RECENT RESULTS ON THE KOBAYASHI AND GREEN-GRIFFITHS-LANG CONJECTURES

JEAN-PIERRE DEMAILLY

Abstract

The study of entire holomorphic curves contained in projective algebraic varieties is intimately related to fascinating questions of geometry and number theory - especially through the concepts of curvature and positivity which are central themes in Kodaira's contributions to mathematics. The aim of these lectures is to present recent results concerning the geometric side of the problem. The Green-Griffiths-Lang conjecture stipulates that for every projective variety X of general type over \mathbb{C}, there exists a proper algebraic subvariety Y of X containing all non constant entire curves $f: \mathbb{C} \rightarrow X$. Using the formalism of directed varieties, we show that this assertion holds true in case X satisfies a strong general type condition that is related to a certain jet-semistability property of the tangent bundle T_{X}. It is possible to exploit similar techniques to investigate a famous conjecture of Kobayashi (1970), according to which a generic algebraic hypersurface of dimension n and degree $d \geqslant d_{n}$ large enough in the complex projective space \mathbb{P}^{n+1} is hyperbolic: the conjecture has been settled by Damian Brotbek in 2016, with an explicit value of d_{n} found shortly afterwards by Ya Deng. We give here a short proof based on a simplification of their ideas, along with a substantial improvement of the bound, namely $d_{n}=(n+3) 4^{n+2}$.

Key words: Kobayashi hyperbolic variety, directed manifold, genus of a curve, jet bundle, jet differential, jet metric, Chern connection and curvature, negativity of jet curvature, variety of general type, Green-Griffiths conjecture, Lang conjecture
A.M.S. Classification (1991): 32H20, 32L10, 53C55, 14 J 40

In celebration of the 100th anniversary of K. Kodaira's birth

0. Introduction

The goal of these lectures is to study the conjecture of Kobayashi [Kob70, Kob78] on the hyperbolicity of generic hypersurfaces of high degree in projective space, and the related conjecture by Green-Griffiths [GG79] and Lang [Lan86] on the structure of entire curve loci.

Let us recall that a complex space X is said to be hyperbolic in the sense of Kobayashi if analytic disks $f: \mathbb{D} \rightarrow X$ through a given point form a normal family. By a well known result of Brody [Bro78], a compact complex space is Kobayashi hyperbolic iff it does not contain any entire holomorphic curve $f: \mathbb{C} \rightarrow X$ ("Brody hyperbolicity"). If X is not hyperbolic, a basic question is thus to analyze the geometry of entire holomorphic curves $f: \mathbb{C} \rightarrow X$, and especially to understand the entire curve locus of X, defined as the Zariski closure

$$
\begin{equation*}
\operatorname{ECL}(X)={\overline{\bigcup_{f} f(\mathbb{C})}}^{\mathrm{Zar}} \tag{0.1}
\end{equation*}
$$

The Green-Griffiths-Lang conjecture, in its strong form, stipulates
0.2. GGL conjecture. Let X be a projective variety of general type. Then $Y=\operatorname{ECL}(X)$ is a proper algebraic subvariety $Y \subsetneq X$
Equivalently, there exists $Y \subsetneq X$ such that every entire curve $f: \mathbb{C} \rightarrow X$ satisfies $f(\mathbb{C}) \subset Y$. A weaker form of the GGL conjecture states that entire curves are algebraically degenerate, i.e. that $f(\mathbb{C}) \subset Y_{f} \subsetneq X$ where Y_{f} may depend on f.

If $X \subset \mathbb{P}_{\mathbb{C}}^{N}$ is defined over a number field \mathbb{K}_{0} (i.e. by polynomial equations with equations with coefficients in \mathbb{K}_{0}) and $Y=\operatorname{ECL}(X)$, it is expected that for every number field $\mathbb{K} \supset \mathbb{K}_{0}$ the set of \mathbb{K} points in $X(\mathbb{K}) \backslash Y$ is finite, and that this property characterizes $\mathrm{ECL}(X)$ as the smallest algebraic subset Y of X that has the above property for all \mathbb{K} ([Lan86]). This conjectural arithmetical statement would be a vast generalization of the Mordell-Faltings theorem, and is one of the strong motivations to study the geometric GGL conjecture as a first step. S. Kobayashi [Kob70, Kob78] had earlier made the following tantalizing conjecture.
0.3. Conjecture (Kobayashi).
(a) A (very) generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geqslant d_{n}$ large enough is hyperbolic, especially it does not possess any entire holomorphic curve $f: \mathbb{C} \rightarrow X$.
(b) The complement $\mathbb{P}^{n} \backslash H$ of a (very) generic hypersurface $H \subset \mathbb{P}^{n}$ of degree $d \geqslant d_{n}^{\prime}$ large enough is hyperbolic.
M. Zaidenberg observed in [Zai87] that the complement of a general hypersurface of degree $2 n$ in \mathbb{P}^{n} is not hyperbolic; as a consequence, one must take $d_{n}^{\prime} \geqslant 2 n+1$ in 0.3 (a). A famous result due to Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96, Voi98], states that every subvariety Y of a generic algebraic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geqslant 2 n+2$ is of general type. The bound $d_{n}=2 n+2$ would then be a consequence of the Green-Griffiths-Lang conjecture (for surfaces, the results of Geng $\mathrm{Xu}[\mathrm{Xu} 94]$ would even show that the optimal bound is indeed $d_{2}=5$). These observations led Zaidenberg to propose the bounds $d_{n}=2 n+1$ for $n \geqslant 2$ and $d_{n}^{\prime}=2 n+1$ for $n \geqslant 1$.

One of the early important result in the direction of Conjecture 0.2 is the proof of the Bloch conjecture, as proposed by Bloch [Blo26a] and Ochiai [Och77]: this is the special case of the conjecture when the irregularity of X satisfies $q=h^{0}\left(X, \Omega_{X}^{1}\right)>\operatorname{dim} X$. Various solutions have then been obtained in fundamental papers of Noguchi [Nog77, 81, 84], Kawamata [Kaw80], GreenGriffiths [GrGr79], McQuillan [McQ96], by means of different techniques. In the case of complex surfaces, major progress was achieved by Lu, Miyaoka and Yau [LuYa90], [LuMi95, 96], [Lu96]; McQuillan [McQ96] extended these results to the case of all surfaces satisfying $c_{1}^{2}>c_{2}$, in a situation where there are many symmetric differentials, e.g. sections of $H^{0}\left(X, S^{m} T_{X}^{*} \otimes \mathcal{O}(-1)\right)$, $m \gg 1$ (cf. also [McQ99], [DeEG00] for applications to hyperbolicity). A more recent result is the striking statement due to Diverio, Merker and Rousseau [DMR10], confirming Conjecture 0.2 when $X \subset \mathbb{P}^{n+1}$ is a generic non singular hypersurface of sufficiently large degree $d \geqslant 2^{n^{5}}$ (cf. §10); in the case $n=2$ of surfaces in \mathbb{P}^{3}, we are here in the more difficult situation where symmetric differentials do not exist (we have $c_{1}^{2}<c_{2}$ in this case). Conjecture 0.2 was also considered by S. Lang [Lang86, Lang87] in view of arithmetic counterparts of the above geometric statements.

Although these optimal conjectures are still unsolved at present, substantial progress was achieved in the meantime, for a large part via the technique of producing jet differentials. This is done either by direct calculations or by various indirect methods: Riemann-Roch calculations, vanishing theorems ... Vojta [Voj87] and McQuillan [McQ98] introduced the "diophantine approximation" method, which was soon recognized to be an important tool in the study of holomorphic foliations, in parallel with Nevanlinna theory and the construction of Ahlfors currents. Around 2000, Siu [Siu02, 04] showed that generic hyperbolicity results in the direction of the Kobayashi conjecture could be investigated by combining the algebraic techniques of Clemens, Ein and Voisin with the existence of certain "vertical" meromorphic vector fields on the jet space of the universal hypersurface of high degree; these vector fields are actually used to differentiate the global sections of the jet bundles involved, so as to produce new sections with a better control on the base locus. Also, during the years 2007-2010, it was realized [Dem07a, 07b, Dem11] that holomorphic Morse inequalities could be used to prove the existence of jet differentials; in 2010, Diverio, Merker and Rousseau [DMR10] were able in that way to prove the Green-Griffiths conjecture for generic hypersurfaces of high degree in projective space, e.g. for $d \geqslant 2^{n^{5}}$ - their proof makes an essential use of Siu's differentiation technique via meromorphic vector fields, as improved by Păun [Pau08] and Merker
[Mer09] in 2008. The present study will be focused on the holomorphic Morse inequality technique; as an application, a partial answer to the Kobayashi and Green-Griffiths-Lang conjecture can be obtained in a very wide context : the basic general result achieved in [Dem11] consists of showing that for every projective variety of general type X, there exists a global algebraic differential operator P on X (in fact many such operators P_{j}) such that every entire curve $f: \mathbb{C} \rightarrow X$ must satisfy the differential equations $P_{j}\left(f ; f^{\prime}, \ldots, f^{(k)}\right)=0$. One also recovers from there the result of Diverio-Merker-Rousseau on the generic Green-Griffiths conjecture (with an even better bound asymptotically as the dimension tends to infinity), as well as a result of Diverio-Trapani [DT10] on the hyperbolicity of generic 3-dimensional hypersurfaces in \mathbb{P}^{4}. Siu [Siu12] has recently introduced a more explicit but more computationally involved approach that would yield the Kobayashi conjecture for $d \geqslant d_{n}$, with a very large bound d_{n} instead of $2 n+1$.

As we will see here, it is useful to work in a more general context and to consider the category of directed projective manifolds (or varieties). Since the problems we consider are birationally invariant, varieties can in fact always be replaced by nonsingular models whenever this is needed. A directed projective manifold is a pair (X, V) where X is a projective manifold equipped with an analytic linear subspace $V \subset T_{X}$, i.e. a closed irreducible complex analytic subset V of the total space of T_{X}, such that each fiber $V_{x}=V \cap T_{X, x}$ is a complex vector space. If X is not connected, V should rather be assumed to be irreducible merely over each connected component of X, but we will hereafter assume that our manifolds are connected. A morphism $\Phi:(X, V) \rightarrow(Y, W)$ in the category of directed manifolds is an analytic map $\Phi: X \rightarrow Y$ such that $\Phi_{*} V \subset W$. We refer to the case $V=T_{X}$ as being the absolute case, and to the case $V=T_{X / S}=\operatorname{Ker} d \pi$ for a fibration $\pi: X \rightarrow S$, as being the relative case; V may also be taken to be the tangent space to the leaves of a singular analytic foliation on X, or maybe even a non integrable linear subspace of T_{X}. We are especially interested in entire curves that are tangent to V, namely non constant holomorphic morphisms $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ of directed manifolds. In the absolute case, these are just arbitrary entire curves $f: \mathbb{C} \rightarrow X$.
0.4. Generalized GGL conjecture. Let (X, V) be a projective directed manifold. Define the entire curve locus set of (X, V) to be the Zariski closure of the locus of entire curves tangent to V, i.e.

$$
\operatorname{ECL}(X, V)=\bigcup_{f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)} f(\mathbb{C})^{\mathrm{Zar}}
$$

Then, if (X, V) is of general type in the sense that the canonical sheaf sequence K_{V}^{\bullet} is big (cf. Prop 2.11 below), $Y=\mathrm{ECL}(X, V)$ is a proper algebraic subvariety $Y \subsetneq X$.
[We will say that (X, V) is Brody hyperbolic if $\mathrm{ECL}(X, V)=\emptyset$; by Brody's reparametrization technique, this is equivalent to Kobayashi hyperbolicity whenever X is compact.]

In case V has no singularities, the canonical sheaf K_{V} is defined to be $(\operatorname{det} \mathcal{O}(V))^{*}$ where $\mathcal{O}(V)$ is the sheaf of holomorphic sections of V, but in general this naive definition would not work. Take for instance a generic pencil of elliptic curves $\lambda P(z)+\mu Q(z)=0$ of degree 3 in $\mathbb{P}_{\mathbb{C}}^{2}$, and the linear space V consisting of the tangents to the fibers of the rational map $\mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ defined by $z \mapsto Q(z) / P(z)$. Then V is given by

$$
0 \longrightarrow \mathcal{O}(V) \longrightarrow \mathcal{O}\left(T_{\mathbb{P}_{\mathbb{C}}^{2}}\right) \xrightarrow{P d Q-Q d P} \mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{2}}(6) \otimes \mathcal{J}_{S} \longrightarrow 0
$$

where $S=\operatorname{Sing}(V)$ consists of the 9 points $\{P(z)=0\} \cap\{Q(z)=0\}$, and \mathcal{J}_{S} is the corresponding ideal sheaf of S. Since $\operatorname{det} \mathcal{O}\left(T_{\mathbb{P}^{2}}\right)=\mathcal{O}(3)$, we see that $\left(\operatorname{det}(\mathcal{O}(V))^{*}=\mathcal{O}(3)\right.$ is ample, thus Problem 0.4 would not have a positive answer (all leaves are elliptic or singular rational curves and thus covered by entire curves). An even more "degenerate" example is obtained with a generic pencil of conics, in which case $\left(\operatorname{det}(\mathcal{O}(V))^{*}=\mathcal{O}(1)\right.$ and $\# S=4$.

If we want to get a positive answer to Problem 0.4, it is therefore indispensable to give a definition of K_{V} that incorporates in a suitable way the singularities of V; this will be done in Def. 2.12 (see also Prop. 2.11). The goal is then to give a positive answer to Problem 0.4 under some possibly
more restrictive conditions for the pair (X, V). These conditions will be expressed in terms of the tower of Semple jet bundles

$$
\begin{equation*}
\left(X_{k}, V_{k}\right) \rightarrow\left(X_{k-1}, V_{k-1}\right) \rightarrow \ldots \rightarrow\left(X_{1}, V_{1}\right) \rightarrow\left(X_{0}, V_{0}\right):=(X, V) \tag{0.5}
\end{equation*}
$$

which we define more precisely in Section 1, following [Dem95]. It is constructed inductively by setting $X_{k}=P\left(V_{k-1}\right)$ (projective bundle of lines of V_{k-1}), and all V_{k} have the same rank $r=\operatorname{rank} V$, so that $\operatorname{dim} X_{k}=n+k(r-1)$ where $n=\operatorname{dim} X$. Entire curve loci have their counterparts for all stages of the Semple tower, namely, one can define

$$
\begin{equation*}
\operatorname{ECL}_{k}(X, V)=\bigcup_{f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)} f_{[k]}(\mathbb{C})^{\mathrm{Zar}} \tag{0.6}
\end{equation*}
$$

where $f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the k-jet of f. These are by definition algebraic subvarieties of X_{k}, and if we denote by $\pi_{k, \ell}: X_{k} \rightarrow X_{\ell}$ the natural projection from X_{k} to $X_{\ell}, 0 \leqslant \ell \leqslant k$, we get immediately

$$
\begin{equation*}
\pi_{k, \ell}\left(\operatorname{ECL}_{k}(X, V)\right)=\mathrm{ECL}_{\ell}(X, V), \quad \mathrm{ECL}_{0}(X, V)=\mathrm{ECL}(X, V) . \tag{0.7}
\end{equation*}
$$

Let $\mathcal{O}_{X_{k}}(1)$ be the tautological line bundle over X_{k} associated with the projective structure. We define the k-stage Green-Griffiths locus of (X, V) to be

$$
\begin{equation*}
\operatorname{GG}_{k}(X, V)=\overline{\left(X_{k} \backslash \Delta_{k}\right) \cap \bigcap_{m \in \mathbb{N}}\left(\text { base locus of } \mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} A^{-1}\right)} \tag{0.8}
\end{equation*}
$$

where A is any ample line bundle on X and $\Delta_{k}=\bigcup_{2 \leqslant \ell \leqslant k} \pi_{k, \ell}^{-1}\left(D_{\ell}\right)$ is the union of "vertical divisors" (see section 1 ; the vertical divisors play no role and have to be removed in this context; for this, one uses the fact that $f_{[k]}(\mathbb{C})$ is not contained in any component of Δ_{k}, cf. [Dem95]). Clearly, $\mathrm{GG}_{k}(X, V)$ does not depend on the choice of A.
0.9. Basic vanishing theorem for entire curves. Let (X, V) be an arbitrary directed variety with X non singular, and let A be an ample line bundle on X. Then any entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ satisfies the differential equations $P\left(f ; f^{\prime}, \ldots, f^{(k)}\right)=0$ arising from sections $\sigma \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} A^{-1}\right)$. As a consequence, one has

$$
\operatorname{ECL}_{k}(X, V) \subset \operatorname{GG}_{k}(X, V) .
$$

The main argument goes back to [GG79]. We will give here a complete proof of Theorem 0.9, based only on the arguments [Dem95], namely on the Ahlfors-Schwarz lemma (the alternative proof given in [SY96] uses Nevanlinna theory and is analytically more involved). By (0.7) and (0.9) we infer that

$$
\begin{equation*}
\operatorname{ECL}(X, V) \subset \operatorname{GG}(X, V) \tag{0.10}
\end{equation*}
$$

where $\mathrm{GG}(X, V)$ is the global Green-Griffiths locus of (X, V) defined by

$$
\begin{equation*}
\operatorname{GG}(X, V)=\bigcap_{k \in \mathbb{N}} \pi_{k, 0}\left(\mathrm{GG}_{k}(X, V)\right) \tag{0.11}
\end{equation*}
$$

The main result of [Dem11] (Theorem 2.37 and Cor. 3.4) implies the following useful information:
0.12. Theorem. Assume that (X, V) is of "general type", i.e. that the pluricanonical sheaf sequence K_{V}^{\bullet} is big on X. Then there exists an integer k_{0} such that $\mathrm{GG}_{k}(X, V)$ is a proper algebraic subset of X_{k} for $k \geqslant k_{0}\left[\right.$ though $\pi_{k, 0}\left(\mathrm{GG}_{k}(X, V)\right)$ might still be equal to X for all $\left.k\right]$.

In fact, if F is an invertible sheaf on X such that $K_{V}^{\bullet} \otimes F$ is big (cf. Prop. 2.11), the probabilistic estimates of [Dem11, Cor. 2.38 and Cor. 3.4] produce global sections of

$$
\begin{equation*}
\mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right) \tag{0.13}
\end{equation*}
$$

for $m \gg k \gg 1$. The (long and elaborate) proof uses a curvature computation and singular holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on X_{k} for $k \gg 1$. One applies this to $F=A^{-1}$ with A ample on X to produce sections and conclude that $\mathrm{GG}_{k}(X, V) \subsetneq X_{k}$.

Thanks to (0.10), the GGL conjecture is satisfied whenever $\mathrm{GG}(X, V) \subsetneq X$. By [DMR10], this happens for instance in the absolute case when X is a generic hypersurface of degree $d \geqslant 2^{n^{5}}$ in \mathbb{P}^{n+1} (see also [Pau08] for better bounds in low dimensions, and [Siu02, Siu04]). However, as already mentioned in [Lan86], very simple examples show that one can have $\operatorname{GG}(X, V)=X$ even when (X, V) is of general type, and this already occurs in the absolute case as soon as $\operatorname{dim} X \geqslant 2$. A typical example is a product of directed manifolds

$$
\begin{equation*}
(X, V)=\left(X^{\prime}, V^{\prime}\right) \times\left(X^{\prime \prime}, V^{\prime \prime}\right), \quad V=\operatorname{pr}^{\prime *} V^{\prime} \oplus \operatorname{pr}^{\prime \prime *} V^{\prime \prime} \tag{0.14}
\end{equation*}
$$

The absolute case $V=T_{X}, V^{\prime}=T_{X^{\prime}}, V^{\prime \prime}=T_{X^{\prime \prime}}$ on a product of curves is the simplest instance. It is then easy to check that $\mathrm{GG}(X, V)=X$, cf. (3.2). Diverio and Rousseau [DR13] have given many more such examples, including the case of indecomposable varieties (X, T_{X}), e.g. Hilbert modular surfaces, or more generally compact quotients of bounded symmetric domains of rank $\geqslant 2$.

The problem here is the failure of some sort of stability condition that is introduced in Remark 12.9. This leads us to make the assumption that the directed pair (X, V) is strongly of general type: by this, we mean that the induced directed structure (Z, W) on each subvariety $Z \subset X_{k}$ that projects onto X either has rank $W=0$ or is of general type modulo $X_{k} \rightarrow X$, in the sense that $K_{W}^{\bullet} \otimes \mathcal{O}_{X_{k}}(p)_{\mid Z}$ is big for some integer p (see Section 11 for details). Our main result can be stated
0.15. Theorem (partial solution to the generalized GGL conjecture). Let (X, V) be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for (X, V), namely $\mathrm{ECL}(X, V)$ is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on $n=\operatorname{dim} X$ and $k=\operatorname{rank} V$, which is the main reason why we have to introduce directed varieties, even in the absolute case. An interesting feature of this result is that the conclusion on $\operatorname{ECL}(X, V)$ is reached without having to know anything about the Green-Griffiths locus $\mathrm{GG}(X, V)$, even a posteriori. Nevetherless, this is not yet enough to confirm the GGL conjecture. Our hope is that pairs (X, V) that are of general type without being strongly of general type - and thus exhibit some sort of "jet-instability" - can be investigated by different methods, e.g. by the diophantine approximation techniques of McQuillan [McQ98]. However, Theorem 0.15 provides a sufficient criterion for Kobayashi hyperbolicity [Kob70, Kob78], thanks to the following concept of algebraic jet-hyperbolicity.
0.16. Definition. A directed variety (X, V) will be said to be algebraically jet-hyperbolic if the induced directed variety structure (Z, W) on every irreducible algebraic variety Z of X such that rank $W \geqslant 1$ has a desingularization that is strongly of general type [see Sections 11-13 for the definition of induced directed structures and further details]. We also say that a projective manifold X is algebraically jet-hyperbolic if $\left(X, T_{X}\right)$ is.

In this context, Theorem 0.15 yields the following connection between algebraic jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.
0.17. Theorem. Let (X, V) be a directed variety structure on a projective manifold X. Assume that (X, V) is algebraically jet-hyperbolic. Then (X, V) is Kobayashi hyperbolic.

The following conjecture would then make a bridge between these theorems and the GGL and Kobayashi conjectures.
0.18. Conjecture. Let $X \subset \mathbb{P}^{n+c}$ be a complete intersection of hypersurfaces of respective degrees $d_{1}, \ldots, d_{c}, \operatorname{codim} X=c$.
(a) If X is non singular and of general type, i.e. if $\sum d_{j} \geqslant n+c+2$, then X is in fact strongly of general type.
(b) If X is (very) generic and $\sum d_{j} \geqslant 2 n+c$, then X is algebraically jet-hyperbolic.

Since Conjecture 0.18 only deals with algebraic statements, our hope is that a proof can be obtained through a suitable deepening of the techniques introduced by Clemens, Ein, Voisin and Siu. Under the slightly stronger condition $\sum d_{j} \geqslant 2 n+c+1$, Voisin showed indeed that every subvariety $Y \subset X$ is of general type, if X is generic. To prove the Kobayashi conjecture in its optimal incarnation, we would need to show that such Y 's are strongly of general type.

In this direction, Dinh Tuan Huynh [DTH15] showed that the complement of a small deformation of the union of $2 n$ hyperplanes in general position in \mathbb{P}^{n} is hyperbolic: the resulting degree $d_{n}=$ $2 n$ is extremely close to optimality (if not optimal). Very recently, G. Berczi [Ber15] stated a positivity conjecture for Thom polynomials of Morin singularities, and showed that it would imply a polynomial bound $d_{n}=2 n^{10}$ for the generic hyperbolicity of hypersurfaces.

I would like to thank Simone Diverio, Erwan Rousseau and Mihai Păun for very stimulating discussions on these questions. These notes also owe a lot to their work.

1. BASIC HYPERBOLICITY CONCEPTS

1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, according to S. Kobayashi [Kob70, Kob76]. Let X be a complex space. Given two points $p, q \in X$, consider a chain of analytic disks from p to q, that is a sequence of holomorphic maps $f_{0}, f_{1}, \ldots, f_{k}: \Delta \rightarrow X$ from the unit disk $\Delta=D(0,1) \subset \mathbb{C}$ to X, together with pairs of points $a_{0}, b_{0}, \ldots, a_{k}, b_{k}$ of Δ such that

$$
p=f_{0}\left(a_{0}\right), \quad q=f_{k}\left(b_{k}\right), \quad f_{i}\left(b_{i}\right)=f_{i+1}\left(a_{i+1}\right), \quad i=0, \ldots, k-1
$$

Denoting this chain by α, define its length $\ell(\alpha)$ to be

$$
\ell(\alpha)=d_{P}\left(a_{1}, b_{1}\right)+\cdots+d_{P}\left(a_{k}, b_{k}\right)
$$

where d_{P} is the Poincaré distance on Δ, and the Kobayashi pseudodistance d_{X}^{K} on X to be

$$
\begin{equation*}
d_{X}^{K}(p, q)=\inf _{\alpha} \ell(\alpha) . \tag{1.1"}
\end{equation*}
$$

a Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous positive (resp. nonnegative) positive function N on the total space E, that is,

$$
N(\lambda \xi)=|\lambda| N(\xi) \quad \text { for all } \lambda \in \mathbb{C} \text { and } \xi \in E
$$

but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E. A Finsler (pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on the tautological line bundle $\mathcal{O}_{P(E)}(-1)$ of lines of E over the projectivized bundle $Y=P(E)$. The Kobayashi-Royden infinitesimal pseudometric on X is the Finsler pseudometric on the tangent bundle T_{X} defined by

$$
\begin{equation*}
\mathbf{k}_{X}(\xi)=\inf \left\{\lambda>0 ; \exists f: \Delta \rightarrow X, f(0)=x, \lambda f^{\prime}(0)=\xi\right\}, \quad x \in X, \xi \in T_{X, x} . \tag{1.2}
\end{equation*}
$$

Here, if X is not smooth at x, we take $T_{X, x}=\left(\mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2}\right)^{*}$ to be the Zariski tangent space, i.e. the tangent space of a minimal smooth ambient vector space containing the germ (X, x); all tangent vectors may not be reached by analytic disks and in those cases we put $\mathbf{k}_{X}(\xi)=+\infty$. When X is a smooth manifold, it follows from the work of H.L. Royden ([Roy71], [Roy74]) that d_{X}^{K} is the integrated pseudodistance associated with the pseudometric, i.e.

$$
d_{X}^{K}(p, q)=\inf _{\gamma} \int_{\gamma} \mathbf{k}_{X}\left(\gamma^{\prime}(t)\right) d t
$$

where the infimum is taken over all piecewise smooth curves joining p to q; in the case of complex spaces, a similar formula holds, involving jets of analytic curves of arbitrary order, cf. S. Venturini [Ven96].
1.3. Definition. A complex space X is said to be hyperbolic (in the sense of Kobayashi) if d_{X}^{K} is actually a distance, namely if $d_{X}^{K}(p, q)>0$ for all pairs of distinct points (p, q) in X.

When X is hyperbolic, it is interesting to investigate when the Kobayashi metric is complete: one then says that X is a complete hyperbolic space. However, we will be mostly concerned with compact spaces here, so completeness is irrelevant in that case.

Another important property is the monotonicity of the Kobayashi metric with respect to holomorphic mappings. In fact, if $\Phi: X \rightarrow Y$ is a holomorphic map, it is easy to see from the definition that

$$
\begin{equation*}
d_{Y}^{K}(\Phi(p), \Phi(q)) \leqslant d_{X}^{K}(p, q), \quad \text { for all } p, q \in X \tag{1.4}
\end{equation*}
$$

The proof merely consists of taking the composition $\Phi \circ f_{i}$ for all clains of analytic disks connecting p and q in X. Clearly the Kobayashi pseudodistance $d_{\mathbb{C}}^{K}$ on $X=\mathbb{C}$ is identically zero, as one can see by looking at arbitrarily large analytic disks $\Delta \rightarrow \mathbb{C}, t \mapsto \lambda t$. Therefore, if there is any (non constant) entire curve $\Phi: \mathbb{C} \rightarrow X$, namely a non constant holomorphic map defined on the whole complex plane \mathbb{C}, then by monotonicity d_{X}^{K} is identically zero on the image $\Phi(\mathbb{C})$ of the curve, and therefore X cannot be hyperbolic. When X is hyperbolic, it follows that X cannot contain rational curves $C \simeq \mathbb{P}^{1}$, or elliptic curves \mathbb{C} / Λ, or more generally any non trivial image $\Phi: W=\mathbb{C}^{p} / \Lambda \rightarrow X$ of a p-dimensional complex torus (quotient of \mathbb{C}^{p} by a lattice). The only case where hyperbolicity is easy to assess is the case of curves $\left(\operatorname{dim}_{\mathbb{C}} X=1\right)$.
1.5. Case of complex curves. Up to bihomorphism, any smooth complex curve X belongs to one (and only one) of the following three types.
(a) (rational curve) $X \simeq \mathbb{P}^{1}$.
(b) (parabolic type) $\widehat{X} \simeq \mathbb{C}, X \simeq \mathbb{C}, \mathbb{C}^{*}$ or $X \simeq \mathbb{C} / \Lambda$ (elliptic curve)
(c) (hyperbolic type) $\widehat{X} \simeq \Delta$. All compact curves X of genus $g \geqslant 2$ enter in this category, as well as $X=\mathbb{P}^{1} \backslash\{a, b, c\} \simeq \mathbb{C} \backslash\{0,1\}$, or $X=\mathbb{C} / \Lambda \backslash\{a\}$ (elliptic curve minus one point).
In fact, as the disk is simply connected, every holomorphic map $f: \Delta \rightarrow X$ lifts to the universal cover $\widehat{f}: \Delta \rightarrow \widehat{X}$, so that $f=\rho \circ \widehat{f}$ where $\rho: \widehat{X} \rightarrow X$ is the projection map, and the conclusions (a,b,c) follow easily from the Poincaré-Koebe uniformization theorem: every simply connected Riemann surface is biholomorphic to \mathbb{C}, the unit disk Δ or the complex projective line \mathbb{P}^{1}.

In some rare cases, the one-dimensional case can be used to study the case of higher dimensions. For instance, it is easy to see by looking at projections that the Kobayashi pseudodistance on a product $X \times Y$ of complex spaces is given by

$$
\begin{align*}
& d_{X \times Y}^{K}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left(d_{X}^{K}\left(x, x^{\prime}\right), d_{Y}^{K}\left(y, y^{\prime}\right)\right), \tag{1.6}\\
& \mathbf{k}_{X \times Y}\left(\xi, \xi^{\prime}\right)=\max \left(\mathbf{k}_{X}(\xi), \mathbf{k}_{Y}\left(\xi^{\prime}\right)\right),
\end{align*}
$$

and from there it follows that a product of hyperbolic spaces is hyperbolic. As a consequence $(\mathbb{C} \backslash\{0,1\})^{2}$, which is also a complement of five lines in \mathbb{P}^{2}, is hyperbolic.

1.B. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In this context, we have the following well-known result of Brody [Bro78]. Its main interest is to relate hyperbolicity to the non existence of entire curves.
1.7. Brody reparametrization lemma. Let ω be a hermitian metric on X and let $f: \Delta \rightarrow X$ be a holomorphic map. For every $\varepsilon>0$, there exists a radius $R \geqslant(1-\varepsilon)\left\|f^{\prime}(0)\right\|_{\omega}$ and a homographic transformation ψ of the disk $D(0, R)$ onto $(1-\varepsilon) \Delta$ such that

$$
\left\|(f \circ \psi)^{\prime}(0)\right\|_{\omega}=1, \quad\left\|(f \circ \psi)^{\prime}(t)\right\|_{\omega} \leqslant \frac{1}{1-|t|^{2} / R^{2}} \quad \text { for every } t \in D(0, R)
$$

Proof. Select $t_{0} \in \Delta$ such that $\left(1-|t|^{2}\right)\left\|f^{\prime}((1-\varepsilon) t)\right\|_{\omega}$ reaches its maximum for $t=t_{0}$. The reason for this choice is that $\left(1-|t|^{2}\right)\left\|f^{\prime}((1-\varepsilon) t)\right\|_{\omega}$ is the norm of the differential $f^{\prime}((1-\varepsilon) t): T_{\Delta} \rightarrow T_{X}$ with respect to the Poincaré metric $|d t|^{2} /\left(1-|t|^{2}\right)^{2}$ on T_{Δ}, which is conformally invariant under
$\operatorname{Aut}(\Delta)$. One then adjusts R and ψ so that $\psi(0)=(1-\varepsilon) t_{0}$ and $\left|\psi^{\prime}(0)\right|\left\|f^{\prime}(\psi(0))\right\|_{\omega}=1$. As $\left|\psi^{\prime}(0)\right|=\frac{1-\varepsilon}{R}\left(1-\left|t_{0}\right|^{2}\right)$, the only possible choice for R is

$$
R=(1-\varepsilon)\left(1-\left|t_{0}\right|^{2}\right)\left\|f^{\prime}(\psi(0))\right\|_{\omega} \geqslant(1-\varepsilon)\left\|f^{\prime}(0)\right\|_{\omega} .
$$

The inequality for $(f \circ \psi)^{\prime}$ follows from the fact that the Poincaré norm is maximum at the origin, where it is equal to 1 by the choice of R. Using the Ascoli-Arzelà theorem we obtain immediately:
1.8. Corollary (Brody). Let (X, ω) be a compact complex hermitian manifold. Given a sequence of holomorphic mappings $f_{\nu}: \Delta \rightarrow X$ such that $\lim \left\|f_{\nu}^{\prime}(0)\right\|_{\omega}=+\infty$, one can find a sequence of homographic transformations $\psi_{\nu}: D\left(0, R_{\nu}\right) \rightarrow(1-1 / \nu) \Delta$ with $\lim R_{\nu}=+\infty$, such that, after passing possibly to a subsequence, $\left(f_{\nu} \circ \psi_{\nu}\right)$ converges uniformly on every compact subset of \mathbb{C} towards a non constant holomorphic map $g: \mathbb{C} \rightarrow X$ with $\left\|g^{\prime}(0)\right\|_{\omega}=1$ and $\sup _{t \in \mathbb{C}}\left\|g^{\prime}(t)\right\|_{\omega} \leqslant 1$.

An entire curve $g: \mathbb{C} \rightarrow X$ such that $\sup _{\mathbb{C}}\left\|g^{\prime}\right\|_{\omega}=M<+\infty$ is called a Brody curve; this concept does not depend on the choice of ω when X is compact, and one can always assume $M=1$ by rescaling the parameter t.
1.9. Brody criterion. Let X be a compact complex manifold. The following properties are equivalent.
(a) X is hyperbolic.
(b) X does not possess any entire curve $f: \mathbb{C} \rightarrow X$.
(c) X does not possess any Brody curve $g: \mathbb{C} \rightarrow X$.
(d) The Kobayashi infinitesimal metric \mathbf{k}_{X} is uniformly bouded below, namely

$$
\mathbf{k}_{X}(\xi) \geqslant c\|\xi\|_{\omega}, \quad c>0,
$$

for any hermitian metric ω on X.
Proof. (a) \Rightarrow (b) If X possesses an entire curve $f: \mathbb{C} \rightarrow X$, then by looking at arbitrary large disks $D(0, R) \subset \mathbb{C}$, it is easy to see that the Kobayashi distance of any two points in $f(\mathbb{C})$ is zero, so X is not hyperbolic.
(b) $\Rightarrow(\mathrm{c})$ is trivial.
(c) \Rightarrow (d) If (d) does not hold, there exists a sequence of tangent vectors $\xi_{\nu} \in T_{X, x_{\nu}}$ with $\left\|\xi_{\nu}\right\|_{\omega}=1$ and $\mathbf{k}_{X}\left(\xi_{\nu}\right) \rightarrow 0$. By definition, this means that there exists an analytic curve $f_{\nu}: \Delta \rightarrow X$ with $f(0)=x_{\nu}$ and $\left\|f_{\nu}^{\prime}(0)\right\|_{\omega} \geqslant\left(1-\frac{1}{\nu}\right) / \mathbf{k}_{X}\left(\xi_{\nu}\right) \rightarrow+\infty$. One can then produce a Brody curve $g=\mathbb{C} \rightarrow X$ by Corollary 1.8, contradicting (c).
(d) \Rightarrow (a). In fact (d) implies after integrating that $d_{X}^{K}(p, q) \geqslant c d_{\omega}(p, q)$ where d_{ω} is the geodesic distance associated with ω, so d_{X}^{K} must be non degenerate.

Notice also that if $f: \mathbb{C} \rightarrow X$ is an entire curve such that $\left\|f^{\prime}\right\|_{\omega}$ is unbounded, one can apply the Corollary 1.8 to $f_{\nu}(t):=f\left(t+a_{\nu}\right)$ where the sequence $\left(a_{\nu}\right)$ is chosen such that $\left\|f_{\nu}^{\prime}(0)\right\|_{\omega}=$ $\left\|f\left(a_{\nu}\right)\right\|_{\omega} \rightarrow+\infty$. Brody's result then produces repametrizations $\psi_{\nu}: D\left(0, R_{\nu}\right) \rightarrow D\left(a_{\nu}, 1-1 / \nu\right)$ and a Brody curve $g=\lim f \circ \psi_{\nu}: \mathbb{C} \rightarrow X$ such that $\sup \left\|g^{\prime}\right\|_{\omega}=1$ and $g(\mathbb{C}) \subset \overline{f(\mathbb{C})}$. It may happen that the image $g(\mathbb{C})$ of such a limiting curve is disjoint from $f(\mathbb{C})$. In fact Winkelmann [Win07] has given a striking example, actually a projective 3 -fold X obtained by blowing-up a 3 -dimensional abelian variety Y, such that every Brody curve $g: \mathbb{C} \rightarrow X$ lies in the exceptional divisor $E \subset X$; however, entire curves $f: \mathbb{C} \rightarrow X$ can be dense, as one can see by taking f to be the lifting of a generic complex line embedded in the abelian variety Y. For further precise information on the localization of Brody curves, we refer the reader to the remarkable results of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is often referred to as Brody hyperbolicity. Thus, in the compact case, Brody hyperbolicity and Kobayashi hyperbolicity coincide (but Brody hyeperbolicity is in general a strictly weaker property when X is non compact).

1.C. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness property of hyperbolicity and a hyperbolicity criterion for subvarieties of complex tori. By definition, a holomorphic family of compact complex manifolds is a holomorphic proper submersion $\mathcal{X} \rightarrow S$ between two complex manifolds.
1.10. Proposition. Let $\pi: \mathcal{X} \rightarrow S$ be a holomorphic family of compact complex manifolds. Then the set of $s \in S$ such that the fiber $X_{s}=\pi^{-1}(s)$ is hyperbolic is open in the Euclidean topology.
Proof. Let ω be an arbitrary hermitian metric on $\mathcal{X},\left(X_{s_{\nu}}\right)_{s_{\nu} \in S}$ a sequence of non hyperbolic fibers, and $s=\lim s_{\nu}$. By the Brody criterion, one obtains a sequence of entire maps $f_{\nu}: \mathbb{C} \rightarrow X_{s_{\nu}}$ such that $\left\|f_{\nu}^{\prime}(0)\right\|_{\omega}=1$ and $\left\|f_{\nu}^{\prime}\right\|_{\omega} \leqslant 1$. Ascoli's theorem shows that there is a subsequence of f_{ν} converging uniformly to a limit $f: \mathbb{C} \rightarrow X_{s}$, with $\left\|f^{\prime}(0)\right\|_{\omega}=1$. Hence X_{s} is not hyperbolic and the collection of non hyperbolic fibers is closed in S.

Consider now an n-dimensional complex torus W, i.e. an additive quotient $W=\mathbb{C}^{n} / \Lambda$, where $\Lambda \subset \mathbb{C}^{n}$ is a (cocompact) lattice. By taking a composition of entire curves $\mathbb{C} \rightarrow \mathbb{C}^{n}$ with the projection $\mathbb{C}^{n} \rightarrow W$ we obtain an infinite dimensional space of entire curves in W.
1.11. Theorem. Let $X \subset W$ be a compact complex submanifold of a complex torus. Then X is hyperbolic if and only if it does not contain any translate of a subtorus.
Proof. If X contains some translate of a subtorus, then it contains lots of entire curves and so X is not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion there exists an entire curve $f: \mathbb{C} \rightarrow X$ such that $\left\|f^{\prime}\right\|_{\omega} \leqslant\left\|f^{\prime}(0)\right\|_{\omega}=1$, where ω is the flat metric on W inherited from \mathbb{C}^{n}. This means that any lifting $\widetilde{f}=\left(\widetilde{f}, \ldots, \widetilde{f}_{\nu}\right): \mathbb{C} \rightarrow \mathbb{C}^{n}$ is such that

$$
\sum_{j=1}^{n}\left|f_{j}^{\prime}\right|^{2} \leqslant 1
$$

Then, by Liouville's theorem, \tilde{f}^{\prime} is constant and therefore \tilde{f} is affine. But then the closure of the image of f is a translate $a+H$ of a connected (possibly real) subgroup H of W. We conclude that X contains the analytic Zariski closure of $a+H$, namely $a+H^{\mathbb{C}}$ where $H^{\mathbb{C}} \subset W$ is the smallest closed complex subgroup of W containing H.

2. Directed manifolds

2.A. Basic definitions concerning directed manifolds

Let us consider a pair (X, V) consisting of a n-dimensional complex manifold X equipped with a linear subspace $V \subset T_{X}$: assuming X connected, this is by definition an irreducible closed analytic subspace of the total space of T_{X} such that each fiber $V_{x}=V \cap T_{X, x}$ is a vector subspace of $T_{X, x}$; the rank $x \mapsto \operatorname{dim}_{\mathbb{C}} V_{x}$ is Zariski lower semicontinuous, and it may a priori jump. We will refer to such a pair as being a (complex) directed manifold. A morphism $\Phi:(X, V) \rightarrow(Y, W)$ in the category of (complex) directed manifolds is a holomorphic map such that $\Phi_{*}(V) \subset W$.

The rank $r \in\{0,1, \ldots, n\}$ of V is by definition the dimension of V_{x} at a generic point. The dimension may be larger at non generic points; this happens e.g. on $X=\mathbb{C}^{n}$ for the rank 1 linear space V generated by the Euler vector field: $V_{z}=\mathbb{C} \sum_{1 \leqslant j \leqslant n} z_{j} \frac{\partial}{\partial z_{j}}$ for $z \neq 0$, and $V_{0}=\mathbb{C}^{n}$. Our philosophy is that directed manifolds are also useful to study the "absolute case", i.e. the case $V=T_{X}$, because there are certain fonctorial constructions which are quite natural in the category of directed manifolds (see e.g. §5, 6, 7). We think of directed manifolds as a kind of "relative situation", covering e.g. the case when V is the relative tangent space to a holomorphic map $X \rightarrow S$. In general, we can associate to V a sheaf $\mathcal{V}=\mathcal{O}(V) \subset \mathcal{O}\left(T_{X}\right)$ of holomorphic sections. These sections need not generate the fibers of V at singular points, as one sees already
in the case of the Euler vector field when $n \geqslant 2$. However, \mathcal{V} is a saturated subsheaf of $\mathcal{O}\left(T_{X}\right)$, i.e. $\mathcal{O}\left(T_{X}\right) / \mathcal{V}$ has no torsion: in fact, if the components of a section have a common divisorial component, one can always simplify this divisor and produce a new section without any such common divisorial component. Instead of defining directed manifolds by picking a linear space V, one could equivalently define them by considering saturated coherent subsheaves $\mathcal{V} \subset \mathcal{O}\left(T_{X}\right)$. One could also take the dual viewpoint, looking at arbitrary quotient morphisms $\Omega_{X}^{1} \rightarrow \mathcal{W}=\mathcal{V}^{*}$ (and recovering $\mathcal{V}=\mathcal{W}^{*}=\operatorname{Hom}_{\mathcal{O}}(\mathcal{W}, \mathcal{O})$, as $\mathcal{V}=\mathcal{V}^{* *}$ is reflexive $)$. We want to stress here that no assumption need be made on the Lie bracket tensor $[]:, \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{O}\left(T_{X}\right) / \mathcal{V}$, i.e. we do not assume any kind of integrability for \mathcal{V} or \mathcal{W}.

The singular set $\operatorname{Sing}(V)$ is by definition the set of points where \mathcal{V} is not locally free, it can also be defined as the indeterminacy set of the (meromorphic) classifying map $\alpha: X \rightarrow--G_{r}\left(T_{X}\right)$, $z \mapsto V_{z}$ to the Grasmannian of r dimensional subspaces of T_{X}. We thus have $V_{\mid X \backslash \operatorname{Sing}(V)}=\alpha^{*} S$ where $S \rightarrow G_{r}\left(T_{X}\right)$ is the tautological subbundle of $G_{r}\left(T_{X}\right)$. The singular set $\operatorname{Sing}(V)$ is an analytic subset of X of codim $\geqslant 2$, hence V is always a holomorphic subbundle outside of codimension 2. Thanks to this remark, one can most often treat linear spaces as vector bundles (possibly modulo passing to the Zariski closure along $\operatorname{Sing}(V)$).

2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in $\S 1$ can be extended to the category of directed manifolds.
2.1. Definition. Let (X, V) be a complex directed manifold.
(i) The Kobayashi-Royden infinitesimal metric of (X, V) is the Finsler metric on V defined for any $x \in X$ and $\xi \in V_{x}$ by

$$
\mathbf{k}_{(X, V)}(\xi)=\inf \left\{\lambda>0 ; \exists f: \Delta \rightarrow X, f(0)=x, \lambda f^{\prime}(0)=\xi, f^{\prime}(\Delta) \subset V\right\} .
$$

Here $\Delta \subset \mathbb{C}$ is the unit disk and the map f is an arbitrary holomorphic map which is tangent to V, i.e., such that $f^{\prime}(t) \in V_{f(t)}$ for all $t \in \Delta$. We say that (X, V) is infinitesimally hyperbolic if $\mathbf{k}_{(X, V)}$ is positive definite on every fiber V_{x} and satisfies a uniform lower bound $\mathbf{k}_{(X, V)}(\xi) \geqslant$ $\varepsilon\|\xi\|_{\omega}$ in terms of any smooth hermitian metric ω on X, when x describes a compact subset of X.
(ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of (X, V) is the pseudometric defined on all decomposable p-vectors $\xi=\xi_{1} \wedge \cdots \wedge \xi_{p} \in \Lambda^{p} V_{x}, 1 \leqslant p \leqslant r=\operatorname{rank} V$, by

$$
\mathbf{e}_{(X, V)}^{p}(\xi)=\inf \left\{\lambda>0 ; \exists f: \mathbb{B}_{p} \rightarrow X, f(0)=x, \lambda f_{*}\left(\tau_{0}\right)=\xi, f_{*}\left(T_{\mathbb{B}_{p}}\right) \subset V\right\}
$$

where \mathbb{B}_{p} is the unit ball in \mathbb{C}^{p} and $\tau_{0}=\partial / \partial t_{1} \wedge \cdots \wedge \partial / \partial t_{p}$ is the unit p-vector of \mathbb{C}^{p} at the origin. We say that (X, V) is infinitesimally p-measure hyperbolic if $\mathbf{e}_{(X, V)}^{p}$ is positive definite on every fiber $\Lambda^{p} V_{x}$ and satisfies a locally uniform lower bound in terms of any smooth metric.
If $\Phi:(X, V) \rightarrow(Y, W)$ is a morphism of directed manifolds, it is immediate to check that we have the monotonicity property

$$
\begin{array}{ll}
\mathbf{k}_{(Y, W)}\left(\Phi_{*} \xi\right) \leqslant \mathbf{k}_{(X, V)}(\xi), & \forall \xi \in V \\
\mathbf{e}_{(Y, W)}^{p}\left(\Phi_{*} \xi\right) \leqslant \mathbf{e}_{(X, V)}^{p}(\xi), & \forall \xi=\xi_{1} \wedge \cdots \wedge \xi_{p} \in \Lambda^{p} V . \tag{p}
\end{array}
$$

The following proposition shows that virtually all reasonable definitions of the hyperbolicity property are equivalent if X is compact (in particular, the additional assumption that there is locally uniform lower bound for $\mathbf{k}_{(X, V)}$ is not needed). We merely say in that case that (X, V) is hyperbolic.
2.3. Proposition. For an arbitrary directed manifold (X, V), the Kobayashi-Royden infinitesimal metric $\mathbf{k}_{(X, V)}$ is upper semicontinuous on the total space of V. If X is compact, (X, V) is infinitesimally hyperbolic if and only if there are no non constant entire curves $g: \mathbb{C} \rightarrow X$ tangent to V. In that case, $\mathbf{k}_{(X, V)}$ is a continuous (and positive definite) Finsler metric on V.

Proof. The proof is almost identical to the standard proof for \mathbf{k}_{X}, for which we refer to Royden [Roy71, Roy74]. One of the main ingredients is that one can find a Stein neighborhood of the graph of any analytic disk (thanks to a result of [Siu76], cf. also [Dem90a] for more general results). This allows to obtain "free" small deformations of any given analytic disk, as there are many holomorphic vector fields on a Stein manifold.

Another easy observation is that the concept of p-measure hyperbolicity gets weaker and weaker as p increases (we leave it as an exercise to the reader, this is mostly just linear algebra).
2.4. Proposition. If (X, V) is p-measure hyperbolic, then it is $(p+1)$-measure hyperbolic for all $p \in\{1, \ldots, r-1\}$.

Again, an argument extremely similar to the proof of 1.10 shows that relative hyperbolicity is an open property.
2.5. Proposition. Let $(\mathcal{X}, \mathcal{V}) \rightarrow S$ be a holomorphic family of compact directed manifolds (by this, we mean a proper holomorphic map $\mathcal{X} \rightarrow S$ together with an analytic linear subspace $\mathcal{V} \subset T_{\mathcal{X} / S} \subset$ $T_{\mathcal{X}}$ of the relative tangent bundle, defining a deformation $\left(X_{s}, V_{s}\right)_{s \in S}$ of the fibers). Then the set of $s \in S$ such that the fiber $\left(X_{s}, V_{s}\right)$ is hyperbolic is open in S with respect to the Euclidean topology.

Let us mention here an impressive result proved by Marco Brunella [Bru03, Bru05, Bru06] concerning the behavior of the Kobayashi metric on foliated varieties.
2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with a (possibly singular) rank 1 holomorphic foliation which is not a foliation by rational curves. Then the canonical bundle $K_{\mathcal{F}}=\mathcal{F}^{*}$ of the foliation is pseudoeffective (i.e. the curvature of $K_{\mathcal{F}}$ is $\geqslant 0$ in the sense of currents).

The proof is obtained by putting on $K_{\mathcal{F}}$ precisely the metric induced by the Kobayashi metric on the leaves whenever they are generically hyperbolic (i.e. covered by the unit disk). The case of parabolic leaves (covered by \mathbb{C}) has to be treated separately.

2.C. Pluricanonical sheaves of a directed variety

Let (X, V) be a directed projective manifold where V is possibly singular, and let $r=\operatorname{rank} V$. If $\mu: \widehat{X} \rightarrow X$ is a proper modification (a composition of blow-ups with smooth centers, say), we get a directed manifold $(\widehat{X}, \widehat{V})$ by taking \widehat{V} to be the closure of $\mu_{*}^{-1}\left(V^{\prime}\right)$, where $V^{\prime}=V_{\mid X^{\prime}}$ is the restriction of V over a Zariski open set $X^{\prime} \subset X \backslash \operatorname{Sing}(V)$ such that $\mu: \mu^{-1}\left(X^{\prime}\right) \rightarrow X^{\prime}$ is a biholomorphism. We say that $(\widehat{X}, \widehat{V})$ is a modification of (X, V) and write $\widehat{V}=\mu^{*} V$.

We will be interested in taking modifications realized by iterated blow-ups of certain nonsingular subvarieties of the singular set $\operatorname{Sing}(V)$, so as to eventually "improve" the singularities of V; outside of $\operatorname{Sing}(V)$ the effect of blowing-up will be irrelevant. The canonical sheaf K_{V}, resp. the pluricanonical sheaf sequence $K_{V}^{[m]}$, will be defined here in several steps, using the concept of bounded pluricanonical forms that was already introduced in [Dem11].
2.7. Definition. For a directed pair (X, V) with X nonsingular, we define ${ }^{b} K_{V}$, resp. ${ }^{b} K_{V}^{[m]}$, for any integer $m \geqslant 0$, to be the rank 1 analytic sheaves such that

$$
\begin{aligned}
{ }^{b} K_{V}(U) & =\text { sheaf of locally bounded sections of } \mathcal{O}_{X}\left(\Lambda^{r} V^{\prime *}\right)\left(U \cap X^{\prime}\right) \\
{ }^{b} K_{V}^{[m]}(U) & =\text { sheaf of locally bounded sections of } \mathcal{O}_{X}\left(\left(\Lambda^{r} V^{\prime *}\right)^{\otimes m}\right)\left(U \cap X^{\prime}\right)
\end{aligned}
$$

where $r=\operatorname{rank}(V), X^{\prime}=X \backslash \operatorname{Sing}(V), V^{\prime}=V_{\mid X^{\prime}}$, and"locally bounded" means bounded with respect to a smooth hermitian metric h on T_{X}, on every set $W \cap X^{\prime}$ such that W is relatively compact in U.

In the trivial case $r=0$, we simply set ${ }^{b} K_{V}^{[m]}=\mathcal{O}_{X}$ for all m; clearly $\operatorname{ECL}(X, V)=\emptyset$ in that case, so there is not much to say. The above definition of ${ }^{b} K_{V}^{[m]}$ may look like an analytic one, but it can easily be turned into an equivalent algebraic definition:
2.8. Proposition. Consider the natural morphism $\mathcal{O}\left(\Lambda^{r} T_{X}^{*}\right) \rightarrow \mathcal{O}\left(\Lambda^{r} V^{*}\right)$ where $r=\operatorname{rank} V$ and $\mathcal{O}\left(\Lambda^{r} V^{*}\right)$ is defined as the quotient of $\mathcal{O}\left(\Lambda^{r} T_{X}^{*}\right)$ by r-forms that have zero restrictions to $\mathcal{O}\left(\Lambda^{r} V^{*}\right)$ on $X \backslash \operatorname{Sing}(V)$. The bidual $\mathcal{L}_{V}=\mathcal{O}_{X}\left(\Lambda^{r} V^{*}\right)^{* *}$ is an invertible sheaf, and our natural morphism can be written

$$
\begin{equation*}
\mathcal{O}\left(\Lambda^{r} T_{X}^{*}\right) \rightarrow \mathcal{O}\left(\Lambda^{r} V^{*}\right)=\mathcal{L}_{V} \otimes \mathcal{J}_{V} \subset \mathcal{L}_{V} \tag{1}
\end{equation*}
$$

where \mathcal{J}_{V} is a certain ideal sheaf of \mathcal{O}_{X} whose zero set is contained in $\operatorname{Sing}(V)$ and the arrow on the left is surjective by definition. Then

$$
\begin{equation*}
{ }^{b} K_{V}^{[m]}=\mathcal{L}_{V}^{\otimes m} \otimes \overline{\mathcal{J}_{V}^{m}} \tag{2}
\end{equation*}
$$

where $\overline{\mathcal{J}_{V}^{m}}$ is the integral closure of \mathcal{J}_{V}^{m} in \mathcal{O}_{X}. In particular, ${ }^{b} K_{V}^{[m]}$ is always a coherent sheaf.
Proof. Let $\left(u_{k}\right)$ be a set of generators of $\mathcal{O}\left(\Lambda^{r} V^{*}\right)$ obtained (say) as the images of a basis $\left(d z_{I}\right)_{|I|=r}$ of $\Lambda^{r} T_{X}^{*}$ in some local coordinates near a point $x \in X$. Write $u_{k}=g_{k} \ell$ where ℓ is a local generator of \mathcal{L}_{V} at x. Then $\mathcal{J}_{V}=\left(g_{k}\right)$ by definition. The boundedness condition expressed in Def. 2.7 means that we take sections of the form $f \ell^{\otimes m}$ where f is a holomorphic function on $U \cap X^{\prime}$ (and U a neighborhood of x), such that

$$
\begin{equation*}
|f| \leqslant C\left(\sum\left|g_{k}\right|\right)^{m} \tag{3}
\end{equation*}
$$

for some constant $C>0$. But then f extends holomorphically to U into a function that lies in the integral closure $\overline{\mathcal{J}}_{V}^{m}$ (it is well known that the latter is characterized analytically by condition (2.83)). This proves Prop. 2.8.
2.9. Lemma. Let (X, V) be a directed variety.
(a) For any modification $\mu:(\widehat{X}, \widehat{V}) \rightarrow(X, V)$, there are always well defined injective natural morphisms of rank 1 sheaves

$$
{ }^{b} K_{V}^{[m]} \hookrightarrow \mu_{*}\left({ }^{b} K_{\widehat{V}}^{[m]}\right) \hookrightarrow \mathcal{L}_{V}^{\otimes m}
$$

(b) The direct image $\mu_{*}\left({ }^{b} K_{\hat{V}}^{[m]}\right)$ may only increase when we replace μ by a "higher" modification $\widetilde{\mu}=\mu^{\prime} \circ \mu: \widetilde{X} \rightarrow \widehat{X} \rightarrow X$ and $\widehat{V}=\mu^{*} V$ by $\widetilde{V}=\widetilde{\mu}^{*} V$, i.e. there are injections

$$
\mu_{*}\left({ }^{b} K_{\tilde{V}}^{[m]}\right) \hookrightarrow \widetilde{\mu}_{*}\left({ }^{b} K_{\tilde{V}}^{[m]}\right) \hookrightarrow \mathcal{L}_{V}^{\otimes m}
$$

We refer to this property as the monotonicity principle.
Proof. (a) The existence of the first arrow is seen as follows: the differential $\mu_{*}=d \mu: \widehat{V} \rightarrow \mu^{*} V$ is smooth, hence bounded with respect to ambient hermitian metrics on X and \widehat{X}, and going to the duals reverses the arrows while preserving boundedness with respect to the metrics. We thus get an arrow

$$
\mu^{*}\left({ }^{b} V^{\star}\right) \hookrightarrow{ }^{b} \widehat{V}^{\star} .
$$

By taking the top exterior power, followed by the m-th tensor product and the integral closure of the ideals involved, we get an injective arrow $\mu^{*}\left({ }^{b} K_{V}^{[m]}\right) \hookrightarrow{ }^{b} K_{\hat{V}}^{[m]}$. Finally we apply the direct image fonctor μ_{*} and the canonical morphism $\mathcal{F} \rightarrow \mu_{*} \mu^{*} \mathcal{F}$ to get the first inclusion morphism. The second arrow comes from the fact that $\mu^{*}\left({ }^{b} K_{V}^{[m]}\right)$ coincides with $\mathcal{L}_{V}^{\otimes m}$ (and with $\operatorname{det}\left(V^{*}\right)^{\otimes m}$) on the complement of the codimension 2 set $S=\operatorname{Sing}(V) \cup \mu(\operatorname{Exc}(\mu))$, and the fact that for every open set $U \subset X$, sections of \mathcal{L}_{V} defined on $U \backslash S$ automatically extend to U by the Riemann extension theorem, even without any boundedness assumption.
(b) Given $\mu^{\prime}: \widetilde{X} \rightarrow \widehat{X}$, we argue as in (a) that there is a bounded morphism $d \mu^{\prime}: \widetilde{V} \rightarrow \widehat{V}$.

By the monotonicity principle and the strong Noetherian property of coherent sheaves, we infer that there exists a maximal direct image when $\mu: \widehat{X} \rightarrow X$ runs over all non singular modifications of X. The following definition is thus legitimate.
2.10. Definition. We define the pluricanonical sheaves K_{V}^{m} of (X, V) to be the inductive limits

$$
K_{V}^{[m]}:=\underset{\mu}{\lim _{\vec{\mu}}} \mu_{*}\left({ }^{b} K_{\widehat{V}}^{[m]}\right)=\max _{\mu} \mu_{*}\left({ }^{b} K_{\widehat{V}}^{[m]}\right)
$$

taken over the family of all modifications $\mu:(\widehat{X}, \widehat{V}) \rightarrow(X, V)$, with the trivial (filtering) partial order. The canonical sheaf K_{V} itself is defined to be the same as $K_{V}^{[1]}$. By construction, we have for every $m \geqslant 0$ inclusions

$$
{ }^{b} K_{V}^{[m]} \hookrightarrow K_{V}^{[m]} \hookrightarrow \mathcal{L}_{V}^{\otimes m}
$$

and $K_{V}^{[m]}=\mathcal{J}_{V}^{[m]} \cdot \mathcal{L}_{V}^{\otimes m}$ for a certain sequence of integrally closed ideals $\mathcal{J}_{V}^{[m]} \subset \mathcal{O}_{X}$.
It is clear from this construction that $K_{V}^{[m]}$ is birationally invariant, i.e. that $K_{V}^{[m]}=\mu_{*}\left(K_{V^{\prime}}^{[m]}\right)$ for every modification $\mu:\left(X^{\prime}, V^{\prime}\right) \rightarrow(X, V)$. Moreover the sequence is submultiplicative, i.e. there are injections

$$
K_{V}^{\left[m_{1}\right]} \otimes K_{V}^{\left[m_{2}\right]} \hookrightarrow K_{V}^{\left[m_{1}+m_{2}\right]}
$$

for all non negative integers m_{1}, m_{2}; the corresponding sequence of ideals $\mathcal{J}_{V}^{[m]}$ is thus also submultiplicative. By blowing up $\mathcal{J}_{V}^{[m]}$ and taking a desingularization \widehat{X} of the blow-up, one can always find a log-resolution of $\mathcal{J}_{V}^{[m]}$, i.e. a modification $\mu_{m}: \widehat{X}_{m} \rightarrow X$ such that $\mu_{m}^{*} \mathcal{J}_{V}^{[m]} \subset \mathcal{O}_{\widehat{X}_{m}}$ is an invertible ideal sheaf; it follows that

$$
\mu_{m}^{*} K_{V}^{[m]}=\mu_{m}^{*} \mathcal{J}_{V}^{[m]} \cdot\left(\mu_{m}^{*} \mathcal{L}_{V}\right)^{\otimes m}
$$

is an invertible sheaf on \widehat{X}_{m}. We do not know whether μ_{m} can be taken independent of m, nor whether the inductive limit introduced in Definition 2.10 is reached for a μ that is independent of m. If such a "uniform" μ exists, it could be thought as a some sort of replacement for the resolution of singularities of directed structures (which do not exist in the naive sense that V could be made non singular). By means of a standard Serre-Siegel argument, one can easily show
2.11. Proposition. Let (X, V) be a directed variety (X, V) and F be an invertible sheaf on X. The following properties are equivalent:
(a) there exists a constant $c>0$ and $m_{0}>0$ such that $h^{0}\left(X, K_{V}^{[m]} \otimes F^{\otimes m}\right) \geqslant c m^{n}$ for $m \geqslant m_{0}$, where $n=\operatorname{dim} X$.
(b) the space of sections $H^{0}\left(X, K_{V}^{[m]} \otimes F^{\otimes m}\right)$ provides a generic embedding of X in projective space for sufficiently large m;
(c) there exists $m>0$ and a log-resolution $\mu_{m}: \widehat{X}_{m} \rightarrow X$ of $K_{V}^{[m]}$ such that $\mu_{m}^{*}\left(K_{V}^{[m]} \otimes F^{\otimes m}\right)$ is a big invertible sheaf on \widehat{X}_{m};
(d) there exists $m>0$, a modification $\widetilde{\mu}_{m}:\left(\widetilde{X}_{m}, \widetilde{V}_{m}\right) \rightarrow(X, V)$ and a log-resolution $\mu_{m}^{\prime}: \widehat{X}_{m} \rightarrow \widetilde{X}$ of ${ }^{b} K_{\widetilde{V}_{m}}^{[m]}$ such that $\mu_{m}^{* *}\left({ }^{b} K_{\widetilde{V}_{m}}^{[m]} \otimes \widetilde{\mu}_{m}^{*} F^{\otimes m}\right)$ is a big invertible sheaf on \widehat{X}_{m}.
We will express any of these equivalent properties by saying that the twisted pluricanonical sheaf sequence $K_{V}^{\bullet} \otimes F^{\bullet}$ is big.

In the special case $F=\mathcal{O}_{X}$, we introduce
2.12. Definition. We say that (X, V) is of general type if K_{V}^{\bullet} is big.

2.13. Remarks.

(a) At this point, it is important to stress the difference between "our" canonical sheaf K_{V}, and the sheaf \mathcal{L}_{V}, which is defined by some experts as "the canonical sheaf of the foliation" defined by V, in the integable case. Notice that \mathcal{L}_{V} can also be defined as the direct image $\mathcal{L}_{V}=i_{*} \mathcal{O}\left(\operatorname{det} V^{*}\right)$ associated with the injection $i: X \backslash \operatorname{Sing}(V) \hookrightarrow X$. The discrepancy already occurs with the rank 1 linear space $V \subset T_{\mathbb{P}_{\mathbb{C}}^{n}}$ consisting at each point $z \neq 0$ of the tangent to the line ($0 z$) (so that necessarily $\left.V_{0}=T_{\mathbb{P}_{\mathbb{C}}^{n}, 0}\right)$. As a sheaf (and not as a linear space), $i_{*} \mathcal{O}(V)$ is the invertible
sheaf generated by the vector field $\xi=\sum z_{j} \partial / \partial z_{j}$ on the affine open set $\mathbb{C}^{n} \subset \mathbb{P}_{\mathbb{C}}^{n}$, and therefore $\mathcal{L}_{V}:=i_{*} \mathcal{O}\left(V^{*}\right)$ is generated over \mathbb{C}^{n} by the unique 1 -form u such that $u(\xi)=1$. Since ξ vanishes at 0 , the generator u is unbounded with respect to a smooth metric h_{0} on $T_{\mathbb{P}_{\mathrm{C}}}$, and it is easily seen that K_{V} is the non invertible sheaf $K_{V}=\mathcal{L}_{V} \otimes \mathfrak{m}_{\mathbb{P}_{c}^{n}, 0}$. We can make it invertible by considering the blow-up $\mu: \widetilde{X} \rightarrow X$ of $X=\mathbb{P}_{\mathbb{C}}^{n}$ at 0 , so that $\mu^{*} K_{V}$ is isomorphic to $\mu^{*} \mathcal{L}_{V} \otimes \mathcal{O}_{\tilde{X}}(-E)$ where E is the exceptional divisor. The integral curves C of V are of course lines through 0 , and when a standard parametrization is used, their derivatives do not vanish at 0 , while the sections of $i_{*} \mathcal{O}(V)$ do - a first sign that $i_{*} \mathcal{O}(V)$ and $i_{*} \mathcal{O}\left(V^{*}\right)$ are the wrong objects to consider.
(b) When V is of rank 1 , we get a foliation by curves on X. If (X, V) is of general type (i.e. K_{V}^{\bullet} is big), we will see in Prop. 4.9 that almost all leaves of V are hyperbolic, i.e. covered by the unit disk. This would not be true if K_{V}^{\bullet} was replaced by \mathcal{L}_{V}, In fact, the examples of pencils of conics or cubic curves in \mathbb{P}^{2} already produce this phenomenon, as we have seen in the introduction, right after conjecture 0.4. For this second reason, we believe that K_{V}^{\bullet} is a more appropriate concept of "canonical sheaf" than \mathcal{L}_{V} is.
(c) When $\operatorname{dim} X=2$, a singularity of a (rank 1) foliation V is said to be simple if the linear part of the local vector field generating $\mathcal{O}(V)$ has two distinct eigenvalues $\lambda \neq 0, \mu \neq 0$ such that the quotient λ / μ is not a positive rational number. Seidenberg's theorem [Sei68] says there always exists a composition of blow-ups $\mu: \widehat{X} \rightarrow X$ such that $\widehat{V}=\mu^{*} V$ only has simple singularities. It is easy to check that the inductive limit canonical sheaf $K_{V}^{[m]}=\mu_{*}\left({ }^{b} K_{\widehat{V}}^{[m]}\right)$ is reached whenever $\widehat{V}=\mu^{*} V$ has simple singularities.

3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be related to other properties of a more algebraic nature. Theorem 3.1 below is a first step in this direction.
3.1. Theorem. Let (X, V) be a compact complex directed manifold and let $\sum \omega_{j k} d z_{j} \otimes d \bar{z}_{k}$ be a Kähler metric on X, with associated positive $(1,1)$-form $\omega=\frac{i}{2} \sum \omega_{j k} d z_{j} \wedge d \bar{z}_{k}, d \omega=0$. Consider the following three properties, which may or not be satisfied by (X, V) :
(i) (X, V) is hyperbolic.
(ii) There exists $\varepsilon>0$ such that every compact irreducible curve $C \subset X$ tangent to V satisfies

$$
-\chi(\bar{C})=2 g(\bar{C})-2 \geqslant \varepsilon \operatorname{deg}_{\omega}(C)
$$

where $g(\bar{C})$ is the genus of the normalization \bar{C} of $C, \chi(\bar{C})$ its Euler characteristic and $\operatorname{deg}_{\omega}(C)=$ $\int_{C} \omega$. (This property is of course independent of ω.)
(iii) There does not exist any non constant holomorphic map $\Phi: Z \rightarrow X$ from an abelian variety Z to X such that $\Phi_{*}\left(T_{Z}\right) \subset V$.
Then (i) \Rightarrow (ii) \Rightarrow (iii).
Proof. (i) \Rightarrow (ii). If (X, V) is hyperbolic, there is a constant $\varepsilon_{0}>0$ such that $\mathbf{k}_{(X, V)}(\xi) \geqslant \varepsilon_{0}\|\xi\|_{\omega}$ for all $\xi \in V$. Now, let $C \subset X$ be a compact irreducible curve tangent to V and let $\nu: \bar{C} \rightarrow C$ be its normalization. As (X, V) is hyperbolic, \bar{C} cannot be a rational or elliptic curve, hence \bar{C} admits the disk as its universal covering $\rho: \Delta \rightarrow \bar{C}$.

The Kobayashi-Royden metric \mathbf{k}_{Δ} is the Finsler metric $|d z| /\left(1-|z|^{2}\right)$ associated with the Poincaré metric $|d z|^{2} /\left(1-|z|^{2}\right)^{2}$ on Δ, and $\mathbf{k}_{\bar{C}}$ is such that $\rho^{*} \mathbf{k}_{\bar{C}}=\mathbf{k}_{\Delta}$. In other words, the metric $\mathbf{k}_{\bar{C}}$ is induced by the unique hermitian metric on \bar{C} of constant Gaussian curvature -4 . If $\sigma_{\Delta}=$ $\frac{i}{2} d z \wedge d \bar{z} /\left(1-|z|^{2}\right)^{2}$ and $\sigma_{\bar{C}}$ are the corresponding area measures, the Gauss-Bonnet formula (integral of the curvature $=2 \pi \chi(\bar{C})$) yields

$$
\int_{\bar{C}} d \sigma_{\bar{C}}=-\frac{1}{4} \int_{\bar{C}} \operatorname{curv}\left(\mathbf{k}_{\bar{C}}\right)=-\frac{\pi}{2} \chi(\bar{C})
$$

On the other hand, if $j: C \rightarrow X$ is the inclusion, the monotonicity property (2.2) applied to the holomorphic map $j \circ \nu: \bar{C} \rightarrow X$ shows that

$$
\mathbf{k}_{\bar{C}}(t) \geqslant \mathbf{k}_{(X, V)}\left((j \circ \nu)_{*} t\right) \geqslant \varepsilon_{0}\left\|(j \circ \nu)_{*} t\right\|_{\omega}, \quad \forall t \in T_{\bar{C}} .
$$

From this, we infer $d \sigma_{\bar{C}} \geqslant \varepsilon_{0}^{2}(j \circ \nu)^{*} \omega$, thus

$$
-\frac{\pi}{2} \chi(\bar{C})=\int_{\bar{C}} d \sigma_{\bar{C}} \geqslant \varepsilon_{0}^{2} \int_{\bar{C}}(j \circ \nu)^{*} \omega=\varepsilon_{0}^{2} \int_{C} \omega .
$$

Property (ii) follows with $\varepsilon=2 \varepsilon_{0}^{2} / \pi$.
(ii) \Rightarrow (iii). First observe that (ii) excludes the existence of elliptic and rational curves tangent to V. Assume that there is a non constant holomorphic map $\Phi: Z \rightarrow X$ from an abelian variety Z to X such that $\Phi_{*}\left(T_{Z}\right) \subset V$. We must have $\operatorname{dim} \Phi(Z) \geqslant 2$, otherwise $\Phi(Z)$ would be a curve covered by images of holomorphic maps $\mathbb{C} \rightarrow \Phi(Z)$, and so $\Phi(Z)$ would be elliptic or rational, contradiction. Select a sufficiently general curve Γ in Z (e.g., a curve obtained as an intersection of very generic divisors in a given very ample linear system $|L|$ in Z). Then all isogenies $u_{m}: Z \rightarrow Z, s \mapsto m s$ map Γ in a $1: 1$ way to curves $u_{m}(\Gamma) \subset Z$, except maybe for finitely many double points of $u_{m}(\Gamma)$ (if $\operatorname{dim} Z=2)$. It follows that the normalization of $u_{m}(\Gamma)$ is isomorphic to Γ. If Γ is general enough, similar arguments show that the images

$$
C_{m}:=\Phi\left(u_{m}(\Gamma)\right) \subset X
$$

are also generically 1:1 images of Γ, thus $\bar{C}_{m} \simeq \Gamma$ and $g\left(\bar{C}_{m}\right)=g(\Gamma)$. We claim that C_{m} has degree $=$ Const m^{2}. In fact

$$
\int_{C_{m}} \omega=\int_{\Gamma}\left(\Phi \circ u_{m}\right)^{*} \omega=\int_{Z}[\Gamma] \wedge u_{m}^{*}\left(\Phi^{*} \omega\right),
$$

and since every closed $(1,1)$-form on a torus is cohomologous to a constant form, we have $u_{m}^{*}\left(\Phi^{*} \omega\right) \equiv$ $m^{2} \Phi^{*} \omega$, thus $\operatorname{deg}_{\omega} C_{m}=m^{2} \operatorname{deg}_{\omega} C_{1}$ and $\left(2 g\left(\bar{C}_{m}\right)-2\right) / \operatorname{deg}_{\omega} C_{m} \rightarrow 0$ contradiction.
3.2. Definition. We say that a projective directed manifold (X, V) is "algebraically hyperbolic" if it satisfies property 3.1 (ii), namely, if there exists $\varepsilon>0$ such that every algebraic curve $C \subset X$ tangent to V satisfies

$$
2 g(\bar{C})-2 \geqslant \varepsilon \operatorname{deg}_{\omega}(C) .
$$

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic analogue of the openness property.
3.3. Proposition. Let $(\mathcal{X}, \mathcal{V}) \rightarrow S$ be an algebraic family of projective algebraic directed manifolds (given by a projective morphism $\mathcal{X} \rightarrow S$). Then the set of $t \in S$ such that the fiber $\left(X_{t}, V_{t}\right)$ is algebraically hyperbolic is open with respect to the "countable Zariski topology" of S (by definition, this is the topology for which closed sets are countable unions of algebraic sets).
Proof. After replacing S by a Zariski open subset, we may assume that the total space \mathcal{X} itself is quasi-projective. Let ω be the Kähler metric on \mathcal{X} obtained by pulling back the Fubini-Study metric via an embedding in a projective space. If integers $d>0, g \geqslant 0$ are fixed, the set $A_{d, g}$ of $t \in S$ such that X_{t} contains an algebraic 1-cycle $C=\sum m_{j} C_{j}$ tangent to V_{t} with $\operatorname{deg}_{\omega}(C)=d$ and $g(\bar{C})=\sum m_{j} g\left(\bar{C}_{j}\right) \leqslant g$ is a closed algebraic subset of S (this follows from the existence of a relative cycle space of curves of given degree, and from the fact that the geometric genus is Zariski lower semicontinuous). Now, the set of non algebraically hyperbolic fibers is by definition

$$
\bigcap_{k>0} \bigcup_{2 g-2<d / k} A_{d, g} .
$$

This concludes the proof (of course, one has to know that the countable Zariski topology is actually a topology, namely that the class of countable unions of algebraic sets is stable under arbitrary intersections; this can be easily checked by an induction on dimension).
3.4. Remark. More explicit versions of the openness property have been dealt with in the literature. H. Clemens ([Cle86] and [CKL88]) has shown that on a very generic surface of degree $d \geqslant 5$ in \mathbb{P}^{3}, the curves of type (d, k) are of genus $g>k d(d-5) / 2$ (recall that a very generic surface $X \subset \mathbb{P}^{3}$ of degree $\geqslant 4$ has Picard group generated by $\mathcal{O}_{X}(1)$ thanks to the Noether-Lefschetz theorem, thus any curve on the surface is a complete intersection with another hypersurface of degree k; such a curve is said to be of type (d, k); genericity is taken here in the sense of the countable Zariski topology). Improving on this result of Clemens, Geng Xu [Xu94] has shown that every curve contained in a very generic surface of degree $d \geqslant 5$ satisfies the sharp bound $g \geqslant d(d-3) / 2-2$. This actually shows that a very generic surface of degree $d \geqslant 6$ is algebraically hyperbolic. Although a very generic quintic surface has no rational or elliptic curves, it seems to be unknown whether a (very) generic quintic surface is algebraically hyperbolic in the sense of Definition 3.2.

In higher dimension, L. Ein ([Ein88], [Ein91]) proved that every subvariety of a very generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geqslant 2 n+1(n \geqslant 2)$, is of general type. This was reproved by a simple efficient technique by C. Voisin in [Voi96].
3.5. Remark. It would be interesting to know whether algebraic hyperbolicity is open with respect to the Euclidean topology ; still more interesting would be to know whether Kobayashi hyperbolicity is open for the countable Zariski topology (of course, both properties would follow immediately if one knew that algebraic hyperbolicity and Kobayashi hyperbolicity coincide, but they seem otherwise highly non trivial to establish). The latter openness property has raised an important amount of work around the following more particular question: is a (very) generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree d large enough (say $d \geqslant 2 n+1$) Kobayashi hyperbolic? Again, "very generic" is to be taken here in the sense of the countable Zariski topology. Brody-Green [$\operatorname{BrGr} 77$] and Nadel [Nad89] produced examples of hyperbolic surfaces in \mathbb{P}^{3} for all degrees $d \geqslant 50$, and Masuda-Noguchi [MaNo93] gave examples of such hypersurfaces in \mathbb{P}^{n} for arbitrary $n \geqslant 2$, of degree $d \geqslant d_{0}(n)$ large enough. The hyperbolicity of complements $\mathbb{P}^{n} \backslash D$ of generic divisors may be inferred from the compact case; in fact if $D=\left\{P\left(z_{0}, \ldots, z_{n}\right)=0\right\}$ is a smooth generic divisor of degree d, one may look at the hypersurface

$$
X=\left\{z_{n+1}^{d}=P\left(z_{0}, \ldots, z_{n}\right)\right\} \subset \mathbb{P}^{n+1}
$$

which is a cyclic $d: 1$ covering of \mathbb{P}^{n}. Since any holomorphic map $f: \mathbb{C} \rightarrow \mathbb{P}^{n} \backslash D$ can be lifted to X, it is clear that the hyperbolicity of X would imply the hyperbolicity of $\mathbb{P}^{n} \backslash D$. The hyperbolicity of complements of divisors in \mathbb{P}^{n} has been investigated by many authors.

In the "absolute case" $V=T_{X}$, it seems reasonable to expect that properties 3.1 (i), (ii) are equivalent, i.e. that Kobayashi and algebraic hyperbolicity coincide. However, it was observed by Serge Cantat [Can00] that property 3.1 (iii) is not sufficient to imply the hyperbolicity of X, at least when X is a general complex surface: a general (non algebraic) K3 surface is known to have no elliptic curves and does not admit either any surjective map from an abelian variety; however such a surface is not Kobayashi hyperbolic. We are uncertain about the sufficiency of 3.1 (iii) when X is assumed to be projective.

4. The Ahlfors-Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related with suitable negativity properties of the curvature. For instance, it is a standard fact already observed in Kobayashi [Kob70] that the negativity of T_{X} (or the ampleness of T_{X}^{*}) implies the hyperbolicity of X. There are many ways of improving or generalizing this result. We present here a few simple examples of such generalizations.

4.A. Exploiting curvature via potential theory

If (V, h) is a holomorphic vector bundle equipped with a smooth hermitian metric, we denote by $\nabla_{h}=\nabla_{h}^{\prime}+\nabla_{h}^{\prime \prime}$ the associated Chern connection and by $\Theta_{V, h}=\frac{i}{2 \pi} \nabla_{h}^{2}$ its Chern curvature tensor.
4.1. Proposition. Let (X, V) be a compact directed manifold. Assume that V is non singular and that V^{*} is ample. Then (X, V) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to be ample if $S^{m} E$ has enough global sections $\sigma_{1}, \ldots, \sigma_{N}$ so as to generate 1-jets of sections at any point, when m is large. One obtains a Finsler metric N on E^{*} by putting

$$
N(\xi)=\left(\sum_{1 \leqslant j \leqslant N}\left|\sigma_{j}(x) \cdot \xi^{m}\right|^{2}\right)^{1 / 2 m}, \quad \xi \in E_{x}^{*}
$$

and N is then a strictly plurisubharmonic function on the total space of E^{*} minus the zero section (in other words, the line bundle $\mathcal{O}_{P\left(E^{*}\right)}(1)$ has a metric of positive curvature). By the ampleness assumption on V^{*}, we thus have a Finsler metric N on V which is strictly plurisubharmonic outside the zero section. By the Brody lemma, if (X, V) is not hyperbolic, there is a non constant entire curve $g: \mathbb{C} \rightarrow X$ tangent to V such that $\sup _{\mathbb{C}}\left\|g^{\prime}\right\|_{\omega} \leqslant 1$ for some given hermitian metric ω on X. Then $N\left(g^{\prime}\right)$ is a bounded subharmonic function on \mathbb{C} which is strictly subharmonic on $\left\{g^{\prime} \neq 0\right\}$. This is a contradiction, for any bounded subharmonic function on \mathbb{C} must be constant.

4.B. Ahlfors-Schwarz LEMMA

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors-Schwarz lemma (see e.g. [Lang87]; we refer to [Dem95] for the generalized version presented here; the proof is merely an application of the maximum principle plus a regularization argument).
4.2. Ahlfors-Schwarz lemma. Let $\gamma(t)=\gamma_{0}(t) i d t \wedge d \bar{t}$ be a hermitian metric on Δ_{R} where $\log \gamma_{0}$ is a subharmonic function such that $i \partial \bar{\partial} \log \gamma_{0}(t) \geqslant A \gamma(t)$ in the sense of currents, for some positive constant A. Then γ can be compared with the Poincaré metric of Δ_{R} as follows:

$$
\gamma(t) \leqslant \frac{2}{A} \frac{R^{-2}|d t|^{2}}{\left(1-|t|^{2} / R^{2}\right)^{2}}
$$

More generally, let $\gamma=i \sum \gamma_{j k} d t_{j} \wedge d \bar{t}_{k}$ be an almost everywhere positive hermitian form on the ball $B(0, R) \subset \mathbb{C}^{p}$, such that $-\operatorname{Ricci}(\gamma):=i \partial \bar{\partial} \log \operatorname{det} \gamma \geqslant A \gamma$ in the sense of currents, for some constant $A>0$ (this means in particular that $\operatorname{det} \gamma=\operatorname{det}\left(\gamma_{j k}\right)$ is such that $\log \operatorname{det} \gamma$ is plurisubharmonic). Then the γ-volume form is controlled by the Poincaré volume form :

$$
\operatorname{det}(\gamma) \leqslant\left(\frac{p+1}{A R^{2}}\right)^{p} \frac{1}{\left(1-|t|^{2} / R^{2}\right)^{p+1}}
$$

4.C. Applications of the Ahlfors-Schwarz lemma to hyperbolicity

Let (X, V) be a projective directed variety. We assume throughout this subsection that X is non singular.
4.3. Proposition. Assume that V itself is non singular and that the dual bundle V^{*} is "very big" in the following sense: there exists an ample line bundle L and a sufficiently large integer m such that the global sections in $H^{0}\left(X, S^{m} V^{*} \otimes L^{-1}\right)$ generate all fibers over $X \backslash Y$, for some analytic subset $Y \subsetneq X$. Then all entire curves $f: \mathbb{C} \rightarrow X$ tangent to V satisfy $f(\mathbb{C}) \subset Y$.
Proof. Let $\sigma_{1}, \ldots, \sigma_{N} \in H^{0}\left(X, S^{m} V^{*} \otimes L^{-1}\right)$ be a basis of sections generating $S^{m} V^{*} \otimes L^{-1}$ over $X \backslash Y$. If $f: \mathbb{C} \rightarrow X$ is tangent to V, we define a semipositive hermitian form $\gamma(t)=\gamma_{0}(t)|d t|^{2}$ on \mathbb{C} by putting

$$
\gamma_{0}(t)=\sum\left\|\sigma_{j}(f(t)) \cdot f^{\prime}(t)^{m}\right\|_{L^{-1}}^{2 / m}
$$

where $\left\|\|_{L}\right.$ denotes a hermitian metric with positive curvature on L. If $f(\mathbb{C}) \not \subset Y$, the form γ is not identically 0 and we then find

$$
i \partial \bar{\partial} \log \gamma_{0} \geqslant \frac{2 \pi}{m} f^{*} \Theta_{L}
$$

where Θ_{L} is the curvature form. The positivity assumption combined with an obvious homogeneity argument yield

$$
\frac{2 \pi}{m} f^{*} \Theta_{L} \geqslant \varepsilon\left\|f^{\prime}(t)\right\|_{\omega}^{2}|d t|^{2} \geqslant \varepsilon^{\prime} \gamma(t)
$$

for any given hermitian metric ω on X. Now, for any t_{0} with $\gamma_{0}\left(t_{0}\right)>0$, the Ahlfors-Schwarz lemma shows that f can only exist on a disk $D\left(t_{0}, R\right)$ such that $\gamma_{0}\left(t_{0}\right) \leqslant \frac{2}{\varepsilon^{\prime}} R^{-2}$, contradiction.

There are similar results for p-measure hyperbolicity, e.g.
4.4. Proposition. Assume that V is non singular and that $\Lambda^{p} V^{*}$ is ample. Then (X, V) is infinitesimally p-measure hyperbolic. More generally, assume that $\Lambda^{p} V^{*}$ is very big with base locus contained in $Y \subsetneq X$ (see 3.3). Then \mathbf{e}^{p} is non degenerate over $X \backslash Y$.
Proof. By the ampleness assumption, there is a smooth Finsler metric N on $\Lambda^{p} V$ which is strictly plurisubharmonic outside the zero section. We select also a hermitian metric ω on X. For any holomorphic map $f: \mathbb{B}_{p} \rightarrow X$ we define a semipositive hermitian metric $\widetilde{\gamma}$ on \mathbb{B}_{p} by putting $\widetilde{\gamma}=f^{*} \omega$. Since ω need not have any good curvature estimate, we introduce the function $\delta(t)=$ $N_{f(t)}\left(\Lambda^{p} f^{\prime}(t) \cdot \tau_{0}\right)$, where $\tau_{0}=\partial / \partial t_{1} \wedge \cdots \wedge \partial / \partial t_{p}$, and select a metric $\gamma=\lambda \widetilde{\gamma}$ conformal to $\widetilde{\gamma}$ such that $\operatorname{det} \gamma=\delta$. Then λ^{p} is equal to the ratio $N / \Lambda^{p} \omega$ on the element $\Lambda^{p} f^{\prime}(t) \cdot \tau_{0} \in \Lambda^{p} V_{f(t)}$. Since X is compact, it is clear that the conformal factor λ is bounded by an absolute constant independent of f. From the curvature assumption we then get

$$
i \partial \bar{\partial} \log \operatorname{det} \gamma=i \partial \bar{\partial} \log \delta \geqslant\left(f, \Lambda^{p} f^{\prime}\right)^{*}(i \partial \bar{\partial} \log N) \geqslant \varepsilon f^{*} \omega \geqslant \varepsilon^{\prime} \gamma
$$

By the Ahlfors-Schwarz lemma we infer that $\operatorname{det} \gamma(0) \leqslant C$ for some constant C, i.e., $N_{f(0)}\left(\Lambda^{p} f^{\prime}(0)\right.$. $\left.\tau_{0}\right) \leqslant C^{\prime}$. This means that the Kobayashi-Eisenman pseudometric $\mathbf{e}_{(X, V)}^{p}$ is positive definite everywhere and uniformly bounded from below. In the case $\Lambda^{p} V^{*}$ is very big with base locus Y, we use essentially the same arguments, but we then only have N being positive definite on $X \backslash Y$.
4.5. Corollary ([Gri71], KobO71]). If X is a projective variety of general type, the KobayashiEisenmann volume form $\mathbf{e}^{n}, n=\operatorname{dim} X$, can degenerate only along a proper algebraic set $Y \subsetneq X$.

The converse of Corollary 4.5 is expected to be true, namely, the generic non degeneracy of \mathbf{e}^{n} should imply that X is of general type; this is only known for surfaces (see [GrGr79] and [MoMu82]):
4.6. General Type Conjecture (Green-Griffiths [GrGr79]). A projective algebraic variety X is measure hyperbolic (i.e. \mathbf{e}^{n} degenerates only along a proper algebraic subvariety) if and only if X is of general type.

An essential step in the proof of the necessity of having general type subvarieties would be to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau manifolds and holomorphic symplectic manifolds, all of which have $c_{1}(X)=0$) are not measure hyperbolic, e.g. by exhibiting enough families of curves $C_{s, \ell}$ covering X such that $\left(2 g\left(\bar{C}_{s, \ell}\right)-2\right) / \operatorname{deg}\left(C_{s, \ell}\right) \rightarrow 0$.
4.7. Conjectural corollary (Lang). A projective algebraic variety X is hyperbolic if and only if all its algebraic subvarieties (including X itself) are of general type.
4.8. Remark. The GGL conjecture implies the "if" part of 4.7, and the General Type Conjecture 4.6 implies the "only if" part of 4.7. In fact if the GGL conjecture holds and every subvariety Y of X is of general type, then it is easy to infer that every entire curve $f: \mathbb{C} \rightarrow X$ has to be constant by induction on $\operatorname{dim} X$, because in fact f maps \mathbb{C} to a certain subvariety $Y \subsetneq X$. Therefore X is hyperbolic. Conversely, if Conjecture 4.6 holds and X has a certain subvariety Y which is not of general type, then Y is not measure hyperbolic. However Proposition 2.4 shows that hyperbolicity implies measure hyperbolicity. Therefore Y is not hyperbolic and so X itself is not hyperbolic either.

We end this section by another easy application of the Ahlfors-Schwarz lemma for the case of rank 1 (possibly singular) foliations.
4.9. Proposition. Let (X, V) be a projective directed manifold. Assume that V is of rank 1 and that K_{V}^{\bullet} is big. Then S be the union of the singular set $\operatorname{Sing}(V)$ and of the base locus of K_{V}^{\bullet} (namely the intersection of the images $\mu_{m}\left(B_{m}\right)$ of the base loci B_{m} of the invertible sheaves $\mu_{m}^{*} K_{V}^{[m]}, m>0$, obtained by taking log-resolutions). Then $\mathrm{ECL}(X, V) \subset S$, in other words, all non hyperbolic leaves of V are contained in S.
Proof. By 2.11 (d), we can take a blow-up $\widetilde{\mu}_{m}: \widetilde{X}_{m} \rightarrow X$ and a log-resolution $\mu_{m}^{\prime}: \widehat{X}_{m} \rightarrow \widetilde{X}_{m}$ such that $F_{m}=\mu_{m}^{* *}\left({ }^{b} K_{\widetilde{V}_{m}}^{[m]}\right)$ is a big invertible sheaf. This means that (after possibly increasing m) we can find sections $\sigma_{1}, \ldots \sigma_{N} \in H^{0}\left(\widehat{X}_{m}, F_{m}\right)$ that define a (singular) hermitian metric with strictly positive curvature on F_{m}, cf. Def. 8.1 below. Now, for every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ not contained in S, we can choose m and a lifting $\widetilde{f}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\widetilde{X}, \widetilde{V})$ such that $\widetilde{f}(\mathbb{C})$ is not contained in the base locus of our sections. Again, we can define a semipositive hermitian form $\gamma(t)=\gamma_{0}(t)|d t|^{2}$ on \mathbb{C} by putting

$$
\gamma_{0}(t)=\sum\left\|\sigma_{j}(f(t)) \cdot f^{\prime}(t)^{m}\right\|_{L^{-1}}^{2 / m}
$$

Then γ is not identically zero and we have $i \partial \bar{\partial} \log \gamma_{0} \geqslant \varepsilon \gamma$ by the strict postivity of the curvature. One should also notice that γ_{0} is locally bounded from above by the assumption that the σ_{j} 's come from locally bounded sections on \widetilde{X}_{m}. This contradicts the Ahlfors-Schwarz lemma, and thus it cannot happen that $f(\mathbb{C}) \not \subset S$.

5. Projectivization of a directed manifold

5.A. THE 1-JET FONCTOR

The basic idea is to introduce a fonctorial process which produces a new complex directed manifold $(\widetilde{X}, \widetilde{V})$ from a given one (X, V). The new structure $(\widetilde{X}, \tilde{V})$ plays the role of a space of 1-jets over X. Fisrt assume that V is non singular. We let

$$
\widetilde{X}=P(V), \quad \tilde{V} \subset T_{\widetilde{X}}
$$

be the projectivized bundle of lines of V, together with a subbundle \widetilde{V} of $T_{\tilde{X}}$ defined as follows: for every point $(x,[v]) \in \widetilde{X}$ associated with a vector $v \in V_{x} \backslash\{0\}$,

$$
\begin{equation*}
\widetilde{V}_{(x,[v])}=\left\{\xi \in T_{X},(x,[v]) ; \pi_{*} \xi \in \mathbb{C} v\right\}, \quad \mathbb{C} v \subset V_{x} \subset T_{X, x} \tag{5.1}
\end{equation*}
$$

where $\pi: \widetilde{X}=P(V) \rightarrow X$ is the natural projection and $\pi_{*}: T_{\tilde{X}} \rightarrow \pi^{*} T_{X}$ is its differential. On $\widetilde{X}=P(\underset{\sim}{V})$ we have a tautological line bundle $\mathcal{O}_{\tilde{X}}(-1) \subset \pi^{*} V$ such that $\mathcal{O}_{\tilde{X}}(-1)_{(x,[v])}=\mathbb{C} v$. The bundle \widetilde{V} is characterized by the two exact sequences

$$
\begin{align*}
& 0 \longrightarrow T_{\tilde{X} / X} \longrightarrow \widetilde{V} \xrightarrow{\pi_{*}} \mathcal{O}_{\tilde{X}}(-1) \longrightarrow 0 \tag{5.2}\\
& 0 \longrightarrow \mathcal{O}_{\tilde{X}} \longrightarrow \pi^{*} V \otimes \mathcal{O}_{\tilde{X}}(1) \longrightarrow T_{\widetilde{X}} / X \longrightarrow 0
\end{align*}
$$

where $T_{\widetilde{X}} / X$ denotes the relative tangent bundle of the fibration $\pi: \widetilde{X} \rightarrow X$. The first sequence is a direct consequence of the definition of \widetilde{V}, whereas the second is a relative version of the Euler exact sequence describing the tangent bundle of the fibers $P\left(V_{x}\right)$. From these exact sequences we infer

$$
\begin{equation*}
\operatorname{dim} \tilde{X}=n+r-1, \quad \operatorname{rank} \tilde{V}=\operatorname{rank} V=r \tag{5.3}
\end{equation*}
$$

and by taking determinants we find $\operatorname{det}\left(T_{\widetilde{X} / X}\right)=\pi^{*} \operatorname{det} V \otimes \mathcal{O} \widetilde{X}(r)$, thus

$$
\begin{equation*}
\operatorname{det} \widetilde{V}=\pi^{*} \operatorname{det} V \otimes \mathcal{O}_{\widetilde{X}}(r-1) \tag{5.4}
\end{equation*}
$$

By definition, $\pi:(\tilde{X}, \tilde{V}) \rightarrow(X, V)$ is a morphism of complex directed manifolds. Clearly, our construction is fonctorial, i.e., for every morphism of directed manifolds $\Phi:(X, V) \rightarrow(Y, W)$,
there is a commutative diagram

where the left vertical arrow is the meromorphic map $P(V) \rightarrow-->P(W)$ induced by the differential $\Phi_{*}: V \rightarrow \Phi^{*} W$ ($\widetilde{\Phi}$ is actually holomorphic if $\Phi_{*}: V \rightarrow \Phi^{*} W$ is injective).

5.B. Lifting of curves to the 1-JEt bundle

Suppose that we are given a holomorphic curve $f: \Delta_{R} \rightarrow X$ parametrized by the disk Δ_{R} of centre 0 and radius R in the complex plane, and that f is a tangent curve of the directed manifold, i.e., $f^{\prime}(t) \in V_{f(t)}$ for every $t \in \Delta_{R}$. If f is non constant, there is a well defined and unique tangent line $\left[f^{\prime}(t)\right]$ for every t, even at stationary points, and the map

$$
\begin{equation*}
\tilde{f}: \Delta_{R} \rightarrow \widetilde{X}, \quad t \mapsto \widetilde{f}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \tag{5.6}
\end{equation*}
$$

is holomorphic (at a stationary point t_{0}, we just write $f^{\prime}(t)=\left(t-t_{0}\right)^{s} u(t)$ with $s \in \mathbb{N}^{*}$ and $u\left(t_{0}\right) \neq 0$, and we define the tangent line at t_{0} to be $\left[u\left(t_{0}\right)\right]$, hence $\widetilde{f}(t)=(f(t),[u(t)])$ near t_{0}; even for $t=t_{0}$, we still denote $\left[f^{\prime}\left(t_{0}\right)\right]=\left[u\left(t_{0}\right)\right]$ for simplicity of notation). By definition $f^{\prime}(t) \in \mathcal{O} \tilde{X}(-1) \tilde{f}(t)=\mathbb{C} u(t)$, hence the derivative f^{\prime} defines a section

$$
\begin{equation*}
f^{\prime}: T_{\Delta_{R}} \rightarrow \widetilde{f}^{*} \mathcal{O} \tilde{X}(-1) \tag{5.7}
\end{equation*}
$$

Moreover $\pi \circ \tilde{f}=f$, therefore

$$
\pi_{*} \widetilde{f}^{\prime}(t)=f^{\prime}(t) \in \mathbb{C} u(t) \Longrightarrow \widetilde{f}^{\prime}(t) \in \widetilde{V}_{(f(t), u(t))}=\widetilde{V}_{\tilde{f}(t)}
$$

and we see that \tilde{f} is a tangent trajectory of (\tilde{X}, \tilde{V}). We say that \tilde{f} is the canonical lifting of f to \widetilde{X}. Conversely, if $g: \Delta_{R} \rightarrow \widetilde{X}$ is a tangent trajectory of $(\widetilde{X}, \widetilde{V})$, then by definition of \widetilde{V} we see that $f=\pi \circ g$ is a tangent trajectory of (X, V) and that $g=\tilde{f}$ (unless g is contained in a vertical fiber $P\left(V_{x}\right)$, in which case f is constant).

For any point $x_{0} \in X$, there are local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on a neighborhood Ω of x_{0} such that the fibers $\left(V_{z}\right)_{z \in \Omega}$ can be defined by linear equations

$$
\begin{equation*}
V_{z}=\left\{\xi=\sum_{1 \leqslant j \leqslant n} \xi_{j} \frac{\partial}{\partial z_{j}} ; \xi_{j}=\sum_{1 \leqslant k \leqslant r} a_{j k}(z) \xi_{k} \text { for } j=r+1, \ldots, n\right\}, \tag{5.8}
\end{equation*}
$$

where $\left(a_{j k}\right)$ is a holomorphic $(n-r) \times r$ matrix. It follows that a vector $\xi \in V_{z}$ is completely determined by its first r components $\left(\xi_{1}, \ldots, \xi_{r}\right)$, and the affine chart $\xi_{j} \neq 0$ of $P(V)_{\mid \Omega}$ can be described by the coordinate system

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{n} ; \frac{\xi_{1}}{\xi_{j}}, \ldots, \frac{\xi_{j-1}}{\xi_{j}}, \frac{\xi_{j+1}}{\xi_{j}}, \ldots, \frac{\xi_{r}}{\xi_{j}}\right) . \tag{5.9}
\end{equation*}
$$

Let $f \simeq\left(f_{1}, \ldots, f_{n}\right)$ be the components of f in the coordinates $\left(z_{1}, \ldots, z_{n}\right)$ (we suppose here R so small that $\left.f\left(\Delta_{R}\right) \subset \Omega\right)$. It should be observed that f is uniquely determined by its initial value x and by the first r components $\left(f_{1}, \ldots, f_{r}\right)$. Indeed, as $f^{\prime}(t) \in V_{f(t)}$, we can recover the other components by integrating the system of ordinary differential equations

$$
\begin{equation*}
f_{j}^{\prime}(t)=\sum_{1 \leqslant k \leqslant r} a_{j k}(f(t)) f_{k}^{\prime}(t), \quad j>r, \tag{5.10}
\end{equation*}
$$

on a neighborhood of 0 , with initial data $f(0)=x$. We denote by $m=m\left(f, t_{0}\right)$ the multiplicity of f at any point $t_{0} \in \Delta_{R}$, that is, $m\left(f, t_{0}\right)$ is the smallest integer $m \in \mathbb{N}^{*}$ such that $f_{j}^{(m)}\left(t_{0}\right) \neq 0$ for some j. By (5.10), we can always suppose $j \in\{1, \ldots, r\}$, for example $f_{r}^{(m)}\left(t_{0}\right) \neq 0$. Then
$f^{\prime}(t)=\left(t-t_{0}\right)^{m-1} u(t)$ with $u_{r}\left(t_{0}\right) \neq 0$, and the lifting \widetilde{f} is described in the coordinates of the affine chart $\xi_{r} \neq 0$ of $P(V)_{\mid \Omega}$ by

$$
\begin{equation*}
\tilde{f} \simeq\left(f_{1}, \ldots, f_{n} ; \frac{f_{1}^{\prime}}{f_{r}^{\prime}}, \ldots, \frac{f_{r-1}^{\prime}}{f_{r}^{\prime}}\right) \tag{5.11}
\end{equation*}
$$

5.C. Curvature properties of the 1 -Jet bundle

We end this section with a few curvature computations. Assume that V is equipped with a smooth hermitian metric h. Denote by $\nabla_{h}=\nabla_{h}^{\prime}+\nabla_{h}^{\prime \prime}$ the associated Chern connection and by $\Theta_{V, h}=\frac{i}{2 \pi} \nabla_{h}^{2}$ its Chern curvature tensor. For every point $x_{0} \in X$, there exists a "normalized" holomorphic frame $\left(e_{\lambda}\right)_{1 \leqslant \lambda \leqslant r}$ on a neighborhood of x_{0}, such that

$$
\begin{equation*}
\left\langle e_{\lambda}, e_{\mu}\right\rangle_{h}=\delta_{\lambda \mu}-\sum_{1 \leqslant j, k \leqslant n} c_{j k \lambda \mu} z_{j} \bar{z}_{k}+O\left(|z|^{3}\right), \tag{5.12}
\end{equation*}
$$

with respect to any holomorphic coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ centered at x_{0}. A computation of $d^{\prime}\left\langle e_{\lambda}, e_{\mu}\right\rangle_{h}=\left\langle\nabla_{h}^{\prime} e_{\lambda}, e_{\mu}\right\rangle_{h}$ and $\nabla_{h}^{2} e_{\lambda}=d^{\prime \prime} \nabla_{h}^{\prime} e_{\lambda}$ then gives

$$
\begin{align*}
\nabla_{h}^{\prime} e_{\lambda} & =-\sum_{j, k, \mu} c_{j k \lambda \mu} \bar{z}_{k} d z_{j} \otimes e_{\mu}+O\left(|z|^{2}\right), \\
\Theta_{V, h}\left(x_{0}\right) & =\frac{i}{2 \pi} \sum_{j, k, \lambda, \mu} c_{j k \lambda \mu} d z_{j} \wedge d \bar{z}_{k} \otimes e_{\lambda}^{*} \otimes e_{\mu} . \tag{5.13}
\end{align*}
$$

The above curvature tensor can also be viewed as a hermitian form on $T_{X} \otimes V$. In fact, one associates with $\Theta_{V, h}$ the hermitian form $\left\langle\Theta_{V, h}\right\rangle$ on $T_{X} \otimes V$ defined for all $(\zeta, v) \in T_{X} \times_{X} V$ by

$$
\begin{equation*}
\left\langle\Theta_{V, h}\right\rangle(\zeta \otimes v)=\sum_{1 \leqslant j, k \leqslant n, 1 \leqslant \lambda, \mu \leqslant r} c_{j k \lambda \mu} \zeta_{j} \bar{\zeta}_{k} v_{\lambda} \bar{v}_{\mu} . \tag{5.14}
\end{equation*}
$$

Let h_{1} be the hermitian metric on the tautological line bundle $\mathcal{O}_{P(V)}(-1) \subset \pi^{*} V$ induced by the metric h of V. We compute the curvature (1,1)-form $\Theta_{h_{1}}\left(\mathcal{O}_{P(V)}(-1)\right)$ at an arbitrary point $\left(x_{0},\left[v_{0}\right]\right) \in P(V)$, in terms of $\Theta_{V, h}$. For simplicity, we suppose that the frame $\left(e_{\lambda}\right)_{1 \leqslant \lambda \leqslant r}$ has been chosen in such a way that $\left[e_{r}\left(x_{0}\right)\right]=\left[v_{0}\right] \in P(V)$ and $\left|v_{0}\right|_{h}=1$. We get holomorphic local coordinates $\left(z_{1}, \ldots, z_{n} ; \xi_{1}, \ldots, \xi_{r-1}\right)$ on a neighborhood of ($\left.x_{0},\left[v_{0}\right]\right)$ in $P(V)$ by assigning

$$
\left(z_{1}, \ldots, z_{n} ; \xi_{1}, \ldots, \xi_{r-1}\right) \longmapsto\left(z,\left[\xi_{1} e_{1}(z)+\cdots+\xi_{r-1} e_{r-1}(z)+e_{r}(z)\right]\right) \in P(V) .
$$

Then the function

$$
\eta(z, \xi)=\xi_{1} e_{1}(z)+\cdots+\xi_{r-1} e_{r-1}(z)+e_{r}(z)
$$

defines a holomorphic section of $\mathcal{O}_{P(V)}(-1)$ in a neighborhood of $\left(x_{0},\left[v_{0}\right]\right)$. By using the expansion (5.12) for h, we find

$$
\begin{align*}
|\eta|_{h_{1}}^{2}=|\eta|_{h}^{2}=1+|\xi|^{2} & -\sum_{1 \leqslant j, k \leqslant n} c_{j k r r} z_{j} \bar{z}_{k}+O\left((|z|+|\xi|)^{3}\right), \\
\Theta_{h_{1}}\left(\mathcal{O}_{P(V)}(-1)\right)_{\left(x_{0},\left[v_{0}\right]\right)} & =-\frac{i}{2 \pi} \partial \bar{\partial} \log |\eta|_{h_{1}}^{2} \\
& =\frac{i}{2 \pi}\left(\sum_{1 \leqslant j, k \leqslant n} c_{j k r r} d z_{j} \wedge d \bar{z}_{k}-\sum_{1 \leqslant \lambda \leqslant r-1} d \xi_{\lambda} \wedge d \bar{\xi}_{\lambda}\right) . \tag{5.15}
\end{align*}
$$

6. Jets of curves and Semple jet bundles

6.A. SEmple TOWER OF NON SINGULAR DIRECTED VARIETIES

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths [GrGr79], we let $J_{k} \rightarrow X$ be the bundle of k-jets of germs of parametrized curves in X, that is, the set of equivalence classes of holomorphic maps $f:(\mathbb{C}, 0) \rightarrow(X, x)$, with the equivalence relation $f \sim g$ if and only if all derivatives $f^{(j)}(0)=g^{(j)}(0)$ coincide for $0 \leqslant j \leqslant k$, when computed in some local coordinate system of X near x. The projection map $J_{k} \rightarrow X$ is simply $f \mapsto f(0)$. If $\left(z_{1}, \ldots, z_{n}\right)$ are local holomorphic coordinates on an open set $\Omega \subset X$, the elements f of any fiber $J_{k, x}, x \in \Omega$, can be seen as \mathbb{C}^{n}-valued maps

$$
f=\left(f_{1}, \ldots, f_{n}\right):(\mathbb{C}, 0) \rightarrow \Omega \subset \mathbb{C}^{n}
$$

and they are completetely determined by their Taylor expansion of order k at $t=0$

$$
f(t)=x+t f^{\prime}(0)+\frac{t^{2}}{2!} f^{\prime \prime}(0)+\cdots+\frac{t^{k}}{k!} f^{(k)}(0)+O\left(t^{k+1}\right)
$$

In these coordinates, the fiber $J_{k, x}$ can thus be identified with the set of k-tuples of vectors $\left(\xi_{1}, \ldots, \xi_{k}\right)=\left(f^{\prime}(0), \ldots, f^{(k)}(0)\right) \in\left(\mathbb{C}^{n}\right)^{k}$. It follows that J_{k} is a holomorphic fiber bundle with typical fiber $\left(\mathbb{C}^{n}\right)^{k}$ over X (however, J_{k} is not a vector bundle for $k \geqslant 2$, because of the nonlinearity of coordinate changes; see formula (7.2) in §7).

According to the philosophy developed throughout this paper, we describe the concept of jet bundle in the general situation of complex directed manifolds. If X is equipped with a holomorphic subbundle $V \subset T_{X}$, we associate to V a k-jet bundle $J_{k} V$ as follows, assuming V non singular throughout subsection 6.A.
6.1. Definition. Let (X, V) be a complex directed manifold. We define $J_{k} V \rightarrow X$ to be the bundle of k-jets of curves $f:(\mathbb{C}, 0) \rightarrow X$ which are tangent to V, i.e., such that $f^{\prime}(t) \in V_{f(t)}$ for all t in a neighborhood of 0 , together with the projection map $f \mapsto f(0)$ onto X.

It is easy to check that $J_{k} V$ is actually a subbundle of J_{k}. In fact, by using (5.8) and (5.10), we see that the fibers $J_{k} V_{x}$ are parametrized by

$$
\left(\left(f_{1}^{\prime}(0), \ldots, f_{r}^{\prime}(0)\right) ;\left(f_{1}^{\prime \prime}(0), \ldots, f_{r}^{\prime \prime}(0)\right) ; \ldots ;\left(f_{1}^{(k)}(0), \ldots, f_{r}^{(k)}(0)\right)\right) \in\left(\mathbb{C}^{r}\right)^{k}
$$

for all $x \in \Omega$, hence $J_{k} V$ is a locally trivial $\left(\mathbb{C}^{r}\right)^{k}$-subbundle of J_{k}. Alternatively, we can pick a local holomorphic connection ∇ on V, defined on some open set $\Omega \subset X$, and compute inductively the successive derivatives

$$
\nabla f=f^{\prime}, \quad \nabla^{j} f=\nabla_{f^{\prime}}\left(\nabla^{j-1} f\right)
$$

with respect to ∇ along the cure $t \mapsto f(t)$. Then

$$
\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)=\left(\nabla f(0), \nabla^{2} f(0), \ldots, \nabla^{k} f(0)\right) \in V_{x}^{\oplus k}
$$

provides a "trivialization" $J^{k} V_{\mid \Omega} \simeq V_{\mid \Omega}^{\oplus k}$. This identification depends of course on the choice of ∇ and cannot be defined globally in general (unless we are in the rare situation where V has a global holomorphic connection).

We now describe a convenient process for constructing "projectivized jet bundles", which will later appear as natural quotients of our jet bundles $J_{k} V$ (or rather, as suitable desingularized compactifications of the quotients). Such spaces have already been considered since a long time, at least in the special case $X=\mathbb{P}^{2}, V=T_{\mathbb{P}^{2}}$ (see Gherardelli [Ghe41], Semple [Sem54]), and they have been mostly used as a tool for establishing enumerative formulas dealing with the order of contact of plane curves (see [Coll88], [CoKe94]); the article [ASS92] is also concerned with such generalizations of jet bundles, as well as [LaTh96] by Laksov and Thorup.

We define inductively the projectivized k-jet bundle X_{k} (or Semple k-jet bundle) and the associated subbundle $V_{k} \subset T_{X_{k}}$ by

$$
\begin{equation*}
\left(X_{0}, V_{0}\right)=(X, V), \quad\left(X_{k}, V_{k}\right)=\left(\widetilde{X}_{k-1}, \widetilde{V}_{k-1}\right) . \tag{6.2}
\end{equation*}
$$

In other words, $\left(X_{k}, V_{k}\right)$ is obtained from (X, V) by iterating k-times the lifting construction $(X, V) \mapsto(\widetilde{X}, \widetilde{V})$ described in $\S 5$. By (5.2-5.7), we find

$$
\begin{equation*}
\operatorname{dim} X_{k}=n+k(r-1), \quad \operatorname{rank} V_{k}=r \tag{6.3}
\end{equation*}
$$

together with exact sequences

$$
\begin{align*}
& 0 \longrightarrow T_{X_{k} / X_{k-1}} \longrightarrow V_{k} \xrightarrow{\left(\pi_{k}\right)_{*}} \mathcal{O}_{X_{k}}(-1) \longrightarrow 0 \tag{6.4}\\
& 0 \longrightarrow \mathcal{O}_{X_{k}} \longrightarrow \pi_{k}^{*} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \longrightarrow T_{X_{k} / X_{k-1}} \longrightarrow 0
\end{align*}
$$

where π_{k} is the natural projection $\pi_{k}: X_{k} \rightarrow X_{k-1}$ and $\left(\pi_{k}\right)_{*}$ its differential. Formula (5.4) yields

$$
\begin{equation*}
\operatorname{det} V_{k}=\pi_{k}^{*} \operatorname{det} V_{k-1} \otimes \mathcal{O}_{X_{k}}(r-1) \tag{6.5}
\end{equation*}
$$

Every non constant tangent trajectory $f: \Delta_{R} \rightarrow X$ of (X, V) lifts to a well defined and unique tangent trajectory $f_{[k]}: \Delta_{R} \rightarrow X_{k}$ of $\left(X_{k}, V_{k}\right)$. Moreover, the derivative $f_{[k-1]}^{\prime}$ gives rise to a section

$$
\begin{equation*}
f_{[k-1]}^{\prime}: T_{\Delta_{R}} \rightarrow f_{[k]}^{*} \mathcal{O}_{X_{k}}(-1) \tag{6.6}
\end{equation*}
$$

In coordinates, one can compute $f_{[k]}$ in terms of its components in the various affine charts (5.9) occurring at each step: we get inductively

$$
\begin{equation*}
f_{[k]}=\left(F_{1}, \ldots, F_{N}\right), \quad f_{[k+1]}=\left(F_{1}, \ldots, F_{N}, \frac{F_{s_{1}}^{\prime}}{F_{s_{r}}^{\prime}}, \ldots, \frac{F_{s_{r-1}}^{\prime}}{F_{s_{r}}^{\prime}}\right) \tag{6.7}
\end{equation*}
$$

where $N=n+k(r-1)$ and $\left\{s_{1}, \ldots, s_{r}\right\} \subset\{1, \ldots, N\}$. If $k \geqslant 1,\left\{s_{1}, \ldots, s_{r}\right\}$ contains the last $r-1$ indices of $\{1, \ldots, N\}$ corresponding to the "vertical" components of the projection $X_{k} \rightarrow X_{k-1}$, and in general, s_{r} is an index such that $m\left(F_{s_{r}}, 0\right)=m\left(f_{[k]}, 0\right)$, that is, $F_{s_{r}}$ has the smallest vanishing order among all components F_{s} (s_{r} may be vertical or not, and the choice of $\left\{s_{1}, \ldots, s_{r}\right\}$ need not be unique).

By definition, there is a canonical injection $\mathcal{O}_{X_{k}}(-1) \hookrightarrow \pi_{k}^{*} V_{k-1}$, and a composition with the projection $\left(\pi_{k-1}\right)_{*}$ (analogue for order $k-1$ of the arrow $\left(\pi_{k}\right)_{*}$ in sequence (6.4)) yields for all $k \geqslant 2$ a canonical line bundle morphism

$$
\begin{equation*}
\mathcal{O}_{X_{k}}(-1) \hookrightarrow \pi_{k}^{*} V_{k-1} \xrightarrow{\left(\pi_{k}\right)^{*}\left(\pi_{k-1}\right)^{*}} \pi_{k}^{*} \mathcal{O}_{X_{k-1}}(-1) \tag{6.8}
\end{equation*}
$$

which admits precisely $D_{k}=P\left(T_{X_{k-1} / X_{k-2}}\right) \subset P\left(V_{k-1}\right)=X_{k}$ as its zero divisor (clearly, D_{k} is a hyperplane subbundle of X_{k}). Hence we find

$$
\begin{equation*}
\mathcal{O}_{X_{k}}(1)=\pi_{k}^{*} \mathcal{O}_{X_{k-1}}(1) \otimes \mathcal{O}\left(D_{k}\right) \tag{6.9}
\end{equation*}
$$

Now, we consider the composition of projections

$$
\begin{equation*}
\pi_{j, k}=\pi_{j+1} \circ \cdots \circ \pi_{k-1} \circ \pi_{k}: X_{k} \longrightarrow X_{j} \tag{6.10}
\end{equation*}
$$

Then $\pi_{0, k}: X_{k} \rightarrow X_{0}=X$ is a locally trivial holomorphic fiber bundle over X, and the fibers $X_{k, x}=\pi_{0, k}^{-1}(x)$ are k-stage towers of \mathbb{P}^{r-1}-bundles. Since we have (in both directions) morphisms $\left(\mathbb{C}^{r}, T_{\mathbb{C}^{r}}\right) \stackrel{(X, V) \text { of directed manifolds which are bijective on the level of bundle morphisms, }}{\leftrightarrow}$ the fibers are all isomorphic to a "universal" nonsingular projective algebraic variety of dimension $k(r-1)$ which we will denote by $\mathbb{R}_{r, k}$; it is not hard to see that $\mathbb{R}_{r, k}$ is rational (as will indeed follow from the proof of Theorem 7.11 below).

6.B. Semple tower of singular directed varieties

Let (X, V) be a directed variety. We assume X non singular, but here V is allowed to have singularities. We are going to give a natural definition of the Semple tower $\left(X_{k}, V_{k}\right)$ in that case.

Let us take $X^{\prime}=X \backslash \operatorname{Sing}(V)$ and $V^{\prime}=V_{\mid X^{\prime}}$. By subsection 6.1, we have a well defined Semple tower $\left(X_{k}^{\prime}, V_{k}^{\prime}\right)$ over the Zariski open set X^{\prime}. We also have an "absolute" Semple tower $\left(X_{k}^{a}, V_{k}^{a}\right)$
obtained from $\left(X_{0}^{a}, V_{0}^{a}\right)=\left(X, T_{X}\right)$, which is non singular. The injection $V^{\prime} \subset T_{X}$ induces by fonctoriality (cf. (5.5)) an injection

$$
\begin{equation*}
\left(X_{k}^{\prime}, V_{k}^{\prime}\right) \subset\left(X_{k}^{a}, V_{k}^{a}\right) \tag{6.11}
\end{equation*}
$$

6.12. Definition. Let (X, V) be a directed variety, with X non singular. When $\operatorname{Sing}(V) \neq \emptyset$, we define X_{k} and V_{k} to be the respective closures of $X_{k}^{\prime}, V_{k}^{\prime}$ associated with $X^{\prime}=X \backslash \operatorname{Sing}(V)$ and $V^{\prime}=V_{\mid X^{\prime}}$, where the closure is taken in the nonsingular absolute Semple tower $\left(X_{k}^{a}, V_{k}^{a}\right)$ obtained from $\left(X_{0}^{a}, V_{0}^{a}\right)=\left(X, T_{X}\right)$.

We leave the reader check that the following fonctoriality property still holds.
6.13. Fonctoriality. If $\Phi:(X, V) \rightarrow(Y, W)$ is a morphism of directed varieties such that Φ_{*} : $T_{X} \rightarrow \Phi^{*} T_{Y}$ is injective (i.e. Φ is an immersion), then there is a corresponding natural morphism $\Phi_{[k]}:\left(X_{k}, V_{k}\right) \rightarrow\left(Y_{k}, W_{k}\right)$ at the level of Semple bundles. If one merely assumes that the differential $\Phi_{*}: V \rightarrow \Phi^{*} W$ is non zero, there is still a natural meromorphic map $\Phi_{[k]}:\left(X_{k}, V_{k}\right) \rightarrow->\left(Y_{k}, W_{k}\right)$ for all $k \geqslant 0$.

In case V is singular, the k-th stage X_{k} of the Semple tower will also be singular, but we can replace (X_{k}, V_{k}) by a suitable modification $\left(\widehat{X}_{k}, \widehat{V}_{k}\right)$ if we want to work with a nonsingular model \widehat{X}_{k} of X_{k}. The exceptional set of \widehat{X}_{k} over X_{k} can be chosen to lie above $\operatorname{Sing}(V) \subset X$, and proceeding inductively with respect to k, we can also arrange the modifications in such a way that we get a tower structure $\left(\widehat{X}_{k+1}, \widehat{V}_{k+1}\right) \rightarrow\left(\widehat{X}_{k}, \widehat{V}_{k}\right)$; however, in general, it will not be possible to achieve that \widehat{V}_{k} is a subbundle of $T_{\widehat{X}_{k}}$.

7. Jet differentials

7.A. Green-Griffiths Jet differentials

We first introduce the concept of jet differentials in the sense of Green-Griffiths [GrGr79]. The goal is to provide an intrinsic geometric description of holomorphic differential equations that a germ of curve $f:(\mathbb{C}, 0) \rightarrow X$ may satisfy. In the sequel, we fix a directed manifold (X, V) and suppose implicitly that all germs of curves f are tangent to V.

Let \mathbb{G}_{k} be the group of germs of k-jets of biholomorphisms of $(\mathbb{C}, 0)$, that is, the group of germs of biholomorphic maps

$$
t \mapsto \varphi(t)=a_{1} t+a_{2} t^{2}+\cdots+a_{k} t^{k}, \quad a_{1} \in \mathbb{C}^{*}, a_{j} \in \mathbb{C}, j \geqslant 2,
$$

in which the composition law is taken modulo terms t^{j} of degree $j>k$. Then \mathbb{G}_{k} is a k-dimensional nilpotent complex Lie group, which admits a natural fiberwise right action on $J_{k} V$. The action consists of reparametrizing k-jets of maps $f:(\mathbb{C}, 0) \rightarrow X$ by a biholomorphic change of parameter $\varphi:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$, that is, $(f, \varphi) \mapsto f \circ \varphi$. There is an exact sequence of groups

$$
1 \rightarrow \mathbb{G}_{k}^{\prime} \rightarrow \mathbb{G}_{k} \rightarrow \mathbb{C}^{*} \rightarrow 1
$$

where $\mathbb{G}_{k} \rightarrow \mathbb{C}^{*}$ is the obvious morphism $\varphi \mapsto \varphi^{\prime}(0)$, and $\mathbb{G}_{k}^{\prime}=\left[\mathbb{G}_{k}, \mathbb{G}_{k}\right]$ is the group of k-jets of biholomorphisms tangent to the identity. Moreover, the subgroup $\mathbb{H} \simeq \mathbb{C}^{*}$ of homotheties $\varphi(t)=\lambda t$ is a (non normal) subgroup of \mathbb{G}_{k}, and we have a semidirect decomposition $\mathbb{G}_{k}=\mathbb{G}_{k}^{\prime} \ltimes \mathbb{H}$. The corresponding action on k-jets is described in coordinates by

$$
\lambda \cdot\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=\left(\lambda f^{\prime}, \lambda^{2} f^{\prime \prime}, \ldots, \lambda^{k} f^{(k)}\right)
$$

Following [GrGr79], we introduce the vector bundle $E_{k, m}^{\mathrm{GG}} V^{*} \rightarrow X$ whose fibers are complex valued polynomials $Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ on the fibers of $J_{k} V$, of weighted degree m with respect to the \mathbb{C}^{*} action defined by H, that is, such that

$$
\begin{equation*}
Q\left(\lambda f^{\prime}, \lambda^{2} f^{\prime \prime}, \ldots, \lambda^{k} f^{(k)}\right)=\lambda^{m} Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \tag{7.1}
\end{equation*}
$$

for all $\lambda \in \mathbb{C}^{*}$ and $\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \in J_{k} V$. Here we view $\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ as indeterminates with components

$$
\left(\left(f_{1}^{\prime}, \ldots, f_{r}^{\prime}\right) ;\left(f_{1}^{\prime \prime}, \ldots, f_{r}^{\prime \prime}\right) ; \ldots ;\left(f_{1}^{(k)}, \ldots, f_{r}^{(k)}\right)\right) \in\left(\mathbb{C}^{r}\right)^{k}
$$

Notice that the concept of polynomial on the fibers of $J_{k} V$ makes sense, for all coordinate changes $z \mapsto w=\Psi(z)$ on X induce polynomial transition automorphisms on the fibers of $J_{k} V$, given by a formula

$$
\begin{equation*}
(\Psi \circ f)^{(j)}=\Psi^{\prime}(f) \cdot f^{(j)}+\sum_{s=2}^{s=j} \sum_{j_{1}+j_{2}+\cdots+j_{s}=j} c_{j_{1} \ldots j_{s}} \Psi^{(s)}(f) \cdot\left(f^{\left(j_{1}\right)}, \ldots, f^{\left(j_{s}\right)}\right) \tag{7.2}
\end{equation*}
$$

with suitable integer constants $c_{j_{1} \ldots j_{s}}$ (this is easily checked by induction on s). In the "absolute case" $V=T_{X}$, we simply write $E_{k, m}^{\mathrm{GG}} T_{X}^{*}=E_{k, m}^{\mathrm{GG}}$. If $V \subset W \subset T_{X}$ are holomorphic subbundles, there are natural inclusions

$$
J_{k} V \subset J_{k} W \subset J_{k}, \quad X_{k} \subset P_{k} W \subset P_{k}
$$

The restriction morphisms induce surjective arrows

$$
E_{k, m}^{\mathrm{GG}} \rightarrow E_{k, m}^{\mathrm{GG}} W^{*} \rightarrow E_{k, m}^{\mathrm{GG}} V^{*},
$$

in particular $E_{k, m}^{\mathrm{GG}} V^{*}$ can be seen as a quotient of $E_{k, m}^{\mathrm{GG}}$. (The notation V^{*} is used here to make the contravariance property implicit from the notation). Another useful consequence of these inclusions is that one can extend the definition of $J_{k} V$ and X_{k} to the case where V is an arbitrary linear space, simply by taking the closure of $J_{k} V_{X \backslash \operatorname{Sing}(V)}$ and $X_{k \mid X \backslash \operatorname{Sing}(V)}$ in the smooth bundles J_{k} and P_{k}, respectively.

If $Q \in E_{k, m}^{\mathrm{GG}} V^{*}$ is decomposed into multihomogeneous components of multidegree $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$ in $f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}$ (the decomposition is of course coordinate dependent), these multidegrees must satisfy the relation

$$
\ell_{1}+2 \ell_{2}+\cdots+k \ell_{k}=m
$$

The bundle $E_{k, m}^{\mathrm{GG}} V^{*}$ will be called the bundle of jet differentials of order k and weighted degree m. It is clear from (7.2) that a coordinate change $f \mapsto \Psi \circ f$ transforms every monomial $\left(f^{(\bullet)}\right)^{\ell}=$ $\left(f^{\prime}\right)^{\ell_{1}}\left(f^{\prime \prime}\right)^{\ell_{2}} \cdots\left(f^{(k)}\right)^{\ell_{k}}$ of partial weighted degree $|\ell|_{s}:=\ell_{1}+2 \ell_{2}+\cdots+s \ell_{s}, 1 \leqslant s \leqslant k$, into a polynomial $\left((\Psi \circ f)^{(\bullet)}\right)^{\ell}$ in $\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ which has the same partial weighted degree of order s if $\ell_{s+1}=\cdots=\ell_{k}=0$, and a larger or equal partial degree of order s otherwise. Hence, for each $s=1, \ldots, k$, we get a well defined (i.e., coordinate invariant) decreasing filtration F_{s}^{\bullet} on $E_{k, m}^{\mathrm{GG}} V^{*}$ as follows:

$$
F_{s}^{p}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)=\left\{\begin{array}{l}
Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \in E_{k, m}^{\mathrm{GG}} V^{*} \text { involving } \tag{7.3}\\
\text { only monomials }\left(f^{\bullet}\right)^{\ell} \text { with }|\ell|_{s} \geqslant p
\end{array}\right\}, \quad \forall p \in \mathbb{N} .
$$

The graded terms $\operatorname{Gr}_{k-1}^{p}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)$ associated with the filtration $F_{k-1}^{p}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)$ are precisely the homogeneous polynomials $Q\left(f^{\prime}, \ldots, f^{(k)}\right)$ whose monomials $\left(f^{\bullet}\right)^{\ell}$ all have partial weighted degree $|\ell|_{k-1}=p$ (hence their degree ℓ_{k} in $f^{(k)}$ is such that $m-p=k \ell_{k}$, and $\operatorname{Gr}_{k-1}^{p}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)=0$ unless $k \mid m-p)$. The transition automorphisms of the graded bundle are induced by coordinate changes $f \mapsto \Psi \circ f$, and they are described by substituting the arguments of $Q\left(f^{\prime}, \ldots, f^{(k)}\right)$ according to formula (7.2), namely $f^{(j)} \mapsto(\Psi \circ f)^{(j)}$ for $j<k$, and $f^{(k)} \mapsto \Psi^{\prime}(f) \circ f^{(k)}$ for $j=k$ (when $j=k$, the other terms fall in the next stage F_{k-1}^{p+1} of the filtration). Therefore $f^{(k)}$ behaves as an element of $V \subset T_{X}$ under coordinate changes. We thus find

$$
\begin{equation*}
G_{k-1}^{m-k \ell_{k}}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)=E_{k-1, m-k \ell_{k}}^{\mathrm{GG}} V^{*} \otimes S^{\ell_{k}} V^{*} \tag{7.4}
\end{equation*}
$$

Combining all filtrations F_{s}^{\bullet} together, we find inductively a filtration F^{\bullet} on $E_{k, m}^{\mathrm{GG}} V^{*}$ such that the graded terms are

$$
\begin{equation*}
\operatorname{Gr}^{\ell}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)=S^{\ell_{1}} V^{*} \otimes S^{\ell_{2}} V^{*} \otimes \cdots \otimes S^{\ell_{k}} V^{*}, \quad \ell \in \mathbb{N}^{k}, \quad|\ell|_{k}=m . \tag{7.5}
\end{equation*}
$$

The bundles $E_{k, m}^{\mathrm{GG}} V^{*}$ have other interesting properties. In fact,

$$
E_{k, \bullet}^{\mathrm{GG}} V^{*}:=\bigoplus_{m \geqslant 0} E_{k, m}^{\mathrm{GG}} V^{*}
$$

is in a natural way a bundle of graded algebras (the product is obtained simply by taking the product of polynomials). There are natural inclusions $E_{k, \bullet}^{\mathrm{GG}} V^{*} \subset E_{k+1, \bullet}^{\mathrm{GG}} V^{*}$ of algebras, hence $E_{\infty}^{\mathrm{GG}, \bullet} V^{*}=$ $\bigcup_{k \geqslant 0} E_{k, \bullet}^{\mathrm{GG}} V^{*}$ is also an algebra. Moreover, the sheaf of holomorphic sections $\mathcal{O}\left(E_{\infty, \bullet}^{\mathrm{GG}} V^{*}\right)$ admits a canonical derivation ∇^{GG} given by a collection of \mathbb{C}-linear maps

$$
\nabla^{\mathrm{GG}}: \mathcal{O}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right) \rightarrow \mathcal{O}\left(E_{k+1, m+1}^{\mathrm{GG}} V^{*}\right),
$$

constructed in the following way. A holomorphic section of $E_{k, m}^{\mathrm{GG}} V^{*}$ on a coordinate open set $\Omega \subset X$ can be seen as a differential operator on the space of germs $f:(\mathbb{C}, 0) \rightarrow \Omega$ of the form

$$
\begin{equation*}
Q(f)=\sum_{\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\cdots+k\left|\alpha_{k}\right|=m} a_{\alpha_{1} \ldots \alpha_{k}}(f)\left(f^{\prime}\right)^{\alpha_{1}}\left(f^{\prime \prime}\right)^{\alpha_{2}} \cdots\left(f^{(k)}\right)^{\alpha_{k}} \tag{7.6}
\end{equation*}
$$

in which the coefficients $a_{\alpha_{1} \ldots \alpha_{k}}$ are holomorphic functions on Ω. Then ∇Q is given by the formal derivative $(\nabla Q)(f)(t)=d(Q(f)) / d t$ with respect to the 1-dimensional parameter t in $f(t)$. For example, in dimension 2, if $Q \in H^{0}\left(\Omega, \mathcal{O}\left(E_{2,4}^{\mathrm{GG}}\right)\right)$ is the section of weighted degree 4

$$
Q(f)=a\left(f_{1}, f_{2}\right) f_{1}^{\prime 3} f_{2}^{\prime}+b\left(f_{1}, f_{2}\right) f_{1}^{\prime \prime 2}
$$

we find that $\nabla Q \in H^{0}\left(\Omega, \mathcal{O}\left(E_{3,5}^{\mathrm{GG}}\right)\right)$ is given by

$$
\begin{aligned}
& (\nabla Q)(f)=\frac{\partial a}{\partial z_{1}}\left(f_{1}, f_{2}\right) f_{1}^{\prime 4} f_{2}^{\prime}+\frac{\partial a}{\partial z_{2}}\left(f_{1}, f_{2}\right) f_{1}^{\prime 3} f_{2}^{\prime 2}+\frac{\partial b}{\partial z_{1}}\left(f_{1}, f_{2}\right) f_{1}^{\prime} f_{1}^{\prime \prime 2} \\
& \quad+\frac{\partial b}{\partial z_{2}}\left(f_{1}, f_{2}\right) f_{2}^{\prime} f_{1}^{\prime \prime 2}+a\left(f_{1}, f_{2}\right)\left(3 f_{1}^{\prime 2} f_{1}^{\prime \prime} f_{2}^{\prime}+f_{1}^{\prime 3} f_{2}^{\prime \prime}\right)+b\left(f_{1}, f_{2}\right) 2 f_{1}^{\prime \prime} f_{1}^{\prime \prime \prime}
\end{aligned}
$$

Associated with the graded algebra bundle $E_{k, \bullet}^{G G} V^{*}$, we have an analytic fiber bundle

$$
\begin{equation*}
X_{k}^{\mathrm{GG}}:=\operatorname{Proj}\left(E_{k, \boldsymbol{\bullet}}^{\mathrm{GG}} V^{*}\right)=\left(J_{k} V \backslash\{0\}\right) / \mathbb{C}^{*} \tag{7.7}
\end{equation*}
$$

over X, which has weighted projective spaces $\mathbb{P}\left(1^{[r]}, 2^{[r]}, \ldots, k^{[r]}\right)$ as fibers (these weighted projective spaces are singular for $k>1$, but they only have quotient singularities, see [Dol81] ; here $J_{k} V \backslash\{0\}$ is the set of non constant jets of order k; we refer e.g. to Hartshorne's book [Har77] for a definition of the Proj fonctor). As such, it possesses a canonical sheaf $\mathcal{O}_{X_{k}^{G G}}(1)$ such that $\mathcal{O}_{X^{G G}}(m)$ is invertible when m is a multiple of $\operatorname{lcm}(1,2, \ldots, k)$. Under the natural ${ }^{k}$ projection $\pi_{k}: X_{k}^{\text {GG }} \rightarrow X$, the direct image $\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\text {GG }}}(m)$ coincides with polynomials

$$
\begin{equation*}
P\left(z ; \xi_{1}, \ldots, \xi_{k}\right)=\sum_{\alpha_{\ell} \in \mathbb{N}^{r}, 1 \leqslant \ell \leqslant k} a_{\alpha_{1} \ldots \alpha_{k}}(z) \xi_{1}^{\alpha_{1}} \ldots \xi_{k}^{\alpha_{k}} \tag{7.8}
\end{equation*}
$$

of weighted degree $\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right|=m$ on $J^{k} V$ with holomorphic coefficients; in other words, we obtain precisely the sheaf of sections of the bundle $E_{k, m}^{\mathrm{GG}} V^{*}$ of jet differentials of order k and degree m.
7.9. Proposition. By construction, if $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is the natural projection, we have the direct image formula

$$
\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m)=\mathcal{O}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)
$$

for all k and m.

7.B. Invariant Jet differentials

In the geometric context, we are not really interested in the bundles $\left(J_{k} V \backslash\{0\}\right) / \mathbb{C}^{*}$ themselves, but rather on their quotients $\left(J_{k} V \backslash\{0\}\right) / \mathbb{G}_{k}$ (would such nice complex space quotients exist!). We will see that the Semple bundle X_{k} constructed in $\S 6$ plays the role of such a quotient. First we introduce a canonical bundle subalgebra of $E_{k, \bullet}^{G G} V^{*}$.
7.10. Definition. We introduce a subbundle $E_{k, m} V^{*} \subset E_{k, m}^{\mathrm{GG}} V^{*}$, called the bundle of invariant jet differentials of order k and degree m, defined as follows: $E_{k, m} V^{*}$ is the set of polynomial differential operators $Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ which are invariant under arbitrary changes of parametrization, i.e., for every $\varphi \in \mathbb{G}_{k}$

$$
Q\left((f \circ \varphi)^{\prime},(f \circ \varphi)^{\prime \prime}, \ldots,(f \circ \varphi)^{(k)}\right)=\varphi^{\prime}(0)^{m} Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) .
$$

Alternatively, $E_{k, m} V^{*}=\left(E_{k, m}^{\mathrm{GG}} V^{*}\right) \mathbb{G}_{k}^{\prime}$ is the set of invariants of $E_{k, m}^{\mathrm{GG}} V^{*}$ under the action of \mathbb{G}_{k}^{\prime}. Clearly, $E_{\infty, \bullet} V^{*}=\bigcup_{k \geqslant 0} \bigoplus_{m \geqslant 0} E_{k, m} V^{*}$ is a subalgebra of $E_{k, m}^{G G} V^{*}$ (observe however that this algebra is not invariant under the derivation ∇^{GG}, since e.g. $f_{j}^{\prime \prime}=\nabla^{\mathrm{GG}} f_{j}$ is not an invariant polynomial). In addition to this, there are natural induced filtrations $F_{s}^{p}\left(E_{k, m} V^{*}\right)=E_{k, m} V^{*} \cap$ $F_{s}^{p}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)$ (all locally trivial over X). These induced filtrations will play an important role later on.
7.11. Theorem. Suppose that V has rank $r \geqslant 2$. Let $\pi_{0, k}: X_{k} \longrightarrow X$ be the Semple jet bundles constructed in section 6 , and let $J_{k} V^{\text {reg }}$ be the bundle of regular k-jets of maps $f:(\mathbb{C}, 0) \rightarrow X$, that is, jets f such that $f^{\prime}(0) \neq 0$.
(i) The quotient $J_{k} V^{\mathrm{reg}} / \mathbb{G}_{k}$ has the structure of a locally trivial bundle over X, and there is a holomorphic embedding $J_{k} V^{\mathrm{reg}} / \mathbb{G}_{k} \hookrightarrow X_{k}$ over X, which identifies $J_{k} V^{\mathrm{reg}} / \mathbb{G}_{k}$ with X_{k}^{reg} (thus X_{k} is a relative compactification of $J_{k} V^{\mathrm{reg}} / \mathbb{G}_{k}$ over $\left.X\right)$.
(ii) The direct image sheaf

$$
\left(\pi_{0, k}\right)_{*} \mathcal{O}_{X_{k}}(m) \simeq \mathcal{O}\left(E_{k, m} V^{*}\right)
$$

can be identified with the sheaf of holomorphic sections of $E_{k, m} V^{*}$.
(iii) For every $m>0$, the relative base locus of the linear system $\left|\mathcal{O}_{X_{k}}(m)\right|$ is equal to the set $X_{k}^{\text {sing }}$ of singular k-jets. Moreover, $\mathcal{O}_{X_{k}}(1)$ is relatively big over X.
Proof. (i) For $f \in J_{k} V^{\mathrm{reg}}$, the lifting \widetilde{f} is obtained by taking the derivative ($f,\left[f^{\prime}\right]$ without any cancellation of zeroes in f^{\prime}, hence we get a uniquely defined $(k-1)$-jet $\widetilde{f}:(\mathbb{C}, 0) \rightarrow \tilde{X}$. Inductively, we get a well defined $(k-j)$-jet $f_{[j]}$ in X_{j}, and the value $f_{[k]}(0)$ is independent of the choice of the representative f for the k-jet. As the lifting process commutes with reparametrization, i.e., $(f \circ \varphi)^{\sim}=\widetilde{f} \circ \varphi$ and more generally $(f \circ \varphi)_{[k]}=f_{[k]} \circ \varphi$, we conclude that there is a well defined set-theoretic map

$$
J_{k} V^{\mathrm{reg}} / \mathbb{G}_{k} \rightarrow X_{k}^{\mathrm{reg}}, \quad f \bmod \mathbb{G}_{k} \mapsto f_{[k]}(0) .
$$

This map is better understood in coordinates as follows. Fix coordinates $\left(z_{1}, \ldots, z_{n}\right)$ near a point $x_{0} \in X$, such that $V_{x_{0}}=\operatorname{Vect}\left(\partial / \partial z_{1}, \ldots, \partial / \partial z_{r}\right)$. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a regular k-jet tangent to V. Then there exists $i \in\{1,2, \ldots, r\}$ such that $f_{i}^{\prime}(0) \neq 0$, and there is a unique reparametrization $t=\varphi(\tau)$ such that $f \circ \varphi=g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ with $g_{i}(\tau)=\tau$ (we just express the curve as a graph over the z_{i}-axis, by means of a change of parameter $\tau=f_{i}(t)$, i.e. $\left.t=\varphi(\tau)=f_{i}^{-1}(\tau)\right)$. Suppose $i=r$ for the simplicity of notation. The space X_{k} is a k-stage tower of \mathbb{P}^{r-1}-bundles. In the corresponding inhomogeneous coordinates on these \mathbb{P}^{r-1} 's, the point $f_{[k]}(0)$ is given by the collection of derivatives

$$
\left(\left(g_{1}^{\prime}(0), \ldots, g_{r-1}^{\prime}(0)\right) ;\left(g_{1}^{\prime \prime}(0), \ldots, g_{r-1}^{\prime \prime}(0)\right) ; \ldots ;\left(g_{1}^{(k)}(0), \ldots, g_{r-1}^{(k)}(0)\right)\right) .
$$

[Recall that the other components $\left(g_{r+1}, \ldots, g_{n}\right)$ can be recovered from $\left(g_{1}, \ldots, g_{r}\right)$ by integrating the differential system (5.10)]. Thus the map $J_{k} V^{\text {reg }} / \mathbb{G}_{k} \rightarrow X_{k}$ is a bijection onto $X_{k}^{\text {reg }}$, and the fibers of these isomorphic bundles can be seen as unions of r affine charts $\simeq\left(\mathbb{C}^{r-1}\right)^{k}$, associated with
each choice of the axis z_{i} used to describe the curve as a graph. The change of parameter formula $\frac{d}{d \tau}=\frac{1}{f_{r}^{\prime}(t)} \frac{d}{d t} \operatorname{expresses}$ all derivatives $g_{i}^{(j)}(\tau)=d^{j} g_{i} / d \tau^{j}$ in terms of the derivatives $f_{i}^{(j)}(t)=d^{j} f_{i} / d t^{j}$

$$
\begin{align*}
\left(g_{1}^{\prime}, \ldots, g_{r-1}^{\prime}\right) & =\left(\frac{f_{1}^{\prime}}{f_{r}^{\prime}}, \ldots, \frac{f_{r-1}^{\prime}}{f_{r}^{\prime}}\right) ; \\
\left(g_{1}^{\prime \prime}, \ldots, g_{r-1}^{\prime \prime}\right) & =\left(\frac{f_{1}^{\prime \prime} f_{r}^{\prime}-f_{r}^{\prime \prime} f_{1}^{\prime}}{f_{r}^{\prime 3}}, \ldots, \frac{f_{r-1}^{\prime \prime} f_{r}^{\prime}-f_{r}^{\prime \prime} f_{r-1}^{\prime}}{f_{r}^{\prime 3}}\right) ; \ldots ; \tag{7.12}\\
\left(g_{1}^{(k)}, \ldots, g_{r-1}^{(k)}\right) & =\left(\frac{f_{1}^{(k)} f_{r}^{\prime}-f_{r}^{(k)} f_{1}^{\prime}}{f_{r}^{\prime k+1}}, \ldots, \frac{f_{r-1}^{(k)} f_{r}^{\prime}-f_{r}^{(k)} f_{r-1}^{\prime}}{f_{r}^{\prime \prime+1}}\right)+(\text { order }<k) .
\end{align*}
$$

Also, it is easy to check that $f_{r}^{\prime 2 k-1} g_{i}^{(k)}$ is an invariant polynomial in $f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}$ of total degree $2 k-1$, i.e., a section of $E_{k, 2 k-1}$.
(ii) Since the bundles X_{k} and $E_{k, m} V^{*}$ are both locally trivial over X, it is sufficient to identify sections σ of $\mathcal{O}_{X_{k}}(m)$ over a fiber $X_{k, x}=\pi_{0, k}^{-1}(x)$ with the fiber $E_{k, m} V_{x}^{*}$, at any point $x \in X$. Let $f \in J_{k} V_{x}^{\text {reg }}$ be a regular k-jet at x. By (6.6), the derivative $f_{[k-1]}^{\prime}(0)$ defines an element of the fiber of $\mathcal{O}_{X_{k}}(-1)$ at $f_{[k]}(0) \in X_{k}$. Hence we get a well defined complex valued operator

$$
\begin{equation*}
Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=\sigma\left(f_{[k]}(0)\right) \cdot\left(f_{[k-1]}^{\prime}(0)\right)^{m} . \tag{7.13}
\end{equation*}
$$

Clearly, Q is holomorphic on $J_{k} V_{x}^{\text {reg }}$ (by the holomorphicity of σ), and the \mathbb{G}_{k}-invariance condition of Definition 7.10 is satisfied since $f_{[k]}(0)$ does not depend on reparametrization and

$$
(f \circ \varphi)_{[k-1]}^{\prime}(0)=f_{[k-1]}^{\prime}(0) \varphi^{\prime}(0) .
$$

Now, $J_{k} V_{x}^{\text {reg }}$ is the complement of a linear subspace of codimension n in $J_{k} V_{x}$, hence Q extends holomorphically to all of $J_{k} V_{x} \simeq\left(\mathbb{C}^{r}\right)^{k}$ by Riemann's extension theorem (here we use the hypothesis $r \geqslant 2$; if $r=1$, the situation is anyway not interesting since $X_{k}=X$ for all k). Thus Q admits an everywhere convergent power series

$$
Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{N}^{r}} a_{\alpha_{1} \ldots \alpha_{k}}\left(f^{\prime}\right)^{\alpha_{1}}\left(f^{\prime \prime}\right)^{\alpha_{2}} \cdots\left(f^{(k)}\right)^{\alpha_{k}}
$$

The \mathbb{G}_{k}-invariance (7.10) implies in particular that Q must be multihomogeneous in the sense of (7.1), and thus Q must be a polynomial. We conclude that $Q \in E_{k, m} V_{x}^{*}$, as desired.

Conversely, by [Dem11, Cor. 5.12] there exists a holomorphic family of germs $f_{w}:(\mathbb{C}, 0) \rightarrow X$ such that $\left(f_{w}\right)_{[k]}(0)=w$ and $\left(f_{w}\right)_{[k-1]}^{\prime}(0) \neq 0$, for all w in a neighborhood of any given point $w_{0} \in X_{k, x}$. Then every $Q \in E_{k, m} V_{x}^{*}$ yields a holomorphic section σ of $\mathcal{O}_{X_{k}}(m)$ over the fiber $X_{k, x}$ by putting

$$
\begin{equation*}
\sigma(w)=Q\left(f_{w}^{\prime}, f_{w}^{\prime \prime}, \ldots, f_{w}^{(k)}\right)(0)\left(\left(f_{w}\right)_{[k-1]}^{\prime}(0)\right)^{-m} \tag{7.14}
\end{equation*}
$$

(iii) By what we saw in (i)-(ii), every section σ of $\mathcal{O}_{X_{k}}(m)$ over the fiber $X_{k, x}$ is given by a polynomial $Q \in E_{k, m} V_{x}^{*}$, and this polynomial can be expressed on the Zariski open chart $f_{r}^{\prime} \neq 0$ of $X_{k, x}^{\mathrm{reg}}$ as

$$
\begin{equation*}
Q\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=f_{r}^{\prime m} \widehat{Q}\left(g^{\prime}, g^{\prime \prime}, \ldots, g^{(k)}\right) \tag{7.15}
\end{equation*}
$$

where \widehat{Q} is a polynomial and g is the reparametrization of f such that $g_{r}(\tau)=\tau$. In fact \widehat{Q} is obtained from Q by substituting $f_{r}^{\prime}=1$ and $f_{r}^{(j)}=0$ for $j \geqslant 2$, and conversely Q can be recovered easily from \widehat{Q} by using the substitutions (7.12).

In this context, the jet differentials $f \mapsto f_{1}^{\prime}, \ldots, f \mapsto f_{r}^{\prime}$ can be viewed as sections of $\mathcal{O}_{X_{k}}(1)$ on a neighborhood of the fiber $X_{k, x}$. Since these sections vanish exactly on $X_{k}^{\text {sing }}$, the relative base locus of $\mathcal{O}_{X_{k}}(m)$ is contained in $X_{k}^{\text {sing }}$ for every $m>0$. We see that $\mathcal{O}_{X_{k}}(1)$ is big by considering the sections of $\mathcal{O}_{X_{k}}(2 k-1)$ associated with the polynomials $Q\left(f^{\prime}, \ldots, f^{(k)}\right)=f_{r}^{\prime 2 k-1} g_{i}^{(j)}, 1 \leqslant i \leqslant r-1$, $1 \leqslant j \leqslant k$; indeed, these sections separate all points in the open chart $f_{r}^{\prime} \neq 0$ of $X_{k, x}^{\mathrm{reg}}$.

Now, we check that every section σ of $\mathcal{O}_{X_{k}}(m)$ over $X_{k, x}$ must vanish on $X_{k, x}^{\text {sing }}$. Pick an arbitrary element $w \in X_{k}^{\text {sing }}$ and a germ of curve $f:(\mathbb{C}, 0) \rightarrow X$ such that $f_{[k]}(0)=w, f_{[k-1]}^{\prime}(0) \neq 0$ and $s=m(f, 0) \gg 0$ (such an f exists by Corollary 6.14). There are local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on X such that $f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ where $f_{r}(t)=t^{s}$. Let Q, \widehat{Q} be the polynomials associated with σ in these coordinates and let $\left(f^{\prime}\right)^{\alpha_{1}}\left(f^{\prime \prime}\right)^{\alpha_{2}} \cdots\left(f^{(k)}\right)^{\alpha_{k}}$ be a monomial occurring in Q, with $\alpha_{j} \in \mathbb{N}^{r},\left|\alpha_{j}\right|=\ell_{j}, \ell_{1}+2 \ell_{2}+\cdots+k \ell_{k}=m$. Putting $\tau=t^{s}$, the curve $t \mapsto f(t)$ becomes a Puiseux expansion $\tau \mapsto g(\tau)=\left(g_{1}(\tau), \ldots, g_{r-1}(\tau), \tau\right)$ in which g_{i} is a power series in $\tau^{1 / s}$, starting with exponents of τ at least equal to 1 . The derivative $g^{(j)}(\tau)$ may involve negative powers of τ, but the exponent is always $\geqslant 1+\frac{1}{s}-j$. Hence the Puiseux expansion of $\widehat{Q}\left(g^{\prime}, g^{\prime \prime}, \ldots, g^{(k)}\right)$ can only involve powers of τ of exponent $\geqslant-\max _{\ell}\left(\left(1-\frac{1}{s}\right) \ell_{2}+\cdots+\left(k-1-\frac{1}{s}\right) \ell_{k}\right)$. Finally $f_{r}^{\prime}(t)=$ $s t^{s-1}=s \tau^{1-1 / s}$, thus the lowest exponent of τ in $Q\left(f^{\prime}, \ldots, f^{(k)}\right)$ is at least equal to

$$
\begin{aligned}
\left(1-\frac{1}{s}\right) m-\max _{\ell} & \left(\left(1-\frac{1}{s}\right) \ell_{2}+\cdots+\left(k-1-\frac{1}{s}\right) \ell_{k}\right) \\
& \geqslant \min _{\ell}\left(1-\frac{1}{s}\right) \ell_{1}+\left(1-\frac{1}{s}\right) \ell_{2}+\cdots+\left(1-\frac{k-1}{s}\right) \ell_{k}
\end{aligned}
$$

where the minimum is taken over all monomials $\left(f^{\prime}\right)^{\alpha_{1}}\left(f^{\prime \prime}\right)^{\alpha_{2}} \cdots\left(f^{(k)}\right)^{\alpha_{k}},\left|\alpha_{j}\right|=\ell_{j}$, occurring in Q. Choosing $s \geqslant k$, we already find that the minimal exponent is positive, hence $Q\left(f^{\prime}, \ldots, f^{(k)}\right)(0)=0$ and $\sigma(w)=0$ by (7.14).

Theorem 7.11 (iii) shows that $\mathcal{O}_{X_{k}}(1)$ is never relatively ample over X for $k \geqslant 2$. In order to overcome this difficulty, we define for every $\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$ a line bundle $\mathcal{O}_{X_{k}}(\boldsymbol{a})$ on X_{k} such that

$$
\begin{equation*}
\mathcal{O}_{X_{k}}(\boldsymbol{a})=\pi_{1, k}^{*} \mathcal{O}_{X_{1}}\left(a_{1}\right) \otimes \pi_{2, k}^{*} \mathcal{O}_{X_{2}}\left(a_{2}\right) \otimes \cdots \otimes \mathcal{O}_{X_{k}}\left(a_{k}\right) . \tag{7.16}
\end{equation*}
$$

By (6.9), we have $\pi_{j, k}^{*} \mathcal{O}_{X_{j}}(1)=\mathcal{O}_{X_{k}}(1) \otimes \mathcal{O}_{X_{k}}\left(-\pi_{j+1, k}^{*} D_{j+1}-\cdots-D_{k}\right)$, thus by putting $D_{j}^{*}=$ $\pi_{j+1, k}^{*} D_{j+1}$ for $1 \leqslant j \leqslant k-1$ and $D_{k}^{*}=0$, we find an identity

$$
\begin{align*}
& \mathcal{O}_{X_{k}}(\boldsymbol{a})=\mathcal{O}_{X_{k}}\left(b_{k}\right) \otimes \mathcal{O}_{X_{k}}\left(-\boldsymbol{b} \cdot D^{*}\right), \quad \text { where } \tag{7.17}\\
& \boldsymbol{b}=\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{Z}^{k}, \quad b_{j}=a_{1}+\cdots+a_{j}, \\
& \boldsymbol{b} \cdot D^{*}=\sum_{1 \leqslant j \leqslant k-1} b_{j} \pi_{j+1, k}^{*} D_{j+1} .
\end{align*}
$$

In particular, if $\boldsymbol{b} \in \mathbb{N}^{k}$, i.e., $a_{1}+\cdots+a_{j} \geqslant 0$, we get a morphism

$$
\begin{equation*}
\mathcal{O}_{X_{k}}(\boldsymbol{a})=\mathcal{O}_{X_{k}}\left(b_{k}\right) \otimes \mathcal{O}_{X_{k}}\left(-\boldsymbol{b} \cdot D^{*}\right) \rightarrow \mathcal{O}_{X_{k}}\left(b_{k}\right) \tag{7.18}
\end{equation*}
$$

7.19. Remark. As in Green-Griffiths [GrGr79], Riemann's extension theorem shows that for every meromorphic map $\Phi: X \rightarrow->Y$ there are well-defined pullback morphisms

$$
\Phi^{*}: H^{0}\left(Y, E_{k, m}^{\mathrm{GG}}\right) \rightarrow H^{0}\left(X, E_{k, m}^{\mathrm{GG}}\right), \quad \Phi^{*}: H^{0}\left(Y, E_{k, m}\right) \rightarrow H^{0}\left(X, E_{k, m}\right) .
$$

In particular the dimensions $h^{0}\left(X, E_{k, m}^{\mathrm{GG}}\right)$ and $h^{0}\left(X, E_{k, m}^{\mathrm{GG}}\right)$ are bimeromorphic invariants of X. The same is true for spaces of sections of any subbundle of $E_{k, m}^{\mathrm{GG}}$ or $E_{k, m}$ constructed by means of the canonical filtrations F_{s}^{\bullet}.
7.20. Remark. As \mathbb{G}_{k} is a non reductive group, it is not a priori clear that the graded ring $\mathcal{A}_{n, k, r}=\bigoplus_{m \in \mathbb{Z}} E_{k, m} V^{\star}$ is finitely generated (pointwise). This can be checked by hand ([Dem07a], [Dem07b]) for $n=2$ and $k \leqslant 4$. Rousseau [Rou06] also checked the case $n=3, k=3$, and then Merker [Mer08, Mer10] proved the finiteness for $n=2,3,4, k \leqslant 4$ and $n=2, k=5$. Recently, Bérczi and Kirwan [BeKi10] made an attempt to prove the finiteness in full generality, but it appears that the general case is still unsettled.

7.C. SEmple Tower of a directed variety of general type

If (X, V) is of general type, it is not true that $\left(X_{k}, V_{k}\right)$ is of general type: the fibers of $X_{k} \rightarrow X$ are towers of \mathbb{P}^{r-1} bundles, and the canonical bundles of projective spaces are always negative ! However, a twisted version holds true.
7.21. Lemma. If (X, V) is of general type, then there is a modification $(\widehat{X}, \widehat{V})$ such that all pairs $\left(\widehat{X}_{k}, \widehat{V}_{k}\right)$ of the associated Semple tower have a twisted canonical bundle $K_{\widehat{V}_{k}} \otimes \mathcal{O}_{\widehat{X}_{k}}(p)$ that is still big when one multiplies $K_{\widehat{V}_{k}}$ by a suitable \mathbb{Q}-line bundle $\mathcal{O}_{\widehat{X}_{k}}(p)$, $p \in \mathbb{Q}_{+}$.

Proof. First assume that V has no singularities. The exact sequences (6.4) and (6.4') provide

$$
K_{V_{k}}:=\operatorname{det} V_{k}^{*}=\operatorname{det}\left(T_{X_{k} / X_{k-1}}^{*}\right) \otimes \mathcal{O}_{X_{k}}(1)=\pi_{k, k-1}^{*} K_{V_{k-1}} \otimes \mathcal{O}_{X_{k}}(-(r-1))
$$

where $r=\operatorname{rank}(V)$. Inductively we get

$$
\begin{equation*}
K_{V_{k}}=\pi_{k, 0}^{*} K_{V} \otimes \mathcal{O}_{X_{k}}(-(r-1) \mathbf{1}), \quad \mathbf{1}=(1, \ldots, 1) \in \mathbb{N}^{k} \tag{7.22}
\end{equation*}
$$

We know by [Dem95] that $\mathcal{O}_{X_{k}}(\mathbf{c})$ is relatively ample over X when we take the special weight $\mathbf{c}=\left(23^{k-2}, \ldots, 23^{k-j-1}, \ldots, 6,2,1\right)$, hence

$$
K_{V_{k}} \otimes \mathcal{O}_{X_{k}}((r-1) \mathbf{1}+\varepsilon \mathbf{c})=\pi_{k, 0}^{*} K_{V} \otimes \mathcal{O}_{X_{k}}(\varepsilon \mathbf{c})
$$

is big over X_{k} for any sufficiently small positive rational number $\varepsilon \in \mathbb{Q}_{+}^{*}$. Thanks to Formula (1.9), we can in fact replace the weight $(r-1) \mathbf{1}+\varepsilon \mathbf{c}$ by its total degree $p=(r-1) k+\varepsilon|\mathbf{c}| \in \mathbb{Q}_{+}$. The general case of a singular linear space follows by considering suitable "sufficiently high" modifications \widehat{X} of X, the related directed structure \widehat{V} on \widehat{X}, and embedding $\left(\widehat{X}_{k}, \widehat{V}_{k}\right)$ in the absolute Semple tower $\left(\widehat{X}_{k}^{a}, \widehat{V}_{k}^{a}\right)$ of \widehat{X}. We still have a well defined morphism of rank 1 sheaves

$$
\begin{equation*}
\pi_{k, 0}^{*} K_{\widehat{V}} \otimes \mathcal{O}_{\widehat{X}_{k}}(-(r-1) \mathbf{1}) \rightarrow K_{\widehat{V}_{k}} \tag{7.23}
\end{equation*}
$$

because the multiplier ideal sheaves involved at each stage behave according to the monotonicity principle applied to the projections $\pi_{k, k-1}^{a}: \widehat{X}_{k}^{a} \rightarrow \widehat{X}_{k-1}^{a}$ and their differentials $\left(\pi_{k, k-1}^{a}\right)_{*}$, which yield well-defined transposed morphisms from the $(k-1)$-st stage to the k-th stage at the level of exterior differential forms. Our contention follows.

7.D. Induced Directed structure on a subvariety of a Jet bundle

We discuss here the concept of induced directed structure for subvarieties of the Semple tower of a directed variety (X, V). This will be very important to proceed inductively with the base loci of jet differentials. Let Z be an irreducible algebraic subset of some k-jet bundle X_{k} over $X, k \geqslant 0$. We define the linear subspace $W \subset T_{Z} \subset T_{X_{k} \mid Z}$ to be the closure

$$
\begin{equation*}
W:=\overline{T_{Z^{\prime}} \cap V_{k}} \tag{7.24}
\end{equation*}
$$

taken on a suitable Zariski open set $Z^{\prime} \subset Z_{\text {reg }}$ where the intersection $T_{Z^{\prime}} \cap V_{k}$ has constant rank and is a subbundle of $T_{Z^{\prime}}$. Alternatively, we could also take W to be the closure of $T_{Z^{\prime}} \cap V_{k}$ in the k-th stage $\left(X_{k}^{a}, V_{k}^{a}\right)$ of the absolute Semple tower, which has the advantage of being nonsingular. We say that (Z, W) is the induced directed variety structure; this concept of induced structure already applies of course in the case $k=0$. If $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ is such that $f_{[k]}(\mathbb{C}) \subset Z$, then

$$
\begin{equation*}
\text { either } f_{[k]}(\mathbb{C}) \subset Z_{\alpha} \quad \text { or } \quad f_{[k]}^{\prime}(\mathbb{C}) \subset W \tag{7.25}
\end{equation*}
$$

where Z_{α} is one of the connected components of $Z \backslash Z^{\prime}$ and Z^{\prime} is chosen as in (7.24); especially, if $W=0$, we conclude that $f_{[k]}(\mathbb{C})$ must be contained in one of the Z_{α} 's. In the sequel, we always consider such a subvariety Z of X_{k} as a directed pair (Z, W) by taking the induced structure described above. By (7.25), if we proceed by induction on $\operatorname{dim} Z$, the study of curves tangent to V that have a k-lift $f_{[k]}(\mathbb{C}) \subset Z$ is reduced to the study of curves tangent to (Z, W). Let us first quote the following easy observation.
7.26. Observation. For $k \geqslant 1$, let $Z \subsetneq X_{k}$ be an irreducible algebraic subset that projects onto X_{k-1}, i.e. $\pi_{k, k-1}(Z)=X_{k-1}$. Then the induced directed variety $(Z, W) \subset\left(X_{k}, V_{k}\right)$, satisfies

$$
1 \leqslant \operatorname{rank} W<r:=\operatorname{rank}\left(V_{k}\right)
$$

Proof. Take a Zariski open subset $Z^{\prime} \subset Z_{\text {reg }}$ such that $W^{\prime}=T_{Z^{\prime}} \cap V_{k}$ is a vector bundle over Z^{\prime}. Since $X_{k} \rightarrow X_{k-1}$ is a \mathbb{P}^{r-1}-bundle, Z has codimension at most $r-1$ in X_{k}. Therefore $\operatorname{rank} W \geqslant \operatorname{rank} V_{k}-(r-1) \geqslant 1$. On the other hand, if we had rank $W=\operatorname{rank} V_{k}$ generically, then $T_{Z^{\prime}}$ would contain $V_{k \mid Z^{\prime}}$, in particular it would contain all vertical directions $T_{X_{k} / X_{k-1}} \subset V_{k}$ that are tangent to the fibers of $X_{k} \rightarrow X_{k-1}$. By taking the flow along vertical vector fields, we would conclude that Z^{\prime} is a union of fibers of $X_{k} \rightarrow X_{k-1}$ up to an algebraic set of smaller dimension, but this is excluded since Z projects onto X_{k-1} and $Z \subsetneq X_{k}$.
7.27. Definition. For $k \geqslant 1$, let $Z \subset X_{k}$ be an irreducible algebraic subset of X_{k} and (Z, W) the induced directed structure. We assume moreover that $Z \not \subset D_{k}=P\left(T_{X_{k-1} / X_{k-2}}\right)$ (and put $D_{1}=\emptyset$ in what follows to avoid to have to single out the case $k=1$). In this situation we say that (Z, W) is of general type modulo $X_{k} \rightarrow X$ if either $W=0$, or rank $W \geqslant 1$ and there exists $p \in \mathbb{Q}_{+}$such that $K_{W}^{\bullet} \otimes \mathcal{O}_{X_{k}}(p)_{\mid Z}^{\bullet}$ is big over Z, possibly after replacing Z by a suitable nonsingular model \widehat{Z} (and pulling-back W and $\mathcal{O}_{X_{k}}(p)_{\mid Z}$ to the nonsingular variety \widehat{Z}).

7.E. RELATION BETWEEN INVARIANT AND NON INVARIANT JET DIFFERENTIALS

We show here that the existence of \mathbb{G}_{k}-invariant global jet differentials is essentially equivalent to the existence of non invariant ones. We have seen that the direct image sheaf

$$
\pi_{k, 0} \mathcal{O}_{X_{k}}(m):=E_{k, m} V^{*} \subset E_{k, m}^{\mathrm{GG}} V^{*}
$$

has a stalk at point $x \in X$ that consists of algebraic differential operators $P\left(f_{[k]}\right)$ acting on germs of k-jets $f:(\mathbb{C}, 0) \rightarrow(X, x)$ tangent to V, satisfying the invariance property

$$
\begin{equation*}
P\left((f \circ \varphi)_{[k]}\right)=\left(\varphi^{\prime}\right)^{m} P\left(f_{[k]}\right) \circ \varphi \tag{7.28}
\end{equation*}
$$

whenever $\varphi \in \mathbb{G}_{k}$ is in the group of k-jets of biholomorphisms $\varphi:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$. The right action $J_{k} V \times \mathbb{G}_{k} \rightarrow J_{k} V, f \mapsto f \circ \varphi$ induces a dual left action of \mathbb{G}_{k} on $\bigoplus_{m^{\prime} \leqslant m} E_{k, m^{\prime}}^{\mathrm{GG}} V^{*}$ by

$$
\begin{equation*}
\mathbb{G}_{k} \times \bigoplus_{m^{\prime} \leqslant m} E_{k, m^{\prime}}^{\mathrm{GG}} V_{x}^{*} \rightarrow \bigoplus_{m^{\prime} \leqslant m} E_{k, m^{\prime}}^{\mathrm{GG}} V_{x}^{*}, \quad(\varphi, P) \mapsto \varphi^{*} P, \quad\left(\varphi^{*} P\right)\left(f_{[k]}\right)=P\left((f \circ \varphi)_{[k]}\right) \tag{7.29}
\end{equation*}
$$

so that $\psi^{*}\left(\varphi^{*} P\right)=(\psi \circ \varphi)^{*} P$. Notice that for a global curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ and a global operator $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes F\right)$ we have to modify a little bit the definition to consider germs of curves at points $t_{0} \in \mathbb{C}$ other than 0 . This leads to putting

$$
\varphi^{*} P\left(f_{[k]}\right)\left(t_{0}\right)=P\left(\left(f \circ \varphi_{t_{0}}\right)_{[k]}\right)(0) \quad \text { where } \varphi_{t_{0}}(t)=t_{0}+\varphi(t), t \in D(0, \varepsilon)
$$

The \mathbb{C}^{*}-action on a homogeneous polynomial of degree m is simply $h_{\lambda}^{*} P=\lambda^{m} P$ for a dilation $h_{\lambda}(t)=\lambda t, \lambda \in \mathbb{C}^{*}$, but since $\varphi \circ h_{\lambda} \neq h_{\lambda} \circ \varphi$ in general, $\varphi^{*} P$ is no longer homogeneous when P is. However, by expanding the derivatives of $t \mapsto f(\varphi(t))$ at $t=0$, we find an expression

$$
\begin{equation*}
\left(\varphi^{*} P\right)\left(f_{[k]}\right)=\sum_{\alpha \in \mathbb{N}^{k},|\alpha|_{w}=m} \varphi^{(\alpha)}(0) P_{\alpha}\left(f_{[k]}\right) \tag{7.30}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{N}^{k}, \varphi^{(\alpha)}=\left(\varphi^{\prime}\right)^{\alpha_{1}}\left(\varphi^{\prime \prime}\right)^{\alpha_{2}} \ldots\left(\varphi^{(k)}\right)^{\alpha_{k}},|\alpha|_{w}=\alpha_{1}+2 \alpha_{2}+\ldots+k \alpha_{k}$ is the weighted degree and P_{α} is a homogeneous polynomial. Since any additional derivative taken on φ^{\prime} means one less derivative left for f, it is easy to see that for P homogeneous of degree m we have

$$
m_{\alpha}:=\operatorname{deg} P_{\alpha}=m-\left(\alpha_{2}+2 \alpha_{3}+\ldots+(k-1) \alpha_{k}\right)=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}
$$

in particular $\operatorname{deg} P_{\alpha}<m$ unless $\alpha=(m, 0, \ldots, 0)$, in which case $P_{\alpha}=P$. Let us fix a non zero global section $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes F\right)$ for some line bundle F over X, and pick a non zero component
$P_{\alpha_{0}}$ of minimum degree $m_{\alpha_{0}}$ in the decomposition of P (of course $m_{\alpha_{0}}=m$ if and only if P is already invariant). We have by construction

$$
P_{\alpha_{0}} \in H^{0}\left(X, E_{k, m_{\alpha_{0}}}^{\mathrm{GG}} V^{*} \otimes F\right) .
$$

We claim that $P_{\alpha_{0}}$ is \mathbb{G}_{k}-invariant. Otherwise, there is for each α a decomposition

$$
\begin{equation*}
\left(\psi^{*} P_{\alpha}\right)\left(f_{[k]}\right)=\sum_{\beta \in \mathbb{N}^{k},|\beta|_{w}=m_{\alpha}} \psi^{(\beta)}(0) P_{\alpha, \beta}\left(f_{[k]}\right), \tag{7.31}
\end{equation*}
$$

and the non invariance of $P_{\alpha_{0}}$ would yield some non zero term $P_{\alpha_{0}, \beta_{0}}$ of degree

$$
\operatorname{deg} P_{\alpha_{0}, \beta_{0}}<\operatorname{deg} P_{\alpha_{0}} \leqslant \operatorname{deg} P=m
$$

By replacing f with $f \circ \psi$ in (7.30) and plugging (7.31) into it, we would get an identity of the form

$$
(\psi \circ \varphi)^{*} P\left(f_{[k]}\right)=\sum_{\alpha \in \mathbb{N}^{k}}(\psi \circ \varphi)^{(\alpha)}(0) P_{\alpha}\left(f_{[k]}\right)=\sum_{\alpha, \beta \in \mathbb{N}^{k}} \varphi^{(\alpha)}(0) \psi^{(\beta)}(0) P_{\alpha, \beta}\left(f_{[k]}\right),
$$

but the term in the middle would have all components of degree $\geqslant m_{\alpha_{0}}$, while the term on the right possesses a component of degree $<m_{\alpha_{0}}$ for a sufficiently generic choice of φ and ψ, contradiction. Therefore, we have shown the existence of a non zero invariant section

$$
P_{\alpha_{0}} \in H^{0}\left(X, E_{k, m_{\alpha_{0}}} V^{*} \otimes F\right), \quad m_{\alpha_{0}} \leqslant m
$$

8. k-JET METRICS WITH NEGATIVE CURVATURE

The goal of this section is to show that hyperbolicity is closely related to the existence of k-jet metrics with suitable negativity properties of the curvature. The connection between these properties is in fact a simple consequence of the Ahlfors-Schwarz lemma. Such ideas have been already developed long ago by Grauert-Reckziegel [GRec65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler metrics on T_{X}) and by Cowen-Griffiths [CoGr76], Green-Griffiths [GrGr79] and Grauert [Gra89] for higher order jet metrics.

8.A. Definition of k-JEt metrics

Even in the standard case $V=T_{X}$, the definition given below differs from that of [GrGr79], in which the k-jet metrics are not supposed to be $\mathbb{G}_{k^{\prime}}^{\prime}$-invariant. We prefer to deal here with $\mathbb{G}_{k^{-}}^{\prime}$ invariant objects, because they reflect better the intrinsic geometry. Grauert [Gra89] actually deals with \mathbb{G}_{k}^{\prime}-invariant metrics, but he apparently does not take care of the way the quotient space $J_{k}^{\mathrm{reg}} V / \mathbb{G}_{k}$ can be compactified; also, his metrics are always induced by the Poincaré metric, and it is not at all clear whether these metrics have the expected curvature properties (see 8.14 below). In the present situation, it is important to allow also hermitian metrics possessing some singularities ("singular hermitian metrics" in the sense of [Dem90b]).
8.1. Definition. Let $L \rightarrow X$ be a holomorphic line bundle over a complex manifold X. We say that h is a singular metric on L if for any trivialization $L_{\upharpoonright U} \simeq U \times \mathbb{C}$ of L, the metric is given by $|\xi|_{h}^{2}=|\xi|^{2} e^{-\varphi}$ for some real valued weight function $\varphi \in L_{\mathrm{loc}}^{1}(U)$. The curvature current of L is then defined to be the closed $(1,1)$-current $\Theta_{L, h}=\frac{i}{2 \pi} \partial \bar{\partial} \varphi$, computed in the sense of distributions. We say that h admits a closed subset $\Sigma \subset X$ as its degeneration set if φ is locally bounded on $X \backslash \Sigma$ and is unbounded on a neighborhood of any point of Σ.

An especially useful situation is the case when the curvature of h is positive definite. By this, we mean that there exists a smooth positive definite hermitian metric ω and a continuous positive function ε on X such that $\Theta_{L, h} \geqslant \varepsilon \omega$ in the sense of currents, and we write in this case $\Theta_{L, h} \gg 0$. We need the following basic fact (quite standard when X is projective algebraic; however we want to avoid any algebraicity assumption here, so as to be able to cover the case of general complex tori in § 10).
8.2. Proposition. Let L be a holomorphic line bundle on a compact complex manifold X.
(i) L admits a singular hermitian metric h with positive definite curvature current $\Theta_{L, h} \gg 0$ if and only if L is big. Now, define B_{m} to be the base locus of the linear system $\left|H^{0}\left(X, L^{\otimes m}\right)\right|$ and let

$$
\Phi_{m}: X \backslash B_{m} \rightarrow \mathbb{P}^{N}
$$

be the corresponding meromorphic map. Let Σ_{m} be the closed analytic set equal to the union of B_{m} and of the set of points $x \in X \backslash B_{m}$ such that the fiber $\Phi_{m}^{-1}\left(\Phi_{m}(x)\right)$ is positive dimensional.
(ii) If $\Sigma_{m} \neq X$ and G is any line bundle, the base locus of $L^{\otimes k} \otimes G^{-1}$ is contained in Σ_{m} for k large. As a consequence, L admits a singular hermitian metric h with degeneration set Σ_{m} and with $\Theta_{L, h}$ positive definite on X.
(iii) Conversely, if L admits a hermitian metric h with degeneration set Σ and positive definite curvature current $\Theta_{L, h}$, there exists an integer $m>0$ such that the base locus B_{m} is contained in Σ and $\Phi_{m}: X \backslash \Sigma \rightarrow \mathbb{P}_{m}$ is an embedding.

Proof. (i) is proved e.g. in [Dem90b, 92], and (ii) and (iii) are well-known results in the basic theory of linear systems.

We now come to the main definitions. By (6.6), every regular k-jet $f \in J_{k} V$ gives rise to an element $f_{[k-1]}^{\prime}(0) \in \mathcal{O}_{X_{k}}(-1)$. Thus, measuring the "norm of k-jets" is the same as taking a hermitian metric on $\mathcal{O}_{X_{k}}(-1)$.
8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a complex directed manifold (X, V) is a hermitian metric h_{k} on the line bundle $\mathcal{O}_{X_{k}}(-1)$ over X_{k} (i.e. a Finsler metric on the vector bundle V_{k-1} over X_{k-1}), such that the weight functions φ representing the metric are smooth (resp. continuous, L_{loc}^{1}). We let $\Sigma_{h_{k}} \subset X_{k}$ be the singularity set of the metric, i.e., the closed subset of points in a neighborhood of which the weight φ is not locally bounded.

We will always assume here that the weight function φ is quasi psh. Recall that a function φ is said to be quasi psh if φ is locally the sum of a plurisubharmonic function and of a smooth function (so that in particular $\varphi \in L_{\text {loc }}^{1}$). Then the curvature current

$$
\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)=\frac{i}{2 \pi} \partial \bar{\partial} \varphi
$$

is well defined as a current and is locally bounded from below by a negative $(1,1)$-form with constant coefficients.
8.4. Definition. Let h_{k} be a k-jet metric on (X, V). We say that h_{k} has negative jet curvature (resp. negative total jet curvature) if $\Theta_{h_{k}}\left(\mathcal{O}_{X_{k}}(-1)\right)$ is negative definite along the subbundle $V_{k} \subset T_{X_{k}}$ (resp. on all of $T_{X_{k}}$), i.e., if there is $\varepsilon>0$ and a smooth hermitian metric ω_{k} on $T_{X_{k}}$ such that

$$
\left\langle\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)\right\rangle(\xi) \geqslant \varepsilon|\xi|_{\omega_{k}}^{2}, \quad \forall \xi \in V_{k} \subset T_{X_{k}} \quad\left(\text { resp } . \quad \forall \xi \in T_{X_{k}}\right)
$$

(If the metric h_{k} is not smooth, we suppose that its weights φ are quasi psh, and the curvature inequality is taken in the sense of distributions.)

It is important to observe that for $k \geqslant 2$ there cannot exist any smooth hermitian metric h_{k} on $\mathcal{O}_{X_{k}}(1)$ with positive definite curvature along $T_{X_{k} / X}$, since $\mathcal{O}_{X_{k}}(1)$ is not relatively ample over X. However, it is relatively big, and Prop. 8.2 (i) shows that $\mathcal{O}_{X_{k}}(-1)$ admits a singular hermitian metric with negative total jet curvature (whatever the singularities of the metric are) if and only if $\mathcal{O}_{X_{k}}(1)$ is big over X_{k}. It is therefore crucial to allow singularities in the metrics in Def. 8.4.

8.B. Special case of 1-Jet metrics

A 1-jet metric h_{1} on $\mathcal{O}_{X_{1}}(-1)$ is the same as a Finsler metric $N=\sqrt{h_{1}}$ on $V \subset T_{X}$. Assume until the end of this paragraph that h_{1} is smooth. By the well known Kodaira embedding theorem, the existence of a smooth metric h_{1} such that $\Theta_{h_{1}^{-1}}\left(\mathcal{O}_{X_{1}}(1)\right)$ is positive on all of $T_{X_{1}}$ is equivalent to $\mathcal{O}_{X_{1}}(1)$ being ample, that is, V^{*} ample.
8.5 Remark. In the absolute case $V=T_{X}$, there are only few examples of varieties X such that T_{X}^{*} is ample, mainly quotients of the ball $\mathbb{B}_{n} \subset \mathbb{C}^{n}$ by a discrete cocompact group of automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker. For example, if the hermitian metric h_{1} comes from a (smooth) hermitian metric h on V, then formula (5.15) implies that h_{1} has negative total jet curvature (i.e. $\Theta_{h_{1}^{-1}}\left(\mathcal{O}_{X_{1}}(1)\right)$ is positive) if and only if $\left\langle\Theta_{V, h}\right\rangle(\zeta \otimes v)<0$ for all $\zeta \in T_{X} \backslash\{0\}, v \in V \backslash\{0\}$, that is, if (V, h) is negative in the sense of Griffiths. On the other hand, $V_{1} \subset T_{X_{1}}$ consists by definition of tangent vectors $\tau \in T_{X_{1},(x,[v])}$ whose horizontal projection ${ }^{H} \tau$ is proportional to v, thus $\Theta_{h_{1}}\left(\mathcal{O}_{X_{1}}(-1)\right)$ is negative definite on V_{1} if and only if $\Theta_{V, h}$ satisfies the much weaker condition that the holomorphic sectional curvature $\left\langle\Theta_{V, h}\right\rangle(v \otimes v)$ is negative on every complex line.

8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our first observation is the fact that the k-jet negativity property of the curvature becomes actually weaker and weaker as k increases.
8.6. Lemma. Let (X, V) be a compact complex directed manifold. If (X, V) has a $(k-1)$-jet metric h_{k-1} with negative jet curvature, then there is a k-jet metric h_{k} with negative jet curvature such that $\Sigma_{h_{k}} \subset \pi_{k}^{-1}\left(\Sigma_{h_{k-1}}\right) \cup D_{k}$. (The same holds true for negative total jet curvature).
Proof. Let ω_{k-1}, ω_{k} be given smooth hermitian metrics on $T_{X_{k-1}}$ and $T_{X_{k}}$. The hypothesis implies

$$
\left\langle\Theta_{h_{k-1}^{-1}}\left(\mathcal{O}_{X_{k-1}}(1)\right)\right\rangle(\xi) \geqslant \varepsilon|\xi|_{\omega_{k-1}}^{2}, \quad \forall \xi \in V_{k-1}
$$

for some constant $\varepsilon>0$. On the other hand, as $\mathcal{O}_{X_{k}}\left(D_{k}\right)$ is relatively ample over $X_{k-1}\left(D_{k}\right.$ is a hyperplane section bundle), there exists a smooth metric \widetilde{h} on $\mathcal{O}_{X_{k}}\left(D_{k}\right)$ such that

$$
\left\langle\Theta_{\widetilde{h}}\left(\mathcal{O}_{X_{k}}\left(D_{k}\right)\right)\right\rangle(\xi) \geqslant \delta|\xi|_{\omega_{k}}^{2}-C\left|\left(\pi_{k}\right)_{*} \xi\right|_{\omega_{k-1}}^{2}, \quad \forall \xi \in T_{X_{k}}
$$

for some constants $\delta, C>0$. Combining both inequalities (the second one being applied to $\xi \in V_{k}$ and the first one to $\left.\left(\pi_{k}\right)_{*} \xi \in V_{k-1}\right)$, we get

$$
\begin{aligned}
\left\langle\Theta _ { (\pi _ { k } ^ { * } h _ { k - 1 }) ^ { - p } \widetilde { h } } \left(\pi_{k}^{*} \mathcal{O}_{X_{k-1}}(p) \otimes\right.\right. & \left.\left.\mathcal{O}_{X_{k}}\left(D_{k}\right)\right)\right\rangle(\xi) \geqslant \\
& \geqslant \delta|\xi|_{\omega_{k}}^{2}+(p \varepsilon-C)\left|\left(\pi_{k}\right)_{*} \xi\right|_{\omega_{k-1}}^{2}, \quad \forall \xi \in V_{k}
\end{aligned}
$$

Hence, for p large enough, $\left(\pi_{k}^{*} h_{k-1}\right)^{-p} \widetilde{h}$ has positive definite curvature along V_{k}. Now, by (6.9), there is a sheaf injection

$$
\mathcal{O}_{X_{k}}(-p)=\pi_{k}^{*} \mathcal{O}_{X_{k-1}}(-p) \otimes \mathcal{O}_{X_{k}}\left(-p D_{k}\right) \hookrightarrow\left(\pi_{k}^{*} \mathcal{O}_{X_{k-1}}(p) \otimes \mathcal{O}_{X_{k}}\left(D_{k}\right)\right)^{-1}
$$

obtained by twisting with $\mathcal{O}_{X_{k}}\left((p-1) D_{k}\right)$. Therefore $h_{k}:=\left(\left(\pi_{k}^{*} h_{k-1}\right)^{-p} \widetilde{h}\right)^{-1 / p}=\left(\pi_{k}^{*} h_{k-1}\right) \widetilde{h}^{-1 / p}$ induces a singular metric on $\mathcal{O}_{X_{k}}(1)$ in which an additional degeneration divisor $p^{-1}(p-1) D_{k}$ appears. Hence we get $\Sigma_{h_{k}}=\pi_{k}^{-1} \Sigma_{h_{k-1}} \cup D_{k}$ and

$$
\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)=\frac{1}{p} \Theta_{\left(\pi_{k}^{*} h_{k-1}\right)^{-p \widetilde{h}}}+\frac{p-1}{p}\left[D_{k}\right]
$$

is positive definite along V_{k}. The same proof works in the case of negative total jet curvature.
One of the main motivations for the introduction of k-jets metrics is the following list of algebraic sufficient conditions.
8.7. Algebraic sufficient conditions. We suppose here that X is projective algebraic, and we make one of the additional assumptions (i), (ii) or (iii) below.
(i) Assume that there exist integers $k, m>0$ and $\boldsymbol{b} \in \mathbb{N}^{k}$ such that the line bundle $L:=\mathcal{O}_{X_{k}}(m) \otimes$ $\mathcal{O}_{X_{k}}\left(-\boldsymbol{b} \cdot D^{*}\right)$ is ample over X_{k}. Then there is a smooth hermitian metric h_{L} on L with positive definite curvature on X_{k}. By means of the morphism $\mu: \mathcal{O}_{X_{k}}(-m) \rightarrow L^{-1}$, we get an induced metric
$h_{k}=\left(\mu^{*} h_{L}^{-1}\right)^{1 / m}$ on $\mathcal{O}_{X_{k}}(-1)$ which is degenerate on the support of the zero divisor $\operatorname{div}(\mu)=\boldsymbol{b} \cdot D^{*}$. Hence $\Sigma_{h_{k}}=\operatorname{Supp}\left(\boldsymbol{b} \cdot D^{*}\right) \subset X_{k}^{\text {sing }}$ and

$$
\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)=\frac{1}{m} \Theta_{h_{L}}(L)+\frac{1}{m}\left[\boldsymbol{b} \cdot D^{*}\right] \geqslant \frac{1}{m} \Theta_{h_{L}}(L)>0 .
$$

In particular h_{k} has negative total jet curvature.
(ii) Assume more generally that there exist integers $k, m>0$ and an ample line bundle A on X such that $H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}(m) \otimes \pi_{0, k}^{*} A^{-1}\right)$ has non zero sections $\sigma_{1}, \ldots, \sigma_{N}$. Let $Z \subset X_{k}$ be the base locus of these sections; necessarily $Z \supset X_{k}^{\text {sing }}$ by 7.11 (iii). By taking a smooth metric h_{A} with positive curvature on A, we get a singular metric h_{k}^{\prime} on $\mathcal{O}_{X_{k}}(-1)$ such that

$$
h_{k}^{\prime}(\xi)=\left(\sum_{1 \leqslant j \leqslant N}\left|\sigma_{j}(w) \cdot \xi^{m}\right|_{h_{A}^{-1}}^{2}\right)^{1 / m}, \quad w \in X_{k}, \quad \xi \in \mathcal{O}_{X_{k}}(-1)_{w}
$$

Then $\Sigma_{h_{k}^{\prime}}=Z$, and by computing $\frac{i}{2 \pi} \partial \bar{\partial} \log h_{k}^{\prime}(\xi)$ we obtain

$$
\Theta_{h_{k}^{\prime-1}}\left(\mathcal{O}_{X_{k}}(1)\right) \geqslant \frac{1}{m} \pi_{0, k}^{*} \Theta_{A} .
$$

By (7.17) and an induction on k, there exists $\boldsymbol{b} \in \mathbb{Q}_{+}^{k}$ such that $\mathcal{O}_{X_{k}}(1) \otimes \mathcal{O}_{X_{k}}\left(-\boldsymbol{b} \cdot D^{*}\right)$ is relatively ample over X. Hence $L=\mathcal{O}_{X_{k}}(1) \otimes \mathcal{O}_{X_{k}}\left(-\boldsymbol{b} \cdot D^{*}\right) \otimes \pi_{0, k}^{*} A^{\otimes p}$ is ample on X for $p \gg 0$. The arguments used in (i) show that there is a k-jet metric $h_{k}^{\prime \prime}$ on $\mathcal{O}_{X_{k}}(-1)$ with $\Sigma_{h_{k}^{\prime \prime}}=\operatorname{Supp}\left(\boldsymbol{b} \cdot D^{*}\right)=X_{k}^{\text {sing }}$ and

$$
\Theta_{h_{k}^{\prime \prime-1}}\left(\mathcal{O}_{X_{k}}(1)\right)=\Theta_{L}+\left[\boldsymbol{b} \cdot D^{*}\right]-p \pi_{0, k}^{*} \Theta_{A},
$$

where Θ_{L} is positive definite on X_{k}. The metric $h_{k}=\left(h_{k}^{\prime m p} h_{k}^{\prime \prime}\right)^{1 /(m p+1)}$ then satisfies $\Sigma_{h_{k}}=\Sigma_{h_{k}^{\prime}}=$ Z and

$$
\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right) \geqslant \frac{1}{m p+1} \Theta_{L}>0
$$

(iii) If $E_{k, m} V^{*}$ is ample, there is an ample line bundle A and a sufficiently high symmetric power such that $S^{p}\left(E_{k, m} V^{*}\right) \otimes A^{-1}$ is generated by sections. These sections can be viewed as sections of $\mathcal{O}_{X_{k}}(m p) \otimes \pi_{0, k}^{*} A^{-1}$ over X_{k}, and their base locus is exactly $Z=X_{k}^{\text {sing }}$ by 7.11 (iii). Hence the k-jet metric h_{k} constructed in (ii) has negative total jet curvature and satisfies $\Sigma_{h_{k}}=X_{k}^{\text {sing }}$.

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr79] in the higher order case, is that k-jet negativity implies hyperbolicity. In particular, the existence of enough global jet differentials implies hyperbolicity.
8.8. Theorem. Let (X, V) be a compact complex directed manifold. If (X, V) has a k-jet metric h_{k} with negative jet curvature, then every entire curve $f: \mathbb{C} \rightarrow X$ tangent to V is such that $f_{[k]}(\mathbb{C}) \subset \Sigma_{h_{k}}$. In particular, if $\Sigma_{h_{k}} \subset X_{k}^{\text {sing }}$, then (X, V) is hyperbolic.
Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach of [GrGr79]. However we will give here all necessary details because our setting is slightly different. Assume that there is a k-jet metric h_{k} as in the hypotheses of Theorem 8.8. Let ω_{k} be a smooth hermitian metric on $T_{X_{k}}$. By hypothesis, there exists $\varepsilon>0$ such that

$$
\left\langle\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)\right\rangle(\xi) \geqslant \varepsilon|\xi|_{\omega_{k}}^{2} \quad \forall \xi \in V_{k} .
$$

Moreover, by (6.4), $\left(\pi_{k}\right)_{*}$ maps V_{k} continuously to $\mathcal{O}_{X_{k}}(-1)$ and the weight e^{φ} of h_{k} is locally bounded from above. Hence there is a constant $C>0$ such that

$$
\left|\left(\pi_{k}\right)_{*} \xi\right|_{h_{k}}^{2} \leqslant C|\xi|_{\omega_{k}}^{2}, \quad \forall \xi \in V_{k} .
$$

Combining these inequalities, we find

$$
\left\langle\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)\right\rangle(\xi) \geqslant \frac{\varepsilon}{C}\left|\left(\pi_{k}\right)_{*} \xi\right|_{h_{k}}^{2}, \quad \forall \xi \in V_{k} .
$$

Now, let $f: \Delta_{R} \rightarrow X$ be a non constant holomorphic map tangent to V on the disk Δ_{R}. We use the line bundle morphism (6.6)

$$
F=f_{[k-1]}^{\prime}: T_{\Delta_{R}} \rightarrow f_{[k]}^{*} \mathcal{O}_{X_{k}}(-1)
$$

to obtain a pullback metric

$$
\gamma=\gamma_{0}(t) d t \otimes d \bar{t}=F^{*} h_{k} \quad \text { on } T_{\Delta_{R}} .
$$

If $f_{[k]}\left(\Delta_{R}\right) \subset \Sigma_{h_{k}}$ then $\gamma \equiv 0$. Otherwise, $F(t)$ has isolated zeroes at all singular points of $f_{[k-1]}$ and so $\gamma(t)$ vanishes only at these points and at points of the degeneration set $\left(f_{[k]}\right)^{-1}\left(\Sigma_{h_{k}}\right)$ which is a polar set in Δ_{R}. At other points, the Gaussian curvature of γ satisfies

$$
\frac{i \partial \bar{\partial} \log \gamma_{0}(t)}{\gamma(t)}=\frac{-2 \pi\left(f_{[k]}\right)^{*} \Theta_{h_{k}}\left(\mathcal{O}_{X_{k}}(-1)\right)}{F^{*} h_{k}}=\frac{\left\langle\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)\right\rangle\left(f_{[k]}^{\prime}(t)\right)}{\left|f_{[k-1]}^{\prime}(t)\right|_{h_{k}}^{2}} \geqslant \frac{\varepsilon}{C},
$$

since $f_{[k-1]}^{\prime}(t)=\left(\pi_{k}\right)_{*} f_{[k]}^{\prime}(t)$. The Ahlfors-Schwarz lemma 4.2 implies that γ can be compared with the Poincaré metric as follows:

$$
\gamma(t) \leqslant \frac{2 C}{\varepsilon} \frac{R^{-2}|d t|^{2}}{\left(1-|t|^{2} / R^{2}\right)^{2}} \quad \Longrightarrow \quad\left|f_{[k-1]}^{\prime}(t)\right|_{h_{k}}^{2} \leqslant \frac{2 C}{\varepsilon} \frac{R^{-2}}{\left(1-|t|^{2} / R^{2}\right)^{2}} .
$$

If $f: \mathbb{C} \rightarrow X$ is an entire curve tangent to V such that $f_{[k]}(\mathbb{C}) \not \subset \Sigma_{h_{k}}$, the above estimate implies as $R \rightarrow+\infty$ that $f_{[k-1]}$ must be a constant, hence also f. Now, if $\Sigma_{h_{k}} \subset X_{k}^{\text {sing }}$, the inclusion $f_{[k]}(\mathbb{C}) \subset \Sigma_{h_{k}}$ implies $f^{\prime}(t)=0$ at every point, hence f is a constant and (X, V) is hyperbolic.

Combining Theorem 8.8 with 8.7 (ii) and (iii), we get the following consequences.
8.9. Vanishing theorem. Assume that there exist integers $k, m>0$ and an ample line bundle L on X such that $H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}(m) \otimes \pi_{0, k}^{*} L^{-1}\right) \simeq H^{0}\left(X, E_{k, m} V^{*} \otimes L^{-1}\right)$ has non zero sections $\sigma_{1}, \ldots, \sigma_{N}$. Let $Z \subset X_{k}$ be the base locus of these sections. Then every entire curve $f: \mathbb{C} \rightarrow X$ tangent to V is such that $f_{[k]}(\mathbb{C}) \subset Z$. In other words, for every global \mathbb{G}_{k}-invariant polynomial differential operator P with values in L^{-1}, every entire curve f must satisfy the algebraic differential equation $P\left(f_{[k]}\right)=0$.
8.10. Corollary. Let (X, V) be a compact complex directed manifold. If $E_{k, m} V^{*}$ is ample for some positive integers k, m, then (X, V) is hyperbolic.
8.11. Remark. Green and Griffiths [GrGr79] stated that Theorem 8.9 is even true for sections $\sigma_{j} \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}}\left(V^{*}\right) \otimes L^{-1}\right)$, in the special case $V=T_{X}$ they consider. This is proved below in §8.D; the reader is also referred to Siu and Yeung [SiYe97] for a proof based on a use of Nevanlinna theory and the logarithmic derivative lemma (the original proof given in [GrGr79] does not seem to be complete, as it relies on an unsettled pointwise version of the Ahlfors-Schwarz lemma for general jet differentials); other proofs seem to have been circulating in the literature in the last years. Let us first give a very short proof in the case where f is supposed to have a bounded derivative (thanks to the Brody criterion, this is enough if one is merely interested in proving hyperbolicity, thus Corollary 8.10 will be valid with $E_{k, m}^{\mathrm{GG}} V^{*}$ in place of $E_{k, m} V^{*}$). In fact, if f^{\prime} is bounded, one can apply the Cauchy inequalities to all components f_{j} of f with respect to a finite collection of coordinate patches covering X. As f^{\prime} is bounded, we can do this on sufficiently small discs $D(t, \delta) \subset \mathbb{C}$ of constant radius $\delta>0$. Therefore all derivatives $f^{\prime}, f^{\prime \prime}, \ldots f^{(k)}$ are bounded. From this we conclude that $\sigma_{j}(f)$ is a bounded section of $f^{*} L^{-1}$. Its norm $\left|\sigma_{j}(f)\right|_{L^{-1}}$ (with respect to any positively curved metric $\left|\left.\right|_{L}\right.$ on L) is a bounded subharmonic function, which is moreover strictly subharmonic at all points where $f^{\prime} \neq 0$ and $\sigma_{j}(f) \neq 0$. This is a contradiction unless f is constant or $\sigma_{j}(f) \equiv 0$.

The above results justify the following definition and problems.
8.12. Definition. We say that X, resp. (X, V), has non degenerate negative k-jet curvature if there exists a k-jet metric h_{k} on $\mathcal{O}_{X_{k}}(-1)$ with negative jet curvature such that $\Sigma_{h_{k}} \subset X_{k}^{\text {sing }}$.
8.13. Conjecture. Let (X, V) be a compact directed manifold. Then (X, V) is hyperbolic if and only if (X, V) has nondegenerate negative k-jet curvature for k large enough.

This is probably a hard problem. In fact, we will see in the next section that the smallest admissible integer k must depend on the geometry of X and need not be uniformly bounded as soon as $\operatorname{dim} X \geqslant 2$ (even in the absolute case $\left.V=T_{X}\right)$. On the other hand, if (X, V) is hyperbolic, we get for each integer $k \geqslant 1$ a generalized Kobayashi-Royden metric $\mathbf{k}_{\left(X_{k-1}, V_{k-1}\right)}$ on V_{k-1} (see Definition 2.1), which can be also viewed as a k-jet metric h_{k} on $\mathcal{O}_{X_{k}}(-1)$; we will call it the Grauert k-jet metric of (X, V), although it formally differs from the jet metric considered in [Gra89] (see also [DGr91]). By looking at the projection $\pi_{k}:\left(X_{k}, V_{k}\right) \rightarrow\left(X_{k-1}, V_{k-1}\right)$, we see that the sequence h_{k} is monotonic, namely $\pi_{k}^{*} h_{k} \leqslant h_{k+1}$ for every k. If (X, V) is hyperbolic, then h_{1} is nondegenerate and therefore by monotonicity $\Sigma_{h_{k}} \subset X_{k}^{\text {sing }}$ for $k \geqslant 1$. Conversely, if the Grauert metric satisfies $\Sigma_{h_{k}} \subset X_{k}^{\text {sing }}$, it is easy to see that (X, V) is hyperbolic. The following problem is thus especially meaningful.
8.14. Problem. Estimate the k-jet curvature $\Theta_{h_{k}^{-1}}\left(\mathcal{O}_{X_{k}}(1)\right)$ of the Grauert metric h_{k} on $\left(X_{k}, V_{k}\right)$ as k tends to $+\infty$.

8.D. VANISHING THEOREM FOR NON INVARIANT JET DIFFERENTIALS

As an application of the arguments developed in $\S 7 . \mathrm{E}$, we indicate here a proof of the basic vanishing theorem for non invariant jet differentials. This version has been first proved in full generality by Siu [Siu97] (cf. also [Dem97]), with a different and more involved technique based on Nevanlinna theory and the logarithmic derivative lemma.
8.15. Theorem. Let (X, V) be a directed projective variety and $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ an entire curve tangent to V. Then for every global section $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-A)\right)$ where A is an ample divisor of X, one has $P\left(f_{[k]}\right)=0$.
Sketch of proof. In general, we know by 8.9 that the result is true when P is invariant, i.e. for $P \in$ $H^{0}\left(X, E_{k, m} V^{*} \otimes \mathcal{O}(-A)\right)$. Now, we prove Theorem 8.15 by induction on k and m (simultaneously for all directed varieties). Let $Z \subset X_{k}$ be the base locus of all polynomials $Q \in H^{0}\left(X, E_{k, m^{\prime}}^{\mathrm{GG}} V^{*} \otimes\right.$ $\mathcal{O}(-A))$ with $m^{\prime}<m$. A priori, this defines merely an algebraic set in the Green-Griffiths bundle $X_{k}^{\mathrm{GG}}=\left(J_{k} V \backslash\{0\}\right) / \mathbb{C}^{*}$, but since the global polynomials $\varphi^{*} Q$ also enter the game, we know that the base locus is \mathbb{G}_{k}-invariant, and thus descends to X_{k}. Let $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$. By the induction hypothesis hypothesis, we know that $f_{[k]}(\mathbb{C}) \subset Z$. Therefore f can also be viewed as a entire curve drawn in the directed variety (Z, W) induced by $\left(X_{k}, V_{k}\right)$. By (7.30), we have a decomposition

$$
\left(\varphi^{*} P\right)\left(g_{[k]}\right)=\sum_{\alpha \in \mathbb{N}^{k},|\alpha|_{w=m}} \varphi^{(\alpha)}(0) P_{\alpha}\left(g_{[k]}\right), \quad \text { with } \operatorname{deg} P_{\alpha}<\operatorname{deg} P \text { for } \alpha \neq(m, 0, \ldots, 0),
$$

and since $P_{\alpha}\left(g_{[k]}\right)=0$ for all germs of curves g of (Z, W) when $\alpha \neq(m, 0, \ldots, 0)$, we conclude that P defines an invariant jet differential when it is restricted to (Z, W), in other words it still defines a section of

$$
H^{0}\left(Z,\left(\mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} \mathcal{O}_{X}(-A)\right)_{\mid Z}\right)
$$

We can then apply the Ahlfors-Schwarz lemma in the way we did it in $\S 8 . \mathrm{C}$ to conclude that $P\left(f_{[k]}\right)=0$.

9. Morse inequalities and the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves $f: \mathbb{C} \rightarrow X$ drawn in a complex irreducible n-dimensional variety X, and more specifically to show that they must satisfy certain global algebraic or differential equations as soon as X is projective of general type.

JEAN-PIERRE DEMAILLY
By means of holomorphic Morse inequalities and a probabilistic analysis of the cohomology of jet spaces, it is possible to prove a significant step of the generalized Green-Griffiths-Lang conjecture. The use of holomorphic Morse inequalities was first suggested in [Dem07a], and then carried out in an algebraic context by S. Diverio in his PhD work ([Div08, Div09]). The general more analytic and more powerful results presented here first appeared in [Dem11, Dem12].

9.A. Introduction

Let (X, V) be a directed variety. By definition, proving the algebraic degeneracy of an entire curve $f ;\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ means finding a non zero polynomial P on X such that $P(f)=0$. As already explained in $\S 8$, all known methods of proof are based on establishing first the existence of certain algebraic differential equations $P\left(f ; f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=0$ of some order k, and then trying to find enough such equations so that they cut out a proper algebraic locus $Y \subsetneq X$. We use for this global sections of $H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-A)\right)$ where A is ample, and apply the fundamental vanishing theorem 8.15. It is expected that the global sections of $H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-A)\right)$ are precisely those which ultimately define the algebraic locus $Y \subsetneq X$ where the curve f should lie. The problem is then reduced to (i) showing that there are many non zero sections of $H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-A)\right)$ and (ii) understanding what is their joint base locus. The first part of this program is the main result of this section.
9.1. Theorem. Let (X, V) be a directed projective variety such that K_{V} is big and let A be an ample divisor. Then for $k \gg 1$ and $\delta \in \mathbb{Q}_{+}$small enough, $\delta \leqslant c(\log k) / k$, the number of sections $h^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-m \delta A)\right)$ has maximal growth, i.e. is larger that $c_{k} m^{n+k r-1}$ for some $m \geqslant m_{k}$, where $c, c_{k}>0, n=\operatorname{dim} X$ and $r=\operatorname{rank} V$. In particular, entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ satisfy (many) algebraic differential equations.

The statement is very elementary to check when $r=\operatorname{rank} V=1$, and therefore when $n=$ $\operatorname{dim} X=1$. In higher dimensions $n \geqslant 2$, only very partial results were known at this point, concerning merely the absolute case $V=T_{X}$. In dimension 2 , Theorem 9.1 is a consequence of the Riemann-Roch calculation of Green-Griffiths [GrGr79], combined with a vanishing theorem due to Bogomolov [Bog79] - the latter actually only applies to the top cohomology group H^{n}, and things become much more delicate when extimates of intermediate cohomology groups are needed. In higher dimensions, Diverio [Div08, Div09] proved the existence of sections of $H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes\right.$ $\mathcal{O}(-1))$ whenever X is a hypersurface of $\mathbb{P}_{\mathbb{C}}^{n+1}$ of high degree $d \geqslant d_{n}$, assuming $k \geqslant n$ and $m \geqslant m_{n}$. More recently, Merker [Mer15] was able to treat the case of arbitrary hypersurfaces of general type, i.e. $d \geqslant n+3$, assuming this time k to be very large. The latter result is obtained through explicit algebraic calculations of the spaces of sections, and the proof is computationally very intensive. Bérczi [Ber10] also obtained related results with a different approach based on residue formulas, assuming $d \geqslant 2^{7 n \log n}$.

All these approaches are algebraic in nature. Here, however, our techniques are based on more elaborate curvature estimates in the spirit of Cowen-Griffiths [CoGr76]. They require holomorphic Morse inequalities (see 9.10 below) - and we do not know how to translate our method in an algebraic setting. Notice that holomorphic Morse inequalities are essentially insensitive to singularities, as we can pass to non singular models and blow-up X as much as we want: if $\mu: \widetilde{X} \rightarrow X$ is a modification then $\mu_{*} \mathcal{O}_{\tilde{X}}=\mathcal{O}_{X}$ and $R^{q} \mu_{*} \mathcal{O}_{\tilde{X}}$ is supported on a codimension 1 analytic subset (even codimension 2 if X is smooth). It follows from the Leray spectral sequence that the cohomology estimates for L on X or for $\widetilde{L}=\mu^{*} L$ on \widetilde{X} differ by negligible terms, i.e.

$$
\begin{equation*}
h^{q}\left(\widetilde{X}, \widetilde{L}^{\otimes m}\right)-h^{q}\left(X, L^{\otimes m}\right)=O\left(m^{n-1}\right) . \tag{9.2}
\end{equation*}
$$

Finally, singular holomorphic Morse inequalities (in the form obtained by L. Bonavero [Bon93]) allow us to work with singular Hermitian metrics h; this is the reason why we will only require to have big line bundles rather than ample line bundles. In the case of linear subspaces $V \subset T_{X}$, we introduce singular Hermitian metrics as follows.
9.3. Definition. A singular hermitian metric on a linear subspace $V \subset T_{X}$ is a metric h on the fibers of V such that the function $\log h: \xi \mapsto \log |\xi|_{h}^{2}$ is locally integrable on the total space of V.

Such a metric can also be viewed as a singular Hermitian metric on the tautological line bundle $\mathcal{O}_{P(V)}(-1)$ on the projectivized bundle $P(V)=V \backslash\{0\} / \mathbb{C}^{*}$, and therefore its dual metric h^{*} defines a curvature current $\Theta_{\mathcal{O}_{P(V)}(1), h^{*}}$ of type $(1,1)$ on $P(V) \subset P\left(T_{X}\right)$, such that

$$
\begin{equation*}
p^{*} \Theta_{\mathcal{O}_{P(V)}(1), h^{*}}=\frac{i}{2 \pi} \partial \bar{\partial} \log h, \quad \text { where } p: V \backslash\{0\} \rightarrow P(V) \tag{9.4}
\end{equation*}
$$

If $\log h$ is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a smooth function) on V, then $\log h$ is indeed locally integrable, and we have moreover

$$
\begin{equation*}
\Theta_{\mathcal{O}_{P(V)}(1), h^{*}} \geqslant-C \omega \tag{9.5}
\end{equation*}
$$

for some smooth positive (1,1)-form on $P(V)$ and some constant $C>0$; conversely, if (9.5) holds, then $\log h$ is quasi-psh.
9.6. Definition. We will say that a singular Hermitian metric h on V is admissible if h can be written as $h=e^{\varphi} h_{0 \mid V}$ where h_{0} is a smooth positive definite Hermitian on T_{X} and φ is a quasi-psh weight with analytic singularities on X, as in Definition 9.3. Then h can be seen as a singular hermitian metric on $\mathcal{O}_{P(V)}(1)$, with the property that it induces a smooth positive definite metric on a Zariski open set $X^{\prime} \subset X \backslash \operatorname{Sing}(V)$; we will denote by $\operatorname{Sing}(h) \supset \operatorname{Sing}(V)$ the complement of the largest such Zariski open set X^{\prime}.

If h is an admissible metric, we define $\mathcal{O}_{h}\left(V^{*}\right)$ to be the sheaf of germs of holomorphic sections sections of $V_{\mid X \backslash \operatorname{Sing}(h)}^{*}$ which are h^{*}-bounded near $\operatorname{Sing}(h)$; by the assumption on the analytic singularities, this is a coherent sheaf (as the direct image of some coherent sheaf on $P(V)$), and actually, since $h^{*}=e^{-\varphi} h_{0}^{*}$, it is a subsheaf of the sheaf $\mathcal{O}\left(V^{*}\right):=\mathcal{O}_{h_{0}}\left(V^{*}\right)$ associated with a smooth positive definite metric h_{0} on T_{X}. If r is the generic rank of V and m a positive integer, we define similarly

$$
\begin{align*}
{ }^{b} K_{V, h}^{[m]}= & \text { sheaf of germs of holomorphic sections of }\left(\operatorname{det} V_{\mid X^{\prime}}^{*}\right)^{\otimes m}=\left(\Lambda^{r} V_{\mid X^{\prime}}^{*}\right)^{\otimes m} \tag{9.7}\\
& \text { which are det } h^{*} \text {-bounded, }
\end{align*}
$$

so that ${ }^{b} K_{V}^{[m]}:={ }^{b} K_{V, h_{0}}^{[m]}$ according to Def. 2.7. For a given admissible Hermitian structure (V, h), we define similarly the sheaf $E_{k, m}^{\mathrm{GG}} V_{h}^{*}$ to be the sheaf of polynomials defined over $X \backslash \operatorname{Sing}(h)$ which are " h-bounded". This means that when they are viewed as polynomials $P\left(z ; \xi_{1}, \ldots, \xi_{k}\right)$ in terms of $\xi_{j}=\left(\nabla_{h_{0}}^{1,0}\right)^{j} f(0)$ where $\nabla_{h_{0}}^{1,0}$ is the $(1,0)$-component of the induced Chern connection on $\left(V, h_{0}\right)$, there is a uniform bound

$$
\begin{equation*}
\left|P\left(z ; \xi_{1}, \ldots, \xi_{k}\right)\right| \leqslant C\left(\sum\left\|\xi_{j}\right\|_{h}^{1 / j}\right)^{m} \tag{9.8}
\end{equation*}
$$

near points of $X \backslash X^{\prime}$ (see section 2 for more details on this). Again, by a direct image argument, one sees that $E_{k, m}^{\mathrm{GG}} V_{h}^{*}$ is always a coherent sheaf. The sheaf $E_{k, m}^{\mathrm{GG}} V^{*}$ is defined to be $E_{k, m}^{\mathrm{GG}} V_{h}^{*}$ when $h=h_{0}$ (it is actually independent of the choice of h_{0}, as follows from arguments similar to those given in section 2). Notice that this is exactly what is needed to extend the proof of the vanishing theorem 8.15 to the case of a singular linear space V; the value distribution theory argument can only work when the functions $P\left(f ; f^{\prime}, \ldots, f^{(k)}\right)(t)$ do not exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of k-jets $X_{k}^{\mathrm{GG}}=J^{k} V \backslash\{0\} / \mathbb{C}^{*}$, which by (9.3) consists of a fibration in weighted projective spaces, and its associated tautological sheaf

$$
L=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1)
$$

viewed rather as a virtual \mathbb{Q}-line bundle $\mathcal{O}_{X_{k}^{\mathrm{GG}}}\left(m_{0}\right)^{1 / m_{0}}$ with $m_{0}=\operatorname{lcm}(1,2, \ldots, k)$. Then, if $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is the natural projection, we have

$$
E_{k, m}^{\mathrm{GG}}=\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \quad \text { and } \quad R^{q}\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m)=0 \text { for } q \geqslant 1 .
$$

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the isomorphism

$$
\begin{equation*}
H^{q}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes F\right) \simeq H^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} F\right) \tag{9.9}
\end{equation*}
$$

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let us recall the main statement.
9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex manifolds, $E \rightarrow X$ a holomorphic vector bundle of rank r, and (L, h) a hermitian line bundle. The dimensions $h^{q}\left(X, E \otimes L^{k}\right)$ of cohomology groups of the tensor powers $E \otimes L^{k}$ satisfy the following asymptotic estimates as $k \rightarrow+\infty$:
(WM) Weak Morse inequalities:

$$
h^{q}\left(X, E \otimes L^{k}\right) \leqslant r \frac{k^{n}}{n!} \int_{X(L, h, q)}(-1)^{q} \Theta_{L, h}^{n}+o\left(k^{n}\right) .
$$

(SM) Strong Morse inequalities:

$$
\sum_{0 \leqslant j \leqslant q}(-1)^{q-j} h^{j}\left(X, E \otimes L^{k}\right) \leqslant r \frac{k^{n}}{n!} \int_{X(L, h, \leqslant q)}(-1)^{q} \Theta_{L, h}^{n}+o\left(k^{n}\right) .
$$

(RR) Asymptotic Riemann-Roch formula:

$$
\chi\left(X, E \otimes L^{k}\right):=\sum_{0 \leqslant j \leqslant n}(-1)^{j} h^{j}\left(X, E \otimes L^{k}\right)=r \frac{k^{n}}{n!} \int_{X} \Theta_{L, h}^{n}+o\left(k^{n}\right)
$$

Moreover (cf. Bonavero's PhD thesis [Bon93]), if $h=e^{-\varphi}$ is a singular hermitian metric with analytic singularities, the estimates are still true provided all cohomology groups are replaced by cohomology groups $H^{q}\left(X, E \otimes L^{k} \otimes \mathcal{I}\left(h^{k}\right)\right)$ twisted with the multiplier ideal sheaves

$$
\mathcal{I}\left(h^{k}\right)=\mathcal{I}(k \varphi)=\left\{f \in \mathcal{O}_{X, x}, \quad \exists V \ni x, \int_{V}|f(z)|^{2} e^{-k \varphi(z)} d \lambda(z)<+\infty\right\} .
$$

The special case of 9.10 (SM) when $q=1$ yields a very useful criterion for the existence of sections of large multiples of L.
9.11. Corollary. Under the above hypotheses, we have

$$
h^{0}\left(X, E \otimes L^{k}\right) \geqslant h^{0}\left(X, E \otimes L^{k}\right)-h^{1}\left(X, E \otimes L^{k}\right) \geqslant r \frac{k^{n}}{n!} \int_{X(L, h, \leqslant 1)} \Theta_{L, h}^{n}-o\left(k^{n}\right) .
$$

Especially L is big as soon as $\int_{X(L, h, \leqslant 1)} \Theta_{L, h}^{n}>0$ for some hermitian metric h on L.
Now, given a directed manifold (X, V), we can associate with any admissible metric h on V a metric (or rather a natural family) of metrics on $L=\mathcal{O}_{X^{G G}}(1)$. The space X_{k}^{GG} always possesses quotient singularities if $k \geqslant 2$ (and even some more if V^{k} is singular), but we do not really care since Morse inequalities still work in this setting thanks to Bonavero's generalization. As we will see, it is then possible to get nice asymptotic formulas as $k \rightarrow+\infty$. They appear to be of a probabilistic nature if we take the components of the k-jet (i.e. the successive derivatives $\xi_{j}=f^{(j)}(0)$, $1 \leqslant j \leqslant k$) as random variables. This probabilistic behaviour was somehow already visible in the Riemann-Roch calculation of [GrGr79]. In this way, assuming K_{V} big, we produce a lot of sections $\sigma_{j}=H^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} F\right)$, corresponding to certain divisors $Z_{j} \subset X_{k}^{\mathrm{GG}}$. The hard problem which is left in order to complete a proof of the generalized Green-Griffiths-Lang conjecture is to compute the base locus $Z=\bigcap Z_{j}$ and to show that $Y=\pi_{k}(Z) \subset X$ must be a proper algebraic variety.

9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective spaces, and to evaluate the corresponding volume forms. Here we put $d^{c}=\frac{i}{4 \pi}(\bar{\partial}-\partial)$ so that $d d^{c}=\frac{i}{2 \pi} \partial \bar{\partial}$. The normalization of the d^{c} operator is chosen such that we have precisely $\left(d d^{c} \log |z|^{2}\right)^{n}=\delta_{0}$ for the Monge-Ampère operator in \mathbb{C}^{n}. Given a k-tuple of "weights" $a=\left(a_{1}, \ldots, a_{k}\right)$, i.e. of integers $a_{s}>0$ with $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$, we introduce the weighted projective space $P\left(a_{1}, \ldots, a_{k}\right)$ to be the quotient of $\mathbb{C}^{k} \backslash\{0\}$ by the corresponding weighted \mathbb{C}^{*} action:

$$
\begin{equation*}
P\left(a_{1}, \ldots, a_{k}\right)=\mathbb{C}^{k} \backslash\{0\} / \mathbb{C}^{*}, \quad \lambda \cdot z=\left(\lambda^{a_{1}} z_{1}, \ldots, \lambda^{a_{k}} z_{k}\right) \tag{9.12}
\end{equation*}
$$

As is well known, this defines a toric $(k-1)$-dimensional algebraic variety with quotient singularities. On this variety, we introduce the possibly singular (but almost everywhere smooth and non degenerate) Kähler form $\omega_{a, p}$ defined by

$$
\begin{equation*}
\pi_{a}^{*} \omega_{a, p}=d d^{c} \varphi_{a, p}, \quad \varphi_{a, p}(z)=\frac{1}{p} \log \sum_{1 \leqslant s \leqslant k}\left|z_{s}\right|^{2 p / a_{s}} \tag{9.13}
\end{equation*}
$$

where $\pi_{a}: \mathbb{C}^{k} \backslash\{0\} \rightarrow P\left(a_{1}, \ldots, a_{k}\right)$ is the canonical projection and $p>0$ is a positive constant. It is clear that $\varphi_{p, a}$ is real analytic on $\mathbb{C}^{k} \backslash\{0\}$ if p is an integer and a common multiple of all weights a_{s}, and we will implicitly pick such a p later on to avoid any difficulty. Elementary calculations give the following well-known formula for the volume

$$
\begin{equation*}
\int_{P\left(a_{1}, \ldots, a_{k}\right)} \omega_{a, p}^{k-1}=\frac{1}{a_{1} \ldots a_{k}} \tag{9.14}
\end{equation*}
$$

(notice that this is independent of p, as it is obvious by Stokes theorem, since the cohomology class of $\omega_{a, p}$ does not depend on p).

Our later calculations will require a slightly more general setting. Instead of looking at \mathbb{C}^{k}, we consider the weighted \mathbb{C}^{*} action defined by

$$
\begin{equation*}
\mathbb{C}^{|r|}=\mathbb{C}^{r_{1}} \times \ldots \times \mathbb{C}^{r_{k}}, \quad \lambda \cdot z=\left(\lambda^{a_{1}} z_{1}, \ldots, \lambda^{a_{k}} z_{k}\right) \tag{9.15}
\end{equation*}
$$

Here $z_{s} \in \mathbb{C}^{r_{s}}$ for some k-tuple $r=\left(r_{1}, \ldots, r_{k}\right)$ and $|r|=r_{1}+\ldots+r_{k}$. This gives rise to a weighted projective space

$$
\begin{align*}
& P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{\left[r_{k}\right]}\right)=P\left(a_{1}, \ldots, a_{1}, \ldots, a_{k}, \ldots, a_{k}\right) \\
& \pi_{a, r}: \mathbb{C}^{r_{1}} \times \ldots \times \mathbb{C}^{r_{k}} \backslash\{0\} \longrightarrow P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{\left[r_{k}\right]}\right) \tag{9.16}
\end{align*}
$$

obtained by repeating r_{s} times each weight a_{s}. On this space, we introduce the degenerate Kähler metric $\omega_{a, r, p}$ such that

$$
\begin{equation*}
\pi_{a, r}^{*} \omega_{a, r, p}=d d^{c} \varphi_{a, r, p}, \quad \varphi_{a, r, p}(z)=\frac{1}{p} \log \sum_{1 \leqslant s \leqslant k}\left|z_{s}\right|^{2 p / a_{s}} \tag{9.17}
\end{equation*}
$$

where $\left|z_{s}\right|$ stands now for the standard Hermitian norm $\left(\sum_{1 \leqslant j \leqslant r_{s}}\left|z_{s, j}\right|^{2}\right)^{1 / 2}$ on $\mathbb{C}^{r_{s}}$. This metric is cohomologous to the corresponding "polydisc-like" metric $\omega_{a, p}$ already defined, and therefore Stokes theorem implies

$$
\begin{equation*}
\int_{P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{\left[r_{k}\right]}\right)} \omega_{a, r, p}^{|r|-1}=\frac{1}{a_{1}^{r_{1}} \ldots a_{k}^{r_{k}}} \tag{9.18}
\end{equation*}
$$

Using standard results of integration theory (Fubini, change of variable formula...), one obtains:
9.19. Proposition. Let $f(z)$ be a bounded function on $P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{\left[r_{k}\right]}\right)$ which is continuous outside of the hyperplane sections $z_{s}=0$. We also view f as $a \mathbb{C}^{*}$-invariant continuous function
on $\prod\left(\mathbb{C}^{r_{s}} \backslash\{0\}\right)$. Then

$$
\begin{aligned}
& \int_{P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{\left[r_{k}\right]}\right)} f(z) \omega_{a, r, p}^{|r|-1} \\
& =\frac{(|r|-1)!}{\prod_{s} a_{s}^{r_{s}}} \int_{(x, u) \in \Delta_{k-1} \times \prod S^{2 r_{s}-1}} f\left(x_{1}^{a_{1} / 2 p} u_{1}, \ldots, x_{k}^{a_{k} / 2 p} u_{k}\right) \prod_{1 \leqslant s \leqslant k} \frac{x_{s}^{r_{s}-1}}{\left(r_{s}-1\right)!} d x d \mu(u)
\end{aligned}
$$

where Δ_{k-1} is the $(k-1)$-simplex $\left\{x_{s} \geqslant 0, \sum x_{s}=1\right\}, d x=d x_{1} \wedge \ldots \wedge d x_{k-1}$ its standard measure, and where $d \mu(u)=d \mu_{1}\left(u_{1}\right) \ldots d \mu_{k}\left(u_{k}\right)$ is the rotation invariant probability measure on the product $\prod_{s} S^{2 r_{s}-1}$ of unit spheres in $\mathbb{C}^{r_{1}} \times \ldots \times \mathbb{C}^{r_{k}}$. As a consequence

$$
\lim _{p \rightarrow+\infty} \int_{P\left(a_{1}^{\left[r_{1}\right]}, \ldots, a_{k}^{[r k]}\right)} f(z) \omega_{a, r, p}^{|r|-1}=\frac{1}{\prod_{s} a_{s}^{r_{s}}} \int_{\prod S^{2 r_{s}-1}} f(u) d \mu(u)
$$

Also, by elementary integrations by parts and induction on k, r_{1}, \ldots, r_{k}, it can be checked that

$$
\begin{equation*}
\int_{x \in \Delta_{k-1}} \prod_{1 \leqslant s \leqslant k} x_{s}^{r_{s}-1} d x_{1} \ldots d x_{k-1}=\frac{1}{(|r|-1)!} \prod_{1 \leqslant s \leqslant k}\left(r_{s}-1\right)!. \tag{9.20}
\end{equation*}
$$

This implies that $(|r|-1)!\prod_{1 \leqslant s \leqslant k} \frac{x_{s}^{r_{s}-1}}{\left(r_{s}-1\right)!} d x$ is a probability measure on Δ_{k-1}.

9.C. Probabilistic estimate of the curvature of k-Jet bundles

Let (X, V) be a compact complex directed non singular variety. To avoid any technical difficulty at this point, we first assume that V is a holomorphic vector subbundle of T_{X}, equipped with a smooth Hermitian metric h.

According to the notation already specified in $\S 7$, we denote by $J^{k} V$ the bundle of k-jets of holomorphic curves $f:(\mathbb{C}, 0) \rightarrow X$ tangent to V at each point. Let us set $n=\operatorname{dim}_{\mathbb{C}} X$ and $r=\operatorname{rank}_{\mathbb{C}} V$. Then $J^{k} V \rightarrow X$ is an algebraic fiber bundle with typical fiber $\mathbb{C}^{r k}$, and we get a projectivized k-jet bundle

$$
\begin{equation*}
X_{k}^{\mathrm{GG}}:=\left(J^{k} V \backslash\{0\}\right) / \mathbb{C}^{*}, \quad \pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X \tag{9.21}
\end{equation*}
$$

which is a $P\left(1^{[r]}, 2^{[r]}, \ldots, k^{[r]}\right)$ weighted projective bundle over X, and we have the direct image formula $\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k} \mathrm{GG}}(m)=\mathcal{O}\left(E_{k, m}^{\mathrm{GG}} V^{*}\right)$ (cf. Proposition 7.9). In the sequel, we do not make a direct use of coordinates, because they need not be related in any way to the Hermitian metric h of V. Instead, we choose a local holomorphic coordinate frame $\left(e_{\alpha}(z)\right)_{1 \leqslant \alpha \leqslant r}$ of V on a neighborhood U of x_{0}, such that

$$
\begin{equation*}
\left\langle e_{\alpha}(z), e_{\beta}(z)\right\rangle=\delta_{\alpha \beta}+\sum_{1 \leqslant, j \leqslant n, 1 \leqslant \alpha, \beta \leqslant r} c_{i j \alpha \beta} z_{i} \bar{z}_{j}+O\left(|z|^{3}\right) \tag{9.22}
\end{equation*}
$$

for suitable complex coefficients $\left(c_{i j \alpha \beta}\right)$. It is a standard fact that such a normalized coordinate system always exists, and that the Chern curvature tensor $\frac{i}{2 \pi} D_{V, h}^{2}$ of (V, h) at x_{0} is then given by

$$
\begin{equation*}
\Theta_{V, h}\left(x_{0}\right)=-\frac{i}{2 \pi} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} d z_{i} \wedge d \bar{z}_{j} \otimes e_{\alpha}^{*} \otimes e_{\beta} . \tag{9.23}
\end{equation*}
$$

Consider a local holomorphic connection ∇ on $V_{\mid U}$ (e.g. the one which turns (e_{α}) into a parallel frame), and take $\xi_{k}=\nabla^{k} f(0) \in V_{x}$ defined inductively by $\nabla^{1} f=f^{\prime}$ and $\nabla^{s} f=\nabla_{f^{\prime}}\left(\nabla^{s-1} f\right)$. This gives a local identification

$$
J_{k} V_{\mid U} \rightarrow V_{\mid U}^{\oplus k}, \quad f \mapsto\left(\xi_{1}, \ldots, \xi_{k}\right)=\left(\nabla f(0), \ldots, \nabla f^{k}(0)\right),
$$

and the weighted \mathbb{C}^{*} action on $J_{k} V$ is expressed in this setting by

$$
\lambda \cdot\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)=\left(\lambda \xi_{1}, \lambda^{2} \xi_{2}, \ldots, \lambda^{k} \xi_{k}\right) .
$$

Now, we fix a finite open covering $\left(U_{\alpha}\right)_{\alpha \in I}$ of X by open coordinate charts such that $V_{\mid U_{\alpha}}$ is trivial, along with holomorphic connections ∇_{α} on $V_{\mid U_{\alpha}}$. Let θ_{α} be a partition of unity of X subordinate
to the covering $\left(U_{\alpha}\right)$. Let us fix $p>0$ and small parameters $1=\varepsilon_{1} \gg \varepsilon_{2} \gg \ldots \gg \varepsilon_{k}>0$. Then we define a global weighted Finsler metric on $J^{k} V$ by putting for any k-jet $f \in J_{x}^{k} V$

$$
\begin{equation*}
\Psi_{h, p, \varepsilon}(f):=\left(\sum_{\alpha \in I} \theta_{\alpha}(x) \sum_{1 \leqslant s \leqslant k} \varepsilon_{s}^{2 p}\left\|\nabla_{\alpha}^{s} f(0)\right\|_{h(x)}^{2 p / s}\right)^{1 / p} \tag{9.24}
\end{equation*}
$$

where $\left\|\|_{h(x)}\right.$ is the Hermitian metric h of V evaluated on the fiber $V_{x}, x=f(0)$. The function $\Psi_{h, p, \varepsilon}$ satisfies the fundamental homogeneity property

$$
\begin{equation*}
\Psi_{h, p, \varepsilon}(\lambda \cdot f)=\Psi_{h, p, \varepsilon}(f)|\lambda|^{2} \tag{9.25}
\end{equation*}
$$

with respect to the \mathbb{C}^{*} action on $J^{k} V$, in other words, it induces a Hermitian metric on the dual L^{*} of the tautological \mathbb{Q}-line bundle $L_{k}=\mathcal{O}_{X_{k}^{G G}}(1)$ over X_{k}^{GG}. The curvature of L_{k} is given by

$$
\begin{equation*}
\pi_{k}^{*} \Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{*}}=d d^{c} \log \Psi_{h, p, \varepsilon} \tag{9.26}
\end{equation*}
$$

Our next goal is to compute precisely the curvature and to apply holomorphic Morse inequalities to $L \rightarrow X_{k}^{\mathrm{GG}}$ with the above metric. It might look a priori like an untractable problem, since the definition of $\Psi_{h, p, \varepsilon}$ is a rather unnatural one. However, the "miracle" is that the asymptotic behavior of $\Psi_{h, p, \varepsilon}$ as $\varepsilon_{s} / \varepsilon_{s-1} \rightarrow 0$ is in some sense uniquely defined and very natural. It will lead to a computable asymptotic formula, which is moreover simple enough to produce useful results.
9.27. Lemma. On each coordinate chart U equipped with a holomorphic connection ∇ of $V_{U U}$, let us define the components of a k-jet $f \in J^{k} V$ by $\xi_{s}=\nabla^{s} f(0)$, and consider the rescaling transformation

$$
\rho_{\nabla, \varepsilon}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)=\left(\varepsilon_{1}^{1} \xi_{1}, \varepsilon_{2}^{2} \xi_{2}, \ldots, \varepsilon_{k}^{k} \xi_{k}\right) \quad \text { on } J_{x}^{k} V, x \in U
$$

(it commutes with the \mathbb{C}^{*}-action but is otherwise unrelated and not canonically defined over X as it depends on the choice of $\nabla)$. Then, if p is a multiple of $\operatorname{lcm}(1,2, \ldots, k)$ and $\varepsilon_{s} / \varepsilon_{s-1} \rightarrow 0$ for all $s=2, \ldots, k$, the rescaled function $\Psi_{h, p, \varepsilon} \circ \rho_{\nabla, \varepsilon}^{-1}\left(\xi_{1}, \ldots, \xi_{k}\right)$ converges towards

$$
\left(\sum_{1 \leqslant s \leqslant k}\left\|\xi_{s}\right\|_{h}^{2 p / s}\right)^{1 / p}
$$

on every compact subset of $J^{k} V_{\mid U} \backslash\{0\}$, uniformly in C^{∞} topology.
Proof. Let $U \subset X$ be an open set on which $V_{\mid U}$ is trivial and equipped with some holomorphic connection ∇. Let us pick another holomorphic connection $\widetilde{\nabla}=\nabla+\Gamma$ where $\Gamma \in H^{0}\left(U, \Omega_{X}^{1} \otimes\right.$ $\operatorname{Hom}(V, V)$. Then $\widetilde{\nabla}^{2} f=\nabla^{2} f+\Gamma(f)\left(f^{\prime}\right) \cdot f^{\prime}$, and inductively we get

$$
\widetilde{\nabla}^{s} f=\nabla^{s} f+P_{s}\left(f ; \nabla^{1} f, \ldots, \nabla^{s-1} f\right)
$$

where $P\left(x ; \xi_{1}, \ldots, \xi_{s-1}\right)$ is a polynomial with holomorphic coefficients in $x \in U$ which is of weighted homogeneous degree s in $\left(\xi_{1}, \ldots, \xi_{s-1}\right)$. In other words, the corresponding change in the parametrization of $J^{k} V_{\mid U}$ is given by a \mathbb{C}^{*}-homogeneous transformation

$$
\widetilde{\xi}_{s}=\xi_{s}+P_{s}\left(x ; \xi_{1}, \ldots, \xi_{s-1}\right) .
$$

Let us introduce the corresponding rescaled components

$$
\left(\xi_{1, \varepsilon}, \ldots, \xi_{k, \varepsilon}\right)=\left(\varepsilon_{1}^{1} \xi_{1}, \ldots, \varepsilon_{k}^{k} \xi_{k}\right), \quad\left(\widetilde{\xi}_{1, \varepsilon}, \ldots, \widetilde{\xi}_{k, \varepsilon}\right)=\left(\varepsilon_{1}^{1} \widetilde{\xi}_{1}, \ldots, \varepsilon_{k}^{k} \widetilde{\xi}_{k}\right)
$$

Then

$$
\begin{aligned}
\widetilde{\xi}_{s, \varepsilon} & =\xi_{s, \varepsilon}+\varepsilon_{s}^{s} P_{s}\left(x ; \varepsilon_{1}^{-1} \xi_{1, \varepsilon}, \ldots, \varepsilon_{s-1}^{-(s-1)} \xi_{s-1, \varepsilon}\right) \\
& =\xi_{s, \varepsilon}+O\left(\varepsilon_{s} / \varepsilon_{s-1}\right)^{s} O\left(\left\|\xi_{1, \varepsilon}\right\|+\ldots+\left\|\xi_{s-1, \varepsilon}\right\|^{1 /(s-1)}\right)^{s}
\end{aligned}
$$

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients as $\varepsilon_{s} / \varepsilon_{s-1} \rightarrow 0$. Now, the definition of $\Psi_{h, p, \varepsilon}$ consists of glueing the sums

$$
\sum_{1 \leqslant s \leqslant k} \varepsilon_{s}^{2 p}\left\|\xi_{k}\right\|_{h}^{2 p / s}=\sum_{1 \leqslant s \leqslant k}\left\|\xi_{k, \varepsilon}\right\|_{h}^{2 p / s}
$$

corresponding to $\xi_{k}=\nabla_{\alpha}^{s} f(0)$ by means of the partition of unity $\sum \theta_{\alpha}(x)=1$. We see that by using the rescaled variables $\xi_{s, \varepsilon}$ the changes occurring when replacing a connection ∇_{α} by an alternative one ∇_{β} are arbitrary small in C^{∞} topology, with error terms uniformly controlled in terms of the ratios $\varepsilon_{s} / \varepsilon_{s-1}$ on all compact subsets of $V^{k} \backslash\{0\}$. This shows that in C^{∞} topology, $\Psi_{h, p, \varepsilon} \circ \rho_{\nabla, \varepsilon}^{-1}\left(\xi_{1}, \ldots, \xi_{k}\right)$ converges uniformly towards $\left(\sum_{1 \leqslant s \leqslant k}\left\|\xi_{k}\right\|_{h}^{2 p / s}\right)^{1 / p}$, whatever the trivializing open set U and the holomorphic connection ∇ used to evaluate the components and perform the rescaling are.

Now, we fix a point $x_{0} \in X$ and a local holomorphic frame $\left(e_{\alpha}(z)\right)_{1 \leqslant \alpha \leqslant r}$ satisfying (9.22) on a neighborhood U of x_{0}. We introduce the rescaled components $\xi_{s}=\varepsilon_{s}^{s} \nabla^{s} f(0)$ on $J^{k} V_{\mid U}$ and compute the curvature of

$$
\Psi_{h, p, \varepsilon} \circ \rho_{\nabla, \varepsilon}^{-1}\left(z ; \xi_{1}, \ldots, \xi_{k}\right) \simeq\left(\sum_{1 \leqslant s \leqslant k}\left\|\xi_{s}\right\|_{h}^{2 p / s}\right)^{1 / p}
$$

(by Lemma 9.27, the errors can be taken arbitrary small in C^{∞} topology). We write $\xi_{s}=$ $\sum_{1 \leqslant \alpha \leqslant r} \xi_{s \alpha} e_{\alpha}$. By (9.22) we have

$$
\left\|\xi_{s}\right\|_{h}^{2}=\sum_{\alpha}\left|\xi_{s \alpha}\right|^{2}+\sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} z_{i} \bar{z}_{j} \xi_{s \alpha} \bar{\xi}_{s \beta}+O\left(|z|^{3}|\xi|^{2}\right) .
$$

The question is to evaluate the curvature of the weighted metric defined by

$$
\begin{aligned}
\Psi\left(z ; \xi_{1}, \ldots, \xi_{k}\right) & =\left(\sum_{1 \leqslant s \leqslant k}\left\|\xi_{s}\right\|_{h}^{2 p / s}\right)^{1 / p} \\
& =\left(\sum_{1 \leqslant s \leqslant k}\left(\sum_{\alpha}\left|\xi_{s \alpha}\right|^{2}+\sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} z_{i} \bar{z}_{j} \xi_{s \alpha} \bar{\xi}_{s \beta}\right)^{p / s}\right)^{1 / p}+O\left(|z|^{3}\right) .
\end{aligned}
$$

We set $\left|\xi_{s}\right|^{2}=\sum_{\alpha}\left|\xi_{s \alpha}\right|^{2}$. A straightforward calculation yields

$$
\begin{aligned}
& \log \Psi\left(z ; \xi_{1}, \ldots, \xi_{k}\right)= \\
& =\frac{1}{p} \log \sum_{1 \leqslant s \leqslant k}\left|\xi_{s}\right|^{2 p / s}+\sum_{1 \leqslant s \leqslant k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} z_{i} \bar{z}_{j} \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}}+O\left(|z|^{3}\right) .
\end{aligned}
$$

By (9.26), the curvature form of $L_{k}=\mathcal{O}_{X_{k}^{G G}}(1)$ is given at the central point x_{0} by the following formula.
9.28. Proposition. With the above choice of coordinates and with respect to the rescaled components $\xi_{s}=\varepsilon_{s}^{s} \nabla^{s} f(0)$ at $x_{0} \in X$, we have the approximate expression

$$
\Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{*}}\left(x_{0},[\xi]\right) \simeq \omega_{a, r, p}(\xi)+\frac{i}{2 \pi} \sum_{1 \leqslant s \leqslant k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}} d z_{i} \wedge d \bar{z}_{j}
$$

where the error terms are $O\left(\max _{2 \leqslant s \leqslant k}\left(\varepsilon_{s} / \varepsilon_{s-1}\right)^{s}\right)$ uniformly on the compact variety X_{k}^{GG}. Here $\omega_{a, r, p}$ is the (degenerate) Kähler metric associated with the weight $a=\left(1^{[r]}, 2^{[r]}, \ldots, k^{[r]}\right)$ of the canonical \mathbb{C}^{*} action on $J^{k} V$.

Thanks to the uniform approximation, we can (and will) neglect the error terms in the calculations below. Since $\omega_{a, r, p}$ is positive definite on the fibers of $X_{k}^{\mathrm{GG}} \rightarrow X$ (at least outside of the axes $\left.\xi_{s}=0\right)$, the index of the $(1,1)$ curvature form $\Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{*}}(z,[\xi])$ is equal to the index of the $(1,1)$-form

$$
\begin{equation*}
\gamma_{k}(z, \xi):=\frac{i}{2 \pi} \sum_{1 \leqslant s \leqslant k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}(z) \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}} d z_{i} \wedge d \bar{z}_{j} \tag{9.29}
\end{equation*}
$$

depending only on the differentials $\left(d z_{j}\right)_{1 \leqslant j \leqslant n}$ on X. The q-index integral of $\left(L_{k}, \Psi_{h, p, \varepsilon}^{*}\right)$ on X_{k}^{GG} is therefore equal to

$$
\begin{aligned}
& \int_{X_{k}^{\mathrm{GG}}\left(L_{k}, q\right)} \Theta_{L_{k}, \Psi_{n, p, \varepsilon}^{*}}^{n+k r-1}= \\
& \quad=\frac{(n+k r-1)!}{n!(k r-1)!} \int_{z \in X} \int_{\xi \in P(1[r], \ldots, k[r])} \omega_{a, r, p}^{k r-1}(\xi) \mathbb{1}_{\gamma_{k}, q}(z, \xi) \gamma_{k}(z, \xi)^{n}
\end{aligned}
$$

where $\mathbb{1}_{\gamma_{k}, q}(z, \xi)$ is the characteristic function of the open set of points where $\gamma_{k}(z, \xi)$ has signature ($n-q, q$) in terms of the $d z_{j}$'s. Notice that since $\gamma_{k}(z, \xi)^{n}$ is a determinant, the product $\mathbb{1}_{\gamma_{k}, q}(z, \xi) \gamma_{k}(z, \xi)^{n}$ gives rise to a continuous function on X_{k}^{GG}. Formula 9.20 with $r_{1}=\ldots=r_{k}=r$ and $a_{s}=s$ yields the slightly more explicit integral

$$
\begin{aligned}
& \int_{X_{k}^{\mathrm{GG}}\left(L_{k}, q\right)} \Theta_{L_{k}, \Psi_{n, p, \varepsilon}^{*}}^{n+k r-1}=\frac{(n+k r-1)!}{n!(k!)^{r}} \times \\
& \quad \int_{z \in X} \int_{(x, u) \in \Delta_{k-1} \times\left(S^{2 r-1}\right)^{k}} \mathbb{1}_{g_{k}, q}(z, x, u) g_{k}(z, x, u)^{n} \frac{\left(x_{1} \ldots x_{k}\right)^{r-1}}{(r-1)!^{k}} d x d \mu(u),
\end{aligned}
$$

where $g_{k}(z, x, u)=\gamma_{k}\left(z, x_{1}^{1 / 2 p} u_{1}, \ldots, x_{k}^{k / 2 p} u_{k}\right)$ is given by

$$
\begin{equation*}
g_{k}(z, x, u)=\frac{i}{2 \pi} \sum_{1 \leqslant s \leqslant k} \frac{1}{s} x_{s} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}(z) u_{s \alpha} \bar{u}_{s \beta} d z_{i} \wedge d \bar{z}_{j} \tag{9.30}
\end{equation*}
$$

and $\mathbb{1}_{g_{k}, q}(z, x, u)$ is the characteristic function of its q-index set. Here

$$
\begin{equation*}
d \nu_{k, r}(x)=(k r-1)!\frac{\left(x_{1} \ldots x_{k}\right)^{r-1}}{(r-1)!^{k}} d x \tag{9.31}
\end{equation*}
$$

is a probability measure on Δ_{k-1}, and we can rewrite

$$
\begin{align*}
& \int_{X_{k}^{\mathrm{GG}}\left(L_{k}, q\right)} \Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{*}}^{n+k r-1}=\frac{(n+k r-1)!}{n!(k!)^{r}(k r-1)!} \times \\
& \quad \int_{z \in X} \int_{(x, u) \in \Delta_{k-1} \times\left(S^{2 r-1}\right)^{k}} \mathbb{1}_{g_{k}, q}(z, x, u) g_{k}(z, x, u)^{n} d \nu_{k, r}(x) d \mu(u) . \tag{9.32}
\end{align*}
$$

Now, formula (9.30) shows that $g_{k}(z, x, u)$ is a "Monte Carlo" evaluation of the curvature tensor, obtained by averaging the curvature at random points $u_{s} \in S^{2 r-1}$ with certain positive weights x_{s} / s; we should then think of the k-jet f as some sort of random variable such that the derivatives $\nabla^{k} f(0)$ are uniformly distributed in all directions. Let us compute the expected value of $(x, u) \mapsto$ $g_{k}(z, x, u)$ with respect to the probability measure $d \nu_{k, r}(x) d \mu(u)$. Since $\int_{S^{2 r-1}} u_{s \alpha} \bar{u}_{s \beta} d \mu\left(u_{s}\right)=\frac{1}{r} \delta_{\alpha \beta}$ and $\int_{\Delta_{k-1}} x_{s} d \nu_{k, r}(x)=\frac{1}{k}$, we find

$$
\mathbf{E}\left(g_{k}(z, \bullet, \bullet)\right)=\frac{1}{k r} \sum_{1 \leqslant s \leqslant k} \frac{1}{s} \cdot \frac{i}{2 \pi} \sum_{i, j, \alpha} c_{i j \alpha \alpha}(z) d z_{i} \wedge d \bar{z}_{j} .
$$

In other words, we get the normalized trace of the curvature, i.e.

$$
\begin{equation*}
\mathbf{E}\left(g_{k}(z, \bullet, \bullet)\right)=\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \Theta_{\operatorname{det}\left(V^{*}\right), \operatorname{det} h^{*}}, \tag{9.33}
\end{equation*}
$$

where $\Theta_{\operatorname{det}\left(V^{*}\right), \operatorname{det} h^{*}}$ is the $(1,1)$-curvature form of $\operatorname{det}\left(V^{*}\right)$ with the metric induced by h. It is natural to guess that $g_{k}(z, x, u)$ behaves asymptotically as its expected value $\mathbf{E}\left(g_{k}(z, \bullet, \bullet)\right)$ when k tends to infinity. If we replace brutally g_{k} by its expected value in (9.32), we get the integral

$$
\frac{(n+k r-1)!}{n!(k!)^{r}(k r-1)!} \frac{1}{(k r)^{n}}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)^{n} \int_{X} \mathbb{1}_{\eta, q} \eta^{n},
$$

where $\eta:=\Theta_{\operatorname{det}\left(V^{*}\right), \operatorname{det} h^{*}}$ and $\mathbb{1}_{\eta, q}$ is the characteristic function of its q-index set in X. The leading constant is equivalent to $(\log k)^{n} / n!(k!)^{r}$ modulo a multiplicative factor $1+O(1 / \log k)$. By working
out a more precise analysis of the deviation, the following result has been proved in [Dem11] and [Dem12].
9.34. Probabilistic estimate. Fix smooth Hermitian metrics h on V and $\omega=\frac{i}{2 \pi} \sum \omega_{i j} d z_{i} \wedge d \bar{z}_{j}$ on X. Denote by $\Theta_{V, h}=-\frac{i}{2 \pi} \sum c_{i j \alpha \beta} d z_{i} \wedge d \bar{z}_{j} \otimes e_{\alpha}^{*} \otimes e_{\beta}$ the curvature tensor of V with respect to an h-orthonormal frame $\left(e_{\alpha}\right)$, and put

$$
\eta(z)=\Theta_{\operatorname{det}\left(V^{*}\right), \operatorname{det} h^{*}}=\frac{i}{2 \pi} \sum_{1 \leqslant i, j \leqslant n} \eta_{i j} d z_{i} \wedge d \bar{z}_{j}, \quad \eta_{i j}=\sum_{1 \leqslant \alpha \leqslant r} c_{i j \alpha \alpha} .
$$

Finally consider the k-jet line bundle $L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \rightarrow X_{k}^{\mathrm{GG}}$ equipped with the induced metric $\Psi_{h, p, \varepsilon}^{*}$ (as defined above, with $1=\varepsilon_{1} \gg \varepsilon_{2} \gg \ldots \gg \varepsilon_{k}>0$). When k tends to infinity, the integral of the top power of the curvature of L_{k} on its q-index set $X_{k}^{\mathrm{GG}}\left(L_{k}, q\right)$ is given by

$$
\int_{X_{k}^{\mathrm{GG}}\left(L_{k}, q\right)} \Theta_{L_{k}, \Psi_{n, p, \varepsilon}^{*}}^{n+k r-1}=\frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X} \mathbb{1}_{\eta, q} \eta^{n}+O\left((\log k)^{-1}\right)\right)
$$

for all $q=0,1, \ldots, n$, and the error term $O\left((\log k)^{-1}\right)$ can be bounded explicitly in terms of Θ_{V}, η and ω. Moreover, the left hand side is identically zero for $q>n$.

The final statement follows from the observation that the curvature of L_{k} is positive along the fibers of $X_{k}^{\mathrm{GG}} \rightarrow X$, by the plurisubharmonicity of the weight (this is true even when the partition of unity terms are taken into account, since they depend only on the base); therefore the q-index sets are empty for $q>n$. It will be useful to extend the above estimates to the case of sections of

$$
\begin{equation*}
L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right) \tag{9.35}
\end{equation*}
$$

where $F \in \operatorname{Pic}_{\mathbb{Q}}(X)$ is an arbitrary \mathbb{Q}-line bundle on X and $\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X$ is the natural projection. We assume here that F is also equipped with a smooth Hermitian metric h_{F}. In formulas (9.329.34), the renormalized curvature $\eta_{k}(z, x, u)$ of L_{k} takes the form

$$
\begin{equation*}
\eta_{k}(z, x, u)=\frac{1}{\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)} g_{k}(z, x, u)+\Theta_{F, h_{F}}(z), \tag{9.36}
\end{equation*}
$$

and by the same calculations its expected value is

$$
\begin{equation*}
\eta(z):=\mathbf{E}\left(\eta_{k}(z, \bullet, \bullet)\right)=\Theta_{\operatorname{det} V^{*}, \operatorname{det} h^{*}}(z)+\Theta_{F, h_{F}}(z) . \tag{9.37}
\end{equation*}
$$

Then the variance estimate for $\eta_{k}-\eta$ is unchanged, and the L^{p} bounds for η_{k} are still valid, since our forms are just shifted by adding the constant smooth term $\Theta_{F, h_{F}}(z)$. The probabilistic estimate 9.34 is therefore still true in exactly the same form, provided we use (9.35-9.37) instead of the previously defined L_{k}, η_{k} and η. An application of holomorphic Morse inequalities gives the desired cohomology estimates for

$$
\begin{aligned}
h^{q}\left(X, E_{k, m}^{\mathrm{GG}} V^{*}\right. & \left.\otimes \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right)\right) \\
& =h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right)\right),
\end{aligned}
$$

provided m is sufficiently divisible to give a multiple of F which is a \mathbb{Z}-line bundle.
9.38. Theorem. Let (X, V) be a directed manifold, $F \rightarrow X$ a \mathbb{Q}-line bundle, (V, h) and $\left(F, h_{F}\right)$ smooth Hermitian structure on V and F respectively. We define

$$
\begin{aligned}
L_{k} & =\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right), \\
\eta & =\Theta_{\operatorname{det} V^{*}, \operatorname{det} h^{*}}+\Theta_{F, h_{F}} .
\end{aligned}
$$

Then for all $q \geqslant 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$
\begin{align*}
h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \leqslant \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, q)}(-1)^{q} \eta^{n}+O\left((\log k)^{-1}\right)\right), \tag{a}\\
h^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \geqslant \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, \leqslant 1)} \eta^{n}-O\left((\log k)^{-1}\right)\right), \tag{b}\\
\chi\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right)=\frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(c_{1}\left(V^{*} \otimes F\right)^{n}+O\left((\log k)^{-1}\right)\right) .
\end{align*}
$$

Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation (9.38c) in the special case $V=T_{X}^{*}$ and $F=\mathcal{O}_{X}$. Their proof is much simpler since it relies only on Chern class calculations, but it cannot provide any information on the individual cohomology groups, except in very special cases where vanishing theorems can be applied; in fact in dimension 2, the Euler characteristic satisfies $\chi=h^{0}-h^{1}+h^{2} \leqslant h^{0}+h^{2}$, hence it is enough to get the vanishing of the top cohomology group H^{2} to infer $h^{0} \geqslant \chi$; this works for surfaces by means of a well-known vanishing theorem of Bogomolov which implies in general

$$
\left.H^{n}\left(X, E_{k, m}^{\mathrm{GG}} T_{X}^{*} \otimes \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right)\right)\right)=0
$$

as soon as $K_{X} \otimes F$ is big and $m \gg 1$.
In fact, thanks to Bonavero's singular holomorphic Morse inequalities [Bon93], everything works almost unchanged in the case where $V \subset T_{X}$ has singularities and h is an admissible metric on V (see Definition 9.6). We only have to find a blow-up $\mu: \widetilde{X}_{k} \rightarrow X_{k}$ so that the resulting pull-backs $\mu^{*} L_{k}$ and $\mu^{*} V$ are locally free, and $\mu^{*} \operatorname{det} h^{*}, \mu^{*} \Psi_{h, p, \varepsilon}$ only have divisorial singularities. Then η is a $(1,1)$-current with logarithmic poles, and we have to deal with smooth metrics on $\mu^{*} L_{k}^{\otimes m} \otimes \mathcal{O}\left(-m E_{k}\right)$ where E_{k} is a certain effective divisor on X_{k} (which, by our assumption in 9.6 , does not project onto X). The cohomology groups involved are then the twisted cohomology groups

$$
H^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right) \otimes \mathcal{J}_{k, m}\right)
$$

where $\mathcal{J}_{k, m}=\mu_{*}\left(\mathcal{O}\left(-m E_{k}\right)\right)$ is the corresponding multiplier ideal sheaf, and the Morse integrals need only be evaluated in the complement of the poles, that is on $X(\eta, q) \backslash S$ where $S=\operatorname{Sing}(V) \cup$ Sing (h). Since

$$
\left.\left(\pi_{k}\right)_{*}\left(\mathcal{O}\left(L_{k}^{\otimes m}\right) \otimes \mathcal{J}_{k, m}\right) \subset E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right)\right)
$$

we still get a lower bound for the H^{0} of the latter sheaf (or for the H^{0} of the un-twisted line bundle $\mathcal{O}\left(L_{k}^{\otimes m}\right)$ on $\left.X_{k}^{\mathrm{GG}}\right)$. If we assume that $K_{V} \otimes F$ is big, these considerations also allow us to obtain a strong estimate in terms of the volume, by using an approximate Zariski decomposition on a suitable blow-up of (X, V). The following corollary implies in particular Theorem 9.1.
9.39. Corollary. If F is an arbitrary \mathbb{Q}-line bundle over X, one has

$$
\begin{aligned}
& h^{0}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{m}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) F\right)\right) \\
& \quad \geqslant \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\operatorname{Vol}\left(K_{V} \otimes F\right)-O\left((\log k)^{-1}\right)\right)-o\left(m^{n+k r-1}\right)
\end{aligned}
$$

when $m \gg k \gg 1$, in particular there are many sections of the k-jet differentials of degree m twisted by the appropriate power of F if $K_{V} \otimes F$ is big.
Proof. The volume is computed here as usual, i.e. after performing a suitable modification $\mu: \widetilde{X} \rightarrow$ X which converts K_{V} into an invertible sheaf. There is of course nothing to prove if $K_{V} \otimes F$ is not big, so we can assume $\operatorname{Vol}\left(K_{V} \otimes F\right)>0$. Let us fix smooth Hermitian metrics h_{0} on T_{X} and h_{F}
on F. They induce a metric $\mu^{*}\left(\operatorname{det} h_{0}^{-1} \otimes h_{F}\right)$ on $\mu^{*}\left(K_{V} \otimes F\right)$ which, by our definition of K_{V}, is a smooth metric. By the result of Fujita [Fuj94] on approximate Zariski decomposition, for every $\delta>0$, one can find a modification $\mu_{\delta}: \widetilde{X}_{\delta} \rightarrow X$ dominating μ such that

$$
\mu_{\delta}^{*}\left(K_{V} \otimes F\right)=\mathcal{O}_{\tilde{X}_{\delta}}(A+E)
$$

where A and E are \mathbb{Q}-divisors, A ample and E effective, with

$$
\operatorname{Vol}(A)=A^{n} \geqslant \operatorname{Vol}\left(K_{V} \otimes F\right)-\delta .
$$

If we take a smooth metric h_{A} with positive definite curvature form $\Theta_{A, h_{A}}$, then we get a singular Hermitian metric $h_{A} h_{E}$ on $\mu_{\delta}^{*}\left(K_{V} \otimes F\right)$ with poles along E, i.e. the quotient $h_{A} h_{E} / \mu^{*}\left(\operatorname{det} h_{0}^{-1} \otimes h_{F}\right)$ is of the form $e^{-\varphi}$ where φ is quasi-psh with \log poles $\log \left|\sigma_{E}\right|^{2}\left(\bmod C^{\infty}\left(\widetilde{X}_{\delta}\right)\right)$ precisely given by the divisor E. We then only need to take the singular metric h on T_{X} defined by

$$
h=h_{0} e^{\frac{1}{r}\left(\mu_{\delta}\right)^{*} \varphi}
$$

(the choice of the factor $\frac{1}{r}$ is there to correct adequately the metric on $\operatorname{det} V$). By construction h induces an admissible metric on V and the resulting curvature current $\eta=\Theta_{K_{V}, \text { det } h^{*}}+\Theta_{F, h_{F}}$ is such that

$$
\mu_{\delta}^{*} \eta=\Theta_{A, h_{A}}+[E], \quad[E]=\text { current of integration on } E .
$$

Then the 0 -index Morse integral in the complement of the poles is given by

$$
\int_{X(\eta, 0) \backslash S} \eta^{n}=\int_{\tilde{X}_{\delta}} \Theta_{A, h_{A}}^{n}=A^{n} \geqslant \operatorname{Vol}\left(K_{V} \otimes F\right)-\delta
$$

and (9.39) follows from the fact that δ can be taken arbitrary small.
The following corollary implies Theorem 0.12.
9.40. Corollary. Let (X, V) be a projective directed manifold such that K_{V}^{\bullet} is big, and A an ample \mathbb{Q}-divisor on X such that $K_{V}^{\bullet} \otimes \mathcal{O}(-A)^{\bullet}$ is still big. Then, if we put $\delta_{k}=\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)$, $r=\operatorname{rank} V$, the space of global invariant jet differentials

$$
H^{0}\left(X, E_{k, m} V^{*} \otimes \mathcal{O}\left(-m \delta_{k} A\right)\right)
$$

has (many) non zero sections for $m \gg k \gg 1$ and m sufficiently divisible.
Proof. Corollary 9.39 produces a non zero section $P \in H^{0}\left(E_{k, m}^{G G} V^{*} \otimes \mathcal{O}_{X}\left(-m \delta_{k} A\right)\right)$ for $m \gg k \gg 1$, and the arguments given in subsection 7.D (cf. (7.27)) yield a non zero section

$$
Q \in H^{0}\left(E_{k, m^{\prime}} V^{*} \otimes \mathcal{O}_{X}\left(-m \delta_{k} A\right)\right), \quad m^{\prime} \leqslant m .
$$

By raising Q to some power p and using a section $\sigma \in H^{0}\left(X, \mathcal{O}_{X}(d A)\right.$), we obtain a section

$$
Q^{p} \sigma^{m q} \in H^{0}\left(X, E_{k, p m^{\prime}} V^{*} \otimes \mathcal{O}\left(-m\left(p \delta_{k}-q d\right) A\right)\right) .
$$

One can adjust p and q so that $m\left(p \delta_{k}-q d\right)=p m^{\prime} \delta_{k}$ and $p m^{\prime} \delta_{k} A$ is an integral divisor.
9.41. Example. In some simple cases, the above estimates can lead to very explicit results. Take for instance X to be a smooth complete intersection of multidegree $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ in $\mathbb{P}_{\mathbb{C}}^{n+s}$ and consider the absolute case $V=T_{X}$. Then $K_{X}=\mathcal{O}_{X}\left(d_{1}+\ldots+d_{s}-n-s-1\right)$ and one can check via explicit bounds of the error terms (cf. [Dem11], [Dem12]) that a sufficient condition for the existence of sections is

$$
k \geqslant \exp \left(7.38 n^{n+1 / 2}\left(\frac{\sum d_{j}+1}{\sum d_{j}-n-s-a-1}\right)^{n}\right)
$$

This is good in view of the fact that we can cover arbitrary smooth complete intersections of general type. On the other hand, even when the degrees d_{j} tend to $+\infty$, we still get a large lower bound $k \sim \exp \left(7.38 n^{n+1 / 2}\right)$ on the order of jets, and this is far from being optimal: Diverio [Div08, Div09] has shown e.g. that one can take $k=n$ for smooth hypersurfaces of high degree, using the algebraic

Morse inequalities of Trapani [Tra95]. The next paragraph uses essentially the same idea, in our more analytic setting.

9.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor $\left(c_{i j \alpha \beta}\right)$ satisfies a lower bound

$$
\begin{equation*}
\sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} \xi_{i} \bar{\xi}_{j} u_{\alpha} \bar{u}_{\beta} \geqslant-\sum \gamma_{i j} \xi_{i} \bar{\xi}_{j}|u|^{2}, \quad \forall \xi \in T_{X}, u \in V \tag{9.42}
\end{equation*}
$$

for some semipositive (1,1)-form $\gamma=\frac{i}{2 \pi} \sum \gamma_{i j}(z) d z_{i} \wedge d \bar{z}_{j}$ on X. This is the same as assuming that the curvature tensor of $\left(V^{*}, h^{*}\right)$ satisfies the semipositivity condition

$$
\Theta_{V^{*}, h^{*}}+\gamma \otimes \operatorname{Id}_{V^{*}} \geqslant 0
$$

in the sense of Griffiths, or equivalently $\Theta_{V, h}-\gamma \otimes \operatorname{Id}_{V} \leqslant 0$. Thanks to the compactness of X, such a form γ always exists if h is an admissible metric on V. Now, instead of replacing Θ_{V} with its trace free part $\widetilde{\Theta}_{V}$ and exploiting a Monte Carlo convergence process, we replace Θ_{V} with $\Theta_{V}^{\gamma}=\Theta_{V}-\gamma \otimes \operatorname{Id}_{V} \leqslant 0$, i.e. $c_{i j \alpha \beta}$ by $c_{i j \alpha \beta}^{\gamma}=c_{i j \alpha \beta}+\gamma_{i j} \delta_{\alpha \beta}$. Also, we take a line bundle $F=A^{-1}$ with $\Theta_{A, h_{A}} \geqslant 0$, i.e. F seminegative. Then our earlier formulas (9.28), (9.35), (9.36) become instead

$$
\begin{align*}
& g_{k}^{\gamma}(z, x, u)=\frac{i}{2 \pi} \sum_{1 \leqslant s \leqslant k} \frac{1}{s} x_{s} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}^{\gamma}(z) u_{s \alpha} \bar{u}_{s \beta} d z_{i} \wedge d \bar{z}_{j} \geqslant 0, \tag{9.43}\\
& L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right), \tag{9.44}\\
& \Theta_{L_{k}}=\eta_{k}(z, x, u)=\frac{1}{\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)} g_{k}^{\gamma}(z, x, u)-\left(\Theta_{A, h_{A}}(z)+r \gamma(z)\right) . \tag{9.45}
\end{align*}
$$

In fact, replacing Θ_{V} by $\Theta_{V}-\gamma \otimes \operatorname{Id}_{V}$ has the effect of replacing $\Theta_{\operatorname{det} V^{*}}=\operatorname{Tr} \Theta_{V^{*}}$ by $\Theta_{\operatorname{det} V^{*}}+r \gamma$. The major gain that we have is that $\eta_{k}=\Theta_{L_{k}}$ is now expressed as a difference of semipositive (1,1)-forms, and we can exploit the following simple lemma, which is the key to derive algebraic Morse inequalities from their analytic form (cf. [Dem94], Theorem 12.3).
9.46. Lemma. Let $\eta=\alpha-\beta$ be a difference of semipositive $(1,1)$-forms on an n-dimensional complex manifold X, and let $\mathbb{1}_{\eta, \leqslant q}$ be the characteristic function of the open set where η is non degenerate with a number of negative eigenvalues at most equal to q. Then

$$
(-1)^{q} \mathbb{1}_{\eta, \leqslant q} \eta^{n} \leqslant \sum_{0 \leqslant j \leqslant q}(-1)^{q-j} \alpha^{n-j} \beta^{j},
$$

in particular

$$
\mathbb{1}_{\eta, \leqslant 1} \eta^{n} \geqslant \alpha^{n}-n \alpha^{n-1} \wedge \beta \quad \text { for } q=1
$$

Proof. Without loss of generality, we can assume $\alpha>0$ positive definite, so that α can be taken as the base hermitian metric on X. Let us denote by

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n} \geqslant 0
$$

the eigenvalues of β with respect to α. The eigenvalues of $\eta=\alpha-\beta$ are then given by

$$
1-\lambda_{1} \leqslant \ldots \leqslant 1-\lambda_{q} \leqslant 1-\lambda_{q+1} \leqslant \ldots \leqslant 1-\lambda_{n},
$$

hence the open set $\left\{\lambda_{q+1}<1\right\}$ coincides with the support of $\mathbb{1}_{\eta, \leqslant q}$, except that it may also contain a part of the degeneration set $\eta^{n}=0$. On the other hand we have

$$
\binom{n}{j} \alpha^{n-j} \wedge \beta^{j}=\sigma_{n}^{j}(\lambda) \alpha^{n},
$$

where $\sigma_{n}^{j}(\lambda)$ is the j-th elementary symmetric function in the λ_{j} 's. Thus, to prove the lemma, we only have to check that

$$
\sum_{0 \leqslant j \leqslant q}(-1)^{q-j} \sigma_{n}^{j}(\lambda)-\mathbb{1}_{\left\{\lambda_{q+1}<1\right\}}(-1)^{q} \prod_{1 \leqslant j \leqslant n}\left(1-\lambda_{j}\right) \geqslant 0 .
$$

This is easily done by induction on n (just split apart the parameter λ_{n} and write $\sigma_{n}^{j}(\lambda)=\sigma_{n-1}^{j}(\lambda)+$ $\left.\sigma_{n-1}^{j-1}(\lambda) \lambda_{n}\right)$.

We apply here Lemma 9.46 with

$$
\alpha=g_{k}^{\gamma}(z, x, u), \quad \beta=\beta_{k}=\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)\left(\Theta_{A, h_{A}}+r \gamma\right),
$$

which are both semipositive by our assumption. The analogue of (9.32) leads to

$$
\begin{aligned}
& \int_{X_{k}^{\mathrm{GG}}\left(L_{k}, \leqslant 1\right)} \Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{n}}^{n+k r-1} \\
& \quad=\frac{(n+k r-1)!}{n!(k!)^{r}(k r-1)!} \int_{z \in X} \int_{(x, u) \in \Delta_{k-1} \times\left(S^{2 r-1}\right)^{k}} \mathbb{1}_{g_{k}^{\gamma}-\beta_{k}, \leqslant 1}\left(g_{k}^{\gamma}-\beta_{k}\right)^{n} d \nu_{k, r}(x) d \mu(u) \\
& \quad \geqslant \frac{(n+k r-1)!}{n!(k!)^{r}(k r-1)!} \int_{z \in X} \int_{(x, u) \in \Delta_{k-1} \times\left(S^{2 r-1}\right)^{k}}\left(\left(g_{k}^{\gamma}\right)^{n}-n\left(g_{k}^{\gamma}\right)^{n-1} \wedge \beta_{k}\right) d \nu_{k, r}(x) d \mu(u) .
\end{aligned}
$$

The resulting integral now produces a "closed formula" which can be expressed solely in terms of Chern classes (at least if we assume that γ is the Chern form of some semipositive line bundle). It is just a matter of routine to find a sufficient condition for the positivity of the integral. One can first observe that g_{k}^{γ} is bounded from above by taking the trace of $\left(c_{i j \alpha \beta}\right)$, in this way we get

$$
0 \leqslant g_{k}^{\gamma} \leqslant\left(\sum_{1 \leqslant s \leqslant k} \frac{x_{s}}{s}\right)\left(\Theta_{\operatorname{det} V^{*}}+r \gamma\right)
$$

where the right hand side no longer depends on $u \in\left(S^{2 r-1}\right)^{k}$. Also, g_{k}^{γ} can be written as a sum of semipositive (1,1)-forms

$$
g_{k}^{\gamma}=\sum_{1 \leqslant s \leqslant k} \frac{x_{s}}{s} \theta^{\gamma}\left(u_{s}\right), \quad \theta^{\gamma}(u)=\sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}^{\gamma} u_{\alpha} \bar{u}_{\beta} d z_{i} \wedge d \bar{z}_{j},
$$

hence for $k \geqslant n$ we have

$$
\left(g_{k}^{\gamma}\right)^{n} \geqslant n!\sum_{1 \leqslant s_{1}<\ldots<s_{n} \leqslant k} \frac{x_{s_{1}} \ldots x_{s_{n}}}{s_{1} \ldots s_{n}} \theta^{\gamma}\left(u_{s_{1}}\right) \wedge \theta^{\gamma}\left(u_{s_{2}}\right) \wedge \ldots \wedge \theta^{\gamma}\left(u_{s_{n}}\right) .
$$

Since $\int_{S^{2 r-1}} \theta^{\gamma}(u) d \mu(u)=\frac{1}{r} \operatorname{Tr}\left(\Theta_{V^{*}}+\gamma\right)=\frac{1}{r} \Theta_{\operatorname{det} V^{*}}+\gamma$, we infer from this

$$
\begin{aligned}
& \int_{(x, u) \in \Delta_{k-1} \times\left(S^{2 r-1}\right)^{k}}\left(g_{k}^{\gamma}\right)^{n} d \nu_{k, r}(x) d \mu(u) \\
& \quad \geqslant n!\sum_{1 \leqslant s_{1}<\ldots<s_{n} \leqslant k} \frac{1}{s_{1} \ldots s_{n}}\left(\int_{\Delta_{k-1}} x_{1} \ldots x_{n} d \nu_{k, r}(x)\right)\left(\frac{1}{r} \Theta_{\operatorname{det} V^{*}}+\gamma\right)^{n}
\end{aligned}
$$

By putting everything together, we conclude:
9.47. Theorem. Assume that $\Theta_{V^{*}} \geqslant-\gamma \otimes \operatorname{Id}_{V^{*}}$ with a semipositive $(1,1)$-form γ on X. Then the Morse integral of the line bundle

$$
L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right), \quad A \geqslant 0
$$

satisfies for $k \geqslant n$ the inequality

$$
\begin{align*}
& \frac{1}{(n+k r-1)!} \int_{X_{k}^{\mathrm{GG}}\left(L_{k}, \leqslant 1\right)} \Theta_{L_{k}, \Psi_{h, p, \varepsilon}^{*}}^{n+k r-1} \\
& \quad \geqslant \frac{1}{n!(k!)^{r}(k r-1)!} \int_{X} c_{n, r, k}\left(\Theta_{\operatorname{det} V^{*}}+r \gamma\right)^{n}-c_{n, r, k}^{\prime}\left(\Theta_{\operatorname{det} V^{*}}+r \gamma\right)^{n-1} \wedge\left(\Theta_{A, h_{A}}+r \gamma\right) \tag{*}
\end{align*}
$$

where

$$
\begin{aligned}
& c_{n, r, k}=\frac{n!}{r^{n}}\left(\sum_{1 \leqslant s_{1}<\ldots<s_{n} \leqslant k} \frac{1}{s_{1} \ldots s_{n}}\right) \int_{\Delta_{k-1}} x_{1} \ldots x_{n} d \nu_{k, r}(x), \\
& c_{n, r, k}^{\prime}=\frac{n}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \int_{\Delta_{k-1}}\left(\sum_{1 \leqslant s \leqslant k} \frac{x_{s}}{s}\right)^{n-1} d \nu_{k, r}(x) .
\end{aligned}
$$

Especially we have a lot of sections in $H^{0}\left(X_{k}^{\mathrm{GG}}, m L_{k}\right), m \gg 1$, as soon as the difference occurring in (*) is positive.

The statement is also true for $k<n$, but then $c_{n, r, k}=0$ and the lower bound ($*$) cannot be positive. By Corollary 9.11, it still provides a non trivial lower bound for $h^{0}\left(X_{k}^{\mathrm{GG}}, m L_{k}\right)-$ $h^{1}\left(X_{k}^{\mathrm{GG}}, m L_{k}\right)$, though. For $k \geqslant n$ we have $c_{n, r, k}>0$ and $(*)$ will be positive if $\Theta_{\operatorname{det} V^{*}}$ is large enough. By Formula 9.20 we have

$$
\begin{equation*}
c_{n, r, k}=\frac{n!(k r-1)!}{(n+k r-1)!} \sum_{1 \leqslant s_{1}<\ldots<s_{n} \leqslant k} \frac{1}{s_{1} \ldots s_{n}} \geqslant \frac{(k r-1)!}{(n+k r-1)!}, \tag{9.48}
\end{equation*}
$$

(with equality for $k=n$), and by ([Dem11], Lemma $2.20(\mathrm{~b})$) we get the upper bound

$$
\frac{c_{n, k, r}^{\prime}}{c_{n, k, r}} \leqslant \frac{(k r+n-1) r^{n-2}}{k / n}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)^{n}\left[1+\frac{1}{3} \sum_{m=2}^{n-1} \frac{2^{m}(n-1)!}{(n-1-m)!}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)^{-m}\right] .
$$

The case $k=n$ is especially interesting. For $k=n \geqslant 2$ one can show (with $r \leqslant n$ and H_{n} denoting the harmonic sequence) that

$$
\begin{equation*}
\frac{c_{n, k, r}^{\prime}}{c_{n, k, r}} \leqslant \frac{n^{2}+n-1}{3} n^{n-2} \exp \left(\frac{2(n-1)}{H_{n}}+n \log H_{n}\right) \leqslant \frac{1}{3}(n \log (n \log 24 n))^{n} \tag{9.49}
\end{equation*}
$$

We will later need the particular values that can be obtained by direct calculations (cf. Formula (9.20 and [Dem11, Lemma 2.20]).

$$
\begin{array}{lll}
c_{2,2,2}=\frac{1}{20}, & c_{2,2,2}^{\prime}=\frac{9}{16}, & \frac{c_{2,2,2}^{\prime}}{c_{2,2,2}}=\frac{45}{4} \\
c_{3,3,3}=\frac{1}{990}, & c_{3,3,3}^{\prime}=\frac{451}{4860}, & \frac{c_{3,3,3}^{\prime}}{c_{3,3,3}}=\frac{4961}{54} . \tag{3}
\end{array}
$$

10. Hyperbolicity properties of hypersurfaces of high degree

10.A. Global generation of the twisted tangent space of the universal family

In [Siu02, Siu04], Y.T. Siu developed a new stategy to produce jet differentials, involving meromorphic vector fields on the total space of jet bundles - these vector fields are used to differentiate the sections of $E_{k, m}^{\mathrm{GG}}$ so as to produce new ones with less zeroes. The approach works especially well on universal families of hypersurfaces in projective space, thanks to the good positivity properties of the relative tangent bundle, as shown by L. Ein [Ein88, Ein91] and C. Voisin [Voi96]. This allows at least to prove the hyperbolicity of generic surfaces and generic 3-dimensional hypersurfaces of sufficiently high degree. We reproduce here the improved approach given by [Pau08] for the twisted global generation of the tangent space of the space of vertical two jets. The situation of k-jets in arbitrary dimension n is substantially more involved, details can be found in [Mer09].

Consider the universal hypersurface $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ of degree d given by the equation

$$
\sum_{|\alpha|=d} A_{\alpha} Z^{\alpha}=0,
$$

where $[Z] \in \mathbb{P}^{n+1},[A] \in \mathbb{P}^{N_{d}}, \alpha=\left(\alpha_{0}, \ldots, \alpha_{n+1}\right) \in \mathbb{N}^{n+2}$ and

$$
N_{d}=\binom{n+d+1}{d}-1
$$

Finally, we denote by $\mathcal{V} \subset \mathcal{X}$ the vertical tangent space, i.e. the kernel of the projection

$$
\pi: \mathcal{X} \rightarrow U \subset \mathbb{P}^{N_{d}}
$$

where U is the Zariski open set parametrizing smooth hypersurfaces, and by $J_{k} \mathcal{V}$ the bundle of k-jets of curves tangent to \mathcal{V}, i.e. curves contained in the fibers $X_{s}=\pi^{-1}(s)$. The goal is to describe certain meromorphic vector fields on the total space of $J_{k} \mathcal{V}$. By an explicit calculation of vector fields in coordinates, according to Siu's stategy, Păun [Pau08] was able to prove:
10.1. Theorem. The twisted tangent space $T_{J_{2} \mathcal{V}} \otimes \mathcal{O}_{\mathbb{P}^{3}}(7) \otimes \mathcal{O}_{\mathbb{P}^{N_{d}}}(1)$ is generated over by its global sections over the complement $J_{2} \mathcal{V} \backslash \mathcal{W}$ of the Wronskian locus \mathcal{W}. Moreover, one can choose generating global sections that are invariant with respect to the action of \mathbb{G}_{2} on $J_{2} \mathcal{V}$.

By similar, but more computationally intensive arguments [Mer09], one can investigate the higher dimensional case. The following result strengthens the initial announcement of [Siu04].
10.2. Theorem. Let $J_{k}^{\mathrm{vert}}(\mathcal{X})$ be the space of vertical k-jets of the universal hypersurface

$$
\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}
$$

parametrizing all projective hypersurfaces $X \subset \mathbb{P}^{n+1}$ of degree d. Then for $k=n$, there exist constants c_{n} and c_{n}^{\prime} such that the twisted tangent bundle

$$
T_{J_{k}^{\text {vert }}(\mathcal{X})} \otimes \mathcal{O}_{\mathbb{P}^{n+1}}\left(c_{n}\right) \otimes \mathcal{O}_{\mathbb{P}^{N_{d}}}\left(c_{n}^{\prime}\right)
$$

is generated by its global \mathbb{G}_{k}-invariant sections outside a certain exceptional algebraic subset $\Sigma \subset$ $J_{k}^{\text {vert }}(\mathcal{X})$. One can take either $c_{n}=\frac{1}{2}\left(n^{2}+5 n\right), c_{n}^{\prime}=1$ and Σ defined by the vanishing of certain Wronskians, or $c_{n}=n^{2}+2 n$ and a smaller set $\widetilde{\Sigma} \subset \Sigma$ defined by the vanishing of the 1 -jet part.

10.B. General strategy of proof

Let again $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ be the universal hypersurface of degree d in \mathbb{P}^{n+1}. (10.3) Assume that we can prove the existence of a non zero polynomial differential operator

$$
P \in H^{0}\left(\mathcal{X}, E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes \mathcal{O}(-A)\right),
$$

where A is an ample divisor on \mathcal{X}, at least over some Zariski open set U in the base of the projection $\pi: \mathcal{X} \rightarrow U \subset \mathbb{P}^{N_{d}}$.

Observe that we now have a lot of techniques to do this; the existence of P over the family follows from lower semicontinuity in the Zariski topology, once we know that such a section P exists on a generic fiber $X_{s}=\pi^{-1}(s)$. Let $\mathcal{Y} \subset \mathcal{X}$ be the set of points $x \in \mathcal{X}$ where $P(x)=0$, as an element in the fiber of the vector bundle $\left.E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes \mathcal{O}(-A)\right)$ at x. Then \mathcal{Y} is a proper algebraic subset of \mathcal{X}, and after shrinking U we may assume that $Y_{s}=\mathcal{Y} \cap X_{s}$ is a proper algebraic subset of X_{s} for every $s \in U$.
(10.4) Assume also, according to Theorems 10.1 and 10.2, that we have enough global holomorphic \mathbb{G}_{k}-invariant vector fields θ_{i} on $J_{k} \mathcal{V}$ with values in the pull-back of some ample divisor B on \mathcal{X}, in such a way that they generate $T_{J_{k} \mathcal{V}} \otimes p_{k}^{*} B$ over the dense open set $\left(J_{k} \mathcal{V}\right)^{\text {reg }}$ of regular k-jets, i.e. k-jets with non zero first derivative (here $p_{k}: J_{k} \mathcal{V} \rightarrow \mathcal{X}$ is the natural projection).

Considering jet differentials P as functions on $J_{k} \mathcal{V}$, the idea is to produce new ones by taking differentiations

$$
Q_{j}:=\theta_{j_{1}} \ldots \theta_{j_{\ell}} P, \quad 0 \leqslant \ell \leqslant m, j=\left(j_{1}, \ldots, j_{\ell}\right)
$$

Since the θ_{j} 's are \mathbb{G}_{k}-invariant, they are in particular \mathbb{C}^{*}-invariant, thus

$$
Q_{j} \in H^{0}\left(\mathcal{X}, E_{k, m}^{\mathrm{GG}} T_{\mathcal{X}}^{*} \otimes \mathcal{O}(-A+\ell B)\right)
$$

(and Q is in fact \mathbb{G}_{k}^{\prime} invariant as soon as P is). In order to be able to apply the vanishing theorems of $\S 8$, we need $A-m B$ to be ample, so A has to be large compared to B. If $f: \mathbb{C} \rightarrow X_{s}$ is an entire curve contained in some fiber $X_{s} \subset \mathcal{X}$, its lifting $j_{k}(f): \mathbb{C} \rightarrow J_{k} \mathcal{V}$ has to lie in the zero divisors of all sections Q_{j}. However, every non zero polynomial of degree m has at any point some non zero derivative of order $\ell \leqslant m$. Therefore, at any point where the θ_{i} generate the tangent space to $J_{k} \mathcal{V}$, we can find some non vanishing section Q_{j}. By the assumptions on the θ_{i}, the base locus of the Q_{j} 's is contained in the union of $p_{k}^{-1}(\mathcal{Y}) \cup\left(J_{k} \mathcal{V}\right)^{\text {sing }}$; there is of course no way of getting a non zero polynomial at points of \mathcal{Y} where P vanishes. Finally, we observe that $j_{k}(f)(\mathbb{C}) \not \subset\left(J_{k} \mathcal{V}^{\text {sing }}\right.$ (otherwise f is constant). Therefore $j_{k}(f)(\mathbb{C}) \subset p_{k}^{-1}(\mathcal{Y})$ and thus $f(\mathbb{C}) \subset \mathcal{Y}$, i.e. $f(\mathbb{C}) \subset Y_{s}=\mathcal{Y} \cap X_{s}$.
10.5. Corollary. Let $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ be the universal hypersurface of degree d in \mathbb{P}^{n+1}. If $d \geqslant d_{n}$ is taken so large that conditions (10.3) and (10.4) are met with $A-m B$ ample, then the generic fiber X_{s} of the universal family $\mathcal{X} \rightarrow U$ satisfies the Green-Griffiths conjecture, namely all entire curves $f: \mathbb{C} \rightarrow X_{s}$ are contained in a proper algebraic subvariety $Y_{s} \subset X_{s}$, and the Y_{s} can be taken to form an algebraic subset $\mathcal{Y} \subset \mathcal{X}$.

This is unfortunately not enough to get the hyperbolicity of X_{s}, because we would have to know that Y_{s} itself is hyperbolic. However, one can use the following simple observation due to Diverio and Trapani [DT10]. The starting point is the following general, straightforward remark. Let $\mathcal{E} \rightarrow \mathcal{X}$ be a holomorphic vector bundle let $\sigma \in H^{0}(\mathcal{X}, \mathcal{E}) \neq 0$; then, up to factorizing by an effective divisor D contained in the common zeroes of the components of σ, one can view σ as a section

$$
\sigma \in H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{O}_{\mathcal{X}}(-D)\right)
$$

and this section now has a zero locus without divisorial components. Here, when $n \geqslant 2$, the very generic fiber X_{s} has Picard number one by the Noether-Lefschetz theorem, and so, after shrinking U if necessary, we can assume that $\mathcal{O}_{\mathcal{X}}(-D)$ is the restriction of $\mathcal{O}_{\mathbb{P}^{n+1}}(-p), p \geqslant 0$ by the effectivity of D. Hence D can be assumed to be nef. After performing this simplification, $A-m B$ is replaced by $A-m B+D$, which is still ample if $A-m B$ is ample. As a consequence, we may assume codim $\mathcal{Y} \geqslant 2$, and after shrinking U again, that all Y_{s} have $\operatorname{codim} Y_{s} \geqslant 2$.
10.6. Additional statement. In corollary 10.5, under the same hypotheses (10.3) and (10.4), one can take all fibers Y_{s} to have codim $Y_{s} \geqslant 2$.

This is enough to conclude that X_{s} is hyperbolic if $n=\operatorname{dim} X_{s} \leqslant 3$. In fact, this is clear if $n=2$ since the Y_{s} are then reduced to points. If $n=3$, the Y_{s} are at most curves, but we know by Ein and Voisin that a generic hypersurface $X_{s} \subset \mathbb{P}^{4}$ of degree $d \geqslant 7$ does not possess any rational or elliptic curve. Hence Y_{s} is hyperbolic and so is X_{s}, for s generic.
10.7. Corollary. Assume that $n=2$ or $n=3$, and that $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_{d}}$ is the universal hypersurface of degree $d \geqslant d_{n} \geqslant 2 n+1$ so large that conditions (10.3) and (10.4) are met with $A-m B$ ample. Then the very generic hypersurface $X_{s} \subset \mathbb{P}^{n+1}$ of degree d is hyperbolic.

10.C. Proof of the Green-griffiths conjecture for generic hypersurfaces in \mathbb{P}^{n+1}

The most striking progress made at this date on the Green-Griffiths conjecture itself is a recent result of Diverio, Merker and Rousseau [DMR10], confirming the statement when $X \subset \mathbb{P}_{\mathbb{C}}^{n+1}$ is a generic hypersurface of large degree d, with a (non optimal) sufficient lower bound $d \geqslant 2^{n^{5}}$. Their proof is based in an essential way on Siu's strategy as developed in § 10.B, combined with the earlier techniques of [Dem95]. Using our improved bounds from § 9.D, we obtain here a better estimate (actually of exponential order one $O\left(\exp \left(n^{1+\varepsilon}\right)\right)$ rather than order 5).
10.8. Theorem. A generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geqslant d_{n}$ with

$$
d_{2}=286, \quad d_{3}=7316, \quad d_{n}=\left\lfloor\frac{n^{4}}{3}(n \log (n \log (24 n)))^{n}\right\rfloor \quad \text { for } n \geqslant 4,
$$

satisfies the Green-Griffiths conjecture.
Proof. Let us apply Theorem 9.47 with $V=T_{X}, r=n$ and $k=n$. The main starting point is the well known fact that $T_{\mathbb{P}^{n+1}}^{*} \otimes \mathcal{O}_{\mathbb{P}^{n+1}}(2)$ is semipositive (in fact, generated by its sections). Hence the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n+1}}(-d) \rightarrow T_{\mathbb{P}^{n+1} \mid X}^{*} \rightarrow T_{X}^{*} \rightarrow 0
$$

implies that $T_{X}^{*} \otimes \mathcal{O}_{X}(2) \geqslant 0$. We can therefore take $\gamma=\Theta_{\mathcal{O}(2)}=2 \omega$ where ω is the FubiniStudy metric. Moreover $\operatorname{det} V^{*}=K_{X}=\mathcal{O}_{X}(d-n-2)$ has curvature $(d-n-2) \omega$, hence $\Theta_{\operatorname{det} V^{*}}+r \gamma=(d+n-2) \omega$. The Morse integral to be computed when $A=\mathcal{O}_{X}(p)$ is

$$
\int_{X}\left(c_{n, n, n}(d+n-2)^{n}-c_{n, n, n}^{\prime}(d+n-2)^{n-1}(p+2 n)\right) \omega^{n},
$$

so the critical condition we need is

$$
d+n-2>\frac{c_{n, n, n}^{\prime}}{c_{n, n, n}}(p+2 n)
$$

On the other hand, Siu's differentiation technique requires $\frac{m}{n^{2}}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) A-m B$ to be ample, where $B=\mathcal{O}_{X}\left(n^{2}+2 n\right)$ by Merker's result 10.2. This ampleness condition yields

$$
\frac{1}{n^{2}}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) p-\left(n^{2}+2 n\right)>0
$$

so one easily sees that it is enough to take $p=n^{4}-2 n$ for $n \geqslant 3$. Our estimates (9.49) and (9.50i) give the expected bound d_{n}.

Thanks to 10.6 , one also obtains the generic hyperbolicity of 2 and 3 -dimensional hypersurfaces of large degree.
10.9. Theorem. For $n=2$ or $n=3$, a generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \geqslant d_{n}$ is Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather than GreenGriffiths jets) Diverio-Trapani [DT10] obtained the better lower bound $d \geqslant d_{3}=593$ in dimension 3. In the case of surfaces, Păun [Pau08] obtained $d \geqslant d_{2}=18$, using deep results of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order $k<n$ in the proof of 10.8 and 10.9. Diverio [Div08] showed that the answer is negative (his proof is based on elementary facts of representation theory and a vanishing theorem of Brückmann-Rackwitz [BR90]):
10.10. Proposition ([Div08]). Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface. Then

$$
H^{0}\left(X, E_{k, m}^{\mathrm{GG}} T_{X}^{*}\right)=0
$$

for $m \geqslant 1$ and $1 \leqslant k<n$. More generally, if $X \subset \mathbb{P}^{n+s}$ is a smooth complete intersection of codimension s, there are no global jet differentials for $m \geqslant 1$ and $k<n / s$.

11. Strong general type condition and the GGL conjecture

The main result of this section is a proof of the partial solution to the Green-Griffiths-Lang conjecture asserted in Theorem 0.15. The following important "induction step" can be derived by Corollary 9.39.
11.1. Proposition. Let (X, V) be a directed pair where X is projective algebraic. Take an irreducible algebraic subset $Z \not \subset D_{k}$ of the associated k-jet Semple bundle X_{k} that projects onto X_{k-1},
$k \geqslant 1$, and assume that the induced directed space $(Z, W) \subset\left(X_{k}, V_{k}\right)$ is of general type modulo $X_{k} \rightarrow X, \operatorname{rank} W \geqslant 1$. Then there exists a divisor $\Sigma \subset Z_{\ell}$ in a sufficiently high stage of the Semple tower $\left(Z_{\ell}, W_{\ell}\right)$ associated with (Z, W), such that every non constant holomorphic map $f: \mathbb{C} \rightarrow X$ tangent to V that satisfies $f_{[k]}(\mathbb{C}) \subset Z$ also satisfies $f_{[k+\ell]}(\mathbb{C}) \subset \Sigma$.
Proof. Let $E \subset Z$ be a divisor containing $Z_{\text {sing }} \cup\left(Z \cap \pi_{k, 0}^{-1}(\operatorname{Sing}(V))\right)$, chosen so that on the nonsingular Zariski open set $Z^{\prime}=Z \backslash E$ all linear spaces $T_{Z^{\prime}}, V_{k \mid Z^{\prime}}$ and $W^{\prime}=T_{Z^{\prime}} \cap V_{k}$ are subbundles of $T_{X_{k} \mid Z^{\prime}}$, the first two having a transverse intersection on Z^{\prime}. By taking closures over Z^{\prime} in the absolute Semple tower of X, we get (singular) directed pairs $\left(Z_{\ell}, W_{\ell}\right) \subset\left(X_{k+\ell}, V_{k+\ell}\right)$, which we eventually resolve into $\left(\widehat{Z}_{\ell}, \widehat{W}_{\ell}\right) \subset\left(\widehat{X}_{k+\ell}, \widehat{V}_{k+\ell}\right)$ over nonsingular bases. By construction, locally bounded sections of $\mathcal{O}_{\widehat{X}_{k+\ell}}(m)$ restrict to locally bounded sections of $\mathcal{O}_{\widehat{Z}_{\ell}}(m)$ over \widehat{Z}_{ℓ}.

Since Corollary 9.39 and the related lower bound of h^{0} are universal in the category of directed varieties, we can apply them by replacing X with $\widehat{Z} \subset \widehat{X}_{k}$, the order k by a new index ℓ, and F by

$$
F_{k}=\mu^{*}\left(\left(\mathcal{O}_{X_{k}}(p) \otimes \pi_{k, 0}^{*} \mathcal{O}_{X}(-\varepsilon A)\right)_{\mid Z}\right)
$$

where $\mu: \widehat{Z} \rightarrow Z$ is the desingularization, $p \in \mathbb{Q}_{+}$is chosen such that $K_{W} \otimes \mathcal{O}_{x_{k}}(p)_{\mid Z}$ is big, A is an ample bundle on X and $\varepsilon \in \mathbb{Q}_{+}^{*}$ is small enough. The assumptions show that $K_{\widehat{W}} \otimes F_{k}$ is big on \widehat{Z}, therefore, by applying our theorem and taking $m \gg \ell \gg 1$, we get in fine a large number of (metric bounded) sections of

$$
\begin{aligned}
\mathcal{O}_{\widehat{Z}_{\ell}}(m) & \otimes \widehat{\pi}_{k+\ell, k}^{*} \mathcal{O}\left(\frac{m}{\ell r^{\prime}}\left(1+\frac{1}{2}+\ldots+\frac{1}{\ell}\right) F_{k}\right) \\
& =\mathcal{O}_{\widehat{X}_{k+\ell}}\left(m \mathbf{a}^{\prime}\right) \otimes \widehat{\pi}_{k+\ell, 0}^{*} \mathcal{O}\left(-\frac{m \varepsilon}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right)_{\mid \widehat{Z}_{\ell}}
\end{aligned}
$$

where $\mathbf{a}^{\prime} \in \mathbb{Q}_{+}^{k+\ell}$ is a positive weight (of the form $(0, \ldots, \lambda, \ldots, 0,1)$ with some non zero component $\lambda \in \mathbb{Q}_{+}$at index k). These sections descend to metric bounded sections of

$$
\mathcal{O}_{X_{k+\ell}}((1+\lambda) m) \otimes \widehat{\pi}_{k+\ell, 0}^{*} \mathcal{O}\left(-\frac{m \varepsilon}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right)_{\mid Z_{\ell}}
$$

Since A is ample on X, we can apply the fundamental vanishing theorem 8.14 (see e.g. [Dem97] or [Dem11], Statement 8.15), or rather an "embedded" version for curves satisfying $f_{[k]}(\mathbb{C}) \subset Z$, proved exactly by the same arguments. The vanishing theorem implies that the divisor Σ of any such section satisfies the conclusions of Proposition 11.1, possibly modulo exceptional divisors of $\widehat{Z} \rightarrow Z$; to take care of these, it is enough to add to Σ the inverse image of the divisor $E=Z \backslash Z^{\prime}$ initially selected.

We now introduce the ad hoc condition that will enable us to check the GGL conjecture.
11.2. Definition. Let (X, V) be a directed pair where X is projective algebraic. We say that that (X, V) is "strongly of general type" if it is of general type and for every irreducible algebraic set $Z \subsetneq X_{k}, Z \not \subset D_{k}$, that projects onto X, the induced directed structure $(Z, W) \subset\left(X_{k}, V_{k}\right)$ is of general type modulo $X_{k} \rightarrow X$.
11.3. Example. The situation of a product $(X, V)=\left(X^{\prime}, V^{\prime}\right) \times\left(X^{\prime \prime}, V^{\prime \prime}\right)$ described in (0.14) shows that (X, V) can be of general type without being strongly of general type. In fact, if (X^{\prime}, V^{\prime}) and ($X^{\prime \prime}, V^{\prime \prime}$) are of general type, then $K_{V}=\operatorname{pr}^{*} K_{V^{\prime}} \otimes \operatorname{pr}^{\prime \prime *} K_{V^{\prime \prime}}$ is big, so (X, V) is again of general type. However

$$
Z=P\left(\mathrm{pr}^{\prime *} V^{\prime}\right)=X_{1}^{\prime} \times X^{\prime \prime} \subset X_{1}
$$

has a directed structure $W=\mathrm{pr}^{\prime *} V_{1}^{\prime}$ which does not possess a big canonical bundle over Z, since the restriction of K_{W} to any fiber $\left\{x^{\prime}\right\} \times X^{\prime \prime}$ is trivial. The higher stages $\left(Z_{k}, W_{k}\right)$ of the Semple tower of (Z, W) are given by $Z_{k}=X_{k+1}^{\prime} \times X^{\prime \prime}$ and $W_{k}=\mathrm{pr}^{* *} V_{k+1}^{\prime}$, so it is easy to see that $\mathrm{GG}_{k}(X, V)$ contains Z_{k-1}. Since Z_{k} projects onto X, we have here $\mathrm{GG}(X, V)=X$ (see [DR13] for more sophisticated indecomposable examples).
11.4. Remark. It follows from Definition 7.27 that $(Z, W) \subset\left(X_{k}, V_{k}\right)$ is automatically of general type modulo $X_{k} \rightarrow X$ if $\mathcal{O}_{X_{k}}(1)_{\mid Z}$ is big. Notice further that

$$
\mathcal{O}_{X_{k}}(1+\varepsilon)_{\mid Z}=\left(\mathcal{O}_{X_{k}}(\varepsilon) \otimes \pi_{k, k-1}^{*} \mathcal{O}_{X_{k-1}}(1) \otimes \mathcal{O}\left(D_{k}\right)\right)_{\mid Z}
$$

where $\mathcal{O}\left(D_{k}\right)_{\mid Z}$ is effective and $\mathcal{O}_{X_{k}}(1)$ is relatively ample with respect to the projection $X_{k} \rightarrow$ X_{k-1}. Therefore the bigness of $\mathcal{O}_{X_{k-1}}(1)$ on X_{k-1} also implies that every directed subvariety $(Z, W) \subset\left(X_{k}, V_{k}\right)$ is of general type modulo $X_{k} \rightarrow X$. If (X, V) is of general type, we know by the main result of [Dem11] that $\mathcal{O}_{X_{k}}(1)$ is big for $k \geqslant k_{0}$ large enough, and actually the precise estimates obtained therein give explicit bounds for such a k_{0}. The above observations show that we need to check the condition of Definition 11.2 only for $Z \subset X_{k}, k \leqslant k_{0}$. Moreover, at least in the case where V, Z, and $W=T_{Z} \cap V_{k}$ are nonsingular, we have

$$
K_{W} \simeq K_{Z} \otimes \operatorname{det}\left(T_{Z} / W\right) \simeq K_{Z} \otimes \operatorname{det}\left(T_{X_{k}} / V_{k}\right)_{\mid Z} \simeq K_{Z / X_{k-1}} \otimes \mathcal{O}_{X_{k}}(1)_{\mid Z}
$$

Thus we see that, in some sense, it is only needed to check the bigness of K_{W} modulo $X_{k} \rightarrow X$ for "rather special subvarieties" $Z \subset X_{k}$ over X_{k-1}, such that $K_{Z / X_{k-1}}$ is not relatively big over X_{k-1}.
11.5. Hypersurface case. Assume that $Z \neq D_{k}$ is an irreducible hypersurface of X_{k} that projects onto X_{k-1}. To simplify things further, also assume that V is nonsingular. Since the Semple jetbundles X_{k} form a tower of \mathbb{P}^{r-1}-bundles, their Picard groups satisfy $\operatorname{Pic}\left(X_{k}\right) \simeq \operatorname{Pic}(X) \oplus \mathbb{Z}^{k}$ and we have $\mathcal{O}_{X_{k}}(Z) \simeq \mathcal{O}_{X_{k}}(\mathbf{a}) \otimes \pi_{k, 0}^{*} B$ for some $\mathbf{a} \in \mathbb{Z}^{k}$ and $B \in \operatorname{Pic}(X)$, where $a_{k}=d>0$ is the relative degree of the hypersurface over X_{k-1}. Let $\sigma \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}(Z)\right)$ be the section defining Z in X_{k}. The induced directed variety (Z, W) has $\operatorname{rank} W=r-1=\operatorname{rank} V-1$ and formula (1.12) yields $K_{V_{k}}=\mathcal{O}_{X_{k}}(-(r-1) \mathbf{1}) \otimes \pi_{k, 0}^{*}\left(K_{V}\right)$. We claim that

$$
\begin{equation*}
K_{W} \supset\left(K_{V_{k}} \otimes \mathcal{O}_{X_{k}}(Z)\right)_{\mid Z} \otimes \mathcal{J}_{S}=\left(\mathcal{O}_{X_{k}}(\mathbf{a}-(r-1) \mathbf{1}) \otimes \pi_{k, 0}^{*}\left(B \otimes K_{V}\right)\right)_{\mid Z} \otimes \mathcal{J}_{S} \tag{11.5.1}
\end{equation*}
$$

where $S \subsetneq Z$ is the set (containing $Z_{\text {sing }}$) where σ and $d \sigma_{\mid V_{k}}$ both vanish, and \mathcal{J}_{S} is the ideal locally generated by the coefficients of $d \sigma_{\mid V_{k}}$ along $Z=\sigma^{-1}(0)$. In fact, the intersection $W=T_{Z} \cap V_{k}$ is transverse on $Z \backslash S$; then (11.5.1) can be seen by looking at the morphism

$$
V_{k \mid Z} \xrightarrow{d \sigma_{\mid V_{k}}} \mathcal{O}_{X_{k}}(Z)_{\mid Z}
$$

and observing that the contraction by $K_{V_{k}}=\Lambda^{r} V_{k}^{*}$ provides a metric bounded section of the canonical sheaf K_{W}. In order to investigate the positivity properties of K_{W}, one has to show that B cannot be too negative, and in addition to control the singularity set S. The second point is a priori very challenging, but we get useful information for the first point by observing that σ provides a morphism $\pi_{k, 0}^{*} \mathcal{O}_{X}(-B) \rightarrow \mathcal{O}_{X_{k}}(\mathbf{a})$, hence a nontrivial morphism

$$
\mathcal{O}_{X}(-B) \rightarrow E_{\mathbf{a}}:=\left(\pi_{k, 0}\right)_{*} \mathcal{O}_{X_{k}}(\mathbf{a})
$$

By [Dem95, Section 12], there exists a filtration on $E_{\mathbf{a}}$ such that the graded pieces are irreducible representations of $\mathrm{GL}(V)$ contained in $\left(V^{*}\right)^{\otimes \ell}, \ell \leqslant|\mathbf{a}|$. Therefore we get a nontrivial morphism

$$
\begin{equation*}
\mathcal{O}_{X}(-B) \rightarrow\left(V^{*}\right)^{\otimes \ell}, \quad \ell \leqslant|\mathbf{a}| . \tag{11.5.2}
\end{equation*}
$$

If we know about certain (semi-)stability properties of V, this can be used to control the negativity of B.

We further need the following useful concept that slightly generalizes entire curve loci.
11.6. Definition. If Z is an algebraic set contained in some stage X_{k} of the Semple tower of (X, V), we define its "induced entire curve locus" $\operatorname{IEL}_{X, V}(Z) \subset Z$ to be the Zariski closure of the union $\bigcup f_{[k]}(\mathbb{C})$ of all jets of entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ such that $f_{[k]}(\mathbb{C}) \subset Z$.

We have of course $\operatorname{IEL}_{X, V}\left(\operatorname{IEL}_{X, V}(Z)\right)=\operatorname{IEL}_{X, V}(Z)$ by definition. It is not hard to check that modulo certain "vertical divisors" of X_{k}, the $\operatorname{IEL}_{X, V}(Z)$ locus is essentially the same as the entire curve locus $\operatorname{ECL}(Z, W)$ of the induced directed variety, but we will not use this fact here. Notice that if $Z=\bigcup Z_{\alpha}$ is a decomposition of Z into irreducible divisors, then

$$
\operatorname{IEL}_{X, V}(Z)=\bigcup_{\alpha} \operatorname{IEL}_{X, V}\left(Z_{\alpha}\right) .
$$

Since $\mathrm{IEL}_{X, V}\left(X_{k}\right)=\mathrm{ECL}_{k}(X, V)$, proving the Green-Griffiths-Lang property amounts to showing that $\operatorname{IEL}_{X, V}(X) \subsetneq X$ in the stage $k=0$ of the tower. The basic step of our approach is expressed in the following statement.
11.7. Proposition. Let (X, V) be a directed variety and $p_{0} \leqslant n=\operatorname{dim} X, p_{0} \geqslant 1$. Assume that there is an integer $k_{0} \geqslant 0$ such that for every $k \geqslant k_{0}$ and every irreducible algebraic set $Z \subsetneq X_{k}$, $Z \not \subset D_{k}$, such that $\operatorname{dim} \pi_{k, k_{0}}(Z) \geqslant p_{0}$, the induced directed structure $(Z, W) \subset\left(X_{k}, V_{k}\right)$ is of general type modulo $X_{k} \rightarrow X$. Then $\operatorname{dim} \mathrm{ECL}_{k_{0}}(X, V)<p_{0}$.
Proof. We argue here by contradiction, assuming that $\operatorname{dim} \mathrm{ECL}_{k_{0}}(X, V) \geqslant p_{0}$. If

$$
p_{0}^{\prime}:=\operatorname{dim} \mathrm{ECL}_{k_{0}}(X, V)>p_{0}
$$

and if we can prove the result for p_{0}^{\prime}, we will already get a contradiction, hence we can assume without loss of generality that $\operatorname{dim} \mathrm{ECL}_{k_{0}}(X, V)=p_{0}$. The main argument consists of producing inductively an increasing sequence of integers

$$
k_{0}<k_{1}<\ldots<k_{j}<\ldots
$$

and directed varieties $\left(Z^{j}, W^{j}\right) \subset\left(X_{k_{j}}, V_{k_{j}}\right)$ satisfying the following properties :
(11.7.1) Z^{0} is one of the irreducible components of $\mathrm{ECL}_{k_{0}}(X, V)$ and $\operatorname{dim} Z^{0}=p_{0}$;
(11.7.2) Z^{j} is one of the irreducible components of $\mathrm{ECL}_{k_{j}}(X, V)$ and $\pi_{k_{j}, k_{0}}\left(Z^{j}\right)=Z^{0}$;
(11.7.3) for all $j \geqslant 0, \operatorname{IEL}_{X, V}\left(Z^{j}\right)=Z^{j}$ and $\operatorname{rank} W_{j} \geqslant 1$;
(11.7.4) for all $j \geqslant 0$, the directed variety $\left(Z^{j+1}, W^{j+1}\right)$ is contained in some stage (of order $\ell_{j}=$ $\left.k_{j+1}-k_{j}\right)$ of the Semple tower of (Z^{j}, W^{j}), namely

$$
\left(Z^{j+1}, W^{j+1}\right) \subsetneq\left(Z_{\ell_{j}}^{j}, W_{\ell_{j}}^{j}\right) \subset\left(X_{k_{j+1}}, V_{k_{j+1}}\right)
$$

and

$$
W^{j+1}=\overline{T_{Z^{j+1}} \cap \cap W_{\ell_{j}}^{j}}=\overline{T_{Z^{j+1}} \cap V_{k_{j}}}
$$

is the induced directed structure; moreover $\pi_{k_{j+1}, k_{j}}\left(Z^{j+1}\right)=Z^{j}$.
(11.7.5) for all $j \geqslant 0$, we have $Z^{j+1} \subsetneq Z_{\ell_{j}}^{j}$ but $\pi_{k_{j+1}, k_{j+1}-1}\left(Z^{j+1}\right)=Z_{\ell_{j}-1}^{j}$.

For $j=0$, we simply take Z^{0} to be one of the irreducible components S_{α} of $\mathrm{ECL}_{k_{0}}(X, V)$ such that $\operatorname{dim} S_{\alpha}=p_{0}$, which exists by our hypothesis that $\operatorname{dim} \mathrm{ECL}_{k_{0}}(X, V)=p_{0}$. Clearly, $\mathrm{ECL}_{k_{0}}(X, V)$ is the union of the $\operatorname{IEL}_{X, V}\left(S_{\alpha}\right)$ and we have $\operatorname{IEL}_{X, V}\left(S_{\alpha}\right)=S_{\alpha}$ for all those components, thus $\operatorname{IEL}_{X, V}\left(Z^{0}\right)=Z^{0}$ and $\operatorname{dim} Z^{0}=p_{0}$. Assume that $\left(Z^{j}, W^{j}\right)$ has been constructed. The subvariety Z^{j} cannot be contained in the vertical divisor $D_{k_{j}}$. In fact no irreducible algebraic set Z such that $\operatorname{IEL}_{X, V}(Z)=Z$ can be contained in a vertical divisor D_{k}, because $\pi_{k, k-2}\left(D_{k}\right)$ corresponds to stationary jets in X_{k-2}; as every non constant curve f has non stationary points, its k-jet $f_{[k]}$ cannot be entirely contained in D_{k}; also the induced directed structure (Z, W) must satisfy $\operatorname{rank} W \geqslant 1$ otherwise $\operatorname{IEL}_{X, V}(Z) \subsetneq Z$. Condition (11.7.2) implies that $\operatorname{dim} \pi_{k_{j}, k_{0}}\left(Z^{j}\right) \geqslant p_{0}$, thus $\left(Z^{j}, W^{j}\right)$ is of general type modulo $X_{k_{j}} \rightarrow X$ by the assumptions of the proposition. Thanks to Proposition 2.5, we get an algebraic subset $\Sigma \subsetneq Z_{\ell}^{j}$ in some stage of the Semple tower $\left(Z_{\ell}^{j}\right)$
of Z^{j} such that every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ satisfying $f_{\left[k_{j}\right]}(\mathbb{C}) \subset Z^{j}$ also satisfies $f_{\left[k_{j}+\ell\right]}(\mathbb{C}) \subset \Sigma$. By definition, this implies the first inclusion in the sequence

$$
Z^{j}=\operatorname{IEL}_{X, V}\left(Z^{j}\right) \subset \pi_{k_{j}+\ell, k_{j}}\left(\operatorname{IEL}_{X, V}(\Sigma)\right) \subset \pi_{k_{j}+\ell, k_{j}}(\Sigma) \subset Z^{j}
$$

(the other ones being obvious), so we have in fact an equality throughout. Let (S_{α}^{\prime}) be the irreducible components of $\operatorname{IEL}_{X, V}(\Sigma)$. We have $\operatorname{IEL}_{X, V}\left(S_{\alpha}^{\prime}\right)=S_{\alpha}^{\prime}$ and one of the components S_{α}^{\prime} must satisfy

$$
\pi_{k_{j}+\ell, k_{j}}\left(S_{\alpha}^{\prime}\right)=Z^{j}=Z_{0}^{j} .
$$

We take $\ell_{j} \in[1, \ell]$ to be the smallest order such that $Z^{j+1}:=\pi_{k_{j}+\ell, k_{j}+\ell_{j}}\left(S_{\alpha}^{\prime}\right) \subsetneq Z_{\ell_{j}}^{j}$, and set $k_{j+1}=k_{j}+\ell_{j}>k_{j}$. By definition of ℓ_{j}, we have $\pi_{k_{j+1}, k_{j+1}-1}\left(Z^{j+1}\right)=Z_{\ell_{j}-1}^{j}$, otherwise ℓ_{j} would not be minimal. Then $\pi_{k_{j+1}, k_{j}}\left(Z^{j+1}\right)=Z^{j}$, hence $\pi_{k_{j+1}, k_{0}}\left(Z^{j+1}\right)=Z^{6}$ by induction, and all properties (11.7.1-11.7.5) follow easily. Now, by Observation 7.26, we have

$$
\operatorname{rank} W^{j}<\operatorname{rank} W^{j-1}<\ldots<\operatorname{rank} W^{1}<\operatorname{rank} W^{0}=\operatorname{rank} V
$$

This is a contradiction because we cannot have such an infinite sequence. Proposition 11.7 is proved.

The special case $k_{0}=0, p_{0}=n$ of Proposition 11.7 yields the following consequence.
11.8. Partial solution to the generalized GGL conjecture. Let (X, V) be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for (X, V), namely $\mathrm{ECL}(X, V) \subsetneq X$, in other words there exists a proper algebraic variety $Y \subsetneq X$ such that every non constant holomorphic curve $f: \mathbb{C} \rightarrow X$ tangent to V satisfies $f(\mathbb{C}) \subset Y$.
11.9. Remark. The proof is not very constructive, but it is however theoretically effective. By this we mean that if (X, V) is strongly of general type and is taken in a bounded family of directed varieties, i.e. X is embedded in some projective space \mathbb{P}^{N} with some bound δ on the degree, and $P(V)$ also has bounded degree $\leqslant \delta^{\prime}$ when viewed as a subvariety of $P\left(T_{\mathbb{P}^{N}}\right)$, then one could theoretically derive bounds $d_{Y}\left(n, \delta, \delta^{\prime}\right)$ for the degree of the locus Y. Also, there would exist bounds $k_{0}\left(n, \delta, \delta^{\prime}\right)$ for the orders k and bounds $d_{k}\left(n, \delta, \delta^{\prime}\right)$ for the degrees of subvarieties $Z \subset X_{k}$ that have to be checked in the definition of a pair of strong general type. In fact, [Dem11] produces more or less explicit bounds for the order k such that Proposition 2.5 holds true. The degree of the divisor Σ is given by a section of a certain twisted line bundle $\mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} \mathcal{O}_{X}(-A)$ that we know to be big by an application of holomorphic Morse inequalities - and the bounds for the degrees of (X_{k}, V_{k}) then provide bounds for m.
11.10. Remark. The condition that (X, V) is strongly of general type seems to be related to some sort of stability condition. We are unsure what is the most appropriate definition, but here is one that makes sense. Fix an ample divisor A on X. For every irreducible subvariety $Z \subset X_{k}$ that projects onto X_{k-1} for $k \geqslant 1$, and $Z=X=X_{0}$ for $k=0$, we define the slope $\mu_{A}(Z, W)$ of the corresponding directed variety (Z, W) to be

$$
\mu_{A}(Z, W)=\frac{\inf \lambda}{\operatorname{rank} W},
$$

where λ runs over all rational numbers such that there exists $m \in \mathbb{Q}_{+}$for which

$$
K_{W} \otimes\left(\mathcal{O}_{X_{k}}(m) \otimes \pi_{k, 0}^{*} \mathcal{O}(\lambda A)\right)_{\mid Z} \quad \text { is big on } Z
$$

(again, we assume here that $Z \not \subset D_{k}$ for $k \geqslant 2$). Notice that (X, V) is of general type if and only if $\mu_{A}(X, V)<0$, and that $\mu_{A}(Z, W)=-\infty$ if $\mathcal{O}_{X_{k}}(1)_{\mid A}$ is big. Also, the proof of Lemma 7.21 shows that

$$
\mu_{A}\left(X_{k}, V_{k}\right) \leqslant \mu_{A}\left(X_{k-1}, V_{k-1}\right) \leqslant \ldots \leqslant \mu_{A}(X, V) \quad \text { for all } k
$$

(with $\mu_{A}\left(X_{k}, V_{k}\right)=-\infty$ for $k \geqslant k_{0} \gg 1$ if (X, V) is of general type). We say that (X, V) is A-jet-stable (resp. A-jet-semi-stable) if $\mu_{A}(Z, W)<\mu_{A}(X, V)$ (resp. $\mu_{A}(Z, W) \leqslant \mu_{A}(X, V)$) for all
$Z \subsetneq X_{k}$ as above. It is then clear that if (X, V) is of general type and A-jet-semi-stable, then it is strongly of general type in the sense of Definition 11.2. It would be useful to have a better understanding of this condition of stability (or any other one that would have better properties).

12. Algebraic Jet-hyperbolicity implies Kobayashi hyperbolicity

Let (X, V) be a directed variety, where X is an irreducible projective variety; the concept still makes sense when X is singular, by embedding (X, V) in a projective space $\left(\mathbb{P}^{N}, T_{\mathbb{P}^{N}}\right)$ and taking the linear space V to be an irreducible algebraic subset of $T_{\mathbb{P}^{n} n}$ that is contained in T_{X} at regular points of X.
12.1. Definition. Let (X, V) be a directed variety. We say that (X, V) is algebraically jethyperbolic if for every $k \geqslant 0$ and every irreducible algebraic subvariety $Z \subset X_{k}$ that is not contained in the union Δ_{k} of vertical divisors, the induced directed structure (Z, W) either satisfies $W=0$, or is of general type modulo $X_{k} \rightarrow X$, i.e. $K_{W}^{\bullet} \otimes \mathcal{O}_{X_{k}}(p)_{\mid Z}$ is big for some rational number $p \in \mathbb{Q}_{+}$.
Proposition 12.6 then gives
12.2. Theorem. Let (X, V) be an irreducible projective directed variety that is algebraically jethyperbolic in the sense of the above definition. Then (X, V) is Brody (or Kobayashi) hyperbolic, i.e. $\operatorname{ECL}(X, V)=\emptyset$.

Proof. Here we apply Proposition 12.6 with $k_{0}=0$ and $p_{0}=1$. It is enough to deal with subvarieties $Z \subset X_{k}$ such that $\operatorname{dim} \pi_{k, 0}(Z) \geqslant 1$, otherwise $W=0$ and can reduce Z to a smaller subvariety by (2.2). Then we conclude that $\operatorname{dim} \operatorname{ECL}(X, V)<1$. All entire curves tangent to V have to be constant, and we conclude in fact that $\mathrm{ECL}(X, V)=\emptyset$.

13. Meromorphic connections with low pole orders

We describe here an important method introduced by Siu [Siu87] and later developped by Nadel [Nad89], which is powerful enough to provide explicit examples of algebraic hyperbolic surfaces. It yields likewise interesting results about the algebraic degeneration of entire curves in higher dimensions. The main idea is to use meromorphic connections with low pole orders, and the associated Wronskian operators. In this way, Nadel produced examples of hyperbolic surfaces in \mathbb{P}^{3} for any degree of the form $p=6 k+3 \geqslant 21$. We present here a variation of Nadel's method, based on the more general concept of partial projective connection, which allows us to extend his result to all degrees $p \geqslant 11$. This approach is inspired from the PhD work of J. El Goul [EG96], and is in some sense a formalization of his strategy.

Let X be a complex n-dimensional manifold. A meromorphic connection ∇ on T_{X} is a \mathbb{C}-linear sheaf morphism

$$
\mathcal{M}\left(U, T_{X}\right) \longrightarrow \mathcal{M}\left(U, \Omega_{X}^{1} \otimes T_{X}\right)
$$

(where $\mathcal{M}(U, \bullet)$ stands for meromorphic sections over U), satisfying the Leibnitz rule

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

whenever $f \in \mathcal{M}(U)$ (resp. $s \in \mathcal{M}\left(U, T_{X}\right)$) is a meromorphic function (resp. section of T_{X}). Let $\left(z_{1}, \ldots, z_{n}\right)$ be holomorphic local coordinates on an open set $U \subset X$. The Christoffel symbols of ∇ with respect to these coordinates are the coefficients $\Gamma_{j \mu}^{\lambda}$ such that

$$
\Gamma_{\mu}^{\lambda}=\sum_{1 \leqslant j \leqslant n} \Gamma_{j \mu}^{\lambda} d z_{j}=\lambda \text {-th component of } \nabla\left(\frac{\partial}{\partial z_{\mu}}\right) .
$$

The associated connection form on U is the tensor

$$
\Gamma=\sum_{1 \leqslant j, \lambda, \mu \leqslant n} \Gamma_{j \mu}^{\lambda} d z_{j} \otimes d z_{\mu} \otimes \frac{\partial}{\partial z_{\lambda}} \in \mathcal{M}\left(U, T_{X}^{*} \otimes T_{X}^{*} \otimes T_{X}\right)
$$

Then, for all local sections $v=\sum_{1 \leqslant \lambda \leqslant n} v_{\lambda} \frac{\partial}{\partial z_{\lambda}}, w=\sum_{1 \leqslant \lambda \leqslant n} w_{\lambda} \frac{\partial}{\partial z_{\lambda}}$ of $\mathcal{M}\left(U, T_{X}\right)$, we get

$$
\begin{aligned}
\nabla v & =\sum_{1 \leqslant \lambda \leqslant n}\left(d v_{\lambda}+\sum_{1 \leqslant \mu \leqslant n} \Gamma_{\mu}^{\lambda} v_{\mu}\right) \frac{\partial}{\partial z_{\lambda}}=d v+\Gamma \cdot v, \\
\nabla_{w} v & =\sum_{1 \leqslant j, \lambda \leqslant n}\left(w_{j} \frac{\partial v_{\lambda}}{\partial z_{j}}+\sum_{1 \leqslant \mu \leqslant n} \Gamma_{j \mu}^{\lambda} w_{j} v_{\mu}\right) \frac{\partial}{\partial z_{\lambda}}=d_{w} v+\Gamma \cdot(w, v) .
\end{aligned}
$$

The connection ∇ is said to be symmetric if it satisfies $\nabla_{v} w-\nabla_{w} v=[v, w]$, or equivalently, if the Christoffel symbols $\Gamma_{j \mu}^{\lambda}=\Gamma_{\mu j}^{\lambda}$ are symmetric in j, μ.

We now turn ourselves to the important concept of Wronskian operator. Let B be the divisor of poles of ∇, that is, the divisor of the least common multiple of all denominators occuring in the meromorphic functions $\Gamma_{j \mu}^{\lambda}$. If $\beta \in H^{0}(X, \mathcal{O}(B))$ is the canonical section of divisor B, then the operator $\beta \nabla$ has holomorphic coefficients. Given a holomorphic curve $f: D(0, r) \rightarrow X$ whose image does not lie in the support $|B|$ of B, one can define inductively a sequence of covariant derivatives

$$
f^{\prime}, \quad f_{\nabla}^{\prime \prime}=\nabla_{f^{\prime}}\left(f^{\prime}\right), \ldots, f_{\nabla}^{(k+1)}:=\nabla_{f^{\prime}}\left(f_{\nabla}^{(k)}\right) .
$$

These derivatives are given in local coordinates by the explicit inductive formula

$$
\begin{equation*}
f_{\nabla}^{(k+1)}(t)_{\lambda}=\frac{d}{d t}\left(f_{\nabla}^{(k)}(t)_{\lambda}\right)+\sum_{1 \leqslant \mu \leqslant n}\left(\Gamma_{j \mu}^{\lambda} \circ f\right) f_{j}^{\prime} f_{\nabla}^{(k)}(t)_{\mu} . \tag{13.1}
\end{equation*}
$$

Therefore, if $\operatorname{Im} f \not \subset|B|$, one can define the Wronskian of f relative to ∇ as

$$
\begin{equation*}
W_{\nabla}(f)=f^{\prime} \wedge f_{\nabla}^{\prime \prime} \wedge \cdots \wedge f_{\nabla}^{(n)} \tag{13.2}
\end{equation*}
$$

Clearly, $W_{\nabla}(f)$ is a meromorphic section of $f^{*}\left(\Lambda^{n} T_{X}\right)$. By induction $\beta(f)^{k-1} f_{\nabla}^{(k)}$ is holomorphic for all $k \geqslant 1$. We infer that $\beta(f)^{n(n-1) / 2} W_{\nabla}(f)$ is holomorphic and can be seen as a holomorphic section of the line bundle $f^{*}\left(\Lambda^{n} T_{X} \otimes \mathcal{O}_{X}\left(\frac{1}{2} n(n-1) B\right)\right.$. From (13.1) and (13.2) we see that $P=\beta^{n(n-1) / 2} W_{\nabla}$ is a global holomorphic polynomial operator $f \mapsto P\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}\right)$ of order n and total degree $n(n+1) / 2$, with values in $\Lambda^{n} T_{X} \otimes \mathcal{O}_{X}\left(\frac{1}{2} n(n-1) B\right)$. Moreover, if we take a biholomorphic reparametrization φ, we get inductively

$$
(f \circ \varphi)_{\nabla}^{(k)}=\left(\varphi^{\prime}\right)^{k} f_{\nabla}^{(k)} \circ \varphi+\text { linear combination of } f_{\nabla}^{(j)} \circ \varphi, j<k .
$$

Therefore

$$
W_{\nabla}(f \circ \varphi)=\left(\varphi^{\prime}\right)^{n(n+1)} W_{\nabla}(f)
$$

and $\beta^{n(n-1) / 2} W_{\nabla}$ can be viewed as a section

$$
\begin{equation*}
\beta^{n(n-1) / 2} W_{\nabla} \in H^{0}\left(X, E_{n, n(n+1) / 2} T_{X}^{*} \otimes L^{-1}\right), \tag{13.3}
\end{equation*}
$$

where L is the line bundle

$$
L=K_{X} \otimes \mathcal{O}_{X}\left(-\frac{1}{2} n(n-1) B\right) .
$$

From this, we get the following theorem, which is essentially due to [Siu87] (with a more involved proof based on suitable generalizations of Nevanlinna's second main theorem).
13.4. Theorem (Y.T. Siu). Let X be a compact complex manifold equipped with a meromorphic connection ∇ of pole divisor B. If $K_{X} \otimes \mathcal{O}_{X}\left(-\frac{1}{2} n(n-1) B\right)$ is ample, then for every non constant entire curve $f: \mathbb{C} \rightarrow X$, one has either $f(\mathbb{C}) \subset|B|$ or $W_{\nabla}(f) \equiv 0$.
Proof. By Corollary 8.9 applied with $P=\beta^{n(n-1) / 2} W_{\nabla}$, we conclude that

$$
\beta^{n(n-1) / 2}(f) W_{\nabla}(f) \equiv 0,
$$

whence the result.
13.5. Basic observation. It is not necessary to know all Christoffel coefficients of the meromorphic connection ∇ in order to be able to compute its Wronskian W_{∇}. In fact, assume that $\widetilde{\nabla}$ is another connection such that there are meromorphic 1-forms α, β with

$$
\begin{aligned}
\widetilde{\nabla} & =\nabla+\alpha \otimes \operatorname{Id}_{T_{X}}+\left(\beta \otimes \operatorname{Id}_{T_{X}}\right)_{\tau_{12}}, \quad \text { i.e. } \\
\widetilde{\nabla}_{w} v & =\nabla_{w} v+\alpha(w) v+\beta(v) w
\end{aligned}
$$

where τ_{12} means transposition of first and second arguments in the tensors of $T_{X}^{*} \otimes T_{X}^{*} \otimes T_{X}$. Then $W_{\nabla}=W_{\widetilde{\nabla}}$. Indeed, the defining formula $f_{\tilde{\nabla}}^{(k+1)}=\widetilde{\nabla}_{f^{\prime}}\left(f_{\tilde{\nabla}}^{(k)}\right)$ implies that $f_{\tilde{\nabla}}^{(k+1)}=\nabla_{f^{\prime}}\left(f_{\tilde{\nabla}}^{(k)}\right)+$ $\alpha\left(f^{\prime}\right) f_{\tilde{\nabla}}^{(k)}+\beta\left(f_{\widetilde{\nabla}}^{(k)}\right) f^{\prime}$, and an easy induction then shows that the $\widetilde{\nabla}$ derivatives can be expressed as linear combinations with meromorphic coefficients

$$
f_{\tilde{\nabla}}^{(k)}(t)=f_{\nabla}^{(k)}(t)+\sum_{1 \leqslant j<k} \gamma_{j}(t) f_{\nabla}^{(j)}(t) .
$$

The essential consequence of Remark 13.5 is that we need only have a "partial projective connection" ∇ on X, in the following sense.
13.6. Definition. A (meromorphic) partial projective connection ∇ on X is a section of the quotient sheaf of meromorphic connections modulo addition of meromorphic tensors in $\left(\Omega_{X}^{1} \otimes \operatorname{Id}_{T_{X}}\right) \oplus$ $\left(\Omega_{X}^{1} \otimes \operatorname{Id}_{T_{X}}\right)_{\tau_{12}}$. In other words, it can be defined as a collection of meromorphic connections ∇_{j} relative to an open covering $\left(U_{j}\right)$ of X, satisfying the compatibility conditions

$$
\nabla_{k}-\nabla_{j}=\alpha_{j k} \otimes \operatorname{Id}_{T_{X}}+\left(\beta_{j k} \otimes \operatorname{Id}_{T_{X}}\right)_{\tau_{12}}
$$

for suitable meromorphic 1-forms $\alpha_{j k}$, $\beta_{j k}$ on $U_{j} \cap U_{k}$.
If we have similar more restrictive compatibility relations with $\beta_{j k}=0$, the connection form Γ is just defined modulo $\Omega_{X}^{1} \otimes \operatorname{Id}_{T_{X}}$ and can thus be seen as a 1-form with values in the Lie algebra $\mathfrak{p} g l(n, \mathbb{C})=\mathfrak{s l}(n, \mathbb{C})$ rather than in $\mathfrak{g l}(n, \mathbb{C})$. Such objects are sometimes referred to as "projective connections", although this terminology has been also employed in a completely different meaning. In any event, Proposition 13.4 extends (with a completely identical proof) to the more general case where ∇ is just a partial projective connection. Accordingly, the pole divisor B can be taken to be the pole divisor of the trace free part

$$
\Gamma^{0}=\Gamma \bmod \left(\Omega_{X}^{1} \otimes \operatorname{Id}_{T_{X}}\right) \oplus\left(\Omega_{X}^{1} \otimes \operatorname{Id}_{T_{X}}\right)_{\tau_{12}}
$$

Such partial projective connections occur in a natural way when one considers quotient varieties under the action of a Lie group. Indeed, let W be a complex manifold in which a connected complex Lie group G acts freely and properly (on the left, say), and let $X=W / G$ be the quotient complex manifold. We denote by $\pi: W \rightarrow X$ the projection. Given a connection $\widetilde{\nabla}$ on W and a local section $\sigma: U \rightarrow W$ of π, one gets an induced connection on $T_{X \mid U}$ by putting

$$
\begin{equation*}
\nabla=\pi_{*} \circ\left(\sigma^{*} \widetilde{\nabla}\right) \tag{13.7}
\end{equation*}
$$

where $\sigma^{*} \widetilde{\nabla}$ is the induced connection on $\sigma^{*} T_{W}$ and $\pi_{*}: T_{W} \rightarrow \pi^{*} T_{X}$ is the projection. Of course, the connection ∇ may depend on the choice of σ, but we nevertheless have the following simple criterion ensuring that it yields an intrinsic partial projective connection.
13.8. Lemma. Let $\widetilde{\nabla}=d+\widetilde{\Gamma}$ be a meromorphic connection on W. Assume that $\widetilde{\nabla}$ satisfies the following conditions:
i) $\widetilde{\nabla}$ is G-invariant;
ii) there are meromorphic 1 -forms $\alpha, \beta \in \mathcal{M}\left(W, T_{W / X}\right)$ along the relative tangent bundle of $X \rightarrow$ W, such that for all G-invariant holomorphic vector fields v, τ on W (possibly only defined locally over X) such that τ is tangent to the G-orbits, the vector fields

$$
\widetilde{\nabla}_{\tau} v-\alpha(\tau) v, \quad \widetilde{\nabla}_{v} \tau-\beta(\tau) v
$$

are again tangent to the G-orbits (α and β are thus necessarily G-invariant, and $\alpha=\beta$ if $\widetilde{\nabla}$ is symmetric).
Then Formula (13.7) yields a partial projective connection ∇ which is globally defined on X and independent of the choice of the local sections σ.
Proof. Since the expected conclusions are local with respect to X, it is enough to treat the case when $W=X \times G$ and G acts on the left on the second factor. Then $W / G \simeq X$ and $\pi: W \rightarrow X$ is the first projection. If d_{G} is the canonical left-invariant connection on G, we can write $\widetilde{\nabla}$ as

$$
\widetilde{\nabla}=d_{X}+d_{G}+\widetilde{\Gamma}, \quad \widetilde{\Gamma}=\widetilde{\Gamma}(x, g), \quad x \in X, g \in G
$$

where d_{X} is some connection on X, e.g. the "coordinate derivative" taken with respect to given local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on X. Then $\widetilde{\nabla}$ is left invariant on $W=X \times G$ if and only if $\widetilde{\Gamma}(x, g)=\Gamma(x)$ is independent of $g \in G$ (this is meaningful since the tangent bundle to G is trivial), and condition ii) means that

$$
\Gamma(x) \cdot(\tau, v)-\alpha(\tau) v \quad \text { and } \quad \Gamma(x) \cdot(v, \tau)-\beta(\tau) v
$$

are tangent to the G-orbits. A local section $\sigma: U \rightarrow W$ of π can be written $\sigma(x)=(x, h(x))$ for some holomorphic function $h: U \rightarrow G$. Formula (13.7) says more explicitly that

$$
\nabla_{w} v=\pi_{*}\left(\left(\sigma^{*} \widetilde{\nabla}\right)_{w} v\right)=\pi_{*}\left(d_{\sigma_{*} w} \sigma_{*} v+(\widetilde{\Gamma} \circ \sigma) \cdot\left(\sigma_{*} w, \sigma_{*} v\right)\right) .
$$

Let $v=\sum v_{j}(z) \partial / \partial z_{j}, w=\sum w_{j}(z) \partial / \partial z_{j}$ be local vector fields on $U \subset X$. Since $\sigma_{*} v=v+d h(v)$, we get

$$
\begin{aligned}
\left(\sigma^{*} \widetilde{\nabla}\right)_{w} v & =d_{w+d h(w)}(v+d h(v))+\widetilde{\Gamma}(x, h(x)) \cdot(w+d h(w), v+d h(v)) \\
& =d_{w} v+d^{2} h(w, v)+\Gamma(x) \cdot(w+d h(w), v+d h(v))
\end{aligned}
$$

As $v, w, d h(v), d h(w)$ depend only on X, they can be seen as G-invariant vector fields over W, and $d h(v), d h(w)$ are tangent to the G-orbits. Hence

$$
\Gamma(x) \cdot(d h(w), v)-\alpha(d h(w)) v, \quad \Gamma(x) \cdot(w, d h(v))-\beta(d h(v)) w, \quad \Gamma(x) \cdot(d h(w), d h(v))
$$

are tangent to the G-orbits, i.e., in the kernel of π_{*}. We thus obtain

$$
\nabla_{w} v=\pi_{*}\left(\left(\sigma^{*} \widetilde{\nabla}\right)_{w} v\right)=d_{w} v+\Gamma(x) \cdot(w, v)+\alpha(d h(w)) v+\beta(d h(v)) w .
$$

From this it follows by definition that the local connections $\nabla_{\mid U_{j}}$ defined by various sections σ_{j} : $U_{j} \rightarrow W$ can be glued together to define a global partial projective connection ∇ on X.
13.9. Remark. Lemma 13.8 is also valid when $\widetilde{\nabla}$ is a partial projective connection. Hypothesis 13.8 ii) must then hold with local meromorphic 1 -forms $\alpha_{j}, \beta_{j} \in \mathcal{M}\left(\left.\widetilde{U}\right|_{j}, T_{W / X}\right)$ relatively to some open covering $\left.\widetilde{U}\right|_{j}$ of W.

In the special case $\mathbb{P}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}$, we get
13.10. Corollary. Let $\widetilde{\nabla}=d+\widetilde{\Gamma}$ be a meromorphic connection on \mathbb{C}^{n+1}. Let $\varepsilon=\sum z_{j} \partial / \partial z_{j}$ be the Euler vector field on \mathbb{C}^{n+1} and $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ be the canonical projection. Then $\widetilde{\nabla}$ induces a meromorphic partial projective connection on \mathbb{P}^{n} provided that
i) the Christoffel symbols ${\underset{\sim}{~}}_{\boldsymbol{\nabla} \mu}^{\lambda}$ are homogeneous rational functions of degree -1 (homothety invariance of the connection $\widetilde{\nabla})$;
ii) there are meromorphic functions α, β and meromorphic 1 -forms γ, η such that

$$
\widetilde{\Gamma} \cdot(\varepsilon, v)=\alpha v+\gamma(v) \varepsilon, \quad \widetilde{\Gamma} \cdot(w, \varepsilon)=\beta w+\eta(w) \varepsilon
$$

for all vector fields v, w.
Now, our goal is to study certain hypersurfaces Y of sufficiently high degree in \mathbb{P}^{n}. Assume for the moment that Y is an hypersurface in some n-dimensional manifold X, and that Y is defined locally by a holomorphic equation $s=0$. We say that Y is totally geodesic with respect to a
meromorphic connection ∇ on X if Y is not contained in the pole divisor $|B|$ of ∇, and for all pairs (v, w) of (local) vector fields tangent to Y the covariant derivative $\nabla_{w} v$ is again tangent to Y. (Notice that this concept also makes sense when ∇ is a partial projective connection.) If Y is totally geodesic, the ambient connection ∇ on T_{X} induces by restriction a connection $\nabla_{\mid Y}$ on T_{Y}.

We now want to derive explicitly a condition for the hypersurface $Y=\{s=0\}$ to be totally geodesic in (X, ∇). A vector field v is tangent to Y if and only if $d s \cdot v=0$ along $s=0$. By taking the differential of this identity along another vector field w tangent to Y, we find

$$
\begin{equation*}
d^{2} s \cdot(w, v)+d s \cdot\left(d_{w} v\right)=0 \tag{13.11}
\end{equation*}
$$

along $s=0$ (this is meaningful only with respect to some local coordinates). On the other hand, the condition that $\nabla_{w} v=d_{w} v+\Gamma \cdot(w, v)$ is tangent to Y is

$$
d s \cdot \nabla_{w} v=d s \cdot\left(d_{w} v\right)+d s \circ \Gamma \cdot(w, v)=0 .
$$

By subtracting the above from (13.11), we get the following equivalent condition: $\left(d^{2} s-d s \circ \Gamma\right)$. $(w, v)=0$ for all vector fields v, w in the kernel of $d s$ along $s=0$. Therefore we obtain the
13.12. Characterization of totally geodesic hypersurfaces. The hypersurface $Y=\{s=0\}$ is totally geodesic with respect to ∇ if and only if there are holomorphic 1-forms a $=\sum a_{j} d z_{j}$, $b=\sum b_{j} d z_{j}$ and a 2 -form $c=\sum c_{j \mu} d z_{j} \otimes d z_{\mu}$ such that

$$
\nabla^{*}(d s)=d^{2} s-d s \circ \Gamma=a \otimes d s+d s \otimes b+s c
$$

in a neighborhood of every point of Y (here ∇^{*} is the induced connection on T_{Y}^{*}).
From this, we derive the following useful lemma.
13.14. Lemma. Let $Y \subset X$ be an analytic hypersurface which is totally geodesic with respect to a meromorphic connection ∇, and let $n=\operatorname{dim} X=\operatorname{dim} Y+1$. Let $f: D(0, R) \rightarrow X$ be a holomorphic curve such that $W_{\nabla}(f) \equiv 0$. Assume that there is a point $t_{0} \in D(0, R)$ such that
i) $f\left(t_{0}\right)$ is not contained in the poles of ∇;
ii) the system of vectors $\left(f^{\prime}(t), f_{\nabla}^{\prime \prime}(t), \ldots, f_{\nabla}^{(n-1)}(t)\right)$ achieves its generic rank (i.e. its maximal rank) at $t=t_{0}$;
iii) $f\left(t_{0}\right) \in Y$ and $f^{\prime}\left(t_{0}\right), f_{\nabla}^{\prime \prime}\left(t_{0}\right), \ldots, f_{\nabla}^{(n-1)}\left(t_{0}\right) \in T_{Y, f\left(t_{0}\right)}$.

Then $f(D(0, R)) \subset Y$.
Proof. Since $W_{\nabla}(f) \equiv 0$, the vector fields $f^{\prime}, f_{\nabla}^{\prime \prime}, \ldots, f_{\nabla}^{(n)}$ are linearly dependent and satisfy a non trivial relation

$$
u_{1}(t) f^{\prime}(t)+u_{2}(t) f_{\nabla}^{\prime \prime}(t)+\cdots+u_{n}(t) f_{\nabla}^{(n)}(t)=0
$$

with suitable meromorphic coefficients $u_{j}(t)$ on $D(0, R)$. If u_{n} happens to be $\equiv 0$, we take ∇ derivatives in the above relation so as to reach another relation with $u_{n} \not \equiv 0$. Hence we can always write

$$
f_{\nabla}^{(n)}=v_{1} f^{\prime}+v_{2} f_{\nabla}^{\prime \prime}+\cdots+v_{n-1} f_{\nabla}^{(n-1)}
$$

for some meromorphic functions v_{1}, \ldots, v_{n-1}. We can even prescribe the v_{j} to be 0 eXcept for indices $j=j_{k} \in\{1, \ldots, n-1\}$ such that $\left(f_{\nabla}^{\left(j_{k}\right)}(t)\right)$ is a minimal set of generators at $t=t_{0}$. Then the coefficients v_{j} are uniquely defined and are holomorphic near t_{0}. By taking further derivatives, we conclude that $f_{\nabla}^{(k)}\left(t_{0}\right) \in T_{X, f\left(t_{0}\right)}$ for all k. We now use the assumption that X is totally geodesic to prove the following claim: if $s=0$ is a local equation of Y, the k-th derivative $\frac{d^{k}}{d t^{k}}(s \circ f(t))$ can be expressed as a holomorphic linear combination

$$
\frac{d^{k}}{d t^{k}}(s \circ f(t))=\gamma_{0 k}(t) s \circ f(t)+\sum_{1 \leqslant j \leqslant k} \gamma_{j k}(t) d s_{f(t)} \cdot f_{\nabla}^{(j)}(t)
$$

on a neighborhood of t_{0}. This will imply $\frac{d^{k}}{d t^{k}}(s \circ f)\left(t_{0}\right)=0$ for all $k \geqslant 0$, hence $s \circ f \equiv 0$. Now, the above claim is clearly true for $k=0,1$. By taking the derivative and arguing inductively, we need only show that

$$
\frac{d}{d t}\left(d s_{f(t)} \cdot f_{\nabla}^{(j)}(t)\right)
$$

is again a linear combination of the same type. However, Leibnitz's rule for covariant differentiations together with 13.12 yield

$$
\begin{aligned}
\frac{d}{d t}\left(d s_{f(t)} \cdot f_{\nabla}^{(j)}(t)\right)= & d s_{f(t)} \cdot\left(\frac{\nabla}{d t} f_{\nabla}^{(j)}(t)\right)+\nabla^{*}(d s)_{f(t)} \cdot\left(f^{\prime}(t), f_{\nabla}^{(j)}(t)\right) \\
= & d s \cdot f_{\nabla}^{(j+1)}(t)+\left(a \cdot f^{\prime}(t)\right)\left(d s \cdot f_{\nabla}^{(j)}(t)\right) \\
& +\left(d s \cdot f^{\prime}(t)\right)\left(b \cdot f_{\nabla}^{(j)}(t)\right)+(s \circ f(t))\left(c \cdot\left(f^{\prime}(t), f_{\nabla}^{(j)}(t)\right)\right),
\end{aligned}
$$

as desired.
If $Y=\{s=0\} \subset X$ is given and a connection ∇ on X is to be found so that Y is totally geodesic, condition 13.12 amounts to solving a highly underdetermined linear system of equations

$$
\frac{\partial^{2} s}{\partial z_{j} \partial z_{\mu}}-\sum_{1 \leqslant \lambda \leqslant n} \Gamma_{j \mu}^{\lambda} \frac{\partial s}{\partial z_{\lambda}}=a_{j} \frac{\partial s}{\partial z_{\mu}}+b_{\mu} \frac{\partial s}{\partial z_{j}}+s c_{j \mu}, \quad 1 \leqslant j, \mu \leqslant n
$$

in terms of the unknowns $\Gamma_{j \mu}^{\lambda}, a_{j}, b_{\mu}$ and $c_{j \mu}$. Nadel's idea is to take advantage of this indeterminacy to achieve that all members in a large linear system $\left(Y_{\alpha}\right)$ of hypersurfaces are totally geodesic with respect to ∇. The following definition is convenient.
13.14. Definition. For any $(n+2)$-tuple of integers $\left(p, k_{0}, k_{1} \ldots, k_{n}\right)$ with $0<k_{j}<p / 2$, let $\mathcal{S}_{p ; k_{0}, \ldots, k_{n}}$ be the space of homogeneous polynomials $s \in \mathbb{C}\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ of degree p such that every monomial of s is a product of a power $z_{j}^{p-k_{j}}$ of one of the variables with a lower degree monomial of degree k_{j}. Any polynomial $s \in \mathcal{S}_{p ; k_{0}, \ldots, k_{n}}$ admits a unique decomposition

$$
s=s_{0}+s_{1}+\cdots+s_{n}, \quad s_{j} \in \mathcal{S}_{p ; k_{0}, \ldots, k_{n}}
$$

where s_{j} is divisible by $z_{j}^{p-k_{j}}$.
Given a homogeneous polynomial $s=s_{0}+s_{1}+\cdots+s_{n} \in \mathcal{S}_{p ; k_{0}, \ldots, k_{n}}$, we consider the linear system

$$
\begin{equation*}
Y_{\alpha}=\left\{\alpha_{0} s_{0}+\alpha_{1} s_{1}+\cdots+\alpha_{n} s_{n}=0\right\}, \quad \alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n} \tag{13.15}
\end{equation*}
$$

Our goal is to study smooth varieties Z which arise as complete intersections $Z=Y_{\alpha^{1}} \cap \cdots \cap Y_{\alpha^{q}}$ of members in the linear system (the α^{j} being linearly independent elements in \mathbb{C}^{n+1}). For this, we want to construct a (partial projective) meromorphic connection ∇ on \mathbb{P}^{n} such that all Y_{α} are totally geodesic. Corollary 13.10 shows that it is enough to construct a meromorphic connection $\widetilde{\nabla}=d+\widetilde{\Gamma}$ on \mathbb{C}^{n+1} satisfying 13.10 i) and ii), such that the conic affine varieties $\left.\widetilde{Y}\right|_{\alpha} \subset \mathbb{C}^{n+1}$ lying over the Y_{α} are totally geodesic with respect to $\widetilde{\nabla}$. Now, Characterization 13.12 yields a sufficient condition in terms of the linear system of equations

$$
\begin{equation*}
\sum_{0 \leqslant \lambda \leqslant n} \widetilde{\Gamma}_{j \mu}^{\lambda} \frac{\partial s_{\kappa}}{\partial z_{\lambda}}=\frac{\partial^{2} s_{\kappa}}{\partial z_{j} \partial z_{\mu}}, \quad 0 \leqslant j, \kappa, \mu \leqslant n . \tag{13.16}
\end{equation*}
$$

(We just fix the choice of a_{j}, b_{μ} and $c_{j \mu}$ to be 0). This linear system can be considered as a collection of decoupled linear systems in the unknowns $\left(\widetilde{\Gamma}_{j \mu}^{\lambda}\right)_{\lambda}$, when j and μ are fixed. Each of these has format $(n+1) \times(n+1)$ and can be solved by Cramer's rule if the principal determinant

$$
\begin{equation*}
\delta:=\operatorname{det}\left(\frac{\partial s_{\kappa}}{\partial z_{\lambda}}\right)_{0 \leqslant \kappa, \lambda \leqslant n} \not \equiv 0 \tag{13.17}
\end{equation*}
$$

is not identically zero. We always assume in the sequel that this non degeneracy assumption is satisfied. As $\partial s_{\kappa} / \partial z_{\lambda}$ is homogeneous of degree $p-1$ and $\partial^{2} s_{\kappa} / \partial z_{j} \partial z_{\mu}$ is homogeneous of degree
$p-2$, the solutions $\widetilde{\Gamma}_{j \mu}^{\lambda}(z)$ are homogeneous rational functions of degree -1 (condition 13.10 i)). Moreover, $\widetilde{\nabla}$ is symmetric, for $\partial^{2} s / \partial z_{j} \partial z_{\mu}$ is symmetric in j, μ. Finally, if we multiply (13.16) by z_{j} and take the sum, Euler's identity yields

$$
\sum_{0 \leqslant j, \lambda \leqslant n} z_{j} \widetilde{\Gamma}_{j \mu}^{\lambda} \frac{\partial s_{\kappa}}{\partial z_{\lambda}}=\sum_{0 \leqslant j \leqslant n} z_{j} \frac{\partial^{2} s_{\kappa}}{\partial z_{j} \partial z_{\mu}}=(p-1) \frac{\partial s_{\kappa}}{\partial z_{\mu}}, \quad 0 \leqslant \kappa, \mu \leqslant n .
$$

The non degeneracy assumption implies $\left(\sum_{j} z_{j} \widetilde{\Gamma}_{j \mu}^{\lambda}\right)_{\lambda \mu}=(p-1) \mathrm{Id}$, hence

$$
\widetilde{\Gamma}(\varepsilon, v)=\widetilde{\Gamma}(v, \varepsilon)=(p-1) v
$$

and condition 13.10 ii) is satisfied. From this we infer
13.18. Proposition. Let $s=s_{0}+\cdots+s_{n} \in \mathcal{S}_{p ; k_{0} \ldots, k_{n}}$ be satisfying the non degeneracy condition $\delta:=\operatorname{det}\left(\partial s_{\kappa} / \partial z_{\lambda}\right)_{0 \leqslant \kappa, \lambda \leqslant n} \not \equiv 0$. Then the solution Γ of the linear system (13.16) provides a partial projective meromorphic connection on \mathbb{P}^{n} such that all hypersurfaces

$$
Y_{\alpha}=\left\{\alpha_{0} s_{0}+\cdots+\alpha_{n} s_{n}=0\right\}
$$

are totally geodesic. Moreover, the divisor of poles B of ∇ has degree at most equal to $n+1+\sum k_{j}$. Proof. Only the final degree estimate on poles has to be checked. By Cramer's rule, the solutions are expressed in terms of ratios

$$
\widetilde{\Gamma}_{j \mu}^{\lambda}=\frac{\delta_{j \mu}^{\lambda}}{\delta}
$$

where $\delta_{j \mu}^{\lambda}$ is the determinant obtained by replacing the column of $\operatorname{det}\left(\partial s_{\kappa} / \partial z_{\lambda}\right)_{0 \leqslant \kappa, \lambda \leqslant n}$ of index λ by the column $\left(\partial^{2} s_{\kappa} / \partial z_{j} \partial z_{\mu}\right)_{0 \leqslant \kappa \leqslant n}$. Now, $\partial s_{\kappa} / \partial z_{\lambda}$ is a homogeneous polynomial of degree $p-1$ which is divisible by $z_{k}^{p-k_{\kappa}-1}$, hence δ is a homogeneous polynomial of degree $(n+2)(p-1)$ which is divisible by $\prod z_{j}^{p-k_{j}-1}$. Similarly, $\partial^{2} s_{\kappa} / \partial z_{j} \partial z_{\mu}$ has degree $p-2$ and is divisible by $z_{\kappa}^{p-k_{\kappa}-2}$. This implies that $\delta_{j \mu}^{\lambda}$ is divisible by $\prod z_{j}^{p-k_{j}-2}$. After removing this common factor in the numerator and denominator, we are left with a denominator of degree

$$
\sum_{0 \leqslant j \leqslant n}\left((p-1)-\left(p-k_{j}-2\right)\right)=\sum\left(k_{j}+1\right)=n+1+\sum k_{j},
$$

as stated.
An application of Theorem 13.4 then yields the following theorem on certain complete intersections in projective spaces.
13.19. Theorem. Let $s \in \mathcal{S}_{p ; k_{0}, \ldots, k_{n+q}} \subset \mathbb{C}\left[z_{0}, z_{1}, \ldots, z_{n+q}\right]$ be a homogeneous polynomial satisfying the non degeneracy assumption $\operatorname{det}\left(\partial s_{\kappa} / \partial z_{\lambda}\right) \not \equiv 0$ in \mathbb{C}^{n+q+1}. Let

$$
Y_{\alpha}=\left\{\alpha_{0} s_{0}+\alpha_{1} s_{1}+\cdots+\alpha_{n+q} s_{n+q}=0\right\} \subset \mathbb{P}^{n+q}
$$

be the corresponding linear system, and let

$$
Z=Y_{\alpha^{1}} \cap \cdots \cap Y_{\alpha^{q}} \subset \mathbb{P}^{n+q}
$$

be a smooth n-dimensional complete intersection, for some linearly independent elements $\alpha^{j} \in$ \mathbb{C}^{n+q+1} such that $d s_{\alpha^{1}} \wedge \cdots \wedge d s_{\alpha^{q}}$ does not vanish along Z. Assume that Z is not contained in the set of poles $|B|$ of the meromorphic connection ∇ defined by (13.16), nor in any of the coordinate hyperplanes $z_{j}=0$, and that

$$
p q>n+q+1+\frac{1}{2} n(n-1)\left(n+q+1+\sum k_{j}\right) .
$$

Then every nonconstant entire curve $f: \mathbb{C} \rightarrow Z$ is algebraically degenerate and satisfies either
i) $f(\mathbb{C}) \subset Z \cap|B|$ or
ii) $f(\mathbb{C}) \subset Z \cap Y_{\alpha}$ for some member Y_{α} which does not contain Z.

Proof. By Proposition 13.18, the pole divisor of ∇ has degree at most equal to $n+q+1+\sum k_{j}$, hence, if we let $B=\mathcal{O}\left(n+q+1+\sum k_{j}\right)$, we can find a section $\beta \in H^{0}\left(\mathbb{P}^{n+q}, B\right)$ such that the operator $f \mapsto \beta^{n(n+1) / 2}(f) W_{Z, \nabla}(f)$ is holomorphic. Moreover, as Z is smooth, the adjunction formula yields

$$
K_{Z}=\left(K_{\mathbb{P}^{n+q}} \otimes \mathcal{O}(p q)\right)_{\mid Z}=\mathcal{O}_{Z}(p q-n-q-1) .
$$

By (13.3), the differential operator $\beta^{n(n-1) / 2}(f) W_{Z, \nabla}(f)$ defines a section in $H^{0}\left(Z, E_{n, n(n+1) / 2} T_{Z}^{*} \otimes L^{-1}\right)$ with

$$
\begin{aligned}
L & =K_{Z} \otimes \mathcal{O}_{Z}\left(-\frac{1}{2} n(n-1) B\right) \\
& =\mathcal{O}_{Z}\left(p q-n-q-1-\frac{1}{2} n(n-1)\left(n+q+1+\sum k_{j}\right)\right) .
\end{aligned}
$$

Hence, if $f(\mathbb{C}) \not \subset|B|$, we know by Theorem 13.4 that $W_{Z, \nabla}(f) \equiv 0$. Fix a point $t_{0} \in \mathbb{C}$ such that $f\left(t_{0}\right) \notin|B|$ and $\left(f^{\prime}\left(t_{0}\right), f_{\nabla}^{\prime \prime}\left(t_{0}\right), \ldots, f_{\nabla}^{(n)}\left(t_{0}\right)\right)$ is of maximal rank $r<n$. There must exist an hypersurface $Y_{\alpha} \not \supset Z$ such that

$$
f\left(t_{0}\right) \in Y_{\alpha}, \quad f^{\prime}\left(t_{0}\right), f_{\nabla}^{\prime \prime}\left(t_{0}\right), \ldots, f_{\nabla}^{(n)}\left(t_{0}\right) \in T_{Y_{\alpha}, f\left(t_{0}\right)}
$$

In fact, these conditions amount to solve a linear system of equations

$$
\sum_{0 \leqslant j \leqslant n+q} \alpha_{j} s_{j}\left(f\left(t_{0}\right)\right)=0, \quad \sum_{0 \leqslant j \leqslant n+q} \alpha_{j} d s_{j}\left(f_{\nabla}^{(j)}\left(t_{0}\right)\right)=0
$$

in the unknowns $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n+q}\right)=\alpha$, which has rank $\leqslant r+1 \leqslant n$. Hence the solutions form a vector space Sol of dimension at least $q+1$, and we can find a solution α which is linearly independent from $\alpha^{1}, \ldots, \alpha^{q}$. We complete ($\alpha, \alpha^{1}, \ldots, \alpha^{q}$) into a basis of \mathbb{C}^{n+q+1} and use the fact that the determinant $\delta=\operatorname{det}\left(\partial s_{\kappa} / \partial s_{\lambda}\right)$ does not vanish identically on Z, since

$$
Z \cap\{\delta=0\} \subset Z \cap\left(|B| \cup\left\{\prod z_{j}=0\right\}\right) \subsetneq Z .
$$

From this we see that $\sum \alpha_{j} d s_{j}$ does not vanish identically on Z, in particular $Z \not \subset Y_{\alpha}$. By taking a generic element $\alpha \in$ Sol, we get a smooth n-dimensional hypersurface $Z_{\alpha}=Y_{\alpha} \cap Y_{\alpha^{2}} \cap \cdots \cap Y_{\alpha^{q}}$ in $W=Y_{\alpha^{2}} \cap \cdots \cap Y_{\alpha^{q}}$. Lemma 13.13 applied to the pair $\left(Z_{\alpha}, W\right)$ shows that $f(\mathbb{C}) \subset Z_{\alpha}$, hence $f(\mathbb{C}) \subset Z \cap Z_{\alpha}=Z \cap Y_{\alpha}$, as desired.

If we want to decide whether Z is hyperbolic, we are thus reduced to decide whether the hypersurfaces $Z \cap|B|$ and $Z \cap Y_{\alpha}$ are hyperbolic. This may be a very hard problem, especially if $Z \cap|B|$ and $Z \cap Y_{\alpha}$ are singular. (In the case of a smooth intersection $Z \cap Y_{\alpha}$, we can of course apply the theorem again to $Z^{\prime}=Z \cap Y_{\alpha}$ and try to argue by induction). However, when Z is a surface, $Z \cap|B|$ and $Z \cap Y_{\alpha}$ are curves and the problem can in principle be solved directly through explicit genus calculations.

13.20. Examples.

i) Consider the Fermat hypersurface of degree p

$$
Z=\left\{z_{0}^{p}+z_{1}^{p}+\cdots+z_{n+1}^{p}=0\right\}
$$

in \mathbb{P}^{n+1}, which is defined by an element in $\mathcal{S}_{p ; 0, \ldots, 0}$. A simple calculation shows that $\delta=p^{n+2} \prod z_{j}^{p-1} \not \equiv \equiv$ 0 and that the Christoffel symbols are given by $\widetilde{\Gamma}_{j j}^{j}=(p-1) / z_{j}$ (with all other coefficients being equal to 0). Theorem 13.19 shows that all nonconstant entire curves $f: \mathbb{C} \rightarrow Y$ are algebraically degenerate when

$$
p>n+2+\frac{1}{2} n(n-1)(n+2) .
$$

In fact the term $\frac{1}{2} n(n-1)(n+2)$ coming from the pole order estimate of the Wronskian is by far too pessimistic. A more precise calculation shows in that case that $\left(z_{0} \cdots z_{n+1}\right)^{n-1}$ can be taken as a denominator for the Wronskian. Hence the algebraic degeneracy occurs for $p>n+2+(n+2)(n-1)$,
i.e., $p \geqslant(n+1)^{2}$. However, the Fermat hypersurfaces are not hyperbolic. For instance, when $n=2$, they contain rational lines $z_{1}=\omega z_{0}, z_{3}=\omega^{\prime} z_{2}$ associated with any pair $\left(\omega, \omega^{\prime}\right)$ of p-th roots of -1 .
ii) Following J. El Goul ([EG96, 97]), let us consider surfaces $Z \subset \mathbb{P}^{3}$ of the form

$$
Z=\left\{z_{0}^{p}+z_{1}^{p}+z_{2}^{p}+z_{3}^{p-2}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+z_{3}^{2}\right)=0\right\}
$$

defined by the element in $\mathcal{S}_{p ; 0,0,0,2}$ such that $s_{3}=z_{3}^{p-2}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+z_{3}^{2}\right)$ and $s_{j}=z_{j}^{p}$ for $0 \leqslant j \leqslant 2$. One can check that Z is smooth provided that

$$
\begin{equation*}
\sum_{j \in J} \varepsilon_{j}^{\frac{p}{p-2}} \neq \frac{2}{p-2}\left(-\frac{p}{2}\right)^{\frac{p}{p-2}}, \quad \forall J \subset\{0,1,2\} \tag{13.21}
\end{equation*}
$$

for any choice of complex roots of order $p-2$. The connection $\widetilde{\nabla}=d+\widetilde{\Gamma}$ is computed by solving linear systems with principal determinant $\delta=\operatorname{det}\left(\partial s_{\kappa} / \partial z_{\lambda}\right)$ equal to

$$
\begin{aligned}
& \left|\begin{array}{cccc}
p z_{0}^{p-1} & 0 & 0 & 0 \\
0 & p z_{1}^{p-1} & 0 & 0 \\
0 & 0 & p z_{2}^{p-1} & 0 \\
2 \varepsilon_{0} z_{0} z_{3}^{p-2} & 2 \varepsilon_{1} z_{1} z_{3}^{p-2} & 2 \varepsilon_{2} z_{2} z_{3}^{p-2} & (p-2) z_{3}^{p-3}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+\frac{p}{p-2} z_{3}^{2}\right)
\end{array}\right| \\
& \quad=p^{3}(p-2) z_{0}^{p-1} z_{1}^{p-1} z_{2}^{p-1} z_{3}^{p-3}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+\frac{p}{p-2} z_{3}^{2}\right) \not \equiv 0 .
\end{aligned}
$$

The numerator of $\widetilde{\Gamma}_{j \mu}^{\lambda}$ is obtained by replacing the column of index λ of δ by $\left(\partial^{2} s_{\kappa} / \partial z_{j} \partial z_{\mu}\right)_{0 \leqslant \kappa \leqslant 3}$, and $z_{0}^{p-2} z_{1}^{p-2} z_{2}^{p-2} z_{3}^{p-4}$ cancels in all terms. Hence the pole order of $\widetilde{\nabla}$ and of $W_{\tilde{\nabla}}$ is 6 (as given by Proposition 13.18), with

$$
z_{0} z_{1} z_{2} z_{3}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+\frac{p}{p-2} z_{3}^{2}\right)
$$

as the denominator, and its zero divisor as the divisor B. The condition on p we get is $p>$ $n+2+6=10$. An explicit calculation shows that all curves $Z \cap|B|$ and $Z \cap Y_{\alpha}$ have geometric genus $\geqslant 2$ under the additional hypothesis

$$
\left\{\begin{array}{l}
\text { none of the pairs }\left(\varepsilon_{i}, \varepsilon_{j}\right) \text { is equal to }(0,0) \tag{13.22}\\
\varepsilon_{i} / \varepsilon_{j} \neq-\theta^{2} \text { whenever } \theta \text { is a root of } \theta^{p}=-1
\end{array}\right.
$$

[(13.22) excludes the existence of lines in the intersections $Z \cap Y_{\alpha}$.]
13.24. Corollary. Under conditions (13.21) and (13.22), the algebraic surface

$$
Z=\left\{z_{0}^{p}+z_{1}^{p}+z_{2}^{p}+z_{3}^{p-2}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+z_{3}^{2}\right)=0\right\} \subset \mathbb{P}^{3}
$$

is smooth and hyperbolic for all $p \geqslant 11$.
Another question which has raised considerable interest is to decide when the complement $\mathbb{P}^{2} \backslash C$ of a plane curve C is hyperbolic. If $C=\{\sigma=0\}$ is defined by a polynomial $\sigma\left(z_{0}, z_{1}, z_{2}\right)$ of degree p, we can consider the surface X in \mathbb{P}^{3} defined by $z_{3}^{p}=\sigma\left(z_{0}, z_{1}, z_{2}\right)$. The projection

$$
\rho: X \rightarrow \mathbb{P}^{2}, \quad\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{0}, z_{1}, z_{2}\right)
$$

is a finite $p: 1$ morphism, ramified along C. It follows that $\mathbb{P}^{2} \backslash C$ is hyperbolic if and only if its unramified covering $X \backslash \rho^{-1}(C)$ is hyperbolic; hence a sufficient condition is that X itself is hyperbolic. If we take $\varepsilon_{2}=0$ in Cor. 13.23 and exchange the roles of z_{2}, z_{3}, we get the following
13.24. Corollary. Consider the plane curve

$$
C=\left\{z_{0}^{p}+z_{1}^{p}+z_{2}^{p-2}\left(\varepsilon_{0} z_{0}^{2}+\varepsilon_{1} z_{1}^{2}+z_{2}^{2}\right)=0\right\} \subset \mathbb{P}^{2}, \quad \varepsilon_{0}, \varepsilon_{1} \in \mathbb{C}^{*} .
$$

Assume that neither of the numbers $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{0}+\varepsilon_{1}$ is equal to $\frac{2}{p-2}\left(-\frac{p}{2}\right)^{\frac{p}{p-2}}$ and that $\varepsilon_{1} / \varepsilon_{0} \neq-\theta^{2}$ whenever $\theta^{p}=-1$. Then $\mathbb{P}^{2} \backslash C$ is hyperbolic.

14. Proof of the Kobayashi conjecture

We give here a simple proof of the Kobayashi conjecture, combining ideas of Green-Griffiths [GrGr79], Nadel [Nad89], Demailly [Dem95], Siu-Yeung SiYe96a], Shiffman-Zaidenberg [ShZa01], Brotbek [Brot16], Ya Deng [Deng16], in chronological order.

14.A. General Wronskian operators

This section follows closely the work of D. Brotbek [Brot16]. Let U be an open set of a complex manifold $X, \operatorname{dim} X=n$, and $s_{0}, \ldots, s_{k} \in \mathcal{O}_{X}(U)$ be holomorphic functions. To these functions, we can associate a Wronskian operator of order k defined by

$$
W_{k}\left(s_{0}, \ldots, s_{k}\right)(f)=\left|\begin{array}{cccc}
s_{0}(f) & s_{1}(f) & \ldots & s_{k}(f) \tag{14.1}\\
D\left(s_{0}(f)\right) & D\left(s_{1}(f)\right) & \ldots & D\left(s_{k}(f)\right) \\
\vdots & & & \vdots \\
D^{k}\left(s_{0}(f)\right) & D^{k}\left(s_{1}(f)\right) & \ldots & D^{k}\left(s_{k}(f)\right)
\end{array}\right|
$$

where $f: t \mapsto f(t) \in U \subset X$ is a germ of holomorphic curve (or a k-jet of curve), and $D=\frac{d}{d t}$. For a biholomorphic change of variable φ of $(\mathbb{C}, 0)$, we find by induction on ℓ a polynomial differential operator $Q_{\ell, s}$ of order $\leqslant \ell$ acting on φ satisfying

$$
D^{\ell}\left(s_{j}(f \circ \varphi)\right)=\varphi^{\ell \ell} D^{\ell}\left(s_{j}(f)\right) \circ \varphi+\sum_{s<\ell} p_{\ell, s}(\varphi) D^{s}\left(s_{j}(f)\right) \circ \varphi .
$$

It follows easily from there that

$$
W_{k}\left(s_{0}, \ldots, s_{k}\right)(f \circ \varphi)=\left(\varphi^{\prime}\right)^{1+2+\cdots+k} W_{k}\left(s_{0}, \ldots, s_{k}\right)(f) \circ \varphi,
$$

hence $W_{k}\left(s_{0}, \ldots, s_{k}\right)(f)$ is an invariant differential operator of degree $k^{\prime}=\frac{1}{2} k(k+1)$. Especially, we get in this way a section that we denote

$$
W_{k}\left(s_{0}, \ldots, s_{k}\right)=\left|\begin{array}{cccc}
s_{0} & s_{1} & \ldots & s_{k} \tag{14.2}\\
D\left(s_{0}\right) & D\left(s_{1}\right) & \ldots & D\left(s_{k}\right) \\
\vdots & & & \vdots \\
D^{k}\left(s_{0}\right) & D^{k}\left(s_{1}\right) & \ldots & D^{k}\left(s_{k}\right)
\end{array}\right| \in H^{0}\left(U, E_{k, k^{\prime}} T_{X}^{*}\right)
$$

14.3. proposition. These Wronskian operators satisfy the following properties.
(a) $W_{k}\left(s_{1}, \ldots, s_{k}\right)$ is \mathbb{C}-multilinear and alternate in $\left(s_{1}, \ldots, s_{k}\right)$.
(b) For any $g \in \mathcal{O}_{X}(U)$, we have

$$
W_{k}\left(g s_{0}, \ldots, g s_{k}\right)=g^{k+1} W_{k}\left(s_{0}, \ldots, s_{k}\right) .
$$

Property 14.3 (b) is an easy consequence of the Leibniz formula

$$
D^{\ell}\left(g(f) s_{j}(f)\right)=\sum_{k=0}^{\ell}\binom{\ell}{k} D^{k}(g(f)) D^{\ell-k}\left(s_{j}(f)\right),
$$

by performing linear combinations of rows in the determinants. This property implies in its turn that one can define more generally an operator

$$
\begin{equation*}
W_{k}\left(s_{1}, \ldots, s_{k}\right) \in H^{0}\left(U, E_{k, k^{\prime}} T_{X}^{*} \otimes L^{k+1}\right) \tag{14.5}
\end{equation*}
$$

for any ($k+1$)-tuple of sections $s_{1}, \ldots, s_{k} \in H^{0}(U, X)$ of a holomorphic line bundle $L \rightarrow X$. In fact, when we compute the Wronskian in a local trivialization of $L_{\upharpoonright U}$, Property 14.3 (b) shows that the determinant is independent of the trivialization. Moreover, if $g \in H^{0}(U, G)$ for some line bundle $G \rightarrow X$, we have

$$
\begin{equation*}
W_{k}\left(g s_{1}, \ldots, g s_{k}\right)=g^{k+1} W_{k}\left(s_{1}, \ldots, s_{k}\right) \in H^{0}\left(U, E_{k, k^{\prime}} T_{X}^{*} \otimes L^{k+1} \otimes G^{k+1}\right) \tag{14.6}
\end{equation*}
$$

Now, let $\Sigma \subset H^{0}(X, L)$ be a vector subspace such that $W_{k}\left(s_{1}, \ldots, s_{k}\right) \not \equiv 0$ for generic elements $s_{1}, \ldots, s_{k} \in \Sigma$. We view here $W_{k}\left(s_{1}, \ldots, s_{k}\right)$ as a section of $H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} L^{k+1}\right)$ on the k-stage of the Semple tower. As the Wronskian is alternate and multilinear, we get a meromorphic $\operatorname{map} X_{k} \rightarrow P\left(\Lambda^{k+1} \Sigma^{*}\right)$ by sending a k-jet $\gamma=f_{[k]}(0) \in X_{k}$ to the point $\left[W_{k}\left(u_{i_{0}}, \ldots, u_{i_{k}}\right)(f)(0)\right]_{I \subset J}$ where $\left(u_{j}\right)_{j \in J}$ is a basis of Σ. This assignment factorizes through the Plücker embedding into a meromorphic map $\Phi: X_{k} \rightarrow->\operatorname{Gr}_{k+1}(\Sigma)$ into the Grassmannian of dimension $k+1$ subspaces of Σ^{*} (or codimension $k+1$ subspaces of Σ, alternatively). In fact, if $L_{\uparrow U} \simeq U \times \mathbb{C}$ is a trivialization of L in a neighborhood of a point $x_{0}=f(0) \in X$, we can consider the map $\Psi_{U}: X_{k} \rightarrow \operatorname{Hom}\left(\Sigma, \mathbb{C}^{k+1}\right)$ given by

$$
\pi_{k, 0}^{-1}(U) \ni f_{[k]} \mapsto\left(s \mapsto\left(D^{\ell}(s(f))_{0 \leqslant \ell \leqslant k}\right)\right),
$$

and associate either the $k+1$ exterior power or the kernel of $\Psi_{U}\left(f_{[k]}\right)$ (assuming that we are at a point where the rank is equal to $k+1$). Let $\mathcal{O}_{\mathrm{Gr}}(1)$ be the tautological very ample line bundle on $\operatorname{Gr}_{k+1}(\Sigma)$ (equal to the restriction of $\left.\mathcal{O}_{P\left(\Lambda^{k+1} \Sigma^{*}\right)}(1)\right)$. By construction, Φ is induced by the linear system of sections $W_{k}\left(u_{i_{0}}, \ldots, u_{i_{k}}\right) \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes L^{k+1}\right)$, and we thus get a natural isomorphism

$$
\begin{equation*}
\mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes L^{k+1} \simeq \Phi^{*} \mathcal{O}_{\mathrm{Gr}}(1) \quad \text { on } X_{k} \backslash B_{k} \tag{14.7}
\end{equation*}
$$

where $B_{k} \subset X_{k}$ is the base locus of our linear system of Wronskians. In order to avoid the indeterminacy set, we have to introduce the ideal sheaf $\mathcal{J}_{k, \Sigma} \subset \mathcal{O}_{X_{k}}$ generated by the linear system, and take a \log resolution $\mu_{k, \Sigma}: \widehat{X}_{k, \Sigma} \rightarrow X_{k}$ in such a way that $\mu_{k, \Sigma}^{*} \mathcal{J}_{k, \Sigma}=\mathcal{O}_{\widehat{X}_{k, \Sigma}}\left(-F_{k, \Sigma}\right)$ for some normal crossing divisor $F_{k, \Sigma}$ in $\widehat{X}_{k, \Sigma}$. Then Φ is resolved into a morphism $\Phi \circ \mu_{k, \Sigma}: \widehat{X}_{k, \Sigma} \rightarrow$ $\operatorname{Gr}_{k+1}(\Sigma)$, and on $\widehat{X}_{k, \Sigma},(14.7)$ becomes an everywhere defined isomorphism

$$
\begin{equation*}
\mu_{k, \Sigma}^{*}\left(\mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes L^{k+1}\right) \otimes \mathcal{O}_{\widehat{X}_{k, \Sigma}}\left(-F_{k, \Sigma}\right) \simeq\left(\Phi \circ \mu_{k, \Sigma}\right)^{*} \mathcal{O}_{\mathrm{Gr}}(1) . \tag{14.8}
\end{equation*}
$$

In this context, there is a maximal universal ideal sheaf $\mathcal{J}_{k} \supset \mathcal{J}_{k, \Sigma}$ achieved by linear systems Σ that generate k-jets of sections at every point. In fact, according to an idea of Ya Deng [Deng16], the bundle $X_{k} \rightarrow X$ is turned into a locally trivial product $U \times \mathbb{R}_{n, k}$ when we fix local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on U (cf. the end of $\S 6$.A). In this setting, \mathcal{J}_{k} is the pull-back by the second projection $U \times \mathbb{R}_{n, k} \rightarrow \mathbb{R}_{n, k}$ of an ideal sheaf defined on the fibers $\mathbb{R}_{n, k}$ of $X_{k} \rightarrow X$; therefore, in order to get the largest possible ideal \mathcal{J}_{k}, we need only consider all possible Wronskian sections

$$
\mathbb{R}_{n, k} \simeq \pi_{k, 0}^{-1}\left(x_{0}\right) \ni f_{[k]} \mapsto W_{k}\left(s_{0}, \ldots, s_{k}\right)(f) \in \mathcal{O}_{X_{k}}\left(k^{\prime}\right)_{\mid \mathbb{R}_{n, k}},
$$

associated with germs of sections s_{j}, but they clearly depend only on the k-jets of the s_{j} 's at x_{0} (even though we might have to pick for f a Taylor expansion of higher order to reach all points of the fiber). We can therefore summarize this discussion by the following statement.
14.9. Proposition. Assume that L generate all k-jets of sections (e.g. take $L=A^{p}$ with A very ample and $p \geqslant k$) and let $\Sigma \subset H^{0}(X, L)$ be a linear system that also generates k-jets of sections at any point of X. Then we have a universal isomorphism

$$
\mu_{k}^{*}\left(\mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes L^{k+1}\right) \otimes \mathcal{O}_{\widehat{X}_{k, \Sigma}}\left(-F_{k}\right) \simeq\left(\Phi \circ \mu_{k}\right)^{*} \mathcal{O}_{\mathrm{Gr}}(1)
$$

for a certain natural log resolution $\mu_{k}: \widehat{X}_{k} \rightarrow X$ of the maximal ideal sheaf $\mathcal{J}_{k} \subset \mathcal{O}_{X_{k}}$ associated with order k Wronskians, and F_{k} a certain universal divisor of \widehat{X}_{k} resolving \mathcal{J}_{k}.

14.B. Specialization to Fermat-Waring hypersurfaces

A basic idea, inspired by the work of Brody-Green [BrGr77], Nadel [Nad89] and ShiffmanZaidenberg [ShZa01] is to consider Wronskian operators on the Fermat-Waring hypersurface of degree d in projective space, namely the subvariety

$$
\begin{equation*}
X=\left\{[z] \in \mathbb{P}^{N} ; \sum_{0 \leqslant j \leqslant N} z_{j}^{d}=0\right\} \tag{14.10}
\end{equation*}
$$

where $\left(z_{0}, z_{1}, \ldots, z_{N}\right)$ denote the homogeneous coordinates on \mathbb{C}^{N+1}. We also put

$$
\begin{equation*}
X_{\Lambda}=\left\{[z] \in P(\Lambda) ; \sum_{0 \leqslant j \leqslant N} z_{j}^{d}=0\right\} \tag{14.11}
\end{equation*}
$$

where Λ is a generic vector subspace of \mathbb{C}^{N+1} of codimension $c \geqslant 0$. Then $\operatorname{dim} X=N-1$ and X_{Λ} is smooth of dimension $\operatorname{dim} X_{\Lambda}=n:=N-1-c$. The Fermat hypersurface is not hyperbolic for $N \geqslant 3$, since it contains for instance a projective subspace $\Sigma_{\zeta} \simeq \mathbb{P}^{m}, m=\lfloor(N-1) / 2\rfloor$ defined by $z_{2 j}=t_{j}, z_{2 j+1}=\zeta_{j} t_{j}, 0 \leqslant j \leqslant m$, where $\zeta_{j}^{d}=-1$ and $\left[t_{0}, \ldots, t_{m}\right] \in \mathbb{P}^{m}$ (we set $z_{N}=0$ if N is even). This is the reason why we have to cut X with a suitably chosen linear subspace - we already see from the above that the codimension c of $P(\Lambda)$ will have to be at least $m=\lfloor(N-1) / 2\rfloor$, as otherwise $\Sigma_{\zeta} \cap P(\Lambda)$ would be of positive dimension. Thus we need $n \leqslant N-1-\lfloor(N-1) / 2\rfloor$, i.e. $n \leqslant\lfloor N / 2\rfloor$.

More generally, we also consider complete intersections

$$
\begin{equation*}
Y_{S}=\left\{[z] \in \mathbb{P}^{N} ; \sum_{0 \leqslant j \leqslant N} u_{j} z_{j}^{d}=0, \forall u \in S\right\} \tag{14.12}
\end{equation*}
$$

where $u=\left(u_{j}\right)_{0 \leqslant j \leqslant N}$ runs over any ρ-dimensional subspace $S \subset \mathbb{C}^{N+1}$, and

$$
\begin{equation*}
Y_{S, \Lambda}=\left\{[z] \in P(\Lambda) ; \sum_{0 \leqslant j \leqslant N} u_{j} z_{j}^{d}=0, \forall u \in S\right\} \tag{14.13}
\end{equation*}
$$

It is an exercise to show that Y_{S} has codimension ρ and that Y_{S} is smooth whenever the ($\operatorname{codim} \rho$) linear subspace $S^{\perp}=\left\{\zeta \in \mathbb{C}^{N+1} ; u \cdot \zeta=0, \forall u \in S\right\}$ cuts transversally all hyperplanes $\zeta_{j}=0$; the reason is that the morphism $\left(z_{j}\right) \mapsto\left(z_{j}^{d}\right)$ is finite and ramified only along the coordinates hyperplanes $H_{j}:=\left\{z_{j}=0\right\}$; in other terms, the criterion for smoothness is that none of the coordinate vectors $(0, \ldots, 0,1,0, \ldots)$ belongs to S; for generic Λ (depending on S), the intersection $Y_{S, \Lambda}=Y_{S} \cap P(\Lambda)$ is then itself smooth.

We deal with the Semple bundle \mathbb{P}_{k}^{N} of k-jets of \mathbb{P}^{N} (assuming $k \geqslant N$), and put $A=\mathcal{O}_{\mathbb{P}^{N}}(1)$ to simplify notation. For each $(k+1)$-tuple $p=\left(p_{0}, \ldots, p_{k}\right)$ of homogeneous polynomials $p_{j} \in$ $\mathbb{C}\left[z_{0}, \ldots, z_{N}\right]$ of degree k and each $(k+1)$-tuple $\beta=\left(\beta_{0}, \ldots, \beta_{k}\right)$ of linear forms on \mathbb{C}^{N+1}, we associate a Wronskian operator

$$
\begin{equation*}
W_{k, p, \beta}=W_{k}\left(p_{0} \beta_{0}^{d}, \ldots, p_{k} \beta_{k}^{d}\right) . \tag{14.14}
\end{equation*}
$$

Here d will be taken large, we need certainly at least $d>k$. Since $p_{j} \beta_{j}^{d}$ is a section of $H^{0}\left(\mathbb{P}^{N}, A^{d+k}\right)$, we can view $W_{k, p, \beta}$ as a section of

$$
H^{0}\left(\mathbb{P}^{N}, E_{k, k^{\prime}} T_{\mathbb{P}^{N}}^{*} \otimes A^{(k+1)(d+k)}\right) \simeq H^{0}\left(\mathbb{P}_{k}^{N}, \mathcal{O}_{\mathbb{P}_{k}^{N}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{(k+1)(d+k)}\right)
$$

Since all derivatives $D^{\ell}\left(p_{j} \beta_{j}\right)$ are divisible by β_{j}^{d-k} for $\ell \leqslant k$, it is clear that $W_{k, p, \beta}$ is divisible by the factor $\left(\prod \beta_{j}\right)^{d-k}$ of degree $(k+1)(d-k)$. In this way we obtain a polynomial section

$$
\begin{equation*}
\widetilde{W}_{k, p, \beta}:=\left(\prod \beta_{j}\right)^{-(d-k)} W_{k, p, \beta} \in H^{0}\left(\mathbb{P}_{k}^{N}, \mathcal{O}_{\mathbb{P}_{k}^{N}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)}\right), \tag{14.15}
\end{equation*}
$$

with the great advantage that the degree $k(2 k+2)$ now no longer depends on d (and could eventually be decreased further if more divisibility can be achieved). We know that $\mathcal{O}_{\mathbb{P}_{k}^{N}}(1)_{\mid X_{k}}=\mathcal{O}_{X_{k}}(1)$. The restrictions

$$
\begin{equation*}
\widetilde{W}_{k, p, \beta \mid X_{k}} \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)}\right) \tag{14.16}
\end{equation*}
$$

to the k-th stage $X_{k} \subset \mathbb{P}_{k}^{N}$ of the Semple tower of $X \subset \mathbb{P}^{N}$ will be of special interest, for example when the initial linear forms are taken to be the coordinate linear forms $\beta_{j}(z)=z_{j}$. For instance, we consider Wronskians of the form

$$
\begin{equation*}
\widetilde{W}_{k, p, \beta, J}\left(p_{0}(f) f_{j_{0}}^{d}, \ldots, p_{0}(f) f_{j_{r-1}}^{d}, p_{r}(f) \beta_{r}(f)^{d}, \ldots, p_{k}(f) \beta_{k}(f)^{d}\right) \tag{14.17}
\end{equation*}
$$

where the p_{j} 's and β_{j} 's run over all possible choices of degree k polynomials and linear forms, respectively, and $J=\left\{j_{0}, j_{1}, \ldots, j_{r-1}\right\} \subset\{0,1, \ldots, N\}$ is a subset of cardinal r; the tilde means that we have performed the simplification explained above. We want to stress that the polynomial p_{0} is indeed repeated in the first r arguments, this is not a mistake!
14.18. Lemma. The base locus in $\mathbb{P}_{k}^{N, \text { reg }}$ of the above Wronskian operators $\widetilde{W}_{k, p, \beta, r}$ in (14.17) consists of jets $f_{[k]}(0) \in \mathbb{P}_{k}^{N, \text { reg }}$ such that the matrix $\left(D^{\ell}\left(f_{j}^{d}\right)(0)\right)_{0 \leqslant \ell \leqslant k, j \in J}$ is not of maximal rank (i.e., of rank at most $r-1$); this of course includes all jets $f_{[k]}(0)$ such that $f_{j}(0)=0$ for some $j \in J$.
Proof. For a given base point $f(0)=\left[x_{0}\right] \in \mathbb{P}^{N}, x_{0}=\left(z_{0}, z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N+1} \backslash\{0\}$, we can take linear forms β_{j} so that $\beta_{j}\left(x_{0}\right) \neq 0$, and then adjust the k-jet of the polynomials p_{r}, \ldots, p_{k} in order to generate any matrix of derivatives $\left(D^{\ell}\left(p_{j}(f) \beta_{j}(f)^{d}(0)\right)_{0 \leqslant \ell \leqslant k, r \leqslant j \leqslant k}\right.$ (the fact that $f^{\prime}(0) \neq 0$ is used for this!). Therefore, by expanding the determinant according to the last $k-r+1$ columns, we see that the base locus is defined by the equations

$$
\begin{equation*}
\operatorname{det}\left(D^{\ell_{s}}\left(p_{0}(f) f_{j_{t}}^{d}\right)(0)\right)_{0 \leqslant s, t \leqslant r-1}=0, \quad \forall p_{0}, \forall\left(\ell_{0}, \ldots, \ell_{r-1}\right) \tag{14.19}
\end{equation*}
$$

Now, the k-jet of $p_{0}(f)$ can also be adjusted randomly - especially to the k-jet of the constant function 1 , so it is clear by Leibniz' rule and by linear combinations of rows that the equations (14.19) are equivalent to the conditions $\operatorname{det}\left(D^{\ell_{s}}\left(f_{j_{t}}^{d}\right)(0)\right)_{0 \leqslant s, t \leqslant r-1}=0$ for all $\left(\ell_{0}, \ldots, \ell_{r-1}\right)$.

We now proceed with the main argument. For $r=1,2, \ldots, N+1$, we introduce sequences of closed algebraic subsets $M_{N, k, r}, M_{N, k, r}^{\bullet}$, resp. locally closed algebraic subsets $M_{N, k, r}^{\times}, M_{N, k, r}^{\circ}, M_{N, k, r}^{\circ}$ of \mathbb{P}_{k}^{N} by

$$
\begin{array}{ll}
(14.20) & M_{N, k, r}=\left\{f_{[k]}(0) \in \mathbb{P}_{k}^{N} ; \operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N} \leqslant r\right\}, \\
\left(14.20^{\bullet}\right) & M_{N, k, r}^{\bullet}= \\
\left(14.20^{\times}\right) & M_{N, k, r}^{\times}=\left\{f_{[k]}^{\times}(0) \in \mathbb{P}_{k}^{N} ; \forall j, f_{j}(0) \neq 0, \operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N} \leqslant r\right\}, \\
\left(14.20^{\circ}\right) & M_{N, k, r}^{\circ}=\left\{f_{[k]}(0) \in \mathbb{P}_{k}^{N} ; \forall j, f_{j}(0) \neq 0, \operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}=r\right\}, \\
\left(14.20^{\circ}, \text { reg }\right) & M_{N, k, r}^{\circ, \text { reg }}=\left\{f_{[k]}(0) \in \mathbb{P}_{k}^{N, \text { reg }} ; \forall j, f_{j}(0) \neq 0, \operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}=r\right\} .
\end{array}
$$

Clearly $M_{N, k, r}^{\circ, \text { reg }} \subset M_{N, k, r}^{\circ} \subset M_{N, k, r}^{\times} \subset M_{N, k, r}^{\bullet} \subset M_{N, k, r}$, and the sets $M_{N, k, r}^{\times}, M_{N, k, r}^{\bullet}, M_{N, k, r}$ increase with r. Notice that the regular part $\mathbb{P}_{k}^{N, \text { reg }}$ consists of those k-jets such that $\left(f_{j} / f_{i}\right)^{\prime}(0) \neq 0$ for some pair (i, j) with $f_{i}(0) \neq 0$, i.e.

$$
\mathbb{P}_{k}^{N, \text { reg }}=\left\{f_{[k]} \in \mathbb{P}_{k}^{N, \text { reg }} ; \exists i, j \in\{0,1, \ldots, N\}, \quad\left|\begin{array}{cc}
f_{i}(0) & f_{j}(0) \tag{14.21}\\
f_{i}^{\prime}(0) & f_{j}^{\prime}(0)
\end{array}\right| \neq 0\right\},
$$

hence the rank is at least 2 for any k-jet $f_{[k]} \in \mathbb{P}_{k}^{N, \text { reg }}$.
14.22. Lemma. Assume $d>k \geqslant N$. The following properties hold.
(a) For $r=N+1, M_{N, k, N+1}=M_{N, k, N+1}^{\bullet}=\mathbb{P}_{k}^{N}$ and for $r=N, X_{k} \subset M_{N, k, N}^{\bullet}$.
(b) For $r \geqslant 1, \overline{M_{N, k, r}^{\circ}}=M_{N, k, r}^{\bullet}$, and for $r \geqslant 2, \overline{M_{N, k, r}^{\circ, \text { reg }}}=M_{N, k, r}^{\bullet}$.
(c) For $r \geqslant 1, M_{N, k, r}^{\circ}$ has the structure of a smooth fibration over the Grassmannian $\operatorname{Gr}_{N+1, r}$ of codimension r subspaces of \mathbb{C}^{N+1}, whose fibers are themselves Semple k-jet bundles. As a consequence

$$
\operatorname{dim} M_{N, k, r}^{\bullet}=\operatorname{dim} M_{N, k, r}^{\circ}=r(N+1-r)+(k+1)(r-2)+1
$$

and $M_{N, k, r}^{\circ}, M_{N, k, r}^{\bullet}$ are irreducible.
(d) $M_{N, k, r}$ is a union of irreducible components $M_{N, k, r, I}^{\bullet}$ associated with all subsets I of $\{0,1, \ldots, N\}$ with $|I| \geqslant r$, defined as the closure of the set $M_{N, k, r, I}^{\times}$of k-jets $f_{[k]} \in M_{N, k, r}$ such that $f_{j}(0) \neq 0$ when $j \in I$ and $f_{j}(0)=0$ when $j \in \complement I$. We have $M_{N, k, r, I}^{\bullet}=M_{N, k, r}^{\bullet}$ for $I=\{0,1, \ldots, N\}$ and in general the dimension

$$
\operatorname{dim} M_{N, k, r, I}^{\bullet}=(k+1)(N+r)+1-r^{2}-|I|(k+1-r)
$$

increases as $|I|$ decreases.
(e) The subset of points $f_{[k]} \in M_{N, k, r, I}^{\bullet}$ such that $\operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N} \leqslant r-1$ is contained in a union of components $M_{N, k, r^{\prime}, I^{\prime}}^{\bullet}$ with $r^{\prime} \leqslant r-1$ and $I^{\prime} \subset I,\left|I^{\prime}\right| \geqslant r^{\prime}\left(\right.$ including $\left.I^{\prime}=I\right)$.
Proof. (a) The equalities $M_{N, k, N+1}=M_{N, k, N+1}^{\bullet}=\mathbb{P}_{k}^{N}$ are trivial and the fact that $X_{k} \subset M_{N, k, N}$ follows from the relation $\sum_{0 \leqslant j \leqslant N} D^{\ell}\left(f_{j}^{d}\right)=D^{\ell}\left(\sum_{0 \leqslant j \leqslant N} f_{j}^{d}\right)=0$ for all $\ell \in\{0,1, \ldots k\}$. In order to show that $X_{k} \subset M_{N, k, N}^{\bullet}$, it is sufficient to show that every k-jet $f_{[k]} \in X_{k}$ can be approximated by a k-jet $g_{[k]} \in X_{k} \cap M_{N, k, N}^{\times}$, i.e. with $g_{j}(0) \neq 0$ for all j. However, if $f_{j}(0)=0$, we can simply put $g_{j}(t)=f_{j}(t)+\varepsilon, \varepsilon \ll 1$, and correct another component f_{i} with $f_{i}(0) \neq 0$ to ensure that $\sum_{0 \leqslant j \leqslant N} g_{j}^{d}=0$. This is possible since $g_{i} \mapsto g_{i}^{d}$ is étale on the space of k-jets of functions whenever $g_{i}(0) \neq 0$.
(b) and (c). If we pick $f_{[k]} \in M_{N, k, r}^{\times}$that has an associated matrix $\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}$ of rank $\rho<$ r, we have to show that we can find an arbitrary close k-jet $g_{[k]} \in \mathbb{P}_{k}^{N}$ such that $\left(D^{\ell}\left(g_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}$ has rank r [if $g_{[k]}$ is close enough to $f_{[k]}$, we will also have $g_{j}(0) \neq 0$ for all $\left.j\right]$. After a permutation of the coordinates, let us assume for instance that the first ρ columns $\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j<\rho}$ are independent. We can modify the k-jet by adding small random coefficients to the next $r-\rho$ columns $\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, \rho \leqslant j<r}$, to get

$$
\operatorname{rank}\left(D^{\ell}\left(g_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j<r}=\operatorname{rank}\left(D^{\ell}\left(g_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}=r
$$

[for this we notice that the rank can increase at most by $r-\rho$ if we change $r-\rho$ columns, and that the map $g_{j} \mapsto g_{j}^{d}$ is étale on k-jets, as we assumed $\left.g_{j}(0) \neq 0\right]$. This proves that $M_{N, k, r}^{\circ}$ is dense in $M_{N, k, r}^{\times}$, hence $\overline{M_{N, k, r}^{\circ}}=M_{k_{r}}^{\circ}$.

When $f_{[k]} \in M_{N_{k}, r}^{\circ}$, the dimension of the space $S(f)$ of linear forms $\sum_{0 \leqslant j \leqslant N} u_{j} \zeta_{j}$ on \mathbb{C}^{N+1} satisfying the equations $\sum_{0 \leqslant j \leqslant N} u_{j} D^{\ell}\left(f_{j}^{d}\right)=0$ is $N+1-r$. Therefore, $S(f)$ can be identified with a point in the Grassmannian $\mathrm{Gr}_{N+1, r}$ of codimension r subspaces in \mathbb{C}^{N+1}; its dimension is $r(N+1-r)$. In this way, we see that we have a smooth fibration $M_{N, k, r}^{\circ} \rightarrow \operatorname{Gr}_{N+1, r}$ whose fiber over $S \in \operatorname{Gr}_{N+1, r}$ corresponds to the space of k-jets of curves drawn in $Y_{S}^{\times}:=Y_{S} \backslash \bigcup H_{j}$ (cf. (14.12)), i.e. the Semple k-jet bundle $Y_{S, k}^{\prime \prime}$. Since $\operatorname{dim} Y_{S}=r-1$, the dimension of this fiber $Y_{S, k}^{\times}$is $r-1+k(r-2)$, hence we get

$$
\operatorname{dim} M_{N, k, r}^{\circ}=\operatorname{dim} \mathrm{Gr}_{N, r}+\operatorname{dim} Y_{S, k}^{\prime \prime}=r(N+1-r)+(k+1)(r-2)+1 .
$$

Now, for $r \geqslant 2, Y_{S} \backslash \bigcup H_{j}$ is smooth and connected, thus $Y_{S, k}^{\times}$is smooth and connected, so as the Grassmannian $\mathrm{Gr}_{N+1, r}$ of course. It follows that $M_{N, k, r}^{\circ}$ and $M_{N, k, r}^{\circ}$ are irreducible. Finally, we know that the fibers of $Y_{S, k}^{\prime \prime \text { reg }}$ over Y_{S}^{\times}are dense in $Y_{S, k}^{\times}$when $\operatorname{dim} Y_{S}^{\times} \geqslant 1$, and from there we conclude easily that $M_{N, k, r}^{\circ \text {,reg }}$ is dense in $M_{N, k, r}^{\circ}$ for $r \geqslant 2$.
(d) For $f_{[k]} \in M_{N, k, r, I}^{\times}$, the columns $\left(D^{\ell} f_{j}^{d}(0)\right)_{0 \leqslant \ell \leqslant k, j \in C I}$ are equal to zero and therefore do not contribute to the rank. The coefficients $\left(D^{\ell} f_{j}^{d}(0)\right)_{\ell \geqslant 0}$ can be chosen randomly when $j \in \complement I$, and the matrix $\left(D^{\ell}\left(f_{j}\right)\right)_{0 \leqslant \ell \leqslant k, j \in I}$ represents an element in $M_{N(I), k, r}^{\times}$with $N(I)=|I|-1$. Hence, one can see easily that $M_{N, k, r, I}^{\times} \supset M_{N, k, r, I}^{\circ}$ contains a dense Zariski open set which is a $\mathbb{C}^{(k+1)(N+1-|I|)}$
bundle over $M_{N(I), k, r}^{\prime \prime \text { reg }}$. Therefore $M_{N, k, r, I}^{\bullet}$ is irreducible and (c) yields

$$
\begin{aligned}
\operatorname{dim} M_{N, k, r, I}^{\bullet}=\operatorname{dim} M_{N, k, r, I}^{\circ} & =r(|I|-r)+(k+1)(r-2)+1+(k+1)(N+1-|I|) \\
& =(k+1)(N+r-1)+1-r^{2}-|I|(k+1-r)
\end{aligned}
$$

For $k \geqslant N \geqslant r$, these dimensions are all different for different values of $|I|$, and we easily infer that our irreducible sets cannot have any mutual inclusion relations. It remains to show that $M_{N, k, r}=\bigcup_{|I| \geqslant r} M_{N, k, r, I}^{\bullet}$. For this, it is sufficient to observe that k-jets $f_{[k]}$ that have at least r non zero components $f_{j}(0)$ are dense in $M_{N, k, r}$. However if $I=\left\{j=0,1, \ldots, N ; f_{j}(0) \neq 0\right\}$ is such that $\rho=|I|<r$, then the rank is at most ρ and we can enlarge I to get $|I|=r$ by perturbing $r-\rho$ components $f_{j}, j \in \complement I$, e.g. by putting $g_{j}(t)=f_{j}(t)+\varepsilon$ with ε small. The resulting k-jet $g_{[k]}$ then lies in $M_{N, k, r, I}^{\times} \subset M_{N, k, r, I}^{\bullet}$, and (d) is proved.
(e) For $f_{[k]} \in M_{N, k, r, I}^{\bullet}$ such that such that $r^{\prime}:=\operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N} \leqslant r-1$, we set

$$
I^{\prime}=\left\{j=0,1, \ldots, N ; f_{j}(0) \neq 0\right\} \subset I
$$

It is then immediate by definition that $\left|I^{\prime}\right| \geqslant r^{\prime}$ and

$$
f_{[k]} \in M_{N, k, r^{\prime}, I^{\prime}}^{\times} \subset M_{N, k, r^{\prime}, I^{\prime}}^{\bullet}
$$

Lemma 14.22 implies that $\operatorname{dim} M_{N, k, N}^{\bullet}=N+(k+1)(N-2)+1$. On the other hand (row zero) has dimension $(k+1) N-(2 k+1)=(k+1)(N-2)+1$.

In order to analyze the base locus, it is easier to work with a "raw version" of the Semple bundle \mathbb{P}_{k}^{N} of \mathbb{P}^{N}, so as to deal with an extremely simple space; in the end, by lifting curves via the natural projection map $\mathbb{C}^{N+1} \backslash\{0\} \rightarrow \mathbb{P}^{N}$, what we have to look at is simply the space $\mathcal{P}_{N, k}$ of k-jets $f:(\mathbb{C}, 0) \rightarrow \mathbb{C}^{N+1} \backslash\{0\}$, i.e. Taylor coefficients $\left(D^{\ell} f_{j}(0)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}$ with $f(0)=\left(f_{j}(0)\right)_{0 \leqslant j \leqslant N} \neq 0$, modulo the multiplicative action of the group Γ_{k} of k-jets $u:(\mathbb{C}, 0) \rightarrow \mathbb{C}^{*}$

$$
(u, f) \mapsto(u \cdot f)_{[k]}=\left(D^{\ell}\left(u f_{j}\right)(0)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N}
$$

The Semple k-get bundle, up to a modification, is obtained by taking a certain desingularization of the double GIT quotient $\Gamma_{k} \backslash \backslash \mathcal{P}_{N, k} / / \mathbb{G}_{k}$ via the action of Γ_{k} and the reparametrization action of \mathbb{G}_{k}, namely $(f, \varphi) \mapsto f \circ \varphi$. These two actions commute, and we can essentially forget about them, since their effect is just to decrease the dimension of $\mathcal{P}_{N, k}$ which is a Zariski open set of $\mathbb{C}^{(k+1)(N+1)}$, by $\operatorname{dim} \Gamma_{k}+\operatorname{dim} \mathbb{G}_{k}=2 k+1$. The regular part $\mathcal{P}_{N, k}^{\text {reg }}$ consists of those k-jets such that $\left(f_{j} / f_{s}\right)^{\prime}(0) \neq 0$ for some pair (j, s) with $f_{s}(0) \neq 0$, i.e.

$$
\mathcal{P}_{N, k}^{\mathrm{reg}}=\left\{f_{[k]} \in \mathcal{P}_{N, k} ; \exists j, s \in\{0,1, \ldots, N\}, \quad\left|\begin{array}{cc}
f_{j}(0) & f_{s}(0) \tag{14.17}\\
f_{j}^{\prime}(0) & f_{s}^{\prime}(0)
\end{array}\right| \neq 0 .\right\}
$$

We will be concerned with the k-jets lying in the Fermat hypersurface $X=\left\{\sum z_{j}^{d}=0\right\} \subset \mathbb{P}^{N}$, hence we introduce

$$
\begin{equation*}
\mathcal{X}_{k} \subset \mathcal{P}_{N, k} \text { defined by the equations } \sum_{0 \leqslant j \leqslant N} D^{\ell}\left(f_{j}^{d}\right)(0)=0, \quad \forall \ell, 0 \leqslant \ell \leqslant k . \tag{14.18}
\end{equation*}
$$

Finally, given a generic vector subspace $\Lambda \subset \mathbb{C}^{N+1}$ of codimension e, defined by a set of equations $\sum_{0 \leqslant j \leqslant N} \lambda_{i j} z_{j}=0,1 \leqslant i \leqslant c$, we associate to $X_{\Lambda}=X \cap P(\Lambda)$ the corresponding "raw" GreenGriffiths bundle $\mathcal{X}_{\Lambda, N, k} \subset \mathcal{P}_{N, k}$ of the cone of X_{Λ} :

$$
\begin{equation*}
\mathcal{X}_{\Lambda, N, k}=\left\{\sum_{0 \leqslant j \leqslant N} \lambda_{i j} D^{\ell} f_{j}(0)=0, \sum_{0 \leqslant j \leqslant N} D^{\ell}\left(f_{j}^{d}\right)(0)=0, \forall i, \ell, 1 \leqslant i \leqslant c, 0 \leqslant \ell \leqslant k\right\} . \tag{14.19}
\end{equation*}
$$

In what follows, we associate to each k-jet $f_{[k]}:(\mathbb{C}, 0) \rightarrow \mathbb{C}^{N+1} \backslash\{0\}$ the simplified column of derivatives $\nabla_{j}^{d, k}(f):=\left(f_{j}\right)^{-(d-k)}\left(D^{\ell}\left(f_{j}\right)^{d}(0)\right)_{0 \leqslant \ell \leqslant k}$ of the d-th power of the j-th component f_{j}, the
$(k+1) \times(N+1)$ matrix $\left(\nabla_{j}^{d, k}(f)\right)_{0 \leqslant j \leqslant N}$ and its rank

$$
\begin{equation*}
\rho^{d, k}(f)=\operatorname{rank}\left(D^{\ell}\left(f_{j}^{d}\right)\right)_{0 \leqslant \ell \leqslant k, 0 \leqslant j \leqslant N} . \tag{14.20}
\end{equation*}
$$

For $f:(\mathbb{C}, 0) \rightarrow X$, the relation $\sum_{0 \leqslant j \leqslant N} f_{j}^{d}=0$ implies by differentiation

$$
\begin{equation*}
\sum_{0 \leqslant j \leqslant N}\left(f_{j}\right)^{d-k} \nabla_{j}^{d, k}(f)=0 \quad \text { hence } \quad \rho^{d, k}(f) \leqslant N \text { on } X_{k} . \tag{14.21}
\end{equation*}
$$

One of the main points in our reasoning is that we often have more divisibility of the Wronskians than what comes from (14.13). We start with the simple case of the highest rank N, and then state more subtle divisibility properties for lower ranks.
14.22. Lemma. For all $m \in\{0,1, \ldots, N\}$, consider the Wronskians

$$
W_{k, p, \beta, \widehat{m}}(f)=W_{k}\left(p_{0}(f) f_{0}^{d}, \ldots, \widehat{p_{0}(f) f_{m}^{d}}, \ldots, p_{0}(f) f_{N}^{d}, p_{N}(f) \beta_{N}^{d}, \ldots, p_{k}(f) \beta_{k}^{d}\right),
$$

where a wide hat means that the term is omitted. Then the restrictions $W_{k, p, \beta, \widehat{m} \mid X_{k}}$ are divisible by $\left(f_{0} f_{1} \ldots f_{N} \prod \beta_{j}(f)\right)^{d-k}$, i.e., they are divisible by the additional factor f_{m}^{d-k}, and we have a well defined global section

$$
\sigma_{k, p, \beta}(f):=(-1)^{m}\left(f_{0} f_{1} \ldots f_{N} \prod \beta_{j}(f)\right)^{-(d-k)} W_{k, p, \beta, \widehat{m} \mid X_{k}}(f) \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes A^{k(2 k+3)-d}\right)
$$

The base locus of these sections intersected with $X_{k}^{\prime}:=X_{k}^{\mathrm{reg}} \backslash \bigcup_{0 \leqslant j \leqslant N} \pi_{k, 0}^{-1}\left(H_{j}\right)$ consists of regular k-jets $f_{[k]} \in X_{k}^{\prime}$ such that $\rho^{d, k}(f) \leqslant N-1$.
Proof. We know that

$$
\widetilde{W}_{k, p, \beta, \widehat{m}}(f):=(-1)^{m}\left(f_{0} f_{1} \ldots \widehat{f_{m}} \ldots f_{N} \prod \beta_{j}(f)\right)^{-(d-k)} W_{k, p, \beta, \widehat{m} \mid X_{k}}(f)
$$

defines a global section on X_{k} (it is actually the restriction of a global section on \mathbb{P}_{k}^{N}). On X_{k}, by using the equation $f_{s}^{d}=-\sum_{j \neq s} f_{j}^{d}$ and a substitution of the column of index $j=s$ in $W_{k, p, \beta, \widehat{m}}$, one sees that the sections

$$
\frac{(-1)^{m}}{f_{m}^{d-k}} \widetilde{W}_{k, p, \beta, \widehat{m} \mid X_{k}}(f)
$$

a priori defined on the Zariski open set $U_{m}=X_{k} \backslash \pi_{k, 0}^{-1}\left(H_{m}\right)$, coincide in the mutual intersections of these open sets. As $\left(U_{m}\right)$ is an open covering of X_{k}, they glue into a global section $\sigma_{k, p, \beta}$. The assertion on the base locus is a consequence of Lemma 14.16.

The important idea contributed by Brotbek [Brot16] is the use of a certain Grassmannian construction related to Wronskians, and a gain of positivity by means of the Plücker embedding. In our situation, this will be expressed by a universal divisibility property of Wronskians, that will help us to decrease the rank of our matrices inductively. To each family ($p_{0}, p_{1}, \ldots, p_{k+1-m}$) of degree k polynomials, each family of linear forms $\left(\beta_{1}, \ldots, \beta_{k+1-m}\right)$ on \mathbb{C}^{N+1} and each subset $J=\left\{j_{0}, \ldots, j_{m-1}\right\} \subset\{0,1, \ldots, N\}$ of cardinal m, we associate a simplified Wronskian operator

$$
\begin{aligned}
\widetilde{W}_{k, p, \beta, J}(f)=(& \left.\prod_{i=0}^{m-1} f_{j_{i}} \prod_{j=m}^{k} \beta_{j}(f)\right)^{-(d-k)} \times \\
& W_{k}\left(p_{0}(f) f_{j_{0}}^{d}, \ldots, p_{0}(f) f_{j_{m-1}}^{d}, p_{1}(f) \beta_{1}(f)^{d}, \ldots, p_{k+1-m}(f) \beta_{k+1-m}(f)^{d}\right)
\end{aligned}
$$

which can be seen, in restriction to X_{k}, as a section of $H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)}\right)$. Of course $\widetilde{W}_{Q, \beta, J}(f)=0$ if $m>\rho^{d, k}(f)$, so we will have to pick $m \leqslant r$ if we want to get anything useful for jets of rank $\rho^{d, k}(f)=r$. Let $\left(e_{j}\right)_{0 \leqslant j \leqslant N}$ be the canonical basis of $\mathbb{C}^{N+1},\left(e_{j}^{*}\right)_{0 \leqslant j \leqslant N}$ its dual basis,
$e_{J}:=e_{j_{1}} \wedge \ldots \wedge e_{j_{m}} \in \wedge^{m} \mathbb{C}^{N+1}$ for any multi-index $J=\left\{j_{1}, \ldots, j_{m}\right\}$, and let e_{J}^{*} be the analogue dual exterior product. We consider the sums

$$
\begin{equation*}
\sigma_{k, p, \beta, m}=\sum_{|J|=m} \widetilde{W}_{k, p, \beta, J} e_{J}^{*} \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)} \otimes \wedge^{m}\left(\mathbb{C}^{N+1}\right)^{*}\right) . \tag{14.23}
\end{equation*}
$$

Alternatively, if we introduce extra independent vectors $e_{N+1}, \ldots, e_{N+k+1-m}$ and their duals e_{j}^{*}, we can express $\sigma_{k, p, \beta, m}$ as a contracted exterior product

$$
\begin{aligned}
\sigma_{k, p, \beta, m}(f):=\bigwedge_{0 \leqslant \ell \leqslant k} & \left(\sum_{0 \leqslant j \leqslant N}\left(f_{j}\right)^{-(d-k)} D^{\ell}\left(p_{0}(f) f_{j}^{d}\right) e_{j}^{*}\right. \\
& \left.+\sum_{1 \leqslant j \leqslant k+1-m} \beta_{j}(f)^{-(d-k)} D^{\ell}\left(p_{j}(f) \beta_{j}(f)^{d}\right) e_{N+j}^{*}\right) \cdot\left(e_{N+1} \wedge \ldots \wedge e_{N+k+1-m}\right) .
\end{aligned}
$$

Let us put $v_{\delta}(z):=\sum_{0 \leqslant j \leqslant N} z_{j}^{\delta} e_{j}$. Then $\sigma_{k, p, \beta, m}(f) \cdot v_{d-k}(f)=0$ in $\wedge^{m-1}\left(\mathbb{C}^{N+1}\right)^{*}$, since

$$
\sum_{0 \leqslant j \leqslant N}\left(f_{j}\right)^{-(d-k)} D^{\ell}\left(p_{0}(f) f_{j}^{d}\right) e_{j}^{*} \cdot v_{d-k}(f)=\sum_{0 \leqslant j \leqslant N} D^{\ell}\left(p_{0}(f) f_{j}^{d}\right)=D^{\ell}\left(p_{0}(f) \sum f_{j}^{d}\right)=0 .
$$

This can be interpreted geometrically by considering the rank N vector bundle F_{δ} on \mathbb{P}^{N} such that $\left(F_{\delta}\right)_{[z]}=\mathbb{C}^{N+1} / \mathbb{C} v_{\delta}(z)$. By definition, there is an exact sequence $0 \rightarrow \mathcal{O}(-\delta) \rightarrow \mathcal{O}^{\oplus N+1} \rightarrow F_{\delta} \rightarrow 0$, hence F_{δ} is generated by global sections and we have $\operatorname{det} F_{\delta}=\mathcal{O}(p)=A^{\delta}$. We see that $\sigma_{k, p, \beta, m}$ actually defines a section

$$
\begin{equation*}
\sigma_{k, p, \beta, m} \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*}\left(A^{k(2 k+2)} \otimes \wedge^{m}\left(F_{d-k}\right)^{*}\right)_{\mid X}\right) . \tag{14.24}
\end{equation*}
$$

Now, since $\wedge^{N}\left(F_{d-k}\right)^{*}=\mathcal{O}(-(d-k))=A^{-(d-k)}$, we get in particular a section

$$
\begin{equation*}
\sigma_{k, p, \beta, N} \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*}\left(A^{k(2 k+3)-d}\right)_{\mid X}\right) \tag{14.25}
\end{equation*}
$$

which can be identified with the section $\sigma_{k, p, \beta}$ of Lemma 14.22. In order to exploit these sections for lower ranks $r \leqslant N-1$, we introduce a variant of Brotbek's Grassmannian construction (in our simpler context). Let $M \subset X_{k}$ be an irreducible algebraic subset that is not contained in $X_{k}^{\text {sing }} \cup \bigcup_{0 \leqslant j \leqslant N} \pi_{k, 0}^{-1}\left(H_{j}\right)$ and assume that

$$
r:=\max _{f_{[k]} \in M} \rho^{d, k}(f) \leqslant N-1 .
$$

Then r is the generic value of the rank over M, and we can therefore define a meromorphic (rational) map into the Grassmannian $\mathrm{Gr}_{N+1, r}$ of codimension r subspaces in \mathbb{C}^{N+1}

$$
\begin{equation*}
\psi: M \rightarrow \operatorname{Gr}_{N+1, r}, \quad f_{[k]} \mapsto \psi\left(f_{[k]}\right)=\left\{u=\left(u_{0}, \ldots, u_{N}\right) \in \mathbb{C}^{N+1} ; \sum_{0 \leqslant j \leqslant N} u_{j} \nabla_{j}^{d, k}(f)=0\right\} . \tag{14.26}
\end{equation*}
$$

The subspace $\psi\left(f_{[k]}\right)$ is intrinsically defined, i.e. invariant by the Γ_{k} and \mathbb{G}_{k} actions on $f_{[k]}$. Notice that $\psi\left(f_{[k]}\right)$ is contained in the hyperplane $\sum u_{j} f_{j}^{k}(0)=0$, as one sees by looking at the top row of our matrix $\left(\nabla_{j}^{d, k}(f)\right)$. This leads in a natural way to the consideration of the incidence varieties

$$
\begin{align*}
Y & =\left\{([z], s) \in X \times \operatorname{Gr}_{N+1, r} ; \forall u \in s, \sum_{0 \leqslant j \leqslant N} u_{j} z_{j}^{k}=0\right\} \tag{14.27}\\
Y_{k} & =\left\{\left(f_{[k]}, s\right) \in X_{k} \times \operatorname{Gr}_{N+1, r} ; \forall u \in s, \sum_{0 \leqslant j \leqslant N} u_{j} \nabla_{j}^{d, k}(f)=0\right\} . \tag{k}
\end{align*}
$$

Notice that Y is smooth (as the first projection $\mathrm{pr}_{1}: Y \rightarrow X$ is a fiber bundle with typical fiber $\mathrm{Gr}_{N, r}$), but in general Y_{k} is singular; we will denote by $\pi_{Y, k}$ the natural projection $\pi_{k, 0} \times \mathrm{Id}: Y_{k} \rightarrow Y$. The graph of ψ in $M \times \mathrm{Gr}_{N+1, r}$ resolves ψ as a morphism $\widehat{\psi}: \widehat{M} \rightarrow \mathrm{Gr}_{N+1, r}$ (given by the second
projection of the graph), and the first projection $\mu: \widehat{M} \rightarrow M$ is a proper modification; also, we get by construction a natural morphism

$$
\begin{equation*}
\Psi: \widehat{M} \rightarrow Y_{k}, \quad x \mapsto(\mu(x), \widehat{\psi}(x)) . \tag{14.28}
\end{equation*}
$$

Now, we consider on $\mathrm{Gr}_{N+1, r}$ the tautological subbundle S of the trivial bundle \mathbb{C}^{N+1} with fiber s at any point $s \in \operatorname{Gr}_{N+1, r}$, and $Q=\mathbb{C}^{N+1} / S$ the tautological quotient vector bundle. We have $\operatorname{rank} S=N+1-r$ and $\operatorname{rank} Q=r$, and the pull-back $\widehat{\psi}^{*} Q$ is a rank r vector bundle on \widehat{M}.
14.29. Lemma. By taking for $m=r$ the restriction to $M \subset X_{k}$ of the sections $\sigma_{k, p, \beta, m}$ defined in (14.23) and pulling-back by $\mu=\operatorname{pr}_{1} \circ \Psi: \widehat{M} \rightarrow M$, we get sections

$$
\mu^{*} \sigma_{k, p, \beta, r\lceil M} \in H^{0}\left(\widehat{M}, \mu^{*}\left(\mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)}\right)_{\mid M} \otimes \widehat{\psi}^{*} \wedge^{r} Q^{*}\right) .
$$

Proof. The reason is that for $u=\left(u_{0}, \ldots, u_{N}\right) \in S$, the relation $\sum_{0 \leqslant j \leqslant N} u_{j} \nabla_{j}^{d, k}(f)=0$ implies

$$
\left(\sum_{0 \leqslant j \leqslant N}\left(f_{j}\right)^{-(d-k)} D^{\ell}\left(p_{0}(f) f_{j}^{d}\right) e_{j}^{*}\right) \cdot\left(\sum_{0 \leqslant j \leqslant N} u_{j} e_{j}\right)=0,
$$

hence our sections actually take values in the pull-back of the subbundle

$$
\wedge^{r} Q^{*}=\wedge^{r}\left(\mathbb{C}^{N+1} / S\right)^{*} \subset \wedge^{r}\left(\mathbb{C}^{N+1}\right)^{*} .
$$

On Y, there is an injective morphism $\operatorname{pr}_{1}^{*} \mathcal{O}(-(d-k)) \rightarrow \operatorname{pr}_{2}^{*} S \subset \mathbb{C}^{N+1}$ given by

$$
u \mapsto u\left(z_{0}^{d-k}, \ldots, z_{N}^{d-k}\right),
$$

and the quotient bundle $S^{\prime}:=\operatorname{pr}_{2}^{*} S / \operatorname{pr}_{1}^{*} \mathcal{O}(-(d-k))$ is the rank $N-r$ subbundle of the rank N pull-back $\operatorname{pr}_{1}^{*} F_{d-k}=\operatorname{pr}_{1}^{*}\left(\mathbb{C}^{N+1} / \mathcal{O}(-(d-k))\right.$ from X. By construction

$$
\wedge^{r} Q^{*}=\operatorname{det} Q^{*}=\operatorname{det} S \quad \text { on } \operatorname{Gr}_{N+1, r}, \text { hence } \operatorname{pr}_{2}^{*} \wedge^{r} Q^{*}=\operatorname{det} S^{\prime} \otimes \operatorname{pr}_{1}^{*} \mathcal{O}(-(d-k)) \quad \text { on } Y .
$$

In order to control the positivity of $\operatorname{det} S^{\prime}=\wedge^{N-r} S^{\prime}$, we need sections of $\Lambda^{N-r} S^{\prime *}$ (eventually twisted with a "small" line bundle).

If we can find $r-1$ vector fields $\xi_{i}=\sum_{0 \leqslant j \leqslant N} \xi_{i, j} e_{j}, 1 \leqslant i \leqslant r-1$, that satisfy
$\subset\left(\operatorname{pr}_{1} \circ \pi_{Y, k} \circ \Psi\right)^{*} \wedge^{r}\left(F_{d-k}\right)^{*}$ by formula (14.29).
Now, let S be the tautological subbundle of the trivial bundle \mathbb{C}^{N+1} on $\mathrm{Gr}_{N+1, r}$ with fiber $s \subset$ \mathbb{C}^{N+1}. Its rank is $N+1-r$. Let $T=\mathbb{C}^{N+1} / S$ be the tautological quotient rank r vector bundle on $\mathrm{Gr}_{N+1, r}$. Then on Y

$$
\operatorname{pr}_{2}^{*} T=\mathbb{C}^{N+1} / \operatorname{pr}_{2}^{*} S=\operatorname{pr}_{1}^{*}\left(\mathbb{C}^{N+1} / \mathcal{O}(-(d-r))\right) /\left(\operatorname{pr}_{2}^{*} S / \operatorname{pr}_{1}^{*} \mathcal{O}(-(d-r))\right)=\operatorname{pr}_{1}^{*} F_{d-k} / S^{\prime}
$$

On \widehat{M}, as $\operatorname{pr}_{1} \circ \pi_{Y, k}=\pi_{k, 0} \circ \mathrm{pr}_{1}$ and $\mathrm{pr}_{2} \circ \pi_{Y, k}=\mathrm{pr}_{2}$,

$$
\operatorname{pr}_{1} \circ \pi_{Y, k} \circ \Psi: \widehat{M} \rightarrow Y_{k} \rightarrow Y \rightarrow X \quad \text { and } \quad \pi_{k, 0} \circ \mu: \widehat{M} \rightarrow M \subset X_{k} \rightarrow X \quad \text { coincide, }
$$

and

$$
\widehat{\psi}=\operatorname{pr}_{2} \circ \pi_{Y, k} \circ \Psi: \widehat{M} \rightarrow Y_{k} \rightarrow Y \rightarrow \operatorname{Gr}_{N+1, r} .
$$

Therefore we get a rank r vector bundle

$$
\begin{equation*}
G:=(\widehat{\psi})^{*} T=\left(\mathrm{pr}_{2} \circ \pi_{Y, k} \circ \Psi\right)^{*} T=\left(\pi_{Y, k} \circ \Psi\right)^{*}\left(\mathrm{pr}_{1}^{*} F_{d-k} / S^{\prime}\right), \tag{14.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(G)=(\widehat{\psi})^{*} \operatorname{det}(S)^{-1}=\left(\pi_{k, 0} \circ \mu\right)^{*} F_{d-k} \otimes\left(\pi_{Y, k} \circ \Psi\right)^{*} \operatorname{det}\left(S^{\prime}\right)^{-1} \tag{14.20}
\end{equation*}
$$

By construction, the surjection $\operatorname{pr}_{2}^{*} S \rightarrow S^{\prime}$ also yields a surjection

$$
\operatorname{pr}_{2}^{*} \wedge^{N-r} S \rightarrow \operatorname{det}\left(S^{\prime}\right)
$$

14.20. Lemma. By taking the restriction to $M \subset X_{k}$ and pulling-back by $\mu=\operatorname{pr}_{1} \circ \Psi: \widehat{M} \rightarrow M$, the sections $\sigma_{k, p, \beta, m}$ in (14.24) yield for $m=r$ sections

$$
\mu^{*} \sigma_{k, p, \beta, r \upharpoonright M} \in H^{0}\left(\widehat{M}, \mu^{*}\left(\mathcal{O}_{X_{k}}\left(k^{\prime}\right) \otimes \pi_{k, 0}^{*} A^{k(2 k+2)}\right) \otimes \wedge^{r} G^{*}\right)
$$

The rest of the proof essentially reduces to the following two statements (the first one is very much related to the techniques employed by Shiffman-Zaidenberg [SZ01]).
14.29. Lemma. For $N \geqslant 2 n$ and $\Lambda \subset \mathbb{C}^{N+1}$ a linear subspace of dimension $n+2$ of the form

$$
z_{N} \in \mathbb{C} \text { arbitrary, } \quad z_{i}=\sum_{0 \leqslant j \leqslant n} \lambda_{i j} z_{j}, n+1 \leqslant i \leqslant N-1
$$

with generic coefficients $\left(\lambda_{i j}\right) \in \mathbb{C}^{(n+1)(N-n-1)}$, the intersection $X_{\Lambda}=X \cap P(\Lambda)$ has a k - j et bundle $X_{\Lambda, k} \subset X_{k}$ such that $B^{\prime} \cap X_{\Lambda, k}=\emptyset$.
Proof. We restrict ourselves to the Zariski open set of coefficients $U \subset \mathbb{C}^{(n+1)(N-n-1)}$ such that the intersection $X \cap P(\Lambda)$ is smooth. Then the set of "raw" k-jets $X_{\Lambda, N, k}$ has dimension $(n+1)(k+1)$. In fact, in the complement of the hypersurface $z_{N}=0$, we can choose $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ as coordinates on the cone $\mathcal{X}_{\Lambda} \subset \mathbb{C}^{N+1}$ of X_{Λ}, the next coordinates z_{n+1}, \ldots, z_{N-1} being obtained by the linear relations $z_{i}=\sum_{0 \leqslant j \leqslant n} \lambda_{i j} z_{j}$, and the last coordinate z_{N} by $z_{N}^{d}=-\sum_{j<N} z_{j}^{d}$. Therefore, on $X_{\Lambda} \backslash H_{N}$, a jet is entirely determined (up to the choice of a d-th root of unity for prescribing the value of $\left.f_{N}(0)\right)$ by the components $\left(f_{j}\right)_{0 \leqslant j \leqslant n}$. We look at the corresponding universal family

$$
\mathcal{Y}_{k}=\bigcup \mathcal{X}_{\Lambda, N, k} \times\left\{\left(\lambda_{i j}\right)\right\} \subset \mathcal{X} \times U
$$

Its dimension is $(n+1)(k+1)+(n+1)(N-n-1)=(n+1)(k+N-n)$. What we have to do is to show that for $s=2$ the equations (14.28) determine in $\mathcal{Y}_{k}^{\text {reg }}$ an algebraic set of dimension strictly less than $\operatorname{dim} U=(n+1)(N-n-1)$, i.e. of codimension larger than $(n+1)(k+1)$. Then the projection to U will be a constructible set of empty interior in U, and the conclusion will follow. Notice that if we take $s=2$ and $m_{1}, m_{2} \simeq N / 2$, the number of equations is a priori much larger than $(k-N / 2)^{2} \gg(n+1)(k+1)$, but we have to check that these equations are "sufficiently independent".
14.20. Lemma. When restricted to X_{Λ} and the associated algebraic subsets $M \subset X_{\Lambda, k}$, our "multiWronskian" sections provide an empty"iterated base locus" whenever Λ is generic and $d \geqslant \ldots$. In particular, the "universal line bundle" defined in Proposition 14.9 is nef on the universal log resolution of the k-stage of the Semple tower of $X_{\Lambda, k}$.
14.21. Theorem. Let $X \subset \mathbb{P}^{n+1}$ be a generic hypersurface of degree $d \geqslant 64 n^{2}+20 n+1$. Then X is Kobayashi hyperbolic.
Proof. Take $N=2 n, k=2 N=4 n$ and $s=2$ in (14.26). We need $d>k(4 k+5)=64 n^{2}+20 n$.

References

[Ahl41] Ahlfors, L.: The theory of meromorphic curves. Acta Soc. Sci. Finn. N.S., A, 3 (1941), 1-31.
[ASS92] Arrondo, E., Sols, I., Speiser, R.: Global moduli for contacts. Preprint 1992, to appear.
[Ber10] Bérczi, G.: Thom polynomials and the Green-Griffiths conjecture. arXiv:1011.4710, 61p.
[Ber15] Bérczi, G.: Thom polynomials of Morin singularities and the Green-Griffiths conjecture. arXiv: 1011.4710v2 (revised 2015), 37p.
[BeKi10] Bérczi, G., Kirwan, F.: A geometric construction for invariant jet differentials arXiv:1012.1797, 42p.
[Blo26a] Bloch, A.: Sur les systèmes de fonctions uniformes satisfaisant à l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension. J. de Math., 5 (1926), 19-66.
[Blo26b] Bloch, A.: Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires. Ann. Ecole Normale, 43 (1926), 309-362.
[Bog77] Bogomolov, F.A.: Families of curves on a surface of general type. Soviet Math. Dokl. 18 (1977), 1294-1297.
[Bog79] Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR Izvestija 13/3 (1979), 499-555.
[Bon93] Bonavero, L.: Inégalités de Morse holomorphes singulières. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 1163-1166.
[Bro78] Brody, R.: Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235 (1978), 213-219.
[BrGr77] Brody, R., Green, M.: A family of smooth hyperbolic surfaces in \mathbb{P}^{3}. Duke Math. J. 44 (1977), 873-874.
[BR90] Brückmann P., Rackwitz, H.-G.: T-Symmetrical Tensor Forms on Complete Intersections. Math. Ann. 288 (1990), 627-635.
[Bru02] Brunella, M.: Courbes entières dans les surfaces algébriques complexes (d'après McQuillan, Demailly-El Goul, ...). Séminaire Bourbaki, Vol. 2000/2001. Astérisque 282 (2002), Exp. No. 881, 39-61.
[Bru03] Brunella, M.: Plurisubharmonic variation of the leafwise Poincaré metric. Int. J. Math. 14 (2003) 139-151.
[Bru05] Brunella, M.: On the plurisubharmonicity of the leafwise Poincaré metric on projective manifolds. J. Math. Kyoto Univ. 45 (2005) 381-390.
[Bru06] Brunella, M.: A positivity property for foliations on compact Kähler manifolds. Internat. J. Math. 17 (2006) 35-43.
[Can00] Cantat, S.: Deux exemples concernant une conjecture de Serge Lang. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 581-586.
[CaGr72] Carlson, J., Griffiths, P.: A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann. Math. 95 (1972), 557-584.
[Car28] Cartan, H.: Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Thèse, Paris. Ann. Ecole Normale, 45 (1928), 255-346.
[CKM88] Clemens, H., Kollár, J., Mori, S.: Higher dimensional complex geometry. Astérisque 166, 1988.
[Cle86] Clemens, H.: Curves on generic hypersurfaces. Ann. Sci. Ec. Norm. Sup. 19 (1986), 629-636.
[ClR04] Clemens, H., Ran, Z.: Twisted genus bounds for subvarieties of generic hypersurfaces. Amer. J. Math. 126 (2004), 89-120.
[CoKe94] Colley, S.J., Kennedy, G.: The enumeration of simultaneous higher order contacts between plane curves. Compositio Math. 93 (1994), 171-209.
[Coll88] Collino, A.: Evidence for a conjecture of Ellingsrud and Strømme on the Chow ring of $\mathbf{H i l b}{ }_{d}\left(\mathbb{P}^{2}\right)$. Illinois J. Math. 32 (1988), 171-210.
[CoGr76] Cowen, M., Griffiths, P.: Holomorphic curves and metrics of negative curvature. J. Analyse Math. 29 (1976), 93-153.
[DPP06] Debarre, O., Pacienza, G., Păun, M.: Non-deformability of entire curves in projective hypersurfaces of high degree. Ann. Inst. Fourier (Grenoble) 56 (2006) 247-253.
[Dem85] Demailly, J.-P.: Champs magnétiques et inégalités de Morse pour la d"-cohomologie. Ann. Inst. Fourier (Grenoble) 35 (1985) 189-229.
[Dem90a] Demailly, J.-P.: Cohomology of q-convex spaces in top degrees. Math. Zeitschrift 203 (1990) 283-295.
[Dem90b] Demailly, J.-P.: Singular hermitian metrics on positive line bundles. Proceedings of the Bayreuth conference "Complex algebraic varieties", April 2-6, 1990, edited by K. Hulek, T. Peternell, M. Schneider, F. Schreyer, Lecture Notes in Math. n ${ }^{\circ}$ 1507, Springer-Verlag (1992), 87-104.
[Dem92] Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Alg. Geom. 1 (1992) 361-409.
[Dem94] Demailly, J.-P.: L2 vanishing theorems for positive line bundles and adjunction theory. alggeom/9410022; Lecture Notes of the CIME Session "Transcendental methods in Algebraic Geometry", Cetraro, Italy, July 1994, Ed. F. Catanese, C. Ciliberto, Lecture Notes in Math., Vol. 1646, 1-97.
[Dem95] Demailly, J.-P.: Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials. AMS Summer School on Algebraic Geometry, Santa Cruz 1995, Proc. Symposia in Pure Math., ed. by J. Kollár and R. Lazarsfeld, Amer. Math. Soc., Providence, RI (1997), 285-360.
[Dem97] Demailly, J.-P.: Variétés hyperboliques et équations différentielles algébriques. Gaz. Math. 73 (juillet 1997) 3-23.
[Dem07a] Demailly, J.-P.: Structure of jet differential rings and holomorphic Morse inequalities. Talk at the CRM Workshop "The geometry of holomorphic and algebraic curves in complex algebraic varieties", Montréal, May 2007.
[Dem07b] Demailly, J.-P.: On the algebraic structure of the ring of jet differential operators. Talk at the conference "Effective aspects of complex hyperbolic varieties", Aber Wrac'h, France, September 10-14, 2007.
[Dem11] Demailly, J.-P.: Holomorphic Morse Inequalities and the Green-Griffiths-Lang Conjecture. Pure and Applied Math. Quarterly 7 (2011), 1165-1208.
[Dem12] Demailly, J.-P.: Hyperbolic algebraic varieties and holomorphic differential equations. expanded version of the lectures given at the annual meeting of VIASM, Acta Math. Vietnam. 37 (2012), 441-512.
[Dem14] Demailly, J.-P.: Towards the Green-Griffiths-Lang conjecture, manuscript Institut Fourier, arXiv: math.AG/1412.2986v2, Conference "Analysis and Geometry", Tunis, March 2014, in honor of Mohammed Salah Baouendi, ed. by A. Baklouti, A. El Kacimi, S. Kallel, N. Mir, Springer (2015), 141-159.
[DeEG97] Demailly, J.-P., El Goul, J.: Connexions méromorphes projectives et variétés algébriques hyperboliques. C. R. Acad. Sci. Paris, Série I, Math. (janvier 1997).
DeEG00 Demailly, J.-P., El Goul, J.: Hyperbolicity of generic surfaces of high degree in projective 3-space. Amer. J. Math. 122 (2000) 515-546.
[DGr91] Dethloff, G., Grauert, H.: On the infinitesimal deformation of simply connected domains in one complex variable. International Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988), Springer, Berlin, (1991), 57-88.
[DLu01] Dethloff, G., Lu, S.: Logarithmic jet bundles and applications. Osaka J. Math. 38 (2001), 185-237.
[DTH15] Dinh, Tuan Huynh: Examples of hyperbolic hypersurfaces of low degree in projective spaces. Preprint Labo. Math. Orsay, hal-01175987, version2 (2015).
[Div08] Diverio, S.: Differential equations on complex projective hypersurfaces of low dimension. Compos. Math. 144 (2008) 920-932.
[Div09] Diverio, S.: Existence of global invariant jet differentials on projective hypersurfaces of high degree. Math. Ann. 344 (2009) 293-315.
[DMR10] Diverio, S., Merker, J., Rousseau, E.: Effective algebraic degeneracy. Invent. Math. 180 (2010) 161-223.
[DR11] Diverio, S., Rousseau, E.: A survey on hyperbolicity of projective hypersurfaces. Series of lectures at IMPA, Rio de Janeiro, September 2010, arXiv:1107.1263.
[DT10] Diverio, S., Trapani, S.: A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree. J. Reine Angew. Math. 649 (2010) 55-61.
[Dol81] Dolgachev, I.: Weighted projective varieties. Proceedings Polish-North Amer. Sem. on Group Actions and Vector Fields, Vancouver, 1981, J.B. Carrels editor, Lecture Notes in Math. 956, Springer-Verlag (1982), 34-71.
[Duv04] Duval J.: Une sextique hyperbolique dans $\mathbb{P}^{3}(\mathbb{C})$. Math. Ann. 330 (2004) 473-476.
[Duv08] Duval J.: Sur le lemme de Brody. Invent. Math. 173 (2008), 305-314.
[Ein88] Ein L.: Subvarieties of generic complete intersections. Invent. Math. 94 (1988), 163-169.
[Ein91] Ein L.: Subvarieties of generic complete intersections, II. Math. Ann. 289 (1991), 465-471.
[EG96] El Goul, J.: Algebraic families of smooth hyperbolic surfaces of low degree in $\mathbb{P}_{\mathbb{C}}^{3}$. Manuscripta Math. 90 (1996), 521-532.
[EG97] El Goul, J.: Propriétés de négativité de courbure des variétés algébriques hyperboliques. Thèse de Doctorat, Univ. de Grenoble I (1997).
[Fuj94] Fujita, T.: Approximating Zariski decomposition of big line bundles. Kodai Math. J. 17 (1994) 1-3.
[Ghe41] Gherardelli, G.: Sul modello minimo della varieta degli elementi differenziali del 2° ordine del piano projettivo. Atti Accad. Italia. Rend., Cl. Sci. Fis. Mat. Nat. (7) 2 (1941), 821-828.
[Gra89] Grauert, H.: Jetmetriken und hyperbolische Geometrie. Math. Zeitschrift 200 (1989), 149-168.
[GRe65] Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen. Math. Zeitschrift 89 (1965), 108-125.
[GrGr79] Green, M., Griffiths, P.: Two applications of algebraic geometry to entire holomorphic mappings. The Chern Symposium 1979, Proc. Internal. Sympos. Berkeley, CA, 1979, Springer-Verlag, New York (1980), 41-74.
[Gri71] Griffiths, P.: Holomorphic mappings into canonical algebraic varieties. Ann. of Math. 98 (1971), 439-458.
[Har77] Hartshorne, R.: Algebraic geometry. Springer-Verlag, Berlin (1977).
[Hir64] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. of Math. 79 (1964) 109-326.
[Kaw80] Kawamata, Y.: On Bloch's conjecture. Invent. Math. 57 (1980), 97-100.
[Kob70] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. Marcel Dekker, New York (1970).
[Kob75] Kobayashi, S.: Negative vector bundles and complex Finsler structures. Nagoya Math. J. 57 (1975), 153-166.
[Kob76] Kobayashi, S.: Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc. 82 (1976), 357-416.
[Kob98] Kobayashi, S.: Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften, volume 318, Springer-Verlag, Berlin, 1998.
[Kob80] Kobayashi, S.: The first Chern class and holomorphic tensor fields. Nagoya Math. J. 77 (1980), 5-11.
[Kob81] Kobayashi, S.: Recent results in complex differential geometry. Jber. dt. Math.-Verein. 83 (1981), 147-158.
[KobO71] Kobayashi, S., Ochiai, T.: Mappings into compact complex manifolds with negative first Chern class. J. Math. Soc. Japan 23 (1971), 137-148.
[KobO75] Kobayashi, S., Ochiai, T.: Meromorphic mappings into compact complex spaces of general type. Invent. Math. 31 (1975), 7-16.
[KobR91] Kobayashi, R.: Holomorphic curves into algebraic subvarieties of an abelian variety. Internat. J. Math. 2 (1991), 711-724.
[LaTh96] Laksov, D., Thorup, A.: These are the differentials of order n. Trans. Amer. Math. Soc. 351 (1999), 1293-1353.
[Lang86] Lang, S.: Hyperbolic and Diophantine analysis. Bull. Amer. Math. Soc. 14 (1986) 159-205.
[Lang87] Lang, S.: Introduction to complex hyperbolic spaces. Springer-Verlag, New York (1987).
[Lu96] Lu, S.S.Y.: On hyperbolicity and the Green-Griffiths conjecture for surfaces. Geometric Complex Analysis, ed. by J. Noguchi et al., World Scientific Publishing Co. (1996) 401-408.
[LuMi95] Lu, S.S.Y., Miyaoka, Y.: Bounding curves in algebraic surfaces by genus and Chern numbers. Math. Research Letters 2 (1995), 663-676.
[LuMi96] Lu, S.S.Y., Miyaoka, Y.: Bounding codimension one subvarieties and a general inequality between Chern numbers. Amer. J. of Math. 119 (1997) 487-502.
[LuYa90] Lu, S.S.Y., Yau, S.T.: Holomorphic curves in surfaces of general type. Proc. Nat. Acad. Sci. USA, 87 (January 1990), 80-82.
[MaNo93] Masuda, K., Noguchi, J.: A construction of hyperbolic hypersurface of $\mathbb{P}^{n}(\mathbb{C})$. Preprint Tokyo Inst. Technology, Ohokayama, Tokyo, (1993), 27 p.
[McQ96] McQuillan, M.: A new proof of the Bloch conjecture. J. Alg. Geom. 5 (1996), 107-117.
[McQ98] McQuillan, M.: Diophantine approximation and foliations. Inst. Hautes Études Sci. Publ. Math. 87 (1998) 121-174.
[McQ99] McQuillan, M.: Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9 (1999) 370-392.
[Mer08] Merker, J.: Jets de Demailly-Semple d'ordres 4 et 5 en dimension 2. Int. J. Contemp. Math. Sci. 3-18 (2008), 861-933.
[Mer09] Merker, J.: Low pole order frames on vertical jets of the universal hypersurface Ann. Inst. Fourier (Grenoble), 59 (2009), 1077-1104.
[Mer10] Merker, J.:Application of computational invariant theory to Kobayashi hyperbolicity and to GreenGriffiths algebraic degeneracy J. of Symbolic Computation, 45 (2010) 9861074.
[Mer15] Merker, J.: Complex projective hypersurfaces of general type: towards a conjecture of Green and Griffiths arXiv:1005.0405, and T. Ochiai, T. Mabuchi, Y. Maeda, J. Noguchi, A. Weinstein (Editors), Geometry and Analysis on Manifolds, in memory of Professor Shoshichi Kobayashi, Progress in Mathematics, Birhäuser, Vol. 308 (2015), 41-142.
[Mey89] Meyer, P.-A.: Qu'est ce qu'une différentielle d'ordre n? Expositiones Math. 7 (1989), 249-264.
[Miy82] Miyaoka, Y.: Algebraic surfaces with positive indices. Classification of algebraic and analytic manifolds. Katata Symp. Proc. 1982, Progress in Math., vol. 39, Birkhäuser, 1983, 281-301.
[MoMu82] Mori, S., Mukai, S.: The uniruledness of the moduli space of curves of genus 11. In: Algebraic Geometry Conference Tokyo-Kyoto 1982, Lecture Notes in Math. 1016, 334-353.
[Nad89] Nadel, A.: Hyperbolic surfaces in \mathbb{P}^{3}. Duke Math. J. 58 (1989), 749-771.
[Nog77] Noguchi, J.: Holomorphic curves in algebraic varieties. Hiroshima Math. J. 7 (1977), 833-853.
[Nog81] Noguchi, J.: A higher-dimensional analogue of Mordell's conjecture over function fields. Math. Ann. 258 (1981), 207-212.
[Nog83] Noguchi, J.: Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties. Nagoya Math. J. 83 (1981), 213-233.
[Nog86] Noguchi, J.: Logarithmic jet spaces and extensions of de Franchis' theorem. Contributions to Several Complex Variables, Aspects of Math., E9, Vieweg, Braunschweig (1986), 227-249.
[Nog91] Noguchi, J.: Hyperbolic manifolds and diophantine geometry. Sugaku Expositiones 4, Amer. Math. Soc. Providence, RI (1991), 63-81.
[Nog96] Noguchi, J.: Chronicle of Bloch's conjecture. Private communication.
[Nog98] Noguchi, J.: On holomorphic curves in semi-abelian varieties. Math. Z. 228 (1998), 713-721.
[NoOc90] Noguchi, J.; Ochiai, T.: Geometric function theory in several complex variables. Japanese edition, Iwanami, Tokyo, 1984 ; English translation, xi + 282 p., Transl. Math. Monographs 80, Amer. Math. Soc., Providence, Rhode Island, 1990.
[Och77] Ochiai, T.: On holomorphic curves in algebraic varieties with ample irregularity. Invent. Math. 43 (1977), 83-96.
[Pac04] Pacienza, G.: Subvarieties of general type on a general projective hypersurface. Trans. Amer. Math. Soc. 356 (2004), 2649-2661.
[Pau08] Păun, M.: Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity. Math. Ann. 340 (2008) 875-892.
[Rou06] Rousseau, E.: Étude des jets de Demailly-Semple en dimension 3. Ann. Inst. Fourier (Grenoble) 56 (2006), 397-421.
[Roy71] Royden, H.: Remarks on the Kobayashi metric. Proc. Maryland Conference on Several Complex Variables, Lecture Notes, Vol. 185, Springer-Verlag, Berlin (1971).
[Roy74] Royden, H.: The extension of regular holomorphic maps. Proc. Amer. Math. Soc. 43 (1974), 306-310.
[Sei68] Seidenberg, A.: Reduction of the singularities of the differential equation $A d y=B d x$. Amer. J. of Math. 90 (1968), 248-269.
[Sem54] Semple, J.G.: Some investigations in the geometry of curves and surface elements. Proc. London Math. Soc. (3) 4 (1954), 24-49.
[Siu76] Siu, Y.T.: Every Stein subvariety has a Stein neighborhood. Invent. Math. 38 (1976) 89-100.
[Siu87] Siu, Y.T.: Defect relations for holomorphic maps between spaces of different dimensions. Duke Math. J. 55 (1987), 213-251.
[Siu93] Siu, Y.T.: An effective Matsusaka big theorem. Ann. Inst. Fourier (Grenoble), 43 (1993), 1387-1405.
[Siu97] Siu, Y.T.: A proof of the general Schwarz lemma using the logarithmic derivative lemma. Personal communication, April 1997.
[Siu02] Siu, Y.T.: Some recent transcendental techniques in algebraic and complex geometry. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing (2002) 439-448.
[Siu04] Siu, Y.T.: Hyperbolicity in complex geometry. The legacy of Niels Henrik Abel, Springer, Berlin (2004) 543-566.
[Siu12] Siu, Y.T: Hyperbolicity of generic high-degree hypersurfaces in complex projective spaces. arXiv: math.CV, 1209.2723v3, 87 pages.
[SiYe96a] Siu, Y.T., Yeung, S.K.: Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective planeInvent. Math. 124 (1996), 573-618.
[SiYe96b] Siu, Y.T., Yeung, S.K.: A generalized Bloch's theorem and the hyperbolicity of the complement of an ample divisor in an abelian variety. Math. Ann. 306 (1996), 743-758.
[SiYe97] Siu, Y.T., Yeung, S.K.: Defects for ample divisors of Abelian varieties, Schwarz lemma and hyperbolic surfaces of low degree. Amer. J. Math. 119 (1997), 1139-1172.
[Tra95] Trapani, S.: Numerical criteria for the positivity of the difference of ample divisors. Math. Z. 219 (1995), 387-401.
[Tsu88] Tsuji, H.: Stability of tangent bundles of minimal algebraic varieties. Topology 27 (1988), 429-442.
[Ven96] Venturini S.: The Kobayashi metric on complex spaces. Math. Ann. 305 (1996), 25-44.
[Voi96] Voisin, C.: On a conjecture of Clemens on rational curves on hypersurfaces. J. Diff. Geom. 44 (1996) 200-213, Correction: J. Diff. Geom. 49 (1998), 601-611.
[Voj87] Vojta, P.: Diophantine approximations and value distribution theory. Lecture Notes in Math. 1239, Springer-Verlag, Berlin, 1987.
[Win07] Winkelmann, J.: On Brody and entire curves. Bull. Soc. Math. France 135 (2007), 25-46.
[Xu94] Xu, G.: Subvarieties of general hypersurfaces in projective space. J. Differential Geometry 39 (1994), 139-172.
[Zai87] Zaidenberg, M.: The complement of a generic hypersurface of degree $2 n$ in $\mathbb{C P}^{n}$ is not hyperbolic. Siberian Math. J. 28 (1987), 425-432.
[Zai93] Zaidenberg, M.: Hyperbolicity in projective spaces. International Symposium on Holomorphic mappings, Diophantine Geometry and Related topics, R.I.M.S. Lecture Notes ser. 819, R.I.M.S. Kyoto University (1993), 136-156.
(version of November 6, 2015, printed on November 23, 2017, 14:35)

Jean-Pierre Demailly
Université de Grenoble-Alpes
Institut Fourier (Mathématiques)
UMR 5582 du C.N.R.S., BP 74
38402 Saint-Martin d'Hères, France
e-mail: jean-pierre.demailly@ujf-grenoble.fr

