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1. Introduction

Let X be a projective n-dimensional manifold. A conjecture due to Griffiths [Gri69]
stipulates that a holomorphic vector bundle E → X is ample in the sense of Hartshorne,
meaning that the associated line bundle OP(E)(1) is ample, if and only if E possesses a
Hermitian metric h such that the Chern curvature tensor ΘE,h = i∇2

E,h is Griffiths positive.
In other words, if we let rankE = r and

(1.1) ΘE,h = i
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ

in terms of holomorphic coordinates (z1, . . . , zn) on X and of an orthonormal frame (eλ)1≤λ≤r
of E, the associated quadratic form

(1.2) Θ̃E,h(ξ ⊗ v) := 〈ΘE,h(ξ, ξ) · v, v〉h =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµξjξkvλvµ

should take positive values on non zero tensors ξ⊗v ∈ TX⊗E. A stronger concept is Nakano
positivity (see [Nak55]), asserting that

(1.3) Θ̃E,h(τ) :=
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµτjλτkµ > 0
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for all non zero tensors τ =
∑
j,λ τjλ

∂
∂zj
⊗ eλ ∈ TX ⊗ E. It is in fact interesting to consider

also the curvature tensor of the dual bundle E∗, which happens to be given by the opposite
of the transpose of ΘE,h, that is,

(1.4) ΘE∗,h∗ = −TΘE,h = −
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkµλdzj ∧ dzk ⊗ (e∗λ)∗ ⊗ e∗µ.

This leads to the concept of dual Nakano positivity, stipulating that

(1.5) −Θ̃E∗,h∗(τ) =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkµλτjλτkµ > 0

for all non zero tensors τ =
∑
j,λ τjλ

∂
∂zj
⊗ e∗λ ∈ TX ⊗ E∗. On the other hand, Griffiths

positivity of ΘE,h is equivalent to Griffiths negativity of ΘE∗,h∗ , and implies the positivity
of the induced metric on the tautological line bundle OP(E)(1). By the Kodaira embedding
theorem [Kod54], the positivity of OP(E)(1) is equivalent to its ampleness, hence we see
immediately from the definitions that

(1.6) Θ̃E,h dual Nakano positive ⇒ Θ̃E,h Griffiths positive ⇒ E ample.

In this short note, we consider the following converse problem:

1.7. Basic question. Does it hold that

E ample ⇒ Θ̃E,h dual Nakano positive ?

A positive answer would clearly settle the Griffiths conjecture, in an even stronger form. We
observe that Nakano positivity implies Griffiths positivity, but in general is a more restrictive
condition. As a consequence, we cannot expect ampleness to imply Nakano positivity. For
instance, TPn is easily shown to be ample (and Nakano semi-positive for the Fubini-Study
metric), but it is not Nakano positive, as the Nakano vanishing theorem [Nak55] would then
yield

(1.8) Hn−1,n−1(Pn,C) = Hn−1(Pn,Ωn−1Pn ) = Hn−1(Pn,KPn ⊗ TPn) = 0.

On the other hand, it does not seem that there are any examples of ample vector bundles
that are not dual Nakano positive, thus the above basic question is still legitimate, even
though it might look very optimistic. We should mention here that subtle relations between
ampleness, Griffiths and Nakano positivity are known to hold – for instance, B. Berndtsson
[Ber09] has proved that the ampleness of E implies the Nakano positivity of SmE ⊗ detE
for every m ∈ N. See also [DeS79] for an earlier direct and elementary proof of the much
weaker result that the Griffiths positivity of E implies the Nakano positivity of E ⊗ detE,
and [MoT07] for further results analogous to those of [Ber09].

So far, Griffiths’ conjecture is known to hold when n = dimX = 1 or r = rankE = 1 (in
which cases, Nakano and dual Nakano positivity coincide with Griffiths positivity). Proofs
can be found in [Ume73, Theorem 2.6] and [CaF90]. In both cases, the proof is based on the
existence of Harder-Narasimhan filtrations and on the Narasimhan-Seshadri theorem [NaS65]
for stable vector bundles – the 1-dimensional case of the Donaldson-Uhlenbeck-Yau theorem
[Don85], [UhY86]. It is tempting to investigate whether gauge theory techniques could be
used to approach the Griffiths conjecture. In this direction, Naumann [Nau17] proposed a
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Kähler-Ricci flow method that starts with a given Finsler metric of positive curvature, and
converges to a Hermitian metric. It is however unclear whether the flow introduced in [Nau17]
preserves positivity, so it might very well produce in the limit a Hermitian metric that does
not have positive curvature. Another related suggestion is V. Pingali’s proposal made in
[Pin20] to study the vector bundle Monge-Ampère equation (ΘE,h)n = η IdE , where η is a
positive volume form on X. Solving such an equation requires polystability in dimension
n = 1, and, in general, a positivity property of (E, h) that is even stronger than Nakano
positivity (and thus much stronger than ampleness).

In section 2, we describe a more flexible differential system based on a combination of a
huge determinantal equation and a trace free Hermite-Einstein condition. It relies on the well
known continuity method, and is designed to enforce positivity of the curvature, actually in
the dual Nakano sense – a condition that could eventually still be equivalent to ampleness.
We show that it is possible to design a nonlinear differential system that is elliptic and
invertible, at least near the origin of time. It would, however, remain to check whether we
can obtain long time existence of the solution for the said equation or one of its variants.
Section 3 is devoted to the discussion of a related extremal problem, and a concept of volume
for vector bundles.

2. Approach via a combination of Monge-Ampère and

Hermitian-Yang-Mills equations

Let E → X be a holomorphic vector bundle equipped with a smooth Hermitian metric h.
If the Chern curvature tensor ΘE,h is dual Nakano positive, then the 1

r -power of the (n× r)-
dimensional determinant of the corresponding Hermitian quadratic form on TX ⊗E∗ can be
seen as a positive (n, n)-form

(2.1) detTX⊗E∗( TΘE,h)1/r := det(cjkµλ)
1/r
(j,λ),(k,µ) idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

Moreover, this (n, n)-form does not depend on the choice of coordinates (zj) on X, nor on
the choice of the orthonormal frame (eλ) on E (but (eλ) must be orthornormal). Conversely,
given a Kähler metric ω0 on X, the basic idea is that assigning a “matrix Monge-Ampère
equation”

(2.2) detTX⊗E∗( TΘE,h)1/r = f ωn0 ,

where f is a smooth positive function, may enforce the dual Nakano positivity of ΘE,h if
that assignment is combined with a continuity technique from an initial starting point where
positivity is known. For r = 1, we have TΘE,h = ΘE,h = −i∂∂ log h, and equation (2.2)
is a standard Monge-Ampère equation. If f is given and independent of h, Yau’s theorem
[Yau78] guarantees the existence of a unique solution θ = ΘE,h > 0, provided E is an ample
line bundle and

∫
X
f ωn0 = c1(E)n. We then get a smoothly varying solution θt = ΘE,ht

> 0
when the right hand side ft of (2.2) varies smoothly with respect to some parameter t.

Now, assuming E to be ample of rank r > 1, equation (2.2) becomes underdetermined,
since the real rank of the space of hermitian matrices h on E is equal to r2, while (2.2)
provides only one scalar equation. If E =

⊕
1≤j≤r Ej splits as a direct sum of ample line

bundles and we take a diagonal Hermitian structure h =
⊕
hj on E, the nr×nr determinant

splits as a product of blocks, and equation (2.2) reduces to

(2.2s)

( ∏
1≤j≤r

Θn
Ej ,hj

)1/r

= f ωn0 .
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This “split equation” can be solved for any f =
∏
f
1/r
j with

∫
X
fj ω

n
0 = c1(Ej)

n, just by
solving the individual equations Θn

Ej ,hj
= fj ω

n
0 , fj > 0, but the decomposition need not

be unique. In this case, the Hölder inequality requires
∫
X
fωn0 ≤ (

∏
c1(Ej)

n)1/r, and the
equality can be reached by taking all fj ’s to be proportional to f .

In general, solutions might still exist, but the lack of uniqueness prevents us from getting a
priori bounds. In order to recover a well determined system of equations, we need to introduce
(r2− 1) additional scalar equations, or rather a matrix equation of real rank (r2− 1). If E is
ample, the determinant line bundle detE is also ample. By the Kodaira embedding theorem,
we can find a smooth Hermitian metric η0 on detE so that ω0 := ΘdetE,η0 > 0 is a Kähler
metric on X. In case E is ω0-stable or ω0-polystable, we know by the Donaldson-Uhlenbeck-
Yau theorem that there exists a Hermitian metric h on E satisfying the Hermite-Einstein
condition

(2.3) ωn−10 ∧ΘE,h =
1

r
ωn0 ⊗ IdE ,

since the slope of E with respect to ω0 ∈ c1(E) is equal to 1
r .

In general, one cannot expect E to be ω0-polystable, but Uhlenbeck and Yau have shown
that there always exist smooth solutions to a certain “cushioned” Hermite-Einstein equation.
To make things more precise, let Herm(E) be the space of Hermitian (not necessarily positive)
forms on E, and given a Hermitian metric h > 0, let Hermh(E,E) be the space of h-Hermitian
endomorphisms u ∈ Hom(E,E); we let

(2.4) Herm(E)→ Hermh(E,E), q 7→ q̃ such that q(v, w) = 〈v, w〉q = 〈 q̃ (v), w〉h

denote the natural isomorphism between Hermitian quadratic forms and Hermitian endo-
morphisms, which depends of course on h. We also let

(2.5) Herm◦h(E,E) =
{
u ∈ Hermh(E,E) ; tru = 0

}
be the subspace of “trace free” Hermitian endomorphisms. In the sequel, we fix a reference
Hermitian metric H0 on E such that detH0 = η0, so that ΘdetE,detH0 = ω0 > 0. By [UhY86,
Theorem 3.1], for every ε > 0, there exists a smooth Hermitian metric qε on E such that

(2.6) ωn−10 ∧ΘE,qε = ωn0 ⊗
(

1

r
IdE − ε log q̃ε

)
,

where q̃ε is computed with respect to H0, and log u denotes the logarithm of a positive
Hermitian endomorphism u. The intuitive reason is that the term log q̃ε introduces sufficient
“friction” to avoid any explosion of approximating solutions when using a standard continuity
method (see sections 2,3 in [UhY86]). On the other hand, when ε→ 0, the metrics qε become
“more and more distorted” and, asymptotically, yield a splitting of E into weakly holomorphic
subbundles corresponding to the Harder-Narasimhan filtration of E with respect to ω0. If we
write det qε = e−ϕ detH0 and take the trace in (2.6), we find ωn−10 ∧(ω0+i∂∂ϕ) = ωn0 (1+εϕ),
hence ωn−10 ∧ i∂∂ϕ − εϕωn0 = 0. A standard application of the maximum principle shows
that ϕ = 0, thus (2.6) implies det qε = detH0 and log q̃ε ∈ Herm◦H0

(E,E). In general, for an
arbitrary Hermitian metric h, we let

(2.7) Θ◦E,h = ΘE,h −
1

r
ΘdetE,deth ⊗ IdE ∈ C∞(X,Λ1,1

R T ∗X ⊗Herm◦h(E,E))
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be the curvature tensor of E ⊗ (detE)−1/r with respect to the trivial determinant metric
h◦ := h⊗ (deth)−1/r. Equation (2.6) is equivalent to prescribing det qε = detH0 and

(2.8) ωn−10 ∧Θ◦E,qε = −ε ωn0 ⊗ log q̃ε.

This is a matrix equation of rank (r2 − 1) that involves only q◦ε and does not depend on
det qε. Notice that here we have log q̃ε ∈ Herm◦H0

(E,E), but also log q̃ε ∈ Herm◦qε(E,E).

In this context, given α > 0 large enough, it seems natural to search for a time dependent
family of metrics ht(z) on the fibers Ez of E, t ∈ [0, 1], satisfying a generalized Monge-Ampère
equation

(2.9) detTX⊗E∗
(
TΘE,ht

+ (1− t)αω0 ⊗ IdE∗
)1/r

= ft ω
n
0 , ft > 0,

and trace free Hermite-Einstein conditions

(2.9◦) ωn−1t ∧Θ◦E,ht
= gt,

with smoothly varying families of functions ft ∈ C∞(X,R), Hermitian metrics ωt > 0 on X
and sections gt ∈ C∞(X,Λn,nR T ∗X ⊗ Herm◦ht

(E,E)), t ∈ [0, 1]. Here, we start, for example,
with the Yau-Uhlenbeck solution h0 = qε of (2.6) (so that deth0 = detH0), and take α > 0
so large that TΘE,h0 + αω0 ⊗ IdE∗ > 0 in the sense of Nakano. If these conditions can be
met for all t ∈ [0, 1] without any explosion of the solutions ht, we infer from (2.9) that

(2.9+) TΘE,ht
+ (1− t)αω0 ⊗ IdE∗ > 0 in the sense of Nakano

for all t ∈ [0, 1]. At time t = 1, we then get a Hermitian metric h1 on E such that ΘE,h1
is

dual Nakano positive. We still have the freedom of adjusting ft, ωt and gt in equations (2.9)
and (2.9◦). We have a system of differential equations of order 2, and any choice of the right
hand sides of the form

ft(z) = F (t, z, ht(z), Dzht(z), D
2
zht(z)) > 0,(2.10)

gt(z) = G(t, z, ht(z), Dzht(z), D
2
zht(z)) ∈ C∞(X,Λ1,1

R T ∗X ⊗Herm◦(E,E))(2.10◦)

is a priori acceptable for the sake of enforcing the positivity condition (2.9+), although the
presence of second order terms D2

zht(z)) might affect the principal symbol of the equations.
In equation (2.9◦), the metrics ωt could possibly be taken to depend on t, but unless some
cogent reason appears in the next stages of the analysis, it seems simpler to set ωt = ω0

independent of t. At this stage, we have the following

2.11. Theorem. Let (E,H0) be a smooth Hermitian holomorphic vector bundle such that
E is ample and ωt = ω0 = ΘdetE,detH0

> 0. Then the system of equations (2.9, 2.9◦) is a
well determined (essentially nonlinear) elliptic system of equations for all choices of smooth
right hand sides

ft = F (t, z, ht, Dzht) > 0, gt = G(t, z, ht, Dzht, D
2
zht) ∈ Herm◦(E,E),

provided that, for any of the metrics h = ht involved, the symbol ηh of the linearized operator
u 7→ DGD2h(t, z, h,Dh,D2h) ·D2u has an Hilbert-Schmidt norm supξ∈T∗

X
,|ξ|ω0

=1 ‖ηh(ξ)‖h ≤
(r2 + 1)−1/2 n−1. If a smooth solution ht exists on the whole time interval [0, 1], then E is
dual Nakano positive.
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Proof. If we write a hermitian metric h on E under the form h(v, w) = 〈 h̃(v), w〉H0 with

h̃ ∈ Hermh0(E,E), we have h = H0h̃ in terms of matrices. The curvature tensor is given by

the usual formula ΘE,h = i∂(h−1∂h) = i∂(h̃−1∂H0
h̃), where ∂H0

s = H−10 ∂(H0s) is the (1, 0)-
component of the Chern connection associated with H0 on E. For simplicity of notation,
we put

M := Herm(E), Mh = Hermh(E,E), and M◦h = Herm◦h(E,E).

The system of equations (2.9, 2.9◦) is associated with the nonlinear differential operator

P : C∞(X,M)→ C∞(X,R⊕M◦h), h 7→ P (h)

defined by

P (h) = ω−n0

(
detTX⊗E∗

(
TΘE,h+(1−t)αω0⊗IdE∗

)1/r
, ωn−10 ∧ΘE◦,h−G(t, z, h,Dh,D2h)

)
.

By definition, it is elliptic at h if its linearization u 7→ (dP )h(u) is an elliptic linear operator,
a crucial fact being that M and R⊕M◦h have the same rank r2 over the field R. Our goal is
to compute the symbol σdP ∈ C∞(X,S2TR

X ⊗ Hom(M,R ⊕M◦h)) of dP , and to check that
u 7→ σdP (ξ) · u is invertible for every non zero vector ξ ∈ T ∗X . We pick an infinitesimal varia-
tion δh of h in C∞(X,M), and represent it as δh = 〈u •, •〉h with u ∈ Mh = Hermh(E,E).
In terms of matrices, we have δh = hu, that is, u = (uλµ) = h−1δh is the “logarithmic
variation of h”. In this setting, we evaluate (dP )h(u) in orthonormal coordinates (zj)1≤j≤n
on X relative to ω0. We have h + δh = h(Id + u) and (h + δh)−1 = (Id − u)h−1 modulo
O(u2), thus

dΘE,h(u) = i∂(h−1∂(hu))− i∂(uh−1∂h) = i∂∂u+ i∂(h−1∂hu)− i∂(uh−1∂h)

= i∂∂h∗⊗hu = −i∂h∗⊗h∂u,(2.12)

where, here, ∂h∗⊗h denotes the (1, 0)-component of the Chern connection on the holomorphic
vector bundle Hom(E,E) = E∗ ⊗ E induced by the metric h∗ ⊗ h. As a consequence, the
order 2 term of the linearized operator is just

dΘE,h(u)[2] = −i∂∂u,

and the logarithmic differential of the first scalar component PR(h) of P (h) has order 2 terms
given by

(2.13) PR(h)−1 dPR,h(u)[2] =
1

r
tr(−θ−1 · T i∂∂u) = −1

r
(det θ)−1

∑
j,k,λ,µ

θ̃jkλµ
∂2uλµ
∂zj∂zk

,

where θ is the (n×r)-matrix of θ = θ(t, h) = TΘE,h+(1− t)αω0⊗ IdE∗ > 0, θ̃ its co-adjoint

and θ−1 = (det θ)−1 T θ̃, so that PR(h) = ω−n0 (det θ)1/r. We also have to compute the order 2
terms in the differential of the second component

h 7→ P ◦(h) = ω−n0

(
ωn−10 ∧Θ◦E,h −G(t, z, h,Dh,D2h)

)
.

We set u = 1
r tru ⊗ IdE + u◦, u◦ ∈ M◦, and tru =

∑
λ uλλ ∈ R. Putting τ = 1

r tru, this
actually gives an isomorphism Mh → R ⊕ M◦h , u 7→ (τ, u◦). Since u◦ is the logarithmic
variation of h◦ = h(deth)−1/r, we get

(2.14) (dP ◦)h(u)[2] = ω−n0

(
− ωn−10 ∧ i∂∂u◦ −DGD2h ·D2u

)
.
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If we fix a Hermitian metric h and take a non zero cotangent vector 0 6= ξ ∈ T ∗X , then the
symbol σdP is given by an expression of the form

(2.15) σ(dP )h(ξ) · u = −

(
(det θ)−1+1/r

r ωn0

∑
j,k,λ,µ

θ̃jkλ mu ξjξk uλµ ,
1

n
|ξ|2u◦ + σ̃G(ξ) · u

)

where σ̃G is the principal symbol of the operator DGD2h · D2. If gt = G(t, z, ht, Dht) is
independent of D2ht, the latter symbol σ̃G is equal to 0 and it is easy to see from (2.13)
that u 7→ σ(dP )h(ξ) · u is an isomorphism in Hom(Mh,R⊕M◦h). In fact, the first summation
yields ∑

j,k,λ,µ

θ̃jkλµ ξjξk uλµ =
∑
j,k,λ,µ

θ̃jkλµ ξjξk u
◦
λµ +

1

r

∑
j,k,λ

θ̃jkλλ ξjξk tru.

By an easy calculation, we get an inverse operator R⊕M◦h →Mh, (τ, v) 7→ u, where

−r ωn0 (det θ)1−1/r τ =
∑
j,k,λ,µ

θ̃jkλµ ξjξk u
◦
λµ +

1

r

∑
j,k,λ

θ̃jkλλ ξjξk tru, −v =
1

n
|ξ|2u◦,

hence u◦ = − n
|ξ|2 v and

σ(dP )h(ξ)−1 · (τ, v) =

n
|ξ|2
∑
j,k,λ,µ θ̃jkλµ ξjξk vλµ − r ωn0 (det θ)1−1/r τ∑

j,k,λ θ̃jkλλξjξk
IdE −

n

|ξ|2
v.

Now take the Hilbert-Schmidt norms |u|2 =
∑
λ,µ |uλµ|2 on Mh = Hermh(E,E), and

c|τ |2 + |v|2 on R⊕M◦h (h being the reference metric, and C > 0 a constant). By homogeneity,

we can also assume |ξ| = |ξ|ω0
= 1. Since (

∑
j,k θ̃jkλµ ξjξk)1≤λ,µ≤r is a positive Hermitian

matrix by the Nakano positivity property, its trace is a strict upper bound for the largest
eigenvalue, and we get∣∣∣∣∣ ∑

j,k,λ

θ̃jkλµ ξjξk vλµ

∣∣∣∣∣
2

≤ (1− δ)

(∑
j,k,λ

θ̃jkλλξjξk

)2 ∑
λ

|vλµ|2.

The Cauchy-Schwarz inequality yields∣∣∣∣∣ ∑
j,k,λ,µ

θ̃jkλµ ξjξk vλµ

∣∣∣∣∣
2

≤ r(1− δ)

(∑
j,k,λ

θ̃jkλλξjξk

)2 ∑
λ,µ

|vλµ|2.

As IdE ⊥M◦ and |IdE |2 = r, for |ξ| = 1 this implies

∣∣σ(dP )h(ξ)−1 · (τ, v)
∣∣2 ≤ (nr1/2(1− δ)1/2|v|+ r ωn0 (det θ)1−1/r∑

j,k,λ θ̃jkλλξjξk
|τ |

)2

r + n2 |v|2

< (n2r2 + n2)(C|τ |2 + |v|2)

for C large enough. By a standard pertubation argument, (2.13) remains bijective if |σ̃G(ξ)|h
is less than the inverse of the norm of σ(dP )h(ξ)−1, that is, (r2 + 1)−1/2 n−1. Similarly, we
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could also allow the scalar right hand side F to have a “small dependence” on D2ht, but this
seems less useful.

Our next concern is to ensure that the existence of solutions holds on an open interval
of time [0, t0[ (and hopefully on the whole interval [0, 1]). In the case of a rank one metric
h = e−ϕ, it is well-known that the Kähler-Einstein equation (ω0 + i∂∂ϕt)

n = etf+λϕtωn0
lets us obtain results on openness and closedness of solutions more easily when applying the
continuity method for λ > 0, as the linearized operator ψ 7→ ∆ωϕt

ψ−λψ is always invertible.
One way to generalize the Kähler-Einstein condition to the case of higher ranks r ≥ 1 is to
take

(2.16) ft(z) = (detH0(z)/ detht(z))
λ a0(z), λ ≥ 0,

where a0(z) = ω−n0 det(TΘE,h0 +αω0⊗IdE∗)1/r > 0 is chosen so that the equation is satisfied
by h0 at t = 0 (the choice λ > 0 has the advantage that ft gets automatically rescaled by
multiplying ht by a constant, thus ensuring strict invertibility). For the trace free part, what
is needed is to introduce a friction term gt that again helps in getting invertibility of the
linearized operator, and could possibly avoid an explosion of solutions when t increases to 1.
A choice compatible with the Yau-Uhlenbeck solution (2.8) at t = 0 is to take

(2.16◦) gt = −ε (detH0(z)/detht(z))
µ ωn0 ⊗ log h̃◦t , ε > 0, µ ∈ R,

if one remembers that deth0 = detH0. These right hand sides do not depend on higher
derivatives of ht, so Theorem 2.11 ensures the ellipticity of the differential system. Moreover,

2.17. Theorem. For ε ≥ ε0(ht) and λ ≥ λ0(ht)(1 + µ2) with ε0(ht) and λ0(ht) large
enough, the elliptic differential system defined by (2.9, 2.9◦) and (2.16, 2.16◦), namely

ω−n0 detTX⊗E∗
(
TΘE,ht

+ (1− t)αω0 ⊗ IdE∗
)1/r

=

(
detH0(z)

detht(z)

)λ
a0(z)

ω−n0

(
ωn−10 ∧Θ◦E,ht

)
= −ε

(
detH0(z)

detht(z)

)µ
log h̃◦t ,

possesses an invertible elliptic linearization. As a consequence, for such values of ε and λ,
there exists an open interval [0, t0) ⊂ [0, 1] on which the solution ht exists.

Proof. We replace the operator P : C∞(X,M) → C∞(X,R ⊕ M◦h) used in the proof of
Theorem 2.9 by P̃ = (P̃R, P̃

◦) defined by

P̃R(h) = ω−n0 (deth(z)/ detH0(z))λ detTX⊗E∗
(
TΘE,h + (1− t)αω0 ⊗ IdE∗

)1/r
,

P̃ ◦(h) = ω−n0

(
ωn−10 ∧Θ◦E,h

)
+ ε (deth(z)/detH0(z))−µ log h̃◦.

Here, we have to keep an eye on the linearized operator dP itself, and not just its principal
symbol. We again let u = h−1δh ∈ Hermh(E,E) and use formula (2.12) for dΘE,h(u). This
implies that

P̃R(h)−1 dP̃R,h(u) = λ tru− 1

r
trTX⊗E∗

(
θ−1 · T

(
i∂h∗⊗h∂u

))
.
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We need the fact that, when viewed as a Hermitian endomorphism, h◦ = h · (deth)−1/r

possesses a logarithmic variation

(h̃◦)−1δh̃◦ = u◦ = u− 1

r
tru · IdE .

By the classical formula expressing the differential of the logarithm of a matrix, we have

d log g(δg) =

∫ 1

0

(
(1− t)Id + tg

)−1
δg
(
(1− t)Id + tg

)−1
dt,

which implies that

d log h̃◦(u) =

∫ 1

0

(
(1− t)Id + t h̃◦

)−1
h̃◦u◦

(
(1− t)Id + t h̃◦

)−1
dt.

In the end, we obtain

(dP̃ ◦)h(u) = −ω−n0

(
ωn−10 ∧ i∂h∗⊗h∂u

◦
)

+

ε

(
deth(z)

detH0(z)

)−µ(∫ 1

0

(
(1− t)Id + t h̃◦

)−1
h̃◦u◦

(
(1− t)Id + t h̃◦

)−1
dt− µ tru log h̃◦

)
.

In order to check the invertibility, we use the norm |τ |2 + C|v|2 on R ⊕M◦h and compute

the L2 inner product 〈〈(dP̃ )h(u), (τ, u◦)〉〉 over X, where τ = 1
r tru. The ellipticity of the

operator −i∂H∂ implies that it has a discrete sequence of eigenvalues converging to +∞,
and that we get G̊arding type inequalities of the form 〈〈−i∂H∂v, v〉〉H ≥ c1‖∇v‖2H − c2‖v‖2H
where c1, c2 > 0 depend on H. We apply such inequalities to v = τ , H = 1, and v = u◦,
H = h∗ ⊗ h, replacing u with u = τ Id + u◦. From this we infer that

〈〈(dP̃ )h(u), (τ, u◦)〉〉 ≥ c1‖dτ‖2 − c2‖τ‖2 + λr ‖τ‖2 − 1

r
〈〈trTX⊗E∗

(
θ−1 · T

(
i∂h∗⊗h∂u

◦)), τ〉〉
+ C

(
c◦1 ‖∇u◦‖2 − c◦2‖u◦‖2 + c3ε ‖u◦‖2 − c4ε |µ| ‖τ‖ ‖u◦‖

)
where all constants cj may possibly depend on h. Integrating by parts yields∣∣∣1

r
〈〈trTX⊗E∗

(
θ−1 · T

(
i∂h∗⊗h∂u

◦)), τ〉〉∣∣∣ ≤ c5‖∇u◦‖ (‖dτ‖+ ‖τ‖)

≤ 1

2
c1
(
‖dτ‖2 + ‖τ‖2

)
+ c6‖∇u◦‖2

and we have

c4ε |µ| ‖τ‖ ‖u◦‖ ≤
1

2
c3ε ‖u◦‖2 + c7εµ

2 ‖τ‖2.

If we choose ε ≥ 2c◦2/c3 + 1, C ≥ c6/c◦1 + 1 and λr ≥ c2 + 1
2c1 + Cc7εµ

2 + 1, we finally get

〈〈(dP̃ )h(u), (τ, u◦)〉〉 ≥ 1

2
c1‖dτ‖2 + ‖τ‖2 + c◦1‖∇u◦‖2 +

1

2
Cc3ε‖u◦‖2

and conclude that (dP̃ )h is an invertible elliptic operator. The openness property at t = 0
then follows from standard results on elliptic PDEs. The theorem is proved.
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2.18. Remarks. (a) Theorem 2.17 is not very satisfactory since the constants ε0(ht) and
λ0(ht) depend on the solution ht. The ability to obtain sufficiently uniform estimates, so
as to make these constants independent of ht, could prove important, as it would guarantee
the long time existence of solutions. This might require us to modify the right hand side of
our equations somewhat, especially the trace free part, while taking a similar determinantal
Monge-Ampère equation that still enforces the dual Nakano positivity of the curvature tensor.
The Yau iteration technique used in [Yau78] to get 0 order estimates for Monge-Ampère
equations will probably have to be adapted to this situation.

(b) The non explosion of solutions when t → 1 does not come for free, since this property
cannot hold when detE is ample, but E is not. One possibility would be to show that an
explosion at time t0 < 1 produces a “destabilizing subsheaf” S contradicting the ampleness
of E/S, similarly to what was done in [UhY86] to contradict the stability hypothesis.

2.19. Variants. (a) The determinantal equation always yields a Kähler metric

βt := trE
(
ΘE,ht

+ (1− t)αω0 ⊗ IdE
)

= ΘdetE,detht
+ r(1− t)αω0 > 0.

An interesting variant of the trace free equation is

(∗) ω−n0

(
ωn−1t ∧Θ◦E,ht

)
= −ε

(
detH0(z)

detht(z)

)µ
log h̃◦t

with ωt = 1
rα+1βt (notice that β0 = (rα + 1)ω0). It is then important to know whether the

corresponding differential system is still elliptic with an invertible linearization. According
to equation (∗), the Herm(E,E)◦ part of the differential system depends on the functional

P̃ ◦(h) = ω−n0

(
ωn−1t ∧Θ◦E,h

)
+ ε (deth(z)/ detH0(z))−µ log h̃◦,

and, relative to the functional used in Theorem 2.17, the differential dP̃ ◦h (u) acquires one
additional term coming from the variation of ωn−1t . With the same notation as in our previous
calculations, we have ΘdetE,detht = −i∂∂ log det(ht) and δ(βt)h(u) = −i∂∂ tru, hence

(dP̃ ◦)h(u) = −ω−n0

(
ωn−1t ∧ i∂h∗⊗h∂u

◦ + n−1
rα+1 ω

n−2
t ∧ i∂∂ tru ∧Θ◦E,h

)
+

ε

(
deth(z)

detH0(z)

)−µ(∫ 1

0

(
(1− t)Id + t h̃◦

)−1
h̃◦u◦

(
(1− t)Id + t h̃◦

)−1
dt− µ tru log h̃◦

)
.

Again putting τ = tru, this requires us to estimate one extra term appearing in the L2 inner
product 〈〈(dP̃ )h(u), (τ, u◦)〉〉, namely

〈〈(ωn0 )−1ωn−2t ∧ i∂∂τ ∧Θ◦E,h , u
◦〉〉.

We can apply the same integration by parts argument as before to conclude that (dP̃ )h is
again invertible, under a similar hypothesis λ ≥ λ0(ht)(1 + µ2), at least for t small. A very
recent note posted by Pingali [Pin21] shows that when E is ω0-stable and h0 is taken to be
the Hermite-Einstein metric, the trace free part of the differential system used in Theorem
2.17 has a solution of the form ht = h0e

−ψt , thus always “conformal” to h0. There are cases
where the dual Nakano positivity of h0 is doubtful. As a consequence, even in that favorable
case, it is unclear whether a long time existence result can hold for the total system, unless
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stronger restrictions on the Chern classes are made. Equation (∗) does not seem to entail
such contraints, and may thus be better suited to the problem under investigation.

(b) In its first step towards solving (2.6), [UhY86] considers equations that have even stronger
friction terms, taking the right hand side to be of the form

ωn−10 ∧ΘE,h = ωn0 ⊗
(
− ε log h̃+ σ h̃−1/2 Γ0 h̃

1/2 − Γ0), σ > 0,

and letting σ → 0 at the end of the analysis. Here we can do just the same, for instance by
adding a term equal to a multiple of (h̃◦t )

−1/2 Γt (h̃◦t )
1/2 − Γt in the trace free equation, as

such terms are precisely trace free for any Γt ∈ C∞(X,Hom(E,E)).

3. A concept of Monge-Ampère volume for vector bundles

If E → X is an ample vector bundle of rank r, the associated line bundle

OP(E)(1)→ Y = P(E)

is ample, and one can consider its volume c1(OP(E)(1))n+r−1. It is well known that this num-
ber (which is an integer) coincides with the Segre number

∫
X

(−1)nsn(E), where (−1)nsn(E)
is the n-th Segre class of E. Let us assume further that E is dual Nakano positive (if the
solution of the Hermitian-Yangs-Mills differential system of §2 is unobstructed, this would
follow from the ampleness of E). One can then introduce the following more involved concept
of volume, which we will call the Monge-Ampère volume of E :

(3.1) MAVol(E) = sup
h

∫
X

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r
,

where the supremum is taken over all smooth metrics h on E such that TΘE,h is Nakano
positive. This supremum is always finite, and in fact we have the following

3.2. Proposition. For any dual Nakano positive vector bundle E,

MAVol(E) ≤ r−nc1(E)n.

Proof. We take h to be a hermitian metric on E such that TΘE,h is Nakano positive, and
consider the Kähler metric

ω = (2π)−1ΘdetE,deth = (2π)−1 trE∗
TΘE,h ∈ c1(E).

If (λj)1≤j≤nr are the eigenvalues of the associated hermitian form (2π)−1T Θ̃E,h with respect
to ω ⊗ h, we have

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r
=

(∏
j

λj

)1/r

ωn

and
(∏

j λj
)1/nr ≤ 1

nr

∑
j λj by the inequality between the geometric and arithmetic means.

Since ∑
j

λj = trω
(

trE∗
(
(2π)−1 TΘE,h

))
= trω ω = n,
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we conclude that∫
X

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r ≤ ∫
X

(
1

nr

∑
j

λj

)n
ωn = r−n

∫
X

ωn = r−nc1(E)n.

The proposition follows.

3.3. Remarks. (a) In case E =
⊕

1≤j≤r Ej and h =
⊕

1≤j≤r hj are split, with all metrics

hj normalized to have proportional volume forms ((2π)−1ΘEj ,hj )n = βjω
n with suitable

constants βj > 0, we get βj = c1(Ej)
n/c1(E)n, and the inequality reads( ∏

1≤j≤r

c1(Ej)
n

)1/r

≤ r−nc1(E)n.

It is an equality when E1 = · · · = Er, thus Proposition 3.2 is optimal as far as the constant
r−n is concerned. For E =

⊕
1≤j≤r Ej split with distinct ample factors, it seems natural to

conjecture that

MAVol(E) =

( ∏
1≤j≤r

c1(Ej)
n

)1/r

,

i.e. that the supremum is reached for split metrics h =
⊕
hj . In case E is a non split extension

0→ A→ E → A→ 0 with A an ample line bundle – this is possible if H1(X,OX) 6= 0, for
example, on an abelian variety – we strongly suspect that MAVol(E) = c1(A)n but that the
supremum is not reached by any smooth metric, as E is semi-stable but not polystable.

(b) It would be interesting to characterize the “extremal metrics” h achieving the supremum
in (3.1) when they exist. The calculations made in §2 show that they satisfy some Euler-
Lagrange equation∫

X

(det θ)1/r · trTX⊗E∗

(
θ−1 · T

(
i∂h∗⊗h∂u

))
= 0 ∀u ∈ C∞(X,Herm(E)),

where θ is the (n× r)-matrix representing TΘE,h. After integrating by parts twice, freeing
u from any differentiation, we get a fourth order nonlinear differential system that h has to
satisfy. Remark 3.3 (a) leads us to suspect that this system is not always solvable, but the
addition of adequate lower order “friction terms” might make it universally solvable. This
could possibly yield a better alternative to the more naive order 2 differential system we
proposed in §2 to study the Griffiths conjecture.

(c) When r > 1, it is natural to ask what is the infimum

inf
h

∫
X

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r
.

In the split case (E, h) =
⊕

(Ej , hj), we can normalize ΘEj ,hj
to satisfy Θn

Ej ,hj
= fjω

n with∫
X
fjω

n = c1(Ej)
n, fj > 0. Then∫

X

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r
=

∫
X

(f1 · · · fr)1/r ωn
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and this integral becomes arbitray small if we take the fj ’s to be large on disjoint open sets,
and very small elsewhere. This example leads us to suspect that it is always the case that

inf
h

∫
X

detTX⊗E∗
(
(2π)−1 TΘE,h

)1/r
= 0

for r > 1. The “friction terms” used in our differential systems should be chosen so as to
prevent any such shrinking of the volume.
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