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Abstract. The study of entire holomorphic curves contained in projective algebraic varieties is
intimately related to fascinating questions of geometry and number theory – especially through
the concepts of curvature and positivity which are central themes in Kodaira’s contributions to
mathematics. The aim of these lectures is to present recent progress on the geometric side of the
problem. The Green-Griffiths-Lang conjecture stipulates that for every projective variety X of general
type over C, there exists a proper algebraic subvariety of X containing all non constant entire curves
f : C → X. Using the formalism of directed varieties, we show that this assertion holds true in
case X satisfies a strong general type condition that is related to a certain jet-semistability property
of the tangent bundle TX . It is then possible to exploit this result to investigate the long-standing
conjecture of Kobayashi (1970), according to which every (very) general algebraic hypersurface of
dimension n and degree d > dn in the complex projective space Pn+1 should be hyperbolic for dn
sufficiently large.
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§0. Introduction

The goal of these lectures is to study the conjecture of Kobayashi [Kob70, Kob78] on the
hyperbolicity of generic hypersurfaces of high degree in projective space, and the related conjecture
by Green-Griffiths [GG79] and Lang [Lan86] on the structure of entire curve loci.

Let us recall that a complex space X is said to be hyperbolic in the sense of Kobayashi if analytic
disks f : D→ X through a given point form a normal family. By a well known result of Brody [Bro78],
a compact complex space is Kobayashi hyperbolic iff it does not contain any entire holomorphic curve
f : C → X (“Brody hyperbolicity”). If X is not hyperbolic, a basic question is thus to analyze the
geometry of entire holomorphic curves f : C → X, and especially to understand the entire curve
locus of X, defined as the Zariski closure

(0.1) ECL(X) =
⋃
f

f(C)
Zar

.

The Green-Griffiths-Lang conjecture, in its strong form, stipulates

0.2. GGL conjecture. Let X be a projective variety of general type. Then Y = ECL(X) is a proper
algebraic subvariety Y ( X

Equivalently, there exists Y ( X such that every entire curve f : C → X satisfies f(C) ⊂ Y .
A weaker form of the GGL conjecture states that entire curves are algebraically degenerate, i.e. that
f(C) ⊂ Yf ( X where Yf may depend on f .

If X ⊂ PNC is defined over a number field K0 (i.e. by polynomial equations with equations with
coefficients in K0) and Y = ECL(X), it is expected that for every number field K ⊃ K0 the set of
K-points in X(K)rY is finite, and that this property characterizes ECL(X) as the smallest algebraic
subset Y of X that has the above property for all K ([Lan86]). This conjectural arithmetical statement
would be a vast generalization of the Mordell-Faltings theorem, and is one of the strong motivations
to study the geometric GGL conjecture as a first step. S. Kobayashi [Kob70, Kob78] had earlier made
the following tantalizing conjecture.

0.3. Conjecture (Kobayashi).

(a) A (very) generic hypersurface X ⊂ Pn+1 of degree d > dn large enough is hyperbolic, especially it
does not possess any entire holomorphic curve f : C→ X.

(b) The complement Pn rH of a (very) generic hypersurface H ⊂ Pn of degree d > d′n large enough
is hyperbolic.

M. Zaidenberg observed in [Zai87] that the complement of a general hypersurface of degree 2n
in Pn is not hyperbolic; as a consequence, one must take d′n > 2n + 1 in 0.3 (a). A famous result
due to Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96, Voi98], states that every subvariety
Y of a generic algebraic hypersurface X ⊂ Pn+1 of degree d > 2n + 2 is of general type. The
bound dn = 2n+ 2 would then be a consequence of the Green-Griffiths-Lang conjecture (for surfaces,
the results of Geng Xu [Xu94] would even show that the optimal bound is indeed d2 = 5). These
observations led Zaidenberg to propose the bounds dn = 2n+ 1 for n > 2 and d′n = 2n+ 1 for n > 1.

One of the early important result in the direction of Conjecture 0.2 is the proof of the Bloch
conjecture, as proposed by Bloch [Blo26a] and Ochiai [Och77]: this is the special case of the conjecture
when the irregularity of X satisfies q = h0(X,Ω1

X) > dimX. Various solutions have then been
obtained in fundamental papers of Noguchi [Nog77, 81, 84], Kawamata [Kaw80], Green-Griffiths
[GrGr79], McQuillan [McQ96], by means of different techniques. In the case of complex surfaces,
major progress was achieved by Lu, Miyaoka and Yau [LuYa90], [LuMi95, 96], [Lu96]; McQuillan
[McQ96] extended these results to the case of all surfaces satisfying c21 > c2, in a situation where
there are many symmetric differentials, e.g. sections of H0(X,SmT ∗X ⊗ O(−1)), m � 1 (cf. also
[McQ99], [DeEG00] for applications to hyperbolicity). A more recent result is the striking statement
due to Diverio, Merker and Rousseau [DMR10], confirming Conjecture 0.2 when X ⊂ Pn+1 is a
generic non singular hypersurface of sufficiently large degree d > 2n

5

(cf. §10); in the case n = 2 of
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surfaces in P3, we are here in the more difficult situation where symmetric differentials do not exist
(we have c21 < c2 in this case). Conjecture 0.2 was also considered by S. Lang [Lang86, Lang87] in
view of arithmetic counterparts of the above geometric statements.

Although these optimal conjectures are still unsolved at present, substantial progress was achieved
in the meantime, for a large part via the technique of producing jet differentials. This is done either by
direct calculations or by various indirect methods: Riemann-Roch calculations, vanishing theorems ...
Vojta [Voj87] and McQuillan [McQ98] introduced the “diophantine approximation” method, which
was soon recognized to be an important tool in the study of holomorphic foliations, in parallel with
Nevanlinna theory and the construction of Ahlfors currents. Around 2000, Siu [Siu02, 04] showed that
generic hyperbolicity results in the direction of the Kobayashi conjecture could be investigated by
combining the algebraic techniques of Clemens, Ein and Voisin with the existence of certain “vertical”
meromorphic vector fields on the jet space of the universal hypersurface of high degree; these vector
fields are actually used to differentiate the global sections of the jet bundles involved, so as to produce
new sections with a better control on the base locus. Also, during the years 2007–2010, it was realized
[Dem07a, 07b, Dem11] that holomorphic Morse inequalities could be used to prove the existence of
jet differentials; in 2010, Diverio, Merker and Rousseau [DMR10] were able in that way to prove
the Green-Griffiths conjecture for generic hypersurfaces of high degree in projective space, e.g. for
d > 2n

5

– their proof makes an essential use of Siu’s differentiation technique via meromorphic vector
fields, as improved by Păun [Pau08] and Merker [Mer09] in 2008. The present study will be focused
on the holomorphic Morse inequality technique; as an application, a partial answer to the Kobayashi
and Green-Griffiths-Lang conjecture can be obtained in a very wide context : the basic general result
achieved in [Dem11] consists of showing that for every projective variety of general type X, there
exists a global algebraic differential operator P on X (in fact many such operators Pj) such that
every entire curve f : C→ X must satisfy the differential equations Pj(f ; f ′, . . . , f (k)) = 0. One also
recovers from there the result of Diverio-Merker-Rousseau on the generic Green-Griffiths conjecture
(with an even better bound asymptotically as the dimension tends to infinity), as well as a result of
Diverio-Trapani [DT10] on the hyperbolicity of generic 3-dimensional hypersurfaces in P4. Siu [Siu12]
has recently introduced a more explicit but more computationally involved approach that would yield
the Kobayashi conjecture for d > dn, with a very large bound dn instead of 2n+ 1.

As we will see here, it is useful to work in a more general context and to consider the category of
directed projective manifolds (or varieties). Since the problems we consider are birationally invariant,
varieties can in fact always be replaced by nonsingular models whenever this is needed. A directed
projective manifold is a pair (X,V ) where X is a projective manifold equipped with an analytic linear
subspace V ⊂ TX , i.e. a closed irreducible complex analytic subset V of the total space of TX , such
that each fiber Vx = V ∩ TX,x is a complex vector space. If X is not connected, V should rather be
assumed to be irreducible merely over each connected component of X, but we will hereafter assume
that our manifolds are connected. A morphism Φ : (X,V ) → (Y,W ) in the category of directed
manifolds is an analytic map Φ : X → Y such that Φ∗V ⊂W . We refer to the case V = TX as being
the absolute case, and to the case V = TX/S = Ker dπ for a fibration π : X → S, as being the relative
case; V may also be taken to be the tangent space to the leaves of a singular analytic foliation on X,
or maybe even a non integrable linear subspace of TX . We are especially interested in entire curves
that are tangent to V , namely non constant holomorphic morphisms f : (C, TC)→ (X,V ) of directed
manifolds. In the absolute case, these are just arbitrary entire curves f : C→ X.

0.4. Generalized GGL conjecture. Let (X,V ) be a projective directed manifold. Define the entire
curve locus set of (X,V ) to be the Zariski closure of the locus of entire curves tangent to V , i.e.

ECL(X,V ) =
⋃
f :(C,TC)→(X,V )

f(C)
Zar

.

Then, if (X,V ) is of general type in the sense that the canonical sheaf sequence K•V is big (cf. Prop 2.11
below), Y = ECL(X,V ) is a proper algebraic subvariety Y ( X.

[We will say that (X,V ) is Brody hyperbolic if ECL(X,V ) = ∅ ; by Brody’s reparametrization
technique, this is equivalent to Kobayashi hyperbolicity whenever X is compact.]



4 J.-P. Demailly, Kobayashi and Green-Griffiths-Lang conjectures

In case V has no singularities, the canonical sheaf KV is defined to be (detO(V ))∗ where O(V ) is
the sheaf of holomorphic sections of V , but in general this naive definition would not work. Take for
instance a generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree 3 in P2

C, and the linear space
V consisting of the tangents to the fibers of the rational map P2

C > P1
C defined by z 7→ Q(z)/P (z).

Then V is given by

0 −→ O(V ) −→ O(TP2
C
)
PdQ−QdP→ OP2

C
(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the corresponding
ideal sheaf of S. Since detO(TP2) = O(3), we see that (det(O(V ))∗ = O(3) is ample, thus Problem 0.4
would not have a positive answer (all leaves are elliptic or singular rational curves and thus covered
by entire curves). An even more “degenerate” example is obtained with a generic pencil of conics, in
which case (det(O(V ))∗ = O(1) and #S = 4.

If we want to get a positive answer to Problem 0.4, it is therefore indispensable to give a definition
of KV that incorporates in a suitable way the singularities of V ; this will be done in Def. 2.12 (see
also Prop. 2.11). The goal is then to give a positive answer to Problem 0.4 under some possibly more
restrictive conditions for the pair (X,V ). These conditions will be expressed in terms of the tower of
Semple jet bundles

(0.5) (Xk, Vk)→ (Xk−1, Vk−1)→ . . .→ (X1, V1)→ (X0, V0) := (X,V )

which we define more precisely in Section 1, following [Dem95]. It is constructed inductively by
setting Xk = P (Vk−1) (projective bundle of lines of Vk−1), and all Vk have the same rank r = rankV ,
so that dimXk = n + k(r − 1) where n = dimX. Entire curve loci have their counterparts for all
stages of the Semple tower, namely, one can define

(0.6) ECLk(X,V ) =
⋃
f :(C,TC)→(X,V )

f[k](C)
Zar

.

where f[k] : (C, TC) → (Xk, Vk) is the k-jet of f . These are by definition algebraic subvarieties of
Xk, and if we denote by πk,` : Xk → X` the natural projection from Xk to X`, 0 6 ` 6 k, we get
immediately

(0.7) πk,`(ECLk(X,V )) = ECL`(X,V ), ECL0(X,V ) = ECL(X,V ).

Let OXk(1) be the tautological line bundle over Xk associated with the projective structure. We
define the k-stage Green-Griffiths locus of (X,V ) to be

(0.8) GGk(X,V ) = (Xk r ∆k) ∩
⋂
m∈N

(
base locus of OXk(m)⊗ π∗k,0A−1

)
where A is any ample line bundle on X and ∆k =

⋃
26`6k π

−1
k,`(D`) is the union of “vertical divisors”

(see section 1; the vertical divisors play no role and have to be removed in this context; for this, one
uses the fact that f[k](C) is not contained in any component of ∆k, cf. [Dem95]). Clearly, GGk(X,V )
does not depend on the choice of A.

0.9. Basic vanishing theorem for entire curves. Let (X,V ) be an arbitrary directed
variety with X non singular, and let A be an ample line bundle on X. Then any entire curve
f : (C, TC) → (X,V ) satisfies the differential equations P (f ; f ′, . . . , f (k)) = 0 arising from sections
σ ∈ H0(Xk,OXk(m)⊗ π∗k,0A−1). As a consequence, one has

ECLk(X,V ) ⊂ GGk(X,V ).

The main argument goes back to [GG79]. We will give here a complete proof of Theorem 0.9,
based only on the arguments [Dem95], namely on the Ahlfors-Schwarz lemma (the alternative proof
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given in [SY96] uses Nevanlinna theory and is analytically more involved). By (0.7) and (0.9) we
infer that

(0.10) ECL(X,V ) ⊂ GG(X,V ).

where GG(X,V ) is the global Green-Griffiths locus of (X,V ) defined by

(0.11) GG(X,V ) =
⋂
k∈N

πk,0 (GGk(X,V )) .

The main result of [Dem11] (Theorem 2.37 and Cor. 3.4) implies the following useful information:

0.12. Theorem. Assume that (X,V ) is of “general type”, i.e. that the pluricanonical sheaf sequence
K•V is big on X. Then there exists an integer k0 such that GGk(X,V ) is a proper algebraic subset of
Xk for k > k0 [ though πk,0(GGk(X,V )) might still be equal to X for all k ].

In fact, if F is an invertible sheaf on X such that K•V ⊗F is big (cf. Prop. 2.11), the probabilistic
estimates of [Dem11, Cor. 2.38 and Cor. 3.4] produce global sections of

(0.13) OXk(m)⊗ π∗k,0O
(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

for m � k � 1. The (long and elaborate) proof uses a curvature computation and singular
holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on Xk for
k � 1. One applies this to F = A−1 with A ample on X to produce sections and conclude that
GGk(X,V ) ( Xk.

Thanks to (0.10), the GGL conjecture is satisfied whenever GG(X,V ) ( X. By [DMR10], this
happens for instance in the absolute case when X is a generic hypersurface of degree d > 2n

5

in Pn+1

(see also [Pau08] for better bounds in low dimensions, and [Siu02, Siu04]). However, as already
mentioned in [Lan86], very simple examples show that one can have GG(X,V ) = X even when
(X,V ) is of general type, and this already occurs in the absolute case as soon as dimX > 2. A
typical example is a product of directed manifolds

(0.14) (X,V ) = (X ′, V ′)× (X ′′, V ′′), V = pr′ ∗ V ′ ⊕ pr′′ ∗ V ′′.

The absolute case V = TX , V ′ = TX′ , V
′′ = TX′′ on a product of curves is the simplest instance. It

is then easy to check that GG(X,V ) = X, cf. (3.2). Diverio and Rousseau [DR13] have given many
more such examples, including the case of indecomposable varieties (X,TX), e.g. Hilbert modular
surfaces, or more generally compact quotients of bounded symmetric domains of rank > 2.

The problem here is the failure of some sort of stability condition that is introduced in
Remark 12.9. This leads us to make the assumption that the directed pair (X,V ) is strongly of
general type: by this, we mean that the induced directed structure (Z,W ) on each subvariety Z ⊂ Xk

that projects onto X either has rankW = 0 or is of general type modulo Xk → X, in the sense that
K•W ⊗ OXk(p)|Z is big for some integer p (see Section 11 for details). Our main result can be stated

0.15. Theorem (partial solution to the generalized GGL conjecture). Let (X,V ) be a
directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true
for (X,V ), namely ECL(X,V ) is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on n = dimX and k = rankV , which is the
main reason why we have to introduce directed varieties, even in the absolute case. An interesting
feature of this result is that the conclusion on ECL(X,V ) is reached without having to know anything
about the Green-Griffiths locus GG(X,V ), even a posteriori. Nevetherless, this is not yet enough to
confirm the GGL conjecture. Our hope is that pairs (X,V ) that are of general type without being
strongly of general type – and thus exhibit some sort of “jet-instability” – can be investigated by
different methods, e.g. by the diophantine approximation techniques of McQuillan [McQ98]. However,
Theorem 0.15 provides a sufficient criterion for Kobayashi hyperbolicity [Kob70, Kob78], thanks to
the following concept of algebraic jet-hyperbolicity.
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0.16. Definition. A directed variety (X,V ) will be said to be algebraically jet-hyperbolic if the induced
directed variety structure (Z,W ) on every irreducible algebraic variety Z of X such that rankW > 1
has a desingularization that is strongly of general type [see Sections 11–13 for the definition of induced
directed structures and further details]. We also say that a projective manifold X is algebraically jet-
hyperbolic if (X,TX) is.

In this context, Theorem 0.15 yields the following connection between algebraic jet-hyperbolicity
and the analytic concept of Kobayashi hyperbolicity.

0.17. Theorem. Let (X,V ) be a directed variety structure on a projective manifold X. Assume that
(X,V ) is algebraically jet-hyperbolic. Then (X,V ) is Kobayashi hyperbolic.

The following conjecture would then make a bridge between these theorems and the GGL and
Kobayashi conjectures.

0.18. Conjecture. Let X ⊂ Pn+c be a complete intersection of hypersurfaces of respective degrees
d1, . . . , dc, codimX = c.

(a) If X is non singular and of general type, i.e. if
∑
dj > n + c + 2, then X is in fact strongly of

general type.

(b) If X is (very) generic and
∑
dj > 2n+ c, then X is algebraically jet-hyperbolic.

Since Conjecture 0.18 only deals with algebraic statements, our hope is that a proof can be
obtained through a suitable deepening of the techniques introduced by Clemens, Ein, Voisin and
Siu. Under the slightly stronger condition

∑
dj > 2n + c + 1, Voisin showed indeed that every

subvariety Y ⊂ X is of general type, if X is generic. To prove the Kobayashi conjecture in its optimal
incarnation, we would need to show that such Y ’s are strongly of general type.

In this direction, Dinh Tuan Huynh [DTH15] showed that the complement of a small deformation
of the union of 2n hyperplanes in general position in Pn is hyperbolic: the resulting degree dn = 2n
is extremely close to optimality (if not optimal). Very recently, G. Berczi [Ber15] stated a positivity
conjecture for Thom polynomials of Morin singularities, and showed that it would imply a polynomial
bound dn = 2n10 for the generic hyperbolicity of hypersurfaces.

I would like to thank Simone Diverio, Erwan Rousseau and Mihai Păun for very stimulating
discussions on these questions. These notes also owe a lot to their work.

§1. Basic hyperbolicity concepts

§1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, according to S. Kobayashi
[Kob70, Kob76]. Let X be a complex space. Given two points p, q ∈ X, consider a chain of analytic
disks from p to q, that is a sequence of holomorphic maps f0, f1, . . . , fk : ∆→ X from the unit disk
∆ = D(0, 1) ⊂ C to X, together with pairs of points a0, b0, . . . , ak, bk of ∆ such that

p = f0(a0), q = fk(bk), fi(bi) = fi+1(ai+1), i = 0, . . . , k − 1.

Denoting this chain by α, define its length `(α) to be

(1.1′) `(α) = dP (a1, b1) + · · ·+ dP (ak, bk)

where dP is the Poincaré distance on ∆, and the Kobayashi pseudodistance dKX on X to be

(1.1′′) dKX(p, q) = inf
α
`(α).

a Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous positive (resp.
nonnegative) positive function N on the total space E, that is,

N(λξ) = |λ|N(ξ) for all λ ∈ C and ξ ∈ E,
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but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E. A Finsler
(pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on the tautological line bundle
OP (E)(−1) of lines of E over the projectivized bundle Y = P (E). The Kobayashi-Royden infinitesimal
pseudometric on X is the Finsler pseudometric on the tangent bundle TX defined by

(1.2) kX(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ

}
, x ∈ X, ξ ∈ TX,x.

Here, if X is not smooth at x, we take TX,x = (mX,x/m
2
X,x)∗ to be the Zariski tangent space, i.e.

the tangent space of a minimal smooth ambient vector space containing the germ (X,x); all tangent
vectors may not be reached by analytic disks and in those cases we put kX(ξ) = +∞. When X
is a smooth manifold, it follows from the work of H.L. Royden ([Roy71], [Roy74]) that dKX is the
integrated pseudodistance associated with the pseudometric, i.e.

dKX(p, q) = inf
γ

∫
γ

kX(γ′(t)) dt,

where the infimum is taken over all piecewise smooth curves joining p to q ; in the case of complex
spaces, a similar formula holds, involving jets of analytic curves of arbitrary order, cf. S. Venturini
[Ven96].

1.3. Definition. A complex space X is said to be hyperbolic (in the sense of Kobayashi) if dKX is
actually a distance, namely if dKX(p, q) > 0 for all pairs of distinct points (p, q) in X.

When X is hyperbolic, it is interesting to investigate when the Kobayashi metric is complete: one
then says that X is a complete hyperbolic space. However, we will be mostly concerned with compact
spaces here, so completeness is irrelevant in that case.

Another important property is the monotonicity of the Kobayashi metric with respect to
holomorphic mappings. In fact, if Φ : X → Y is a holomorphic map, it is easy to see from the
definition that

(1.4) dKY (Φ(p),Φ(q)) 6 dKX(p, q), for all p, q ∈ X.

The proof merely consists of taking the composition Φ ◦ fi for all clains of analytic disks connecting
p and q in X. Clearly the Kobayashi pseudodistance dKC on X = C is identically zero, as one can
see by looking at arbitrarily large analytic disks ∆ → C, t 7→ λt. Therefore, if there is any (non
constant) entire curve Φ : C → X, namely a non constant holomorphic map defined on the whole
complex plane C, then by monotonicity dKX is identically zero on the image Φ(C) of the curve, and
therefore X cannot be hyperbolic. When X is hyperbolic, it follows that X cannot contain rational
curves C ' P1, or elliptic curves C/Λ, or more generally any non trivial image Φ : W = Cp/Λ → X
of a p-dimensional complex torus (quotient of Cp by a lattice). The only case where hyperbolicity is
easy to assess is the case of curves (dimCX = 1).

1.5. Case of complex curves. Up to bihomorphism, any smooth complex curve X belongs to one
(and only one) of the following three types.

(a) (rational curve) X ' P1.

(b) (parabolic type) X̂ ' C, X ' C, C∗ or X ' C/Λ (elliptic curve)

(c) (hyperbolic type) X̂ ' ∆. All compact curves X of genus g > 2 enter in this category, as well as
X = P1 r {a, b, c} ' Cr {0, 1}, or X = C/Λ r {a} (elliptic curve minus one point).

In fact, as the disk is simply connected, every holomorphic map f : ∆→ X lifts to the universal
cover f̂ : ∆→ X̂, so that f = ρ◦f̂ where ρ : X̂ → X is the projection map, and the conclusions (a,b,c)
follow easily from the Poincaré-Koebe uniformization theorem: every simply connected Riemann
surface is biholomorphic to C, the unit disk ∆ or the complex projective line P1.

In some rare cases, the one-dimensional case can be used to study the case of higher dimensions.
For instance, it is easy to see by looking at projections that the Kobayashi pseudodistance on a
product X × Y of complex spaces is given by

dKX×Y ((x, y), (x′, y′)) = max
(
dKX(x, x′), dKY (y, y′)

)
,(1.6)

kX×Y (ξ, ξ′) = max
(
kX(ξ),kY (ξ′)

)
,(1.6′)
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and from there it follows that a product of hyperbolic spaces is hyperbolic. As a consequence
(Cr {0, 1})2, which is also a complement of five lines in P2, is hyperbolic.

§1.B. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In this context, we have
the following well-known result of Brody [Bro78]. Its main interest is to relate hyperbolicity to the
non existence of entire curves.

1.7. Brody reparametrization lemma. Let ω be a hermitian metric on X and let f : ∆→ X be
a holomorphic map. For every ε > 0, there exists a radius R > (1 − ε)‖f ′(0)‖ω and a homographic
transformation ψ of the disk D(0, R) onto (1− ε)∆ such that

‖(f ◦ ψ)′(0)‖ω = 1, ‖(f ◦ ψ)′(t)‖ω 6
1

1− |t|2/R2
for every t ∈ D(0, R).

Proof. Select t0 ∈ ∆ such that (1− |t|2)‖f ′((1− ε)t)‖ω reaches its maximum for t = t0. The reason
for this choice is that (1− |t|2)‖f ′((1− ε)t)‖ω is the norm of the differential f ′((1− ε)t) : T∆ → TX
with respect to the Poincaré metric |dt|2/(1 − |t|2)2 on T∆, which is conformally invariant under
Aut(∆). One then adjusts R and ψ so that ψ(0) = (1 − ε)t0 and |ψ′(0)| ‖f ′(ψ(0))‖ω = 1. As
|ψ′(0)| = 1−ε

R (1− |t0|2), the only possible choice for R is

R = (1− ε)(1− |t0|2)‖f ′(ψ(0))‖ω > (1− ε)‖f ′(0)‖ω.

The inequality for (f ◦ ψ)′ follows from the fact that the Poincaré norm is maximum at the origin,
where it is equal to 1 by the choice of R. Using the Ascoli-Arzelà theorem we obtain immediately:

1.8. Corollary (Brody). Let (X,ω) be a compact complex hermitian manifold. Given a sequence
of holomorphic mappings fν : ∆→ X such that lim ‖f ′ν(0)‖ω = +∞, one can find a sequence of
homographic transformations ψν : D(0, Rν) → (1 − 1/ν)∆ with limRν = +∞, such that, after
passing possibly to a subsequence, (fν ◦ψν) converges uniformly on every compact subset of C towards
a non constant holomorphic map g : C→ X with ‖g′(0)‖ω = 1 and supt∈C ‖g′(t)‖ω 6 1.

An entire curve g : C→ X such that supC ‖g′‖ω = M < +∞ is called a Brody curve; this concept
does not depend on the choice of ω when X is compact, and one can always assume M = 1 by
rescaling the parameter t.

1.9. Brody criterion. Let X be a compact complex manifold. The following properties are equivalent.

(a) X is hyperbolic.

(b) X does not possess any entire curve f : C→ X.

(c) X does not possess any Brody curve g : C→ X.

(d) The Kobayashi infinitesimal metric kX is uniformly bouded below, namely

kX(ξ) > c‖ξ‖ω, c > 0,

for any hermitian metric ω on X.

Proof. (a) ⇒ (b) If X possesses an entire curve f : C → X, then by looking at arbitrary large disks
D(0, R) ⊂ C, it is easy to see that the Kobayashi distance of any two points in f(C) is zero, so X is
not hyperbolic.

(b)⇒ (c) is trivial.

(c)⇒ (d) If (d) does not hold, there exists a sequence of tangent vectors ξν ∈ TX,xν with ‖ξν‖ω = 1
and kX(ξν) → 0. By definition, this means that there exists an analytic curve fν : ∆ → X with
f(0) = xν and ‖f ′ν(0)‖ω > (1− 1

ν )/kX(ξν)→ +∞. One can then produce a Brody curve g = C→ X
by Corollary 1.8, contradicting (c).
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(d) ⇒ (a). In fact (d) implies after integrating that dKX(p, q) > c dω(p, q) where dω is the geodesic
distance associated with ω, so dKX must be non degenerate.

Notice also that if f : C → X is an entire curve such that ‖f ′‖ω is unbounded, one can apply
the Corollary 1.8 to fν(t) := f(t + aν) where the sequence (aν) is chosen such that ‖f ′ν(0)‖ω =
‖f(aν)‖ω → +∞. Brody’s result then produces repametrizations ψν : D(0, Rν)→ D(aν , 1−1/ν) and
a Brody curve g = lim f ◦ψν : C→ X such that sup ‖g′‖ω = 1 and g(C) ⊂ f(C). It may happen that
the image g(C) of such a limiting curve is disjoint from f(C). In fact Winkelmann [Win07] has given
a striking example, actually a projective 3-fold X obtained by blowing-up a 3-dimensional abelian
variety Y , such that every Brody curve g : C → X lies in the exceptional divisor E ⊂ X ; however,
entire curves f : C→ X can be dense, as one can see by taking f to be the lifting of a generic complex
line embedded in the abelian variety Y . For further precise information on the localization of Brody
curves, we refer the reader to the remarkable results of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is often referred to as
Brody hyperbolicity. Thus, in the compact case, Brody hyperbolicity and Kobayashi hyperbolicity
coincide (but Brody hyeperbolicity is in general a strictly weaker property when X is non compact).

§1.C. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness property
of hyperbolicity and a hyperbolicity criterion for subvarieties of complex tori. By definition, a
holomorphic family of compact complex manifolds is a holomorphic proper submersion X→ S between
two complex manifolds.

1.10. Proposition. Let π : X → S be a holomorphic family of compact complex manifolds. Then
the set of s ∈ S such that the fiber Xs = π−1(s) is hyperbolic is open in the Euclidean topology.

Proof. Let ω be an arbitrary hermitian metric on X, (Xsν )sν∈S a sequence of non hyperbolic fibers,
and s = lim sν . By the Brody criterion, one obtains a sequence of entire maps fν : C→ Xsν such that
‖f ′ν(0)‖ω = 1 and ‖f ′ν‖ω 6 1. Ascoli’s theorem shows that there is a subsequence of fν converging
uniformly to a limit f : C → Xs, with ‖f ′(0)‖ω = 1. Hence Xs is not hyperbolic and the collection
of non hyperbolic fibers is closed in S.

Consider now an n-dimensional complex torus W , i.e. an additive quotient W = Cn/Λ, where
Λ ⊂ Cn is a (cocompact) lattice. By taking a composition of entire curves C→ Cn with the projection
Cn →W we obtain an infinite dimensional space of entire curves in W .

1.11. Theorem. Let X ⊂ W be a compact complex submanifold of a complex torus. Then X is
hyperbolic if and only if it does not contain any translate of a subtorus.

Proof. If X contains some translate of a subtorus, then it contains lots of entire curves and so X is
not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion there exists an entire
curve f : C → X such that ‖f ′‖ω 6 ‖f ′(0)‖ω = 1, where ω is the flat metric on W inherited from

Cn. This means that any lifting f̃ = (f̃ , . . . , f̃ν) : C→ Cn is such that

n∑
j=1

|f ′j |2 6 1.

Then, by Liouville’s theorem, f̃ ′ is constant and therefore f̃ is affine. But then the closure of the
image of f is a translate a+H of a connected (possibly real) subgroup H of W . We conclude that X
contains the analytic Zariski closure of a+H, namely a+HC where HC ⊂W is the smallest closed
complex subgroup of W containing H.

§2. Directed manifolds
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§2.A. Basic definitions concerning directed manifolds

Let us consider a pair (X,V ) consisting of a n-dimensional complex manifold X equipped with
a linear subspace V ⊂ TX : assuming X connected, this is by definition an irreducible closed analytic
subspace of the total space of TX such that each fiber Vx = V ∩TX,x is a vector subspace of TX,x; the
rank x 7→ dimC Vx is Zariski lower semicontinuous, and it may a priori jump. We will refer to such
a pair as being a (complex) directed manifold. A morphism Φ : (X,V ) → (Y,W ) in the category of
(complex) directed manifolds is a holomorphic map such that Φ∗(V ) ⊂W .

The rank r ∈ {0, 1, . . . , n} of V is by definition the dimension of Vx at a generic point. The
dimension may be larger at non generic points; this happens e.g. on X = Cn for the rank 1 linear
space V generated by the Euler vector field: Vz = C

∑
16j6n zj

∂
∂zj

for z 6= 0, and V0 = Cn. Our
philosophy is that directed manifolds are also useful to study the “absolute case”, i.e. the case V = TX ,
because there are certain fonctorial constructions which are quite natural in the category of directed
manifolds (see e.g. § 5, 6, 7). We think of directed manifolds as a kind of “relative situation”, covering
e.g. the case when V is the relative tangent space to a holomorphic map X → S. In general, we
can associate to V a sheaf V = O(V ) ⊂ O(TX) of holomorphic sections. These sections need not
generate the fibers of V at singular points, as one sees already in the case of the Euler vector field
when n > 2. However, V is a saturated subsheaf of O(TX), i.e. O(TX)/V has no torsion: in fact, if the
components of a section have a common divisorial component, one can always simplify this divisor
and produce a new section without any such common divisorial component. Instead of defining
directed manifolds by picking a linear space V , one could equivalently define them by considering
saturated coherent subsheaves V ⊂ O(TX). One could also take the dual viewpoint, looking at
arbitrary quotient morphisms Ω1

X → W = V∗ (and recovering V = W∗ = HomO(W,O), as V = V∗∗

is reflexive). We want to stress here that no assumption need be made on the Lie bracket tensor
[ , ] : V× V→ O(TX)/V, i.e. we do not assume any kind of integrability for V or W.

The singular set Sing(V ) is by definition the set of points where V is not locally free, it can also
be defined as the indeterminacy set of the (meromorphic) classifying map α : X K Gr(TX), z 7→ Vz
to the Grasmannian of r dimensional subspaces of TX . We thus have V|XrSing(V ) = α∗S where
S → Gr(TX) is the tautological subbundle of Gr(TX). The singular set Sing(V ) is an analytic subset
of X of codim > 2, hence V is always a holomorphic subbundle outside of codimension 2. Thanks
to this remark, one can most often treat linear spaces as vector bundles (possibly modulo passing to
the Zariski closure along Sing(V )).

§2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in §1 can be extended to the category of directed manifolds.

2.1. Definition. Let (X,V ) be a complex directed manifold.

(i) The Kobayashi-Royden infinitesimal metric of (X,V ) is the Finsler metric on V defined for any
x ∈ X and ξ ∈ Vx by

k(X,V )(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ, f ′(∆) ⊂ V

}
.

Here ∆ ⊂ C is the unit disk and the map f is an arbitrary holomorphic map which is tangent
to V , i.e., such that f ′(t) ∈ Vf(t) for all t ∈ ∆. We say that (X,V ) is infinitesimally hyperbolic if
k(X,V ) is positive definite on every fiber Vx and satisfies a uniform lower bound k(X,V )(ξ) > ε‖ξ‖ω
in terms of any smooth hermitian metric ω on X, when x describes a compact subset of X.

(ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of (X,V ) is the pseudometric
defined on all decomposable p-vectors ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpVx, 1 6 p 6 r = rankV , by

ep(X,V )(ξ) = inf
{
λ > 0 ; ∃f : Bp → X, f(0) = x, λf∗(τ0) = ξ, f∗(TBp) ⊂ V

}
where Bp is the unit ball in Cp and τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp is the unit p-vector of Cp at the
origin. We say that (X,V ) is infinitesimally p-measure hyperbolic if ep(X,V ) is positive definite on

every fiber ΛpVx and satisfies a locally uniform lower bound in terms of any smooth metric.
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If Φ : (X,V ) → (Y,W ) is a morphism of directed manifolds, it is immediate to check that we
have the monotonicity property

k(Y,W )(Φ∗ξ) 6 k(X,V )(ξ), ∀ξ ∈ V,(2.2)

ep(Y,W )(Φ∗ξ) 6 ep(X,V )(ξ), ∀ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpV.(2.2p)

The following proposition shows that virtually all reasonable definitions of the hyperbolicity property
are equivalent if X is compact (in particular, the additional assumption that there is locally uniform
lower bound for k(X,V ) is not needed). We merely say in that case that (X,V ) is hyperbolic.

2.3. Proposition. For an arbitrary directed manifold (X,V ), the Kobayashi-Royden infinitesimal
metric k(X,V ) is upper semicontinuous on the total space of V . If X is compact, (X,V ) is
infinitesimally hyperbolic if and only if there are no non constant entire curves g : C → X tangent
to V . In that case, k(X,V ) is a continuous (and positive definite) Finsler metric on V .

Proof. The proof is almost identical to the standard proof for kX , for which we refer to Royden
[Roy71, Roy74]. One of the main ingredients is that one can find a Stein neighborhood of the graph
of any analytic disk (thanks to a result of [Siu76], cf. also [Dem90a] for more general results). This
allows to obtain “free” small deformations of any given analytic disk, as there are many holomorphic
vector fields on a Stein manifold.

Another easy observation is that the concept of p-measure hyperbolicity gets weaker and weaker
as p increases (we leave it as an exercise to the reader, this is mostly just linear algebra).

2.4. Proposition. If (X,V ) is p-measure hyperbolic, then it is (p + 1)-measure hyperbolic for all
p ∈ {1, . . . , r − 1}.

Again, an argument extremely similar to the proof of 1.10 shows that relative hyperbolicity is an
open property.

2.5. Proposition. Let (X,V) → S be a holomorphic family of compact directed manifolds (by this,
we mean a proper holomorphic map X→ S together with an analytic linear subspace V ⊂ TX/S ⊂ TX
of the relative tangent bundle, defining a deformation (Xs, Vs)s∈S of the fibers). Then the set of s ∈ S
such that the fiber (Xs, Vs) is hyperbolic is open in S with respect to the Euclidean topology.

Let us mention here an impressive result proved by Marco Brunella [Bru03, Bru05, Bru06]
concerning the behavior of the Kobayashi metric on foliated varieties.

2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with a (possibly singular)
rank 1 holomorphic foliation which is not a foliation by rational curves. Then the canonical bundle
KF = F∗ of the foliation is pseudoeffective (i.e. the curvature of KF is > 0 in the sense of currents).

The proof is obtained by putting on KF precisely the metric induced by the Kobayashi metric
on the leaves whenever they are generically hyperbolic (i.e. covered by the unit disk). The case of
parabolic leaves (covered by C) has to be treated separately.

§2.C. Pluricanonical sheaves of a directed variety

Let (X,V ) be a directed projective manifold where V is possibly singular, and let r = rankV . If
µ : X̂ → X is a proper modification (a composition of blow-ups with smooth centers, say), we get a
directed manifold (X̂, V̂ ) by taking V̂ to be the closure of µ−1

∗ (V ′), where V ′ = V|X′ is the restriction
of V over a Zariski open set X ′ ⊂ X r Sing(V ) such that µ : µ−1(X ′) → X ′ is a biholomorphism.
We say that (X̂, V̂ ) is a modification of (X,V ) and write V̂ = µ∗V .

We will be interested in taking modifications realized by iterated blow-ups of certain nonsingular
subvarieties of the singular set Sing(V ), so as to eventually “improve” the singularities of V ; outside
of Sing(V ) the effect of blowing-up will be irrelevant. The canonical sheaf KV , resp. the pluricanonical
sheaf sequence K

[m]
V , will be defined here in several steps, using the concept of bounded pluricanonical

forms that was already introduced in [Dem11].
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2.7. Definition. For a directed pair (X,V ) with X nonsingular, we define bKV , resp. bK
[m]
V , for any

integer m > 0, to be the rank 1 analytic sheaves such that

bKV (U) = sheaf of locally bounded sections of OX
(
ΛrV ′∗

)
(U ∩X ′)

bK
[m]

V (U) = sheaf of locally bounded sections of OX
(
(ΛrV ′∗)⊗m

)
(U ∩X ′)

where r = rank(V ), X ′ = XrSing(V ), V ′ = V|X′ , and “locally bounded” means bounded with respect
to a smooth hermitian metric h on TX , on every set W ∩X ′ such that W is relatively compact in U .

In the trivial case r = 0, we simply set bK
[m]
V = OX for all m; clearly ECL(X,V ) = ∅ in that

case, so there is not much to say. The above definition of bK
[m]
V may look like an analytic one, but it

can easily be turned into an equivalent algebraic definition:

2.8. Proposition. Consider the natural morphism O(ΛrT ∗X) → O(ΛrV ∗) where r = rankV and
O(ΛrV ∗) is defined as the quotient of O(ΛrT ∗X) by r-forms that have zero restrictions to O(ΛrV ∗) on
X rSing(V ). The bidual LV = OX(ΛrV ∗)∗∗ is an invertible sheaf, and our natural morphism can be
written

(2.81) O(ΛrT ∗X)→ O(ΛrV ∗) = LV ⊗ JV ⊂ LV

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and the arrow on the
left is surjective by definition. Then

(2.82) bK
[m]

V = L⊗mV ⊗ JmV

where JmV is the integral closure of JmV in OX . In particular, bK
[m]
V is always a coherent sheaf.

Proof. Let (uk) be a set of generators of O(ΛrV ∗) obtained (say) as the images of a basis (dzI)|I|=r of
ΛrT ∗X in some local coordinates near a point x ∈ X. Write uk = gk` where ` is a local generator of LV
at x. Then JV = (gk) by definition. The boundedness condition expressed in Def. 2.7 means that we
take sections of the form f`⊗m where f is a holomorphic function on U ∩X ′ (and U a neighborhood
of x), such that

(2.83) |f | 6 C
(∑

|gk|
)m

for some constant C > 0. But then f extends holomorphically to U into a function that lies in the
integral closure J

m

V (it is well known that the latter is characterized analytically by condition (2.83)).
This proves Prop. 2.8.

2.9. Lemma. Let (X,V ) be a directed variety.

(a) For any modification µ : (X̂, V̂ ) → (X,V ), there are always well defined injective natural
morphisms of rank 1 sheaves

bK
[m]

V ↪→ µ∗
(
bK

[m]

V̂

)
↪→ L⊗mV .

(b) The direct image µ∗
(
bK

[m]

V̂

)
may only increase when we replace µ by a “higher” modification

µ̃ = µ′ ◦ µ : X̃ → X̂ → X and V̂ = µ∗V by Ṽ = µ̃∗V , i.e. there are injections

µ∗
(
bK

[m]

V̂

)
↪→ µ̃∗

(
bK

[m]

Ṽ

)
↪→ L⊗mV .

We refer to this property as the monotonicity principle.

Proof. (a) The existence of the first arrow is seen as follows: the differential µ∗ = dµ : V̂ → µ∗V is
smooth, hence bounded with respect to ambient hermitian metrics on X and X̂, and going to the
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duals reverses the arrows while preserving boundedness with respect to the metrics. We thus get an
arrow

µ∗(bV ?) ↪→ bV̂ ?.

By taking the top exterior power, followed by the m-th tensor product and the integral closure
of the ideals involved, we get an injective arrow µ∗

(
bK

[m]
V

)
↪→ bK

[m]

V̂
. Finally we apply the direct

image fonctor µ∗ and the canonical morphism F → µ∗µ
∗F to get the first inclusion morphism. The

second arrow comes from the fact that µ∗
(
bK

[m]
V

)
coincides with L⊗mV (and with det(V ∗)⊗m) on the

complement of the codimension 2 set S = Sing(V ) ∪ µ(Exc(µ)), and the fact that for every open
set U ⊂ X, sections of LV defined on U r S automatically extend to U by the Riemann extension
theorem, even without any boundedness assumption.

(b) Given µ′ : X̃ → X̂, we argue as in (a) that there is a bounded morphism dµ′ : Ṽ → V̂ .

By the monotonicity principle and the strong Noetherian property of coherent sheaves, we infer
that there exists a maximal direct image when µ : X̂ → X runs over all non singular modifications
of X. The following definition is thus legitimate.

2.10. Definition. We define the pluricanonical sheaves Km
V of (X,V ) to be the inductive limits

K
[m]
V := lim−→

µ

µ∗
(
bK

[m]

V̂

)
= max

µ
µ∗
(
bK

[m]

V̂

)
taken over the family of all modifications µ : (X̂, V̂ ) → (X,V ), with the trivial (filtering) partial
order. The canonical sheaf KV itself is defined to be the same as K

[1]
V . By construction, we have for

every m > 0 inclusions
bK

[m]

V ↪→ K
[m]
V ↪→ L⊗mV ,

and K
[m]
V = J

[m]
V · L⊗mV for a certain sequence of integrally closed ideals J

[m]
V ⊂ OX .

It is clear from this construction that K
[m]
V is birationally invariant, i.e. that K

[m]
V = µ∗(K

[m]
V ′ )

for every modification µ : (X ′, V ′) → (X,V ). Moreover the sequence is submultiplicative, i.e. there
are injections

K
[m1]
V ⊗K [m2]

V ↪→ K
[m1+m2]
V

for all non negative integers m1, m2 ; the corresponding sequence of ideals J
[m]
V is thus also

submultiplicative. By blowing up J
[m]
V and taking a desingularization X̂ of the blow-up, one can

always find a log-resolution of J
[m]
V , i.e. a modification µm : X̂m → X such that µ∗mJ

[m]
V ⊂ O

X̂m
is an

invertible ideal sheaf; it follows that

µ∗mK
[m]
V = µ∗mJ

[m]
V · (µ∗mLV )⊗m.

is an invertible sheaf on X̂m. We do not know whether µm can be taken independent of m, nor
whether the inductive limit introduced in Definition 2.10 is reached for a µ that is independent of m.
If such a “uniform” µ exists, it could be thought as a some sort of replacement for the resolution of
singularities of directed structures (which do not exist in the naive sense that V could be made non
singular). By means of a standard Serre-Siegel argument, one can easily show

2.11. Proposition. Let (X,V ) be a directed variety (X,V ) and F be an invertible sheaf on X. The
following properties are equivalent :

(a) there exists a constant c > 0 and m0 > 0 such that h0(X,K
[m]
V ⊗ F⊗m) > cmn for m > m0,

where n = dimX.

(b) the space of sections H0(X,K
[m]
V ⊗ F⊗m) provides a generic embedding of X in projective space

for sufficiently large m ;

(c) there exists m > 0 and a log-resolution µm : X̂m → X of K
[m]
V such that µ∗m(K

[m]
V ⊗ F⊗m) is a

big invertible sheaf on X̂m ;
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(d) there exists m > 0, a modification µ̃m : (X̃m, Ṽm) → (X,V ) and a log-resolution µ′m : X̂m → X̃

of bK
[m]

Ṽm
such that µ′ ∗m (bK

[m]

Ṽm
⊗ µ̃∗mF⊗m) is a big invertible sheaf on X̂m.

We will express any of these equivalent properties by saying that the twisted pluricanonical sheaf
sequence K•V ⊗ F • is big.

In the special case F = OX , we introduce

2.12. Definition. We say that (X,V ) is of general type if K•V is big.

2.13. Remarks.

(a) At this point, it is important to stress the difference between “our” canonical sheaf KV , and the
sheaf LV , which is defined by some experts as “the canonical sheaf of the foliation” defined by V ,
in the integable case. Notice that LV can also be defined as the direct image LV = i∗O(detV ∗)
associated with the injection i : X r Sing(V ) ↪→ X. The discrepancy already occurs with the rank 1
linear space V ⊂ TPnC consisting at each point z 6= 0 of the tangent to the line (0z) (so that necessarily
V0 = TPnC ,0). As a sheaf (and not as a linear space), i∗O(V ) is the invertible sheaf generated by
the vector field ξ =

∑
zj∂/∂zj on the affine open set Cn ⊂ PnC, and therefore LV := i∗O(V ∗) is

generated over Cn by the unique 1-form u such that u(ξ) = 1. Since ξ vanishes at 0, the generator
u is unbounded with respect to a smooth metric h0 on TPnC , and it is easily seen that KV is the non
invertible sheaf KV = LV ⊗mPnC ,0. We can make it invertible by considering the blow-up µ : X̃ → X
of X = PnC at 0, so that µ∗KV is isomorphic to µ∗LV ⊗ O

X̃
(−E) where E is the exceptional divisor.

The integral curves C of V are of course lines through 0, and when a standard parametrization is
used, their derivatives do not vanish at 0, while the sections of i∗O(V ) do – a first sign that i∗O(V )
and i∗O(V ∗) are the wrong objects to consider.

(b) When V is of rank 1 , we get a foliation by curves on X. If (X,V ) is of general type (i.e. K•V
is big), we will see in Prop. 4.9 that almost all leaves of V are hyperbolic, i.e. covered by the unit
disk. This would not be true if K•V was replaced by LV , In fact, the examples of pencils of conics
or cubic curves in P2 already produce this phenomenon, as we have seen in the introduction, right
after conjecture 0.4. For this second reason, we believe that K•V is a more appropriate concept of
“canonical sheaf” than LV is.

(c) When dimX = 2, a singularity of a (rank 1) foliation V is said to be simple if the linear part
of the local vector field generating O(V ) has two distinct eigenvalues λ 6= 0, µ 6= 0 such that the
quotient λ/µ is not a positive rational number. Seidenberg’s theorem [Sei68] says there always exists
a composition of blow-ups µ : X̂ → X such that V̂ = µ∗V only has simple singularities. It is easy to
check that the inductive limit canonical sheaf K

[m]
V = µ∗(

bK
[m]

V̂
) is reached whenever V̂ = µ∗V has

simple singularities.

§3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be related to other
properties of a more algebraic nature. Theorem 3.1 below is a first step in this direction.

3.1. Theorem. Let (X,V ) be a compact complex directed manifold and let
∑
ωjkdzj ⊗ dzk be a

Kähler metric on X, with associated positive (1, 1)-form ω = i
2

∑
ωjkdzj ∧ dzk, dω = 0. Consider

the following three properties, which may or not be satisfied by (X,V ) :

(i) (X,V ) is hyperbolic.

(ii) There exists ε > 0 such that every compact irreducible curve C ⊂ X tangent to V satisfies

−χ(C) = 2g(C)− 2 > ε degω(C)

where g(C) is the genus of the normalization C of C, χ(C) its Euler characteristic and
degω(C) =

∫
C
ω. (This property is of course independent of ω.)
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(iii)There does not exist any non constant holomorphic map Φ : Z → X from an abelian variety Z
to X such that Φ∗(TZ) ⊂ V .

Then (i)⇒ (ii)⇒ (iii).

Proof. (i)⇒ (ii). If (X,V ) is hyperbolic, there is a constant ε0 > 0 such that k(X,V )(ξ) > ε0‖ξ‖ω for

all ξ ∈ V . Now, let C ⊂ X be a compact irreducible curve tangent to V and let ν : C → C be its
normalization. As (X,V ) is hyperbolic, C cannot be a rational or elliptic curve, hence C admits the
disk as its universal covering ρ : ∆→ C.

The Kobayashi-Royden metric k∆ is the Finsler metric |dz|/(1 − |z|2) associated with the
Poincaré metric |dz|2/(1 − |z|2)2 on ∆, and kC is such that ρ∗kC = k∆. In other words, the

metric kC is induced by the unique hermitian metric on C of constant Gaussian curvature −4. If
σ∆ = i

2dz ∧ dz/(1 − |z|
2)2 and σC are the corresponding area measures, the Gauss-Bonnet formula

(integral of the curvature = 2π χ(C)) yields∫
C

dσC = −1

4

∫
C

curv(kC) = −π
2
χ(C)

On the other hand, if j : C → X is the inclusion, the monotonicity property (2.2) applied to the
holomorphic map j ◦ ν : C → X shows that

kC(t) > k(X,V )

(
(j ◦ ν)∗t

)
> ε0

∥∥(j ◦ ν)∗t
∥∥
ω
, ∀t ∈ TC .

From this, we infer dσC > ε2
0(j ◦ ν)∗ω, thus

−π
2
χ(C) =

∫
C

dσC > ε2
0

∫
C

(j ◦ ν)∗ω = ε2
0

∫
C

ω.

Property (ii) follows with ε = 2ε2
0/π.

(ii)⇒ (iii). First observe that (ii) excludes the existence of elliptic and rational curves tangent to V .
Assume that there is a non constant holomorphic map Φ : Z → X from an abelian variety Z to X
such that Φ∗(TZ) ⊂ V . We must have dim Φ(Z) > 2, otherwise Φ(Z) would be a curve covered by
images of holomorphic maps C → Φ(Z), and so Φ(Z) would be elliptic or rational, contradiction.
Select a sufficiently general curve Γ in Z (e.g., a curve obtained as an intersection of very generic
divisors in a given very ample linear system |L| in Z). Then all isogenies um : Z → Z, s 7→ ms map
Γ in a 1 : 1 way to curves um(Γ) ⊂ Z, except maybe for finitely many double points of um(Γ) (if
dimZ = 2). It follows that the normalization of um(Γ) is isomorphic to Γ. If Γ is general enough,
similar arguments show that the images

Cm := Φ(um(Γ)) ⊂ X

are also generically 1 : 1 images of Γ, thus Cm ' Γ and g(Cm) = g(Γ). We claim that Cm has
degree = Constm2. In fact ∫

Cm

ω =

∫
Γ

(Φ ◦ um)∗ω =

∫
Z

[Γ] ∧ u∗m(Φ∗ω),

and since every closed (1, 1)-form on a torus is cohomologous to a constant form, we have u∗m(Φ∗ω) ≡
m2Φ∗ω, thus degω Cm = m2 degω C1 and (2g(Cm)− 2)/ degω Cm → 0 contradiction.

3.2. Definition. We say that a projective directed manifold (X,V ) is “algebraically hyperbolic” if it
satisfies property 3.1 (ii), namely, if there exists ε > 0 such that every algebraic curve C ⊂ X tangent
to V satisfies

2g(C)− 2 > ε degω(C).

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic analogue of the openness
property.
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3.3. Proposition. Let (X,V) → S be an algebraic family of projective algebraic directed manifolds
(given by a projective morphism X → S). Then the set of t ∈ S such that the fiber (Xt, Vt) is
algebraically hyperbolic is open with respect to the “countable Zariski topology” of S (by definition,
this is the topology for which closed sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total space X itself
is quasi-projective. Let ω be the Kähler metric on X obtained by pulling back the Fubini-Study
metric via an embedding in a projective space. If integers d > 0, g > 0 are fixed, the set Ad,g of
t ∈ S such that Xt contains an algebraic 1-cycle C =

∑
mjCj tangent to Vt with degω(C) = d and

g(C) =
∑
mj g(Cj) 6 g is a closed algebraic subset of S (this follows from the existence of a relative

cycle space of curves of given degree, and from the fact that the geometric genus is Zariski lower
semicontinuous). Now, the set of non algebraically hyperbolic fibers is by definition⋂

k>0

⋃
2g−2<d/k

Ad,g.

This concludes the proof (of course, one has to know that the countable Zariski topology is actually
a topology, namely that the class of countable unions of algebraic sets is stable under arbitrary
intersections; this can be easily checked by an induction on dimension).

3.4. Remark. More explicit versions of the openness property have been dealt with in the literature.
H. Clemens ([Cle86] and [CKL88]) has shown that on a very generic surface of degree d > 5 in P3,
the curves of type (d, k) are of genus g > kd(d − 5)/2 (recall that a very generic surface X ⊂ P3 of
degree > 4 has Picard group generated by OX(1) thanks to the Noether-Lefschetz theorem, thus any
curve on the surface is a complete intersection with another hypersurface of degree k ; such a curve
is said to be of type (d, k) ; genericity is taken here in the sense of the countable Zariski topology).
Improving on this result of Clemens, Geng Xu [Xu94] has shown that every curve contained in a very
generic surface of degree d > 5 satisfies the sharp bound g > d(d− 3)/2− 2. This actually shows that
a very generic surface of degree d > 6 is algebraically hyperbolic. Although a very generic quintic
surface has no rational or elliptic curves, it seems to be unknown whether a (very) generic quintic
surface is algebraically hyperbolic in the sense of Definition 3.2.

In higher dimension, L. Ein ([Ein88], [Ein91]) proved that every subvariety of a very generic
hypersurface X ⊂ Pn+1 of degree d > 2n + 1 (n > 2), is of general type. This was reproved by a
simple efficient technique by C. Voisin in [Voi96].

3.5. Remark. It would be interesting to know whether algebraic hyperbolicity is open with respect
to the Euclidean topology ; still more interesting would be to know whether Kobayashi hyperbolicity
is open for the countable Zariski topology (of course, both properties would follow immediately if
one knew that algebraic hyperbolicity and Kobayashi hyperbolicity coincide, but they seem otherwise
highly non trivial to establish). The latter openness property has raised an important amount of work
around the following more particular question: is a (very) generic hypersurface X ⊂ Pn+1 of degree
d large enough (say d > 2n + 1) Kobayashi hyperbolic ? Again, “very generic” is to be taken here
in the sense of the countable Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] produced
examples of hyperbolic surfaces in P3 for all degrees d > 50, and Masuda-Noguchi [MaNo93] gave
examples of such hypersurfaces in Pn for arbitrary n > 2, of degree d > d0(n) large enough. The
hyperbolicity of complements PnrD of generic divisors may be inferred from the compact case; in fact
if D = {P (z0, . . . , zn) = 0} is a smooth generic divisor of degree d, one can look at the hypersurface

X =
{
zdn+1 = P (z0, . . . , zn)

}
⊂ Pn+1

which is a cyclic d : 1 covering of Pn. Since any holomorphic map f : C→ PnrD can be lifted to X,
it is clear that the hyperbolicity of X would imply the hyperbolicity of PnrD. The hyperbolicity of
complements of divisors in Pn has been investigated by many authors.

In the “absolute case” V = TX , it seems reasonable to expect that properties 3.1 (i), (ii) are
equivalent, i.e. that Kobayashi and algebraic hyperbolicity coincide. However, it was observed by
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Serge Cantat [Can00] that property 3.1 (iii) is not sufficient to imply the hyperbolicity of X, at least
when X is a general complex surface: a general (non algebraic) K3 surface is known to have no elliptic
curves and does not admit either any surjective map from an abelian variety; however such a surface
is not Kobayashi hyperbolic. We are uncertain about the sufficiency of 3.1 (iii) when X is assumed
to be projective.

§4. The Ahlfors-Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related with suitable
negativity properties of the curvature. For instance, it is a standard fact already observed in
Kobayashi [Kob70] that the negativity of TX (or the ampleness of T ∗X) implies the hyperbolicity
of X. There are many ways of improving or generalizing this result. We present here a few simple
examples of such generalizations.

§4.A. Exploiting curvature via potential theory

If (V, h) is a holomorphic vector bundle equipped with a smooth hermitian metric, we denote by
∇h = ∇′h +∇′′h the associated Chern connection and by ΘV,h = i

2π∇
2
h its Chern curvature tensor.

4.1. Proposition. Let (X,V ) be a compact directed manifold. Assume that V is non singular and
that V ∗ is ample. Then (X,V ) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to be ample if SmE
has enough global sections σ1, . . . , σN so as to generate 1-jets of sections at any point, when m is
large. One obtains a Finsler metric N on E∗ by putting

N(ξ) =
( ∑

16j6N

|σj(x) · ξm|2
)1/2m

, ξ ∈ E∗x,

and N is then a strictly plurisubharmonic function on the total space of E∗ minus the zero section
(in other words, the line bundle OP (E∗)(1) has a metric of positive curvature). By the ampleness
assumption on V ∗, we thus have a Finsler metric N on V which is strictly plurisubharmonic outside
the zero section. By the Brody lemma, if (X,V ) is not hyperbolic, there is a non constant entire
curve g : C → X tangent to V such that supC ‖g′‖ω 6 1 for some given hermitian metric ω on X.
Then N(g′) is a bounded subharmonic function on C which is strictly subharmonic on {g′ 6= 0}. This
is a contradiction, for any bounded subharmonic function on C must be constant.

§4.B. Ahlfors-Schwarz lemma

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors-Schwarz lemma
(see e.g. [Lang87]; we refer to [Dem95] for the generalized version presented here; the proof is merely
an application of the maximum principle plus a regularization argument).

4.2. Ahlfors-Schwarz lemma. Let γ(t) = γ0(t) i dt ∧ dt be a hermitian metric on ∆R where log γ0

is a subharmonic function such that i ∂∂ log γ0(t) > Aγ(t) in the sense of currents, for some positive
constant A. Then γ can be compared with the Poincaré metric of ∆R as follows:

γ(t) 6
2

A

R−2|dt|2

(1− |t|2/R2)2
.

More generally, let γ = i
∑
γjkdtj ∧ dtk be an almost everywhere positive hermitian form on the ball

B(0, R) ⊂ Cp, such that −Ricci(γ) := i ∂∂ log det γ > Aγ in the sense of currents, for some constant
A > 0 (this means in particular that det γ = det(γjk) is such that log det γ is plurisubharmonic).
Then the γ-volume form is controlled by the Poincaré volume form :

det(γ) 6
(p+ 1

AR2

)p 1

(1− |t|2/R2)p+1
.



18 J.-P. Demailly, Kobayashi and Green-Griffiths-Lang conjectures

4.C. Applications of the Ahlfors-Schwarz lemma to hyperbolicity

Let (X,V ) be a projective directed variety. We assume throughout this subsection that X is non
singular.

4.3. Proposition. Assume that V itself is non singular and that the dual bundle V ∗ is “very big” in
the following sense: there exists an ample line bundle L and a sufficiently large integer m such that
the global sections in H0(X,SmV ∗ ⊗ L−1) generate all fibers over X r Y , for some analytic subset
Y ( X. Then all entire curves f : C→ X tangent to V satisfy f(C) ⊂ Y .

Proof. Let σ1, . . . , σN ∈ H0(X,SmV ∗ ⊗ L−1) be a basis of sections generating SmV ∗ ⊗ L−1 over
X r Y . If f : C → X is tangent to V , we define a semipositive hermitian form γ(t) = γ0(t) |dt|2 on
C by putting

γ0(t) =
∑
‖σj(f(t)) · f ′(t)m‖2/mL−1

where ‖ ‖L denotes a hermitian metric with positive curvature on L. If f(C) 6⊂ Y , the form γ is not
identically 0 and we then find

i ∂∂ log γ0 >
2π

m
f∗ΘL

where ΘL is the curvature form. The positivity assumption combined with an obvious homogeneity
argument yield

2π

m
f∗ΘL > ε‖f ′(t)‖2ω |dt|2 > ε′ γ(t)

for any given hermitian metric ω on X. Now, for any t0 with γ0(t0) > 0, the Ahlfors-Schwarz lemma
shows that f can only exist on a disk D(t0, R) such that γ0(t0) 6 2

ε′R
−2, contradiction.

There are similar results for p-measure hyperbolicity, e.g.

4.4. Proposition. Assume that V is non singular and that ΛpV ∗ is ample. Then (X,V ) is
infinitesimally p-measure hyperbolic. More generally, assume that ΛpV ∗ is very big with base locus
contained in Y ( X (see 3.3). Then ep is non degenerate over X r Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on ΛpV which is
strictly plurisubharmonic outside the zero section. We select also a hermitian metric ω on X.
For any holomorphic map f : Bp → X we define a semipositive hermitian metric γ̃ on Bp by
putting γ̃ = f∗ω. Since ω need not have any good curvature estimate, we introduce the function
δ(t) = Nf(t)(Λ

pf ′(t) · τ0), where τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp, and select a metric γ = λγ̃ conformal to γ̃
such that det γ = δ. Then λp is equal to the ratio N/Λpω on the element Λpf ′(t) · τ0 ∈ ΛpVf(t). Since
X is compact, it is clear that the conformal factor λ is bounded by an absolute constant independent
of f . From the curvature assumption we then get

i ∂∂ log det γ = i ∂∂ log δ > (f,Λpf ′)∗(i ∂∂ logN) > εf∗ω > ε′ γ.

By the Ahlfors-Schwarz lemma we infer that det γ(0) 6 C for some constant C, i.e., Nf(0)(Λ
pf ′(0) ·

τ0) 6 C ′. This means that the Kobayashi-Eisenman pseudometric ep(X,V ) is positive definite

everywhere and uniformly bounded from below. In the case ΛpV ∗ is very big with base locus Y ,
we use essentially the same arguments, but we then only have N being positive definite on X r Y .

4.5. Corollary ([Gri71], KobO71]). If X is a projective variety of general type, the Kobayashi-
Eisenmann volume form en, n = dimX, can degenerate only along a proper algebraic set Y ( X.

The converse of Corollary 4.5 is expected to be true, namely, the generic non degeneracy of en

should imply that X is of general type; this is only known for surfaces (see [GrGr79] and [MoMu82]):

4.6. General Type Conjecture (Green-Griffiths [GrGr79]). A projective algebraic variety X is
measure hyperbolic (i.e. en degenerates only along a proper algebraic subvariety) if and only if X is
of general type.
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An essential step in the proof of the necessity of having general type subvarieties would be to
show that manifolds of Kodaira dimension 0 (say, Calabi-Yau manifolds and holomorphic symplectic
manifolds, all of which have c1(X) = 0) are not measure hyperbolic, e.g. by exhibiting enough families
of curves Cs,` covering X such that (2g(Cs,`)− 2)/ deg(Cs,`)→ 0.

4.7. Conjectural corollary (Lang). A projective algebraic variety X is hyperbolic if and only if all
its algebraic subvarieties (including X itself ) are of general type.

4.8. Remark. The GGL conjecture implies the “if” part of 4.7, and the General Type Conjecture 4.6
implies the “only if” part of 4.7. In fact if the GGL conjecture holds and every subvariety Y of X
is of general type, then it is easy to infer that every entire curve f : C → X has to be constant
by induction on dimX, because in fact f maps C to a certain subvariety Y ( X. Therefore X is
hyperbolic. Conversely, if Conjecture 4.6 holds and X has a certain subvariety Y which is not of
general type, then Y is not measure hyperbolic. However Proposition 2.4 shows that hyperbolicity
implies measure hyperbolicity. Therefore Y is not hyperbolic and so X itself is not hyperbolic either.

We end this section by another easy application of the Ahlfors-Schwarz lemma for the case of
rank 1 (possibly singular) foliations.

4.9. Proposition. Let (X,V ) be a projective directed manifold. Assume that V is of rank 1 and that
K•V is big. Then S be the union of the singular set Sing(V ) and of the base locus of K•V (namely
the intersection of the images µm(Bm) of the base loci Bm of the invertible sheaves µ∗mK

[m]
V , m > 0,

obtained by taking log-resolutions). Then ECL(X,V ) ⊂ S, in other words, all non hyperbolic leaves
of V are contained in S.

Proof. By 2.11 (d), we can take a blow-up µ̃m : X̃m → X and a log-resolution µ′m : X̂m → X̃m such

that Fm = µ′ ∗m (bK
[m]

Ṽm
) is a big invertible sheaf. This means that (after possibly increasing m) we can

find sections σ1, . . . σN ∈ H0(X̂m, Fm) that define a (singular) hermitian metric with strictly positive
curvature on Fm, cf. Def. 8.1 below. Now, for every entire curve f : (C, TC)→ (X,V ) not contained
in S, we can choose m and a lifting f̃ : (C, TC)→ (X̃, Ṽ ) such that f̃(C) is not contained in the base
locus of our sections. Again, we can define a semipositive hermitian form γ(t) = γ0(t) |dt|2 on C by
putting

γ0(t) =
∑
‖σj(f(t)) · f ′(t)m‖2/mL−1 .

Then γ is not identically zero and we have i∂∂ log γ0 > εγ by the strict postivity of the curvature.
One should also notice that γ0 is locally bounded from above by the assumption that the σj ’s come
from locally bounded sections on X̃m. This contradicts the Ahlfors-Schwarz lemma, and thus it cannot
happen that f(C) 6⊂ S.

§5. Projectivization of a directed manifold

§5.A. The 1-jet fonctor

The basic idea is to introduce a fonctorial process which produces a new complex directed manifold
(X̃, Ṽ ) from a given one (X,V ). The new structure (X̃, Ṽ ) plays the role of a space of 1-jets over X.
Fisrt assume that V is non singular. We let

X̃ = P (V ), Ṽ ⊂ TX̃

be the projectivized bundle of lines of V , together with a subbundle Ṽ of TX̃ defined as follows: for
every point (x, [v]) ∈ X̃ associated with a vector v ∈ Vx r {0},

(5.1) Ṽ (x,[v]) =
{
ξ ∈ TX̃, (x,[v]) ; π∗ξ ∈ Cv

}
, Cv ⊂ Vx ⊂ TX,x,

where π : X̃ = P (V ) → X is the natural projection and π∗ : TX̃ → π∗TX is its differential. On
X̃ = P (V ) we have a tautological line bundle OX̃(−1) ⊂ π∗V such that OX̃(−1)(x,[v]) = Cv. The
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bundle Ṽ is characterized by the two exact sequences

0 −→ TX̃/X −→ Ṽ
π∗−→ OX̃(−1) −→ 0,(5.2)

0 −→ OX̃ −→ π∗V ⊗ OX̃(1) −→ TX̃/X −→ 0,(5.2′)

where TX̃/X denotes the relative tangent bundle of the fibration π : X̃ → X. The first sequence is a
direct consequence of the definition of Ṽ , whereas the second is a relative version of the Euler exact
sequence describing the tangent bundle of the fibers P (Vx). From these exact sequences we infer

(5.3) dim X̃ = n+ r − 1, rank Ṽ = rankV = r,

and by taking determinants we find det(TX̃/X) = π∗ detV ⊗ OX̃(r), thus

(5.4) det Ṽ = π∗ detV ⊗ OX̃(r − 1).

By definition, π : (X̃, Ṽ ) → (X,V ) is a morphism of complex directed manifolds. Clearly, our
construction is fonctorial, i.e., for every morphism of directed manifolds Φ : (X,V ) → (Y,W ), there
is a commutative diagram

(5.5)

(X̃, Ṽ )
π−→ (X,V )

Φ̃y yΦ

(Ỹ , W̃ )
π−→ (Y,W )

where the left vertical arrow is the meromorphic map P (V ) K P (W ) induced by the differential
Φ∗ : V → Φ∗W (Φ̃ is actually holomorphic if Φ∗ : V → Φ∗W is injective).

§5.B. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f : ∆R → X parametrized by the disk ∆R of
centre 0 and radius R in the complex plane, and that f is a tangent curve of the directed manifold,
i.e., f ′(t) ∈ Vf(t) for every t ∈ ∆R. If f is non constant, there is a well defined and unique tangent
line [f ′(t)] for every t, even at stationary points, and the map

(5.6) f̃ : ∆R → X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t− t0)su(t) with s ∈ N∗ and u(t0) 6= 0,
and we define the tangent line at t0 to be [u(t0)], hence f̃(t) = (f(t), [u(t)]) near t0 ; even for t = t0,
we still denote [f ′(t0)] = [u(t0)] for simplicity of notation). By definition f ′(t) ∈ OX̃(−1)f̃(t) = Cu(t),
hence the derivative f ′ defines a section

(5.7) f ′ : T∆R
→ f̃∗OX̃(−1).

Moreover π ◦ f̃ = f , therefore

π∗f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ (f(t),u(t)) = Ṽ f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical lifting of f to X̃.
Conversely, if g : ∆R → X̃ is a tangent trajectory of (X̃, Ṽ ), then by definition of Ṽ we see that
f = π ◦ g is a tangent trajectory of (X,V ) and that g = f̃ (unless g is contained in a vertical fiber
P (Vx), in which case f is constant).

For any point x0 ∈ X, there are local coordinates (z1, . . . , zn) on a neighborhood Ω of x0 such
that the fibers (Vz)z∈Ω can be defined by linear equations

(5.8) Vz =
{
ξ =

∑
16j6n

ξj
∂

∂zj
; ξj =

∑
16k6r

ajk(z)ξk for j = r + 1, . . . , n
}
,
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where (ajk) is a holomorphic (n − r) × r matrix. It follows that a vector ξ ∈ Vz is completely
determined by its first r components (ξ1, . . . , ξr), and the affine chart ξj 6= 0 of P (V )�Ω can be
described by the coordinate system

(5.9)
(
z1, . . . , zn;

ξ1
ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξr
ξj

)
.

Let f ' (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn) (we suppose here R so
small that f(∆R) ⊂ Ω). It should be observed that f is uniquely determined by its initial value x and
by the first r components (f1, . . . , fr). Indeed, as f ′(t) ∈ Vf(t) , we can recover the other components
by integrating the system of ordinary differential equations

(5.10) f ′j(t) =
∑

16k6r

ajk(f(t))f ′k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0) the multiplicity

of f at any point t0 ∈ ∆R, that is, m(f, t0) is the smallest integer m ∈ N∗ such that f
(m)
j (t0) 6= 0

for some j. By (5.10), we can always suppose j ∈ {1, . . . , r}, for example f
(m)
r (t0) 6= 0. Then

f ′(t) = (t− t0)m−1u(t) with ur(t0) 6= 0, and the lifting f̃ is described in the coordinates of the affine
chart ξr 6= 0 of P (V )�Ω by

(5.11) f̃ '
(
f1, . . . , fn;

f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
.

§5.C. Curvature properties of the 1-jet bundle

We end this section with a few curvature computations. Assume that V is equipped with a smooth
hermitian metric h. Denote by ∇h = ∇′h+∇′′h the associated Chern connection and by ΘV,h = i

2π∇
2
h

its Chern curvature tensor. For every point x0 ∈ X, there exists a “normalized” holomorphic frame
(eλ)16λ6r on a neighborhood of x0, such that

(5.12) 〈eλ, eµ〉h = δλµ −
∑

16j,k6n

cjkλµzjzk +O(|z|3),

with respect to any holomorphic coordinate system (z1, . . . , zn) centered at x0. A computation of
d′〈eλ, eµ〉h = 〈∇′heλ, eµ〉h and ∇2

heλ = d′′∇′heλ then gives

∇′heλ = −
∑
j,k,µ

cjkλµzk dzj ⊗ eµ +O(|z|2),

ΘV,h(x0) =
i

2π

∑
j,k,λ,µ

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ.(5.13)

The above curvature tensor can also be viewed as a hermitian form on TX⊗V . In fact, one associates
with ΘV,h the hermitian form 〈ΘV,h〉 on TX ⊗ V defined for all (ζ, v) ∈ TX ×X V by

(5.14) 〈ΘV,h〉(ζ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµζjζkvλvµ.

Let h1 be the hermitian metric on the tautological line bundle OP (V )(−1) ⊂ π∗V induced by
the metric h of V . We compute the curvature (1, 1)-form Θh1

(OP (V )(−1)) at an arbitrary point
(x0, [v0]) ∈ P (V ), in terms of ΘV,h. For simplicity, we suppose that the frame (eλ)16λ6r has been
chosen in such a way that [er(x0)] = [v0] ∈ P (V ) and |v0|h = 1. We get holomorphic local coordinates
(z1, . . . , zn ; ξ1, . . . , ξr−1) on a neighborhood of (x0, [v0]) in P (V ) by assigning

(z1, . . . , zn ; ξ1, . . . , ξr−1) 7−→ (z, [ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)]) ∈ P (V ).
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Then the function
η(z, ξ) = ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)

defines a holomorphic section of OP (V )(−1) in a neighborhood of (x0, [v0]). By using the expansion
(5.12) for h, we find

|η|2h1
= |η|2h = 1 + |ξ|2 −

∑
16j,k6n

cjkrrzjzk +O((|z|+ |ξ|)3),

Θh1
(OP (V )(−1))(x0,[v0]) = − i

2π
∂∂ log |η|2h1

=
i

2π

( ∑
16j,k6n

cjkrrdzj ∧ dzk −
∑

16λ6r−1

dξλ ∧ dξλ
)
.(5.15)

§6. Jets of curves and Semple jet bundles

§6.A. Semple tower of non singular directed varieties

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths [GrGr79], we let
Jk → X be the bundle of k-jets of germs of parametrized curves in X, that is, the set of equivalence
classes of holomorphic maps f : (C, 0)→ (X,x), with the equivalence relation f ∼ g if and only if all
derivatives f (j)(0) = g(j)(0) coincide for 0 6 j 6 k, when computed in some local coordinate system
of X near x. The projection map Jk → X is simply f 7→ f(0). If (z1, . . . , zn) are local holomorphic
coordinates on an open set Ω ⊂ X, the elements f of any fiber Jk,x, x ∈ Ω, can be seen as Cn-valued
maps

f = (f1, . . . , fn) : (C, 0)→ Ω ⊂ Cn,

and they are completetely determined by their Taylor expansion of order k at t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber Jk,x can thus be identified with the set of k-tuples of vectors
(ξ1, . . . , ξk) = (f ′(0), . . . , f (k)(0)) ∈ (Cn)k. It follows that Jk is a holomorphic fiber bundle with
typical fiber (Cn)k over X (however, Jk is not a vector bundle for k > 2, because of the nonlinearity
of coordinate changes; see formula (7.2) in § 7).

According to the philosophy developed throughout this paper, we describe the concept of jet
bundle in the general situation of complex directed manifolds. If X is equipped with a holomorphic
subbundle V ⊂ TX , we associate to V a k-jet bundle JkV as follows, assuming V non singular
throughout subsection 6.A.

6.1. Definition. Let (X,V ) be a complex directed manifold. We define JkV → X to be the bundle
of k-jets of curves f : (C, 0)→ X which are tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t in a
neighborhood of 0, together with the projection map f 7→ f(0) onto X.

It is easy to check that JkV is actually a subbundle of Jk. In fact, by using (5.8) and (5.10), we
see that the fibers JkVx are parametrized by(

(f ′1(0), . . . , f ′r(0)); (f ′′1 (0), . . . , f ′′r (0)); . . . ; (f
(k)
1 (0), . . . , f (k)

r (0))
)
∈ (Cr)k

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of Jk. Alternatively, we can pick a local
holomorphic connection ∇ on V , defined on some open set Ω ⊂ X, and compute inductively the
successive derivatives

∇f = f ′, ∇jf = ∇f ′(∇j−1f)

with respect to ∇ along the cure t 7→ f(t). Then

(ξ1, ξ2, . . . , ξk) = (∇f(0),∇2f(0), . . . ,∇kf(0)) ∈ V ⊕kx
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provides a “trivialization” JkV|Ω ' V ⊕k|Ω . This identification depends of course on the choice of ∇
and cannot be defined globally in general (unless we are in the rare situation where V has a global
holomorphic connection).

We now describe a convenient process for constructing “projectivized jet bundles”, which will
later appear as natural quotients of our jet bundles JkV (or rather, as suitable desingularized
compactifications of the quotients). Such spaces have already been considered since a long time,
at least in the special case X = P2, V = TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they
have been mostly used as a tool for establishing enumerative formulas dealing with the order of
contact of plane curves (see [Coll88], [CoKe94]); the article [ASS92] is also concerned with such
generalizations of jet bundles, as well as [LaTh96] by Laksov and Thorup.

We define inductively the projectivized k-jet bundle Xk (or Semple k-jet bundle) and the associated
subbundle Vk ⊂ TXk by

(6.2) (X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽ k−1).

In other words, (Xk, Vk) is obtained from (X,V ) by iterating k-times the lifting construction
(X,V ) 7→ (X̃, Ṽ ) described in § 5. By (5.2–5.7), we find

(6.3) dimXk = n+ k(r − 1), rankVk = r,

together with exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk)∗−−−−→ OXk(−1) −→ 0,(6.4)

0 −→ OXk −→ π∗kVk−1 ⊗ OXk(1) −→ TXk/Xk−1
−→ 0.(6.4′)

where πk is the natural projection πk : Xk → Xk−1 and (πk)∗ its differential. Formula (5.4) yields

(6.5) detVk = π∗k detVk−1 ⊗ OXk(r − 1).

Every non constant tangent trajectory f : ∆R → X of (X,V ) lifts to a well defined and unique tangent
trajectory f[k] : ∆R → Xk of (Xk, Vk). Moreover, the derivative f ′[k−1] gives rise to a section

(6.6) f ′[k−1] : T∆R
→ f∗[k]OXk(−1).

In coordinates, one can compute f[k] in terms of its components in the various affine charts (5.9)
occurring at each step: we get inductively

(6.7) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′s1
F ′sr

, . . . ,
F ′sr−1

F ′sr

)
where N = n+ k(r − 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k > 1, {s1, . . . , sr} contains the last r − 1
indices of {1, . . . , N} corresponding to the “vertical” components of the projection Xk → Xk−1, and
in general, sr is an index such that m(Fsr , 0) = m(f[k], 0), that is, Fsr has the smallest vanishing
order among all components Fs (sr may be vertical or not, and the choice of {s1, . . . , sr} need not
be unique).

By definition, there is a canonical injection OXk(−1) ↪→ π∗kVk−1, and a composition with the
projection (πk−1)∗ (analogue for order k− 1 of the arrow (πk)∗ in sequence (6.4)) yields for all k > 2
a canonical line bundle morphism

(6.8) OXk(−1) ↪−→ π∗kVk−1
(πk)∗(πk−1)∗−−−−−−−→ π∗kOXk−1

(−1),

which admits precisely Dk = P (TXk−1/Xk−2
) ⊂ P (Vk−1) = Xk as its zero divisor (clearly, Dk is a

hyperplane subbundle of Xk). Hence we find

(6.9) OXk(1) = π∗kOXk−1
(1)⊗ O(Dk).
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Now, we consider the composition of projections

(6.10) πj,k = πj+1 ◦ · · · ◦ πk−1 ◦ πk : Xk −→ Xj .

Then π0,k : Xk → X0 = X is a locally trivial holomorphic fiber bundle over X, and the fibers
Xk,x = π−1

0,k(x) are k-stage towers of Pr−1-bundles. Since we have (in both directions) morphisms
(Cr, TCr ) ↔ (X,V ) of directed manifolds which are bijective on the level of bundle morphisms, the
fibers are all isomorphic to a “universal” nonsingular projective algebraic variety of dimension k(r−1)
which we will denote by Rr,k ; it is not hard to see that Rr,k is rational (as will indeed follow from
the proof of Theorem 7.11 below).

§6.B. Semple tower of singular directed varieties

Let (X,V ) be a directed variety. We assume X non singular, but here V is allowed to have
singularities. We are going to give a natural definition of the Semple tower(Xk, Vk) in that case.

Let us take X ′ = X r Sing(V ) and V ′ = V|X′ . By subsection 6.1, we have a well defined
Semple tower (X ′k, V

′
k) over the Zariski open set X ′. We also have an “absolute” Semple tower

(Xa
k , V

a
k ) obtained from (Xa

0 , V
a
0 ) = (X,TX), which is non singular. The injection V ′ ⊂ TX induces

by fonctoriality (cf. (5.5)) an injection

(6.11) (X ′k, V
′
k) ⊂ (Xa

k , V
a
k )

6.12. Definition. Let (X,V ) be a directed variety, with X non singular. When Sing(V ) 6= ∅, we
define Xk and Vk to be the respective closures of X ′k, V ′k associated with X ′ = X r Sing(V ) and
V ′ = V|X′ , where the closure is taken in the nonsingular absolute Semple tower (Xa

k , V
a
k ) obtained

from (Xa
0 , V

a
0 ) = (X,TX).

We leave the reader check that the following fonctoriality property still holds.

6.13. Fonctoriality. If Φ : (X,V ) → (Y,W ) is a morphism of directed varieties such that
Φ∗ : TX → Φ∗TY is injective (i.e. Φ is an immersion ), then there is a corresponding natural morphism
Φ[k] : (Xk, Vk)→ (Yk,Wk) at the level of Semple bundles. If one merely assumes that the differential
Φ∗ : V → Φ∗W is non zero, there is still a natural meromorphic map Φ[k] : (Xk, Vk) > (Yk,Wk) for
all k > 0.

In case V is singular, the k-th stage Xk of the Semple tower will also be singular, but we can
replace (Xk, Vk) by a suitable modification (X̂k, V̂ k) if we want to work with a nonsingular model X̂k

of Xk. The exceptional set of X̂k over Xk can be chosen to lie above Sing(V ) ⊂ X, and proceeding
inductively with respect to k, we can also arrange the modifications in such a way that we get a tower
structure (X̂k+1, V̂k+1)→ (X̂k, V̂k) ; however, in general, it will not be possible to achieve that V̂k is
a subbundle of T

X̂k
.

§7. Jet differentials

§7.A. Green-Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green-Griffiths [GrGr79]. The
goal is to provide an intrinsic geometric description of holomorphic differential equations that a germ
of curve f : (C, 0) → X may satisfy. In the sequel, we fix a directed manifold (X,V ) and suppose
implicitly that all germs of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group of germs
of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j > 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk is a k-dimensional
nilpotent complex Lie group, which admits a natural fiberwise right action on JkV . The action
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consists of reparametrizing k-jets of maps f : (C, 0) → X by a biholomorphic change of parameter
ϕ : (C, 0)→ (C, 0), that is, (f, ϕ) 7→ f ◦ ϕ. There is an exact sequence of groups

1→ G′k → Gk → C∗ → 1

where Gk → C∗ is the obvious morphism ϕ 7→ ϕ′(0), and G′k = [Gk,Gk] is the group of k-jets of
biholomorphisms tangent to the identity. Moreover, the subgroup H ' C∗ of homotheties ϕ(t) = λt
is a (non normal) subgroup of Gk, and we have a semidirect decomposition Gk = G′k n H. The
corresponding action on k-jets is described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Following [GrGr79], we introduce the vector bundle EGG
k,mV

∗ → X whose fibers are complex

valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV , of weighted degree m with respect to the
C∗ action defined by H, that is, such that

(7.1) Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV . Here we view (f ′, f ′′, . . . , f (k)) as indeterminates with
components (

(f ′1, . . . , f
′
r); (f ′′1 , . . . , f

′′
r ); . . . ; (f

(k)
1 , . . . , f (k)

r )
)
∈ (Cr)k.

Notice that the concept of polynomial on the fibers of JkV makes sense, for all coordinate changes
z 7→ w = Ψ(z) on X induce polynomial transition automorphisms on the fibers of JkV , given by a
formula

(7.2) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑
s=2

∑
j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))

with suitable integer constants cj1...js (this is easily checked by induction on s). In the “absolute
case” V = TX , we simply write EGG

k,mT
∗
X = EGG

k,m. If V ⊂W ⊂ TX are holomorphic subbundles, there
are natural inclusions

JkV ⊂ JkW ⊂ Jk, Xk ⊂ PkW ⊂ Pk.

The restriction morphisms induce surjective arrows

EGG
k,m → EGG

k,mW
∗ → EGG

k,mV
∗,

in particular EGG
k,mV

∗ can be seen as a quotient of EGG
k,m. (The notation V ∗ is used here to make the

contravariance property implicit from the notation). Another useful consequence of these inclusions
is that one can extend the definition of JkV and Xk to the case where V is an arbitrary linear space,
simply by taking the closure of JkVXrSing(V ) and Xk|XrSing(V ) in the smooth bundles Jk and Pk,
respectively.

If Q ∈ EGG
k,mV

∗ is decomposed into multihomogeneous components of multidegree (`1, `2, . . . , `k)

in f ′, f ′′, . . . , f (k) (the decomposition is of course coordinate dependent), these multidegrees must
satisfy the relation

`1 + 2`2 + · · ·+ k`k = m.

The bundle EGG
k,mV

∗ will be called the bundle of jet differentials of order k and weighted degree m.

It is clear from (7.2) that a coordinate change f 7→ Ψ ◦ f transforms every monomial (f (•))` =
(f ′)`1(f ′′)`2 · · · (f (k))`k of partial weighted degree |`|s := `1 + 2`2 + · · · + s`s, 1 6 s 6 k, into a
polynomial ((Ψ ◦ f)(•))` in (f ′, f ′′, . . . , f (k)) which has the same partial weighted degree of order s
if `s+1 = · · · = `k = 0, and a larger or equal partial degree of order s otherwise. Hence, for each
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s = 1, . . . , k, we get a well defined (i.e., coordinate invariant) decreasing filtration F •s on EGG
k,mV

∗ as
follows:

(7.3) F ps (EGG
k,mV

∗) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV
∗ involving

only monomials (f (•))` with |`|s > p

}
, ∀p ∈ N.

The graded terms Grpk−1(EGG
k,mV

∗) associated with the filtration F pk−1(EGG
k,mV

∗) are precisely the

homogeneous polynomials Q(f ′, . . . , f (k)) whose monomials (f•)` all have partial weighted degree
|`|k−1 = p (hence their degree `k in f (k) is such that m − p = k`k, and Grpk−1(EGG

k,mV
∗) = 0 unless

k|m − p). The transition automorphisms of the graded bundle are induced by coordinate changes
f 7→ Ψ ◦ f , and they are described by substituting the arguments of Q(f ′, . . . , f (k)) according to
formula (7.2), namely f (j) 7→ (Ψ ◦ f)(j) for j < k, and f (k) 7→ Ψ′(f) ◦ f (k) for j = k (when j = k,
the other terms fall in the next stage F p+1

k−1 of the filtration). Therefore f (k) behaves as an element
of V ⊂ TX under coordinate changes. We thus find

(7.4) Gm−k`kk−1 (EGG
k,mV

∗) = EGG
k−1,m−k`kV

∗ ⊗ S`kV ∗.

Combining all filtrations F •s together, we find inductively a filtration F • on EGG
k,mV

∗ such that the
graded terms are

(7.5) Gr`(EGG
k,mV

∗) = S`1V ∗ ⊗ S`2V ∗ ⊗ · · · ⊗ S`kV ∗, ` ∈ Nk, |`|k = m.

The bundles EGG
k,mV

∗ have other interesting properties. In fact,

EGG
k,• V

∗ :=
⊕
m>0

EGG
k,mV

∗

is in a natural way a bundle of graded algebras (the product is obtained simply by taking the
product of polynomials). There are natural inclusions EGG

k,• V
∗ ⊂ EGG

k+1,•V
∗ of algebras, hence

EGG
∞,•V

∗ =
⋃
k>0E

GG
k,• V

∗ is also an algebra. Moreover, the sheaf of holomorphic sections O(EGG
∞,•V

∗)

admits a canonical derivation ∇GG given by a collection of C-linear maps

∇GG : O(EGG
k,mV

∗)→ O(EGG
k+1,m+1V

∗),

constructed in the following way. A holomorphic section of EGG
k,mV

∗ on a coordinate open set Ω ⊂ X
can be seen as a differential operator on the space of germs f : (C, 0)→ Ω of the form

(7.6) Q(f) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(f) (f ′)α1(f ′′)α2 · · · (f (k))αk

in which the coefficients aα1...αk are holomorphic functions on Ω. Then ∇Q is given by the formal
derivative (∇Q)(f)(t) = d(Q(f))/dt with respect to the 1-dimensional parameter t in f(t). For
example, in dimension 2, if Q ∈ H0(Ω,O(EGG

2,4 )) is the section of weighted degree 4

Q(f) = a(f1, f2) f ′31 f
′
2 + b(f1, f2) f ′′21 ,

we find that ∇Q ∈ H0(Ω,O(EGG
3,5 )) is given by

(∇Q)(f) =
∂a

∂z1
(f1, f2) f ′41 f

′
2 +

∂a

∂z2
(f1, f2) f ′31 f

′2
2 +

∂b

∂z1
(f1, f2) f ′1f

′′2
1

+
∂b

∂z2
(f1, f2) f ′2f

′′2
1 + a(f1, f2)

(
3f ′21 f

′′
1 f
′
2 + f ′31 f

′′
2 ) + b(f1, f2) 2f ′′1 f

′′′
1 .

Associated with the graded algebra bundle EGG
k,• V

∗, we have an analytic fiber bundle

(7.7) XGG
k := Proj(EGG

k,• V
∗) = (JkV r {0})/C∗
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over X, which has weighted projective spaces P(1[r], 2[r], . . . , k[r]) as fibers (these weighted projective
spaces are singular for k > 1, but they only have quotient singularities, see [Dol81] ; here JkV r {0}
is the set of non constant jets of order k ; we refer e.g. to Hartshorne’s book [Har77] for a definition of
the Proj fonctor). As such, it possesses a canonical sheaf OXGG

k
(1) such that OXGG

k
(m) is invertible

when m is a multiple of lcm(1, 2, . . . , k). Under the natural projection πk : XGG
k → X, the direct

image (πk)∗OXGG
k

(m) coincides with polynomials

(7.8) P (z ; ξ1, . . . , ξk) =
∑

α`∈Nr, 16`6k
aα1...αk(z) ξα1

1 . . . ξαkk

of weighted degree |α1| + 2|α2| + . . . + k|αk| = m on JkV with holomorphic coefficients; in other
words, we obtain precisely the sheaf of sections of the bundle EGG

k,mV
∗ of jet differentials of order k

and degree m.

7.9. Proposition. By construction, if πk : XGG
k → X is the natural projection, we have the direct

image formula
(πk)∗OXGG

k
(m) = O(EGG

k,mV
∗)

for all k and m.

§7.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles (JkV r {0})/C∗ themselves,
but rather on their quotients (JkV r {0})/Gk (would such nice complex space quotients exist!). We
will see that the Semple bundle Xk constructed in § 6 plays the role of such a quotient. First we
introduce a canonical bundle subalgebra of EGG

k,• V
∗.

7.10. Definition. We introduce a subbundle Ek,mV
∗ ⊂ EGG

k,mV
∗, called the bundle of invariant jet

differentials of order k and degree m, defined as follows: Ek,mV
∗ is the set of polynomial differential

operators Q(f ′, f ′′, . . . , f (k)) which are invariant under arbitrary changes of parametrization, i.e., for
every ϕ ∈ Gk

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

Alternatively, Ek,mV
∗ = (EGG

k,mV
∗)G

′
k is the set of invariants of EGG

k,mV
∗ under the action of G′k.

Clearly, E∞,•V
∗ =

⋃
k>0

⊕
m>0Ek,mV

∗ is a subalgebra of EGG
k,mV

∗ (observe however that this algebra

is not invariant under the derivation ∇GG, since e.g. f ′′j = ∇GGfj is not an invariant polynomial).

In addition to this, there are natural induced filtrations F ps (Ek,mV
∗) = Ek,mV

∗ ∩ F ps (EGG
k,mV

∗) (all
locally trivial over X). These induced filtrations will play an important role later on.

7.11. Theorem. Suppose that V has rank r > 2. Let π0,k : Xk −→ X be the Semple jet bundles
constructed in section 6, and let JkV

reg be the bundle of regular k-jets of maps f : (C, 0) → X, that
is, jets f such that f ′(0) 6= 0.

(i) The quotient JkV
reg/Gk has the structure of a locally trivial bundle over X, and there is a

holomorphic embedding JkV
reg/Gk ↪→ Xk over X, which identifies JkV

reg/Gk with Xreg
k (thus

Xk is a relative compactification of JkV
reg/Gk over X).

(ii) The direct image sheaf
(π0,k)∗OXk(m) ' O(Ek,mV

∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

(iii)For every m > 0, the relative base locus of the linear system |OXk(m)| is equal to the set Xsing
k

of singular k-jets. Moreover, OXk(1) is relatively big over X.

Proof. (i) For f ∈ JkV
reg, the lifting f̃ is obtained by taking the derivative (f, [f ′]) without any

cancellation of zeroes in f ′, hence we get a uniquely defined (k − 1)-jet f̃ : (C, 0)→ X̃. Inductively,
we get a well defined (k − j)-jet f[j] in Xj , and the value f[k](0) is independent of the choice of
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the representative f for the k-jet. As the lifting process commutes with reparametrization, i.e.,
(f ◦ ϕ)∼ = f̃ ◦ ϕ and more generally (f ◦ ϕ)[k] = f[k] ◦ ϕ, we conclude that there is a well defined
set-theoretic map

JkV
reg/Gk → Xreg

k , f mod Gk 7→ f[k](0).

This map is better understood in coordinates as follows. Fix coordinates (z1, . . . , zn) near a point
x0 ∈ X, such that Vx0

= Vect(∂/∂z1, . . . , ∂/∂zr). Let f = (f1, . . . , fn) be a regular k-jet tangent
to V . Then there exists i ∈ {1, 2, . . . , r} such that f ′i(0) 6= 0, and there is a unique reparametrization
t = ϕ(τ) such that f ◦ ϕ = g = (g1, g2, . . . , gn) with gi(τ) = τ (we just express the curve as a graph
over the zi-axis, by means of a change of parameter τ = fi(t), i.e. t = ϕ(τ) = f−1

i (τ)). Suppose i = r
for the simplicity of notation. The space Xk is a k-stage tower of Pr−1-bundles. In the corresponding
inhomogeneous coordinates on these Pr−1’s, the point f[k](0) is given by the collection of derivatives(

(g′1(0), . . . , g′r−1(0)); (g′′1 (0), . . . , g′′r−1(0)); . . . ; (g
(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr) by integrating
the differential system (5.10)]. Thus the map JkV

reg/Gk → Xk is a bijection onto Xreg
k , and the

fibers of these isomorphic bundles can be seen as unions of r affine charts ' (Cr−1)k, associated with
each choice of the axis zi used to describe the curve as a graph. The change of parameter formula
d
dτ = 1

f ′r(t)
d
dt expresses all derivatives g

(j)
i (τ) = djgi/dτ

j in terms of the derivatives f
(j)
i (t) = djfi/dt

j

(g′1, . . . , g
′
r−1) =

(f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
;

(g′′1 , . . . , g
′′
r−1) =

(f ′′1 f ′r − f ′′r f ′1
f ′3r

, . . . ,
f ′′r−1f

′
r − f ′′r f ′r−1

f ′3r

)
; . . . ;(7.12)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′r − f

(k)
r f ′1

f ′k+1
r

, . . . ,
f

(k)
r−1f

′
r − f

(k)
r f ′r−1

f ′k+1
r

)
+ (order < k).

Also, it is easy to check that f ′2k−1
r g

(k)
i is an invariant polynomial in f ′, f ′′, . . . , f (k) of total degree

2k − 1, i.e., a section of Ek,2k−1.

(ii) Since the bundles Xk and Ek,mV
∗ are both locally trivial over X, it is sufficient to identify

sections σ of OXk(m) over a fiber Xk,x = π−1
0,k(x) with the fiber Ek,mV

∗
x , at any point x ∈ X. Let

f ∈ JkV reg
x be a regular k-jet at x. By (6.6), the derivative f ′[k−1](0) defines an element of the fiber

of OXk(−1) at f[k](0) ∈ Xk. Hence we get a well defined complex valued operator

(7.13) Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′[k−1](0))m.

Clearly, Q is holomorphic on JkV
reg
x (by the holomorphicity of σ), and the Gk-invariance con-

dition of Definition 7.10 is satisfied since f[k](0) does not depend on reparametrization and
(f ◦ ϕ)′[k−1](0) = f ′[k−1](0)ϕ′(0). Now, JkV

reg
x is the complement of a linear subspace of codimen-

sion n in JkVx, hence Q extends holomorphically to all of JkVx ' (Cr)k by Riemann’s extension
theorem (here we use the hypothesis r > 2 ; if r = 1, the situation is anyway not interesting since
Xk = X for all k). Thus Q admits an everywhere convergent power series

Q(f ′, f ′′, . . . , f (k)) =
∑

α1,α2,...,αk∈Nr
aα1...αk (f ′)α1(f ′′)α2 · · · (f (k))αk .

The Gk-invariance (7.10) implies in particular that Q must be multihomogeneous in the sense of
(7.1), and thus Q must be a polynomial. We conclude that Q ∈ Ek,mV ∗x , as desired.

Conversely, by [Dem11, Cor. 5.12] there exists a holomorphic family of germs fw : (C, 0)→ X such
that (fw)[k](0) = w and (fw)′[k−1](0) 6= 0, for all w in a neighborhood of any given point w0 ∈ Xk,x.

Then every Q ∈ Ek,mV ∗x yields a holomorphic section σ of OXk(m) over the fiber Xk,x by putting

(7.14) σ(w) = Q(f ′w, f
′′
w, . . . , f

(k)
w )(0)

(
(fw)′[k−1](0)

)−m
.
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(iii) By what we saw in (i)–(ii), every section σ of OXk(m) over the fiber Xk,x is given by a polynomial
Q ∈ Ek,mV ∗x , and this polynomial can be expressed on the Zariski open chart f ′r 6= 0 of Xreg

k,x as

(7.15) Q(f ′, f ′′, . . . , f (k)) = f ′mr Q̂(g′, g′′, . . . , g(k)),

where Q̂ is a polynomial and g is the reparametrization of f such that gr(τ) = τ . In fact Q̂ is obtained

from Q by substituting f ′r = 1 and f
(j)
r = 0 for j > 2, and conversely Q can be recovered easily from

Q̂ by using the substitutions (7.12).

In this context, the jet differentials f 7→ f ′1, . . . , f 7→ f ′r can be viewed as sections of OXk(1) on a

neighborhood of the fiber Xk,x. Since these sections vanish exactly on Xsing
k , the relative base locus

of OXk(m) is contained in Xsing
k for every m > 0. We see that OXk(1) is big by considering the

sections of OXk(2k − 1) associated with the polynomials Q(f ′, . . . , f (k)) = f ′2k−1
r g

(j)
i , 1 6 i 6 r − 1,

1 6 j 6 k; indeed, these sections separate all points in the open chart f ′r 6= 0 of Xreg
k,x.

Now, we check that every section σ of OXk(m) over Xk,x must vanish on Xsing
k,x . Pick an arbitrary

element w ∈ Xsing
k and a germ of curve f : (C, 0)→ X such that f[k](0) = w, f ′[k−1](0) 6= 0 and

s = m(f, 0)� 0 (such an f exists by Corollary 6.14). There are local coordinates (z1, . . . , zn) on X
such that f(t) = (f1(t), . . . , fn(t)) where fr(t) = ts. Let Q, Q̂ be the polynomials associated with σ
in these coordinates and let (f ′)α1(f ′′)α2 · · · (f (k))αk be a monomial occurring in Q, with αj ∈ Nr,
|αj | = `j , `1 + 2`2 + · · ·+ k`k = m. Putting τ = ts, the curve t 7→ f(t) becomes a Puiseux expansion
τ 7→ g(τ) = (g1(τ), . . . , gr−1(τ), τ) in which gi is a power series in τ1/s, starting with exponents of
τ at least equal to 1. The derivative g(j)(τ) may involve negative powers of τ , but the exponent is
always > 1 + 1

s − j. Hence the Puiseux expansion of Q̂(g′, g′′, . . . , g(k)) can only involve powers of τ

of exponent > −max`((1− 1
s )`2 + · · ·+ (k − 1− 1

s )`k). Finally f ′r(t) = sts−1 = sτ1−1/s, thus the

lowest exponent of τ in Q(f ′, . . . , f (k)) is at least equal to(
1− 1

s

)
m−max

`

((
1− 1

s

)
`2 + · · ·+

(
k − 1− 1

s

)
`k

)
> min

`

(
1− 1

s

)
`1 +

(
1− 1

s

)
`2 + · · ·+

(
1− k − 1

s

)
`k

where the minimum is taken over all monomials (f ′)α1(f ′′)α2 · · · (f (k))αk , |αj | = `j , occurring in Q.
Choosing s > k, we already find that the minimal exponent is positive, hence Q(f ′, . . . , f (k))(0) = 0
and σ(w) = 0 by (7.14).

Theorem 7.11 (iii) shows that OXk(1) is never relatively ample over X for k > 2. In order to
overcome this difficulty, we define for every a = (a1, . . . , ak) ∈ Zk a line bundle OXk(a) on Xk such
that

(7.16) OXk(a) = π∗1,kOX1
(a1)⊗ π∗2,kOX2

(a2)⊗ · · · ⊗ OXk(ak).

By (6.9), we have π∗j,kOXj (1) = OXk(1) ⊗ OXk(−π∗j+1,kDj+1 − · · · − Dk), thus by putting D∗j =
π∗j+1,kDj+1 for 1 6 j 6 k − 1 and D∗k = 0, we find an identity

OXk(a) = OXk(bk)⊗ OXk(−b ·D∗), where(7.17)

b = (b1, . . . , bk) ∈ Zk, bj = a1 + · · ·+ aj ,

b ·D∗ =
∑

16j6k−1

bj π
∗
j+1,kDj+1.

In particular, if b ∈ Nk, i.e., a1 + · · ·+ aj > 0, we get a morphism

(7.18) OXk(a) = OXk(bk)⊗ OXk(−b ·D∗)→ OXk(bk).

7.19. Remark. As in Green-Griffiths [GrGr79], Riemann’s extension theorem shows that for every
meromorphic map Φ : X K Y there are well-defined pullback morphisms

Φ∗ : H0(Y,EGG
k,m)→ H0(X,EGG

k,m), Φ∗ : H0(Y,Ek,m)→ H0(X,Ek,m).
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In particular the dimensions h0(X,EGG
k,m) and h0(X,EGG

k,m) are bimeromorphic invariants of X. The

same is true for spaces of sections of any subbundle of EGG
k,m or Ek,m constructed by means of the

canonical filtrations F •s .

7.20. Remark. As Gk is a non reductive group, it is not a priori clear that the graded ring
An,k,r =

⊕
m∈ZEk,mV

? is finitely generated (pointwise). This can be checked by hand ([Dem07a],
[Dem07b]) for n = 2 and k 6 4. Rousseau [Rou06] also checked the case n = 3, k = 3, and then
Merker [Mer08] proved the finiteness for n = 2, k = 5. Recently, Bérczi and Kirwan [BeKi10] found
a nice geometric argument proving the finiteness in full generality.

§7.C. Semple tower of a directed variety of general type

If (X,V ) is of general type, it is not true that (Xk, Vk) is of general type: the fibers of Xk → X
are towers of Pr−1 bundles, and the canonical bundles of projective spaces are always negative !
However, a twisted version holds true.

7.21. Lemma. If (X,V ) is of general type, then there is a modification (X̂, V̂ ) such that all pairs
(X̂k, V̂k) of the associated Semple tower have a twisted canonical bundle K

V̂k
⊗ O

X̂k
(p) that is still

big when one multiplies K
V̂k

by a suitable Q-line bundle O
X̂k

(p), p ∈ Q+.

Proof. First assume that V has no singularities. The exact sequences (6.4) and (6.4′) provide

KVk := detV ∗k = det(T ∗Xk/Xk−1
)⊗ OXk(1) = π∗k,k−1KVk−1

⊗ OXk(−(r − 1))

where r = rank(V ). Inductively we get

(7.22) KVk = π∗k,0KV ⊗ OXk(−(r − 1)1), 1 = (1, ..., 1) ∈ Nk.

We know by [Dem95] that OXk(c) is relatively ample over X when we take the special weight
c = (2 3k−2, ..., 2 3k−j−1, ..., 6, 2, 1), hence

KVk ⊗ OXk((r − 1)1 + εc) = π∗k,0KV ⊗ OXk(εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q∗+. Thanks to Formula (1.9),
we can in fact replace the weight (r − 1)1 + εc by its total degree p = (r − 1)k + ε|c| ∈ Q+. The
general case of a singular linear space follows by considering suitable “sufficiently high” modifications
X̂ of X, the related directed structure V̂ on X̂, and embedding (X̂k, V̂k) in the absolute Semple tower
(X̂a

k , V̂
a
k ) of X̂. We still have a well defined morphism of rank 1 sheaves

(7.23) π∗k,0KV̂
⊗ O

X̂k
(−(r − 1)1)→ K

V̂k

because the multiplier ideal sheaves involved at each stage behave according to the monotonicity
principle applied to the projections πak,k−1 : X̂a

k → X̂a
k−1 and their differentials (πak,k−1)∗, which yield

well-defined transposed morphisms from the (k− 1)-st stage to the k-th stage at the level of exterior
differential forms. Our contention follows.

§7.D. Induced directed structure on a subvariety of a jet bundle

We discuss here the concept of induced directed structure for subvarieties of the Semple tower of
a directed variety (X,V ). This will be very important to proceed inductively with the base loci of
jet differentials. Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X, k > 0. We
define the linear subspace W ⊂ TZ ⊂ TXk|Z to be the closure

(7.24) W := TZ′ ∩ Vk

taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk has constant rank
and is a subbundle of TZ′ . Alternatively, we could also take W to be the closure of TZ′ ∩ Vk in the
k-th stage (Xa

k , V
a
k ) of the absolute Semple tower, which has the advantage of being nonsingular. We
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say that (Z,W ) is the induced directed variety structure; this concept of induced structure already
applies of course in the case k = 0. If f : (C, TC)→ (X,V ) is such that f[k](C) ⊂ Z, then

(7.25) either f[k](C) ⊂ Zα or f ′[k](C) ⊂W,

where Zα is one of the connected components of Z r Z ′ and Z ′ is chosen as in (7.24); especially, if
W = 0, we conclude that f[k](C) must be contained in one of the Zα’s. In the sequel, we always
consider such a subvariety Z of Xk as a directed pair (Z,W ) by taking the induced structure described
above. By (7.25), if we proceed by induction on dimZ, the study of curves tangent to V that have a
k-lift f[k](C) ⊂ Z is reduced to the study of curves tangent to (Z,W ). Let us first quote the following
easy observation.

7.26. Observation. For k > 1, let Z ( Xk be an irreducible algebraic subset that projects onto Xk−1,
i.e. πk,k−1(Z) = Xk−1. Then the induced directed variety (Z,W ) ⊂ (Xk, Vk), satisfies

1 6 rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ′ ⊂ Zreg such that W ′ = TZ′ ∩ Vk is a vector bundle over
Z ′. Since Xk → Xk−1 is a Pr−1-bundle, Z has codimension at most r − 1 in Xk. Therefore
rankW > rankVk − (r − 1) > 1. On the other hand, if we had rankW = rankVk generically,
then TZ′ would contain Vk|Z′ , in particular it would contain all vertical directions TXk/Xk−1

⊂ Vk
that are tangent to the fibers of Xk → Xk−1. By taking the flow along vertical vector fields, we would
conclude that Z ′ is a union of fibers of Xk → Xk−1 up to an algebraic set of smaller dimension, but
this is excluded since Z projects onto Xk−1 and Z ( Xk.

7.27. Definition. For k > 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk and (Z,W ) the
induced directed structure. We assume moreover that Z 6⊂ Dk = P (TXk−1/Xk−2

) (and put D1 = ∅
in what follows to avoid to have to single out the case k = 1). In this situation we say that (Z,W )
is of general type modulo Xk → X if either W = 0, or rankW > 1 and there exists p ∈ Q+ such
that K•W ⊗OXk(p)•|Z is big over Z, possibly after replacing Z by a suitable nonsingular model Ẑ (and

pulling-back W and OXk(p)|Z to the nonsingular variety Ẑ ).

§7.E. Relation between invariant and non invariant jet differentials

We show here that the existence of Gk-invariant global jet differentials is essentially equivalent
to the existence of non invariant ones. We have seen that the direct image sheaf

πk,0OXk(m) := Ek,mV
∗ ⊂ EGG

k,mV
∗

has a stalk at point x ∈ X that consists of algebraic differential operators P (f[k]) acting on germs of
k-jets f : (C, 0)→ (X,x) tangent to V , satisfying the invariance property

(7.28) P ((f ◦ ϕ)[k]) = (ϕ′)mP (f[k]) ◦ ϕ

whenever ϕ ∈ Gk is in the group of k-jets of biholomorphisms ϕ : (C, 0) → (C, 0). The right action
JkV ×Gk → JkV , f 7→ f ◦ ϕ induces a dual left action of Gk on

⊕
m′6mE

GG
k,m′V

∗ by

(7.29) Gk ×
⊕
m′6m

EGG
k,m′V

∗
x →

⊕
m′6m

EGG
k,m′V

∗
x , (ϕ, P ) 7→ ϕ∗P, (ϕ∗P )(f[k]) = P ((f ◦ ϕ)[k]),

so that ψ∗(ϕ∗P ) = (ψ ◦ ϕ)∗P . Notice that for a global curve f : (C, TC) → (X,V ) and a global
operator P ∈ H0(X,EGG

k,mV
∗ ⊗ F ) we have to modify a little bit the definition to consider germs of

curves at points t0 ∈ C other than 0. This leads to putting

ϕ∗P (f[k])(t0) = P ((f ◦ ϕt0)[k])(0) where ϕt0(t) = t0 + ϕ(t), t ∈ D(0, ε).
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The C∗-action on a homogeneous polynomial of degree m is simply h∗λP = λmP for a dilation
hλ(t) = λt, λ ∈ C∗, but since ϕ ◦ hλ 6= hλ ◦ ϕ in general, ϕ∗P is no longer homogeneous when P is.
However, by expanding the derivatives of t 7→ f(ϕ(t)) at t = 0, we find an expression

(7.30) (ϕ∗P )(f[k]) =
∑

α∈Nk, |α|w=m

ϕ(α)(0)Pα(f[k]),

where α = (α1, . . . , αk) ∈ Nk, ϕ(α) = (ϕ′)α1(ϕ′′)α2 . . . (ϕ(k))αk , |α|w = α1 + 2α2 + . . . + kαk is the
weighted degree and Pα is a homogeneous polynomial. Since any additional derivative taken on ϕ′

means one less derivative left for f , it is easy to see that for P homogeneous of degree m we have

mα := degPα = m− (α2 + 2α3 + . . .+ (k − 1)αk) = α1 + α2 + . . .+ αk,

in particular degPα < m unless α = (m, 0, . . . , 0), in which case Pα = P . Let us fix a non zero global
section P ∈ H0(X,EGG

k,mV
∗⊗F ) for some line bundle F over X, and pick a non zero component Pα0

of minimum degree mα0 in the decomposition of P (of course mα0 = m if and only if P is already
invariant). We have by construction

Pα0 ∈ H0(X,EGG
k,mα0

V ∗ ⊗ F ).

We claim that Pα0
is Gk-invariant. Otherwise, there is for each α a decomposition

(7.31) (ψ∗Pα)(f[k]) =
∑

β∈Nk, |β|w=mα

ψ(β)(0)Pα,β(f[k]),

and the non invariance of Pα0
would yield some non zero term Pα0,β0

of degree

degPα0,β0
< degPα0

6 degP = m.

By replacing f with f ◦ ψ in (7.30) and plugging (7.31) into it, we would get an identity of the form

(ψ ◦ ϕ)∗P (f[k]) =
∑
α∈Nk

(ψ ◦ ϕ)(α)(0)Pα(f[k]) =
∑

α,β∈Nk
ϕ(α)(0)ψ(β)(0)Pα,β(f[k]),

but the term in the middle would have all components of degree > mα0
, while the term on the right

possesses a component of degree < mα0
for a sufficiently generic choice of ϕ and ψ, contradiction.

Therefore, we have shown the existence of a non zero invariant section

Pα0
∈ H0(X,Ek,mα0

V ∗ ⊗ F ), mα0
6 m.

§8. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the existence of k-jet
metrics with suitable negativity properties of the curvature. The connection between these properties
is in fact a simple consequence of the Ahlfors-Schwarz lemma. Such ideas have been already developed
long ago by Grauert-Reckziegel [GRec65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler metrics
on TX) and by Cowen-Griffiths [CoGr76], Green-Griffiths [GrGr79] and Grauert [Gra89] for higher
order jet metrics.

§8.A. Definition of k-jet metrics

Even in the standard case V = TX , the definition given below differs from that of [GrGr79], in
which the k-jet metrics are not supposed to be G′k-invariant. We prefer to deal here with G′k-invariant
objects, because they reflect better the intrinsic geometry. Grauert [Gra89] actually deals with G′k-
invariant metrics, but he apparently does not take care of the way the quotient space J reg

k V/Gk can
be compactified; also, his metrics are always induced by the Poincaré metric, and it is not at all
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clear whether these metrics have the expected curvature properties (see 8.14 below). In the present
situation, it is important to allow also hermitian metrics possessing some singularities (“singular
hermitian metrics” in the sense of [Dem90b]).

8.1. Definition. Let L → X be a holomorphic line bundle over a complex manifold X. We say
that h is a singular metric on L if for any trivialization L�U ' U × C of L, the metric is given by
|ξ|2h = |ξ|2e−ϕ for some real valued weight function ϕ ∈ L1

loc(U). The curvature current of L is then
defined to be the closed (1, 1)-current ΘL,h = i

2π∂∂ϕ, computed in the sense of distributions. We say
that h admits a closed subset Σ ⊂ X as its degeneration set if ϕ is locally bounded on X r Σ and is
unbounded on a neighborhood of any point of Σ.

An especially useful situation is the case when the curvature of h is positive definite. By this,
we mean that there exists a smooth positive definite hermitian metric ω and a continuous positive
function ε on X such that ΘL,h > εω in the sense of currents, and we write in this case ΘL,h � 0.
We need the following basic fact (quite standard when X is projective algebraic; however we want to
avoid any algebraicity assumption here, so as to be able to cover the case of general complex tori in
§ 10).

8.2. Proposition. Let L be a holomorphic line bundle on a compact complex manifold X.

(i) L admits a singular hermitian metric h with positive definite curvature current ΘL,h � 0 if and
only if L is big.

Now, define Bm to be the base locus of the linear system |H0(X,L⊗m)| and let

Φm : X rBm → PN

be the corresponding meromorphic map. Let Σm be the closed analytic set equal to the union of Bm
and of the set of points x ∈ X rBm such that the fiber Φ−1

m (Φm(x)) is positive dimensional.

(ii) If Σm 6= X and G is any line bundle, the base locus of L⊗k⊗G−1 is contained in Σm for k large.
As a consequence, L admits a singular hermitian metric h with degeneration set Σm and with
ΘL,h positive definite on X.

(iii)Conversely, if L admits a hermitian metric h with degeneration set Σ and positive definite
curvature current ΘL,h, there exists an integer m > 0 such that the base locus Bm is contained
in Σ and Φm : X r Σ→ Pm is an embedding.

Proof. (i) is proved e.g. in [Dem90b, 92], and (ii) and (iii) are well-known results in the basic theory
of linear systems.

We now come to the main definitions. By (6.6), every regular k-jet f ∈ JkV gives rise to
an element f ′[k−1](0) ∈ OXk(−1). Thus, measuring the “norm of k-jets” is the same as taking a

hermitian metric on OXk(−1).

8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a complex directed
manifold (X,V ) is a hermitian metric hk on the line bundle OXk(−1) over Xk (i.e. a Finsler metric
on the vector bundle Vk−1 over Xk−1), such that the weight functions ϕ representing the metric are
smooth (resp. continuous, L1

loc). We let Σhk ⊂ Xk be the singularity set of the metric, i.e., the closed
subset of points in a neighborhood of which the weight ϕ is not locally bounded.

We will always assume here that the weight function ϕ is quasi psh. Recall that a function ϕ is
said to be quasi psh if ϕ is locally the sum of a plurisubharmonic function and of a smooth function
(so that in particular ϕ ∈ L1

loc). Then the curvature current

Θh−1
k

(OXk(1)) =
i

2π
∂∂ϕ.

is well defined as a current and is locally bounded from below by a negative (1, 1)-form with constant
coefficients.
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8.4. Definition. Let hk be a k-jet metric on (X,V ). We say that hk has negative jet curvature (resp.
negative total jet curvature) if Θhk(OXk(−1)) is negative definite along the subbundle Vk ⊂ TXk (resp.
on all of TXk), i.e., if there is ε > 0 and a smooth hermitian metric ωk on TXk such that

〈Θh−1
k

(OXk(1))〉(ξ) > ε|ξ|2ωk , ∀ξ ∈ Vk ⊂ TXk (resp. ∀ξ ∈ TXk).

(If the metric hk is not smooth, we suppose that its weights ϕ are quasi psh, and the curvature
inequality is taken in the sense of distributions.)

It is important to observe that for k > 2 there cannot exist any smooth hermitian metric hk on
OXk(1) with positive definite curvature along TXk/X , since OXk(1) is not relatively ample over X.
However, it is relatively big, and Prop. 8.2 (i) shows that OXk(−1) admits a singular hermitian metric
with negative total jet curvature (whatever the singularities of the metric are) if and only if OXk(1)
is big over Xk. It is therefore crucial to allow singularities in the metrics in Def. 8.4.

§8.B. Special case of 1-jet metrics

A 1-jet metric h1 on OX1
(−1) is the same as a Finsler metric N =

√
h1 on V ⊂ TX . Assume

until the end of this paragraph that h1 is smooth. By the well known Kodaira embedding theorem,
the existence of a smooth metric h1 such that Θh−1

1
(OX1

(1)) is positive on all of TX1
is equivalent to

OX1
(1) being ample, that is, V ∗ ample.

8.5 Remark. In the absolute case V = TX , there are only few examples of varieties X such that T ∗X
is ample, mainly quotients of the ball Bn ⊂ Cn by a discrete cocompact group of automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker. For example, if the
hermitian metric h1 comes from a (smooth) hermitian metric h on V , then formula (5.15) implies
that h1 has negative total jet curvature (i.e. Θh−1

1
(OX1(1)) is positive) if and only if 〈ΘV,h〉(ζ⊗v) < 0

for all ζ ∈ TX r {0}, v ∈ V r {0}, that is, if (V, h) is negative in the sense of Griffiths. On the other
hand, V1 ⊂ TX1 consists by definition of tangent vectors τ ∈ TX1,(x,[v]) whose horizontal projection
Hτ is proportional to v, thus Θh1

(OX1
(−1)) is negative definite on V1 if and only if ΘV,h satisfies the

much weaker condition that the holomorphic sectional curvature 〈ΘV,h〉(v ⊗ v) is negative on every
complex line.

§8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our first observation is
the fact that the k-jet negativity property of the curvature becomes actually weaker and weaker as k
increases.

8.6. Lemma. Let (X,V ) be a compact complex directed manifold. If (X,V ) has a (k− 1)-jet metric
hk−1 with negative jet curvature, then there is a k-jet metric hk with negative jet curvature such that
Σhk ⊂ π

−1
k (Σhk−1

) ∪Dk. (The same holds true for negative total jet curvature).

Proof. Let ωk−1, ωk be given smooth hermitian metrics on TXk−1
and TXk . The hypothesis implies

〈Θh−1
k−1

(OXk−1
(1))〉(ξ) > ε|ξ|2ωk−1

, ∀ξ ∈ Vk−1

for some constant ε > 0. On the other hand, as OXk(Dk) is relatively ample over Xk−1 (Dk is a

hyperplane section bundle), there exists a smooth metric h̃ on OXk(Dk) such that

〈Θ
h̃
(OXk(Dk))〉(ξ) > δ|ξ|2ωk − C|(πk)∗ξ|2ωk−1

, ∀ξ ∈ TXk

for some constants δ, C > 0. Combining both inequalities (the second one being applied to ξ ∈ Vk
and the first one to (πk)∗ξ ∈ Vk−1), we get

〈Θ
(π∗
k
hk−1)−ph̃

(π∗kOXk−1
(p)⊗ OXk(Dk))〉(ξ) >

> δ|ξ|2ωk + (pε− C)|(πk)∗ξ|2ωk−1
, ∀ξ ∈ Vk.
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Hence, for p large enough, (π∗khk−1)−ph̃ has positive definite curvature along Vk. Now, by (6.9), there
is a sheaf injection

OXk(−p) = π∗kOXk−1
(−p)⊗ OXk(−pDk) ↪→

(
π∗kOXk−1

(p)⊗ OXk(Dk)
)−1

obtained by twisting with OXk((p − 1)Dk). Therefore hk := ((π∗khk−1)−ph̃)−1/p = (π∗khk−1)h̃−1/p

induces a singular metric on OXk(1) in which an additional degeneration divisor p−1(p−1)Dk appears.
Hence we get Σhk = π−1

k Σhk−1
∪Dk and

Θh−1
k

(OXk(1)) =
1

p
Θ

(π∗
k
hk−1)−ph̃

+
p− 1

p
[Dk]

is positive definite along Vk. The same proof works in the case of negative total jet curvature.

One of the main motivations for the introduction of k-jets metrics is the following list of algebraic
sufficient conditions.

8.7. Algebraic sufficient conditions. We suppose here that X is projective algebraic, and we make
one of the additional assumptions (i), (ii) or (iii) below.

(i) Assume that there exist integers k,m > 0 and b ∈ Nk such that the line bundle L :=
OXk(m) ⊗ OXk(−b · D∗) is ample over Xk. Then there is a smooth hermitian metric hL on L
with positive definite curvature on Xk. By means of the morphism µ : OXk(−m) → L−1, we get an
induced metric hk = (µ∗h−1

L )1/m on OXk(−1) which is degenerate on the support of the zero divisor

div(µ) = b ·D∗. Hence Σhk = Supp(b ·D∗) ⊂ Xsing
k and

Θh−1
k

(OXk(1)) =
1

m
ΘhL(L) +

1

m
[b ·D∗] > 1

m
ΘhL(L) > 0.

In particular hk has negative total jet curvature.

(ii) Assume more generally that there exist integers k,m > 0 and an ample line bundle A on X such
that H0(Xk,OXk(m) ⊗ π∗0,kA−1) has non zero sections σ1, . . . , σN . Let Z ⊂ Xk be the base locus

of these sections; necessarily Z ⊃ Xsing
k by 7.11 (iii). By taking a smooth metric hA with positive

curvature on A, we get a singular metric h′k on OXk(−1) such that

h′k(ξ) =
( ∑

16j6N

|σj(w) · ξm|2
h−1
A

)1/m

, w ∈ Xk, ξ ∈ OXk(−1)w.

Then Σh′
k

= Z, and by computing i
2π∂∂ log h′k(ξ) we obtain

Θh′ −1
k

(OXk(1)) >
1

m
π∗0,kΘA.

By (7.17) and an induction on k, there exists b ∈ Qk+ such that OXk(1)⊗ OXk(−b ·D∗) is relatively
ample over X. Hence L = OXk(1)⊗OXk(−b ·D∗)⊗π∗0,kA⊗p is ample on X for p� 0. The arguments

used in (i) show that there is a k-jet metric h′′k on OXk(−1) with Σh′′
k

= Supp(b ·D∗) = Xsing
k and

Θh′′ −1
k

(OXk(1)) = ΘL + [b ·D∗]− p π∗0,kΘA,

where ΘL is positive definite on Xk. The metric hk = (h′mpk h′′k)1/(mp+1) then satisfies Σhk = Σh′
k

= Z
and

Θh−1
k

(OXk(1)) >
1

mp+ 1
ΘL > 0.

(iii) If Ek,mV
∗ is ample, there is an ample line bundle A and a sufficiently high symmetric power

such that Sp(Ek,mV
∗) ⊗ A−1 is generated by sections. These sections can be viewed as sections of
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OXk(mp)⊗ π∗0,kA−1 over Xk, and their base locus is exactly Z = Xsing
k by 7.11 (iii). Hence the k-jet

metric hk constructed in (ii) has negative total jet curvature and satisfies Σhk = Xsing
k .

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr79] in the higher order
case, is that k-jet negativity implies hyperbolicity. In particular, the existence of enough global jet
differentials implies hyperbolicity.

8.8. Theorem. Let (X,V ) be a compact complex directed manifold. If (X,V ) has a k-jet metric hk
with negative jet curvature, then every entire curve f : C→ X tangent to V is such that f[k](C) ⊂ Σhk .

In particular, if Σhk ⊂ X
sing
k , then (X,V ) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach of [GrGr79].
However we will give here all necessary details because our setting is slightly different. Assume that
there is a k-jet metric hk as in the hypotheses of Theorem 8.8. Let ωk be a smooth hermitian metric
on TXk . By hypothesis, there exists ε > 0 such that

〈Θh−1
k

(OXk(1))〉(ξ) > ε|ξ|2ωk ∀ξ ∈ Vk.

Moreover, by (6.4), (πk)∗ maps Vk continuously to OXk(−1) and the weight eϕ of hk is locally bounded
from above. Hence there is a constant C > 0 such that

|(πk)∗ξ|2hk 6 C|ξ|2ωk , ∀ξ ∈ Vk.

Combining these inequalities, we find

〈Θh−1
k

(OXk(1))〉(ξ) > ε

C
|(πk)∗ξ|2hk , ∀ξ ∈ Vk.

Now, let f : ∆R → X be a non constant holomorphic map tangent to V on the disk ∆R. We use the
line bundle morphism (6.6)

F = f ′[k−1] : T∆R
→ f∗[k]OXk(−1)

to obtain a pullback metric

γ = γ0(t) dt⊗ dt = F ∗hk on T∆R
.

If f[k](∆R) ⊂ Σhk then γ ≡ 0. Otherwise, F (t) has isolated zeroes at all singular points of f[k−1] and
so γ(t) vanishes only at these points and at points of the degeneration set (f[k])

−1(Σhk) which is a
polar set in ∆R. At other points, the Gaussian curvature of γ satisfies

i ∂∂ log γ0(t)

γ(t)
=
−2π (f[k])

∗Θhk(OXk(−1))

F ∗hk
=
〈Θh−1

k
(OXk(1))〉(f ′[k](t))

|f ′[k−1](t)|
2
hk

>
ε

C
,

since f ′[k−1](t) = (πk)∗f
′
[k](t). The Ahlfors-Schwarz lemma 4.2 implies that γ can be compared with

the Poincaré metric as follows:

γ(t) 6
2C

ε

R−2|dt|2

(1− |t|2/R2)2
=⇒ |f ′[k−1](t)|

2
hk

6
2C

ε

R−2

(1− |t|2/R2)2
.

If f : C → X is an entire curve tangent to V such that f[k](C) 6⊂ Σhk , the above estimate implies

as R → +∞ that f[k−1] must be a constant, hence also f . Now, if Σhk ⊂ Xsing
k , the inclusion

f[k](C) ⊂ Σhk implies f ′(t) = 0 at every point, hence f is a constant and (X,V ) is hyperbolic.

Combining Theorem 8.8 with 8.7 (ii) and (iii), we get the following consequences.

8.9. Vanishing theorem. Assume that there exist integers k,m > 0 and an ample line bundle L on
X such that H0(Xk,OXk(m)⊗ π∗0,kL−1) ' H0(X,Ek,mV

∗ ⊗ L−1) has non zero sections σ1, . . . , σN .
Let Z ⊂ Xk be the base locus of these sections. Then every entire curve f : C → X tangent to V is
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such that f[k](C) ⊂ Z. In other words, for every global Gk-invariant polynomial differential operator
P with values in L−1, every entire curve f must satisfy the algebraic differential equation P (f[k]) = 0.

8.10. Corollary. Let (X,V ) be a compact complex directed manifold. If Ek,mV
∗ is ample for some

positive integers k,m, then (X,V ) is hyperbolic.

8.11. Remark. Green and Griffiths [GrGr79] stated that Theorem 8.9 is even true for sections
σj ∈ H0(X,EGG

k,m(V ∗) ⊗ L−1), in the special case V = TX they consider. This is proved below in
§8.D; the reader is also referred to Siu and Yeung [SiYe97] for a proof based on a use of Nevanlinna
theory and the logarithmic derivative lemma (the original proof given in [GrGr79] does not seem to
be complete, as it relies on an unsettled pointwise version of the Ahlfors-Schwarz lemma for general
jet differentials); other proofs seem to have been circulating in the literature in the last years. Let us
first give a very short proof in the case where f is supposed to have a bounded derivative (thanks to
the Brody criterion, this is enough if one is merely interested in proving hyperbolicity, thus Corollary
8.10 will be valid with EGG

k,mV
∗ in place of Ek,mV

∗). In fact, if f ′ is bounded, one can apply the
Cauchy inequalities to all components fj of f with respect to a finite collection of coordinate patches
covering X. As f ′ is bounded, we can do this on sufficiently small discs D(t, δ) ⊂ C of constant radius
δ > 0. Therefore all derivatives f ′, f ′′, . . . f (k) are bounded. From this we conclude that σj(f) is a
bounded section of f∗L−1. Its norm |σj(f)|L−1 (with respect to any positively curved metric | |L on
L) is a bounded subharmonic function, which is moreover strictly subharmonic at all points where
f ′ 6= 0 and σj(f) 6= 0. This is a contradiction unless f is constant or σj(f) ≡ 0.

The above results justify the following definition and problems.

8.12. Definition. We say that X, resp. (X,V ), has non degenerate negative k-jet curvature if there

exists a k-jet metric hk on OXk(−1) with negative jet curvature such that Σhk ⊂ X
sing
k .

8.13. Conjecture. Let (X,V ) be a compact directed manifold. Then (X,V ) is hyperbolic if and only
if (X,V ) has nondegenerate negative k-jet curvature for k large enough.

This is probably a hard problem. In fact, we will see in the next section that the smallest
admissible integer k must depend on the geometry of X and need not be uniformly bounded as soon
as dimX > 2 (even in the absolute case V = TX). On the other hand, if (X,V ) is hyperbolic,
we get for each integer k > 1 a generalized Kobayashi-Royden metric k(Xk−1,Vk−1) on Vk−1 (see
Definition 2.1), which can be also viewed as a k-jet metric hk on OXk(−1) ; we will call it the Grauert
k-jet metric of (X,V ), although it formally differs from the jet metric considered in [Gra89] (see also
[DGr91]). By looking at the projection πk : (Xk, Vk) → (Xk−1, Vk−1), we see that the sequence hk
is monotonic, namely π∗khk 6 hk+1 for every k. If (X,V ) is hyperbolic, then h1 is nondegenerate

and therefore by monotonicity Σhk ⊂ Xsing
k for k > 1. Conversely, if the Grauert metric satisfies

Σhk ⊂ Xsing
k , it is easy to see that (X,V ) is hyperbolic. The following problem is thus especially

meaningful.

8.14. Problem. Estimate the k-jet curvature Θh−1
k

(OXk(1)) of the Grauert metric hk on (Xk, Vk) as

k tends to +∞.

§8.D. Vanishing theorem for non invariant jet differentials

As an application of the arguments developed in §7.E, we indicate here a proof of the basic
vanishing theorem for non invariant jet differentials. This version has been first proved in full
generality by Siu [Siu97] (cf. also [Dem97]), with a different and more involved technique based
on Nevanlinna theory and the logarithmic derivative lemma.

8.15. Theorem. Let (X,V ) be a directed projective variety and f : (C, TC)→ (X,V ) an entire curve
tangent to V . Then for every global section P ∈ H0(X,EGG

k,mV
∗ ⊗ O(−A)) where A is an ample

divisor of X, one has P (f[k]) = 0.
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Sketch of proof. In general, we know by 8.9 that the result is true when P is invariant, i.e.
for P ∈ H0(X,Ek,mV

∗ ⊗ O(−A)). Now, we prove Theorem 8.15 by induction on k and m
(simultaneously for all directed varieties). Let Z ⊂ Xk be the base locus of all polynomials
Q ∈ H0(X,EGG

k,m′V
∗ ⊗ O(−A)) with m′ < m. A priori, this defines merely an algebraic set in the

Green-Griffiths bundle XGG
k = (JkV r {0})/C∗, but since the global polynomials ϕ∗Q also enter the

game, we know that the base locus is Gk-invariant, and thus descends toXk. Let f : (C, TC)→ (X,V ).
By the induction hypothesis hypothesis, we know that f[k](C) ⊂ Z. Therefore f can also be viewed
as a entire curve drawn in the directed variety (Z,W ) induced by (Xk, Vk). By (7.30), we have a
decomposition

(ϕ∗P )(g[k]) =
∑

α∈Nk, |α|w=m

ϕ(α)(0)Pα(g[k]), with degPα < degP for α 6= (m, 0, . . . , 0),

and since Pα(g[k]) = 0 for all germs of curves g of (Z,W ) when α 6= (m, 0, . . . , 0), we conclude that
P defines an invariant jet differential when it is restricted to (Z,W ), in other words it still defines a
section of

H0
(
Z, (OXk(m)⊗ π∗k,0OX(−A))|Z

)
.

We can then apply the Ahlfors-Schwarz lemma in the way we did it in §8.C to conclude that
P (f[k]) = 0.

§9. Morse inequalities and the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves f : C → X
drawn in a complex irreducible n-dimensional variety X, and more specifically to show that they
must satisfy certain global algebraic or differential equations as soon as X is projective of general
type. By means of holomorphic Morse inequalities and a probabilistic analysis of the cohomology of
jet spaces, it is possible to prove a significant step of the generalized Green-Griffiths-Lang conjecture.
The use of holomorphic Morse inequalities was first suggested in [Dem07a], and then carried out in
an algebraic context by S. Diverio in his PhD work ([Div08, Div09]). The general more analytic and
more powerful results presented here first appeared in [Dem11, Dem12].

§9.A. Introduction

Let (X,V ) be a directed variety. By definition, proving the algebraic degeneracy of an entire
curve f ; (C, TC) → (X,V ) means finding a non zero polynomial P on X such that P (f) = 0. As
already explained in § 8, all known methods of proof are based on establishing first the existence of
certain algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 of some order k, and then trying to
find enough such equations so that they cut out a proper algebraic locus Y ( X. We use for this
global sections of H0(X,EGG

k,mV
∗ ⊗ O(−A)) where A is ample, and apply the fundamental vanishing

theorem 8.15. It is expected that the global sections of H0(X,EGG
k,mV

∗ ⊗ O(−A)) are precisely those
which ultimately define the algebraic locus Y ( X where the curve f should lie. The problem is then
reduced to (i) showing that there are many non zero sections of H0(X,EGG

k,mV
∗ ⊗ O(−A)) and (ii)

understanding what is their joint base locus. The first part of this program is the main result of this
section.

9.1. Theorem. Let (X,V ) be a directed projective variety such that KV is big and let A be an
ample divisor. Then for k � 1 and δ ∈ Q+ small enough, δ 6 c(log k)/k, the number of sections
h0(X,EGG

k,mV
∗ ⊗ O(−mδA)) has maximal growth, i.e. is larger that ckm

n+kr−1 for some m > mk,
where c, ck > 0, n = dimX and r = rankV . In particular, entire curves f : (C, TC)→ (X,V ) satisfy
(many) algebraic differential equations.

The statement is very elementary to check when r = rankV = 1, and therefore when
n = dimX = 1. In higher dimensions n > 2, only very partial results were known at this point,
concerning merely the absolute case V = TX . In dimension 2, Theorem 9.1 is a consequence of the
Riemann-Roch calculation of Green-Griffiths [GrGr79], combined with a vanishing theorem due to
Bogomolov [Bog79] – the latter actually only applies to the top cohomology group Hn, and things
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become much more delicate when extimates of intermediate cohomology groups are needed. In
higher dimensions, Diverio [Div08, Div09] proved the existence of sections of H0(X,EGG

k,mV
∗⊗O(−1))

whenever X is a hypersurface of Pn+1
C of high degree d > dn, assuming k > n and m > mn. More

recently, Merker [Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e.
d > n + 3, assuming this time k to be very large. The latter result is obtained through explicit
algebraic calculations of the spaces of sections, and the proof is computationally very intensive.
Bérczi [Ber10] also obtained related results with a different approach based on residue formulas,
assuming d > 27n logn.

All these approaches are algebraic in nature. Here, however, our techniques are based on more
elaborate curvature estimates in the spirit of Cowen-Griffiths [CoGr76]. They require holomorphic
Morse inequalities (see 9.10 below) – and we do not know how to translate our method in an algebraic
setting. Notice that holomorphic Morse inequalities are essentially insensitive to singularities, as we
can pass to non singular models and blow-up X as much as we want: if µ : X̃ → X is a modification
then µ∗OX̃ = OX and Rqµ∗OX̃ is supported on a codimension 1 analytic subset (even codimension 2
if X is smooth). It follows from the Leray spectral sequence that the cohomology estimates for L on
X or for L̃ = µ∗L on X̃ differ by negligible terms, i.e.

(9.2) hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, singular holomorphic Morse inequalities (in the form obtained by L. Bonavero [Bon93]) allow
us to work with singular Hermitian metrics h; this is the reason why we will only require to have big
line bundles rather than ample line bundles. In the case of linear subspaces V ⊂ TX , we introduce
singular Hermitian metrics as follows.

9.3. Definition. A singular hermitian metric on a linear subspace V ⊂ TX is a metric h on the
fibers of V such that the function log h : ξ 7→ log |ξ|2h is locally integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tautological line bundle
OP (V )(−1) on the projectivized bundle P (V ) = V r {0}/C∗, and therefore its dual metric h∗ defines
a curvature current ΘOP (V )(1),h∗ of type (1, 1) on P (V ) ⊂ P (TX), such that

(9.4) p∗ΘOP (V )(1),h∗ =
i

2π
∂∂ log h, where p : V r {0} → P (V ).

If log h is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a smooth
function) on V , then log h is indeed locally integrable, and we have moreover

(9.5) ΘOP (V )(1),h∗ > −Cω

for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; conversely, if (9.5) holds,
then log h is quasi-psh.

9.6. Definition. We will say that a singular Hermitian metric h on V is admissible if h can be
written as h = eϕh0|V where h0 is a smooth positive definite Hermitian on TX and ϕ is a quasi-
psh weight with analytic singularities on X, as in Definition 9.3. Then h can be seen as a singular
hermitian metric on OP (V )(1), with the property that it induces a smooth positive definite metric on
a Zariski open set X ′ ⊂ X r Sing(V ) ; we will denote by Sing(h) ⊃ Sing(V ) the complement of the
largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V ∗) to be the sheaf of germs of holomorphic sections
sections of V ∗|XrSing(h) which are h∗-bounded near Sing(h); by the assumption on the analytic
singularities, this is a coherent sheaf (as the direct image of some coherent sheaf on P (V )), and
actually, since h∗ = e−ϕh∗0, it is a subsheaf of the sheaf O(V ∗) := Oh0(V ∗) associated with a smooth
positive definite metric h0 on TX . If r is the generic rank of V and m a positive integer, we define
similarly

bK
[m]

V,h = sheaf of germs of holomorphic sections of (detV ∗|X′)
⊗m = (ΛrV ∗|X′)

⊗m(9.7)

which are deth∗-bounded,
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so that bK
[m]
V := bK

[m]
V,h0

according to Def. 2.7. For a given admissible Hermitian structure (V, h),

we define similarly the sheaf EGG
k,mV

∗
h to be the sheaf of polynomials defined over X r Sing(h) which

are “h-bounded”. This means that when they are viewed as polynomials P (z ; ξ1, . . . , ξk) in terms
of ξj = (∇1,0

h0
)jf(0) where ∇1,0

h0
is the (1, 0)-component of the induced Chern connection on (V, h0),

there is a uniform bound

(9.8)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ 6 C
(∑

‖ξj‖1/jh

)m
near points of X rX ′ (see section 2 for more details on this). Again, by a direct image argument,
one sees that EGG

k,mV
∗
h is always a coherent sheaf. The sheaf EGG

k,mV
∗ is defined to be EGG

k,mV
∗
h when

h = h0 (it is actually independent of the choice of h0, as follows from arguments similar to those
given in section 2). Notice that this is exactly what is needed to extend the proof of the vanishing
theorem 8.15 to the case of a singular linear space V ; the value distribution theory argument can
only work when the functions P (f ; f ′, . . . , f (k))(t) do not exhibit poles, and this is guaranteed here
by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of k-jets
XGG
k = JkV r {0}/C∗, which by (9.3) consists of a fibration in weighted projective spaces, and

its associated tautological sheaf
L = OXGG

k
(1),

viewed rather as a virtual Q-line bundle OXGG
k

(m0)1/m0 with m0 = lcm(1, 2, ... , k). Then, if
πk : XGG

k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the isomorphism

(9.9) Hq(X,EGG
k,mV

∗ ⊗ F ) ' Hq(XGG
k ,OXGG

k
(m)⊗ π∗kF ).

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let us recall the main
statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex manifolds,
E → X a holomorphic vector bundle of rank r, and (L, h) a hermitian line bundle. The dimensions
hq(X,E ⊗ Lk) of cohomology groups of the tensor powers E ⊗ Lk satisfy the following asymptotic
estimates as k → +∞ :

(WM) Weak Morse inequalities :

hq(X,E ⊗ Lk) 6 r
kn

n!

∫
X(L,h,q)

(−1)qΘn
L,h + o(kn) .

(SM) Strong Morse inequalities :∑
06j6q

(−1)q−jhj(X,E ⊗ Lk) 6 r
kn

n!

∫
X(L,h,6q)

(−1)qΘn
L,h + o(kn) .

(RR) Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lk) :=
∑

06j6n

(−1)jhj(X,E ⊗ Lk) = r
kn

n!

∫
X

Θn
L,h + o(kn) .

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e−ϕ is a singular hermitian metric with analytic
singularities, the estimates are still true provided all cohomology groups are replaced by cohomology
groups Hq(X,E ⊗ Lk ⊗ I(hk)) twisted with the multiplier ideal sheaves

I(hk) = I(kϕ) =
{
f ∈ OX,x, ∃V 3 x,

∫
V

|f(z)|2e−kϕ(z)dλ(z) < +∞
}
.
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The special case of 9.10 (SM) when q = 1 yields a very useful criterion for the existence of sections
of large multiples of L.

9.11. Corollary. Under the above hypotheses, we have

h0(X,E ⊗ Lk) > h0(X,E ⊗ Lk)− h1(X,E ⊗ Lk) > r
kn

n!

∫
X(L,h,61)

Θn
L,h − o(kn) .

Especially L is big as soon as
∫
X(L,h,61)

Θn
L,h > 0 for some hermitian metric h on L.

Now, given a directed manifold (X,V ), we can associate with any admissible metric h on V a
metric (or rather a natural family) of metrics on L = OXGG

k
(1). The space XGG

k always possesses
quotient singularities if k > 2 (and even some more if V is singular), but we do not really care
since Morse inequalities still work in this setting thanks to Bonavero’s generalization. As we will
see, it is then possible to get nice asymptotic formulas as k → +∞. They appear to be of a
probabilistic nature if we take the components of the k-jet (i.e. the successive derivatives ξj = f (j)(0),
1 6 j 6 k) as random variables. This probabilistic behaviour was somehow already visible in the
Riemann-Roch calculation of [GrGr79]. In this way, assuming KV big, we produce a lot of sections
σj = H0(XGG

k ,OXGG
k

(m) ⊗ π∗kF ), corresponding to certain divisors Zj ⊂ XGG
k . The hard problem

which is left in order to complete a proof of the generalized Green-Griffiths-Lang conjecture is to
compute the base locus Z =

⋂
Zj and to show that Y = πk(Z) ⊂ X must be a proper algebraic

variety.

§9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective spaces, and
to evaluate the corresponding volume forms. Here we put dc = i

4π (∂ − ∂) so that ddc = i
2π∂∂. The

normalization of the dc operator is chosen such that we have precisely (ddc log |z|2)n = δ0 for the
Monge-Ampère operator in Cn. Given a k-tuple of “weights” a = (a1, . . . , ak), i.e. of integers as > 0
with gcd(a1, . . . , ak) = 1, we introduce the weighted projective space P (a1, . . . , ak) to be the quotient
of Ck r {0} by the corresponding weighted C∗ action:

(9.12) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).

As is well known, this defines a toric (k−1)-dimensional algebraic variety with quotient singularities.
On this variety, we introduce the possibly singular (but almost everywhere smooth and non
degenerate) Kähler form ωa,p defined by

(9.13) π∗aωa,p = ddcϕa,p, ϕa,p(z) =
1

p
log

∑
16s6k

|zs|2p/as ,

where πa : Ck r {0} → P (a1, . . . , ak) is the canonical projection and p > 0 is a positive constant. It
is clear that ϕp,a is real analytic on Ck r {0} if p is an integer and a common multiple of all weights
as, and we will implicitly pick such a p later on to avoid any difficulty. Elementary calculations give
the following well-known formula for the volume

(9.14)

∫
P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since the cohomology class
of ωa,p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of looking at Ck, we
consider the weighted C∗ action defined by

(9.15) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).
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Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives rise to a weighted
projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : Cr1 × . . .× Crk r {0} −→ P (a
[r1]
1 , . . . , a

[rk]
k )(9.16)

obtained by repeating rs times each weight as. On this space, we introduce the degenerate Kähler
metric ωa,r,p such that

(9.17) π∗a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =
1

p
log

∑
16s6k

|zs|2p/as

where |zs| stands now for the standard Hermitian norm (
∑

16j6rs
|zs,j |2)1/2 on Crs . This metric is

cohomologous to the corresponding “polydisc-like” metric ωa,p already defined, and therefore Stokes
theorem implies

(9.18)

∫
P (a

[r1]

1 ,...,a
[rk]

k
)

ω|r|−1
a,r,p =

1

ar11 . . . arkk
.

Using standard results of integration theory (Fubini, change of variable formula...), one obtains:

9.19. Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which is continuous

outside of the hyperplane sections zs = 0. We also view f as a C∗-invariant continuous function on∏
(Crs r {0}). Then∫

P (a
[r1]

1 ,...,a
[rk]

k
)

f(z)ω|r|−1
a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫
(x,u)∈∆k−1×

∏
S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏
16s6k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k− 1)-simplex {xs > 0,
∑
xs = 1}, dx = dx1 ∧ . . .∧ dxk−1 its standard measure,

and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invariant probability measure on the product∏
s S

2rs−1 of unit spheres in Cr1 × . . .× Crk . As a consequence

lim
p→+∞

∫
P (a

[r1]

1 ,...,a
[rk]

k
)

f(z)ω|r|−1
a,r,p =

1∏
s a

rs
s

∫∏
S2rs−1

f(u) dµ(u).

Also, by elementary integrations by parts and induction on k, r1, . . . , rk, it can be checked that

(9.20)

∫
x∈∆k−1

∏
16s6k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏
16s6k

(rs − 1)! .

This implies that (|r| − 1)!
∏

16s6k
xrs−1
s

(rs−1)! dx is a probability measure on ∆k−1.

§9.C. Probabilistic estimate of the curvature of k-jet bundles

Let (X,V ) be a compact complex directed non singular variety. To avoid any technical difficulty
at this point, we first assume that V is a holomorphic vector subbundle of TX , equipped with a
smooth Hermitian metric h.

According to the notation already specified in § 7, we denote by JkV the bundle of k-jets of
holomorphic curves f : (C, 0) → X tangent to V at each point. Let us set n = dimCX and
r = rankC V . Then JkV → X is an algebraic fiber bundle with typical fiber Crk, and we get a
projectivized k-jet bundle

(9.21) XGG
k := (JkV r {0})/C∗, πk : XGG

k → X
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which is a P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X, and we have the direct image
formula (πk)∗OXGG

k
(m) = O(EGG

k,mV
∗) (cf. Proposition 7.9). In the sequel, we do not make a direct

use of coordinates, because they need not be related in any way to the Hermitian metric h of V .
Instead, we choose a local holomorphic coordinate frame (eα(z))16α6r of V on a neighborhood U
of x0, such that

(9.22) 〈eα(z), eβ(z)〉 = δαβ +
∑

16i,j6n, 16α,β6r

cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a normalized coordinate
system always exists, and that the Chern curvature tensor i

2πD
2
V,h of (V, h) at x0 is then given by

(9.23) ΘV,h(x0) = − i

2π

∑
i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .

Consider a local holomorphic connection ∇ on V|U (e.g. the one which turns (eα) into a parallel

frame), and take ξk = ∇kf(0) ∈ Vx defined inductively by ∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This
gives a local identification

JkV|U → V ⊕k|U , f 7→ (ξ1, . . . , ξk) = (∇f(0), . . . ,∇fk(0)),

and the weighted C∗ action on JkV is expressed in this setting by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

Now, we fix a finite open covering (Uα)α∈I of X by open coordinate charts such that V|Uα is trivial,
along with holomorphic connections ∇α on V|Uα . Let θα be a partition of unity of X subordinate to
the covering (Uα). Let us fix p > 0 and small parameters 1 = ε1 � ε2 � . . . � εk > 0. Then we
define a global weighted Finsler metric on JkV by putting for any k-jet f ∈ JkxV

(9.24) Ψh,p,ε(f) :=
(∑
α∈I

θα(x)
∑

16s6k

ε2p
s ‖∇sαf(0)‖2p/sh(x)

)1/p

where ‖ ‖h(x) is the Hermitian metric h of V evaluated on the fiber Vx, x = f(0). The function
Ψh,p,ε satisfies the fundamental homogeneity property

(9.25) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2

with respect to the C∗ action on JkV , in other words, it induces a Hermitian metric on the dual L∗

of the tautological Q-line bundle Lk = OXGG
k

(1) over XGG
k . The curvature of Lk is given by

(9.26) π∗kΘLk,Ψ∗h,p,ε
= ddc log Ψh,p,ε

Our next goal is to compute precisely the curvature and to apply holomorphic Morse inequalities
to L → XGG

k with the above metric. It might look a priori like an untractable problem, since the
definition of Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the asymptotic behavior
of Ψh,p,ε as εs/εs−1 → 0 is in some sense uniquely defined and very natural. It will lead to a
computable asymptotic formula, which is moreover simple enough to produce useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic connection ∇ of V|U , let us

define the components of a k-jet f ∈ JkV by ξs = ∇sf(0), and consider the rescaling transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) = (ε1
1ξ1, ε

2
2ξ2, . . . , ε

k
kξk) on JkxV , x ∈ U
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(it commutes with the C∗-action but is otherwise unrelated and not canonically defined over X as
it depends on the choice of ∇). Then, if p is a multiple of lcm(1, 2, . . . , k) and εs/εs−1 → 0 for all
s = 2, . . . , k, the rescaled function Ψh,p,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges towards

( ∑
16s6k

‖ξs‖2p/sh

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with some holomorphic

connection ∇. Let us pick another holomorphic connection ∇̃ = ∇ + Γ where Γ ∈ H0(U,Ω1
X ⊗

Hom(V, V ). Then ∇̃2f = ∇2f + Γ(f)(f ′) · f ′, and inductively we get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U which is of
weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corresponding change in the
parametrization of JkV|U is given by a C∗-homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε1
1ξ1, . . . , ε

k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε1

1ξ̃1, . . . , ε
k
k ξ̃k).

Then

ξ̃s,ε = ξs,ε + εss Ps(x ; ε−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients as
εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the sums∑

16s6k

ε2p
s ‖ξk‖

2p/s
h =

∑
16s6k

‖ξk,ε‖2p/sh

corresponding to ξk = ∇sαf(0) by means of the partition of unity
∑
θα(x) = 1. We see that by using

the rescaled variables ξs,ε the changes occurring when replacing a connection ∇α by an alternative one
∇β are arbitrary small in C∞ topology, with error terms uniformly controlled in terms of the ratios
εs/εs−1 on all compact subsets of V kr{0}. This shows that in C∞ topology, Ψh,p,ε ◦ρ−1

∇,ε(ξ1, . . . , ξk)
converges uniformly towards (

∑
16s6k ‖ξk‖

2p/s
h )1/p, whatever the trivializing open set U and the

holomorphic connection ∇ used to evaluate the components and perform the rescaling are.

Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))16α6r satisfying (9.22) on a
neighborhood U of x0. We introduce the rescaled components ξs = εss∇sf(0) on JkV|U and compute
the curvature of

Ψh,p,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) '

( ∑
16s6k

‖ξs‖2p/sh

)1/p

(by Lemma 9.27, the errors can be taken arbitrary small in C∞ topology). We write ξs =∑
16α6r ξsαeα. By (9.22) we have

‖ξs‖2h =
∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).
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The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

( ∑
16s6k

‖ξs‖2p/sh

)1/p

=

( ∑
16s6k

(∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑
α |ξsα|2. A straightforward calculation yields

log Ψ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑
16s6k

|ξs|2p/s +
∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).

By (9.26), the curvature form of Lk = OXGG
k

(1) is given at the central point x0 by the following
formula.

9.28. Proposition. With the above choice of coordinates and with respect to the rescaled components
ξs = εss∇sf(0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ∗h,p,ε
(x0, [ξ]) ' ωa,r,p(ξ) +

i

2π

∑
16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max26s6k(εs/εs−1)s) uniformly on the compact variety XGG
k . Here ωa,r,p

is the (degenerate) Kähler metric associated with the weight a = (1[r], 2[r], . . . , k[r]) of the canonical
C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error terms in the calculations
below. Since ωa,r,p is positive definite on the fibers of XGG

k → X (at least outside of the axes ξs = 0),
the index of the (1, 1) curvature form ΘLk,Ψ∗h,p,ε

(z, [ξ]) is equal to the index of the (1, 1)-form

(9.29) γk(z, ξ) :=
i

2π

∑
16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj

depending only on the differentials (dzj)16j6n on X. The q-index integral of (Lk,Ψ
∗
h,p,ε) on XGG

k is
therefore equal to∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ∗h,p,ε

=

=
(n+ kr − 1)!

n!(kr − 1)!

∫
z∈X

∫
ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where γk(z, ξ) has signa-
ture (n − q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)n is a determinant, the product
1lγk,q(z, ξ)γk(z, ξ)n gives rise to a continuous function on XGG

k . Formula 9.20 with r1 = . . . = rk = r
and as = s yields the slightly more explicit integral∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ∗h,p,ε

=
(n+ kr − 1)!

n!(k!)r
×∫

z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n
(x1 . . . xk)r−1

(r − 1)!k
dx dµ(u),
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where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(9.30) gk(z, x, u) =
i

2π

∑
16s6k

1

s
xs

∑
i,j,α,β

cijαβ(z)usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(9.31) dνk,r(x) = (kr − 1)!
(x1 . . . xk)r−1

(r − 1)!k
dx

is a probability measure on ∆k−1, and we can rewrite∫
XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ∗h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!
×∫

z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n dνk,r(x) dµ(u).(9.32)

Now, formula (9.30) shows that gk(z, x, u) is a “Monte Carlo” evaluation of the curvature tensor,
obtained by averaging the curvature at random points us ∈ S2r−1 with certain positive weights xs/s ;
we should then think of the k-jet f as some sort of random variable such that the derivatives ∇kf(0)
are uniformly distributed in all directions. Let us compute the expected value of (x, u) 7→ gk(z, x, u)
with respect to the probability measure dνk,r(x) dµ(u). Since

∫
S2r−1 usαusβdµ(us) = 1

r δαβ and∫
∆k−1

xs dνk,r(x) = 1
k , we find

E(gk(z, •, •)) =
1

kr

∑
16s6k

1

s
· i

2π

∑
i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(9.33) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,

where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric induced by h. It is natural
to guess that gk(z, x, u) behaves asymptotically as its expected value E(gk(z, •, •)) when k tends to
infinity. If we replace brutally gk by its expected value in (9.32), we get the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫
X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index set in X. The leading
constant is equivalent to (log k)n/n!(k!)r modulo a multiplicative factor 1 +O(1/ log k). By working
out a more precise analysis of the deviation, the following result has been proved in [Dem11] and
[Dem12].

9.34. Probabilistic estimate. Fix smooth Hermitian metrics h on V and ω = i
2π

∑
ωijdzi ∧ dzj

on X. Denote by ΘV,h = − i
2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ the curvature tensor of V with respect to

an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑
16i,j6n

ηijdzi ∧ dzj , ηij =
∑

16α6r

cijαα.

Finally consider the k-jet line bundle Lk = OXGG
k

(1)→ XGG
k equipped with the induced metric Ψ∗h,p,ε

(as defined above, with 1 = ε1 � ε2 � . . . � εk > 0). When k tends to infinity, the integral of the
top power of the curvature of Lk on its q-index set XGG

k (Lk, q) is given by∫
XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ∗h,p,ε

=
(log k)n

n! (k!)r

(∫
X

1lη,qη
n +O((log k)−1)

)
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for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms of ΘV , η
and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive along the
fibers of XGG

k → X, by the plurisubharmonicity of the weight (this is true even when the partition
of unity terms are taken into account, since they depend only on the base); therefore the q-index sets
are empty for q > n. It will be useful to extend the above estimates to the case of sections of

(9.35) Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the natural projection.

We assume here that F is also equipped with a smooth Hermitian metric hF . In formulas (9.32–9.34),
the renormalized curvature ηk(z, x, u) of Lk takes the form

(9.36) ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gk(z, x, u) + ΘF,hF (z),

and by the same calculations its expected value is

(9.37) η(z) := E(ηk(z, •, •)) = ΘdetV ∗,deth∗(z) + ΘF,hF (z).

Then the variance estimate for ηk−η is unchanged, and the Lp bounds for ηk are still valid, since our
forms are just shifted by adding the constant smooth term ΘF,hF (z). The probabilistic estimate 9.34
is therefore still true in exactly the same form, provided we use (9.35 – 9.37) instead of the previously
defined Lk, ηk and η. An application of holomorphic Morse inequalities gives the desired cohomology
estimates for

hq
(
X,EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

9.38. Theorem. Let (X,V ) be a directed manifold, F → X a Q-line bundle, (V, h) and (F, hF )
smooth Hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = ΘdetV ∗,deth∗ + ΘF,hF .

Then for all q > 0 and all m� k � 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗mk )) 6

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,q)

(−1)qηn +O((log k)−1)

)
,(a)

h0(XGG
k ,O(L⊗mk )) >

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,61)

ηn −O((log k)−1)

)
,(b)

χ(XGG
k ,O(L⊗mk )) =

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V ∗ ⊗ F )n +O((log k)−1)

)
.(c)

Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation (9.38 c) in the special
case V = T ∗X and F = OX . Their proof is much simpler since it relies only on Chern class calculations,
but it cannot provide any information on the individual cohomology groups, except in very special
cases where vanishing theorems can be applied; in fact in dimension 2, the Euler characteristic satisfies
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χ = h0 − h1 + h2 6 h0 + h2, hence it is enough to get the vanishing of the top cohomology group H2

to infer h0 > χ ; this works for surfaces by means of a well-known vanishing theorem of Bogomolov
which implies in general

Hn

(
X,EGG

k,mT
∗
X ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)))

= 0

as soon as KX ⊗ F is big and m� 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], everything works
almost unchanged in the case where V ⊂ TX has singularities and h is an admissible metric on V
(see Definition 9.6). We only have to find a blow-up µ : X̃k → Xk so that the resulting pull-backs
µ∗Lk and µ∗V are locally free, and µ∗ deth∗, µ∗Ψh,p,ε only have divisorial singularities. Then η is a
(1, 1)-current with logarithmic poles, and we have to deal with smooth metrics on µ∗L⊗mk ⊗O(−mEk)
where Ek is a certain effective divisor on Xk (which, by our assumption in 9.6, does not project onto
X). The cohomology groups involved are then the twisted cohomology groups

Hq(XGG
k ,O(L⊗mk )⊗ Jk,m)

where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the Morse integrals need
only be evaluated in the complement of the poles, that is on X(η, q)rS where S = Sing(V )∪Sing(h).
Since

(πk)∗
(
O(L⊗mk )⊗ Jk,m

)
⊂ EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-twisted line bundle
O(L⊗mk ) on XGG

k ). If we assume that KV ⊗ F is big, these considerations also allow us to obtain a
strong estimate in terms of the volume, by using an approximate Zariski decomposition on a suitable
blow-up of (X,V ). The following corollary implies in particular Theorem 9.1.

9.39. Corollary. If F is an arbitrary Q-line bundle over X, one has

h0

(
XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

>
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),

when m� k � 1, in particular there are many sections of the k-jet differentials of degree m twisted
by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modification µ : X̃ → X
which converts KV into an invertible sheaf. There is of course nothing to prove if KV ⊗F is not big,
so we can assume Vol(KV ⊗ F ) > 0. Let us fix smooth Hermitian metrics h0 on TX and hF on F .
They induce a metric µ∗(deth−1

0 ⊗ hF ) on µ∗(KV ⊗ F ) which, by our definition of KV , is a smooth
metric. By the result of Fujita [Fuj94] on approximate Zariski decomposition, for every δ > 0, one
can find a modification µδ : X̃δ → X dominating µ such that

µ∗δ(KV ⊗ F ) = O
X̃δ

(A+ E)

where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An > Vol(KV ⊗ F )− δ.

If we take a smooth metric hA with positive definite curvature form ΘA,hA , then we get a singular
Hermitian metric hAhE on µ∗δ(KV ⊗F ) with poles along E, i.e. the quotient hAhE/µ

∗(deth−1
0 ⊗hF )

is of the form e−ϕ where ϕ is quasi-psh with log poles log |σE |2 (mod C∞(X̃δ)) precisely given by the
divisor E. We then only need to take the singular metric h on TX defined by

h = h0e
1
r (µδ)

∗ϕ
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(the choice of the factor 1
r is there to correct adequately the metric on detV ). By construction h

induces an admissible metric on V and the resulting curvature current η = ΘKV ,deth∗+ΘF,hF is such
that

µ∗δη = ΘA,hA + [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by∫
X(η,0)rS

ηn =

∫
X̃δ

Θn
A,hA = An > Vol(KV ⊗ F )− δ

and (9.39) follows from the fact that δ can be taken arbitrary small.

The following corollary implies Theorem 0.12.

9.40. Corollary. Let (X,V ) be a projective directed manifold such that K•V is big, and A an ample
Q-divisor on X such that K•V ⊗ O(−A)• is still big. Then, if we put δk = 1

kr (1 + 1
2 + . . . + 1

k ),
r = rankV , the space of global invariant jet differentials

H0(X,Ek,mV
∗ ⊗ O(−mδkA))

has (many) non zero sections for m� k � 1 and m sufficiently divisible.

Proof. Corollary 9.39 produces a non zero section P ∈ H0(EGG
k,mV

∗ ⊗ OX(−mδkA)) for m� k � 1,
and the arguments given in subsection 7.D (cf. (7.27)) yield a non zero section

Q ∈ H0(Ek,m′V
∗ ⊗ OX(−mδkA)), m′ 6 m.

By raising Q to some power p and using a section σ ∈ H0(X,OX(dA)), we obtain a section

Qpσmq ∈ H0(X,Ek,pm′V
∗ ⊗ O(−m(pδk − qd)A)).

One can adjust p and q so that m(pδk − qd) = pm′δk and pm′δkA is an integral divisor.

9.41. Example. In some simple cases, the above estimates can lead to very explicit results.
Take for instance X to be a smooth complete intersection of multidegree (d1, d2, . . . , ds) in Pn+s

C and
consider the absolute case V = TX . Then KX = OX(d1 + . . .+ ds − n− s− 1) and one can check via
explicit bounds of the error terms (cf. [Dem11], [Dem12]) that a sufficient condition for the existence
of sections is

k > exp
(

7.38nn+1/2
( ∑

dj + 1∑
dj − n− s− a− 1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete intersections of general
type. On the other hand, even when the degrees dj tend to +∞, we still get a large lower bound
k ∼ exp(7.38nn+1/2) on the order of jets, and this is far from being optimal : Diverio [Div08, Div09]
has shown e.g. that one can take k = n for smooth hypersurfaces of high degree, using the algebraic
Morse inequalities of Trapani [Tra95]. The next paragraph uses essentially the same idea, in our more
analytic setting.

§9.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (cijαβ) satisfies a lower bound

(9.42)
∑
i,j,α,β

cijαβξiξjuαuβ > −
∑

γijξiξj |u|2, ∀ξ ∈ TX , u ∈ V

for some semipositive (1, 1)-form γ = i
2π

∑
γij(z) dzi ∧ dzj on X. This is the same as assuming that

the curvature tensor of (V ∗, h∗) satisfies the semipositivity condition

(9.42′) ΘV ∗,h∗ + γ ⊗ IdV ∗ > 0
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in the sense of Griffiths, or equivalently ΘV,h − γ ⊗ IdV 6 0. Thanks to the compactness of X,
such a form γ always exists if h is an admissible metric on V . Now, instead of replacing ΘV

with its trace free part Θ̃V and exploiting a Monte Carlo convergence process, we replace ΘV with
Θγ
V = ΘV − γ ⊗ IdV 6 0, i.e. cijαβ by cγijαβ = cijαβ + γijδαβ . Also, we take a line bundle F = A−1

with ΘA,hA > 0, i.e. F seminegative. Then our earlier formulas (9.28), (9.35), (9.36) become instead

gγk (z, x, u) =
i

2π

∑
16s6k

1

s
xs

∑
i,j,α,β

cγijαβ(z)usαusβ dzi ∧ dzj > 0,(9.43)

Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,(9.44)

ΘLk = ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gγk (z, x, u)− (ΘA,hA(z) + rγ(z)).(9.45)

In fact, replacing ΘV by ΘV − γ ⊗ IdV has the effect of replacing ΘdetV ∗ = Tr ΘV ∗ by ΘdetV ∗ + rγ.
The major gain that we have is that ηk = ΘLk is now expressed as a difference of semipositive (1, 1)-
forms, and we can exploit the following simple lemma, which is the key to derive algebraic Morse
inequalities from their analytic form (cf. [Dem94], Theorem 12.3).

9.46. Lemma. Let η = α−β be a difference of semipositive (1, 1)-forms on an n-dimensional complex
manifold X, and let 1lη,6q be the characteristic function of the open set where η is non degenerate
with a number of negative eigenvalues at most equal to q. Then

(−1)q1lη,6q η
n 6

∑
06j6q

(−1)q−jαn−jβj ,

in particular
1lη,61 η

n > αn − nαn−1 ∧ β for q = 1.

Proof. Without loss of generality, we can assume α > 0 positive definite, so that α can be taken as
the base hermitian metric on X. Let us denote by

λ1 > λ2 > . . . > λn > 0

the eigenvalues of β with respect to α. The eigenvalues of η = α− β are then given by

1− λ1 6 . . . 6 1− λq 6 1− λq+1 6 . . . 6 1− λn,

hence the open set {λq+1 < 1} coincides with the support of 1lη,6q, except that it may also contain
a part of the degeneration set ηn = 0. On the other hand we have(

n

j

)
αn−j ∧ βj = σjn(λ)αn,

where σjn(λ) is the j-th elementary symmetric function in the λj ’s. Thus, to prove the lemma, we
only have to check that∑

06j6q

(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q
∏

16j6n

(1− λj) > 0.

This is easily done by induction on n (just split apart the parameter λn and write σjn(λ) =
σjn−1(λ) + σj−1

n−1(λ)λn).

We apply here Lemma 9.46 with

α = gγk (z, x, u), β = βk =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
(ΘA,hA + rγ),
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which are both semipositive by our assumption. The analogue of (9.32) leads to∫
XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ∗h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgγ
k
−βk,61 (gγk − βk)n dνk,r(x) dµ(u)

>
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

((gγk )n − n(gγk )n−1 ∧ βk) dνk,r(x) dµ(u).

The resulting integral now produces a “closed formula” which can be expressed solely in terms of
Chern classes (at least if we assume that γ is the Chern form of some semipositive line bundle). It is
just a matter of routine to find a sufficient condition for the positivity of the integral. One can first
observe that gγk is bounded from above by taking the trace of (cijαβ), in this way we get

0 6 gγk 6

( ∑
16s6k

xs
s

)(
ΘdetV ∗ + rγ

)
where the right hand side no longer depends on u ∈ (S2r−1)k. Also, gγk can be written as a sum of
semipositive (1, 1)-forms

gγk =
∑

16s6k

xs
s
θγ(us), θγ(u) =

∑
i,j,α,β

cγijαβuαuβ dzi ∧ dzj ,

hence for k > n we have

(gγk )n > n!
∑

16s1<...<sn6k

xs1 . . . xsn
s1 . . . sn

θγ(us1) ∧ θγ(us2) ∧ . . . ∧ θγ(usn).

Since
∫
S2r−1 θ

γ(u) dµ(u) = 1
r Tr(ΘV ∗ + γ) = 1

rΘdetV ∗ + γ, we infer from this∫
(x,u)∈∆k−1×(S2r−1)k

(gγk )n dνk,r(x) dµ(u)

> n!
∑

16s1<...<sn6k

1

s1 . . . sn

(∫
∆k−1

x1 . . . xn dνk,r(x)
)(1

r
ΘdetV ∗ + γ

)n
.

By putting everything together, we conclude:

9.47. Theorem. Assume that ΘV ∗ > −γ ⊗ IdV ∗ with a semipositive (1, 1)-form γ on X. Then the
Morse integral of the line bundle

Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
, A > 0

satisfies for k > n the inequality

1

(n+ kr − 1)!

∫
XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ∗h,p,ε

>
1

n!(k!)r(kr − 1)!

∫
X

cn,r,k
(
ΘdetV ∗ + rγ

)n − c′n,r,k(ΘdetV ∗ + rγ
)n−1 ∧

(
ΘA,hA + rγ

)
(∗)

where

cn,r,k =
n!

rn

( ∑
16s1<...<sn6k

1

s1 . . . sn

)∫
∆k−1

x1 . . . xn dνk,r(x),

c′n,r,k =
n

kr

(
1 +

1

2
+ . . .+

1

k

)∫
∆k−1

( ∑
16s6k

xs
s

)n−1

dνk,r(x).
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Especially we have a lot of sections in H0(XGG
k ,mLk), m � 1, as soon as the difference occurring

in (∗) is positive.

The statement is also true for k < n, but then cn,r,k = 0 and the lower bound (∗) cannot
be positive. By Corollary 9.11, it still provides a non trivial lower bound for h0(XGG

k ,mLk) −
h1(XGG

k ,mLk), though. For k > n we have cn,r,k > 0 and (∗) will be positive if ΘdetV ∗ is large
enough. By Formula 9.20 we have

(9.48) cn,r,k =
n! (kr − 1)!

(n+ kr − 1)!

∑
16s1<...<sn6k

1

s1 . . . sn
>

(kr − 1)!

(n+ kr − 1)!
,

(with equality for k = n), and by ([Dem11], Lemma 2.20 (b)) we get the upper bound

c′n,k,r
cn,k,r

6
(kr + n− 1)rn−2

k/n

(
1 +

1

2
+ . . .+

1

k

)n[
1 +

1

3

n−1∑
m=2

2m(n− 1)!

(n− 1−m)!

(
1 +

1

2
+ . . .+

1

k

)−m]
.

The case k = n is especially interesting. For k = n > 2 one can show (with r 6 n and Hn denoting
the harmonic sequence) that

(9.49)
c′n,k,r
cn,k,r

6
n2 + n− 1

3
nn−2 exp

(2(n− 1)

Hn
+ n logHn

)
6

1

3

(
n log(n log 24n)

)n
.

We will later need the particular values that can be obtained by direct calculations (cf. Formula (9.20
and [Dem11, Lemma 2.20]).

c2,2,2 =
1

20
, c′2,2,2 =

9

16
,

c′2,2,2
c2,2,2

=
45

4
,(9.502)

c3,3,3 =
1

990
, c′3,3,3 =

451

4860
,

c′3,3,3
c3,3,3

=
4961

54
.(9.503)

§10. Hyperbolicity properties of hypersurfaces of high degree

§10.A. Global generation of the twisted tangent space of the universal family

In [Siu02, Siu04], Y.T. Siu developed a new stategy to produce jet differentials, involving
meromorphic vector fields on the total space of jet bundles – these vector fields are used to differentiate
the sections of EGG

k,m so as to produce new ones with less zeroes. The approach works especially well
on universal families of hypersurfaces in projective space, thanks to the good positivity properties of
the relative tangent bundle, as shown by L. Ein [Ein88, Ein91] and C. Voisin [Voi96]. This allows
at least to prove the hyperbolicity of generic surfaces and generic 3-dimensional hypersurfaces of
sufficiently high degree. We reproduce here the improved approach given by [Pau08] for the twisted
global generation of the tangent space of the space of vertical two jets. The situation of k-jets in
arbitrary dimension n is substantially more involved, details can be found in [Mer09].

Consider the universal hypersurface X ⊂ Pn+1 × PNd of degree d given by the equation∑
|α|=d

Aα Z
α = 0,

where [Z] ∈ Pn+1, [A] ∈ PNd , α = (α0, . . . , αn+1) ∈ Nn+2 and

Nd =

(
n+ d+ 1

d

)
− 1.

Finally, we denote by V ⊂ X the vertical tangent space, i.e. the kernel of the projection

π : X→ U ⊂ PNd
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where U is the Zariski open set parametrizing smooth hypersurfaces, and by JkV the bundle of k-jets
of curves tangent to V, i.e. curves contained in the fibers Xs = π−1(s). The goal is to describe certain
meromorphic vector fields on the total space of JkV. By an explicit calculation of vector fields in
coordinates, according to Siu’s stategy, Păun [Pau08] was able to prove:

10.1. Theorem. The twisted tangent space TJ2V ⊗ OP3(7) ⊗ OPNd (1) is generated over by its global
sections over the complement J2VrW of the Wronskian locus W. Moreover, one can choose generating
global sections that are invariant with respect to the action of G2 on J2V.

By similar, but more computationally intensive arguments [Mer09], one can investigate the higher
dimensional case. The following result strengthens the initial announcement of [Siu04].

10.2. Theorem. Let Jvert
k (X) be the space of vertical k-jets of the universal hypersurface

X ⊂ Pn+1 × PNd

parametrizing all projective hypersurfaces X ⊂ Pn+1 of degree d. Then for k = n, there exist
constants cn and c′n such that the twisted tangent bundle

TJvert
k

(X) ⊗ OPn+1(cn)⊗ OPNd (c′n)

is generated by its global Gk-invariant sections outside a certain exceptional algebraic subset Σ ⊂
Jvert
k (X). One can take either cn = 1

2 (n2 + 5n), c′n = 1 and Σ defined by the vanishing of certain

Wronskians, or cn = n2 + 2n and a smaller set Σ̃ ⊂ Σ defined by the vanishing of the 1-jet part.

10.B. General strategy of proof

Let again X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1.

(10.3) Assume that we can prove the existence of a non zero polynomial differential operator

P ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A)),

where A is an ample divisor on X, at least over some Zariski open set U in the base of the projection
π : X→ U ⊂ PNd .

Observe that we now have a lot of techniques to do this; the existence of P over the family follows
from lower semicontinuity in the Zariski topology, once we know that such a section P exists on a
generic fiber Xs = π−1(s). Let Y ⊂ X be the set of points x ∈ X where P (x) = 0, as an element in
the fiber of the vector bundle EGG

k,mT
∗
X ⊗O(−A)) at x. Then Y is a proper algebraic subset of X, and

after shrinking U we may assume that Ys = Y∩Xs is a proper algebraic subset of Xs for every s ∈ U .

(10.4) Assume also, according to Theorems 10.1 and 10.2, that we have enough global holomorphic
Gk-invariant vector fields θi on JkV with values in the pull-back of some ample divisor B on X, in
such a way that they generate TJkV⊗p∗kB over the dense open set (JkV)reg of regular k-jets, i.e. k-jets
with non zero first derivative (here pk : JkV→ X is the natural projection).

Considering jet differentials P as functions on JkV, the idea is to produce new ones by taking
differentiations

Qj := θj1 . . . θj`P, 0 6 ` 6 m, j = (j1, . . . , j`).

Since the θj ’s are Gk-invariant, they are in particular C∗-invariant, thus

Qj ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A+ `B))

(and Q is in fact G′k invariant as soon as P is). In order to be able to apply the vanishing theorems
of § 8, we need A−mB to be ample, so A has to be large compared to B. If f : C→ Xs is an entire
curve contained in some fiber Xs ⊂ X, its lifting jk(f) : C → JkV has to lie in the zero divisors of
all sections Qj . However, every non zero polynomial of degree m has at any point some non zero
derivative of order ` 6 m. Therefore, at any point where the θi generate the tangent space to JkV,
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we can find some non vanishing section Qj . By the assumptions on the θi, the base locus of the
Qj ’s is contained in the union of p−1

k (Y) ∪ (JkV)sing; there is of course no way of getting a non zero
polynomial at points of Y where P vanishes. Finally, we observe that jk(f)(C) 6⊂ (JkV

sing (otherwise
f is constant). Therefore jk(f)(C) ⊂ p−1

k (Y) and thus f(C) ⊂ Y, i.e. f(C) ⊂ Ys = Y ∩Xs.

10.5. Corollary. Let X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1. If d > dn
is taken so large that conditions (10.3) and (10.4) are met with A−mB ample, then the generic fiber
Xs of the universal family X → U satisfies the Green-Griffiths conjecture, namely all entire curves
f : C→ Xs are contained in a proper algebraic subvariety Ys ⊂ Xs, and the Ys can be taken to form
an algebraic subset Y ⊂ X.

This is unfortunately not enough to get the hyperbolicity of Xs, because we would have to know
that Ys itself is hyperbolic. However, one can use the following simple observation due to Diverio and
Trapani [DT10]. The starting point is the following general, straightforward remark. Let E → X be
a holomorphic vector bundle let σ ∈ H0(X,E) 6= 0; then, up to factorizing by an effective divisor D
contained in the common zeroes of the components of σ, one can view σ as a section

σ ∈ H0(X,E⊗ OX(−D)),

and this section now has a zero locus without divisorial components. Here, when n > 2, the very
generic fiber Xs has Picard number one by the Noether-Lefschetz theorem, and so, after shrinking U
if necessary, we can assume that OX(−D) is the restriction of OPn+1(−p), p > 0 by the effectivity of
D. Hence D can be assumed to be nef. After performing this simplification, A−mB is replaced by
A−mB+D, which is still ample if A−mB is ample. As a consequence, we may assume codimY > 2,
and after shrinking U again, that all Ys have codimYs > 2.

10.6. Additional statement. In corollary 10.5, under the same hypotheses (10.3) and (10.4), one
can take all fibers Ys to have codimYs > 2.

This is enough to conclude that Xs is hyperbolic if n = dimXs 6 3. In fact, this is clear if n = 2
since the Ys are then reduced to points. If n = 3, the Ys are at most curves, but we know by Ein and
Voisin that a generic hypersurface Xs ⊂ P4 of degree d > 7 does not possess any rational or elliptic
curve. Hence Ys is hyperbolic and so is Xs, for s generic.

10.7. Corollary. Assume that n = 2 or n = 3, and that X ⊂ Pn+1×PNd is the universal hypersurface
of degree d > dn > 2n + 1 so large that conditions (10.3) and (10.4) are met with A −mB ample.
Then the very generic hypersurface Xs ⊂ Pn+1 of degree d is hyperbolic.

§10.C. Proof of the Green-griffiths conjecture for generic hypersurfaces in Pn+1

The most striking progress made at this date on the Green-Griffiths conjecture itself is a recent
result of Diverio, Merker and Rousseau [DMR10], confirming the statement when X ⊂ Pn+1

C is a
generic hypersurface of large degree d, with a (non optimal) sufficient lower bound d > 2n

5

. Their
proof is based in an essential way on Siu’s strategy as developed in § 10.B, combined with the earlier
techniques of [Dem95]. Using our improved bounds from § 9.D, we obtain here a better estimate
(actually of exponential order one O(exp(n1+ε)) rather than order 5).

10.8. Theorem. A generic hypersurface X ⊂ Pn+1 of degree d > dn with

d2 = 286, d3 = 7316, dn =

⌊
n4

3

(
n log(n log(24n))

)n⌋
for n > 4,

satisfies the Green-Griffiths conjecture.

Proof. Let us apply Theorem 9.47 with V = TX , r = n and k = n. The main starting point is the
well known fact that T ∗Pn+1 ⊗ OPn+1(2) is semipositive (in fact, generated by its sections). Hence the
exact sequence

0→ OPn+1(−d)→ T ∗Pn+1|X → T ∗X → 0
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implies that T ∗X ⊗ OX(2) > 0. We can therefore take γ = ΘO(2) = 2ω where ω is the Fubini-
Study metric. Moreover detV ∗ = KX = OX(d − n − 2) has curvature (d − n − 2)ω, hence
ΘdetV ∗ + rγ = (d+ n− 2)ω. The Morse integral to be computed when A = OX(p) is∫

X

(
cn,n,n(d+ n− 2)n − c′n,n,n(d+ n− 2)n−1(p+ 2n)

)
ωn,

so the critical condition we need is

d+ n− 2 >
c′n,n,n
cn,n,n

(p+ 2n).

On the other hand, Siu’s differentiation technique requires m
n2 (1 + 1

2 + . . .+ 1
n )A−mB to be ample,

where B = OX(n2 + 2n) by Merker’s result 10.2. This ampleness condition yields

1

n2

(
1 +

1

2
+ . . .+

1

n

)
p− (n2 + 2n) > 0,

so one easily sees that it is enough to take p = n4 − 2n for n > 3. Our estimates (9.49) and (9.50i)
give the expected bound dn.

Thanks to 10.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional hypersurfaces
of large degree.

10.9. Theorem. For n = 2 or n = 3, a generic hypersurface X ⊂ Pn+1 of degree d > dn is Kobayashi
hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather than Green-Griffiths
jets) Diverio-Trapani [DT10] obtained the better lower bound d > d3 = 593 in dimension 3. In the
case of surfaces, Păun [Pau08] obtained d > d2 = 18, using deep results of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order k < n in the proof of 10.8 and
10.9. Diverio [Div08] showed that the answer is negative (his proof is based on elementary facts of
representation theory and a vanishing theorem of Brückmann-Rackwitz [BR90]):

10.10. Proposition ([Div08]). Let X ⊂ Pn+1 be a smooth hypersurface. Then

H0(X,EGG
k,mT

∗
X) = 0

for m > 1 and 1 6 k < n. More generally, if X ⊂ Pn+s is a smooth complete intersection of
codimension s, there are no global jet differentials for m > 1 and k < n/s.

§11. Strong general type condition and the GGL conjecture

The main result of this section is a proof of the partial solution to the Green-Griffiths-Lang
conjecture asserted in Theorem 0.15. The following important “induction step” can be derived by
Corollary 9.39.

11.1. Proposition. Let (X,V ) be a directed pair where X is projective algebraic. Take an irreducible
algebraic subset Z 6⊂ Dk of the associated k-jet Semple bundle Xk that projects onto Xk−1, k > 1,
and assume that the induced directed space (Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X,
rankW > 1. Then there exists a divisor Σ ⊂ Z` in a sufficiently high stage of the Semple tower
(Z`,W`) associated with (Z,W ), such that every non constant holomorphic map f : C → X tangent
to V that satisfies f[k](C) ⊂ Z also satisfies f[k+`](C) ⊂ Σ.

Proof. Let E ⊂ Z be a divisor containing Zsing∪(Z∩π−1
k,0(Sing(V ))), chosen so that on the nonsingular

Zariski open set Z ′ = Z rE all linear spaces TZ′ , Vk|Z′ and W ′ = TZ′ ∩Vk are subbundles of TXk|Z′ ,
the first two having a transverse intersection on Z ′. By taking closures over Z ′ in the absolute Semple
tower of X, we get (singular) directed pairs (Z`,W`) ⊂ (Xk+`, Vk+`), which we eventually resolve
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into (Ẑ`, Ŵ `) ⊂ (X̂k+`, V̂ k+`) over nonsingular bases. By construction, locally bounded sections of
OX̂k+`(m) restrict to locally bounded sections of OẐ`(m) over Ẑ`.

Since Corollary 9.39 and the related lower bound of h0 are universal in the category of directed
varieties, we can apply them by replacing X with Ẑ ⊂ X̂k, the order k by a new index `, and F by

Fk = µ∗
((

OXk(p)⊗ π∗k,0OX(−εA)
)
|Z

)
where µ : Ẑ → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗ Oxk(p)|Z is big, A is an
ample bundle on X and ε ∈ Q∗+is small enough. The assumptions show that K

Ŵ
⊗ Fk is big on Ẑ,

therefore, by applying our theorem and taking m� `� 1, we get in fine a large number of (metric
bounded) sections of

O
Ẑ`

(m)⊗ π̂∗k+`,kO
( m
`r′

(
1 +

1

2
+ . . .+

1

`

)
Fk

)
= O

X̂k+`
(ma′)⊗ π̂∗k+`,0O

(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Ẑ`

where a′ ∈ Qk+`
+ is a positive weight (of the form (0, . . . , λ, . . . , 0, 1) with some non zero component

λ ∈ Q+ at index k). These sections descend to metric bounded sections of

OXk+`((1 + λ)m)⊗ π̂∗k+`,0O
(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Z`
.

Since A is ample on X, we can apply the fundamental vanishing theorem 8.14 (see e.g. [Dem97] or
[Dem11], Statement 8.15), or rather an “embedded” version for curves satisfying f[k](C) ⊂ Z, proved
exactly by the same arguments. The vanishing theorem implies that the divisor Σ of any such section
satisfies the conclusions of Proposition 11.1, possibly modulo exceptional divisors of Ẑ → Z; to take
care of these, it is enough to add to Σ the inverse image of the divisor E = Z r Z ′ initially selected.

We now introduce the ad hoc condition that will enable us to check the GGL conjecture.

11.2. Definition. Let (X,V ) be a directed pair where X is projective algebraic. We say that that
(X,V ) is “strongly of general type” if it is of general type and for every irreducible algebraic set
Z ( Xk, Z 6⊂ Dk, that projects onto X, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of
general type modulo Xk → X.

11.3. Example. The situation of a product (X,V ) = (X ′, V ′)× (X ′′, V ′′) described in (0.14) shows
that (X,V ) can be of general type without being strongly of general type. In fact, if (X ′, V ′) and
(X ′′, V ′′) are of general type, then KV = pr′ ∗KV ′ ⊗ pr′′ ∗KV ′′ is big, so (X,V ) is again of general
type. However

Z = P (pr′ ∗ V ′) = X ′1 ×X ′′ ⊂ X1

has a directed structure W = pr′ ∗ V ′1 which does not possess a big canonical bundle over Z, since the
restriction of KW to any fiber {x′}×X ′′ is trivial. The higher stages (Zk,Wk) of the Semple tower of
(Z,W ) are given by Zk = X ′k+1×X ′′ and Wk = pr′ ∗ V ′k+1, so it is easy to see that GGk(X,V ) contains
Zk−1. Since Zk projects onto X, we have here GG(X,V ) = X (see [DR13] for more sophisticated
indecomposable examples).

11.4. Remark. It follows from Definition 7.27 that (Z,W ) ⊂ (Xk, Vk) is automatically of general
type modulo Xk → X if OXk(1)|Z is big. Notice further that

OXk(1 + ε)|Z =
(
OXk(ε)⊗ π∗k,k−1OXk−1

(1)⊗ O(Dk)
)
|Z

where O(Dk)|Z is effective and OXk(1) is relatively ample with respect to the projection Xk → Xk−1.
Therefore the bigness of OXk−1

(1) on Xk−1 also implies that every directed subvariety (Z,W ) ⊂
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(Xk, Vk) is of general type modulo Xk → X. If (X,V ) is of general type, we know by the main result
of [Dem11] that OXk(1) is big for k > k0 large enough, and actually the precise estimates obtained
therein give explicit bounds for such a k0. The above observations show that we need to check the
condition of Definition 11.2 only for Z ⊂ Xk, k 6 k0. Moreover, at least in the case where V , Z, and
W = TZ ∩ Vk are nonsingular, we have

KW ' KZ ⊗ det(TZ/W ) ' KZ ⊗ det(TXk/Vk)|Z ' KZ/Xk−1
⊗ OXk(1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo Xk → X for
“rather special subvarieties” Z ⊂ Xk over Xk−1, such that KZ/Xk−1

is not relatively big over Xk−1.

11.5. Hypersurface case. Assume that Z 6= Dk is an irreducible hypersurface of Xk that projects
onto Xk−1. To simplify things further, also assume that V is nonsingular. Since the Semple jet-
bundles Xk form a tower of Pr−1-bundles, their Picard groups satisfy Pic(Xk) ' Pic(X) ⊕ Zk and
we have OXk(Z) ' OXk(a) ⊗ π∗k,0B for some a ∈ Zk and B ∈ Pic(X), where ak = d > 0 is the

relative degree of the hypersurface over Xk−1. Let σ ∈ H0(Xk,OXk(Z)) be the section defining Z in
Xk. The induced directed variety (Z,W ) has rankW = r− 1 = rankV − 1 and formula (1.12) yields
KVk = OXk(−(r − 1)1)⊗ π∗k,0(KV ). We claim that

(11.5.1) KW ⊃
(
KVk ⊗ OXk(Z)

)
|Z ⊗ JS =

(
OXk(a− (r − 1)1)⊗ π∗k,0(B ⊗KV )

)
|Z ⊗ JS

where S ( Z is the set (containing Zsing) where σ and dσ|Vk both vanish, and JS is the ideal locally
generated by the coefficients of dσ|Vk along Z = σ−1(0). In fact, the intersection W = TZ ∩ Vk is
transverse on Z r S ; then (11.5.1) can be seen by looking at the morphism

Vk|Z
dσ|Vk→ OXk(Z)|Z ,

and observing that the contraction by KVk = ΛrV ∗k provides a metric bounded section of the canonical
sheaf KW . In order to investigate the positivity properties of KW , one has to show that B cannot
be too negative, and in addition to control the singularity set S. The second point is a priori very
challenging, but we get useful information for the first point by observing that σ provides a morphism
π∗k,0OX(−B)→ OXk(a), hence a nontrivial morphism

OX(−B)→ Ea := (πk,0)∗OXk(a)

By [Dem95, Section 12], there exists a filtration on Ea such that the graded pieces are irreducible
representations of GL(V ) contained in (V ∗)⊗`, ` 6 |a|. Therefore we get a nontrivial morphism

(11.5.2) OX(−B)→ (V ∗)⊗`, ` 6 |a|.

If we know about certain (semi-)stability properties of V , this can be used to control the negativity
of B.

We further need the following useful concept that slightly generalizes entire curve loci.

11.6. Definition. If Z is an algebraic set contained in some stage Xk of the Semple tower of (X,V ),
we define its “induced entire curve locus” IELX,V (Z) ⊂ Z to be the Zariski closure of the union⋃
f[k](C) of all jets of entire curves f : (C, TC)→ (X,V ) such that f[k](C) ⊂ Z.

We have of course IELX,V (IELX,V (Z)) = IELX,V (Z) by definition. It is not hard to check that
modulo certain “vertical divisors” of Xk, the IELX,V (Z) locus is essentially the same as the entire
curve locus ECL(Z,W ) of the induced directed variety, but we will not use this fact here. Notice
that if Z =

⋃
Zα is a decomposition of Z into irreducible divisors, then

IELX,V (Z) =
⋃
α

IELX,V (Zα).
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Since IELX,V (Xk) = ECLk(X,V ), proving the Green-Griffiths-Lang property amounts to showing
that IELX,V (X) ( X in the stage k = 0 of the tower. The basic step of our approach is expressed in
the following statement.

11.7. Proposition. Let (X,V ) be a directed variety and p0 6 n = dimX, p0 > 1. Assume that
there is an integer k0 > 0 such that for every k > k0 and every irreducible algebraic set Z ( Xk,
Z 6⊂ Dk, such that dimπk,k0(Z) > p0, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of general
type modulo Xk → X. Then dim ECLk0(X,V ) < p0.

Proof. We argue here by contradiction, assuming that dim ECLk0(X,V ) > p0. If

p′0 := dim ECLk0(X,V ) > p0

and if we can prove the result for p′0, we will already get a contradiction, hence we can assume without
loss of generality that dim ECLk0(X,V ) = p0. The main argument consists of producing inductively
an increasing sequence of integers

k0 < k1 < . . . < kj < . . .

and directed varieties (Zj ,W j) ⊂ (Xkj , Vkj ) satisfying the following properties :

(11.7.1) Z0 is one of the irreducible components of ECLk0(X,V ) and dimZ0 = p0 ;

(11.7.2) Zj is one of the irreducible components of ECLkj (X,V ) and πkj ,k0(Zj) = Z0 ;

(11.7.3) for all j > 0, IELX,V (Zj) = Zj and rankWj > 1 ;

(11.7.4) for all j > 0, the directed variety (Zj+1,W j+1) is contained in some stage (of order
`j = kj+1 − kj) of the Semple tower of (Zj ,W j), namely

(Zj+1,W j+1) ( (Zj`j ,W
j
`j

) ⊂ (Xkj+1
, Vkj+1

)

and
W j+1 = TZj+1 ′ ∩W j

`j
= TZj+1 ′ ∩ Vkj

is the induced directed structure; moreover πkj+1,kj (Z
j+1) = Zj .

(11.7.5) for all j > 0, we have Zj+1 ( Zj`j but πkj+1,kj+1−1(Zj+1) = Zj`j−1.

For j = 0, we simply take Z0 to be one of the irreducible components Sα of ECLk0(X,V ) such that
dimSα = p0, which exists by our hypothesis that dim ECLk0(X,V ) = p0. Clearly, ECLk0(X,V )
is the union of the IELX,V (Sα) and we have IELX,V (Sα) = Sα for all those components, thus
IELX,V (Z0) = Z0 and dimZ0 = p0. Assume that (Zj ,W j) has been constructed. The subvariety
Zj cannot be contained in the vertical divisor Dkj . In fact no irreducible algebraic set Z such
that IELX,V (Z) = Z can be contained in a vertical divisor Dk, because πk,k−2(Dk) corresponds to
stationary jets in Xk−2 ; as every non constant curve f has non stationary points, its k-jet f[k] cannot
be entirely contained in Dk ; also the induced directed structure (Z,W ) must satisfy rankW > 1
otherwise IELX,V (Z) ( Z. Condition (11.7.2) implies that dimπkj ,k0(Zj) > p0, thus (Zj ,W j) is of
general type modulo Xkj → X by the assumptions of the proposition. Thanks to Proposition 2.5, we

get an algebraic subset Σ ( Zj` in some stage of the Semple tower (Zj` ) of Zj such that every entire
curve f : (C, TC) → (X,V ) satisfying f[kj ](C) ⊂ Zj also satisfies f[kj+`](C) ⊂ Σ. By definition, this
implies the first inclusion in the sequence

Zj = IELX,V (Zj) ⊂ πkj+`,kj (IELX,V (Σ)) ⊂ πkj+`,kj (Σ) ⊂ Zj

(the other ones being obvious), so we have in fact an equality throughout. Let (S′α) be the irreducible
components of IELX,V (Σ). We have IELX,V (S′α) = S′α and one of the components S′α must satisfy

πkj+`,kj (S
′
α) = Zj = Zj0 .
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We take `j ∈ [1, `] to be the smallest order such that Zj+1 := πkj+`,kj+`j (S
′
α) ( Zj`j , and set

kj+1 = kj + `j > kj . By definition of `j , we have πkj+1,kj+1−1(Zj+1) = Zj`j−1, otherwise `j would not
be minimal. Then πkj+1,kj (Z

j+1) = Zj , hence πkj+1,k0(Zj+1) = Z0 by induction, and all properties
(11.7.1− 11.7.5) follow easily. Now, by Observation 7.26, we have

rankW j < rankW j−1 < . . . < rankW 1 < rankW 0 = rankV.

This is a contradiction because we cannot have such an infinite sequence. Proposition 11.7 is proved.

The special case k0 = 0, p0 = n of Proposition 11.7 yields the following consequence.

11.8. Partial solution to the generalized GGL conjecture. Let (X,V ) be a directed pair that
is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for (X,V ), namely
ECL(X,V ) ( X, in other words there exists a proper algebraic variety Y ( X such that every non
constant holomorphic curve f : C→ X tangent to V satisfies f(C) ⊂ Y .

11.9. Remark. The proof is not very constructive, but it is however theoretically effective. By
this we mean that if (X,V ) is strongly of general type and is taken in a bounded family of directed
varieties, i.e. X is embedded in some projective space PN with some bound δ on the degree, and P (V )
also has bounded degree 6 δ′ when viewed as a subvariety of P (TPN ), then one could theoretically
derive bounds dY (n, δ, δ′) for the degree of the locus Y . Also, there would exist bounds k0(n, δ, δ′) for
the orders k and bounds dk(n, δ, δ′) for the degrees of subvarieties Z ⊂ Xk that have to be checked in
the definition of a pair of strong general type. In fact, [Dem11] produces more or less explicit bounds
for the order k such that Proposition 2.5 holds true. The degree of the divisor Σ is given by a section
of a certain twisted line bundle OXk(m)⊗ π∗k,0OX(−A) that we know to be big by an application of
holomorphic Morse inequalities – and the bounds for the degrees of (Xk, Vk) then provide bounds
for m.

11.10. Remark. The condition that (X,V ) is strongly of general type seems to be related to some
sort of stability condition. We are unsure what is the most appropriate definition, but here is one that
makes sense. Fix an ample divisor A on X. For every irreducible subvariety Z ⊂ Xk that projects
onto Xk−1 for k > 1, and Z = X = X0 for k = 0, we define the slope µA(Z,W ) of the corresponding
directed variety (Z,W ) to be

µA(Z,W ) =
inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗
(
OXk(m)⊗ π∗k,0O(λA)

)
|Z is big on Z

(again, we assume here that Z 6⊂ Dk for k > 2). Notice that (X,V ) is of general type if and only if
µA(X,V ) < 0, and that µA(Z,W ) = −∞ if OXk(1)|A is big. Also, the proof of Lemma 7.21 shows
that

µA(Xk, Vk) 6 µA(Xk−1, Vk−1) 6 . . . 6 µA(X,V ) for all k

(with µA(Xk, Vk) = −∞ for k > k0 � 1 if (X,V ) is of general type). We say that (X,V ) is A-jet-
stable (resp. A-jet-semi-stable) if µA(Z,W ) < µA(X,V ) (resp. µA(Z,W ) 6 µA(X,V )) for all Z ( Xk

as above. It is then clear that if (X,V ) is of general type and A-jet-semi-stable, then it is strongly
of general type in the sense of Definition 11.2. It would be useful to have a better understanding of
this condition of stability (or any other one that would have better properties).

§12. Algebraic jet-hyperbolicity implies Kobayashi hyperbolicity

Let (X,V ) be a directed variety, where X is an irreducible projective variety; the concept still
makes sense when X is singular, by embedding (X,V ) in a projective space (PN , TPN ) and taking the
linear space V to be an irreducible algebraic subset of TPn that is contained in TX at regular points
of X.
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12.1. Definition. Let (X,V ) be a directed variety. We say that (X,V ) is algebraically jet-hyperbolic
if for every k > 0 and every irreducible algebraic subvariety Z ⊂ Xk that is not contained in the
union ∆k of vertical divisors, the induced directed structure (Z,W ) either satisfies W = 0, or is of
general type modulo Xk → X, i.e. K•W ⊗ OXk(p)|Z is big for some rational number p ∈ Q+.

Proposition 12.6 then gives

12.2. Theorem. Let (X,V ) be an irreducible projective directed variety that is algebraically jet-
hyperbolic in the sense of the above definition. Then (X,V ) is Brody (or Kobayashi ) hyperbolic, i.e.
ECL(X,V ) = ∅.

Proof. Here we apply Proposition 12.6 with k0 = 0 and p0 = 1. It is enough to deal with subvarieties
Z ⊂ Xk such that dimπk,0(Z) > 1, otherwise W = 0 and can reduce Z to a smaller subvariety by
(2.2). Then we conclude that dim ECL(X,V ) < 1. All entire curves tangent to V have to be constant,
and we conclude in fact that ECL(X,V ) = ∅.
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139–151.

[Bru05] Brunella, M.: On the plurisubharmonicity of the leafwise Poincaré metric on projective manifolds.
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Doctorat, Univ. de Grenoble I (1997).

[Fuj94] Fujita, T.: Approximating Zariski decomposition of big line bundles. Kodai Math. J. 17 (1994) 1–3.



62 J.-P. Demailly, Kobayashi and Green-Griffiths-Lang conjectures

[Ghe41] Gherardelli, G.: Sul modello minimo della varieta degli elementi differenziali del 2◦ ordine del piano
projettivo. Atti Accad. Italia. Rend., Cl. Sci. Fis. Mat. Nat. (7) 2 (1941), 821–828.

[Gra89] Grauert, H.: Jetmetriken und hyperbolische Geometrie. Math. Zeitschrift 200 (1989), 149–168.

[GRe65] Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen.
Math. Zeitschrift 89 (1965), 108–125.

[GrGr79] Green, M., Griffiths, P.: Two applications of algebraic geometry to entire holomorphic mappings. The
Chern Symposium 1979, Proc. Internal. Sympos. Berkeley, CA, 1979, Springer-Verlag, New York (1980),
41–74.

[Gri71] Griffiths, P.: Holomorphic mappings into canonical algebraic varieties. Ann. of Math. 98 (1971), 439–458.

[Har77] Hartshorne, R.: Algebraic geometry. Springer-Verlag, Berlin (1977).

[Hir64] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann.
of Math. 79 (1964) 109–326.

[Kaw80] Kawamata, Y.: On Bloch’s conjecture. Invent. Math. 57 (1980), 97–100.

[Kob70] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. Marcel Dekker, New York (1970).

[Kob75] Kobayashi, S.: Negative vector bundles and complex Finsler structures. Nagoya Math. J. 57 (1975),
153–166.

[Kob76] Kobayashi, S.: Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc. 82
(1976), 357–416.

[Kob98] Kobayashi, S.: Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften, volume 318,
Springer-Verlag, Berlin, 1998.

[Kob80] Kobayashi, S.: The first Chern class and holomorphic tensor fields. Nagoya Math. J. 77 (1980), 5–11.

[Kob81] Kobayashi, S.: Recent results in complex differential geometry. Jber. dt. Math.-Verein. 83 (1981), 147–158.

[KobO71] Kobayashi, S., Ochiai, T.: Mappings into compact complex manifolds with negative first Chern class. J.
Math. Soc. Japan 23 (1971), 137–148.

[KobO75] Kobayashi, S., Ochiai, T.: Meromorphic mappings into compact complex spaces of general type. Invent.
Math. 31 (1975), 7–16.

[KobR91] Kobayashi, R.: Holomorphic curves into algebraic subvarieties of an abelian variety. Internat. J. Math.
2 (1991), 711–724.

[LaTh96] Laksov, D., Thorup, A.: These are the differentials of order n. Trans. Amer. Math. Soc. 351 (1999),
1293-1353.

[Lang86] Lang, S.: Hyperbolic and Diophantine analysis. Bull. Amer. Math. Soc. 14 (1986) 159–205.

[Lang87] Lang, S.: Introduction to complex hyperbolic spaces. Springer-Verlag, New York (1987).

[Lu96] Lu, S.S.Y.: On hyperbolicity and the Green-Griffiths conjecture for surfaces. Geometric Complex Analysis,
ed. by J. Noguchi et al., World Scientific Publishing Co. (1996) 401–408.

[LuMi95] Lu, S.S.Y., Miyaoka, Y.: Bounding curves in algebraic surfaces by genus and Chern numbers. Math.
Research Letters 2 (1995), 663-676.

[LuMi96] Lu, S.S.Y., Miyaoka, Y.: Bounding codimension one subvarieties and a general inequality between Chern
numbers. Amer. J. of Math. 119 (1997) 487–502.

[LuYa90] Lu, S.S.Y., Yau, S.T.: Holomorphic curves in surfaces of general type. Proc. Nat. Acad. Sci. USA, 87
(January 1990), 80–82.

[MaNo93] Masuda, K., Noguchi, J.: A construction of hyperbolic hypersurface of Pn(C). Preprint Tokyo Inst.
Technology, Ohokayama, Tokyo, (1993), 27 p.

[McQ96] McQuillan, M.: A new proof of the Bloch conjecture. J. Alg. Geom. 5 (1996), 107–117.

[McQ98] McQuillan, M.: Diophantine approximation and foliations. Inst. Hautes Études Sci. Publ. Math. 87
(1998) 121–174.

[McQ99] McQuillan, M.: Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9 (1999)
370–392.

[Mer08] Merker, J.: Jets de Demailly-Semple d’ordres 4 et 5 en dimension 2. Int. J. Contemp. Math. Sci. 3-18
(2008), 861–933.

[Mer09] Merker, J.: Low pole order frames on vertical jets of the universal hypersurface Ann. Inst. Fourier
(Grenoble), 59 (2009), 1077–1104.

[Mer10] Merker, J.: Complex projective hypersurfaces of general type: toward a conjecture of Green and Griffiths.
arXiv:1005.0405, 89 pages.
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