o(xn)

.

The inner parenthesis is maximal when u = v, and the exponent converges to infinity,
hence this contribution becomes concentrated around the value u = v. The remaining
factor involving u in the distribution described in lemma 2 is %(u)x, and the convergence
to µ(%(v), x1) follows.

For a detailed proof of part (2), we consider a sequence x1:∞ such that xn converges
to infinity and xn/(sn− xn) converges to v. For every positive integer n, we introduce
random variables (Tn, Un) distributed as (X0, U) conditionally on X1:n = x1:n. We
first show the convergence in probability of Un, then the convergence in distribution
of (Tn, Un).

Lemma 3. With the notations above, Un converges to v in probability.

Proof of lemma 3. Lemma 2 yields

P(Tn = x, Un ∈ du) = cnpx%(u)xbn(u)qn(u) du,

where cn denotes a normalizing constant which is independent on x and u, px depends
only on x and x1, bn(u) depends only on u, xn and sn, and qn(u) depends only on
u and n. More precisely, for every integer x such that x1 ≤ 2x ≤ 2x1 and every real
number u in ]0, 1[,

px =
(

2x
x

)(
x

x1 − x

)
,

bn(u) = uxn−1/2(1− u)sn−2xn−1/2,

qn(u) =

√
(1 + u)n − 1

u
.
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We aim to show that, for every integer x such that px is positive and every positive
real number z, when n converges to infinity,

P(Tn = x, |Un − v| ≥ z)� P(Tn = x).

Since the function qn is nondecreasing,

P(Tn = x, |Un − v| ≥ z) ≤ cnpxqn(1)
∫
|u−v|≥z

%(u)xbn(u) 1[0,1](u) du,

and

P(Tn = x) ≥ cnpxqn(0)
∫ 1

0

%(u)xbn(u) du.

The ratio of the two integrals written above is P(|Bn − v| ≥ z), where Bn is a beta
random variable of parameters (αn, βn), with

αn = xn − x+ 1/2, βn = sn − 2xn + 2x+ 1/2.

Since αn and βn both converge to infinity and αn/(αn+βn) converges to v, it is an easy
matter to show that Bn converges in probability to v. However, we need a stronger
statement, namely the fact that P(|Bn−v| ≥ z)� qn(0)/qn(1). Note that qn(0) =

√
n

and qn(1) ∼ 2n/2, hence qn(0)/qn(1)� 1.
One can write an elementary proof of this, based on the representation of beta

random variables with integer parameters as ratios of sums of i.i.d. exponential ran-
dom variables and on large deviations properties of these sums. Instead, we rely on
approximations of beta distributions by normal distributions provided by Alfers and
Dinges (1984). A rephrasing of corollary 1 on page 405 of this paper is as follows.
Let (Yk)k denote a sequence of beta random variables of parameters (kak, k(1− ak)).
Assume that k converges to infinity and that ak converges to a limit 0 < a < 1. Then,
for every fixed y such that a < y < 1, the ratio

P(Yk ≥ y)

P
(
Z ≥

√
2k`(ak, y)

)
converges to a finite and positive limit, which depends on a and y only, where Z denotes
a standard Gaussian random variable, and ` denotes the function defined by

`(α, y) = α log
(
α

y

)
+ (1− α) log

(
1− α
1− y

)
.

Since ak converges to a and `(α, y) is a continuous function of α, standard estimates
of Gaussian tails and the result by Alfers and Dinges show that there exists a positive
constant C < 1, independent on k, such that for every k large enough,

P(Yk ≥ y) ≤ Ck.

Applying this to our setting, first to the random variables Bn and to y = v+z, then to
the random variables 1−Bn and to y = 1− v+ z, one gets the existence of a constant
C < 1 such that, for every n large enough,

P(|Bn − v| ≥ z) ≤ 2Cαn+βn .

Since αn + βn = sn−1 + x+ 1 ≥ sn−1 � n, 2Cαn+βn � qn(0)/qn(1), and the proof of
lemma 3 is complete.
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We now apply lemma 3 to the proof of part (2). Introduce the finite sums

p(u) =
∑
x

px%(u)x.

For every u in ]0, 1[, the distribution of Tn conditionally on Un = u is independent on
n and such that

P(Tn = x |Un = u) = p(u)−1px%(u)x.

Hence, for every measurable subset B of ]0, 1[,

P(Tn = x, Un ∈ B) = E
(
p(Un)−1px1B(Un)%(Un)x

)
.

The function u 7→ p(u)−1px1B(u)%(u)x is bounded by 1 on ]0, 1[ and, as soon as v is
not in the boundary of B, continuous at u = v. Since Un converges in distribution to
v, this implies that P(Tn = x, Un ∈ B) converges to p(v)−1px1B(v)%(v)x, for instance
for every interval B = [0, u] with u 6= v. This is equivalent to the desired convergence
in distribution.

3.3. Remarks

For every positive integer n and every admissible sample, sn ≥ 2xn(1− 1/2n) since
xk ≥ xk+1/2 for every nonnegative integer k, hence sn − xn ≥ xn + o(xn) and u ≤ 1
in the asymptotics that we consider. Furthermore, the function % decreases from
%(0+) = +∞ to %(1−) = 0.

The measures µ(r, x) for the first values of x are as follows: µ(r, 1) = δ1,

µ(r, 2) =
δ1 + 3rδ2

1 + 3r
, µ(r, 3) =

3δ2 + 5rδ3
3 + 5r

, µ(r, 4) =
3δ2 + 30rδ3 + 35r2δ4

3 + 30r + 35r2
,

and

µ(r, 5) =
15δ3 + 70rδ4 + 63r2δ5

15 + 70r + 63r2
.

3.4. Proof of proposition 1

The monotonicity with respect to r is valid in a wider setting, described in propo-
sition 2 below, but the monotonicity with respect to x is more specific.

Proposition 2. Let µ denote a nonzero bounded measure on the real line with expo-
nential moments. For every real number a, introduce the measures νa and µa defined
by the relations νa(dx) = eaxµ(dx) and µa = νa/|νa|. Then the family (µa)a is
stochastically nondecreasing.

Proof of proposition 2. Fix x in the real line. The derivative of µa([x,+∞)) with
respect to a has the sign of D(x), with

D(x) =
∫
y≥x

yeayµ(dy)
∫

eazµ(dz)−
∫
y≥x

eayµ(dy)
∫
zeazµ(dz).

The variations of D(x) with respect to x are given by

dD(x) = eaxµ(dx)
∫

(y − x)eayµ(dy).
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The integral in the right hand side is a nonincreasing function of x. Since D(−∞) =
D(+∞) = 0, the function x 7→ D(x) is nondecreasing for x ≤ xa and nonincreasing for
x ≥ xa, where xa solves the equation∫

yeayµ(dy) = xa

∫
eayµ(dy).

This proves that D(x) ≥ 0 for every x, hence µa([x,+∞)) ≤ µb([x,+∞)) for every
a ≤ b. This concludes the proof of proposition 2.

We turn to the monotonicity of µ(r, x) with respect to x. We fix a value of r and
write every ν(r, x) as

ν(r, x) =
∑
y

axyδy.

We want to prove that for every fixed x, G(z) ≥ 0 for every z, with

G(z) =
∑
y

axy
∑
y≥z

ax+1
y −

∑
y≥z

axy
∑
y

ax+1
y .

One sees that G(0) = G(∞) = 0, and simple computations show that

F (z) =
1
axz

(G(z + 1)−G(z)) =
∑
y

ax+1
y − ax+1

z

axz

∑
y

axy .

At this point, we use the specific form of the coefficients axz , which yields

ax+1
z

axz
= 2

(2x+ 1)(2z − x)
(x+ 1)(x+ 1− z)

.

This shows that (F (z))z is a nonincreasing sequence, hence G(z + 1) − G(z) ≥ 0 if
z < z∗ and G(z + 1)−G(z) ≤ 0 if z ≥ z∗, for a given z∗. Hence the sequence (G(z))z
is nondecreasing on z ≤ z∗ and nonincreasing on z ≥ z∗. Since G(0) = G(∞) = 0, this
implies that G(z) ≥ 0 for every positive z. This concludes the proof of proposition 1.

4. Limit posterior distributions of initial populations

4.1. Expectations

Let u in ]0, 1[ and r = %(u). We are interested in the limit as x→∞ of the sequence

1
x

E(ξx) =
A(r, x)
xB(r, x)

,

with the notations

A(r, x) =
∑
y

y ν(r, x)(y) =
∑
y

y

(
2y
y

)(
y

x− y

)
ry,

and

B(r, x) = |ν(r, x)| =
∑
y

(
2y
y

)(
y

x− y

)
ry.
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Definition 3. For every positive λ and r, introduce

Cλ(r, z) = (1− 4rz(1 + z))−λ =
∑
x≥0

cλ(r, x) zx.

Starting from the expansion

(1− 4z)−1/2 =
∑
x≥0

(
2x
x

)
zx,

one can write B(r, x) as the coefficient of zx in the expansion of C1/2(r, x) along the
powers of z, namely, B(r, x) = c1/2(r, x). Likewise, A(r, x) is r times the derivative
of B(r, x) with respect to r, hence A(r, x) is the coefficient of zx in the expansion of
2rz(1 + z)C3/2(r, x) along the powers of z. This yields

A(r, x) = 2r
(
c3/2(r, x− 1) + c3/2(r, x− 2)

)
,

and
xB(r, x) = 2r

(
c3/2(r, x− 1) + 2c3/2(r, x− 2)

)
.

Definition 4. For every positive r, introduce

γ(r) =
1
2

(√
1 + r

r
− 1

)
, m(r) =

1 + γ(r)
1 + 2γ(r)

=
1
2

(
1 +

√
r

1 + r

)
.

Note that, for every u in ]0, 1[,

γ(%(u)) =
u

1− u
, m(%(u)) =

1
1 + u

= mu.

Lemma 4. For every positive λ and r, when x converges to infinity,

cλ(r, x) ∼ cλ(r)xλ−1 γ(r)−x, cλ(r) = m(r)λ/Γ(λ).

Proof of lemma 4. This is a consequence of known expansions of powers of 1/(1−z).
First, recall that

(1− z)−λ =
∑
x≥0

dλ(x) zx, dλ(x) =
Γ(x+ λ)

Γ(x+ 1)Γ(λ)
∼ xλ−1

Γ(λ)
.

We use this and the decomposition

1− 4rz(1 + z) =
(

1− z

γ(r)

) (
1 +

z

γ(r) + 1

)
,

to get the expansion

Cλ(r, z) =
∑
x

dλ(x)
(

z

γ(r)

)x ∑
x

dλ(x)
(
−z

1 + γ(r)

)x
,
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which implies

cλ(r, x) = dλ(x) γ(r)−x
x∑
y=0

(
−γ(r)
γ(r) + 1

)y
dλ(y)

dλ(x− y)
dλ(x)

.

When x converges to infinity, the ratios dλ(x − y)/dλ(x) converge to 1, hence, by
dominated convergence,

cλ(r, x) ∼ dλ(x) γ(r)−x
∑
y≥0

(
−γ(r)
γ(r) + 1

)y
dλ(y) = dλ(x) γ(r)−x

(
1 +

γ(r)
1 + γ(r)

)−λ
,

where the equality stems from the definition of the coefficients dλ(·). Plugging the
equivalent of dλ(x) into this and using the fact that 1 + γ(r)/(1 + γ(r)) = 1/m(r), one
deduces lemma 4.

Lemma 4 for λ = 3
2 yields that, when x converges to infinity, there exists a constant

α, whose value is irrelevant, such that

A(r, x) ∼ 2rα x1/2 γ(r)−x γ(r) (1 + γ(r)),

and

xB(r, x)−A(r, x) ∼ 2rα x1/2 γ(r)−x γ(r)2.

Hence (xB(r, x)−A(r, x))/A(r, x) converges to γ(r)/(1 + γ(r)), and

A(r, x)
xB(r, x)

converges to
1 + γ(r)
1 + 2γ(r)

= m(r).

This is the desired convergence of the expectations because, as mentioned above, the
relation r = %(u) means that m(r) = mu.

4.2. Modes

To study the mode of ξx, one compares ν(r, x)(y + 1) to ν(r, x)(y). The ratios

ν(r, x)(y + 1)
ν(r, x)(y)

=
(y + 1/2) (x− y) r

(y + 1− x/2) (y + 1/2− x/2)

are the terms of a nonincreasing sequence indexed by y. Writing y as y = x (1+s)/(2s)
with s ≥ 1, when x is large, one gets

ν(r, x)(y + 1)
ν(r, x)(y)

∼ r (s2 − 1).

This implies that the sequence (ν(r, x)(y))y is increasing on y ≤ y∗ and decreasing on
y ≥ y∗, for a value of y∗ such that y∗ = x (1 + s∗)/(2s∗) + o(x) with s2

∗ = 1 + 1/r.
Finally, this shows that, when r = %(u), the mode of µ(r, x) is at x/(1 + u) + o(x).
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4.3. Distributions

Our next computation is based on characteristic functions. Fix u in ]0, 1[ and let
r = %(u). For every positive integer x, introduce

Fx(t) = E
(

exp
(
t
ξx − xm√

x

))
.

Recall that

m(r) =
1 + γ(r)
1 + 2γ(r)

,
1

1 + 2γ(r)
=
√

r

1 + r
, r =

(1− u)2

4u
.

Since E(exp(tξx)) = B(ret, x)/B(r, x),

Fx(t) = e−t
√
xmB(ret/

√
x, x)/B(r, x).

We turn to the study of the sequence of functions (B(·, x))x≥1.
Since B(r, x) = c1/2(r, x), a consequence of lemma 4 is that, when x converges to

infinity,
B(ret/

√
x, x)

B(r, x)
∼
(

γ(r)
γ(ret/

√
x)

)x
S(x, t/

√
x)

m(r)1/2
,

where, for every s,

S(x, s) =
x∑
y=0

(
−γ(res)
γ(res) + 1

)y
d1/2(y)

d1/2(x− y)
d1/2(x)

.

We get rid of the fraction involving S(x, t/
√
x) through lemmas 5 and 6.

Lemma 5. For every nonnegative x and y, d1/2(y) d1/2(x) ≤ d1/2(x+ y).

Proof of lemma 5. A probabilistic proof is as follows. For every nonnegative x,
d1/2(x) = 2−2x

(
2x
x

)
is the probability that a simple symmetric random walk on the

integer line is at its starting point after 2x steps. Hence d1/2(x+ y) is the probability
that the random walk is at its starting point after 2x + 2y points and d1/2(y) d1/2(x)
is the probability that the random walk is at its starting point after 2x steps and also
after 2x + 2y points. The latter event being included in the former, this shows the
desired inequality.

Lemma 6. When x converges to infinity, S(x, t/
√
x) converges to m(r)1/2.

Proof of lemma 6. Since S(x, 0) converges to S(∞, 0) = m(r)1/2 when x converges
to infinity, we show that S(x, t/

√
x)− S(x, 0) converges to 0. By lemma 5, the ratios

of coefficients d1/2 involved in S(x, t/
√
x) and S(x, 0) are bounded by 1. Adding terms

such that y ≥ x+ 1, one gets |S(x, t/
√
x)− S(x, 0)| ≤ T (t/

√
x), where

T (t/
√
x) =

+∞∑
y=0

∣∣∣∣∣
(

γ(ret/
√
x)

γ(ret/
√
x) + 1

)y
−
(

γ(r)
γ(r) + 1

)y∣∣∣∣∣ .
All the terms in the sum have the same sign, hence

T (t/
√
x) =

∣∣∣∣∣
+∞∑
y=0

(
γ(ret/

√
x)

γ(ret/
√
x) + 1

)y
−
(

γ(r)
γ(r) + 1

)y∣∣∣∣∣ .



Asymptotics of posteriors for binary branching processes 13

One can compute the sum of each geometric series. This yields

|S(x, t/
√
x)− S(x, 0)| ≤ T (t/

√
x) =

∣∣∣γ(ret/
√
x)− γ(r)

∣∣∣ ,
which proves the lemma since γ(·) is a continuous function.

Lemma 6 above shows that

B(ret/
√
x, x)

B(r, x)
∼

(
γ(ret/

√
x)

γ(r)

)−x
.

The rest of the proof is standard. A Taylor expansion of γ(·) around r yields

γ(ret/
√
x) = γ(r) + (et/

√
x − 1) γ′(r) + (et/

√
x − 1)2 γ′′(r)/2 + o((et/

√
x − 1)2).

Using the expansion of et/
√
x along powers of 1/

√
x and dividing everything by γ(r),

one gets

γ(ret/
√
x)

γ(r)
= 1 +

(
r
γ′(r)
γ(r)

)
t√
x

+
(
r
γ′(r)
γ(r)

+ r2 γ
′′(r)
γ(r)

)
t2

2x
+ o

(
1
x

)
.

Note that

r
γ′(r)
γ(r)

= −m(r).

Taking logarithms, writing the ratio of functions γ as

(γ(ret/
√
x)/γ(r))−x = exp(−x log(γ(ret/

√
x)/γ(r))),

and using the expansion log(1 + z) = z − z2/2 + o(z2) when z = o(1), one gets that
Fx(t) is equivalent to the exponential of

−tm(r)
√
x− x

(
−m(r) t/

√
x+ (m2(r)−m(r)) t2/(2x)−m(r)2 t2/(2x) + o(1/x)

)
,

where

m2(r) = r2 γ
′′(r)
γ(r)

.

Finally, Fx(t) converges to eσ
2(r) t2/2, with

σ2(r) = m(r)2 +m(r)−m2(r).

Using the definitions of m(r) and m2(r) as functions of γ(r) and its derivatives, one
gets

σ2(r) = r

(
−r γ

′(r)
γ(r)

)′
= rm′(r).

Using the formula for m(r) at the beginning of this section, one gets finally

σ2(r) =
1
4

√
r

(1 + r)3
=
u (1− u)
(1 + u)3

= σ2
u.

The proof is complete.
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5. Conditional hitting times

5.1. Proof of theorem 3

We introduce the renewal process (ζx)x≥1 with increments (εx)x≥1, that is

ζx = inf{y ≥ 1 ; σy ≥ x}.

The usual central limit theorem for renewal processes states that (ζx −mx)/
√
x con-

verges in distribution to a centered Gaussian variable whose variance is the variance
u(1 − u) of every εx divided by the cube of the mean 1 + u of every εx, that is
u(1− u)/(1 + u)3 = σ2

u.
Our next lemma expresses the distribution of ηx for every positive x in terms of the

distributions of the random variables (ζz)1≤z≤x+1.

Lemma 7. For every positive x and y,

P(ηx = y) =
1 + u

1− (−u)x+1

x−1∑
z=0

(−u)zP(ζx+1−z = y + 1).

Proof of lemma 7. Let x and y denote positive integers. We begin with the fact
that

{ζx+1 = y + 1} = {σy = x} ∪ {σy = x− 1, εy+1 = 2},

hence
P(σy = x) = P(ζx+1 = y + 1)− uP(σy = x− 1).

Iterating this recursion, one gets

P(Hx) P(ηx = y) = P(σy = x) =
x−1∑
z=0

(−u)z P(ζx+1−z = y + 1).

Summing over every positive value of y and using the facts that P(ζz = 1) = 0 if z ≥ 3
and that P(ζ2 = 1) = u, one gets

P(Hx) = (−u)x−1(1− u) +
x−2∑
z=0

(−u)z =
1− (−u)x+1

1 + u
.

This concludes the proof.

Lemma 7 above, the fact that |u| < 1 and the convergence of the distribution of
(ζx −mx)/

√
x, imply the same convergence for the distribution of (ηx −mx)/

√
x.

Finally, (ξx−mx)/
√
x, (ζx−mx)/

√
x and (ηx−mx)/

√
x all converge in distribution

to the same limit, which is the centered Gaussian distribution with variance σ2
u.

5.2. Sharp bounds

Lemma 8. For every positive x,

E(ηx) =
x+ 1
1 + u

1 + (−u)x+2

1− (−u)x+1
− 1 + u2

(1 + u)2
.
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For instance,
E(η1) = 1, E(η2) = 2− u

1− u(1− u)
.

For every positive integer x, one can deduce from the exact formula above that

x

1 + u
− 2u2

(1 + u)2
≤ E(ηx) ≤ x

1 + u
+

2u
(1 + u)2

.

The width of the interval delimited by the upper and the lower bounds of E(ηx) above
is 2u/(1 + u) ≤ 1.

Bounds on E(ηx), depending on the parity of x, are as follows. For every odd x,

E(ηx) ≥ x/(1 + u),

and for every even x,

E(ηx) ≤ x/(1 + u) + u(1− u)/(1 + u) ≤ (x+ 1/4)/(1 + u).

These refined bounds yield intervals around E(ηx), which depend on the parity of x,
and whose width is always at most 2u/(1 + u)2 ≤ 1/2.

Proof of lemma 8. Fix a positive integer x, a real number u in ]0, 1[, and let r = %(u).
Let pyx = P(σy = x). Then ηx(P) is proportional to the measure

∑
y

pyx δy and, for every

positive y,
2y∑
x=y

pyx t
x =

(
(1− u) t+ u t2

)y
.

Hence the distribution of ηx is µη(r, x), where µη(r, x) = νη(r, x)/|νη(r, x)| and

νη(r, x) =
x∑

y=h(x)

(
y

x− y

)
4yry δy.

When u = 0, r = ∞ and µη(∞, x) is the Dirac distribution at x. When u = 1, r = 0
and µη(0, x) is the Dirac distribution at h(x). For the first values of x, the distributions
µη(r, x) are as follows: µη(r, 1) = δ1,

µη(r, 2) =
δ1 + 4rδ2

1 + 4r
, µη(r, 3) =

2δ2 + 4rδ3
2 + 4r

, µη(r, 4) =
δ2 + 12rδ3 + 16r2δ4

1 + 12r + 16r2
.

This implies that, for every positive x,

E(ηx) = r g′x(r)/gx(r), gx(r) =
x∑

y=h(x)

(
y

x− y

)
4yry.

To study the generating functions gx, we introduce g0(r) = 1 and

G(r, z) =
∑
x≥0

gx(r) zx.
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Summing first over y ≤ x ≤ 2y, then over y ≥ 0, one gets

G(r, z) =
∑
y≥0

(4rz)y (1 + z)y = 1/(1− 4rz(1 + z)) = C1(r, z).

From the proof of lemma 4, one knows that the poles of C1(r, z) are z = γ(r) and
z = −γ2(r) with γ2(r) = γ(r) + 1, hence,

G(r, z) =
1

γ(r) + γ2(r)

(
γ2(r)

1− z/γ(r)
+

γ(r)
1 + z/γ2(r)

)
.

This shows that, for every nonnegative x,

gx(r) =
γ(r)γ2(r)
γ(r) + γ2(r)

(
γ(r)−(x+1) − (−γ2(r))−(x+1)

)
.

From here, the expression of γ(r) as a function of r and tedious computations of
derivatives yield the result.

5.3. Comparison with a näıve estimator

For a given value u in ]0, 1[ and for a branching process X0:∞ with offspring distri-
bution (1− u)δ1 + uδ2, when n converges to infinity,

Sn ∼ Xn(1 + 1/(1 + u) + 1/(1 + u)2 + · · · ) = Xn(1 + 1/u) almost surely,

hence B(X0:∞) = u almost surely. The näıve pointwise prediction of the mean initial
population conditional on X1 = x, namely Nu(x) = x/(1 + u), should be compared to
the Bayesian prediction Eu(ξx) for r = %(u). For x = 2, one gets

Eu(ξ2)
Nu(2)

=
(4u+ 6(1− u)2) (1 + u)

2(4u+ 3(1− u)2)
.

This ratio is 1 when u = 0 or u = 1, greater than 1 for every u in ]0, 1
3 [, and smaller

than 1 for every u in ] 1
3 , 1[. Hence the näıve and Bayesian predictions cannot be easily

compared, at least on X1 = x for a given finite x.
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