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Preface to the 16th Takagi Lectures

The Takagi Lectures are expository lectures by the finest contemporary

mathematicians.

The Mathematical Society of Japan (MSJ) inaugurated the Takagi Lectures

as prestigious research survey lectures. The Takagi Lectures are the first se-

ries of the MSJ official lectures in mathematics to be honored with this re-

spected Japanese mathematician’s name [2]. The lectures are intended for a wide

range of mathematicians, and are as a rule held twice a year. The first Takagi

Lectures took place in November 2006 at Research Institute for Mathematical

Sciences (RIMS), Kyoto. Since then Takagi Lectures have been delivered by

the following distinguished mathematicians: P.F. Baum, Y. Benoist, S. Bloch,

J.-P. Bourguignon, S. Brendle, A. Connes, É. Ghys, A. Guionnet, S. Gukov,

M. Harris, M. Hopkins, U. Jannsen, V.F.R. Jones, C. Kenig, C. Khare,

M. Khovanov, M. Kontsevich, L. Lafforgue, P.-L. Lions, A. Lubotzky, J. Makino,

P. Malliavin, C. Manolescu, D. McDuff, J. McKernan, A. Naor, K.-H. Neeb,

N.A. Nekrasov, H. Oh, H. Ooguri, S. Popa, P. Scholze, R. Seiringer, S. Smale,

G. Tian, A. Venkatesh, A.M. Vershik, C. Villani, O. Viro, D.-V. Voiculescu,

C. Voisin, and M. Yor.

The Takagi Lectures bear the name of the principal creator of Class Field

Theory, Professor Teiji Takagi (1875–1960). In Japan, he is also known as the

founder of the Japanese School of modern mathematics [1,3]. Internationally,

he served as one of the first Fields Medal Committee Members in 1936 together

with G.D. Birkhoff, É. Cartan, C. Carathéodory, and F. Severi.

The 16th Takagi Lectures are to be held November 28–29, 2015, at The

University of Tokyo. The distinguished lecturers are F. Catanese, J.-P. Demailly,

M. Kashiwara, and S.-T. Yau. The 16th Takagi Lectures will commemorate the

centennial of the birth of Kunihiko Kodaira, one of the greatest mathematicians

of the twentieth century.

The lecture notes of the Takagi Lectures are to be published by the Japanese

Journal of Mathematics (JJM). It is the oldest continuously published mathe-
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matical journal in Japan (founded in 1924) and its third series was relaunched

in 2006 as a mathematical journal of research survey articles of the highest sci-

entific level in cooperation with Springer. The editors of JJM, Y. Kawahigashi,

H. Nakajima, K. Ono, T. Saito, and I, also serve as the organizers of the Takagi

Lectures. Videos of the lectures will be available on the Internet.

This scheme of the Takagi Lectures is intended to support the mission of

continuing the advancement of mathematics, not only in Japan but throughout

the world.

The Takagi Lectures are financially supported by the surplus from the Inter-

national Congress of Mathematicians, which was held in Kyoto in 1990, with

funding provided by the MSJ.

I would like to take this opportunity to thank the distinguished lecturers and

all those who have supported our endeavors. I hope that the Takagi Lectures will

gain the respect of a worldwide audience and will continue to promote future

progress in mathematics.

Toshiyuki Kobayashi

The University of Tokyo

Graduate School of Mathematical Sciences

and

Kavli IPMU
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Kunihiko Kodaira (1915–1997)

Biography of Kunihiko Kodaira

1915 March 16 Born in Tokyo, Japan

1935 Entered Department of Mathematics, Tokyo Imperial University

1938 Graduated from Department of Mathematics, and entered in Department

of Physics

1941 Lecturer of Tokyo Imperial University (Department of Physics)

1949 Doctor of Science at the University of Tokyo (superviser: Shokichi

Iyanaga)

1949 Member of the Institute for Advanced Study

1954 Awarded Fields Medal at ICM at Amsterdam

1955 Professor of Princeton University and the Institute for Advanced Study

1957 Decorated with Order of Culture, Japan

1962 Professor of Johns Hopkins University

1965 Professor of Stanford University

1965 Member of Japan Academy

1968 Professor of The University of Tokyo

1975 Professor of Gakushuin University

1978 Corresponding Member of National Academy of Arts and Sciences,

USA

1985 Awarded Wolf Prize, Israel

1987 Decorated with First Order of Merit with the Sacred Treasure

1986–90 President of the International Congress of Mathematicians, Kyoto

1997 July 26 Died in Kofu City, Japan
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Teiji Takagi (1875–1960)

Biography of Teiji Takagi

1875 April 21 Born in Gifu, Japan

1894 Entered the Department of Mathematics, Imperial University

1897 Entered the Graduate School of Tokyo Imperial University

1898–1901 Studied in Berlin and Göttingen

1903 Received the degree of Doctor of Science, Tokyo Imperial University

1904 Appointed Professor at Tokyo Imperial University

1920 Published his main paper on the class field theory

1925 Elected Member of the Imperial Academy of Japan

1936 Served on the 1st Fields Medal Committee

1938 Published the book A Course on Analysis (in Japanese)

1940 Received Culture Medal

1960 February 28 Died in Tokyo, Japan

Decorated posthumously with the Order of the Rising Sun of the First Grade
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Introduction

The classical Riemann–Hilbert problem asks for the existence of a linear ordi-
nary differential equation with regular singularities and a given monodromy on
a curve.

Pierre Deligne ([De70]) formulated it as a correspondence between inte-
grable connections with regular singularities on a complex manifold X with a
pole on a hypersurface Y and local systems on X n Y .

Later the author constructed an equivalence of triangulated categories be-
tween Db

rh.DX /, the derived category of DX -modules with regular holonomic
cohomologies, and Db

C-c.CX /, the derived category of sheaves on X with C-
constructible cohomologies ([Ka80,Ka84]). The equivalence is given by the
solution functor

Sol X W Db
rh.DX /

���! Db
C-c.CX /

op:

Here Sol X .M / D RHomDX
.M ;OX /. Note that Db

rh.DX / is self-dual by the
duality functor.

However, it was a long-standing problem to generalize it to the (not neces-
sarily regular) holonomic D-module case. One of the difficulties was that we
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could not find an appropriate substitute of the target category Db
C-c.CX /. Re-

cently, the author solved it jointly with Andrea D’Agnolo ([DK13]) by using an
enhanced version of indsheaves.

There are two ingredients for the solution.
One is the notion of indsheaves. This notion was introduced with Pierre

Schapira in [KS01] to treat “sheaves” of functions with tempered growth, such
as Db t of tempered distributions or O t of tempered holomorphic functions.

The other ingredient is adding an extra variable. We consider indsheaves on
M � R, not on the base manifold M . This method was originally introduced
by Dmitry Tamarkin ([Ta08]) in order to treat non-homogeneous Lagrangian
submanifolds of the cotangent bundle in the framework of sheaf theory. In our
context, this method affords an appropriate language to capture various growth
of solutions at singular points.

Among the results used in the course of the proof is the description of the
structure of flat connections due to Takuro Mochizuki ([Mo09,Mo11]) and Ki-
ran S. Kedlaya ([Ke10,Ke11]).

In this survey paper, we explain an outline of the irregular Riemann–Hilbert
problem. We use here, instead of the notion of indsheaves, the analogous notion
of “subanalytic sheaves”.

For a complex manifoldX , we construct a triangulated category Db.C
sub
X�R1

/,
called the triangulated category of enhanced subanalytic sheaves, a fully faith-
ful functor e W Db.CX / �! Db.C

sub
X�R1

/ and its left quasi-inverse HomE.CT
X ;

� / W
Db.C

sub
X�R1

/ �! Db.CX /. Next we construct O T
X 2 Db.C

sub
X�R1

/, the enhanced
subanalytic sheaf of tempered holomorphic functions such that HomE.CT

X ;O
T
X /

' OX . By using O T
X instead of OX , we define the enhanced solution func-

tor from the bounded derived category Db.DX / of DX -modules to the category
Db.C

sub
X�R1

/ of enhanced subanalytic sheaves by

Sol T
X .M / WD RHomDX

.M ;O T
X / for M 2 Db.DX /.

Restricting it to Db
hol.DX /, the subcategory of Db.DX / consisting of com-

plexes with holonomic cohomologies, we obtain a fully faithful functor

Sol T
X W Db

hol.DX /
�� �� Db.C

sub
X�R1

/ op:

Furthermore, we have an isomorphism

HomE.Sol T
X .M /;O T

X / 'M for any M 2 Db
hol.DX /.

Thus we obtain a quasi-commutative diagram:
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This paper is organized as follows. In the first section, we review the local theory
of linear ordinary differential equations. In the next sections, we shall review
sheaves, D-modules and subanalytic sheaves. After introducing the subanalytic
sheaves of tempered distributions and that of tempered holomorphic functions in
§4, we define the enhanced version of the de Rham functor and solution functor.
Then, in §6, we state our main theorems by using these functors. In the next
section §7, we give a very brief outline of the proof of the main theorems by
using the results of T. Mochizuki and K.S. Kedlaya.

In the last section §8, we explain how Proposition 1.1 on the Stokes phe-
nomena in the one-dimensional case can be interpreted in terms of the enhanced
solution functors.

We refer the reader to [DK13,KS14,KS15,DK15] for a more detailed the-
ory. Remark that the description of the Riemann–Hilbert correspondence in this
paper is different from that of loc. cit. in the following points.

(a) We use in loc. cit. indsheaves instead of subanalytic sheaves. Since the cate-
gory of subanalytic sheaves can be embedded into that of indsheaves, these
two descriptions are almost equivalent.

(b) In loc. cit., the category Eb.ICM / of enhanced indsheaves is defined as
a quotient category of the category Db.ICM�R1

/ of indsheaves on M �
R1. However, Eb.ICM / can be also embedded into Db.ICM�R1

/ by the
right adjoint RE W Eb.ICM / �! Db.ICM�R1

/ of the quotient functor. In
our paper, we use the subanalytic sheaf version of Db.ICM�R1

/ instead of
Eb.ICM / by using the embedding RE.

1. Linear ordinary differential equations

1.1. One dimensional case

Let us recall the local theory of linear ordinary differential equations. LetX � C

be an open subset with 0 2 X and let M be a holonomic DX -module such
that SingSupp.M / � f0g and M ' M .�f0g/ WD OX .�f0g/ ŐX

M . Here
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OX .�f0g/ is the sheaf of meromorphic functions with possible poles at 0. It
is equivalent to saying that M is a DX -module which is locally isomorphic
to OX .�f0g/r for some r 2 Z>0 as an OX -module. Let us take a system of
generators fu1; : : : ; urg of M as a free OX .�f0g/-module on a neighborhood
of 0. Then, writing Eu for the column vector with these generators as components,
we have

d

dz
Eu D A.z/Eu(1.1)

for some A.z/ 2 Matr.OX .�f0g//, i.e., for an .r � r/-matrix A.z/ whose
components are in OX .�f0g/. Then for any DX -module L such that L '
L .�f0g/, we have

HomDX
.M ;L / D fEu 2 L r I Eu satisfies the same differential

equation as (1.1)g;
where we associate to Eu the morphism from M to L defined by Eu 7! Eu.

1.2. Regular singularities

If we can choose a system of generators fu1; : : : ; urg of M such that zA.z/ has
no pole at 0, then we say that 0 is a regular singularity of M , or M is regular.
In such a case, there are r linearly independent solutions of the form

Euj D z�j

r�1X
sD0
Eaj;s.z/.log z/s .j D 1; : : : ; r/;

where Eaj;s.z/ is a vector of holomorphic functions defined on a neighborhood of
0. Hence, after a change of generators Ev D D.z/Eu with some invertible matrix
D.z/ 2 GLr.OX .�f0g//, the new variable Ev satisfies the equation

z
d

dz
Ev D C Ev

for some constant matrix C 2 Matr.C/. Then, by reducing C to a Jordan form,
we see that M is isomorphic to a direct sum of DX -modules DX .�f0g/=DX
.�f0g/

�
z
d

dz
� �

�mC1
with � 2 C and m 2 Z>0. Note that

DX .�f0g/=DX .�f0g/
�
z
d

dz
� �

�mC1 ' DX=DX
�
z
d

dz
� � � k

�mC1

for any k 2 Z such that �C k 62 Z>0.
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Recall that the solution sheaf of M is defined by

Sol X .M / WD RHomDX
.M ;OX /:

Then the local system on X n f0g

L WD Sol X .M /jXnf0g D
n
Eu 2 .OXnf0g/r I d

dz
Eu D A.z/Eu

o
(1.2)

has the monodromy exp.2�
p�1C /. Hence L completely determines M .

1.3. Irregular singularities

In the irregular case, we have the following results on the solutions of the ordi-
nary linear differential equation (1.1):

(i) there exist linearly independent r formal solutions buj .j D 1; : : : ; r/ of
(1.1) with the form

buj D e'j .z/z�j

r�1X
sD0
Eaj;s.z/.log z/s;

where 'j .z/ 2 z�1=mCŒz�1=m� for some m 2 Z>0, �j 2 C, and

Eaj;s.z/ D
X

n2m�1Z>0

Eaj;s;nzn 2 CŒŒz1=m��r with Eaj;s;n 2 C
r ,

(ii) for any �0 2 R and each j D 1; : : : ; r , there exist an angular neighbor-
hood

D�0
D fz D rei� I j� � �0j < " and 0 < r < ıg(1.3)

for sufficiently small "; ı > 0 and a holomorphic (column) solution uj 2
OX .D�0

/r of (1.1) defined on D�0
such that

uj �buj ;
in the following sense: for any N > 0, there exists C > 0 such that

juj .z/ �buNj .z/j 6 C je'j .z/z�jCN j D C eRe.'j .z//jz�jCN j;(1.4)

where buNj .z/ is the finite partial sum

buNj .z/ D e'j .z/z�j

r�1X
sD0

X
n2m�1

Z>0;
n6N

Eaj;s;nzn.log z/s:

Here we choose branches of z1=m and log z on D�0
.
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Note that a holomorphic solution uj is not uniquely determined by the for-
mal solution buj . Indeed, uj CP

k 6Dj ckuk also satisfies the same estimate (1.4)
whenever

Re.'k.z// < Re.'j .z// on D�0
if ck 6D 0.

1.4. Stokes phenomena

We choose another sufficiently small angular domain D�1
such that D�0

\
D�1
6D ¿, and, for each j , we take a holomorphic solution u0j defined on D�1

and with the asymptotic behavior (1.4) on D�1
. Then we can write

u0j D
X
k

aj;kuk on D�0
\D�1

with aj;k 2 C. Note that

Re.'k.z// 6 Re.'j .z// on D�0
\D�1

if aj;k 6D 0.(1.5)

The matrix .aj;k/16j;k6r is called the Stokes matrix. If we cover a neighbor-
hood of f0g by such angular domains, then a pair of adjacent angular domains
gives a Stokes matrix, and thus we obtain a family of matrices satisfying (1.5).

Conversely, we can find a holonomic D-module M whose Stokes matrices
are a given family of matrices satisfying (1.5).

1.5. Stokes filtrations

Deligne [DMR07] interpreted these results as follows (see also Malgrange
[DMR07] and Sabbah [Sa00,Sa13]).

Let $ W eX �! X be the real blow up of X along f0g defined in §7.1 below.
Namely,

eX WD f.r; �/ 2 R>0 � C I j�j D 1; r� 2 Xg and $.r; �/ D r�:
Recall that L D .Sol XM /jXnf0g. Let S WD$�1.0/ and j W X n f0g �! eX and
set

eL D .j�L/jS :(1.6)

Then eL is a local system on S of rank r .
For the sake of simplicity, we assume that m in §1.3 (i) is equal to 1.
Set ˆ D .OX .�f0g/=OX /0. For ei�0 2 S and '; 2 ˆ, we write ' �

ei�0

 

if there exists c 2 R such that Re. Q'.r ei� // 6 Re. Q .r ei� //C c for 0 < r � 1
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and j� � �0j � 1 and representatives Q'; Q 2 OX .�f0g/0 of ' and  . Then �
ei�0

is an order on ˆ.
For ' 2 ˆ and ei� 2 S , we set

.F'/ei� D
n
u.z/ 2 .eL/ei� I ju.z/j 6 C jz�M e'.z/jon a neighborhood of

ei� for some C > 0 and M 2 Z>0

o
:

Then fF'g'2ˆ satisfies the following conditions by the properties of the solu-
tions explained in §1.3:

(i) fF'g'2ˆ is a filtration of eL, namely,
(a) F' is a subsheaf of eL for any ' 2 ˆ,
(b) eL DP

'2ˆ F' ,
(c) .F'/ei� � .F /ei� if ' �

ei�

 ,

(ii) for any ei�0 2 S , there exist an open neighborhood U of ei�0 , a finite
subset I of ˆ and a constant subsheaf H' (' 2 I ) of eLjU such that
(a) eLjU D L

'2I
H' ,

(b) for any ei� 2 U and ' 2 ˆ, we have

.F'/ei� D L
 2I;  �

ei�
'

.H /ei� :

If the above conditions are satisfied we say that fF'g'2ˆ is a Stokes filtration
of the local system eL. Also in case m > 1, we can define the notion of Stokes
filtration with a suitable modification.

Proposition 1.1. The category of holonomic DX -module M such that

SingSupp.M / � f0g and M 'M .�f0g/
is equivalent to the category of pairs .L; fF'g/ of a local system L on X n f0g
and a Stokes filtration fF'g on eL WD .j�L/jS .

In order to generalize this result to holonomic D-modules in the several dimen-
sion case, we use enhanced subanalytic sheaves. In the next sections, we shall
review sheaves, D-modules and subanalytic sheaves.

2. A brief review on sheaves and D-modules

2.1. Sheaves

We refer to [KS90] for all notions of sheaf theory used here. For simplicity, we
take the complex number field C as the base field, although most of the re-
sults would remain true when C is replaced with a commutative ring of finite
global dimension.
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A topological space is good if it is Hausdorff, locally compact, countable at
infinity and has finite flabby dimension.

One denotes by Mod.CM / the abelian category of sheaves of C-vector spaces
on a good topological space M and by Db.CM / its bounded derived category.
Note that Mod.CM / has a finite homological dimension.

For a locally closed subset A ofM , one denotes by CA the constant sheaf on
A with stalk C extended by 0 on X n A.

One denotes by Supp.F / the support of F .
There are many formulas concerning the six operations. For example, we

have the formulas below in which F;F1; F2 2 Db.CM /, G;G1; G2 2 Db.CN /:

RHom .F1 ˝F2; F / ' RHom .F1;RHom .F2; F //;
Rf�RHom .f �1G;F / ' RHom .G;Rf�F /;
RfŠ .F ˝ f �1G/ ' .RfŠ F /˝G (projection formula),

f Š RHom .G1; G2/ ' RHom .f �1G1; f ŠG2/;

(2.1)

and for a Cartesian square of good topological spaces,

we have the base change formulas

g�1RfŠ ' Rf 0Š g0�1 and g Š Rf� ' Rf 0� g0
Š
:(2.2)

2.2. D-modules

References for D-module theory are made to [Ka03]. See also [Ka70,Ka75,
Ka78,KK81,Bj93,HTT08]. Here, we shall briefly recall some basic construc-
tions in the theory of D-modules.

Let .X;OX / be a complex manifold. We denote by

	 dX the complex dimension of X ,
	 �X the invertible OX -module of differential forms of top degree,
	 �X=Y the invertible OX -module �X f̋ �1OY

f �1.�˝�1Y / for a morphism
f W X �! Y of complex manifolds,
	 ‚X the sheaf of holomorphic vector fields,
	 DX the sheaf of algebras of finite-order differential operators.
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Denote by Mod.DX / the abelian category of left DX -modules and by
Mod.D op

X / that of right DX -modules. There is an equivalence

r W Mod.DX / ���! Mod.D op
X /; M 7�!M r WD�X ŐX

M :(2.3)

By this equivalence, it is enough to study left DX -modules.
The ring DX is coherent and one denotes by Mod coh.DX / the thick abelian

subcategory of Mod.DX / consisting of coherent modules.
To a coherent DX -module M one associates its characteristic variety

char.M /, a closed C
�-conic co-isotropic (one also says involutive) C-analytic

subset of the cotangent bundle T �X . The involutivity property is a central theo-
rem of the theory and is due to [SKK73]. A purely algebraic proof was obtained
later in [Gabb81].

If char.M / is Lagrangian, M is called holonomic. It is immediately checked
that the full subcategory Mod hol.DX / of Mod coh.DX / consisting of holonomic
D-modules is a thick abelian subcategory.

A DX -module M is quasi-good if, for any relatively compact open subset
U � X , there is a filtrant family fFigi of coherent .OX jU /-submodules of
M jU such that M jU D

P
i Fi . Here, a family fFigi is filtrant if, for any i; i 0,

there exists i 00 such that Fi CFi 0 � Fi 00 .
A DX -module M is good if it is quasi-good and coherent. The subcategories

of Mod.DX / consisting of quasi-good (resp. good) DX -modules are abelian and
thick. Therefore, one has the triangulated categories

	 Db
coh.DX / D fM 2 Db.DX / IH j .M / is coherent for all j 2 Zg;

	 Db
hol.DX / D fM 2 Db.DX / IH j .M / is holonomic for all j 2 Zg;

	 Db
rh.DX / D fM 2 Db.DX / IH j .M / is regular holonomic for all j 2 Zg;

	 Db
q-good.DX / D fM 2 Db.DX / IH j .M / is quasi-good for all j 2 Zg;

	 Db
good.DX / D fM 2 Db.DX / IH j .M / is good for all j 2 Zg:

One may also consider the unbounded derived categories D.DX /, DC.DX / and
D�.DX / and their full triangulated subcategories consisting of objects with co-
herent, holonomic, regular holonomic, quasi-good and good cohomologies.

We have the functors

RHomDX
. � ; � / W Db.DX /

op � Db.DX / �! DC.CX /;

�

L˝DX

� W Db.D
op
X / � Db.DX / �! Db.CX /:

We also have the functor

�

D˝ � W D�.DX / � D�.DX / �! D�.DX /
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constructed as follows. For DX -modules M and N , the tensor product M ŐX

N is endowed with a structure of DX -module by

v.s ˝ t/ D .vs/˝ t C s ˝ .vt/ for v 2 ‚X , s 2M and t 2 N .

The functor �

D˝ � is its left derived functor. One defines the duality functor for
D-modules by setting

DXM D RHomDX
.M ;DX ŐX

�˝�1X /ŒdX �2Db.DX /

for M 2 Db.DX /.

Now, let f W X �! Y be a morphism of complex manifolds. The trans-
fer bimodule DX�!Y is a .DX ; f �1DY /-bimodule defined as follows. As an
.OX ; f

�1DY /-bimodule, DX�!Y D OX f̋ �1OY
f �1DY . The left DX -module

structure of DX�!Y is given by

v.a˝P / D v.a/˝P C
X
i

aai ˝wiP;

where v 2 ‚X and
P
i ai ˝wi is its image in OX f̋ �1OY

f �1‚Y .
One also uses the opposite transfer bimodule DY �X D f �1DY f̋ �1OY

�X=Y , an .f �1DY ;DX /-bimodule.
Note that for another morphism of complex manifolds g W Y �! Z, one has

the natural isomorphisms

DX�!Y
L˝f �1DY

f �1DY�!Z ' DX�!Z ;

f �1DZ �Y
L˝f �1DY

DY �X ' DZ �X :

One can now define the external operations on D-modules by setting:

Df �N WDDX�!Y
L˝f �1DY

f �1N for N 2 Db.DY /,

DfŠM WD RfŠ .M
L˝DX

DX�!Y / for M 2 Db.D
op
X /,

and one defines Df�M by replacing RfŠ with Rf� in the above formula. By
using the opposite transfer bimodule DY �X one defines similarly the inverse
image of a right DY -module or the direct images of a left DX -module.

One calls respectively Df �, Df� and DfŠ the inverse image, direct image
and proper direct image functors in the category of D-modules.

Note that

Df �OY ' OX ; Df ��Y ' �X :



M. Kashiwara

Also note that the property of being quasi-good is stable by inverse image and
tensor product, as well as by direct image by maps proper on the support of the
module. The property of being good is stable by duality.

Let f W X �! Y be a morphism of complex manifolds. One associates the
maps

One says that f is non-characteristic for N 2 Db
coh.DY / if the map fd is proper

(hence, finite) on f �1� .char.N //.
The classical de Rham and solution functors are defined by

DRX W Db.DX / �! Db.CX /; M 7�! �X
L˝DX

M ;

Sol X W Db.DX / �! Db.CX /
op; M 7�! RHomDX

.M ;OX /:

For M 2 Db
coh.DX /, one has

Sol X .M / ' DRX .DXM /Œ�dX �:(2.4)

Let us list up the relations of the de Rham functors with the inverse and direct
image functors.

Theorem 2.1 (Projection formulas [Ka03, Theorems 4.2.8, 4.40]). Let f W X
�! Y be a morphism of complex manifolds. For M 2 Db.DX / and L 2
Db.D

op
Y /, there are natural isomorphisms:

DfŠ.Df �L
D˝M /'L

D˝DfŠM ;

RfŠ .Df �L
L˝DX

M /'L
L˝DY

DfŠM :

In particular, there is an isomorphism (commutation of the de Rham functor and
direct images)

RfŠ .DRX .M // ' DR Y .DfŠM /:

Theorem 2.2 (Commutation with duality [Ka03,Sc86]). Let f W X �! Y be
a morphism of complex manifolds.

(i) Let M 2 Db
good.DX / and assume that Supp.M / is proper over Y . Then

DfŠM 2 Db
good.DY /, and DY .DfŠM / ' DfŠDXM .

(ii) If f is non-characteristic for N 2 Db
coh.DY /, then Df �N 2 Db

coh.DX /
and DX .Df �N / ' Df �DYN .
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Corollary 2.3. Let f W X �! Y be a morphism of complex manifolds.

(i) Let M 2 Db
good.DX / and assume that Supp.M / is proper over Y . Then

we have the isomorphism for N 2 D.DY /:

Rf�RHomDX
.M ;Df �N / ŒdX � ' RHomDY

.Df�M ;N / ŒdY �:

In particular, with the same hypotheses, we have the isomorphism (com-
mutation of the Sol functor and direct images)

Rf�Sol X .M / ŒdX � ' Sol Y .Df�M / ŒdY �:

(ii) Let N 2 Db
coh.DY / and assume that f is non-characteristic for N . Then

we have the isomorphism for M 2 D.DX /:

Rf�RHomDX
.Df �N ;M /ŒdX � ' RHomDY

.N ;Df�M /ŒdY �:

3. Subanalytic sheaves

3.1. Subanalytic spaces

Let M be a real analytic manifold. On M there is the family of subanalytic
subsets due to Hironaka ([Hi73]) and Gabrielov ([Gabr68]) (see [BM88,VD98]
for an exposition). This family is the smallest family of subsets of M which
satisfies the following properties:

(a) for any real analytic manifold N and any proper morphism f W N �! M ,
the image of N is subanalytic,

(b) the intersection of two subanalytic subsets is subanalytic,
(c) the complement of a subanalytic subset is subanalytic,
(d) the union of a locally finite family of subanalytic subsets is subanalytic.

This family is a nice family. For example, it is closed by taking the closure and
interior; any relatively compact subanalytic subset has finitely many connected
components, and each connected component is subanalytic; any closed subana-
lytic subset is the proper image of a real analytic manifold as in (a).

For real analytic manifolds M , N and a closed subanalytic subset S of M ,
we say that a map f W S �! N is subanalytic if its graph is subanalytic in
M � N . One denotes by A R

S the sheaf of R-valued subanalytic continuous
maps on S . A subanalytic space .M;A R

M /, or simply M for short, is an R-
ringed space locally isomorphic to .S;A R

S / for a closed subanalytic subset S
of a real analytic manifold. In this paper, we assume that a subanalytic space
is good, i.e., it is Hausdorff, locally compact, countable at infinity with finite
flabby dimension.
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A morphism of subanalytic spaces is a morphism of R-ringed spaces. Then
we obtain the category of subanalytic spaces.

We can define the notion of subanalytic subsets of a subanalytic space.
A sheaf F on a subanalytic space M is R-constructible if there exists a lo-

cally finite family of locally closed subanalytic subsets Mj (j 2 J ) such that
M D S

j2J Mj and the sheaf F jMj
is locally constant of finite rank for each

j 2 J . We denote by ModR-c.CM / the full subcategory of Mod.CM / con-
sisting of R-constructible sheaves. It is a subcategory stable by taking kernels,
cokernels and extensions.

One defines the category Db
R-c.CM / as the full subcategory of Db.CM / con-

sisting of objects F such that H i .F / is R-constructible for all i 2 Z. It is a
triangulated subcategory and equivalent to Db.ModR-c.CM //.

3.2. Subanalytic sheaves

Subanalytic sheaves are sheaves on a certain Grothendieck topology associated
with subanalytic spaces. Here we shall introduce it directly without using the
language of Grothendieck topology.

Let M be a subanalytic space. Let OpM be the category of open subsets.
The morphisms are inclusions, that is, HomOpM

.U; V / D pt or ¿ according

to U � V or not. Let Opsub;c
M be the full subcategory of OpM consisting of

relatively compact subanalytic open subsets.
Recall that a sheaf is a contravariant functor from OpM to Mod.C/ satisfying

a certain “patching condition”. By replacing OpM with Opsub;c
M and modifying

the “patching condition”, we obtain the notion of subanalytic sheaves introduced
in [KS01] (see also [Pr08] for its more detailed study).

Definition 3.1. A subanalytic presheaf F is a contravariant functor from Opsub;c
M

to Mod.C/. We say that a subanalytic presheaf F is a subanalytic sheaf if it
satisfies:

(i) F.¿/ D 0,
(ii) For U; V 2 Opsub;c

M , the sequence

0 ��! F.U [ V / r1��! F.U /˚ F.V / r2��! F.U \ V /
is exact. Here r1 is given by the restriction maps and r2 is given by the
difference of the restriction maps F.U / �! F.U\V / and F.V / �! F.U\
V /.

Denote by Mod.C sub
M / the category of subanalytic sheaves. Recall that Mod.CM /

denotes the category of sheaves on M . Since a sheaf is a contravariant func-
tor from OpM , the inclusion functor Opsub;c

M �! OpM induces a fully faithful
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functor
�M W Mod.CM / �! Mod.C sub

M /:

For example,

Hom
Mod.C sub

M /
.�MCU ; F / ' F.U / for any U 2 Opsub;c

M .

The functor �M does not commute with inductive limits (as seen in Exam-
ple 3.11). We denote by “lim�!” the inductive limit in Mod.C sub

M / in order to avoid

confusion.
Note that

.“lim�!”
i

Fi /.U / ' lim�!
i

.Fi .U //

for anyU 2 Opsub;c
M and a filtrant inductive system fFigi of subanalytic sheaves.

The functor �M admits a left adjoint, denoted by ˛M . For F 2 Mod.C sub
M /,

the sheaf ˛M .F / is the sheaf given by

OpM 3 U 7�! lim �
V 2Opsub;c

M ; V��U
F.V /:

The functor ˛M has a left adjoint ˇM . For F 2 Mod.CM /, ˇMF is the sub-
analytic sheaf associated with the subanalytic presheaf Opsub;c

M 3 U �! F.U /.
Hence we have two pairs of adjoint functors .˛M ; �M / and .ˇM ; ˛M /:

Both Mod.CM / and Mod.C sub
M / are abelian categories, and ˛M and ˇM are

exact. The functor �M is left exact but not right exact. However, we have the
following result.

Proposition 3.2. The restriction of �M :

� R-c
M W ModR-c.CM / �! Mod.C sub

M /(3.1)

is exact.

In fact, we have a more precise relation of these two categories (see [KS01]).

Proposition 3.3. Let Modc
R-c.CM / be the category of R-constructible sheaves

on M with compact supports. Then, Mod.C sub
M / is equivalent to Ind.Modc

R-c.CM //,
the category of ind-objects in Modc

R-c.CM /.
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For ind-objects we refer to [SGA4] or [KS06]. In particular, we have

Hom
Mod.C sub

M /
.�MG; “lim�!”

i2I
Fi / ' lim�!

i2I
Hom

Mod.C sub
M /

.�MG;Fi /

for anyG 2 Modc
R-c.CM / and a filtrant inductive system fFigi2I of subanalytic

sheaves.
By the functor � R-c

M , we regard R-constructible sheaves as subanalytic sheaves.
We can define the restriction functor

Mod.C sub
U / �! Mod.C sub

V / for open subsets U and V � U .

For F 2 Mod.C sub
U /, we denote by F jV 2 Mod.C sub

V / the image of F by the
restriction functor.

Hence, OpM 3 U 7! Mod.C sub
U / is a prestack on the topological space M .

Proposition 3.4. The prestack OpM 3 U 7! Mod.C sub
U / is a stack.

We denote by Hom the hom functor as a stack, i.e., for subanalytic sheaves
F1; F2 on M , we define

	.U IHom .F1; F2// D Hom
Mod.C sub

U /
.F1jU ; F2jU /

for any open subset U of M . It is a sheaf on M .

3.3. Bordered spaces

A bordered space M D .M; _

M/ is a pair of a good topological space
_

M and an
open subset M of

_

M .

Notation 3.5. Let M D .M;
_

M/ and N D .N;
_

N/ be bordered spaces. For a
continuous map f W M �! N , denote by 	f � M � N its graph, and by 	f
the closure of 	f in

_

M � _

N . Consider the projections

_

M
_

M � _

N
q1�� q2 ��

_

N:

Bordered spaces form a category as follows: a morphism f W M �! N is
a continuous map f W M �! N such that q1j�f

W 	f �!
_

M is proper; the
composition of two morphisms is the composition of the underlying continuous
maps.

Remark 3.6. (i) Let f W M �! N be a continuous map.
(a) If f can be extended to a continuous map

_

f W _

M �! _

N , then f is a
morphism of bordered space from M to N.
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(b) If
_

N is compact, then f is a morphism of bordered space from M to N.
(ii) The forgetful functor from the category of bordered spaces to that of good

topological spaces is given by

M D .M; _

M/ 7�! ı

M WDM:
It has a fully faithful left adjointM 7! .M;M/. By this functor, we regard
good topological spaces as particular bordered spaces, and denote .M;M/

simply by M .
Be aware that M D .M; _

M/ 7! _

M is not a functor.
(iii) Note that M ' .M;M/, where M is the closure of M in

_

M . More gen-
erally, for a morphism of bordered spaces f W M �! N, M is isomorphic to
the bordered space .	f ; 	f /.

(iv) The category of bordered spaces has an initial object, the empty set. It has
also a final object, pt, the topological space consisting of one point. It also
admits products:

.M;
_

M/ � .N; _

N/ ' .M �N; _

M � _

N/:

Let M D .M; _

M/ be a bordered space. The morphisms of bordered spaces

(3.2) M ��! M
jM��! _

M

are defined by the continuous maps M
id��!M ,! _

M .

Definition 3.7. We say that a morphism f W M �! N is semi-proper if q2j�f
W 	f

�! _

N is proper. We say that f is proper if moreover
ı

f W ı

M �! ı

N is proper.

For example, jM is semi-proper.
The class of semi-proper (resp. proper) morphisms is closed under compo-

sition.

Definition 3.8. A subset S of a bordered space M D .M;
_

M/ is a subset of M .
We say that S is open (resp. closed, locally closed) if it is so in M . We say that
S is relatively compact if it is contained in a compact subset of

_

M .

As seen by the following obvious lemma, the notion of relatively compact
subsets only depends on M (and not on

_

M ).

Lemma 3.9. Let f W M �! N be a morphism of bordered spaces.

(i) If S is a relatively compact subset of M, then its image
ı

f .S/ � ı

N is a
relatively compact subset of N.

(ii) Assume furthermore that f is semi-proper. If S is a relatively compact
subset of N, then its inverse image

ı

f �1.S/ � ı

M is a relatively compact
subset of M.
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3.4. Subanalytic sheaves on bordered subanalytic spaces

A bordered subanalytic space is a bordered space M D .M;
_

M/ such that
_

M is
a subanalytic space andM is a subanalytic open subset of

_

M . Then we can con-
sider the category of bordered subanalytic spaces. A morphism M D .M; _

M/ �!
N D .N; _

N/ of bordered subanalytic spaces is a morphism f of bordered spaces
such that the graph 	f is a subanalytic subset of

_

M � _

N .

Let M D .M; _

M/ be a bordered subanalytic space. We denote by Opsub;c
M the

full subcategory of OpM consisting of open subsets ofM which are subanalytic
and relatively compact in

_

M . A subanalytic sheaf on M is defined as follows.

Definition 3.10. A subanalytic presheaf F on a bordered subanalytic space M
is a contravariant functor from Opsub;c

M to Mod.C/. We say that a subanalytic
presheaf F is a subanalytic sheaf if it satisfies:

(i) F.¿/ D 0,
(ii) For U; V 2 Opsub;c

M , the sequence

0 ��! F.U [ V / r1��! F.U /˚ F.V / r2��! F.U \ V /
is exact.

We denote by Mod.C sub
M / the category of subanalytic sheaves on M. We have a

canonical fully faithful functor

�M W Mod.C ı

M
/ �! Mod.C sub

M /:(3.3)

Here Mod.C ı

M
/ denotes the category of sheaves on the topological space

ı

M. The
functor �M is left exact but not exact.

We say that a sheaf on
ı

M is an R-constructible sheaf on M if it can be ex-
tended to an R-constructible sheaf on

_

M . Let us denote by ModR-c.CM/ the
category of R-constructible sheaves on M. Then the restriction of �M

� R-c
M W ModR-c.CM/ �! Mod.C sub

M /

is exact. By this functor, we regard R-constructible sheaves on M as subanalytic
sheaves on M.

3.5. Functorial properties of subanalytic sheaves

3.5.1. Tensor product and inner hom Let M D .M;
_

M/ be a bordered suban-
alytic space. The category Mod.C sub

M / has tensor product and inner hom:

� ˝ � W Mod.C sub
M / �Mod.C sub

M / ��! Mod.C sub
M / and

Ihom . � ; � / W Mod.C sub
M / op �Mod.C sub

M / ��! Mod.C sub
M /:
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For F1; F2 2 Mod.C sub
M /, their tensor product F1 ˝F2 is the subanalytic sheaf

associated with the subanalytic presheaf Opsub;c
M 3 U 7! F1.U /˝F2.U /. The

inner hom Ihom .F1; F2/ is given by

Opsub;c
M 3 U 7�! Hom

Mod.C sub
.U;

_

M /

/
.F1j

.U;
_

M/
; F2j

.U;
_

M/
/:

We have

Hom
Mod.C sub

M /
.F1 ˝F2; F3/ ' Hom

Mod.C sub
M /

.F1; Ihom .F2; F3//

for F1; F2; F3 2 Mod.C sub
M /.

The bifunctor � ˝ � is exact, and Ihom . � ; � / is left exact.

3.5.2. Direct images and inverse images Let M D .M;
_

M/ and N D .N;
_

N/

be bordered subanalytic spaces and let f W M �! N be a morphism of bordered
subanalytic spaces.

For F 2 Mod.C sub
M /, its direct image f�F 2 Mod.C sub

N / is defined by

.f�F /.V / D Hom
Mod.C sub

M /
.Cf �1V ; F / for any V 2 Opsub;c

N .(3.4)

The functor f� W Mod.C sub
M / �! Mod.C sub

N / has a left adjoint

f �1 W Mod.C sub
N / �! Mod.C sub

M /:

The functor f �1 is called the inverse image functor. For a subanalytic sheaf
G on N, its inverse image f �1G is the subanalytic sheaf associated with the
subanalytic presheaf

Opsub;c
M 3 U 7�! lim�!

V 2Opsub;c
N ; U�f �1V

G.V /:

The functor f �1 is exact.
For F 2 Mod.C sub

M /, the direct image with proper support fŠŠ F is defined
by

	.V IfŠŠ F / D lim�!
U

Hom .Cf �1V IF ˝CU / for V 2 Opsub;c
N .

Here U ranges over the open subsets in Opsub;c
M such that f �1V \ U �! V is

proper, where U denotes the closure of U in M . In general, the diagram

is not commutative, that is why we use the different notation fŠŠ . Note that the
above diagram commutes if f is semi-proper.
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Example 3.11. Let M D R>0, N D R and let f W M �! N be the canonical
inclusion. Then we have

fŠŠCM ' “lim�!”
c�!0C

Cft>cg and

fŠCM 'Cft>0g:

They are not isomorphic. Indeed, we have for U D ft I 0 < t < 1g 2 Opsub;c
N

	.U I “lim�!”
c�!0C

Cft>cg/ ' lim�!
c�!0C

	.U ICft>cg/ ' 0 and 	.U ICft>0g/ ' C:

Note that the inductive limit of Cft>cg in Mod.CN / is isomorphic to Cft>0g.

Recall the morphism jM W M �! _

M of bordered subanalytic spaces. We have

jMŠŠ j
�1
M F ' C ı

M
˝F;

jM�j�1M F ' Ihom .C ı

M
; F /

for F 2 Mod.C sub
_

M
/.(3.5)

Moreover, the functor j�1M W Mod.C sub
_

M
/ �! Mod.C sub

M / induces an equiva-

lence of abelian categories:

Mod.C sub
_

M
/ = Mod.C sub

_

MnM / ' Mod.C sub
M /:

Here Mod.C sub
_

MnM
/ is regarded as a full subcategory of Mod.C sub

_

M
/ by the fully

faithful exact functor i� ' iŠŠ W Mod.C sub
_

MnM
/ �! Mod.C sub

_

M
/, where i W _

M n
M ,! _

M is the closed inclusion.

3.6. Derived functors

The fully faithful exact functor

� R-c
M W ModR-c.CM/ �! Mod.C sub

M /

induces a fully faithful functor Db
R-c.CM/�Db.C

sub
M / by which we regard

Db
R-c.CM/ as a full subcategory of Db.C

sub
M /.

The functors introduced in the previous subsection have derived functors:

� ˝ � W Db.C
sub
M / � Db.C

sub
M / ��! Db.C

sub
M /;

RIhom . � ; � / W D�.C sub
M / op � DC.C sub

M / ��! DC.C sub
M /;

f �1 W Db.C
sub
N / �! Db.C

sub
M /;

Rf� W Db.C
sub
M / �! Db.C

sub
N /;

RfŠŠ W Db.C
sub
M / �! Db.C

sub
N /:
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The functor RfŠŠ has a right adjoint:

f Š W Db.C
sub
N / �! Db.C

sub
M /:

If
ı

f W ı

M �! ı

N is topologically submersive, i.e.,
ı

f is isomorphic to
ı

N�Rn �! ı

N
locally on

ı

M, then
f Š F ' ! ı

M=
ı

N
˝ f �1F:

Here ! ı

M=
ı

N
WD ı

f Š
Cı

N
2 Db

R-c.CM/ � Db.C
sub
M / is the relative dualizing complex.

These six operations satisfy the properties similar to (2.1) and (2.2) for the
Grothendieck’s six operations for sheaves.

3.7. Ring actions

Let M be a subanalytic space, and let A be a sheaf of C-algebras. Let F be a
subanalytic sheaf onM . We say that F has an action of A , or F is a subanalytic
A -module if a homomorphism of sheaves of C-algebras

A �! Hom .F; F /(3.6)

is given. Since Hom .F; F / ' ˛MIhom .F; F /, the data (3.6) is equivalent to

ˇMA �! Ihom .F; F /;

or ˇMA ˝F �! F with the associativity property. We denote by Mod.A sub
/

the category of subanalytic A -modules, and by Db.A sub
/ its bounded derived

category.
We have the tensor functor and the hom functor:

�

A̋
� W Db.A op/ � Db.A

sub
/ �! D�.C sub

M /;

RHomA .
� ; � / W Db.A / op � Db.A

sub
/ �! DC.C sub

M /:

4. Subanalytic sheaves of tempered functions

4.1. Tempered distributions

Hereafter, M denotes a real analytic manifold.
An important property of subanalytic subsets is given by the lemma below.

(See Lojasiewicz [Lo59] and also [Ma66] for a detailed study of its conse-
quences.)
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Lemma 4.1. Let U and V be two relatively compact open subanalytic subsets
of Rn. There exist a positive integer N and C > 0 such that

dist.x;Rn n .U [ V //N 6 C.dist.x;Rn n U/C dist.x;Rn n V //:
We denote by Db M the sheaf of Schwartz’s distributions on M . Denote by

Db t
M .U / the image of the restriction map 	.M IDb M / �! 	.U IDb M /, and

call it the space of tempered distributions on U .
Using Lemma 4.1, one proves:

Lemma 4.2. The subanalytic presheaf U 7! Db t
M .U / is a subanalytic sheaf

on M .

One denotes by Db t
M this subanalytic sheaf. By the definition, there is a

monomorphism
Db t

M
�� �� �MDb M ;

and an isomorphism
˛MDb t

M ' Db M :
Let us denote by DM the sheaf of rings of differential operators with real

analytic coefficients. Then, Db t
M is a subanalytic DM -module in the sense of

§3.7.

4.2. Tempered holomorphic functions

Let X be a complex manifold, and let us denote by XR the underlying real ana-
lytic manifold. We have defined the subanalytic sheaf of tempered distributions
Db t

XR
. It is a subanalytic DXR

-module. Let us consider the Dolbeault complex
with coefficients in Db t

XR
:

Db t
XR

@��! �1Xc ŐXc Db t
XR

@��! 
 
 
 @��! �
dX

Xc ŐXc Db t
XR
:

HereX c is the complex conjugate manifold ofX . It is a complex in the category
Mod.D sub

X / of subanalytic DX -modules. Hence we can consider this complex as
an object of Db.D sub

X /, the bounded derived category of Mod.D sub
X /. We denote

it by O t
X and call it the subanalytic sheaf of tempered holomorphic functions.

Note that its cohomology groups are not concentrated at degree 0 in general.
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4.3. Tempered de Rham and solution functors

Setting � t
X WD�X ŐX

O t
X 2 Db..D

op
X /

sub
/, we define the tempered de Rham

and solution functors by

DR t
X W Db.DX / �! D�.C sub

X /; M 7�! � t
X

L˝DX
M ;

Sol t
X W Db.DX / �! DC.C sub

X / op; M 7�! RHomDX
.M ;O t

X /:

One has
DRX ' ˛X ıDR t

X and Sol X ' ˛X ı Sol t
X :

For M 2 Db
coh.DX /, one has

Sol t
X .M / ' DR t

X .DXM /Œ�dX �:(4.1)

The next result is a reformulation of a theorem of [Ka84] (see also [KS01,
Th. 7.4.1])

Theorem 4.3. Let f W X �! Y be a morphism of complex manifolds. There is
an isomorphism in Db..f �1D op

Y /
sub
/:

� t
X

L˝DX
DX�!Y ŒdX �

���! f Š� t
Y ŒdY �:(4.2)

Note that this isomorphism (4.2) is equivalent to the isomorphism

DY �X
L˝DX

O t
X ŒdX �

���! f ŠO t
Y ŒdY � in Db..f �1DY / sub

/.

Corollary 4.4. Let f W X �! Y be a morphism of complex manifolds and let
N 2 Db.DY /. Then (4.2) induces the isomorphism

DR t
X .Df

�N / ŒdX � ' f ŠDR t
Y .N / ŒdY � in Db.C

sub
X /.

Corollary 4.5. For any complex manifold X , we have

DR t
X .OX / ' CX ŒdX �:

The next results are a kind of Grauert direct image theorem for tempered
holomorphic functions, and its D-module version.

Theorem 4.6 (Tempered Grauert theorem [KS96, Th. 7.3]). Let f W X �! Y

be a morphism of complex manifolds, let F 2 Db
coh.OX / and assume that f is

proper on Supp.F /. Then there is a natural isomorphism

RfŠŠ .O t
X

L˝OX
F / ' O t

Y

L˝OY
RfŠF :
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Proposition 4.7 ([KS01, Th. 7.4.6]). Let f W X �! Y be a morphism of complex
manifolds. Let M 2 Db

q-good.DX / and assume that f is proper on Supp.M /.

Then there is an isomorphism in Db.C
sub
Y /

DR t
Y .Df�M / ���!Rf�DR t

X .M /:

For a closed hypersurface S � X , denote by OX .�S/ the sheaf of mero-
morphic functions with poles at S . It is a holonomic DX -module and flat as an
OX -module. For M 2 Db.DX / or M 2 Db.D sub

X /, set

M .�S/ DM
D˝OX .�S/:

Proposition 4.8. Let S be a closed complex hypersurface in X . There are iso-
morphisms

O t
X .�S/' RIhom .CXnS ;O t

X / in Db.D sub
X /,

OX .�S/'RHom .CXnS ;O t
X / in Db.DX /.

Corollary 4.9. Let S be a closed complex hypersurface inX . There are isomor-
phisms in Db.C

sub
X /

DR t
X .OX .�S//' DRX .OX .�S//

' RHom .CXnS ;CX / ŒdX �:

5. Enhanced subanalytic sheaves

5.1. Enhanced tensor product and inner hom

Consider the 2-point compactification of the real line R WD R t fC1;�1g.
Denote by P

1.R/ D R t f1g the real projective line. Then R has a structure
of subanalytic space such that the natural map R �! P

1.R/ is a morphism of
subanalytic spaces.

Notation 5.1. We will consider the bordered subanalytic space

R1 WD .R;R/:
Note that R1 is isomorphic to .R;P1.R// as a bordered subanalytic space.
Consider the morphisms of bordered subanalytic spaces

a W R1 �! R1;(5.1)

; q1; q2 W R1 � R1 �! R1;

where a.t/ D �t , 
.t1; t2/ D t1 C t2 and q1; q2 are the natural projections.
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For a subanalytic spaceM , we will use the same notations for the associated
morphisms

a W M � R1 �!M � R1;

; q1; q2 W M � R1 � R1 �!M � R1:

We also use the natural morphisms

(5.2)

Definition 5.2. The functors

C˝W Db.C
sub
M�R1

/ � Db.C
sub
M�R1

/ �! Db.C
sub
M�R1

/;

IhomC W D�.C sub
M�R1

/ op � DC.C sub
M�R1

/ �! DC.C sub
M�R1

/

are defined by

K1
C˝K2 D R
ŠŠ .q�11 K1 ˝ q�12 K2/;

IhomC.K1; K2/ D Rq1�RIhom .q�12 K1; 

ŠK2/:

One sets

Cft>0g D Cf.x;t/2M�R I t>0g:(5.3)

We use similar notation for CftD0g, Cft>0g, Cft60g, CftDag, etc. These are R-
constructible sheaves on M � R1. We also regard them as objects of Db.C

sub
M�R1

/.

Lemma 5.3. For K 2 Db.C
sub
M�R1

/, there are isomorphisms

CftD0g
C˝K ' K ' IhomC.CftD0g; K/:

More generally, for a 2 R, we have

CftDag
C˝K ' R
a�K ' IhomC.CftD�ag; K/;

where 
a W M � R1 �! M � R1 is the morphism induced by the translation
t 7! t C a.

Corollary 5.4. The category Db.C
sub
M�R1

/ has a structure of commutative ten-

sor category with
C˝ as tensor product and CftD0g as unit object.
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As seen in the following lemma, the functor IhomC is the inner hom of the

tensor category Db.C
sub
M�R1

/.

Lemma 5.5. For K1; K2; K3 2 Db.C
sub
M�R1

/ one has

Hom
Db.C

sub
M �R1

/
.K1

C˝K2; K3/
'Hom

Db.C
sub
M �R1

/
.K1; IhomC.K2; K3//;

IhomC.K1
C˝K2; K3/ ' IhomC.K1; IhomC.K2; K3//;

R�M �RIhom .K1
C˝K2; K3/ ' R�M �RIhom .K1; IhomC.K2; K3//:

We define the outer hom functors on Db.C
sub
M�R1

/ as follows.

Definition 5.6. One defines the hom functor

IhomE W Db.C
sub
M�R1

/ op � Db.C
sub
M�R1

/ �! DC.C sub
M /

IhomE.K1; K2/ D R�M �RIhom .K1; K2/;

and one sets

HomE D ˛M ı IhomE W Db.C
sub
M�R1

/ op � Db.C
sub
M�R1

/ �! DC.CM /:

Note that

Hom
Db.C

sub
M �R1

/
.K1; K2/ ' H 0.M IHomE.K1; K2//:

5.2. Enhanced sheaf of tempered distributions

Let M be a real analytic manifold. Let jM W M � R1 �! M � P
1.R/ be the

canonical morphism.
Let t be the affine coordinate of P1.R/. Then, @t WD @=@t is a vector field on

M � P
1.R/, and hence it acts on Db t

M�P1.R/.

Lemma 5.7. The morphism of subanalytic sheaves

@t � 1 W Db t
M�P1.R/ �! Db t

M�P1.R/

is an epimorphism.
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We define the subanalytic sheaf on M � R1 by

Db T
M D Ker.@t � 1 W j�1M Db t

M�P1.R/ �! j�1M Db t
M�P1.R//:

Since any solution of .@t � 1/u.t; x/ D 0 can be written as u.t; x/ D et'.x/,
we have a monomorphism in Mod.C sub

M�R1

/

Db T
M

�� �� ��1M �MDb M by u.t; x/ 7! '.x/.

Note that Db T
M is a subanalytic ��1M DM -module. We call it the enhanced

subanalytic sheaf of tempered distributions.

Proposition 5.8.

Db T
M ' IhomC.Cft>ag;Db T

M / for any a 2 R

' IhomC.CT
M Œ1�;Db T

M /:

Here we set
C

T
M WD “lim�!”

c�!C1
Cft<cg:

The enhanced subanalytic sheaf CT
M satisfies

C
T
M Œ1�

C˝C
T
M Œ1� ' C

T
M Œ1�:

We can recover Db t
M and Db M from Db T

M as follows:

IhomE.CT
M ;Db

T
M / ' Db t

M ;

HomE.CT
M ;Db

T
M / ' DbM :

(5.4)

Remark 5.9. The definition of Db T is slightly different from the one in [DK13,
KS15,DK15]. The notation Db T in loc. cit. is equal to Db T

Œ1� in our notation.

5.3. Enhanced sheaf of tempered holomorphic functions

Let X be a complex manifold, and let us denote by XR the underlying real
analytic manifold. We have defined the enhanced subanalytic sheaf of tempered
distributions Db T

XR
. It is a subanalytic ��1X DXR

-module. Let us consider the
Dolbeault complex with coefficients in Db T

XR
:

Db T
XR

@��! �1Xc ŐXc Db T
XR

@��! 
 
 
 @��! �
dX

Xc ŐXc Db T
XR
:



M. Kashiwara

Here X c is the complex conjugate manifold of X . It is a complex in the cate-
gory Mod..��1X DX /

sub
/ of subanalytic ��1X DX -modules, where Db T

XR
is sit-

uated at degree 0 and �dX

Xc ŐXc Db T
XR

at degree dX . Hence we can consider

this complex as an object of Db..��1X DX /
sub
/, the bounded derived category

of Mod..��1X DX /
sub
/. We denote it by OT

X and call it the enhanced sheaf of
tempered holomorphic functions. Note that its cohomology groups are not con-
centrated at degree 0.

Remark 5.10. If X D pt, then

OT
X ' Db T

XR
' C

T
X WD “lim�!”

c�!C1
Cft<cg

as objects of Db.C
sub
R1

/. Indeed, for �1 6 a < b 6 C1, et is a tempered
distribution on the open interval .a; b/ if and only if .a; b/ � ft < cg for some
c 2 R.

By (5.4), we have

IhomE.CT
X ;O

T
X / ' O t

X and

HomE.CT
X ;O

T
X / ' OX :

(5.5)

5.4. Enhanced de Rham and solution functors

We set
�T
X WD ��1X �X ˝��1

X OX
OT
X 2 Db..��1X D

op
X /

sub
/:

We define the enhanced de Rham and solution functors

DR T
X W Db.DX / �! Db.C

sub
X�R1

/;

Sol T
X W Db.DX / �! Db.C

sub
X�R1

/ op

by

DR T
X .M / WD�T

X

L˝��1
X DX

��1X M ;

Sol T
X .M / WDRHom��1

X DX
.��1X M ;O T

X /:

Note that

Sol T
X .M / ' DR T

X .DXM /Œ�dX � for M 2 Db
coh.DX /.
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By (5.5), we have for any M 2 Db.DX /

DR t
XM ' IhomE.CT

X ;DR T
XM /;

DRXM ' HomE.CT
X ;DR T

XM /:
(5.6)

For a particular case of holonomic D-modules, we can calculate explicitly
the enhanced de Rham. Let Y � X be a complex analytic hypersurface of a
complex manifold X , and set U D X n Y . For ' 2 OX .�Y /, one sets

DXe' D DX= fP 2 DX I P e' D 0 on U g ;
E '
U jX D DXe'.�Y /:

Hence DXe' is a DX -submodule of E '
U jX , and DXe' as well as E '

U jX is a
holonomic DX -module. Note that E '

U jX is isomorphic to OX .�Y / as an OX -
module, and the connection OX .�Y / �! �1X ŐX

OX .�Y / is given by u 7!
duC ud'. We call E '

U jX the exponential module with exponent '.
For c 2 R, write for short

ft < Re' C cg WD f.x; t/ 2 U � R I t < Re'.x/C cg � X � R:

Similarly to Remark 5.10, one can calculate explicitly DR T
X .M / when M

is an exponential D-module.

Proposition 5.11. Let Y � X be a closed complex analytic hypersurface, and
set U D X n Y . For ' 2 OX .�Y /, there are isomorphisms

DR T
X .E

'

U jX /' RIhom .��1X CU ; “lim�!”
c�!C1

Cft<Re'Ccg/ŒdX �:

The next results are easy consequences of Theorem 4.3, Corollary 4.4, Corol-
lary 4.7.

Theorem 5.12. Let f W X �! Y be a morphism of complex manifolds. Let fR W X
�R1 �! Y � R1 be the morphism induced by f .

(i) There is an isomorphism in Db..��1X f �1DY / sub
/

.fR/
ŠO T
Y ŒdY � ' ��1X DY �X

L˝��1
X DX

O T
X ŒdX �:

(ii) For any N 2 Db.DY / there is an isomorphism in Db.C
sub
X /

DR T
X .Df

�N /ŒdX � ' .fR/ ŠDR T
Y .N /ŒdY �:

(iii) Let M 2 Db
good.DX /, and assume that Supp.M / is proper over Y . Then,

there are isomorphisms in Db.C
sub
Y /

DR T
Y .Df�M / ' RfR�DR T

X .M /;
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6. Main theorems

The Riemann–Hilbert correspondence for holonomic D-modules can be stated
as follows.

Theorem 6.1. There exists a canonical isomorphism functorial with respect to
M 2 Db

hol.DX /:

M
D˝O t

X
���! IhomE.Sol T

X .M /;O T
X / in Db.D

sub
X /.(6.1)

Applying the functor ˛X to (6.1), we obtain

Theorem 6.2 (Enhanced Riemann–Hilbert correspondence). There exists a
canonical isomorphism functorial with respect to M 2 Db

hol.DX /:

M ���! HomE.Sol T
X .M /;O T

X / in Db.DX /.(6.2)

Thus we obtain the quasi-commutative diagram

Here the fully faithful functor e W Db.CX / �! Db.C
sub
X�R1

/ is defined by

e.F / WD C
T
X ˝��1X F:

Theorem 6.2 shows that Sol T
X as well as DR T

X is faithful. In fact, we can also
show the following full faithfulness of the enhanced de Rham functor.

Theorem 6.3. For M ;N 2 Db
hol.DX /, one has an isomorphism

RHomDX
.M ;N / ���! HomE.DR T

XM ;DR T
XN /:

In particular, the functor

DR T
X W Db

hol.DX / ��! Db.C
sub
X�R1

/

is fully faithful.

Remark 6.4. Theorems 6.2 and 6.3 due to [DK13, Th. 9.6.1, Th. 9.7.1] are a
natural formulation of the Riemann–Hilbert correspondence for irregular D-
modules. Theorem 6.1 is due to [KS14, Th. 4.5], which is a generalization of a
theorem of J.-E. Björk ([Bj93]).
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7. A brief outline of the proof of the main theorems

We reduce the main theorems to the exponential D-module case, using the re-
sults of Mochizuki and Kedlaya.

7.1. Real blow up

A classical tool in the study of differential equations is the real blow up.
Recall that C� denotes C n f0g and R>0 the multiplicative group of positive

real numbers. Consider the action of R>0 on C
� � R:

R>0 � .C� � R/ �! C
� � R; .a; .z; t// 7�! .az; a�1t/

and set

eCtot D .C� � R/=R>0; eC D .C� � R>0/=R>0;eC>0 D .C� � R>0/=R>0:

One denotes by $ tot the map:

$ tot W eCtot �! C; .z; t/ 7�! tz:(7.1)

Then we have eCtot � eC � eC>0 ���! C
�:

Let X D C
n ' C

r � C
n�r and let D be the divisor fz1 
 
 
 zr D 0g, where

.z1; : : : ; zn/ is a coordinate system on X . Set

eX tot D .eCtot/r � C
n�r ; eX>0 D .eC>0/r � C

n�r ; eX D .eC/r � C
n�r :

Then eX is the closure of eX>0 in eX tot. The map $ tot in (7.1) defines the map

$ W eX �! X:

The map $ is proper and induces an isomorphism

$ jeX>0 W eX>0 D $�1.X nD/ ���! X nD:

We call eX the real blow up of X along D.

Remark 7.1. The real manifold eX (with boundary) as well as the map $ W eX �!
X may be intrinsically defined for a complex manifoldX and a normal crossing
divisor D, but eX tot is only intrinsically defined as a germ of a manifold in a
neighborhood of eX .
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Definition 7.2. Let AeX be the subsheaf of j�.OXnD/ consisting of holomorphic

functions tempered at any point of eX n eX>0 D $�1.D/. Here, j W X n D 'eX>0 ,! eX is the open embedding. We set

DAeX WDAeX ˝$�1OX
$�1DX :

Then AeX and DAeX are sheaves of rings on eX . We have a commutative dia-
gram

We have

R$�AeX ' OX .�D/:
For M 2 Db.DX / we set:

MA WDDAeX
L˝$�1DX

$�1M 2 Db.DAeX /:(7.2)

Then we obtain

R$�MAeX 'M .�D/:(7.3)

7.2. Normal form

The result in §1.3 for ordinary linear differential equations is generalized to
higher dimensions by T. Mochizuki ([Mo09,Mo11]) and K.S. Kedlaya ([Ke10,
Ke11]). In this subsection, we collect some of their results that we shall need.

Let X be a complex manifold and D � X a normal crossing divisor. We
shall use the notations introduced in the previous subsection: in particular the
real blow up $ W eX �! X and the notation MA of (7.2).

Definition 7.3. We say that a holonomic DX -module M has a normal form
along D if

(i) M 'M .�D/,
(ii) SingSupp.M / � D,

(iii) for any x 2 $�1.D/ � eX , there exist an open neighborhood U � X of
$.x/ and finitely many 'i 2 	.U IOX .�D// such that

.MA/jV '
� M

i

.E 'i

UnDjU /
A

�ˇ̌̌
V

for some open neighborhood V of x with V � $�1.U /.
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A ramification of X along D on a neighborhood U of x 2 D is a finite map

p W X 0 �! U

of the form

p.z01; : : : ; z0n/ D .z0m1

1 ; : : : ; z0mr
r ; z0rC1; : : : ; z0n/

for some .m1; : : : ; mr/ 2 .Z>0/r . Here .z01; : : : ; z0n/ is a local coordinate sys-
tem of X 0, and .z1; : : : ; zn/ is a local coordinate system of X such that D D
fz1 
 
 
 zr D 0g.
Definition 7.4. We say that a holonomic DX -module M has a quasi-normal
form along D if it satisfies (i) and (ii) in Definition 7.3, and if for any x 2 D
there exists a ramification p W X 0 �! U on a neighborhood U of x such that
Dp�.M jU / has a normal form along p�1.D \ U/.
Remark 7.5. In the above definition, Dp�.M jU / as well as Dp�Dp�.M jU / is
concentrated at degree zero. Moreover, M jU is a direct summand of
Dp�Dp�.M jU /.

7.3. Results of Mochizuki and Kedlaya

The next result is an essential tool in the study of holonomic D-modules and
is easily deduced from the fundamental work of Mochizuki [Mo09,Mo11] (see
also Sabbah [Sa00] for preliminary results and see Kedlaya [Ke10,Ke11] for
the analytic case).

Theorem 7.6. Let X be a complex manifold, M a holonomic DX -module and
x 2 X . Then there exist an open neighborhood U of x, a closed analytic hyper-
surface Y � U , a complex manifoldX 0 and a projective morphism f W X 0 �! U

such that

(i) SingSupp.M / \ U � Y ,
(ii) D WD f �1.Y / is a normal crossing divisor of X 0,

(iii) f induces an isomorphism X 0 nD �! U n Y ,
(iv) .Df �M /.�D/ has a quasi-normal form along D.

Remark that, under assumption (iii), .Df �M /.�D/ is concentrated at de-
gree zero.

Using Theorem 7.6, one easily deduces the next lemma.

Lemma 7.7. Let PX .M / be a statement concerning a complex manifold X and
a holonomic object M 2 Db

hol.DX /. Consider the following conditions.

(a) Let X D S
i2I Ui be an open covering. Then PX .M / is true if and only if

PUi
.M jUi

/ is true for any i 2 I .
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(b) If PX .M / is true, then PX .M Œn�/ is true for any n 2 Z.

(c) Let M 0 �! M �! M 00 C1���! be a distinguished triangle in Db
hol.DX /. If

PX .M
0/ and PX .M 00/ are true, then PX .M / is true.

(d) Let M and M 0 be holonomic DX -modules. If PX .M ˚M 0/ is true, then
PX .M / is true.

(e) Let f W X �! Y be a projective morphism and M a good holonomic DX -
module. If PX .M / is true, then PY .Df�M / is true.

(f) If M is a holonomic DX -module with a normal form along a normal cross-
ing divisor of X , then PX .M / is true.

If conditions (a)–(f) are satisfied, then PX .M / is true for any complex manifold
X and any M 2 Db

hol.DX /.

Sketch of the proof of the main theorems in §6. By applying Lemma 7.7, we
reduce the assertions to the case of holonomic D-modules with a normal form,
then to the case of the exponential D-modules. �

8. Stokes filtrations and enhanced de Rham functor

In this last section, we explain the relation between the enhanced solution sheaf
and the Stokes filtration discussed in §1.5. Let us keep the notations in §1.3. In
particular, recall that 0 2 X � C, M is a holonomic DX -module, $ W eX �! X

is the projection and j W X n f0g ,! eX is the open embedding. We set X� WD
X n f0g. Let $R W eX �R1 �! X �R1 be the morphism induced by $ and let
i W S WD$�1.0/ ,! eX be the closed embedding.

Set
M 0 D DX ..DXM /.�f0g//:

Then we have a morphism M 0 �! M such that it induces an isomorphism
M 0.�f0g/ ���!M .

We set

S T WD Sol T.M 0/ ' RIhom .CX��R;Sol T.M // 2 Db.C
sub
X�R1

/:

Since etuj .z/jD�0
�R is tempered on

ft C Re'j < cg WD f.z; t/ 2 X� � R I t C Re.'j .z// < cg
for any c (see Proposition 5.11), we have

CD�0
�R ˝S T '

M
16j6r

CD�0
�R ˝S T

'j
;
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where

S T
' WD “lim�!”

c�!C1
CftCRee'<cg 2 Mod.C sub

X�R1

/ for ' 2 ˆ.(8.1)

Here e' 2 OX .�f0g/0 is a representative of ' 2 ˆ WDOX .�f0g=OX /0. Note that
the right-hand side of of (8.1) does not depend on the choice of a representaivee'.

Set

eS T
' WD .$R/

�1S T
' 2 Db.C

subeX�R1

/ and

eS T WD .$R/
ŠS T ' RIhom .CX��R; .$R/

�1S T/ 2 Db.C
subeX�R1

/:

Then set
K' WD HomE.eS T

' ;
eS T/ 2 Db.CeX /:

Since eS T
' jX��R1

' C
T
X� , we have

K' jX� ' L WD HomDX
.M ;OX /jX� :

Then we obtain a morphism of sheaves on S

i�1K' �! i�1j�.K' jX�/ ' eL WD i�1j�L:
Lemma 8.1. The object i�1K' 2 Db.CS / is concentrated at degree 0. The
above morphism i�1K' �! eL is a monomorphism and its image coincides with
F' .

Thus, Sol T.M / recovers the Stokes filtration fF'g'2ˆ on eL.
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1. Kodaira fibrations

It is well known that the topological Euler characteristic e is multiplicative for
fibre bundles: this means that, if f W X ! B is a fibre bundle with fibre F , then

e.X/ D e.B/e.F /:

In 1957 Chern, Hirzebruch and Serre ([CHS57]) showed that the same holds
true for the signature, also called index � D bC � b� (it is the index of the
intersection form on the middle cohomology group) if the fundamental group
of the base B acts trivially on the (rational) cohomology of the fibre F .

In 1967 Kodaira [Kod67] constructed examples of fibrations of a complex
algebraic surface over a curve which are differentiable but not holomorphic fi-
bre bundles for which1 the multiplicativity of the signature does not hold true.
In his honour such fibrations are nowadays called Kodaira fibrations. In fact,
for a compact oriented two dimensional manifold the intersection form is anti-
symmetric, hence � D 0, whereas Kodaira fibrations have necessarily � > 0.

As I am now going to explain, there are many interesting properties and open
questions concerning Kodaira fibrations.

1.1. Generalities on algebraic surfaces

The signature formula of Hirzebruch, Atiyah and Singer for a compact complex
surface S is

�.S/ D 1

3
.K2

S � 2e.S// D 1

3
.c1.S/

2 � 2c2.S//:

Here the Euler number e.S/ is the alternating sum of the Betti numbers

e.S/ D 1 � b1.S/C b2.S/ � b3.S/C 1 D 2 � 2b1.S/C b2.S/;

and it equals the second Chern class c2.S/ of the complex tangent bundle of
S . Whereas KS D �c1.S/ is, for an algebraic surface, the Cartier divisor of a
rational section of the sheaf �2

S of holomorphic differential 2-forms.
In the Kähler case it was well known that the signature �.S/ D bC.S/ �

b�.S/ is determined by the Hodge numbers, indeed bC.S/ D 2pg.S/ C 1;

bC.S/C b�.S/ D b2.S/, where

� pg.S/ WD h2;0.S/ WD h0.�2
S / is the geometric genus of S ,

� q.S/ WD h0;1.S/ WD h1.OS / is the irregularity of S ,
� h1;0.S/ WD h0.�1

S / is the Albanese number (dimension of the Albanese
variety).

1 Indeed, this is true for all such fibrations.
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Even if I will concentrate on algebraic or Kähler manifolds, I would like
to point out how the beautiful series of papers by Kodaira ‘On the structure of
compact complex analytic surfaces’ [Kod64-8] (extending the Enriques clas-
sification to non-algebraic complex surfaces) begins with the following mira-
coulous consequence of the signature formula:

.bC.S/ � 2pg.S//C .2q.S/ � b1.S// D 1;

because both terms are easily shown to be non-negative, by the fact that the
intersection form is positive definite on H 0.�2

S /˚H 0.�2
S /, respectively that

one has the exact sequence

0 �! H 0.dOS / �! H 1.S;C/ �! H 1.OS /;

and the Dolbeault inclusion H 0.dOS / � H 1.OS /.
The non-Kähler case is just the case where the first Betti number b1.S/ is

odd, b1.S/ D 2q.S/ � 1; bC.S/ D 2pg.S/; this conjecture of Kodaira was
proven through a long series of papers, culminating in [Siu83].

The so called ‘surface geography’ problem was raised by van de Ven ([vdV66]),
and concerns the points of the plane with coordinates .�.S/;K2

S /; here �.S/ WD
�.OS / D 1� q.S/Cpg.S/ is the Euler–Poincaré characteristic of the sheaf of
holomorphic functions.

An important invariant, in the case �.S/ � 1 (recall Castelnuovo’s theorem:
�.S/ < 0 implies that S is ruled) is the so called slope

� WD �.S/ WD K2
S=�.S/;

whose growth is equivalent to the one of the Chern slope, which is the ratio
�C .S/ WD c1.S/

2=c2.S/ of the Chern numbers, because of the Noether formula

12�.S/ D c1.S/
2 C c2.S/

H) c1.S/
2=c2.S/ D K2

S=.12�.S/ �K2
S / D �

12 � � :
As conjectured by van de Ven, inspired by work of Bogomolov, and proven

by Miyaoka and Yau, there is the slope inequality,

�.S/ D K2
S=�.S/ � 9 () �C .S/ D c1.S/

2=c2.S/ � 3

for surfaces with �.S/ � 1.
It is commonly called the Bogomolov–Miyaoka–Yau inequality.
Moreover, by the theorems of Aubin and Yau ([Aub78], [Yau77], [Yau78])

and Miyaoka’s proof [Miy77], [Miy83] of ampleness of KS in the case where
equality holds, follows:

Theorem 1. Is S a non-ruled surface and K2
S=�.S/ D 9, then the universal

cover QS of S is biholomorphic to the ball, i.e., the unit disk D2 � C2.
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Indeed, the argument of proof about the existence of the Kähler–Einstein
metric seemed to suggest that if the ratio K2

S=�.S/ would be rather close to
9, then the universal cover QS of S would be diffeomorphic to Euclidean space.
More than that, probably the imagination of many was struck by an impressive
result by Mostow and Siu [M-S80]:

Theorem 2. There exists an infinite series of rigid surfaces S with positive sig-
nature whose slope is very close to 9,2 and which admit a metric of non-positive
sectional curvature. In particular, by the theorem of Cartan–Hadamard, their
universal cover QS is diffeomorphic to Euclidean space R4.

Recently, Roulleau and Urzua [RU15] disposed in the negative of a stronger
form of this no name-conjecture:

Theorem 3. The slopes of simply connected surfaces are dense in the interval
Œ8; 9�.

They used a method introduced by Comessatti and, later, by Hirzebruch
([Hirz84]), to consider abelian coverings of the projective plane P2 branched
over special configurations of curves, especially configurations of lines; we shall
discuss this method at a later moment.

Of course if the slope �.S/ D 9 then the universal cover QS is the ball,
and the fundamental group is countable; while the result of [RU15] does not
exclude a priori the existence of a small region around the Miyaoka–Yau line
K2

S D 9�.S/ where the fundamental group is infinite and the universal cover
is homeomorphic to a ball, it morally settles the question in the negative. A
similar but even bolder conjecture, namely the so-called ‘watershed conjecture’,
that every surface of positive index should have infinite fundamental group had
been disproved thanks to Miyaoka’s observation that the Galois closure S of
a general projection of a surface X ! P2 tends to have positive index (see
[Miy83], [MT87], and [CZ87] for other examples).

1.2. Kodaira fibrations and Kodaira’s construction

We consider in this subsection the following situation: f W S ! B is a holo-
morphic map of a compact complex surface S onto a curve B of genus b, which
is a differentiable fibre bundle, with fibres F of genus g. In this case, the Euler
number of S equals

e.S/ D 4.g � 1/.b � 1/:
This fibration clearly induces a morphism ˆ W B ! Mg into the moduli space
of curves of genus g.

2 The maximum achieved by Mostow and Siu is 8:8575.
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There are two cases: either ˆ is constant, or, as one says, we have a non-
constant moduli fibration. The second case is exactly the case of Kodaira fi-
brations. Following a generalization of Kodaira’s method developed in our joint
paper with Rollenske, we are going to show how this situation can be effectively
constructed, and in such a way that we can calculate the slope �.S/ explicitly.

On the other hand, the fact that Kodaira fibrations do in fact exist, can be
shown non-effectively in the following way.

1.2.1. General Kodaira fibrations Let Mg
�

be the Satake compactification of
the moduli space of curves of genus g � 3: this is the closure of Mg , embedded
via the Torelli map into Ag , inside the Satake compactification Ag

�
.

From the moduli point of view, given a moduli-stable curve C of genus g,
we associate to C the product of the Jacobian varieties of the components in
the normalization QC of C . It follows that the boundary @Mg

�
has dimension

3g � 5, hence codimension 2 inside Mg
�

. Similarly the singular set of Mg
�

corresponds to the locus† of curves with automorphisms for g � 4, and is con-
tained in† for g D 3;† has codimension at least 2 for g � 4, and codimension
equal to 1 for g D 3 (its divisorial part is the locus of hyperelliptic curves).

By the projectivity of Mg
�

we can find, for g � 4, a smooth linear section
B of Mg

�
having dimension 1 and which avoids both @Mg

�
and the locus †.

So B � Mg and, since B \† D ;, we have a family of curves over B with
non-constant moduli, and the fibre curves are all smooth.

We shall see in the sequel that a Kodaira fibration has always positive index,
and indeed the Chern slope �C .S/ lies in the open interval .2; 3/.

One can show that, via Kodaira fibrations obtained as just described from a
general complete intersection curveB (under the composition of the Torelli map
with the Satake embedding of the moduli space Mg of curves of genus g � 4),
one obtains a slope which is rather small, at most around 2.18 (see [CatRol09]).

The above argument shows, via a non-explicit construction, the existence of
Kodaira fibrations for any fibre genus g � 4. The argument can also be adapted
for the case g D 3, while for g D 2 there are no Kodaira fibrations; in fact
M2 is affine, by a theorem of Igusa [Ig60]: hence if B is a complete curve, any
morphism B ! M2 must be constant.

For g D 3 we take a smooth curve D which does not intersect @Mg
�

and
intersects † transversely in smooth points p1; : : : ; pk corresponding to general
hyperelliptic curves C1; : : : ; Ck (hence such that Aut.Ci / D Z=2). In this case
we do not have a family over D, but only over D n †. Take now a double
covering f W B ! D branched over the points p1; : : : ; pk and over other
points. Let p0

j WD f �1.pj /: then we observe that for each j D 1; : : : ; k the
Kuranishi family of Cj has a map  to M3 which is a double covering ramified
over the hyperelliptic locus. In local coordinates we may assume that the map is
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given by

 W .y1; y2; : : : ; y5; z/ 7�! .y1; y2; : : : ; y5; z
2/; i:e:; w D z2

and the curve D is locally given by

y2 D � � � D y5 D 0; y1 D w;

hence
B D fy2 D � � � D y5 D 0; y1 D z2g

and the family over B n f �1.†/ extends to a family over B , with all the fibres
smooth genus 3 curves.

As discussed with Terasoma after the Takagi Lectures, the Kodaira construc-
tion does not work for g D 3. There is however an explicit construction for
g D 3 due to Zaal [Zaal95], which uses Prym varieties, and other explicit con-
structions of curves B as above, by González-Diez and Harvey [GD-H91].

We do not know the answer to the following question, which might turn out
to be not too difficult:

Question 4. Given an integer g � 3, which is the number b.g/, the minimum
value b 2 N such that there is a Kodaira fibration with fibres of genus g and
base curve of genus b?

We just observe here that b � 2, and indeed b � 3 for g D 3; 4. Because
for Kodaira fibrations we have e.S/ D 4.g � 1/.b � 1/, the positive index
inequalityK2

S > 2e.S/ D 8.g�1/.b�1/ and the Kefeng Liu inequality [Liu96]
K2

S < 9�.S/ hold; combining with the Noether formula K2
S D 12�.S/ � e.S/

one gets then

3.g � 1/.b � 1/ < 3�.S/ < 4.g � 1/.b � 1/:
Our previous assertion follows immediately since, if b D 2 and g D 3; 4, then
3�.S/ � 3g D 4.g � 1/C .4 � g/ � 4.g � 1/, absurd.

Observe moreover that once you have a Kodaira fibration f W S ! B with
given fibre genus g, and base genus b, for each integer n � 1 we can take the
Kodaira fibration fn W S.n/ ! B , where the fibres of S.n/ are the unrami-
fied coverings of the fibres F of f corresponding to the surjection �1.F / !
H1.F;Z=n/. Then the fibre genus of fn equals gn WD 1 C .g � 1/n2g , while
the genus of the base curve remains b. This shows that

lim inf
g!1 .b.g// D min.b.g//:
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1.2.2. Kodaira’s construction and its generalizations Kodaira constructed ex-
plicit examples of these Kodaira fibrations, and we are going now to describe
how his method can be generalized.

The basic notion for the Kodaira type construction is the following:

Definition 5. A logarithmic Kodaira fibration is a quadruple .X;D; f; B/
consisting of

(1) a smooth fibration  W X ! B of a surface to a curve, with fibres Ft and
(2) a divisor D � X such that

(a) the projection D ! B is étale and
(b) the fibration of pointed curves .Ft ; Ft \ D/ is not isotrivial, i.e., the

fibres are not all isomorphic (as pointed curves).

Now, even if at first sight this does not seem to help, it really does: because
now the fibration  might have constant moduli, but the points Ft \D may be
moving.

The easiest case to consider is the case where X will be a product of curves
X WD B1 � B2 and D shall be a divisor such that the first projection D ! B1

is étale and the second projection D ! B2 is finite.
We shall now see that in order to construct Kodaira fibrations it suffices to

construct log-Kodaira fibrations.

Proposition 6. Let .X;D/ ! B be a log-Kodaira fibration and let f W QF ! F

be a Galois-covering of a fibre F , with Galois group G, and branched over
D \ F . Then we can extend f to a ramified covering of surfaces Nf W S ! QX
obtaining a diagram

where

� g W QB ! B is an étale covering,
� QX is the pullback of X via g,
� Nf is a ramified covering with Galois group G branched over QD WD g�D

and such that Nf j QF D f .
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The idea of the proof (for which we refer to [CatRol09]) is that the covering
Nf j QF D f is determined by a monodromy homomorphism

� W �1.F n F \D/ �! G;

which extends on neighbouring fibres by the differential local triviality of the
logarithmic fibration: but then there will be an action of �1.B/ transforming the
monodromy into another one. Since however there are only finitely many such
monodromy homomorphisms to the finite group G, we get a tautological finite
étale covering g W QB ! B associated to the ‘monodromy of the monodromy’,
and then the ramified covering extends to the pull back of X .

The problem is thus reduced to finding disjoint étale correspondences be-
tween the two curvesB1; B2, which give the connected components of the curve
D we are looking for.

In turn, the easiest case of an étale correspondence is given by the following
situation: D0 is a curve with an automorphism group H , and there are two sub-
groups H1;H2 < H acting freely on D0. We then set Bj WD D0=Hj . Then D0
admits a morphism  W D0 ! B1 � B2, such that the composition of  with
both projections is étale.

If the intersection of the two subgroups H0 WD H1 \ H2 is non-trivial, the
map  factors through the quotient D0=H0; in any case,  is injective if and
only if there are no points x ¤ y such that H1x D H1y and H2x D H2y (i.e.,
there do exist h1 2 H1 n f1H g; h2 2 H2 such that y D h1x, x D h2h1x).
Equivalently,

D0 �! B1 � B2 embeds D0 () H2.H1 n f1H g/ \ S D ;;
where S D fh 2 H j 9x such that hx D xg is the set of stabilizers.

1.3. Slopes of Kodaira fibrations

An interesting and open question, raised by Le Brun, asks for the possible values
of the Chern slope of a Kodaira fibred surface f W S ! B .

The Chern slope �C .S/ WD c2
1.S/=c2.S/ D K2

S=e.S/ of a Kodaira fibred
surface lies in the interval .2; 3/, in view of the well known Arakelov inequality
(that shall be discussed in a later section) and of the improvement by Kefeng
Liu ([Liu96]) of the Bogomolov–Miyaoka–Yau inequality to K2

S=e.S/ < 3.
Le Brun raised the question whether the slopes of Kodaira fibred surfaces

can be effectively bounded away from 3: is it true that there exists 	 > 0 such
that for a Kodaira fibred surface S we have �C .S/ � 3 � 	‹

The examples by Atiyah, Hirzebruch and Kodaira have slope not greater
than 2 C 1=3 D 2:33 : : : (see [BPHV], page 221) and, as observed already, if
one considers Kodaira fibrations obtained from a general complete intersection
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curve under the composition of the Torelli map with the Satake embedding in
the moduli space Mg of curves of genus g � 3, one obtains a smaller slope
(around 2.18).

Now, given a Kodaira fibration f W S ! B , and any holomorphic map of
curves ' W B 0 ! B , one can take the pull-back of f , namely the fibred product
S 0 WD B 0 �B S . The slope remains the same if ' is étale, but in case where we
have a ramified map, then the slope decreases.

In fact, if we denote by d the degree of ' and by r the degree of the ramifica-
tion divisor on B 0, then, denoting by b0 the genus of B 0, we have b0 �1 D d.b�
1/Cr=2, hence e.S 0/ D 4d.g�1/.b�1C r

2d
/, whileK2

S 0 D dK2
S C4r.g�1/.

Hence

Œ�C .S/��C .S
0/�

h
4.g�1/.b�1/

�
b�1C r

2d

�i
D r

2d
.K2

S �8.b�1/.g�1//;
which is strictly positive as soon as r > 0.

We observe moreover that the slope

�C .S
0/ D K2

S C 4 r
d
.g � 1/

4.g � 1/.b � 1C r
2d
/

tends to 2 as soon as r
d

tends to infinity.
Therefore, once one has found a given slope, it looks more like a question of

book-keeping to show that one can realize smaller slopes. While the hard ques-
tion seems to be the one of finding higher slopes: for this reason we concentrate
our attention on the problem of finding Kodaira fibrations with high slope.

The best known result in the direction of high slope is the following result
of [CatRol09]:

Theorem 7 (Catanese–Rollenske). There are Kodaira fibrations with slope
equal to 2C 2=3 D 2:66 : : : .

Our method of construction has been a variant of the one used by Kodaira,
namely to consider double Kodaira fibred surfaces.

The first main point is that the slope of a Kodaira fibred surface f W S ! B 0
obtained as a Galois branched covering of a logarithmic Kodaira fibred surface
 W .X;D/ ! B is determined by the logarithmic structure of .X;D/, namely,
given the components D1; : : : ;Dr of D, one associates to Di the branching
integer mi of f along the divisor Di , and for instance the canonical divisor KS

is the pull-back of the logarithmic divisor

KX C
X

i

�
1 � 1

mi

�
Di :
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As a consequence, if d D jGj, G being the Galois group, then, since the
curves Di are disjoint (D ! B being étale):

K2
S D d

�
KX C

X
i

�
1 � 1

mi

�
Di

�2

D d
�
K2

X C 2
X

i

�
1 � 1

mi

�
KXDi C

X
i

�
1 � 1

mi

�2
D2

i

�
:

Similarly, since in this case D is smooth,

e.S/ D d
h
e.X/ �

X
i

�
1 � 1

mi

�
e.Di /

i

D d
h
e.X/C

X
i

�
1 � 1

mi

�
.KXDi CD2

i /
i
:

Since .1 � 1
mi
/2 < .1 � 1

mi
/, we see that the slope �C .S/ has little chance

to become larger unless D2
i < 0:

This is however often the case: write KX D p�KB C KX jB , and observe
that KDi

D p�KB . Then D2
i D KBDi � KXDi D �KX jBDi , which is

negative if the relative canonical divisor KX jB is nef (this fact is, under suitable
assumptions, a consequence of Arakelov’s theorem, and is used for the proof of
the Mordell conjecture over function fields).

1.4. Double Kodaira fibrations and group theory

In [CatRol09] a logarithmic Kodaira fibration was defined to be very simple if
X D B � B and each Di is the graph of an automorphism of B , where the
genus b of B is at least two.

In this case D2
i D �2.b � 1/;KXDi D 4.b � 1/;K2

X D 8.b � 1/2; e.X/ D
4.b � 1/2 and for the Chern slope we have

�C .S/ D 2C
2.b � 1/P

i .1 � 1

m2
i

/

4.b � 1/2 C P
i .1 � 1

mi
/2.b � 1/

D 2C
P

i .1 � 1

m2
i

/

2.b � 1/C P
i .1 � 1

mi
/
:

Now, as the indices mi ! 1, the slope tends to

�C D 2C r

2.b � 1/C r
D 2C ˛

2C ˛
D 3 � 2

2C ˛
; ˛ WD r

.b � 1/ :
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Hence one can maximize the slope if one can maximize the ratio ˛ D r
.b�1/

.
One can indeed be more clever (as in loc. cit.) and take mi D 3, so that

�C .S/ D 2C 8r

18.b � 1/C 6r
D 2C 4˛

9C 3˛
:

Then, for ˛ D 3, we obtain

�C .S/ D 2C 12

18
D 8

3
:

However, there are limits to maximizing ˛: first of all, by Hurwitz’ theorem,
˛ < 84, since jAut.B/j � 84.b � 1/ 3.

This inequality is however much milder than the one given by the BMY-
inequality, which implies ˛ � 9 (indeed we can show that ˛ < 8).

Now, the account for the drop from 84 to a much lower constant is due indeed
to a cogent restriction, namely, that we want all the curves Di to be disjoint!

We already showed that we would like to find an ˛ > 3, in particular the
action of the group G WD Aut.B/ on B cannot be free (otherwise jGj � 2.b �
1/!).

Therefore, we denote as above by S the subset of stabilizers in G,

S WD fg 2 G j 9x 2 B; such that gx D xg:
Let Di D f.x; gix/g. Then

Di \Dj ¤ ; () 9x 2 B; such that gix D gjx () g�1
i gj 2 S :

The group theoretical question that we have therefore in mind is a sort of
sphere packing problem for groups G acting on a curve. We define the sphere
with center g to be the set gS .

Our problem reduces to find a maximal number r such that there are ele-
ments g1; : : : ; gr so that 8i the sphere giS contains only the element gi , and
no other gj ¤ gi .

Moreover, by the proof of Hurwitz’s theorem, and some easy arguments,
one sees that the quotient B=G D P1, and then that G is a finite quotient of a
polygonal group

T .n1; n2; : : : ; nk/ D h
1; : : : ; 
k j 
1 : : : 
k D 1; 

ni

i D 1 ; 8i D 1; : : : ; ki

which is hyperbolic, i.e.,
Pk

iD1.1 � 1
ni
/ > 2.

We wonder whether Lubotzky’s theory of expander graphs might yield a
possible method to approach the question of finding a large ˛, and also of giving
a better upper bound for ˛ ([Lub94]).

3 Observe that if equality holds there are several automorphisms with fixed points.
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1.5. Moduli of Kodaira fibrations

The study of moduli of Kodaira fibrations was initiated by Jost and Yau [J-Y83]
(after that Kas [Ks68] had proven that the small deformations of Kodaira fibred
surfaces are unobstructed), showing that all deformations yield again a Kodaira
fibred surface.

Kodaira surfaces are a typical issue of the case where topology determines
the moduli space, and the best characterization was obtained by Kotschick
[Kot99]:

Theorem 8. Let S be a complex surface. A Kodaira fibration on S with fibres
of genus g and base curve of genus b is equivalent to the datum of

(1) an exact sequence

1 �! …g �! �1.S/ �! …b �! 1

(here …g denotes the fundamental group of a compact curve of genus g)
such that:

(2)
e.S/ D 4.b � 1/.g � 1/;

(3) the monodromy homomorphism m W …b ! Out.…g/, induced by conjuga-
tion in the previous exact sequence, has infinite image.

Kotschick used the methods that we shall review in Sect. 3, especially the
following facts:

1) a fibration of a Kähler manifold X over a curve of genus b � 2 without
multiple fibres is determined by a surjection �1.X/ ! …b with finitely
generated kernel [Cat03b], [Cat08],

2) the Zeuthen–Segre formula says that, in the case where X is a surface S ,
e.S/ � 4.b � 1/.g � 1/, equality holding, when g � 2, if and only if we
have a differentiable bundle,

3) the fibration has constant moduli if and only if the image of the monodromy
m is finite.

We see then that every surface with the same fundamental group and Euler
number as S is again Kodaira fibred with the same fibre genus g and base genus
b.

Of course, a major question which remains is:

Question 9. Let S be a Kodaira fibred surface: do then the surfaces with the
same fundamental group and Euler number as S form a connected component
of the moduli space, or the union of a connected component with its complex
conjugate component?
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One may moreover ask the following question.

Question 10. How many Kodaira fibrations can a given algebraic surface pos-
sess?

Do there exist surfaces S with three distinct Kodaira fibrations?

Kodaira’s original example, whose generalization was explained in the pre-
vious subsection, shows that S can have two distinct Kodaira fibrations, and one
can indeed see that this is again a topological condition.

Proposition 11. Let S be a complex surface. A double Kodaira fibration on S
is equivalent to the datum of two exact sequences

1 �! …gi
�! �1.S/

N i�! …bi
�! 1; i D 1; 2;

(here …g denotes as before the fundamental group of a compact curve of genus
g) such that:

(1) the monodromy homomorphisms mi W …bi
! Out.…gi

/ have infinite im-
age;

(2) bi � 2; gi � 3,
(3) the composition homomorphism

…g1
�! �1.S/

N 2�! …b2

is neither zero nor injective, and
(4) the Euler characteristic of S satisfies

e.S/ D 4.b1 � 1/.g1 � 1/ D 4.b2 � 1/.g2 � 1/:
The above result shows that surfaces admitting a double Kodaira fibration

form a closed and open subset in the moduli spaces of surfaces of general type;
since for these one has a realization as a branched covering S ! B1 � B2,
branched over a divisor D � B1 � B2, it makes sense to distinguish the étale
case where D is smooth and the two projections D ! Bi are étale. It is not
clear a priori that this property is also open and closed, but in [CatRol09] we
were able to prove it.

Theorem 12. Double étale Kodaira fibrations form a closed and open subset in
the moduli space of surfaces of general type.

Concerning the previous Question 9 there are only partial results, Jost and
Yau studied the deformations of the original example of Kodaira, while
[CatRol09] considered a more general question for an important special class
of double étale Kodaira fibrations. To describe the latter results we recall a defi-
nition from [CatRol09].
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Definition 13. A double étale Kodaira fibration is said to be standard if the log-
arithmic double Kodaira fibred surface .B1 � B2;D/ reduces, after étale base
changes for B1 and B2, to the very simple case of a logarithmic double Kodaira
fibred surface .B � B;D/ for which D is a union of graphs of automorphisms
of B .

Theorem 14. The subset of the moduli space corresponding to standard double
étale Kodaira fibred surfaces S with a fixed fundamental group consists of at
most two irreducible connected components, exchanged by complex conjuga-
tion, which are isomorphic to the moduli space of pairs .B;G/, where B is a
curve of genus b at least two and G is a group of biholomorphisms of B of a
given topological type.

In the above theorem G is the group generated by the automorphisms whose
graphs yieldD. For more details on the topological type of the action of a group
G on an algebraic curve, see for instance [Cat15] or [CLP15,CLP16].

An interesting by-product of the study of the moduli space of standard dou-
ble étale Kodaira fibrations is the following result which contradicted a spread
belief ([M-S80]), and shows that Kefeng Liu’s theorem that a Kodaira fibration
cannot exist on a (free) ball quotient cannot be shown invoking non-rigidity.

Theorem 15. There are double Kodaira fibred surfaces S which are rigid.

Using these explicit descriptions Rollenske went further in [Rol10] and
showed that, in the case where the branched cover has a cyclic Galois group,
then the closure of this irreducible component inside the Kollár–Shepherd-
Barron–Alexeev [K-SB88] compactification is again a connected component.
One should observe that there are extremely few examples where the connected
components of the KSBA compact moduli space have been investigated, apart
from the obvious case of rigid surfaces (see [LW12] for the case of surfaces
isogenous to a product).

Finally, concerning the existence problem for Kodaira fibrations, we have
the following

Question 16. Given an exact sequence

1 �! …g �! � �! …b ! 1

such that the image of m W …b ! Map g WD OutC.…g/ is infinite, when does
there exist a Kodaira fibred surface S with �1.S/ Š �?

An obvious necessary condition is that the Abelianization �ab D �=Œ�; ��

has even rank, by Hodge theory.
To the monodromy m is associated a continuous map f W B ! Tg=Im.m/,

where Tg denotes Teichmüller space, equivalently, anm-equivariant map of the
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universal cover QB , Qf W QB ! Tg . It is at present not clear to me if it is proven
that f can be deformed to a harmonic map; the main difficulty seems however to
be to show the holomorphicity of such a harmonic map, for which the condition
on the Betti number being even is the first obstruction.

Recently Arapura4 observed that there are other necessary conditions. Let
mH be the monodromy on V WD …ab

g ˝Q, i.e., the monodromy on cohomology,
and let G be the connected component of the identity in the Zariski closure of
Im.mH /. Then we can first of all replace the above condition on the parity of
the first Betti number as the condition that the space VG of G-coinvariants (the
largest quotient on which G acts trivially) has even dimension.

Then there are necessary conditions in special cases: for instance, in the case
where the space VG of coinvariants is zero, G must be semi-simple of classical
Hermitian type. In other words, if VG D 0, then G.R/0=K must be a Hermitian
Symmetric Domain of classical type (here K is a maximal compact subgroup).

2. Projective varieties which are classifying spaces

2.1. Generalities on projective varieties which are classifying spaces

Definition 17. Define PC as the class of projective varieties which are classi-
fying spaces for their fundamental group �1.Z/: equivalently, PC is the class
of projective varieties Z whose universal covering QZ is contractible.

The class PC is stable for Cartesian products, and for étale coverings, hence
also for the relation of isogeny.

Definition 18. Two varieties X; Y are said to be isogenous if there exist a third
variety Z, and étale finite morphisms fX W Z ! X , fY W Z ! Y .

The class PC is however not stable for taking hyperplane sections: because
for a compact manifold which is a classifying space its real dimension is read
off by the top non-zero cohomology group Hm.�;Z=2/, where � D �1.Z/:
since if Z is a classifying space, or a K.�; 1/ as one also says in topology, then
Hm.�;R/ Š Hm.Z;R/, for any ring of coefficients R.

Projective curves C of genus g are, by virtue of the uniformization theorem,
in the class PC if and only if g � 1. For g � 2 they are the quotients C D
H =� , where H WD fz 2 C j Im.z/ > 0g and � � PSL.2;R/ is a discrete
subgroup isomorphic to…g (then necessarily the action is free and cocompact).

Primary examples of projective varieties which are K.�; 1/’s are curves and
Abelian varieties, and the varieties which are isogenous to a product of these.
Particularly interesting are the varieties isogenous to a product of curves of gen-
era at least 2.

4 Talk at the Conference for Bob Friedman’s 60-th birthday, in May 2015, and [Ara15].
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It is interesting to observe ([Cat15], Corollary 82) that Abelian varieties are
exactly the projective K.�; 1/ varieties, for which � is an abelian group.

2.1.1. Locally symmetric manifolds of negative type A very interesting class
of projective varieties which areK.�; 1/’s are the locally symmetric manifolds
Z with ample canonical divisor KZ . These are in some sense a generalization
in higher dimension of curves of genus g � 2: because the upper half plane
H WD fz 2 C j Im.z/ > 0g is biholomorphically equivalent to the unit disk
fz 2 C j jzj < 1g.

Locally symmetric manifolds Z with ample canonical divisor KZ (also
called locally Hermitian symmetric manifolds of negative curvature) are the
quotients of a bounded symmetric domain D by a cocompact discrete sub-
group � � Aut.D/ acting freely.

Recall that a bounded symmetric domain D is a bounded domain D b Cn

such that its group Aut.D/ of biholomorphisms contains, for each point p 2
D , a holomorphic automorphism �p such that �p.p/ D p, and such that the
derivative of �p at p is equal to �Id. This property implies that � is an involution
(i.e., it has order 2), and that Aut.D/0 (the connected component of the identity)
is transitive on D ; therefore one can write D D G=K, where G is a connected
Lie group, and K is a maximal compact subgroup.

The classification of these bounded symmetric domains, done by Élie Cartan
in [Car35], is based on the fact that such a D splits uniquely as the product of
irreducible bounded symmetric domains.

D is a complete Riemannian manifold of negative sectional curvature, hence
it is contractible, by the Cartan–Hadamard theorem, and Z D D=� is a classi-
fying space for the group � Š �1.X/.

There are four series of non-sporadic bounded irreducible domains, in their
bounded realization, plus two exceptional types:

(i) In;p is the domain D D fZ 2 Mat.n; pIC/ W Ip � tZ � NZ > 0g.

(ii) IIn is the intersection of the domain In;n with the subspace of skew sym-
metric matrices.

(iii) IIIn is instead the intersection of the domain In;n with the subspace of
symmetric matrices.

(iv) The Cartan–Harish-Chandra realization of a domain of type IVn in Cn is
the subset D defined by the inequalities (compare [Helga78], page 527)

jz2
1 C z2

2 C � � � C z2
nj < 1;

1C jz2
1 C z2

2 C � � � C z2
nj2 � 2 �jz1j2 C jz2j2 C � � � C jznj2�

> 0:

(v) D16 is the exceptional domain of dimension d D 16.
(vi) D27 is the exceptional domain of dimension d D 27.
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Each of these domains is contained in the so-called compact dual, which is
a Hermitian symmetric spaces of compact type, the easiest example being, for
type I, the Grassmann manifold.

Among the bounded symmetric domains are the so called bounded symmet-
ric domains of tube type, those which are biholomorphic to a tube domain, a
generalized Siegel upper half-space

TC D V ˚ p�1C

where V is a real vector space and C � V is a symmetric cone, i.e., a self dual
homogeneous convex cone containing no full lines.

In the case of type III domains, the tube domain is Siegel’s upper half space:

Hg WD f� 2 Mat.g; gIC/ j � D t�; Im.�/ > 0g;

a generalisation of the upper half-plane of Poincaré.
Borel proved in [Bore63] that for each bounded symmetric domain D there

exists a compact free quotientX D D=� , called a compact Clifford–Klein form
of the symmetric domain D .

A classical result of J. Hano (see [Hano57] Theorem IV, page 886, and
Lemma 6.2, page 317 of [Mil76]) asserts that a bounded homogeneous domain
that is the universal cover of a compact complex manifold is symmetric.

2.1.2. Kodaira fibrations The Kodaira fibrations f W S ! B are a remarkable
example of surfaces in the class PC .

Because S is a smooth projective surface and it is known that all the fibres of
f are smooth curves of genus g � 3, whereas the base curve has genus b � 2.

By the fundamental group exact sequence

1 �! …g �! �1.S/ �! …b �! 1

the universal cover QS is a differentiable fibre bundle over QB with fibre QF , hence
it is diffeomorphic to a ball of real dimension 4.

By simultaneous uniformization ([Bers60]) the universal covering QS of a
Kodaira fibred surface S is biholomorphic to a bounded domain in C2 (fibred
over the unit disk 
 WD fz 2 C j jzj < 1g with fibres isomorphic to 
), which
is not homogeneous.

QS is not homogeneous by the Hirzebruch proportionality principle; indeed
there are only two bounded homogeneous domains in dimension 2: the bidisk
and the 2-ball. The bidisk is biholomorphic to H �H , and its group of biholo-
morphisms is a semi-direct product of Aut.H /� Aut.H / by Z=2, in particular
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one has Chern forms for the tangent bundle, invariant by automorphisms, which
can be written as

c1 WD �.z1/ dz1 ^ Ndz1 ˚ �.z2/ dz2 ^ Ndz2;

c2 WD �.z1/�.z2/ dz1 ^ Ndz1 ^ dz2 ^ Ndz2 D 1

2
c2

1 :

Hence the Chern index �C D 2 if the universal cover of S is the bidisk, i.e.,
c1.S/

2 D 2c2.S/; whereas, if the universal cover is the ball, c1.S/
2 D 3c2.S/

by a similar argument ([Hirz58]).

2.1.3. Known projective classifying spaces in complex dimension two In com-
plex dimension 2, we have the following list of projective classifying spaces:

(1) Abelian surfaces.
(2) Hyperelliptic surfaces: these are the quotients of a complex torus of dimen-

sion 2 by a finite group G acting freely, and in such a way that the quotient
is not again a complex torus.

They have pg D 0; q D 1.
These surfaces were classified by Bagnera and de Franchis ([BdF08], see

also [ES09] and [BPHV]) and they are obtained as quotients .E1 �E2/=G

where E1; E2 are two elliptic curves, and G is an abelian group acting on
E1 by translations, and on E2 effectively and in such a way that E2=G Š
P1. In other words, these are exactly the surfaces isogenous to a product of
curves of genus 1 which are not Abelian surfaces.

(3) Surfaces isogenous to a product of curves C1 � C2, where C1 has genus 1,
C2 has genus g2 � 2.

These are quotients .C1 � C2/=G, where the finite group G acts freely,
and where we can assume that G acts by a faithful diagonal action

g.x; y/ D .g.x/; g.y//

(we regardG asG � Aut.C1/; G � Aut.C2/). These surfaces have Kodaira
dimension 1.

(4) Ball quotients.
(5) Bidisk quotients, divided into the reducible case, the case of surfaces .C1 �

C2/=G, isogenous to a product of curves of genera gi � 2, and the irre-
ducible case (for these rigidity holds, as proven by Jost and Yau [J-Y85]).

(6) Kodaira fibred surfaces.
(7) Mostow–Siu surfaces of negative curvature ([M-S80]): these are branched

coverings of ball quotients, admitting a metric of negative scalar curvature.
Their Chern slopes �C .S/ are very close to 3, but strictly smaller than 2:96.
These surfaces are rigid, in particular they are not the Kodaira examples of
Kodaira fibrations.
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(8) More examples are gotten from coverings of the plane branched over con-
figurations of lines, as we shall discuss in a later section (see [Zheng99],
and [Pan09], [Pan11]).

Proposition 19. Every surface in PC is necessarily minimal, and indeed it
contains no rational curve.

Proof. In fact, if we have a rational curve � W P1 ! S , then the map � lifts
to the universal cover, and is then null-homotopic because QS is contractible.
Hence also � is null-homotopic, and the image rational curve C WD �.P1/ is
homologous to zero; this is a contradiction, as soon as S is a Kähler surface, a
fortiori if S is projective. ut
Corollary 20. Surfaces in PC which are not of general type are exactly type
(1), (2) and (3) above. Any surface in PC which is of general type has ample
canonical divisor.

Proof. The result follows by minimality and by Enriques’ classification, if the
Kodaira dimension is < 1.

If S is of general type, then it contains no rational curves, in particular no
.�2/-curves, hence KS is ample.

If the Kodaira dimension is one, then S is minimal, properly elliptic, which
means that a multiple of the canonical divisor yields a morphism f W S ! B

with general fibre an elliptic curve. By Kodaira’s classification of singular fibres
of elliptic fibrations ([Kod60]) follows that every fibre is either smooth elliptic,
or multiple of a smooth elliptic curve. We use now the orbifold fundamental
group exact sequence (see [CKO03], [Cat03b] or [Cat08])

�1.F / �! �1.S/ �! �orb
1 .f / �! 1:

Here the orbifold fundamental group is defined as �1.B
�/=K, B� being the

set of non-critical values of f , and K is normally generated by 
mi

i , for each
geometric loop going around a point pi 2 B n B� for which the fibre f �1.pi /

is multiple of multiplicity mi . Hence there is an intermediate covering OS ! OB ,
possibly of infinite degree, such that all the fibres are smooth elliptic curves, and
where OB is simply connected.

There is also a finite ramified covering B 0 ! B such that the pull back
f 0 W S 0 ! B 0 has all the fibres which are smooth. The j -invariant is constant
on B 0 since B 0 is projective. Hence all the smooth fibres are isomorphic to a
fixed elliptic curve E and therefore, since S is projective, we obtain another
finite cover B 00 ! B 0 such that S 00 D E � B 00. Since the Kodaira dimension of
S is one, we obtain that B 00 has genus at least two, and there exists another étale
covering C ! B 00 such that C ! B is Galois hence S D .E � C/=G: ut
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2.2. Galois conjugate of projective classifying spaces

LetX � Pn be a complex projective variety and let Aut.C/ be the group of field
automorphisms of C.

Then, for each � 2 Aut.C/, the conjugate variety X� is, as a set, simply
�.X/: �.X/ is the projective variety defined by the ideal I �

X , obtained from the
ideal IX of X applying the homomorphism � to the coefficients of the polyno-
mials in IX .

If � is complex conjugation, we get NX , which is diffeomorphic to X .
Observe that, by the theorem of Steiniz, one has a surjection Aut.C/ !

Gal. NQ=Q/, and that we have an action of the absolute Galois group GAL WD
Gal. NQ=Q/ on the set of varieties X defined over NQ.
X and the conjugate variety X� have the same Hodge numbers and Chern

numbers. In particular, for curves, the genus is preserved.
It is also immediate that Galois conjugation by � 2 Aut.C/ preserves prod-

ucts and the equivalence relation given by isogeny, indeed Galois conjugation
does not change the algebraic fundamental group, as shown by Grothendieck
[SGA1].

Theorem 21. Conjugate varietiesX;X� have isomorphic algebraic fundamen-
tal groups

�1.X/
alg Š �1.X

� /alg;

(�1.X/
alg is the profinite completion of the topological fundamental groupG WD

�1.X/, i.e., �1.X/
alg is the inverse limit of the factor groups G=K, K being a

normal subgroup of finite index in G).

It is easy to see ([Cat15], Theorem 223) that

i) If X is an Abelian variety, the same holds for any Galois conjugate X� .
ii) If S is a Kodaira fibred surface, then any Galois conjugate S� is also Ko-

daira fibred.

The following attempt of conjecture is based mainly on the fact that it holds
for all known examples.

Conjecture 22. Assume that X is a projectiveK.�; 1/, and assume � 2 Aut.C/.
Is then the conjugate variety X� still a classifying space K.� 0; 1/?
We know since long, thanks to the result obtained by J.-P. Serre [Ser64] in

the 60’s , that it is not true in general that �1.X
� / Š �1.X/. Serre showed that

there exists a field automorphism � in the absolute Galois group Gal. NQ=Q/, and
a variety X defined over a number field, such that X and the Galois conjugate
variety X� have non-isomorphic fundamental groups, in particular they are not
homeomorphic.

This is also false for surfaces in the class PC , for instance in a joint paper
with I. Bauer and F. Grunewald [BCG14] we obtained the following theorem.
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Theorem 23. If � 2 Gal. NQ=Q/ is not in the conjugacy class of complex conju-
gation, then there exists a surface isogenous to a product S such that S and the
Galois conjugate surface S� have non-isomorphic fundamental groups.

I. Bauer and F. Grunewald and the author ([BCG06], [BCG14]) discovered
also many explicit examples of algebraic surfaces isogenous to a product for
which the same phenomenon holds (observe that the proof of the general theo-
rem is, as it may be surmised, non-constructive).

Remark 24. González-Diez and Jaikin-Zapirain [GD-JZ16] later extended theo-
rem 23 to all automorphisms � different from complex conjugation.

2.3. Some characterizations of locally symmetric varieties and Kazhdan’s
theorem in refined form

Proceeding with other projective K.�; 1/’s, the question becomes more subtle
and we have to appeal to a famous theorem by Kazhdan on arithmetic varieties
(see [Kazh70], [Kazh83], [Milne01], [CaDS12], [C-DS14], [ViZu07]).

Here the result is in the end much stronger: not only the conjugate variety
is again locally symmetric, but the universal cover is indeed the same bounded
symmetric domain!

Theorem 25. Assume that X is a projective manifold with KX ample, and that
the universal covering QX is a bounded symmetric domain.
Let � 2 Aut.C/ be an automorphism of C.
Then the conjugate variety X� has universal covering QX� Š QX .

The above result rests in an essential way on the Aubin–Yau theorem ([Yau78],
[Aub78]) about the existence of a Kähler–Einstein metric for a projective man-
ifold with ample canonical divisor KX , and on the results of Berger [Ber53].

These results allow precise algebro-geometric characterizations of such
locally symmetric varieties. These results were pioneered by Yau [Yau88]
[Yau93]; his treatment of the non-tube case is however incorrect (he claims that
(1) of Theorem 26, which characterizes the tube case, holds also in the non-tube
case).

Simpler proofs follow from recent results obtained together with Antonio
Di Scala. These results yield a simple and precise characterization of varieties
possessing a bounded symmetric domain as universal cover, without having to
resort to the existence of a finite étale covering where the holonomy splits.

For the tube case, we have the following theorem (see [CaDS12]), whose
simple underlying idea is best illustrated in the case where the universal cover-
ing is a polydisk.
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In this case one observes that, due to the nature of the automorphism group of
H n as semi-direct product of Aut.H /n with the symmetric group in n letters,
the following tensor

‰ WD dz1 � � � dzn

dz1 ^ � � � ^ dzn

is a semi-invariant for the group of automorphisms, it is multiplied by ˙1 ac-
cording to the sign of the corresponding coordinates permutation.

It therefore descends to a section 0 ¤ � 2 H 0.Sn.�1
X /.�KX /˝ �/, where

� is the 2-torsion invertible sheaf associated to the sign character of the funda-
mental group �1.X/ Š � < Aut.H n/ (observe that, depending on the choice
of � , � may be trivial).

The existence of such a tensor is unfortunately, in complex dimension n � 4,
not a characterizing property of polydisk quotients.

Indeed, in dimension 4, we have the bounded domain � � C4,

� D fZ 2 Mat.2; 2IC/ W I2 �tZ � NZ > 0g;
the bounded (Harish-Chandra) realization of the Hermitian symmetric space
SU.2; 2/=S.U.2/ � U.2//.

Here the holonomy action of .A;D/ 2 S.U.2/ � U.2// is given by Z 7!
AZD�1. Hence, the square of the determinant of Z yields a section ‰ which
descends to a section 0 ¤ � 2 H 0.Sn.�1

X /.�KX //.
The main difference with respect to the polydisk quotient case is that the

corresponding hypersurface in the projectivized tangent bundle of X is non-
reduced, since we start from an invariant hypersurface of degree 4 which is
twice a smooth quadric. With these examples in mind it should be easier to get
the flavour of the following theorem ([CaDS12]).

Theorem 26. Let X be a compact complex manifold of dimension n with KX

ample.
Then the following two conditions .1/ and .10/, resp. .2/ and .20/ are equiv-

alent:

.1/ X admits a slope zero tensor 0 ¤  2 H 0.Smn.�1
X /.�mKX //, (for some

positive integer m);
.10/ X Š �=� , where � is a bounded symmetric domain of tube type and � is

a cocompact discrete subgroup of Aut.�/ acting freely.
.2/ X admits a semi-special tensor 0 ¤ � 2 H 0.Sn.�1

X /.�KX /˝ �/, where
� is a 2-torsion invertible sheaf, such that there is a point p 2 X for which
the corresponding hypersurface Fp WD f�p D 0g � P.TXp/ is reduced.

.20/ The universal cover of X is a polydisk.

Moreover, in case (1), the degrees and the multiplicities of the irreducible
factors of the polynomial  p determine uniquely the universal covering QX D �

(observe that these numbers are independent of the choice of the point p).
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The crucial underlying fact is the following discovery of Korányi–Vági.
Let D � Cn be a homogeneous bounded symmetric domain in its circle

realization around the origin 0 2 Cn.
Let K be the isotropy group of D at the origin 0 2 Cn, so that we have

D D G=K.
A polynomial f 2 CŒX1; : : : ; Xn� is said to be K-semi-invariant if there is

a character � W K ! C such that, for all g 2 K, f .gX/ D �.g/f .X/.
Observe that, since K is compact, we have: j�.g/j D 1.
Let D D D1 �D2 be the decomposition of D as a product of two domains

where D1 is of tube type and D2 has no irreducible factor of tube type.

Theorem 27 ([KoVa79, Korányi–Vági]). Let D D D1 �D2 be the above de-
composition and let moreover

D1 D D1;1 �D1;2 � � � � �D1;p

be the decomposition of D1 as a product of irreducible tube type domains
D1;j .j D 1; � � � ; p/.

Then there exist, for each j D 1; : : : p, a unique Kj -invariant polynomial
Nj .z1;j /, where Kj is the isotropy subgroup of D1;j , such that: for all K-
invariant polynomial f there exist a constant c 2 C and exponents kj with

(1)

f D c

pY
j D1

N
kj

j ;

hence in particular
(2)

f .z1; z2/ D f .z1/;

where z1 denotes a vector in the domain D1 and z2 2 D2.

The above theorem follows almost directly from [KoVa79] by taking into
account that a K-invariant polynomial is, up to a multiple, an inner function,
i.e., a function such that jf .z/j D 1 on the Shilov boundary of D (on which K
acts transitively).

Moreover the polynomialsNj have degree equal to the rank.Dj / of the irre-
ducible domain Dj , (rank.Dj / denotes the dimension r of the maximal totally
geodesic embedded polydisc H r � Dj , or, equivalently, if D D G=K, with
G D Aut.D/0, rank.D/ D rank.GC/ D the dimension of a maximal algebraic
torus contained in the complexification GC).

The characterization is essentially a consequence of the unicity of these inner
functions, and of the inequality rank.Dj / � dim.Dj /, where equality holds if
and only if Dj D H .
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In the case where there are non-tube domains in the irreducible decom-
position, one has to use some ideas of Kobayashi and Ochiai [KobOchi81],
developed by Mok [Mok89] who introduced and studied certain characteris-
tic varieties which generalize the hypersurfaces defined by the Korányi–Vági-
polynomials.

2.3.1. Algebraic curvature-type tensors and their first Mok characteristic vari-
eties Consider the situation where we are given a direct sum

T D T1 ˚ � � � ˚ Tk

of irreducible representations Ti of a groupHi (T shall be the tangent space to a
projective manifold at one point, andH D H1 � � � � �Hk shall be the restricted
holonomy group).

Definition 28. 1) An algebraic curvature-type tensor is a non-zero element

� 2 End.T ˝ T _/:

2) Its first Mok characteristic cone C S � T is defined as the projection on the
first factor of the intersection of ker.�/ with the set of rank-1 tensors, plus
the origin:

C S WD ft 2 T j 9t_ 2 T _ n f0g; .t ˝ t_/ 2 ker.�/g:
3) Its first Mok characteristic variety is the subset S WD P.C S / � P.T /.
4) More generally, for each integer h, consider

fA 2 T ˝ T _ j A 2 ker.�/; rank.A/ � hg;
and consider the algebraic cone which is its projection on the first factor

C S h WD ft 2 T j 9A 2 ker.�/; rank.A/ � h; 9t 0 2 T W t D At 0g;
and define then S h WD P.C S h/ � P.T / to be the h-th Mok characteristic
variety.

5) We define then the full characteristic sequence as the sequence

S D S 1 � S 2 � � � � � S k�1 � S k D P.T /:

Remark 29. In the case where � is the curvature tensor of an irreducible sym-
metric bounded domain D , Mok ([Mok02]) proved that the difference sets S h n
S h�1 are exactly all the orbits of the parabolic subgroup P associated to the
compact dual D_ D G=P .

The concept of an algebraic curvature type tensor � can be then used to prove
the following theorem.
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Theorem 30. Let X be a compact complex manifold of dimension n with KX

ample.
Then the universal covering QX is a bounded symmetric domain without fac-

tors isomorphic to higher dimensional balls if and only if there is a holomorphic
tensor � 2 H 0.End.TX ˝ T _

X // enjoying the following properties:

1) there is a point p 2 X , and a splitting of the tangent space T D TX;p

T D T 0
1 ˚ � � � ˚ T 0

m

such that the first Mok characteristic cone C S is ¤ T and moreover C S
splits into m irreducible components C S 0.j / with

2) C S 0.j / D T 0
1 � � � � � C S 0

j � � � � � T 0
m

3) C S 0
j � T 0

j is the cone over a smooth projective variety S 0
j unless C S 0

j D 0

and dim.T 0
j / D 1:

Moreover, we can recover the universal covering of QX from the sequence of
pairs .dim.C S 0

j /; dim.T 0
j //.

The case where there are ball factors is the case where the Yau inequality is
used (see also [ViZu07]), and one can also in this case give a characterization
which is given in terms of X and not of some unspecified étale cover K 0 of X
(Master Thesis of Daniel Mckenzie, 2013 [Mck13]).

A very interesting program, suggested by Yau in [Yau93] is to extend these
characterizations to the case of quotients Y WD D=� , where D is a bounded
symmetric domain, but the quotient need not be compact, and the action may be
non-free.

This should be done using logarithmic sheaves �1
X .log D/, where .X;D/

is a normal crossing compactification and resolution of .Y; Sing.Y //. These
sheaves can possibly only be defined in orbifold sense (similarly to what is done
in the work of Campana et al. [CGP13]), otherwise it is not clear that the ten-
sors which we considered above, and which descend to Y n Sing.Y /, do indeed
extend to X logarithmically.

2.4. Kodaira fibred surfaces and their conjugates

The bulk of the previous subsection was to show examples where the universal
cover of a projective variety X and of its Galois conjugates X� are isomorphic.

Kodaira surfaces miracolously show us that we should not hope (by mere
wishful thinking) that the same result should hold for all varieties in the class
PC .

In fact, it was proven by Shabat ([Shab77], [Shab83]):
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Theorem 31. Let f W S ! B be a Kodaira fibration, and let QS be the universal
covering of S , a bounded domain in C2. Then the fundamental group �1.S/ has
finite index inside Aut. QS/.

We have then the following consequence:

Theorem 32. There exist families St ; t 2 T of Kodaira fibrations whose uni-
versal covers QSt are not isomorphic. In particular, there exist Kodaira fibred
surfaces such that S and some Galois conjugate S� have non-isomorphic uni-
versal covering.

Proof. It suffices to take a family St ; t 2 T; dim.T / � 1, of Kodaira fibrations
where the fibres of the map of T to the moduli space are finite. Then, by Shabat’s
theorem (Theorem 31), it follows that, for t 0 2 T , the number of surfaces St

whose universal cover is isomorphic to QS 0
t is countable (finite?), since these

surfaces correspond to conjugacy classes of finite index subgroups of G0 WD
Aut. QS 0

t / which are isomorphic to �1.S/. And G0 is finitely presented, as well as
�1.S/.

For the second assertion, let M.St / be the irreducible component of the
moduli space of surfaces of general type (which is defined over Q) containing
the image of T , and let S 0

t be a surface whose moduli point is not algebraic.
Then the set of isomorphism classes of Kodaira fibred surfaces with universal
covering isomorphic to QS 0

t is countable, while the set of isomorphism classes of
its conjugate surfaces S 0

t
� is uncountable (note that the corresponding moduli

points do not need a priori to belong to M.St /, but this is irrelevant and can be
indeed arranged taking some explicit family of double Kodaira fibrations). ut

The result of Shabat was brought to attention by González-Diez and Reyes-
Carocca [GD-RC15], who also discuss the ‘arithmeticity’ condition that a Ko-
daira fibration is defined over a number field. They show, as a consequence of
Arakelov’s finiteness theorem, that S is arithmetic if and only if the base curve
is so. And from this they deduce that if two such have the same universal cover,
and one is arithmetic, then also the other is arithmetic.

Their work suggests the following possible extension of Theorem 32:

Question 33. Does there exist an arithmetic Kodaira surface S (i.e., S is defined
over NQ) and an automorphism � 2 Aut.C/ such that the universal coverings of
S and S� are not isomorphic?

2.5. Surfaces fibred onto curves of positive genus which are classifying spaces

We consider now the following situation: f W S ! B is a fibration of an alge-
braic surface S onto a curve B and we want to find a criterion for the universal
covering QS to be contractible.
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We already remarked in Proposition 2.1.3 that if S 2 PC then S must be
minimal, and indeed S contains no rational curves. More generally, the same
argument shows that, for each curve C � S , the fundamental group of the
normalization C 0 of C has infinite image in �1.S/.

Use now the orbifold fundamental group exact sequence (see [CKO03],
[Cat03b] or [Cat08])

�1.F / �! �1.S/ �! �orb
1 .f / �! 1;

hence we obtain a fibration Qf W QS ! OB , where OB ! B is the ramified covering
of B corresponding to the surjection

' W �1.B n fp1; : : : ; prg/ �! �orb
1 .f /

(here p1; : : : ; pr are the points whose fibre is multiple, of multiplicity mi � 2,
and the kernel of ' is normally generated by f
mi

i g, for 
i a loop around pi ).
Notice that OB is compact if and only if �orb

1 .f / is finite, and if and only if
OB Š P1, since OB is simply connected. But even when �orb

1 .f / is infinite there
is a finite ramified covering B 0 of B such that the pull back of the fibration f
has no multiple fibres (it suffices that the ramification index at each pi is equal
to the multiplicity mi of the multiple fibre).

By passing therefore to a finite étale covering (of the surface S), we may
assume that f W S ! B has no multiple fibres, and we shall assume in the
sequel that the genus b of B is � 1.

Question 34. Are there examples of a fibration f W S ! B of an algebraic
surface S onto a curveB , where S is a projective classifying space, and �orb

1 .f /

is finite? Equivalently, with B Š P1 and where f has no multiple fibres?

Assume now that f has no multiple fibres, so that OB is the universal cover
QB of B , and that the genus b of B is � 1.

Next, by the necessary condition that for each curve C contained in a fibre
�1.C

0/ ! �1.S/ has infinite image, it follows that all the fibres of Qf W QS ! QB
are homotopy equivalent to CW complexes of real dimension 1.

Let C � B be the set of critical values of f , C D fp1; : : : ; phg. Choose a
set † of non-intersecting paths joining a fixed base point p0 with the points of
C , and similarly a set †0 inside QB of non-intersecting paths joining a fixed base
point y0 2 QS mapping to p0, with the points of the inverse image of C , which
is a countable set fyn j n 2 N; n � 1g.

Lemma 35. Let f W S ! B be a fibration without multiple fibres over a curve
B of genus b � 1, and assume that, for each irreducible curve C contained in a
fibre of f , C 0 denoting the normalization of C , the homomorphism �1.C

0/ !
�1.S/ has infinite image.
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Since †0 is deformation retract of QB , QS is homotopically equivalent to a
CW complex of dimension � 2, in particular QS is contractible if and only if
H2. QS;Q/ D 0.

Proof. QS retracts onto K 0 WD Qf �1.†0/, and this shows the first assertion.
The second follows since, QS being simply connected and homotopically

equivalent to a CW complex of dimension � 2, it is contractible if and only
if H2. QS;Z/ D 0. In fact, by Hurewicz’s theorem, the first non-zero homotopy
group �m. QS/ is isomorphic to Hm. QS;Z/, which is obviously zero for m � 3.
Hence if H2. QS;Z/ D 0 all homotopy groups �i . QS/ D 0 and QS is contractible
(the converse is obvious).

Finally, by the universal coefficient formula, H2. QS;Z/ is torsion free, hence
H2. QS;Z/ D 0 if and only if H2. QS;Q/ D 0. ut

Let QF0 be the fibre over y0, and let QFn be the fibre over yn.
We can write K 0 D S

n2NKn, where Kn is the inverse image of the union
†0

n of the segments joining y0 with yi , for i � n.
Clearly

H2. QS;Q/ D 0 () H2.Kn;Q/ D 0; 8n 2 N:

We can now use the theorem of Mayer–Vietoris, using the following notation:
K�

n shall be the inverse image of †�
n, the union of the open segments, together

with the point y0, whereas @Kn shall be the inverse image of fy1; : : : ; yng.
Now, Kn is the union of two open subsets, the first is K�

n which is homo-
topically equivalent to QF0, and the second which is homotopically equivalent to
@Kn, the disjoint union of the fibres QFi ; 1 � i � n. Moreover, the intersection
of the two open sets is homotopically equivalent to n disjoint copies of QF0.

Define Hi WD H1. QFi ;Q/. Then we have the Mayer–Vietoris exact sequence

0 �! H2.Kn;Q/ �! Hn
0 �! H0 ˚H1 ˚ � � � ˚Hn �! H1.Kn;Q/ �! 0:

Here, we have a homomorphism ri W H0 ! Hi which is obtained by the
fact that a neighbourhood of the fibre QFi retracts onto QFi : ri is a surjection
whose kernel is the group Vi of vanishing cycles. The homomorphism of the
i-th summandH0 insideH0 ˚H1 ˚ � � � ˚Hn has first component which is the
identity, and all the other components equal to zero with the exception of one
which is indeed ri W H0 ! Hi .

We obtain the following theorem.

Theorem 36. Let f W S ! B be a fibration without multiple fibres over a curve
B of genus b � 1, and assume that, for each irreducible curve C contained in a
fibre of f , C 0 denoting the normalization of C , the homomorphism �1.C

0/ !
�1.S/ has infinite image.

Then QS is contractible if and only if, for each n 2 N, the subgroups of
vanishing cycles form a direct sum V1 ˚ � � � ˚ Vn inside H0.



F. Catanese

Proof. The kernel ofHn
0 ! H0 ˚H1 ˚� � �˚Hn are the elements .x1; : : : ; xn/

such that .x1 C � � � C xn; r1.x1/; : : : ; rn.xn// D .0; 0; : : : ; 0/. Hence these are
the elements of V1 ˚ � � � ˚ Vn which map to 0 inside H0. ut

We observe that, even if the criterion is essentially a characterization of fi-
bred algebraic surfaces which are projective classifying spaces, the condition on
the vanishing cycles is not so easy to verify, and, up to now, good examples are
still missing (cf. however later sections for candidates).

Observe also the following relation with the well-known Shafarevich conjec-
ture. Keep the assumption that f W S ! B is a fibration without multiple fibres
over a curveB of genus b � 1, and assume that, for a general fibre F , the homo-
morphism �1.F / ! �1.S/ has infinite image. If there is an irreducible curve
C contained in a fibre of f such that, C 0 denoting the normalization of C , the
homomorphism �1.C

0/ ! �1.S/ has finite image, while the homomorphism
�1.C / ! �1.S/ has infinite image, then S would be a counterexample to the
Shafarevich conjecture that QS is holomorphically convex (cf. [Bog-Katz-98]).
Since then QS would contain a connected infinite chain of compact curves.

3. Surfaces fibred onto curves

3.1. The Zeuthen–Segre formula

The Zeuthen–Segre formula is a beautiful formula, valid for any smooth alge-
braic surface S :

Theorem 37 (Zeuthen–Segre, classical). Let S be a smooth projective surface,
and let C�; � 2 P1, be a linear pencil of curves of genus g which meet transver-
sally in ı distinct points. If � is the number of singular curves in the pencil
(counted with multiplicity), then

� � ı � 2.2g � 2/ D I C 4;

where the integer I is an invariant of the algebraic surface, called Zeuthen–
Segre invariant.

Here, the integer ı equals the self-intersection number C 2 of the curve C ,
while in modern terms the integer I C 4 is not only an algebraic invariant, but
is indeed a topological invariant: the topological Euler–Poincaré characteristic
e.S/.

Observe that IC4CC 2 is then the topological Euler–Poincaré characteristic
of the surface blown up in the ı D C 2 base points of the pencil. In this way
the Zeuthen–Segre formula generalizes for every fibration f W S ! B of an
algebraic surface onto a curve B , and the formula measures the deviation from
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the case of a topological bundle, for which one would have e.S/ D 4.b�1/.g�
1/, where g is the genus of a fibre.

The importance of the formula is that, as suggested by the interpretation of
� as a number of points, the difference � WD e.S/ � 4.b � 1/.g � 1/ is always
non-negative.

The formula is well known using topology (see [BPHV]), but it is very con-
venient to have an algebraic formula, which is proven using sheaves and exact
sequences (see the lecture notes [CB]).

Definition 38. Let f W S ! B be a fibration of a smooth algebraic surface S
onto a curve of genus b, and consider a singular fibre Ft D P

niCi , where the
Ci are distinct irreducible curves.

Then the divisorial singular locus of the fibre is defined as the divisorial part
of the critical scheme, Dt WD P

.ni � 1/Ci , and the Segre number of the fibre
is defined as

�t WD degF CDtKS �D2
t ;

where the sheaf F is concentrated in the singular points of the reduction of the
fibre, and is the quotient of OS by the ideal sheaf generated by the components
of the vector d�=s, where s D 0 is the equation of Dt , and where � is the
pull-back of a local parameter at the point t 2 B .

More concretely,
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The following is the refined Zeuthen–Segre formula:

Theorem 39 (Zeuthen–Segre, modern). Let f W S ! B be a fibration of a
smooth algebraic surface S onto a curve of genus b, and with fibres of genus g.

Then
c2.S/ D 4.g � 1/.b � 1/C �;

where � D P
t2B �t , and �t � 0 is defined as above. Moreover, �t is strictly

positive, except if the fibre is smooth or a multiple of a smooth curve of genus
g D 1.

Most of the times, the formula is used in its non-refined form: if g > 1, then
either � > 0, or � D 0 and we have a differentiable fibre bundle. In this case
there are two alternatives: either we have a Kodaira fibration, or all the smooth
fibres are isomorphic, and we have a holomorphic fibre bundle ([F-G65]).
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3.2. The positivity results of Arakelov, Fujita and Kawamata

3.2.1. Arakelov’s theorem

Definition 40. A fibration f W S ! B of a smooth algebraic surface S onto
a curve of genus b is said to be (relatively) minimal, if there is no .�1/-curve
contained in a fibre. Moreover, it is said to be isotrivial, or with constant moduli,
if all the smooth fibres are isomorphic.

Isotriviality is equivalent to the condition that the moduli morphism  W
B ! Mg is constant, and it implies that there exists a finite Galois base change
B 0 ! B such that the pull back S 0 ! B 0 is birational to a product.

The theorem of Arakelov ([Ara71]) gives a numerical criterion for isotrivi-
ality.

Theorem 41. Let f W S ! B be a minimal fibration of a smooth algebraic
surface S onto a curve of genus b, where the genus g of the fibres is strictly pos-
itive. Define KS jB , the relative canonical divisor, as KS jB WD KS � f �.KB/.
Then KS jB is nef, and, if g � 2, KS jB is big unless the fibration is isotrivial, in
particular K2

S jB � 0 and K2
S jB > 0 if the fibration is not isotrivial.

Proof (Idea).

(I) The minimality of the fibration and g � 1 ensure that KS jB � C D KS �
C � 0 for each curve C contained in a fibre.

(II) For the case where C is not contained on a fibre, we use that the line
bundle OC .KS jB/ is generically a quotient of the pull-back of V WD
f�OS .KS jB/. Indeed, if p W C ! B is induced by f , there is a non-zero
morphism p�V ! OC .KS jB/ and one applies the theorem of Fujita 43
(that we shall soon describe) stating that p�V is nef, hence OC .KS jB/
has non-negative degree.

(III) Assume that the divisor KS jB is not big. KS jB is nef and, if g � 2, it is
not numerically trivial since, for each fibre ˆ, KS jB �ˆ D 2g � 2 � 2.

Hence the graded ring associated to it has Iitaka dimension 1, and yields a
map to a curve C , ' W S ! C . We consider F WD f � ' W S ! B � C , and
we consider the Hurwitz formula: KS D F �.KB C KC / C R, which proves
that KS jB D F �.KC / C R. Since all the sections of multiples of KS jB pull
back from C , it follows that R is horizontal, hence all the fibres are ramified
covers of the same curve C , and branched in the same set of points. From this
it follows that all the smooth fibres are isomorphic. ut

The following corollary contains an observation by Beauville [Bea82] and
the fact, already mentioned several times, that a Kodaira fibred surface has pos-
itive index.
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Corollary 42. Under the same assumptions as in Arakelov’s Theorem 41, but
assuming g � 2: then �.S/ � .g�1/.b�1/, equality if and only if f W S ! B

is a holomorphic bundle.
In particular, a Kodaira fibred surface S has a strictly positive index, i.e., S

has c2
1.S/ D K2

S > 2e.S/ D 2c2.S/.

Proof. The Arakelov inequality K2
S jB D K2

S � 8.b � 1/.g � 1/ � 0 and the
Zeuthen–Segre inequality e.S/ � 4.b � 1/.g � 1/ add up, in view of Noether’s
theorem (the first equality in the next formula) to yield the new inequality

12�.S/ D K2
S C e.S/ � 12.b � 1/.g � 1/:

Moreover, equality holds if both Arakelov’s and Zeuthen–Segre’s inequality are
equalities, implying that we have an isotrivial fibration and a differentiable bun-
dle: hence, as we already observed, f is a holomorphic bundle.

If we have a Kodaira fibration, then e.S/ D 4.b�1/.g�1/ and the fibration
is not isotrivial, hence K2

S > 8.b � 1/.g � 1/ D 2e.S/. ut

3.2.2. Fujita’s direct image theorems An important progress in classification
theory was stimulated by a theorem of Fujita, who showed ([Fujita78a]) that the
direct image of the relative dualizing sheaf

!X jB D OX .KX jB/ WD OX .KX � f �KB/

is numerically positive, i.e., every quotient bundle has non-negative degree (a
fact that was used in the previous subsection to give a different proof of
Arakelov’s theorem).

Theorem 43 (Fujita’s first theorem). If X is a compact Kähler manifold and
f W X ! B is a fibration onto a projective curve B (i.e., f has connected
fibres), then the direct image sheaf

V WD f�!X jB
is a nef vector bundle on B , equivalently V is ‘numerically semi-positive’,
meaning that each quotient bundle Q of V has degree deg.Q/ � 0.

In particular, if X is an algebraic surface S , then deg.V / � 0, which is the
inequality observed previously

deg.V / D �.S/ � .g � 1/.b � 1/ � 0

(except that the characterization of the case of equality does not follow right
away from Theorem 43, one needs Theorem 44).

In the note [Fujita78b] Fujita announced the following quite stronger result:
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Theorem 44 (Fujita’s second theorem, [Fujita78b]). Let f W X ! B be
a fibration of a compact Kähler manifold X over a projective curve B , and
consider the direct image sheaf

V WD f�!X jB D f�.OX .KX � f �KB//:

Then V splits as a direct sum V D A˚Q, where A is an ample vector bundle
and Q is a unitary flat bundle (see Definition 48).

Fujita sketched the proof, but referred to a forthcoming article concerning the
positivity of the so-called local exponents; the result was used in the meantime,
for instance I used it in my joint work with Pignatelli, but since Fujita’s detailed
article was never written, there was some objection (see [Barja98]) to the use
of this beautiful result: this was a motivation for Dettweiler and myself to write
down a complete proof, which is going to appear in the article contributed to
Kawamata’s 60-th birthday volume ([CatDet13]).

3.2.3. Kawamata’s positivity theorems In the meantime the idea of the proof
had become more transparent, through Kawamata’s use of Griffihts’ results on
Variation of Hodge Structures (the relation being that the fibre of V WD f�!X jB
over a point b 2 B , such that Xb WD f �1.b/ is smooth, is the vector space
Vb D H 0.Xb; �

n�1
Xb

/).
Kawamata ([Kaw81], [Kaw82]) improved on Fujita’s result, solving a long

standing problem and proving the subadditivity of Kodaira dimension for such
fibrations,

Kod.X/ � Kod.B/C Kod.F /;

(here F is a general fibre) showing the semi-positivity also for the direct image
of higher powers of the relative dualizing sheaf

Wm WD f�.!˝m
X jB/ D f�.OX .m.KX � f �KB///:

Kawamata also extended his result to the case where the dimension of the
base variety B is> 1 in [Kaw81], giving later a simpler proof of semi-positivity
in [Kaw02]. There has been a lot of literature on the subject ever since, (see the
references we cited in [CatDet13], see [E-V90] for the ampleness of Wm when
the fibration is not birationally isotrivial, and see [FF14] and [FFS14]).

Kawamata also introduced a simple lemma, concerning the degree of line
bundles on a curve whose metric grows at most logarithmically around a finite
number of singular points, which played a crucial role for the proof of Fujita’s
second theorem.

Indeed the missing details concerning the proof of the second theorem of
Fujita, using Kawamata’s lemma and some crucial estimates given by Zucker
([Zuc79]) for the growth of the norm of sections of the L2-extension of Hodge
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bundles, were provided in [CatDet13], whose main contribution was a nega-
tive answer to a question posed by Fujita in 1982 (Problem 5, page 600 of
[Katata83], Proceedings of the 1982 Taniguchi Conference).

3.3. Fujita’s semi-ampleness question

To understand the question posed by Fujita it is not only important to have
in mind Fujita’s second theorem, but it is also very convenient to recall the
following classical definition used by Fujita in [Fujita78a], [Fujita78b].

Let V be a holomorphic vector bundle over a projective curve B .

Definition 45. Let p W P WD Proj.V / D P.V _/ ! B be the associated projec-
tive bundle, and let H be a hyperplane divisor (such that p�.OP.H// D V ).

Then V is said to be:

(NP) numerically semi-positive if and only if every quotient bundleQ of V has
degree deg.Q/ � 0,

(NEF) nef if and only if H is nef on P,
(A) ample if and only if H is ample on P,

(SA) semi-ample if and only if H is semi-ample on P (there is a positive mul-
tiple mH such that the linear system jmH j is base-point free).

Remark 46. Recall that (A) ) (SA) ) (NEF) ,(NP), the last follows from the
following result due to Hartshorne.

Proposition 47. A vector bundle V on a curve is nef if and only if it is numeri-
cally semi-positive, i.e., if and only if every quotient bundle Q of V has degree
deg.Q/ � 0, and V is ample if and only if every quotient bundle Q of V has
degree deg.Q/ > 0.

Recall the following standard definition, used in the statement of Fujita’s
second theorem.

Definition 48. A flat holomorphic vector bundle on a complex manifold M is
a holomorphic vector bundle H WD OM ˝C H, where H is a local system of
complex vector spaces associated to a representation � W �1.M/ ! GL.r;C/,

H WD . QM � Cr/=�1.M/;

QM being the universal cover of M (so that M D QM=�1.M/).
We say that H is unitary flat if it is associated to a representation � W

�1.M/ ! U.r;C/.

We come now to Fujita’s question:



F. Catanese

Question 49 (Fujita). Is the direct image V WD f�!X jB semi-ample?

In [CatDet13] we established a technical result which clarifies how Fujita’s
question is very closely related to Fujita’s second theorem:

Theorem 50. Let H be a unitary flat vector bundle on a projective manifold
M , associated to a representation � W �1.M/ ! U.r;C/. Then H is nef;
moreover H is semi-ample if and only if Im.�/ is finite.

The idea of the proof is to reduce to the case where we have such a bundle
over a curve (obtained by taking successive hyperplane sections of M ), decom-
pose the representation as a direct sum of irreducible unitary representations,
and then use the theorem of Narasimhan and Seshadri [NS65] implying that a
unitary flat holomorphic bundle over a curve is holomorphically trivial if and
only if the representation is trivial.

Hence in our particular case, where V D A ˚ Q with A ample and Q
unitary flat, the semi-ampleness of V simply means that the flat bundle has finite
monodromy (this is another way to wording the fact that the representation of
the fundamental group � W �1.B/ ! U.r;C/ associated to the flat unitary rank-
r bundle Q has finite image).

The main new result in our joint work [CatDet13] was, as already said, to
provide a negative answer to Fujita’s question in general:

Theorem 51. There exist surfaces X of general type endowed with a fibration
f W X ! B onto a curve B of genus � 3, and with fibres of genus 6, such
that V WD f�!X jB splits as a direct sum V D A ˚ Q1 ˚ Q2, where A is an
ample rank-2 vector bundle, and the flat unitary rank-2 summandsQ1;Q2 have
infinite monodromy group (i.e., the image of �j is infinite). In particular, V is
not semi-ample.

Recently ([CatDet15]) we have found an infinite series of counterexamples,
which are based on the same ideas, but are quite simpler; we shall report on
them in a later subsection (they shall be called here BCDH-surfaces).

Notice that Fujita’s second theorem follows right away from the first in the
case where the base curve is P1, since then every vector bundle splits as a direct
sum of line bundles, and we can separate the summands with strictly positive
degree from the trivial summands.

Also, one can say something more precise in the case where the base curve
B has genus 1, or under other assumptions, which imply that indeed V is semi-
ample.

Corollary 52. Let f W X ! B be a fibration of a compact Kähler manifold
X over a projective curve B . Then V WD f�!X jB is a direct sum V D A ˚
.
Lh

iD1Qi /, with A ample and each Qi unitary flat without any non-trivial
degree zero quotient. Moreover,
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(I) if Qi has rank equal to 1, then it is a torsion bundle (9m such that Q˝m
i

is trivial) (Deligne),
(II) if the curve B has genus 1, then rank.Qi / D 1; 8i:

(III) In particular, if B has genus at most 1, then V is semi-ample.

Idea of proof. (I) was proven by Deligne [Del71] (and by Simpson [Simp93]
using the theorem of Gelfond–Schneider), while

(II) follows since �1.B/ is abelian, if B has genus 1: hence every represen-
tation splits as a direct sum of 1-dimensional ones. ut

3.3.1. How do the flat bundles appear In order to get a fibration f W S ! B

where we have a splitting V D f�!S jB ˚ Q our idea is to use symmetry, for
instance the fibres are cyclic coverings C of P1 with group Z=n and branched
in 4 points.

Then we get a curveC D Cx birational to the curve described by an equation
of the form:

(53) zn
1 D y

m0

0 y
m1

1 .y1 � y0/
m2.y1 � xy0/

m3 ; x 2 C n f0; 1g:
Here, we shall make the restrictive assumption that

0 < mj � n � 3; and m0 Cm1 Cm2 Cm3 D n:

Then C admits a Galois cover � W C ! P1 with cyclic Galois group equal
to the group of n-th roots of unity in C,

G D f� 2 C� j �n D 1g;
acting by scalar multiplication on z1. The choice of a generator in G yields an
isomorphism G Š Z=n.

Now, the vector space Vx WD H 0.�1
Cx
/ splits according to the characters

� W G ! C�,
Vx D

M
�

V �:

Here each character is of the form � 7! �i for a suitable i 2 Z=n. We denote by
�i the character such that �i .�/ D �i .

There is an easy formula (see [D-M86]) for dim.V �i /:

dim.V �i / D 1

n
.Œim0�C Œim1�C Œim2�C Œim3� � n/; i ¤ 0;

where 0 � Œm� � n � 1 denotes the remainder of division by n (a standard
representative of the residue class).
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For the dual character then dim.V N�i / D dim.V ��i / D 1
n
.n � Œim0�C n �

Œim1�C n � Œim2�C n � Œim3� � n/ hence

dim.V �i /C dim.V N�i / D 2:

Hence, by Hodge Theory, ifH�i D V �i ˚V N�i is the corresponding eigenspace
for the action of G on H 1.Cx;C/, its dimension equals 2.

By our choice for the integers mi , for i D 1 we get a character �1 such that
V �1 D 0, hence

H�1 D V �n�1 ;

hence we get a flat summand for V .
The next question is: how can we assert that the monodromy group for the

flat summand is infinite?
The idea can be explained in simple terms like this (see [CatDet15] for de-

tails) : if it were finite, then there would be a monodromy invariant positive
definite scalar product. This would also hold when we conjugate the characters
via the action of the Galois group of the field extensionE of Q, generated by the
n-th roots of 1, on the rational monodromy representation (for n prime, all non-
trivial characters are conjugate). If the monodromy is irreducible, there is only
one monodromy invariant scalar product, hence for all conjugate characters we
would have a positive definite scalar product, which amounts to the condition
that one never has dim.V �/ D dim.V N�/ D 1.

On the other hand, if we assume that m0 C m3 is invertible in Z=nZ; there
is a j such that j.m0 Cm3/ 	 �1 .mod n/. For instancem0 Cm3 is invertible
in Z=nZ if we take m0 D 1;m1 D 1;m2 D 1;m3 D n � 3 and we assume that
n is an odd number.

Define now m0
i WD Œmij �, where Œa� denotes the remainder of division by n.

Hence m0
0 Cm0

3 D n � 1.
We have the obvious inequalities 2 � m0

1 Cm0
2 � 2n � 2: Hence

nC 1 � m0
0 C � � � Cm0

3 � 3n � 3
and therefore

m0
0 C � � � Cm0

3 D 2n:

Hence the underlying unitary form is indefinite for the character �j , whereas it
is definite for the conjugate character �n�j .

Moreover, (see [CatDet15]) once the rank 1 summand V �j is shown to be
ample, the irreducibility of the flat bundle associated toH�j (hence of the mon-
odromy) follows for the following chain of arguments:

� If the flat vector bundle were reducible there would be an exact sequence of
flat vector bundles

0 �! H 0 �! H�j �! H 00 �! 0

where both H 0; H 00 have rank-1.
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� V �j is a holomorphic subbundle of H�j, hence it has a non-trivial homo-
morphism to it

� every homomorphism of V �j to a flat rank 1 bundle H 0; H 00 must be zero
� contradiction!

The final conclusion is that the monodromy of the flat factor V �n�1 is infi-
nite, and that V is not semi-ample; the concrete examples of this situation shall
be described in Sect. 5.

3.4. Castelnuovo–de Franchis and morphisms onto curves

In order to address the study of moduli spaces of Kodaira fibred surfaces, or
of surfaces which are isotrivially fibred, it is convenient to review some simple
results, pioneered by Siu, and which concern topological conditions implying
the existence of holomorphic maps of a compact Kähler manifold X onto an
algebraic curve.

Siu used harmonic theory in order to construct holomorphic maps from
Kähler manifolds to projective curves. The first result in this direction was the
theorem of [Siu87], also obtained by Jost and Yau (see [J-Y93] and also [J-Y83]
for other results).

Theorem 54 (Siu). Assume thatX is a compact Kähler manifold such that there
is a surjection � W �1.X/ ! �g , where g � 2 and, as usual, �g is the funda-
mental group of a projective curve of genus g. Then there is a projective curveC
of genus g0 � g and a fibration f W X ! C (i.e., the fibres of f are connected)
such that � factors through �1.f /.

In this case the homomorphism leads to a harmonic map to a curve, and one
has to show that the Stein factorization yields a map to some Riemann surface
which is holomorphic for some complex structure on the target.

It can be seen more directly how the Kähler assumption is used, because this
assumption guarantees that holomorphic forms are closed, i.e., � 2 H 0.X;�

p
X /) d� D 0.

At the turn of last century this fact was used by Castelnuovo and de Franchis
([Cast05], [dF05]):

Theorem 55 (Castelnuovo–de Franchis). Assume that X is a compact Kähler
manifold, �1; �2 2 H 0.X;�1

X / are C-linearly independent, and the wedge
product �1 ^ �2 is d-exact. Then �1 ^ �2 	 0 and there exists a fibration
f W X ! C such that �1; �2 2 f �H 0.C;�1

C /. In particular, C has genus
g � 2.

Even if the proof is well-known, let us point out that the first assertion fol-
lows from the Hodge–Kähler decomposition, while �1^�2 	 0 implies the exis-
tence of a non-constant rational function ' such that �2 D '�1. This shows that
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the foliation defined by the two holomorphic forms has Zariski closed leaves,
and the rest follows then rather directly taking the Stein factorization of the
rational map ' W X ! P1.

Now, the above result, which is holomorphic in nature, combined with the
Hodge decomposition, produces results which are topological in nature (they
actually only depend on the cohomology algebra structure of H�.X;C/).

To explain this in the most elementary case, we start from the following
simple observation. If two linear independent vectors in the first cohomology
group H 1.X;C/ of a Kähler manifold have wedge product which is trivial in
cohomology, and we represent them as �1 C !1; �2 C !2; for �1; �2; !1; !2 2
H 0.X;�1

X /, then by the Hodge decomposition and the first assertion of the
theorem of Castelnuovo–de Franchis

.�1 C !1 / ^ .�2 C !2 / D 0 2 H 2.X;C/

implies
�1 ^ �2 	 0; !1 ^ !2 	 0:

We can apply Castelnuovo–de Franchis unless �1; �2 are C-linearly depen-
dent, and similarly !1; !2. Without loss of generality we may assume then
�2 	 0 and !1 	 0. But then �1 ^ !2 D 0 implies that the Hodge normZ

X

.�1 ^ !2/ ^ .�1 ^ !2 / ^ �n�2 D 0;

where � is here the Kähler form. A simple trick is to observe that

0 D
Z

X

.�1 ^ !2 / ^ .�1 ^ !2 / ^ �n�2 D �
Z

X

.�1 ^ !2/ ^ .�1 ^ !2/ ^ �n�2;

therefore the same integral yields that the Hodge norm of �1 ^!2 is zero, hence
�1 ^!2 	 0I the final conclusion is that we can in any case apply Castelnuovo–
de Franchis and find a map to a projective curve C of genus g � 2.

More precisely, one gets the following theorem ([Cat91]):

Theorem 56. (Isotropic subspace theorem) On a compact Kähler manifold X
there is a bijection between isomorphism classes of fibrations f W X ! C to
a projective curve of genus g � 2, and real subspaces V � H 1.X;C/ (‘real’
means that V is self conjugate, NV D V ) which have dimension 2g and are of
the form V D U ˚ NU , where U is a maximal isotropic subspace for the wedge
product

H 1.X;C/ �H 1.X;C/ �! H 2.X;C/:

The above result, as simple as it may be, implies the few relations theorem of
Gromov ([Grom89]), which in turn implies Theorem 54 of Siu (see e.g. [Cat15]
for an ampler discussion).
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There is another result ([Cat08]) which again, like the isotropic subspace
theorem, determines explicitly the genus of the target curve (a result which is
clearly useful for classification and moduli problems).

Theorem 57. Let X be a compact Kähler manifold, and let f W X ! C be
a fibration onto a projective curve C , of genus g, and assume that there are
exactly r fibres which are multiple with multiplicities m1; : : : ; mr � 2. Then f
induces an orbifold fundamental group exact sequence

�1.F / �! �1.X/ �! �1.gIm1; : : : ; mr/ �! 0;

where F is a smooth fibre of f , and where the orbifold fundamental group

�1.gIm1; : : : ; mr/

is defined as

h˛1; ˇ1; : : : ; ˛g ; ˇg ; 
1; : : : ; 
r j …g
1 Œ j̨ ; ǰ �…

r
1
i D 


m1

1 D � � � D 
mr
r D 1i:

Conversely, let X be a compact Kähler manifold and let .g;m1; : : : ; mr/ be a
hyperbolic type, i.e., assume that 2g � 2C†i .1 � 1

mi
/ > 0:

Then each epimorphism � W �1.X/ ! �1.gIm1; : : : ; mr/ with finitely gen-
erated kernel is obtained from a fibration f W X ! C of type .gIm1; : : : ; mr/.

With these results and the Zeuthen–Segre formula, it is easy to explain on
the one hand the characterization of surfaces isogenous to a product, and on the
other hand Kotschick’s result on moduli of Kodaira surfaces.

Theorem 58. a) A projective smooth surface S is isogenous to a product of two
curves of respective genera g1; g2 � 2, if and only if the following two con-
ditions are satisfied:
1) there is an exact sequence

1 �! �g1
� �g2

�! � D �1.S/ �! G �! 1;

where G is a finite group and where �gi
denotes the fundamental group of

a projective curve of genus gi � 2;
2) e.S/.D c2.S// D 4

jGj.g1 � 1/.g2 � 1/.
b) Write S D .C1 � C2/=G. Any surface X with the same topological Euler

number and the same fundamental group as S is diffeomorphic to S and is
also isogenous to a product.

c) The corresponding subset of the moduli space of surfaces of general type
M

top
S D M

diff
S , corresponding to surfaces orientedly homeomorphic, resp.

orientedly diffeomorphic to S , is either irreducible and connected or it con-
tains two connected components which are exchanged by complex conjuga-
tion.
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Idea of the proof of b). � WD �1.S/ admits a subgroup � 0 of index d such that
� 0 Š .�g1

� �g2
/. Let S 0 be the associated unramified covering of S . Then

application of the isotropic subspace theorem or of Theorem 57 yields a pair of
holomorphic maps fj W S 0 ! Cj , hence a holomorphic map

F WD f1 � f2 W S 0 �! C 0
1 � C 0

2:

Then the fibres of f1 have genus h2 � g2, hence by the Zeuthen–Segre
formula e.S 0/ � 4.h2 � 1/.g1 � 1/, equality holding if and only if all the fibres
are smooth.

But e.S 0/ D 4.g1 � 1/.g2 � 1/ � 4.h2 � 1/.g1 � 1/, so h2 D g2, all the
fibres are smooth hence isomorphic to C 0

2; therefore F is an isomorphism. ut

The previous theorem generalizes also to varieties isogenous to a product of
curves of dimension n � 3 ([Cat00], [Cat15]).

We try now to compare the cited theorem of Kotschick (Theorem 8) with the
previous one.

Theorem 59. Assume that S is a compact Kähler surface, and that

(i) its fundamental group sits into an exact sequence, where g; b � 2:

1 �! �g �! �1.S/ �! �b �! 1

(ii) e.S/ D 4.b � 1/.g � 1/.
Then S has a smooth holomorphic fibration f W S ! B , where B is a

projective curve of genus b, and where all the fibres are smooth projective curves
of genus g. f is a Kodaira fibration if and only if the associated homomorphism
� W �b ! Map g has image of infinite order, else it is a surface isogenous to a
product of unmixed type and where the action on the first curve is free.

Proof. By Theorem 57 the above exact sequence yields a fibration f W S ! B

such that there is a surjection �1.F / ! �g , where F is a smooth fibre. Hence,
denoting by h the genus of F , we conclude that h � g, and again we can use the
Zeuthen–Segre formula to conclude that h D g and that all fibres are smooth. So
F is a smooth fibration. Let C 0 ! C be the unramified covering associated to
ker.�/: then the pull back family S 0 ! C 0 has a topological trivialization, hence
is a pull back of the universal family Cg ! Tg for an appropriate holomorphic
map ' W C 0 ! Tg .

If ker.�/ has finite index, then C 0 is compact and, since Teichmüller space
is a bounded domain in C3g�3, the holomorphic map is constant. Therefore S 0
is a product C 0 � C2 and, denoting by G WD Im.�/, S D .C 0 � C2/, and we
get exactly the surfaces isogenous to a product such that the action of G on the
curve C 0 is free.
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If instead G WD Im.�/ is infinite, then the map of C 0 into Teichmüller space
is not constant, since the isotropy group of a point corresponding to a curve
F is, as we saw, equal to the group of automorphisms of F (which is finite).
Therefore, in this case, we have a Kodaira fibration. ut

3.5. Singular fibres and mapping class group monodromy

Let us consider again the situation where we have a fibration f W S ! B of
an algebraic surface S onto a curve of genus b, and where the fibres have genus
g � 2. We assume throughout that the fibration is relatively minimal and not a
product.

We have devoted most of our attention to the consideration of the case where
all the fibres F of f are smooth curves. This can occur whenever the genus
b � 1: just take a surface isogenous to a product of unmixed type, i.e., S D
.C1�C2/=G, whereG acts diagonally and freely on C1, with quotient C1=G D
B .

Then f W S D .C1 � C2/=G ! C1=G D B is the desired holomorphic
bundle.

For Kodaira fibrations the situation is slightly more complicated, it is pos-
sible that the genus b D 2, as we saw, but the fibre genus g should be at least
3.

At any rate, if we have a differentiable fibre bundle over a curve B of genus
1, then, QB being the universal covering of B , QB Š C, the Torelli map QB !
Hg into Siegel’s half space must be constant, therefore we have a holomorphic
bundle, which is then isogenous to a product, as described above.

The conclusion is that there must be at least one singular fibre if b D 1 and
we have non-constant moduli.

On the other hand, when b D 0, and the fibration is not a product, the number
of singular fibres must be at least three.

Indeed, if B� D B n C is the set of non-critical values of f , we want that
there is a non-constant map B� ! Hg ; if B D P1, therefore the number of
singular fibres, i.e., jC j, must at least three.

If we assume however that all the fibres are moduli semi-stable curves, then
the number of singular fibres must be at least 4 for g � 1 and at least 5 for
g � 2, as proven by Beauville and Tan [Bea81] and [Tan95] ([Za04] gave an
improvement for g � 3, that the number must be at least 6).

Tan’s inequality is

g

2
.2b � 2C s/ > deg.f�.!S jB// D �.S/ � .b � 1/.g � 1/;

so that for b D 1 the number s of singular fibres is > 2
g

, which gives s � 2 only
if g D 2.
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Can one obtain better estimates on the number of singular fibres also when
the genus of the base curve is b D 1?

A very interesting result was obtained by Ishida [Ishi06] who found, in the
moduli space of surfaces with q D pg D 1;K2 D 3, described in joint work
with Ciliberto ([CaCi93]) some surfaces whose Albanese fibration (onto a curve
of genus b D 1) has a unique singular fibre, and fibre genus g D 3; but the
singular fibre is not reduced.

As far as I know, there are no known examples of a non-isotrivial fibration
over a curve B of genus b D 1, and possessing only one singular fibre, irre-
ducible and with only nodes as singularities.

If such a fibration were to exist, the local monodromy around the singular
fibres, a product of commuting Dehn twists, would be a commutator in the map-
ping class group. This raises a general question:

Question 60. Which products of commuting Dehn twists are a commutator in
the mapping class group Mapg , for g � 2?

The question in genus g D 1 is clear, since then the mapping class group is
SL.2;Z/, and there the transvection (Picard–Lefschetz transformation)

T1 W e1 7�! e1; e2 7�! e1 C e2

is not a commutator, and indeed no parabolic transformation in

PSL.2;Z/ D Z=2 
 Z=3 D hA;B j A2 D B3 D 1i
is a commutator. The easiest way to see this is to express T1 as a product of
the two generators, T �1

1 D AB , so that the image of T1 in the Abelianization
Z=2 � Z=3 is the element .1;�1/. In fact, no power of T1 is a commutator in
SL.2;Z/.

In higher genus there is a surjection Mapg ! Sp.2g;Z/ and there the ob-
structions seem to cease to exist, as shown by Corvaja and Zannier (personal
communication). Writing T2 for the transvection such that

T2 W e1 7�! e1; e2 7�! e1 C e2; e3 7�! e3; e4 7�! e3 C e4;

they show that T2 is a commutator in Sp.4;Z/, and that T1 and the similarly
defined T3 are commutators in Sp.6;Z/.

In the mapping class group the question becomes more subtle: first of all,
there are Dehn twists on non-separating and on separating curves; in the latter
case the homology class of the curve is trivial, and the image of the Dehn twist
in Sp.2g;Z/ is trivial.

Endo and Kotschick [E-K01] showed that in the separating case the Dehn
twist cannot be a commutator: the idea is that otherwise one would have a sym-
plectic fibration over a torus with only one singular fibre with the Dehn twist as
local monodromy.
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Cartwright and Steger (see [CKY14]) recently constructed via computer cal-
culations a surface of general type with q D pg D 1 and K2 D 9 (hence a ball
quotient). In this case the singular fibres of the Albanese map [CK14] are either
three irreducible singular fibres with one node, or just one irreducible singular
fibre having either three nodes, or a tacnode.

The existence of this surface shows that the product of three Dehn twists
can be a commutator in Mapg , and shows that not only the proof, but also the
statement of Theorem 7 of [Kot04] is wrong. Recently Stipsicz and Yun [S-Y17]
announced the following result: a product of at most two Dehn twists cannot be
a commutator in Mapg for g � 1.

4. Covers branched over line configurations

4.1. Generalities on Abelian coverings of the plane

Assume that in the projective plane P WD P2 are given distinct irreducible curves
Cj of respective degrees mj ; we shall denote by C the union of the curves Cj .

Then an irreducible Abelian cover branched over the unionC of these curves
and with group G is determined by:

� elements gj 2 G such that they generate G and such that
� the sum of the mjgj is equal to zero in G:

X
j

mjgj D 0 2 G:

In fact, one has an exact sequence

H 2.P;Z/ �! H 2.C;Z/ �! H 3.P; C;Z/ �! 0

and the last group is isomorphic to H1.P n C;Z/ via Lefschetz duality, while
H 2.C;Z/ Š L

j ZCj . This means that H1.P n C;Z/ is generated by loops
around the curves Cj , but these satisfy one relation.

The relation has the above form because, denoting r W H 2.P;Z/ ! L
j ZCj ,

the image of a line L in coker.r/ D H1.P n C;Z/ is zero.
If we blow up some pointsPi which are singular forC , obtaining a birational

morphism � W Y ! P, then the homology of the complement of the preimage
of C , H1.Y n ��1C;Z/, is generated by the loops around the curves Dj which
are strict transform of the curves Cj , and by the loops around the exceptional
curves Ei .

The monodromy � of the Abelian cover takes these generators to respective
elements gj and 	i of the group.

Recall the relation
P

j mjgj D 0.



F. Catanese

If we write
Dj D mjL �

X
i

aj;iEi ;

we can repeat the same argument with Lefschetz duality, and the relation saying
that the image of Ei in coker.rY / is zero (here rY W H 2.Y;Z/ ! L

j ZDj ˚L
i ZEi ) yields

X
j

aj;igj D 	i :

This third formula determines the image 	i of a loop around Ei under the
monodromy homomorphism �.

Definition 61 (Definition of a maximal cover). Let dj be the order of the ele-
ment gj and consider the following group G00 (relating to the terminology used
e.g. in the lecture notes [Cat08], G00 is the abelianization of the orbifold funda-
mental group of the cover), defined as:
G00 is the quotient of the direct sum of Z=djZ by the relationX

j

mjg
00
j D 0;

where g00
j is the standard generator of the summand G00

j D Z=djZ .
Clearly the monodromy � factors through �00, which sends the loop around

Cj (resp. Dj ) to g00
j ; and the obvious surjection of G00 ! G.

We get corresponding (irreducible) normal coverings Z00; Z of the plane P

such that
P D Z00=G00 D Z=G; Z D Z00=H;

where H is the kernel of the surjection G00 ! G:

A cover is said to be maximal if G00 D G, i.e., Z D Z00.

Remark 62. The quotient Z D Z00=H is only ramified in a finite set.

The importance of the concept of maximal covering is the following: let Y
be the surface obtained by blowing up the points Pi where C is not a normal
crossing divisor, and assume that the divisor D in Y , union of the Ei ’s and
the Dj ’s, is a normal crossing divisor (this happens if and only if C has only
ordinary singularities).

In this case the local monodromies are the elements g00
j , respectively

	00
i D

X
j

aj;ig
00
j :

Now, we can write our coveringX ! Y (the normalized fibre productZ�P2

Y ) as a GLOBAL QUOTIENTX D X 00=H , and since the coveringX 00 ! X is
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only ramified in a finite set, we get that, if X 00 is smooth, then X has only cyclic
quotient singularities (this approach has the advantage of making the description
of the singularities shorter).

It is therefore important to see general conditions which ensure the smooth-
ness of X 00: this is however technical, so we skip this analysis here.

As done by Hirzebruch ([Hirz83], [BHH87]) formulae simplify drastically
if we require all the curves Cj to be lines Lj , and we let all the orders dj of the
elements gj to be equal to the same integer n.

In this case the maximal cover is called the Kummer cover of exponent n of
the plane branched on the r lines L1; : : : ; Lr and its Galois group is the group

.Z=n/r�1 D .Z=n/r=Ze;

where e WD P
i ei .

Definition 63. Let C be a configuration of distinct lines

L1 D fl1.x1; x2; x3/ D 0g; : : : ; Lr D flr.x1; x2; x3/ D 0g � P2;

where we assume that
r\
1

Li D ;:

Hence, without loss of generality, we can assume, after changing the numbering
of the lines, and after a projective change of coordinates, that Li D fxi D 0g
for i D 1; 2; 3.

The linear forms .l1; : : : ; lr/ yield an embedding l W P2 ! Pr�1, and let
.y1; : : : ; yr / be coordinates in Pr�1. Consider next the Galois covering

 n W Pr�1 �! Pr�1;  n..z1; : : : ; zr // D .zn
1 ; : : : ; z

n
r /;

with Galois group .Z=n/r�1.
Let Y be the fibre product of l and  n:

Y D f.x; z/ 2 P2 � Pr�1 j l.x/ D  n.z/g:
Under our assumption on the linear forms, Y indeed embeds in Pr�1 as the

complete intersection of r � 3 hypersurfaces:

Y D f.z/ j zn
j D lj .z

n
1 ; z

n
2 ; z

n
3 /; j D 4; : : : ; rg:

The minimal resolution of singularities X of Y is called the Hirzebruch–
Kummer covering of P2 of exponent n branched on the configuration C of
lines, and denoted HKC .n/.

Quite similarly one defines the Hirzebruch–Kummer covering of Pm of
exponent n branched on a configuration C of hyperplanes.
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Remark 64. a) When r D mC 2 one gets a hypersurface, the Fermat hypersur-
face.

b) In the case of P1 one gets curves which are also called generalized Fermat
curves.

c) If the configuration is a normal crossing configuration, Y is a smooth com-
plete intersection, so it has a lot of deformations.

4.2. Invariants

Assume that, as in the previous subsection, we have an Abelian cover S !
Y branched on a normal crossing divisor D0 WD P

j Dj C P
i Ei . To each

divisor is associated the cyclic subgroup (inertia subgroup) generated by the
local monodromy: hgj i in the case of Dj , and h	i i in the case of Ei . Let dj be
the order of gj and d 0

i the order of h	i i.
The covering S is smooth if and only if, at each intersection point of two

branch curves, the corresponding two inertia subgroups yield a direct sum. In
this case also the maximal cover S 00 is smooth, at least provided that the order
of 	00

i in G00 equals d 0
i ; and S 00 is an étale covering of S with groupH , such that

G00=H Š G.
The Chern numbers of S can be easily calculated, since KS is the pull back

of a divisor with rational coefficients

KS D p��
KY C

X
j

�
1 � 1

dj

�
Dj C

X
i

�
1 � 1

d 0
i

�
Ei

�

D p��
� 3LC

X
j

�
1 � 1

dj

��
mjL�

X
i

aj;iEi

�
C

X
i

�
2 � 1

d 0
i

�
Ei

�
:

Whereas, for the Euler number one uses the fact that it is additive for a strat-
ification with strata which are orientable (non-compact) manifolds (of different
dimensions).

The simplest case is the case of a Kummer covering5 of exponent n branched
on r lines, where mj D 1, dj D n, and where we assume that also d 0

i D n, for
all i D 1; : : : ; k. Then, observing that aj;i 2 f0; 1g and writing vi WD P

j aj;i

for the valency of the point pi , we get:

KS D p��
� 3LC

X
j

�
1 � 1

n

��
L �

X
i

aj;iEi

�
C

X
i

�
2 � 1

n

�
Ei

�

D p���
� 3C r

�
1 � 1

n

��
LC

X
i

�
1C

�
1 � 1

n

�
.1 � vi /

�
Ei

�
:

5 One can define in the utmost generality the Kummer covering of exponent n of a normal
variety Y branched on B as the normal finite covering associated to the epimorphism �1.Y n
B/ ! H1.Y n B;Z/˝Z Z=n.
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Whence

K2
S D nr�1

h�
� 3C r

�
1 � 1

n

��2 �
X

i

�
1C

�
1 � 1

n

�
.1 � vi /

�2i
:

Observe that we only needed to blow up the points of valency vi � 3.
Whereas, to calculate the Euler number we write

k C 3 D e.Y / D e.Y �D0/C
X

i

e.E�
i /C

X
j

e.D�
j /CN;

where � denotes the intersection of a component ofD0 with the smooth locus of
D0, and N is the number of singular points of D0.

Let ı be the number of double points of C D P
j Lj ,

ı D 1

2
r.r � 1/ � 1

2

X
i

vi .vi � 1/:

Then

kC3 D e.Y / D e.Y �D0/C
�
2k�

X
i

vi C2r�
X

i

vi �2ı
�

C
� X

i

vi Cı
�
:

Hence, writing v WD P
i vi

k C 3 D e.Y / D e.Y �D0/C .2k � 2v C 2r � 2ı/C .v C ı/:

The Euler number of S is then just equal to

e.S/ D nr�1
h
k C 3 �

�
1 � 1

n

�
.2k � 2v C 2r � 2ı/ �

�
1 � 1

n2

�
.v C ı/

i
:

In order to calculate the irregularity of S , and in general also q D h1.OS /;

pg D h2.OS /, the best method is (see [BC08]) to calculate explicitly the de-
composition of p�OS into eigensheaves,

p�OS D OY ˚
� M

�

OY .�L�/
�
:
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4.3. Covers branched on lines in general position

Assume that we have an Abelian covering with dj D n; 8j D 1; : : : ; r , branched
on the r lines L1; : : : ; Lr . We assume that the r lines are in general position,
this means that C has only double points, hence we get exactly ı D 1

2
r.r � 1/

intersection points. In this case the fundamental group of P2 nC is Abelian, free
of rank-.r � 1/.

Then any such covering is a quotient of the Hirzebruch–Kummer covering
of exponent n, and we can assume that r � 4, otherwise our surface is either
singular or equal to P2.

We saw in Remark 64 that for r D 4 the Hirzebruch–Kummer covering
yields the Fermat surface of degree n in P3.

The simplest case is n D 2 and r D 4: the Hirzebruch–Kummer cover is the
smooth quadric

fu2 D x2 C y2 C z2g � P3;

hence the del Pezzo surface P1 � P1.
The next case of 5 lines in general position yields as Hirzebruch–Kummer

cover a complete intersection Y of type .2; 2/ in P4, hence again a del Pezzo
surface, of degree 4. There is only one intermediate covering branched on the 5
lines: it is a singular del Pezzo surface of degree 2.

The next case of 6 lines in general position is interesting, the Kummer cov-
ering is a smooth K3 surface, with a group .Z=2/5 of covering automorphisms,
whereas the double cover branched on the 6 lines is a K3 surface with 15 nodes
coming from the ı D 15 double points; in the case where the 6 lines are tangent
to a conic Q, it is a 16-nodal Kummer surface blown up in one node (the blown
up node corresponds to one of the two components in the inverse image of Q).

In general, in order to obtain a surface of general type, we must have at least
4 lines, and moreover we need, in the case where dj D n; 8j , that r.n � 1/ >

3n , .r � 3/n > r .
Hence the smallest such case is for r D 4, n D 5. If the 4 lines are in

general position, as we already mentioned, the Hirzebruch–Kummer covering
is the Fermat quintic

fu5 D x5 C y5 C z5g � P3;

and any intermediate free Z=5 quotient yields a classical Godeaux surface.

4.3.1. Pardini’s surfaces Even if the surfaces we have been playing with right
now may a priori look rather uninteresting (they are however fun!) a remarkable
example in the class of abelian coverings branched on lines in general position
was found by Pardini ([Par91b]); it belongs to the next case, with r D 5 lines,
n D 5, and group G D .Z=5/2.
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The covering surfaces have, by the above formulae, K2
S D 25; e.S/ D 35

hence, by Noether’s formula �.S/ D 1
12
.25C 35/ D 5.

Since the fundamental group of the surface is .Z=5/2 (the Kummer cover
being simply connected, see Definition 63), the conclusion is that q.S/ D
0; pg.S/

D 4, and the canonical map maps to P3.
To make a long story short, recall that, when the canonical map of a surface

of general type has degree � 2, then only two alternatives are possible (see
[Bea79]):

(1) the canonical image of S , † WD ˆKS
.S/ has pg.S/ D 0, or

(2) the canonical image of S , † WD ˆKS
.S/ is canonically embedded.

Babbage claimed that only the first case should occur, then three essentially
equivalent examples of case 2) were found by Beauville, van der Geer–Zagier,
and the present author, ([Cat81], [vdGZ77], [Bea79]), where the degree of the
canonical map ˆKS

equals 2.
It is still an open quesition which is the highest possible value for deg.ˆKS

/

in case 2), but the world record is 5, obtained by Pardini (and later, indepen-
dently, by Tan [Tan92]).

To give a smooth covering with group G D .Z=5/2, branched over 5 lines
in general position, it is equivalent to give the 5 monodromy vectors g1; : : : ; g5

2 .Z=5/2, with the property that:

i)
P

j gj D 0, and
ii) two distinct vectors gi and gj are linearly independent (this is the condition

for the smoothness of S).

Pardini’s choice can best be explained in the following abstract way: we
take the five vectors to be the five points of an affine line in .Z=5/2 not passing
through the origin!

Now, conditions i) and ii) are satisfied trivially, and there remains to see the
advantage of this clever choice.

This rests on the fact that there is a homomorphism  W G ! Z=5 mapping
all the five elements gj to 1 2 Z=5. To the homomorphism  there corresponds
an intermediate Z=5-covering Z of P2, i.e., we have a factorization S ! Z !
P2 of the original covering.

If lj .x0; x1; x2/ D 0 is the equation of the line Lj , then we see right away
that

Z D
n
x5

3 D
5Y

j D1

lj .x0; x1; x2/
o

� P3:

Now, Z is a quintic in P3, whose only singularities are the 10 points x3 D
li .x0; x1; x2/ D lj .x0; x1; x2/ D 0. These singularities are rational double
points of type A4, hence Z is a canonical model with pg.Z/ D 4.
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Since pg.S/ D pg.Z/ D 4, the conclusion is:

Theorem 65 (Pardini). There exist surfaces S with K2
S D 25, KS ample,

pg.S/ D 4; q.S/ D 0, such that the canonical map of S maps with degree
5 onto a canonically embedded surface Z.

One can ask what happens if the five monodromy vectors g1; : : : ; g5 are
affinely independent, yet satisfy i) and ii). This is interesting, since it shows the
usefulness of calculating the character sheaves.

We write a character � W G ! Z=5 as a pair .a; b/; 0 � a; b < 5, so that,
for .x; y/ 2 .Z=5/2, �.x; y/ D ax C by 2 Z=5.

The character sheaves are of the form OP2.�L�/, where the L� are calcu-
lated applying � to the monodromy vectors, taking the remainder for division by
5 (we denote by Œd � the remainder for division of d by 5, hence 0 � Œd � < 5),
and then summing all these remainders.

Just in order to have a concrete example, take the five vectors

.1; 0/; .0; 1/; .1; 1/; .2;�1/; .1;�1/ W
then

5L� D aC b C ŒaC b�C Œ2a � b�C Œa � b�:
This is important, because one can write

H 0.S;OS .KS // D
M

�

z�H
0.P2;OP2.�3C L�//;

where zj D 0 is the equation of the ramification divisor Rj corresponding to

the j-th line Lj , and z� WD Q
�.j /D0 z

5�1�Œ�.gj /�

j .
In our example, pg D 4 and there are exactly 4 characters such that L� D 3,

namely, a D b D 4; a D 4; b D 0; a D 3; b D 4; a D 1; b D 3.
One sees therefore that the base locus of the canonical systemKS equals the

subscheme intersection of the four divisors

R3 C 4R5; R1 C 2R3 C 2R4; 4R2 CR4; 3R1 CR2 CR5;

that is, we get the points R2 \R3 and R4 \R5 with multiplicity 1.
Hence

Proposition 66. A .Z=5/2-covering of the plane branched on 5 lines in general
position, and with monodromy vectors

.1; 0/; .0; 1/; .1; 1/; .2;�1/; .1;�1/
is smooth with K2

S D 25, pg.S/ D 4; q.S/ D 0, has a canonical system with
2 simple base points, and its canonical map is birational onto a surface † of
degree 23 in P3.

We remark that there are other Abelian covers branched on 5 lines in general
position, which are uniform (i.e., with dj D n; 8j D 1; : : : ; r) and with
exponent n D 5, but we do not pursue their classification here.
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4.4. Hirzebruch’s and other ball quotients

One obtains an infinite fundamental group whenever we take a uniform (i.e.,
with dj D n; 8j D 1; : : : ; r) Abelian cover branched on a union of lines, such
that there exists a point pi of valency vi DW w � 3.

This is because projection with centre the point pi leads to a fibration S 00 !
B , where B is an Abelian covering of P1 branched on w points, and with group
.Z=n/w�1.

The genus of B satisfies 2.b� 1/ D nw�1.�2Cw.1� 1
n
//; hence b > 1 as

soon as .w � 2/.n � 1/ > 2, which we shall now assume, and which holds for
n � 4.

Since the maximal covering S 00 maps onto a curve with genus b � 2, the
fundamental group of S 00 is infinite, as well as the one of S , of which S 00 is a
finite étale covering.

Yet, it may still happen that the first Betti number of S is zero, as we shall
see.

Hirzebruch [Hirz83] found explicit examples of ball quotients by taking
Kummer coverings branched on a union of lines.

The one on which we shall concentrate mostly is the one obtained for n D 5

taking 6 lines which are the sides of a complete quadrangle (which can be also
visualized as the sides of a triangle plus its three medians, which meet in the
barycentre).

Other important examples were the Hirzebruch–Kummer coverings (cf. Def-
inition 63) HKH .5/ and HKDH .3/ associated to the Hesse configuration of
lines H , a configuration of type .94; 123/ formed by the 9 flexes of a plane
cubic curve, and the 12 lines joining pairs of flexpoints, respectively to the dual
Hesse configuration DH of type .123; 94/ of the 9 lines dual to the flexpoints.

Recall that every smooth plane cubic curve is isomorphic to one in the Hesse
pencil:

C� WD fx3 C y3 C z3 C 6�xyz D 0g:
C� is smooth, except for � D 1, or 8�3 D �1; its flexes are the intersection of
C� with its Hessian cubic curve, which is precisely

H� WD f�2.x3 C y3 C z3/ � .1C 2�3/xyz D 0g D C�; � D �1C 2�3

6�2
:

Hence the nine points are the base points of the pencil,

fxyz D x3 C y3 C z3 D 0g;
while C� D H� exactly when 8�3 D �1: hence the 4 singular curves of the
pencil are 4 triangles (every point is a flexpoint!), and these 4 triangles produce
the 12 lines.

More examples of ball quotients can be found in [Hirz85] and [BHH87]
(they are also related to hypergeometric integrals, see [D-M86]).
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4.5. Symmetries of the del Pezzo surface of degree 5

The blow-up Y of 4 points P1; : : : ; P4 2 P2 in general position is the del Pezzo
surface of degree 5.

This surface is the moduli space of ordered quintuples of points in P1, as we
shall now see. The 6 lines can be labelled Li;j , with i ¤ j 2 f1; 2; 3; 4g (Li;j

is the line PiPj ).
The following is well-known:

Theorem 67. The automorphism group of the del Pezzo surface Y of degree 5
is isomorphic to S5.

Proof. There is an obvious action of the symmetric group S4 permuting the 4
points, but indeed there is more (hidden) symmetry, by the symmetric group S5.
This can be seen denoting by Ei;5 the exceptional curve lying over the point pi ,
and denoting, for i ¤ j 2 f1; 2; 3; 4g, by Ei;j the line Lh;k , if f1; 2; 3; 4g D
fi; j; h; kg.

For each choice of 3 of the four points, f1; 2; 3; 4gnfhg, consider the standard
Cremona transformation �h based on these three points. To �h we associate the
transposition .h; 5/ 2 S5, and the upshot is that �h transforms the 10 .�1/
curves Ei;j via the action of .h; 5/ on pairs of elements in f1; 2; 3; 4; 5g.

Indeed there are five geometric objects permuted by S5: namely, 5 fibrations
'i W Y ! P1, induced, for 1 � i � 4, by the projection with centre Pi , and,
for i D 5, by the pencil of conics through the 4 points. Each fibration is a
conic bundle, with exactly three singular fibres, corresponding to the possible
partitions of type .2; 2/ of the set f1; 2; 3; 4; 5g n fig.

To conclude that S5 D Aut.Y /, we observe that Y contains exactly 10 lines,
i.e., irreducible curves E with E2 D EKY D �1. We have the following easy
result:

Lemma 68. The curves Ei;j , which generate the Picard group, have an in-
tersection behaviour which is dictated by the simple rule (recall that E2

i;j D
�1; 8i ¤ j )

Ei;j �Eh;k D 1 () fi; j g \ fh; kg D ;;
Ei;j �Eh;k D 0 () fi; j g \ fh; kg ¤ ;:

In this picture the three singular fibres of '1 are

E3;4 CE2;5; E2;4 CE3;5; E2;3 CE4;5:

The relations among the Ei;j ’s in the Picard group come from the linear
equivalences E3;4 CE2;5 	 E2;4 CE3;5 	 E2;3 CE4;5 and their S5-orbits.
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Therefore each automorphism  of Y permutes the 10 lines, preserving
the incidence relation. Up to multiplying  with an element of the subgroup
S5, we may assume that  fixes E1;2, hence that  permutes the three curves
E3;4; E3;5; E4;5. By the same trick we may assume that  fixes E1;2; E3;4;

E3;5; E4;5. Hence  .E1;j /; 3 � j � 5 is either E1;j or E2;j . Multiplying
 by the transposition .1; 2/ we may assume that also  .E1;3/ D E1;3. The
incidence relation now says that  fixes all the 10 lines, and there remains to
show that  is the identity. But blowing down the four curve Ei;5 we see that  
indudes an automorphism of P2 fixing each of the points P1; P2; P3; P4. Hence
 is the identity and we are done. ut
Remark 69. We have the following correspondences:

� The lines Ei;j correspond to the transpositions in S5.
� The 15 intersection points Ei;j � Eh;k , for jfi:j:h:kgj D 4 correspond to

isomorphisms of .Z=2/2 with a subgroup of S5.
� The five 2-Sylow subgroups correspond to the five conic bundles 'i , i D
1; : : : ; 5, and the triples of singular fibres correspond to the three different
embeddings .Z=2/2 ! S5 with the same image.

� The six 5-Sylow subgroups correspond combinatorially to pairs of oppo-
site pentagons. Here a pentagon is the equivalence class of a bijection P W
Z=5 ! f1; 2; 3; 4; 5g for the action of the dihedral group D5 on the source
(n 2 Z=5 7! ˙nCb; b 2 Z=5). Whereas a pair of opposite pentagons is the
equivalence class for the action of the affine group A.1;Z=5/ on the source.

� To a combinatorial pentagon corresponds a geometric pentagon, i.e.,
a union of lines EP.i/;P.iC1/; i 2 Z=5 each meeting the following line
EP.iC2/;P.iC3/. The divisor of a geometric pentagon is an anti-canonical
divisor DP , and the sum of two opposite geometric pentagons DP CDPo

is just the sum of the 12 lines Ei;j .
� If DP D div.sP/; sP 2 H 0.OY .�KY //, we obtain five independent

quadratic equations for the anti-canonical embedding

Y �! P.H 0.OY .�KY ///
_;

from the six equations sPsPo D ı, where div.ı/ D P
Ei;j .

� The above symmetry is the projective icosahedral symmetry, i.e., the sym-
metry of the image of the icosahedron in P2.R/: the 10 lines correspond to
pairs of opposite faces, the 15 points to pairs of opposite edges, the 6 pairs
of opposite pentagons correspond to pairs of opposite vertices.

A basis forH 0.OY .�KY // is given by the six sections corresponding to the
pentagons where 4; 5 are never neighbours.

Written as sections ofH 0.OP2.3// vanishing at the points P1; : : : ; P4 which
we assume to be the coordinate points and the point .1; 1; 1/, they are:

si;j D xixj .xj � xk/; fi; j; kg D f1; 2; 3g:
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All this leads to beautiful Pfaffian equations for Y � P5, which are S5

equivariant. Indeed H 0.OY .�KY // is the unique irreducible representation �6

of S5 of dimension 6, whereas the representation � on the set of pairs of oppo-
site pentagons splits as the direct sum of the trivial representation with an irre-
ducible representation �5 of dimension 5, the representation Q� on the pentagons
is the direct sum of � with the tensor product of � with the signature character
�1. The permutation representation of S5 on f1; 2; 3; 4; 5g splits as the trivial
representation direct sum with an irreducible representation �4 of dimension 4.
�6 is the only irreducible representation such that �6 Š �6 ˝ �1.

In this way one obtains all the irreducible representations of S5, see [J-L],
page 201. We shall not go further here with the equations of Y , for the anti-
canonical embedding Y � P5, and for the embedding Y � .P1/5 via '1 � � � � �
'5.

But we shall now prove the classical:

Theorem 70. The del Pezzo surface Y of degree 5 is the moduli space for or-
dered 5-tuples of points in P1, i.e., the GIT quotient of .P1/5 by PGL.2;C/.

Proof. Another model for Y is the blow up of P1 � P1 in the three diagonal
points .1;1/; .0; 0/; .1; 1/, and the 10 lines come from the three blown up
points, plus the strict transforms of the diagonal and of the vertical and horizon-
tal lines x D 0; x D 1; x D 1; y D 0; y D 1; y D 1.

Removing these 7 lines in P1 �P1 we obtain a point .u; v/ such that the five
points 1; 0; 1; u; v are all distinct.

If we approach a smooth point in the diagonal line, say .u; u/ we obtain the
5-tuple 1; 0; 1; u; u where the fourth and the fifth points are equal P4 D P5,
and the other three are different (so that set theoretically we have four distinct
points). By S5-symmetry, the same occurs whenever we get a smooth point of
the divisor

P
Ei;j � Y : Pi D Pj and the other three are different from Pi and

pairwise different.
If we tend to the point .0; 1/, we get the 5-tuple 1; 0; 1; 0; 1, where P2 D

P4, P3 D P5; again by symmetry, to the point Ei;j \ Eh;k corresponds a
quintuple with Pi D Pj , Ph D Pk , and where set theoretically we have three
distinct points.

Now, as shown in Mumford’s book [Mum65], especially Proposition 3.4,
page 73, in this case the semi-stable 5-tuples are stable, and a quintuple is un-
stable if and only if three points are equal. One can easily conclude that we have
an isomorphism of Y with the GIT-quotient .P1/5 ==PGL.2;C/. ut

4.5.1. Hirzebruch–Kummer covers of a del Pezzo surface of degree 5 Let us
now take as branch locus D WD P

i;j Ei;j , and let us notice that D is linearly
equivalent to twice the anti-canonical divisor �KY .
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Therefore, for any n-uniform covering S of Y branched on the 10 lines, and
which is smooth,

KS D p��
KY � 2

�
1 � 1

n

�
KY

�
D p��

�
�n � 2

n

�
KY

�
:

In particular, for the Kummer covering, one has

K2
S 00 D 5.n � 2/2n3:

Whereas the Euler number can be calculated (in [CatDet15] it is calculated
in an elegant way) as:

e.S 00/ D n3.3C 2.n � 2/.n � 3// D n3.2n2 � 10nC 15/:

The Chern slope equals then

�C .S
00/ D 5.n � 2/2

3C 2.n � 2/.n � 3/ D 5

2

n � 2
n � 3C 3

2.n�2/

>
5

2
:

The same formula shows that the slope is a decreasing function of n for n � 5,
and for n D 5 we obtain �C .S

00/ D 45
15

D 3: Hence the theorem of Hirzebruch
[Hirz83]:

Theorem 71. A smooth n-uniform Abelian cover S with n � 5 branched on the
10 lines of a del Pezzo surface of degree 5 is a surface with ample canonical
divisor, with positive index, and indeed a ball quotient if and only if n D 5.

We observe, as a side remark, that the Kummer coverings above embed into
C 5

n , where Cn is the Fermat curve of degree n,

Cn D fxn C yn C zn D 0g � P2;

via the Cartesion product of the Stein factorizations of the maps induced by the
'i ; i D 1; : : : ; 5.

We shall next discuss some of the surfaces S mentioned in the previous
theorem, addressing the question of their irregularity q.S/.

4.5.2. A problem posed by Enriques, and its partial solution Enriques posed
in his book [Enr49] the following problems:

Question 72. Given a surface S with pg.S/ D 4 and with birational canonical
map onto its image † � P3,

I) what is the maximum value for its canonical degree K2
S ?

II) what is the maximum value for deg.†/?
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He indeed suspected that there should be an upper bound equal to 24, for which
counterexamples were given in [Cat99].

Now, without loss of generality, we may assume that S is minimal, because
otherwise K2

S decreases, and we observe that, since KS is nef, we have

45 � K2
S � deg.ˆKS

/ � deg.†/;

where the first inequality is a consequence of the Miyaoka–Yau inequalityK2
S �

9.1 � q.S/C pg.S// D 9.5 � q.S//.
Hence, in order to achieve the equality K2

S D 45, when pg.S/ D 4, we
must have a ball quotient which has q.S/ D 0.

With I. Bauer [BC08] we showed that there exists such a surface.

Theorem 73. There exists an Abelian cover of the del Pezzo surface Y of de-
gree 5, with group .Z=5/2, and branched on the 10 lines, which is regular, i.e.,
q.S/ D 0, has pg.S/ D 4, K2

S D 45, and has a birational canonical map onto
a surface † of degree 19.

Indeed in the course of the search we classified all such coverings of the del
Pezzo surface Y of degree 5, with group .Z=5/2, and branched on the 10 lines.

We considered the group G , generated by S5 and GL.2;Z=5Z/, acting on
the set of admissible monodromy vectors.

A MAGMA computation showed that G has four orbits, and representatives
for these orbits could be taken as:

U1 D
� �
1

0

�
;

�
1

0

�
;

�
0

1

�
;

�
2

1

�
;

�
2

1

�
;

�
4

2

� �
I

U2 D
� �
1

0

�
;

�
1

0

�
;

�
0

1

�
;

�
2

1

�
;

�
4

2

�
;

�
2

1

� �
I

U3 D
� �
1

0

�
;

�
1

0

�
;

�
0

1

�
;

�
4

1

�
;

�
3

2

�
;

�
1

1

� �
I

U4 D
� �
1

0

�
;

�
1

0

�
;

�
0

1

�
;

�
1

1

�
;

�
0

3

�
;

�
2

0

� �
:

In particular we saw that G Š GL.2;Z=5Z/ � S5, and concluded the classifi-
cation with the following result:

Theorem 74. Let Si be the minimal smooth surface of general type with K2 D
45 and � D 5 obtained from the covering induced by the admissible six-tuple
Ui , where i 2 f1; 2; 3; 4g. Then we have that S3 is regular (i.e., q.S3/ D 0),
whereas q.Si / D 2 for i ¤ 3.

The story concerning Enriques’ question is not yet completely finished, be-
cause it is not clear whether one can achieve deg.†/ D 45 (the current record
in this direction is deg.†/ D 28, [Cat99]).
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4.6. Bogomolov–Miyaoka–Yau fails in positive characteristic

Even if the BMY inequality was proven by Miyaoka with purely algebraic meth-
ods, still the proof uses characteristic 0 arguments in an essential way.

Robert Easton [Easton08] gave easy examples showing that indeed the BMY
inequality does not hold in positive characteristic. These examples are related
to the Hirzebruch–Kummer coverings of the plane, and the main idea is that
in characteristic p > 0 there are configurations of lines which cannot exist in
characteristic zero.

These configurations are just the projective planes P2
Z=p

� P2
K , for each

algebraically closed field K of characteristic p > 0.
The easiest case is the so called Fano plane P2

Z=2
� P2

K DW P2: We have a
configuration C of type 7373, 7 lines passing through seven points, each triple
for the configuration.

For each odd number n � 5 we consider the Hirzebruch–Kummer covering
of exponent n, Sn, a finite Galois cover of the blow up Z of P2 in the seven
points, with Galois group .Z=n/6.

The canonical divisor ofZ isKZ D �3HCP7
1Ei , whereEi is the inverse

image of the point Pi . Denoting by Li the proper transform of the line Li , sinceP7
1Li D 7H � 3P7

1Ei , the canonical divisor of Sn is the pull back of

KZ C
�
1 � 1

n

�� 7X
1

Li C
7X
1

Ei

�

D
�

� 3C 7
�
1 � 1

n

��
H C

�
1 � 2

�
1 � 1

n

�� 7X
1

Ei :

Hence

K2
Sn

D n6
h�
4 � 7

n

�2 � 7
�
1 � 2

n

�2i
D n6

h
9 � 28

n
C 21

n2

i
:

The formulae we illustrated earlier yield

c2.Sn/ D n6
h
10C 14

�
1 � 1

n

�
� 21

�
1 � 1

n2

�i
D n6

h
3 � 141

n
C 21

1

n2

i
:

Hence

K2
Sn

D 3c2.Sn/C n6
�
14
1

n
� 42 1

n2

�
D 3c2.Sn/C n4.14n � 42/:

Hence a particular case of Easton’s theorem:
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Theorem 75. In characteristic equal to 2 the Hirzebruch–Kummer coverings of
the plane branched on the Fano of configuration of lines have Chern slope

�.Sn/ D K2
Sn

c2.Sn/
D 3

�
1C 14n � 42

9n2 � 42nC 63

�
> 3;

violating the Bogomolov–Miyaoka–Yau inequality. The maximum of the slope is
attained for n D 5, �.S5/ D 4C 3

39
.

5. Counterexamples to Fujita’s semi-ampleness question, rigid manifolds

5.1. BCDH surfaces, counterexamples to Fujita’s question

Recently, we found new counterexamples to Fujita’s Question 49 (we say coun-
terexamples since we heard through the grapevine that experts were expecting a
positive answer; however this counterexample does not inficiate the abundance
conjecture).

Theorem 76. There exists an infinite series of surfaces with ample canonical
bundle, whose Albanese map is a fibration f W S ! B onto a curve B of genus
b D 1

2
.n� 1/, and with fibres of genus g D 2b D n� 1, where n is any integer

relatively prime with 6.
These Albanese fibrations yield negative answers to Fujita’s question about

the semi-ampleness of V WD f�!S jB , since here V WD f�!S jB splits as a direct
sum V D A ˚ Q, where A is an ample vector bundle, and Q is a unitary flat
bundle with infinite monodromy group.

The fibration f is semi-stable: indeed all the fibres are smooth, with the
exception of three fibres which are the union of two smooth curves of genus b
which meet transversally in one point.

For n D 5 we get three surfaces which are rigid, and are quotient of the
unit ball in C2 by a torsion free cocompact lattice � . We shall call them BCD-
surfaces (cf. Theorem 74). The rank of A, respectively Q, is in this case equal
to 2.

The easiest way to describe these surfaces, which are Abelian covers of the
del Pezzo surface Y of degree 5 with group .Z=n/2, branched over the 10 lines
of Y , is to look at a birational model which is an Abelian covering of P1 � P1

branched over the diagonal and of the vertical and horizontal lines x D 0; x D
1; x D 1; y D 0; y D 1; y D 1.

We consider again the equation

zn
1 D y

m0

0 y
m1

1 .y1 � y0/
m2.y1 � xy0/

m3 ; x 2 C n f0; 1g
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but we homogenize it to obtain the equation

zn
1 D y

m0

0 y
m1

1 .y1 � y0/
m2.x0y1 � x1y0/

m3x
n�m3

0 :

The above equation describes a singular surface †0 which is a cyclic cover-
ing of P1 � P1 with group G WD Z=n; †0 is contained inside the line bundle L1

over P1 � P1 whose sheaf of holomorphic sections L1 equals OP1�P1.1; 1/.
The first projection P1 � P1 ! P1 induces a morphism p W †0 ! P1 and

we consider the curve B , normalization of the covering of P1 given by

wn
1 D x

n0

0 x
n1

1 .x1 � x0/
n2 :

We consider the normalization † of the fibre product †0 �P1 B .
† is an abelian covering of P1 �P1 with group .Z=n/2, and, if GCD.n; 6/ D

1, for a convenient choice of the integers mj; ni , for instance for

m0 D m1 D m2 D 1; m3 D n � 3; n0 D n1 D 1; n2 D n � 2
we obtain a smooth .Z=n/2-Abelian covering of the blow up of P1 � P1 in the
three diagonal points .1;1/; .0; 0/; .1; 1/, which is the del Pezzo surface Y of
degree 5.

The corresponding singular fibres are only 3, and come from one of the 5
conic bundle structures on Y , here given by the first projection P1 � P1 ! P1:
hence one sees right away that the singular fibres are reducible, and that they
are the union of two smooth curves of genus b intersecting transversally in one
point.

The surfaces in Theorem 76, which we shall call BCDH-surfaces, have an
étale unramified covering given by the Hirzebruch–Kummer coverings of the
del Pezzo surface Y of degree 5 with group .Z=n/2, branched over the 10 lines
of Y , which we shall denote HK-surfaces.

In the case n D 5 we get ball quotients, and, for 5jn, we get therefore that
the universal covering is a branched covering of the ball. This motivates the
following questions, which are clearly satisfied for n D 5:

Question 77. (1) Are the BCDH-surfaces rigid?
(2) Is their universal covering QS , or more generally the universal covering of the

HK-surfaces, a Stein manifold?
(3) Is the universal covering QS of the BCDH- and HK-surfaces contractible?
(4) Do the BCDH-surfaces admit a metric of negative curvature?

The last question is motivated by analogy with the examples considered by
Mostow–Siu: namely, one has a Kähler–Einstein metric on Y deprived of the 10
lines, and on the covering one should interpolate with another metric localized
on the ramification divisor.
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Of course, an interesting question is whether the Kähler–Einstein metric !n

on Sn is negatively curved. To analyse the question one can observe that !n is
the pull-back of a metric on Y with given cone angles along the branch divisors.

Now, a positive answer to (4) would imply (3); however, for (3), the vanish-
ing cycles criterion which was given earlier may be applied.

Question (2) should have a positive answer, while for the answer to question
(1), it is positive, as proven in joint work with I. Bauer [B-C16]:

Theorem 78. The HK-surfaces are rigid for n � 4, hence also the BCDH-
surfaces are rigid.

Observe that, since the BCDH-surfaces have the HK surfaces as étale cov-
ers, the non-rigidity of the former would imply non-rigidity of the latter (see
Proposition 85). Moreover, for n D 3 rigidity does not hold, this surface was
studied by Roulleau in [Rou11].

The proof for HK surfaces uses many tools, first of all the special geometry
of the del Pezzo surface of degree 5, and rather complicated arguments using
logarithmic sheaves in order to control the deformations of the Abelian cover-
ings.

Corollary 79. The Albanese fibrations of BCDH-surfaces yield rigid curves in
the moduli spaces Mn�1.

We noticed that all the fibres of the Albanese map have compact Jacobian,
hence the following:

Question 80. Do the Albanese fibrations of BCDH-surfaces yield rigid curves
in the moduli spaces An�1?

Theorem 78 raises several questions: here, given a configuration of lines C ,
we denote by HKC .n/ the Hirzebruch–Kummer covering of exponent n rami-
fied on the lines of the configuration C .

Given a configuration of lines C , one constructs a subvariety of ..P2/_/r ,
I .C /, given by the r-tuples of lines with the same incidence correspondence
as C .

One observes that there is a natural action of G WD PGL.3;C/ � Sr on
I .C /, and defines C to be projectively unique (resp.: rigid) if I .C / is equal
to theG-orbit of C (resp.: equal to thisG-orbit locally at the point C 2 I .C /).

The property of rigidity can be detected by the vanishing of a certain first
cohomology group of a sheaf of logarithmic vector fields.

Natural questions are (see [B-C16]):

Question 81. I) For which rigid configuration C of lines in P2 is the associated
Hirzebruch–Kummer covering HKC .n/ rigid for n � 0?
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II) For which rigid configuration C of lines in P2 is the associated Hirzebruch–
Kummer covering HKC .n/ a K.�; 1/ for n � 0?

III) For which rigid configuration C of lines in P2 does the associated Hirzebruch–
Kummer covering HKC .n/ possess a Kähler metric of negative sectional
curvature for n � 0?

Observe that if III) has a positive answer, then also II), by the Cartan–
Hadamard theorem.

Abelian coverings branched over configurations were also used by Vakil in
[Va06], who showed that for n � 0 the local deformations of HKC .n/ corre-
spond to the product of the deformations of the configuration C with a smooth
manifold. Vakil used a result of Mnëv [Mnev88] in order to show that, up to a
product with a smooth manifold, one obtains all possible singularity types.

Let me end this subsection by commenting that not only BCD- and BCDH-
surfaces are quite interesting from many algebro-geometric and complex ana-
lytic points of view, but that the features of their Albanese fibration have also
found very interesting applications for the construction of remarkable symplec-
tic manifolds, in the work of Akhmedov and coworkers (see [AkSa15] and lit-
erature cited therein).

5.2. Rigid compact complex manifolds

Recall the following notions of rigidity (see [B-C16] for more details).

Definition 82.

(1) Two compact complex manifoldsX andX 0 are said to be deformation equiv-
alent if and only if there is a proper smooth holomorphic map

f W X �! B;

where B is a connected (possibly not reduced) complex space and there are
points b0; b

0
0 2 B such that the fibres Xb0

WD f �1.b0/; Xb0

0
WD f �1.b0

0/

are respectively isomorphic to X;X 0 (Xb0
Š X;Xb0

0
Š X 0).

(2) A compact complex manifold X is said to be globally rigid if for any com-
pact complex manifold X 0, which is deformation equivalent to X , we have
an isomorphism X Š X 0.

(3) A compact complex manifold X is instead said to be (locally) rigid (or just
rigid) if for each deformation of X ,

f W .X; X/ �! .B; b0/

there is an open neighbourhood U � B of b0 such that Xt WD f �1.t/ Š X

for all t 2 U .
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(4) A compact complex manifold X is said to be infinitesimally rigid if

H 1.X;‚X / D 0;

where ‚X is the sheaf of holomorphic vector fields on X .
(5) X is said to be strongly rigid if the set of compact complex manifolds Y

which are homotopically equivalent toX , fY jY �h:e: Xg consists of a finite
set of isomorphism classes of globally rigid varieties.

(6) X is said to be étale rigid if every étale (finite unramified) cover Y of X is
rigid.

Remark 83. 1) If X is infinitesimally rigid, then X is also locally rigid. This
follows by the Kodaira–Spencer–Kuranishi theory, since H 1.X;‚X / is the
Zariski tangent space of the germ of analytic space which is the base
Def.X/ of the Kuranishi semi-universal deformation of X . If H 1.X;‚X / D
0, Def.X/ is a reduced point and all deformations are locally trivial.

2) Obviously strong rigidity implies global rigidity; both global rigidity and
étale rigidity imply local rigidity.

3) The simplest example illustrating the difference between global and infinites-
imal rigidity is the del Pezzo surface Z6 of degree 6, blow up of the plane P2

in three non-collinear points. It is infinitesimally rigid, but it deforms to the
weak del Pezzo surface of degree 6, the blow up Z0

6 of the plane P2 in three
collinear points. Z0

6 is not isomorphic to Z6 because for the second surface
the anti-canonical divisor is not ample.

The following useful general result is established in [B-C16] using many
earlier results (and the Riemann–Roch theorem for the second statement):

Theorem 84. A compact complex manifold X is rigid if and only if the
Kuranishi space Def.X/ (base of the Kuranishi family of deformations) is 0-
dimensional.

In particular, if X D S is a smooth compact complex surface and

10�.OS / � 2K2
S C h0.X;‚S / > 0;

then S is not rigid.

We have moreover (ibidem):

Proposition 85. If p W Z ! X is étale, i.e., a finite unramified holomorphic
map between compact complex manifolds, then the infinitesimal rigidity of Z
implies the infinitesimal rigidity of X . Moreover, if Z is rigid, then also X is
rigid.
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Idea of proof. For the first assertion, one observes that H 1.Z;‚Z/ D
H 1.X; p�.‚Z// D 0, and that p�.‚Z/ D p�.p�‚X / D ‚X ˝ .p�OZ/ has
‚X as a direct summand.

For the second assertion one reduces to the Galois case X D Z=G, where,
as shown in [Cat88]:

Def.X/ D Def.Z/G � Def.Z/:

Hence, if Def.Z/ has dimension 0, a fortiori also Def.X/. ut

While the only rigid curve is P1, in the case of surfaces the list is only known
for surfaces which are not of general type. Indeed, using surface classification,
it is shown in [B-C16]:

Theorem 86. Let S be a smooth compact complex surface, which is (locally)
rigid. Then either

(1) S is a minimal surface of general type, or
(2) S is a del Pezzo surface of degree d � 5 (i.e., P2, P1 � P1, S8; S7; S6; S5,

where S9�r is the blow-up of P2 in r points which are in general linear
position).

(3) S is an Inoue surface of type SM or S .�/
N;p;q;r (cf. [In94]).

(4) Rigid surfaces in class (1) are also globally rigid, surfaces in class (3) are
infinitesimally and globally rigid, surfaces in class (2) are infinitesimally
rigid, but the only globally rigid surface in class (2) is the projective plane
P2.

In particular, rigid surfaces have Kodaira dimension either 2 (general type),
or �1. In higher dimension n � 3 it shown in [B-C16] that there are rigid com-
pact complex manifolds for each possible Kodaira dimension, except possibly
Kodaira dimension D 1. Probably this exception does not really occur, at least
for large n.

Remark 87. For surfaces of general type it is expected to find examples which
are rigid, but not infinitesimally rigid: such an example would be the one of a
minimal surface S such that its canonical model X.S/ is infinitesimally rigid
and singular (see [B-W74]).

The intriguing part of the story is that all the old examples of globally rigid
surfaces, except P2, are projective classifying spaces. Indeed, before the ex-
amples which we denote here by HK.n/-surfaces, all known examples of rigid
surfaces of general type were the following:

(1) The ball quotients, which are infinitesimally rigid, strongly rigid and étale
rigid ([Siu80], [Most73]).
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(2) Irreducible bi-disk quotients, i.e., those surfaces whose universal covering
of S is B1 � B1 Š H � H, where H is the upper half plane, and moreover
if we write S D H � H=� the fundamental group � has dense image for
any of the two projections � ! PSL.2;R/; they are infinitesimally rigid,
strongly rigid and étale rigid ([J-Y85], [Mok88]).

(3) Beauville surfaces; they are infinitesimally rigid, strongly rigid but not étale
rigid ([Cat00]).

(4) Mostow–Siu surfaces, [M-S80]; these are infinitesimally rigid, strongly
rigid and étale rigid.

(5) The rigid Kodaira fibrations constructed by the author and Rollenske,
[CatRol09], and mentioned in Theorem 15; these are rigid and strongly
rigid, infinitesimal rigidity and étale rigidity are not proven in [CatRol09]
but could be true.

Remark 88. Examples (1)–(3), and (5) are strongly rigid.

A natural question is therefore:

Question 89. Do there exist infinitesimally rigid surfaces of general type which
are not projective classifying spaces?

We believe that the answer should be yes, not only because wishful thinking
in the case of surfaces almost invariably turns out to be contradicted, but for the
following reason, which relates to the later section on Inoue-type varieties.

Remark 90. (i) Assume that Z is a projective classifying space of dimension
n � 3, and let Y be a smooth hyperplane section of Z: then Y is not a
projective classifying space.
This is a consequence of the Lefschetz hyperplane theorem: �1.Y / Š
�1.Z/.
If Y were a classifying space for �1.Y / Š �1.Z/, then

H�.Y;Z/ Š H�.�1.Y /;Z/ Š H�.�1.Z/;Z/ Š H�.Z;Z/;

in particular H 2n.Y;Z/ D Z, against the fact that the real dimension of Y
is 2n � 2, which implies that H 2n.Y;Z/ D 0.

(ii) The same occurs if Y is an iterated hyperplane section ofZ, with dim.Y / �
2.

(iii) In particular, even if Z admits a metric of negative curvature, Y cannot
have one such negative metric, by the Cartan–Hadamard theorem. In fact,
concerning the metric inherited from Z, observe that only the Hermitian
curvature decreases in subbundles.

Concerning Question 89, the case of BCDH-surfaces, and HK.n/-surfaces
is not completely settled.
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For the surfaces HK.n/ the answer is positive, in case that 5 divides n, due
to the work of Fangyang Zheng [Zheng99] who extended the Mostow–Siu tech-
nique to the case of normal crossings; from this also strong and étale rigidity
follow in this case.

For other values of n � 4 the work of Panov [Pan09] gives a positive answer
for n � 0 (but unspecified): his method consists in finding polyhedral metrics
of negative curvature.

6. Surfaces isogenous to a product and their use

Even if the topic of surfaces isogenous to a product does appear at first sight
skew to the topic of surfaces which are ramified coverings branched on a union
of lines, this idea is deceptive.

In fact, a simple way to construct a curveCi withG-symmetry is to construct
a Galois branched covering of P1 n Bi , with group G, and where we assume
that the branch locus is exactly the finite set Bi .

Hence, the surface isogenous to a product S WD .C1 � C2/=G is a ramified
covering of P1 � P1 branched on the horizontal and vertical lines

.P1 � B2/ [ .B1 � P1/:

Note that we have 
G � G � G, the diagonal subgroup, and a Galois dia-
gram

C1 � C2 �! S WD .C1 � C2/=
G �! P1 � P1 D .C1 � C2/=.G �G/:
The covering S ! P1 � P1 is Galois if and only if G is Abelian.
By the main theorem on surfaces which are isogenous to a product, such a

surface S is (strongly) rigid if jB1j D jB2j D 3, and in this case in [Cat00] we
called these surfaces ‘Beauville surfaces’.

The reason for this is that Beauville surfaces with Abelian group occur only
when G D .Z=n/2 with GCD.n; 6/ D 1, as shown in [Cat00], and the original
example by Beauville in [Bea78] was exactly the case of G D .Z=5/2. For
these surfaces C1 D C2 is the Fermat curve of degree n, and the only difficulty
consists in finding actions such that 
G acts freely on the product.

In the article [BCG05] the existence problem for Beauville surfaces was
translated into group theoretical terms: because each covering C1 ! P1 is de-
termined, in view of the Riemann existence theorem, by its branch locus (here
fixed!) and its monodromy; and in this case the monodromy means the datum
of three elements a; b; c 2 G which generate G and satisfy abc D 1G .

Then one gets two triples .a; b; c/.a0; b0; c0/ and the condition that the action
on C1 �C2 is free amounts to the disjointness of the stabilizers, S1 \S2 D f1g,
here the stabilizer set S1 is the union of the conjugates of the powers of the
respective elements a; b; c, and similarly for S2.
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In particular the question: which (non-abelian) simple groups except A5 oc-
cur as G for a Beauville surface? It was solved for many groups in loc. cit.,
has then attracted the attention of group theorists and was solved in the affirma-
tive, even if there are still open questions concerning whether this can also be
achieved via non-real structures, via real structures, via strongly real structures
(see [GLL12], [GM12], [FMP13], [BBPV15], see also the book [BGV15] and
references therein for a partial account).

Now, our contention here is that Beauville surfaces not only create links
between algebraic geometry and group theory, but that they continue to yield
very interesting algebro-geometric examples.

For instance, Beauville surfaces with Abelian group G D .Z=n/2 were used
in [Cat14] to answer a question posed by Jonathan Wahl, hence giving rise to
new examples of threefolds Z (obtained as cones over such a surface S) which
fulfill the following properties:

1) Z is Cohen–Macaulay,
2) the dualizing sheaf !Z is torsion,
3) the index 1-cover Z0 is not Cohen–Macaulay, in particular Z is not Q-

Gorenstein.

This is the technical result answering the question by Wahl, showing in par-
ticular the existence of regular surfaces with subcanonical ring which is not
Cohen–Macaulay.

Theorem 91. For each r D n � 3, where n � 7 is relatively prime to 30, and
for each m; 1 � m � r � 1, there are Beauville type surfaces S with q.S/ D 0

(q.S/ WD dimH 1.S;OS /) such that there exists a divisor L with KS D rL,
and H 1.mL/ ¤ 0 .

6.1. Automorphisms acting trivially on cohomology

Another application is in the direction of giving examples of surfaces admit-
ting automorphisms which act trivially on integral cohomology (but are not iso-
topic to the identity: recall that a diffeomorphism of a manifold M is said to be
isotopic to the identity if it lies in the connected component of the identity in
Diff .M/).

In this context, Cai, Liu and Zhang [C-L-Z13] have proven the following
theorem:

Theorem 92. Let S be a minimal smooth surface of general type with q.S/ � 2.
Then either S is rational cohomologically rigidified, i.e., every automorphism
acts trivially on H�.S;Q/, or the subgroup Aut.S/Q of automorphisms act-
ing trivially on the rational cohomology algebra is isomorphic to Z=2, and S
satisfies
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I) K2
S D 8�; q.S/ D 2,

II) the Albanese map is surjective, and,
III) S has a pencil of genus b D 1.

To show that the estimate is effective, they classified the surfaces isogenous
to a product such that q.S/ � 2 and Aut.S/Q ¤ 0.

In joint work with Gromadzki we have shown that indeed, for one of these
examples (and probably for both), the action is even trivial on H�.S;Z/; but
it is not trivial on the fundamental group. To show triviality of the action on
H�.S;Z/ it suffices to show that the action is trivial on the torsion group
H1.S;Z/; because then the result follows from the universal coefficients the-
orem and by Poincaré duality.

The following is still an open question:

Question 93. Do there exist surfaces of general type with non-trivial automor-
phisms which are isotopic to the identity?

The question (see [Cat13]) is crucial in order to compare the Kuranishi and
the Teichmüller space of surfaces (and higher dimensional varieties).

7. Topological methods for moduli

In this very short section, devoted to concrete moduli theory in the tradition of
Kodaira and Horikawa, i.e., the fine classification of complex projective vari-
eties (see e.g. [Hor75]), we shall try to show how in some lucky cases, with big
fundamental group, topology helps to achieve the fine classification, allowing
explicit descriptions of the structure of moduli spaces.

This was done quite effectively in several papers ([BC09b], [BC09a], [BC10],
[BC10-b], [B-C12], [B-C13], [BCF15a]), and in the article [Cat15] we already
amply reported on this direction of research.

For this reason the exposition in this section shall be rather brief, we refer
to [Cat15] for several preparatory results, and for other related topics, such as
orbifold fundamental groups, Teichmüller spaces, moduli spaces of curves with
symmetry, and also for an account of the results on the regularity of classifying
maps, such as harmonicity, addressed by Eells and Sampson, and their com-
plex analyticity, addressed by Siu, which are key ingredients for the study of
moduli through topological methods (see especially [ABCKT96] on this topic);
and which lead to rigidity and quasi-rigidity properties of projective varieties
which are classifying spaces (meaning that their moduli spaces are completely
determined by their topology).

We shall focus here instead on a few concrete problems in moduli theory, in
particular new constructions of surfaces with pg D q D 0 or pg D q D 1.
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7.1. Burniat surfaces and Inoue type varieties

Among the algebraic surfaces obtained as Abelian coverings of the plane
branched on interesting configurations of lines, the oldest examples were the so-
called Burniat surfaces, some surfaces with q D pg D 0 andK2

S D 6; 5; 4; 3; 2.
Again, I shall skip their description, especially since I already reported on

them at the Kinosaki Conference in the Fall of 2011; even if there are still inter-
esting open questions concerning the connected component of the moduli space
containing Burniat surfaces with K2

S D 3.
Following a suggestion of Miles Reid, Masahisa Inoue [In94] gave another

description of the Burniat surfaces, as quotients of a hypersurface in the product
of three elliptic curves. Using this method, he went further with his construction,
and obtained new (minimal) surfaces of general type with q D pg D 0 and
K2

S D 7, which are now called (algebraic) Inoue surfaces.
These were given as quotients of a complete intersection of two surfaces

inside the product of four elliptic curves, but a closer inspection showed that
indeed they are quotients of a surface inside the product of a curve of genus 5
with two elliptic curves. More precisely, an Inoue surface S admits an unram-
ified .Z=2Z/5-Galois covering OS which is an ample divisor in E1 � E2 � D,
where E1; E2 are elliptic curves and D is a projective curve of genus 5.

Hence the fundamental group of an Inoue surface with pg D 0 and K2
S D 7

sits in an extension (…g being as usual the fundamental group of a projective
curve of genus g):

1 �! …5 � Z4 �! �1.S/ �! .Z=2Z/5 �! 1:

It turned out that the ideas needed to treat the moduli space of this special
family of Inoue surfaces could be put in a rather general framework, valid in all
dimensions, and together with I. Bauer we proposed the study, obtaining several
results, of what we called Inoue-type varieties.

Definition 94 ([B-C12]). Define a complex projective manifold X to be an
Inoue-type manifold if

(1) dim .X/ � 2;
(2) there is a finite group G and an unramified G-covering OX ! X , (hence

X D OX=G) such that
(3) OX is an ample divisor inside aK.�; 1/-projective manifoldZ, (hence by the

theorem of Lefschetz �1. OX/ Š �1.Z/ Š �) and moreover
(4) the action of G on OX yields a faithful action on �1. OX/ Š �: in other words

the exact sequence

1 �! � Š �1. OX/ �! �1.X/ �! G �! 1

gives an injection G ! Out.�/, defined by conjugation by lifts of elements
of G;
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(5) the action of G on OX is induced by an action of G on Z.

We say that an Inoue-type manifoldX is a special Inoue type manifold if more-
over

Z D .A1 � � � � � Ar/ � .C1 � � � � � Ch/ � .M1 � � � � �Ms/;

where eachAi is an Abelian variety, eachCj is a curve of genus gj � 2, andMi

is a compact quotient of an irreducible bounded symmetric domain of dimension
at least 2 by a torsion free subgroup; and a classical Inoue type manifold if
instead Z D .A1 � � � � � Ar/ � .C1 � � � � � Ch/ where as above each Ai is an
Abelian variety, each Cj is a curve of genus gj � 2.

The main idea underlying the importance of this notion is the fact that, un-
der suitable assumptions, one can say that if X is an Inoue type manifold, and
Y is homotopically equivalent to X (indeed even some weaker cohomological
conditions are sufficient), then also Y is an Inoue type manifold, and in special
cases one can conclude that Y and X belong to the same irreducible connected
component of the moduli space. We omit to state the general results, referring
to [BC08] and [Cat15], and here we shall just treat a concrete case, in the next
subsection.

7.2. Bagnera–de Franchis varieties and applications to moduli

In our article [BCF15b], appeared in the volume dedicated to Kodaira, we treated
a special case of the theory of Inoue type varieties, the one where the action of
G happens to be free also on Z, and Z is the simplest projective classifying
space, an Abelian variety.

Define the Generalized Hyperelliptic Varieties (GHV) as the quotients
A=G of an Abelian Variety A by a finite group G acting freely, and with the
property that G is not a subgroup of the group of translations. Without loss
of generality one can then assume that G contains no translations, since the
subgroup GT of translations in G would be a normal subgroup, and if we
denote G0 D G=GT , then A=G D A0=G0, where A0 is the Abelian variety
A0 WD A=GT .

A smaller class is the class of Bagnera–de Franchis (BdF) Varieties: these
are the quotients X D A=G were G contains no translations, and G is a cyclic
group of order m, with generator g (observe that, when A has dimension n D
2, the two notions coincide, thanks to the classification result of Bagnera–de
Franchis in [BdF08]).

Bagnera–de Franchis varieties have a simple description as quotients of
Bagnera–de Franchis varieties of product type, according to the following defi-
nition:
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Definition 95. A Bagnera–de Franchis manifold (resp.: variety) of product
type is a quotient X D A=G where A D A1 � A2, A1; A2 are complex tori
(resp.: Abelian Varieties), and G Š Z=m is a cyclic group operating freely on
A, generated by an automorphism of the form

g.a1; a2/ D .a1 C ˇ1; ˛2.a2//;

where ˇ1 2 A1Œm� is an element of order exactly m, and similarly ˛2 W A2 !
A2 is a linear automorphism of order exactly m without 1 as eigenvalue (these
conditions guarantee that the action is free).

This is then the characterization of general Bagnera–de Franchis varieties.

Proposition 96. Every Bagnera–de Franchis variety X D A=G, where G Š
Z=m contains no translations, is the quotient of a Bagnera–de Franchis variety
of product type, .A1�A2/=G by any finite subgroup T ofA1�A2 which satisfies
the following properties:

1) T is the graph of an isomorphism between two respective subgroups T1 �
A1; T2 � A2;

2) .˛2 � Id/T2 D 0;

3) if g.a1; a2/ D .a1 C ˇ1; ˛2.a2//; then the subgroup of order m generated
by ˇ1 intersects T1 only in f0g.

In particular, we may write X as the quotient X D .A1 � A2/=.G � T / by
the abelian group G � T .

This notion was then used in [BCF15a] to make a construction that we briefly
describe.

Let A1 be an elliptic curve, and let A2 be an Abelian surface with a line
bundle L2 yielding a polarization of type .1; 2/. Take as L1 the line bundle
OA1

.2O/, and let L be the line bundle on A0 WD A1 � A2 obtained as the
exterior tensor product of L1 and L2, so that

H 0.A0; L/ D H 0.A1; L1/˝H 0.A2; L2/:

Moreover, choose the origin in A2 so that the space of sections H 0.A2; L2/

consists only of even sections.
We take then, using properties of the Stone–von Neumann representation

of the Heisenberg group, a Bagnera–de Franchis threefold X WD A=G, where
A D .A1 � A2/=T , and G Š T Š Z=2, and a surface S � X which is the
quotient of a .G � T /-invariant D 2 jLj, so that S2 D 1

4
D2 D 6.

We could then prove the following.

Theorem 97. Let S be a surface of general type with invariantsK2
S D 6, pg D

q D 1 such that there exists an unramified double cover OS ! S with q. OS/ D 3,
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and such that the Albanese morphism Ǫ W OS ! A is birational onto its image
Z, a divisor in A with Z3 D 12.

Then the canonical model of OS is isomorphic to Z, and the canonical model
of S is isomorphic to Y D Z=.Z=2/, which a divisor in a Bagnera–de Franchis
threefold X WD A=G, where A D .A1 �A2/=T , G Š T Š Z=2, and where the
action is given by

G WD fId; gg; g.a1 C a2/ WD a1 C �=2 � a2 C �2=2; 8a1 2 A1; a2 2 A2;

(98)

T WD .Z=2/.1=2C �4=2/ � A D .A1 � A2/:

(99)

These surfaces exist, have an irreducible four dimensional moduli space,
and their Albanese map ˛ W S ! A1 D A1=A1Œ2� has general fibre a non-
hyperelliptic curve of genus g D 3.
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an explicit value of dn. We give here a short proof based on a substantial simplification of their
ideas, producing a bound very similar to Deng’s original estimate, namely dn D b 1

3 .en/
2nC2c.
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0. Introduction

The goal of these lectures is to study the conjecture of Kobayashi [Kob70] on
the hyperbolicity of generic hypersurfaces of high degree in projective space,
and the related conjecture by Green–Griffiths [GrGr80] and Lang [Lang86] on
the structure of entire curve loci.

Let us recall that a complex space X is said to be hyperbolic in the sense of
Kobayashi if analytic disks f W D ! X through a given point form a normal
family. By a well-known result of Brody [Bro78], a compact complex space is
Kobayashi hyperbolic if and only if it does not contain any entire holomorphic
curve f W C ! X (“Brody hyperbolicity”).

In this paper entire holomorphic curves are assumed to be non-constant and
simply called entire curves. If X is not hyperbolic, a basic question is thus to
analyze the geometry of entire holomorphic curves f W C ! X , and especially
to understand the entire curve locus of X , defined as the Zariski closure

(0.1) ECL.X/ D
[
f

f .C/
Zar
:

The Green–Griffiths–Lang conjecture, in its strong form, can be stated as fol-
lows.
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0.2. GGL conjecture. Let X be a projective variety of general type. Then Y D
ECL.X/ is a proper algebraic subvariety Y � X .

Equivalently, there exists Y � X such that every entire curve f W C ! X

satisfies f .C/ � Y . A weaker form of the GGL conjecture states that entire
curves are algebraically degenerate, i.e., that f .C/ � Yf � X , where Yf may
depend on f .

If X � PN
C is defined over a number field K0 (i.e., by polynomial equations

with coefficients in K0), one defines the Mordell locus, denoted Mordell.X/,
to be the smallest complex subvariety Y in X such that the set of K-points
X.K/ � Y is finite for every number field K � K0. Lang [Lang86] conjec-
tured that one should always have Mordell.X/ D ECL.X/ in this situation.
This conjectural arithmetical statement would be a vast generalization of the
Mordell–Faltings theorem, and is one of the strong motivations to study the ge-
ometric GGL conjecture as a first step. S. Kobayashi [Kob70] had earlier made
the following tantalizing conjecture.

0.3. Conjecture (Kobayashi).

(a) A (very) generic hypersurface X � PnC1 of degree d � dn large enough
is hyperbolic, especially it does not possess any entire holomorphic curve
f W C ! X .

(b) The complement Pn � H of a (very) generic hypersurface H � Pn of
degree d � d 0

n large enough is hyperbolic.

It should be noticed that the existence of a smooth hyperbolic hypersurface
X � PnC1 in 0.3 (a), or a hyperbolic complement Pn � H with H smooth
irreducible in 0.3 (b), is already a hard problem; many efforts were initially
concentrated on this problem. As Zaidenberg observed, a smooth deformation of
a union of .2nC 1/ hyperplanes in Pn is not necessarily Kobayashi hyperbolic,
and the issue is non-trivial at all. The existence problem was initially solved for
sufficiently high degree hypersurfaces through a number of examples:

� case (a) for n D 2 and degree d � 50 by Brody and Green [BrGr77];
� case (b) for n D 2 by [AzSu80] (as a consequence of [BrGr77]);
� cases (a) and (b) for n � 3 by Masuda and Noguchi [MaNo96].

Improvements in the degree estimates were later obtained in [Shi98], [Fuj01],
[ShZa02], in addition to many other papers dealing with low dimensional vari-
eties (n D 2; 3).

We now describe a number of known results concerning the question
of generic hyperbolicity, according to the Kobayashi conjectures 0.3 (a), (b).
M. Zaidenberg observed in [Zai87] that the complement of a general hyper-
surface of degree 2n in Pn is not hyperbolic; as a consequence, one must take
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d 0
n � 2n C 1 in 0.3 (b). This observation, along with Fujimoto’s classical re-

sult that the complement of .2n C 1/ hyperplanes of Pn in general position is
hyperbolic and hyperbolically embedded in Pn ([Fuj72]) led Zaidenberg to pro-
pose the bound d 0

n D 2nC 1 for n � 1. Another famous result due to Clemens
[Cle86], Ein [Ein88], [Ein91] and Voisin [Voi96] states that every subvariety Y
of a generic algebraic hypersurface X � PnC1 of degree d � 2nC 1 is of gen-
eral type for n � 2 (for surfaces X � P3, Geng Xu [Xu94] also obtained some
refined information for the genera of algebraic curves drawn in X). The bound
was subsequently improved to d � dn D 2n for n � 5 by Pacienza [Pac04].
That the same bound dn holds for Kobayashi hyperbolicity would then be a
consequence of the Green–Griffiths–Lang conjecture. By these results, one can
hope in the compact case that the optimal bound dn is d1 D 4, dn D .2nC 1/

for n D 2; 3; 4 and dn D 2n for n � 5. The case of complements Pn � H

(the so-called “logarithmic case”) is a priori somewhat easier to deal with: in
fact, on can then exploit the fact that the hyperbolicity of the hypersurface
X D fwd D P.z/g � PnC1 implies the hyperbolicity of the complement
Pn �H , whenH D fP.z/ D 0g. Pacienza and Rousseau [PaRo07] proved that
forH very general of degree d � 2nC2�k, any k-dimensional log-subvariety
.Y;D/ of .Pn;H/ is of log-general type, i.e., any log-resolution � W eY ! Y of
.Y;D/ has a big log-canonical bundle KeY .��D/.

One of the early important result in the direction of Conjecture 0.2 is
the proof of the Bloch conjecture, as proposed by Bloch [Blo26a] and Ochiai
[Och77]: this is the special case of the conjecture when the irregularity of X
satisfies q D h0.X;�1

X / > dimX . Various solutions have then been obtained
in fundamental papers of Noguchi [Nog77a], [Nog81a], [Nog81b], Kawamata
[Kaw80], Green–Griffiths [GrGr80], McQuillan [McQ96], and the book of
Noguchi–Winkelmann [NoWi13], by means of different techniques. Especially,
assuming X to be of (log-) general type, it is now known by [NWY07], [NWY13]
and [LuWi12] that if the (log-) irregularity is q � dimX , then no entire curve
f W C ! X has a Zariski dense image, and the GGL conjecture holds in
the compact (i.e., non-logarithmic) case. In the case of complex surfaces, major
progress was achieved by Lu, Miyaoka and Yau [LuYa90], [LuMi95], [LuMi96],
[Lu96]; McQuillan [McQ96] extended these results to the case of all surfaces
satisfying c2

1 > c2, in a situation where there are many symmetric differen-
tials, e.g. sections of H 0.X; SmT �

X ˝ O.�1//, m � 1 (cf. also [McQ99],
[DeEG00] for applications to hyperbolicity). A more recent result is the deep
statement due to Diverio, Merker and Rousseau [DMR10], confirming Conjec-
ture 0.2 when X � PnC1 is a generic non-singular hypersurface of sufficiently
large degree d � 2n5

(cf. Sect. 10); in the case n D 2 of surfaces in P3, we are
here in the more difficult situation where symmetric differentials do not exist
(we have c2

1 < c2 in this case). Conjecture 0.2 was also considered by S. Lang
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[Lang86], [Lang87] in view of arithmetic counterparts of the above geometric
statements.

Although these optimal conjectures are still unsolved at present, substantial
progress was achieved in the meantime, for a large part via the technique of
producing jet differentials. This is done either by direct calculations or by vari-
ous indirect methods: Riemann–Roch calculations, vanishing theorems... Vojta
[Voj87] and McQuillan [McQ98] introduced the “diophantine approximation”
method, which was soon recognized to be an important tool in the study of
holomorphic foliations, in parallel with Nevanlinna theory and the construction
of Ahlfors currents. Around 2000, Siu [Siu02], [Siu04] showed that generic
hyperbolicity results in the direction of the Kobayashi conjecture could be in-
vestigated by combining the algebraic techniques of Clemens, Ein and Voisin
with the existence of certain “vertical” meromorphic vector fields on the jet
space of the universal hypersurface of high degree; these vector fields are ac-
tually used to differentiate the global sections of the jet bundles involved, so
as to produce new sections with a better control on the base locus. Also, dur-
ing the years 2007–2010, it was realized [Dem07a], [Dem07b], [Dem11] that
holomorphic Morse inequalities could be used to prove the existence of jet
differentials; in 2010, Diverio, Merker and Rousseau [DMR10] were able in
that way to prove the Green–Griffiths conjecture for generic hypersurfaces of
high degree in projective space, e.g. for d � 2n5

—their proof makes an es-
sential use of Siu’s differentiation technique via meromorphic vector fields, as
improved by Păun [Pau08] and Merker [Mer09] in 2008. The present study will
be focused on the holomorphic Morse inequality technique; as an application,
a partial answer to the Kobayashi and Green–Griffiths–Lang conjecture can be
obtained in a very wide context: the basic general result achieved in [Dem11]
consists of showing that for every projective variety of general type X , there
exists a global algebraic differential operator P on X (in fact many such oper-
ators Pj ) such that every entire curve f W C ! X must satisfy the differential
equations Pj .f If 0; : : : ; f .k// D 0. One also recovers from there the result of
Diverio–Merker–Rousseau on the generic Green–Griffiths conjecture (with an
even better bound asymptotically as the dimension tends to infinity), as well as a
result of Diverio–Trapani [DT10] on the hyperbolicity of generic 3-dimensional
hypersurfaces in P4. Siu [Siu04], [Siu15] has introduced a more explicit but
more computationally involved approach based on the use of “slanted vector
fields” on jet spaces, extending ideas of Clemens [Cle86] and Voisin [Voi96]
(cf. Sect. 10 for details); [Siu15] explains how this strategy can be used to assert
the Kobayashi conjecture for d � dn, with a very large bound and non-effective
bound dn instead of .2nC 1/.

As we will see here, it is useful to work in a more general context and to con-
sider the category of directed varieties. When the problems under consideration
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are birationally invariant, as is the case of the Green–Griffiths–Lang conjecture,
varieties can be replaced by non-singular models; for this reason, we will mostly
restrict ourselves to the case of non-singular varieties in the rest of the introduc-
tion. A directed projective manifold is a pair .X; V /, where X is a projective
manifold equipped with an analytic linear subspace V � TX , i.e., a closed irre-
ducible complex analytic subset V of the total space of TX , such that each fiber
Vx D V \ TX;x is a complex vector space. If X is not connected, V should
rather be assumed to be irreducible merely over each connected component of
X , but we will hereafter assume that our manifolds are connected. A morphism
ˆ W .X; V / ! .Y;W / in the category of directed manifolds is an analytic map
ˆ W X ! Y such that ˆ�V � W . We refer to the case V D TX as being the
absolute case, and to the case V D TX=S D Ker d� for a fibration � W X ! S ,
as being the relative case; V may also be taken to be the tangent space to the
leaves of a singular analytic foliation on X , or maybe even a non-integrable lin-
ear subspace of TX . We are especially interested in entire curves that are tangent
to V , namely non-constant holomorphic morphisms f W .C; TC/ ! .X; V / of
directed manifolds. In the absolute case, these are just arbitrary entire curves
f W C ! X .

0.4. Generalized GGL conjecture. Let .X; V / be a projective directed mani-
fold. Define the entire curve locus of .X; V / to be the Zariski closure of the
locus of entire curves tangent to V , i.e.,

ECL.X; V / D
[

f W.C;TC/!.X;V /

f .C/
Zar
:

Then, if .X; V / is of general type in the sense that the canonical sheaf sequence
K�

V is big (cf. Proposition 2.11 below), Y D ECL.X; V / is a proper algebraic
subvariety Y � X .

[We will say that .X; V / is Brody hyperbolic if ECL.X; V / D ; ; by Brody’s
reparametrization technique, this is equivalent to Kobayashi hyperbolicity when-
ever X is compact.]

In case V has no singularities, the canonical sheaf KV is defined to be
.det.O.V ///�, where O.V / is the sheaf of holomorphic sections of V , but in
general this naive definition would not work. Take for instance a generic pencil
of elliptic curves �P.z/ C �Q.z/ D 0 of degree 3 in P2

C, and the linear space
V consisting of the tangents to the fibers of the rational map P2

C
> P1

C defined
by z 7! Q.z/=P.z/. Then V is given by

0 �! O.V / �! O.TP2
C

/
P dQ�Q dP! OP2

C

.6/˝ JS �! 0;

where S D Sing.V / consists of the 9 points fP.z/ D 0g\fQ.z/ D 0g, and JS

is the corresponding ideal sheaf of S . Since det.O.TP2// D O.3/, we see that
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.det.O.V ///� D O.3/ is ample, thus generalized GGL conjecture 0.4 would not
have a positive answer (all leaves are elliptic or singular rational curves and thus
covered by entire curves). An even more “degenerate” example is obtained with
a generic pencil of conics, in which case .det.O.V ///� D O.1/ and #S D 4.

If we want to get a positive answer to Problem 0.4, it is therefore indispens-
able to give a definition of KV that incorporates in a suitable way the singular-
ities of V I this will be done in Definition 2.12 (see also Proposition 2.11). The
goal is then to give a positive answer to Problem 0.4 under some possibly more
restrictive conditions for the pair .X; V /. These conditions will be expressed in
terms of the tower of Semple jet bundles
(0.5)
.Xk; Vk/ �! .Xk�1; Vk�1/ �! � � � �! .X1; V1/ �! .X0; V0/ WD .X; V /

which we define more precisely in Sect. 1, following [Dem95]. It is constructed
inductively by setting Xk D P.Vk�1/ (projective bundle of lines of Vk�1), and
all Vk have the same rank r D rankV , so that dimXk D nC k.r � 1/, where
n D dimX . Entire curve loci have their counterparts for all stages of the Semple
tower, namely, one can define

(0.6) ECLk.X; V / D
[

f W.C;TC/!.X;V /

fŒk�.C/
Zar
;

where fŒk� W .C; TC/ ! .Xk; Vk/ is the k-jet of f . These are by definition
algebraic subvarieties of Xk , and if we denote by �k;` W Xk ! X` the natural
projection from Xk to X`, 0 � ` � k, we get immediately

(0.7) �k;`.ECLk.X; V // D ECL`.X; V /; ECL0.X; V / D ECL.X; V /:

Let OXk
.1/ be the tautological line bundle over Xk associated with the projec-

tive structure. We define the k-stage Green–Griffiths locus of .X; V / to be

(0.8) GGk.X; V / D .Xk ��k/ \
\

m2N
.base locus of OXk

.m/˝ ��
k;0
A�1/;

where A is any ample line bundle on X and �k D S
2�`�k �

�1
k;`
.D`) is the

union of “vertical divisors” (see (6.9) and (7.17); the vertical divisors play
no role and have to be removed in this context; for this, one uses the fact
that fŒk�.C/ is not contained in any component of �k , cf. [Dem95]). Clearly,
GGk.X; V / does not depend on the choice of A.

0.9. Basic vanishing theorem for entire curves. Let .X; V / be an arbitrary
directed variety with X non-singular, and let A be an ample line bundle on X .
Then any entire curve f W .C; TC/ ! .X; V / satisfies the differential equations
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P.f If 0; : : : ; f .k// D 0 arising from sections � 2 H 0.Xk;OXk
.m/˝ ��

k;0
A�1/.

As a consequence, one has

ECLk.X; V / � GGk.X; V /:

The main argument goes back to [GrGr80]. We will give here a complete
proof of Theorem 0.9, based only on the arguments [Dem95], namely on the
Ahlfors–Schwarz lemma (the alternative proof given in [SiYe96b] uses Nevan-
linna theory and is analytically more involved). By (0.7) and Theorem 0.9 we
infer that

(0.10) ECL.X; V / � GG.X; V /;

where GG.X; V / is the global Green–Griffiths locus of .X; V / defined by

(0.11) GG.X; V / D
\
k2N

�k;0 .GGk.X; V // :

The main result of [Dem11] (Theorem 2.37 and Corollary 3.4) implies the fol-
lowing useful information:

0.12. Theorem. Assume that .X; V / is of “general type”, i.e., that the pluri-
canonical sheaf sequence K�

V is big on X . Then there exists an integer k0

such that GGk.X; V / is a proper algebraic subset of Xk for k � k0 [though
�k;0.GGk.X; V // might still be equal to X for all k].

In fact, if F is an invertible sheaf on X such that K�
V ˝ F is big (cf. Propo-

sition 2.11), the probabilistic estimates of [Dem11, Corollary 2.38 and Corol-
lary 3.4] produce global sections of

(0.13) OXk
.m/˝ ��

k;0O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
�

for m � k � 1. The (long and elaborate) proof uses a curvature computation
and singular holomorphic Morse inequalities to show that the line bundles in-
volved in (0.11) are big on Xk for k � 1. One applies this to F D A�1 with A
ample on X to produce sections and conclude that GGk.X; V / � Xk .

Thanks to (0.10), the GGL conjecture is satisfied whenever GG.X; V / � X .
By [DMR10], this happens for instance in the absolute case whenX is a generic
hypersurface of degree d � 2n5

in PnC1 (see also [Pau08] for better bounds
in low dimensions, and [Siu02], [Siu04]). However, as already mentioned in
[Lang86], very simple examples show that one can have GG.X; V / D X even
when .X; V / is of general type, and this already occurs in the absolute case as
soon as dimX � 2. A typical example is a product of directed manifolds

(0.14) .X; V / D .X 0; V 0/ � .X 00; V 00/; V D pr0 � V 0 ˚ pr00 � V 00:
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The absolute case V D TX , V 0 D TX 0 , V 00 D TX 00 on a product of curves is
the simplest instance. It is then easy to check that GG.X; V / D X , cf. Defini-
tion 3.2. Diverio and Rousseau [DR15] have given many more such examples,
including the case of indecomposable varieties .X; TX /, e.g. Hilbert modular
surfaces, or more generally compact quotients of bounded symmetric domains
of rank � 2.

The problem here is the failure of some sort of stability condition that is
introduced in Remark 11.10. This leads us to make the assumption that the di-
rected pair .X; V / is strongly of general type: by this, we mean that the induced
directed structure .Z;W / on each non-vertical subvarietyZ � Xk that projects
onto X either has rankW D 0 or is of general type modulo X� ! X , in the
sense that K�

W`
˝ OZ`

.p/�Z`
is big for some stage of the Semple tower of

.Z;W / and some p � 0 (see Sect. 11 for details—one may have to replace Z`

by a suitable modification). Our main result can be stated as follows:

0.15. Theorem (partial solution to the generalized GGL conjecture). Let
.X; V / be a directed pair that is strongly of general type. Then the Green–
Griffiths–Lang conjecture holds true for .X; V /, namely ECL.X; V / is a proper
algebraic subvariety of X .

The proof proceeds through a complicated induction on n D dimX and
k D rankV , which is the main reason why we have to introduce directed vari-
eties, even in the absolute case. An interesting feature of this result is that the
conclusion on ECL.X; V / is reached without having to know anything about the
Green–Griffiths locus GG.X; V /, even a posteriori. Nevertheless, this is not yet
enough to confirm the GGL conjecture. Our hope is that pairs .X; V / that are
of general type without being strongly of general type—and thus exhibit some
sort of “jet-instability”—can be investigated by different methods, e.g. by the
diophantine approximation techniques of McQuillan [McQ98]. However, The-
orem 0.15 provides a sufficient criterion for Kobayashi hyperbolicity [Kob70],
thanks to the following concept of algebraic jet-hyperbolicity.

0.16. Definition. A directed variety .X; V / will be said to be algebraically
jet-hyperbolic if the induced directed variety structure .Z;W / on every non-
vertical irreducible algebraic variety Z of Xk with rankW � 1 is such that
K�

W`
˝ OZ`

.p/�Z`
is big for some stage of the Semple tower of .Z;W / and

some p � 0 Œpossibly after taking a suitable modification of Z` ; see Sects. 11
and 12 for the definition of induced directed structures and further details�. We
also say that a projective manifold X is algebraically jet-hyperbolic if .X; TX /

is.

In this context, Theorem 0.15 yields the following connection between alge-
braic jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.
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0.17. Theorem. Let .X; V / be a directed variety structure on a projective man-
ifold X . Assume that .X; V / is algebraically jet-hyperbolic. Then .X; V / is
Kobayashi hyperbolic.

The following conjecture would then make a bridge between these theorems
and the GGL and Kobayashi conjectures.

0.18. Conjecture. Let X � PnCc be a complete intersection of hypersurfaces
of respective degrees d1; : : : ; dc , codimX D c.

(a) If X is non-singular and of general type, i.e., if
P
dj � nC c C 2, then X

is in fact strongly of general type.
(b) If X is (very) generic and

P
dj � 2n C c, then X is algebraically jet-

hyperbolic.

Since Conjecture 0.18 only deals with algebraic statements, our hope is that a
proof can be obtained through a suitable deepening of the techniques introduced
by Clemens, Ein, Voisin and Siu. Under the slightly stronger condition

P
dj �

2nCcC1, Voisin showed indeed that every subvariety Y � X is of general type,
ifX is generic. To prove the Kobayashi conjecture in its optimal incarnation, we
would need to show that such Y ’s are strongly of general type.

In the direction of getting examples of low degrees, Dinh Tuan Huynh [DTH16a]
showed that there are families of hyperbolic hypersurfaces of degree .2nC 2/

in PnC1 for 2 � n � 5, and in [DTH16b] he showed that certain small de-
formations (in Euclidean topology) of a union of d.nC 3/2=4e hyperplanes in
general position in PnC1 are hyperbolic. In [Ber18], G. Bérczi stated a positiv-
ity conjecture for Thom polynomials of Morin singularities (see also [BeSz12]),
and announced that it would imply a polynomial bound dn D 2n9 C 1 for the
generic hyperbolicity of hypersurfaces. By using the “technology” of Semple
towers and following new ideas introduced by D. Brotbek [Brot17] and Ya Deng
[Deng16], we prove here the following effective (although non-optimal) version
of the Kobayashi conjecture on generic hyperbolicity.

0.19. Theorem. Let Z be a projective .n C 1/-dimensional manifold and A a
very ample line bundle on Z. Then, for a general section � 2 H 0.Z;Ad / and
d � dn, the hypersurface X� D ��1.0/ is Kobayashi hyperbolic and, in fact,
satisfies the stronger property of being algebraically jet hyperbolic. The bound
dn for the degree can be taken to be dn WD b1

3
.en/2nC2c.

I would like to thank Damian Brotbek, Ya Deng, Simone Diverio, Gianluca
Pacienza, Erwan Rousseau, Mihai Păun and Mikhail Zaidenberg for very stim-
ulating discussions on these questions. These notes also owe a lot to their work.
I also with to thank the unknown referees for a large number of corrections and
very useful suggestions.
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1. Basic hyperbolicity concepts

1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, accord-
ing to S. Kobayashi [Kob70], [Kob76]. Let X be a complex space. Given two
points p; q 2 X , let us consider a chain of analytic disks from p to q, that is
a sequence of holomorphic maps f0; f1; : : : ; fk W � ! X from the unit disk
� D D.0; 1/ � C to X , together with pairs of points a0; b0; : : : ; ak; bk of �
such that

p D f0.a0/; q D fk.bk/; fi .bi / D fiC1.aiC1/; i D 0; : : : ; k � 1:
Denoting this chain by ˛, we define its length `.˛/ to be

(1:10) `.˛/ D dP .a1; b1/C � � � C dP .ak; bk/;

where dP is the Poincaré distance on�, and the Kobayashi pseudodistance dK
X

on X to be

(1:100) dK
X .p; q/ D inf

˛
`.˛/:

A Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous
positive (resp. non-negative) function N on the total space E, that is,

N.�	/ D j�jN.	/ for all � 2 C and 	 2 E,

but in general N is not assumed to be subadditive (i.e., convex) on the fibers
of E. A Finsler (pseudo-)metric on E is thus nothing but a Hermitian (semi-)norm
on the tautological line bundle OP.E/.�1/ of lines of E over the projectivized
bundle Y D P.E/. The Kobayashi–Royden infinitesimal pseudometric on X is
the Finsler pseudometric on the tangent bundle TX defined by

(1.2)
kX .	/ D inf f� > 0 I 9f W � ! X; f .0/ D x; �f 0.0/ D 	g;
x 2 X; 	 2 TX;x :

Here, if X is not smooth at x, we take TX;x D .mX;x=m
2
X;x/

� to be the Zariski
tangent space, i.e., the tangent space of a minimal smooth ambient vector space
containing the germ .X; x/; all tangent vectors may not be reached by analytic
disks and in those cases we put kX .	/ D C1. When X is a smooth manifold,
it follows from the work of H.L. Royden ([Roy71], [Roy74]) that kX is upper-
continuous on TX and that dK

X is the integrated pseudodistance associated with
the pseudometric, i.e.,

dK
X .p; q/ D inf

�

Z
�

kX .

0.t// dt;
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where the infimum is taken over all piecewise smooth curves joining p to q ; in
the case of complex spaces, a similar formula holds, involving jets of analytic
curves of arbitrary order, cf. S. Venturini [Ven96]. When X is a non-singular
projective variety, it has been shown in [DeLS94] that the Kobayashi pseudodis-
tance and the Kobayashi–Royden infinitesimal pseudometric can be computed
by looking only at analytic disks that are contained in algebraic curves.

1.3. Definition. A complex space X is said to be hyperbolic (in the sense of
Kobayashi) if dK

X is actually a distance, namely if dK
X .p; q/ > 0 for all pairs of

distinct points .p; q/ in X .

When X is hyperbolic, it is interesting to investigate when the Kobayashi
metric is complete: one then says that X is a complete hyperbolic space. How-
ever, we will be mostly concerned with compact spaces here, so completeness
is irrelevant in that case.

Another important property is the monotonicity of the Kobayashi pseudo-
metric with respect to holomorphic mappings. In fact, if ˆ W X ! Y is a
holomorphic map, it is easy to see from the definition that

(1.4) dK
Y .ˆ.p/;ˆ.q// � dK

X .p; q/; for all p; q 2 X .

The proof merely consists of taking the compositionˆıfi for all chains of ana-
lytic disks connecting p and q in X . Clearly the Kobayashi pseudodistance dK

C

on X D C is identically zero, as one can see by looking at arbitrarily large ana-
lytic disks � ! C, t 7! �t . Therefore, if there is an entire curve ˆ W C ! X ,
namely a non-constant holomorphic map defined on the whole complex plane C,
then by monotonicity dK

X is identically zero on the image ˆ.C/ of the curve,
and therefore X cannot be hyperbolic. When X is hyperbolic, it follows that X
cannot contain rational curves C ' P1, or elliptic curves C=ƒ, or more gener-
ally any non-trivial image ˆ W W D Cp=ƒ ! X of a p-dimensional complex
torus (quotient of Cp by a lattice). The only case where hyperbolicity is easy to
assess is the case of curves .dimCX D 1/.

1.5. Case of complex curves. Up to bihomorphism, any smooth complex curve
X belongs to one (and only one) of the following three types:

(a) (rational curve) X ' P1;
(b) (parabolic type) bX ' C, X ' C; C� or X ' C=ƒ (elliptic curve);
(c) (hyperbolic type) bX ' �. All compact curves X of genus g � 2 enter in

this category, as well asX D P1�fa; b; cg ' C�f0; 1g, orX D C=ƒ�fag
(elliptic curve minus one point).

In fact, as the disk is simply connected, every holomorphic map f W � ! X

lifts to the universal cover bf W � ! bX , so that f D � ı bf , where � W bX ! X

is the projection map, and the conclusions (a), (b), (c) follow easily from the
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Poincaré–Koebe uniformization theorem: every simply connected Riemann sur-
face is biholomorphic to C, the unit disk � or the complex projective line P1.

In some rare cases, the one-dimensional case can be used to study the case of
higher dimensions. For instance, it is easy to see by looking at projections that
the Kobayashi pseudodistance on a product X � Y of complex spaces is given
by

dK
X�Y ..x; y/; .x

0; y0// D max.dK
X .x; x0/; dK

Y .y; y
0//;(1.6)

kX�Y .	; 	
0/ D max.kX .	/;kY .	

0//;(1:60)

and from there it follows that a product of hyperbolic spaces is hyperbolic. As
a consequence .C � f0; 1g/2, which is also a complement of five lines in P2, is
hyperbolic.

1.B. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In this
context, we have the following well-known result of Brody [Bro78]. Its main
interest is to relate hyperbolicity to the non-existence of entire curves.

1.7. Brody reparametrization lemma. Let ! be a Hermitian metric on X and
let f W � ! X be a holomorphic map. For every " > 0, there exists a radius
R � .1�"/kf 0.0/k! and a homographic transformation  of the diskD.0;R/
onto .1 � "/� such that

k.f ı /0.0/k! D 1; k.f ı /0.t/k! � 1

1 � jt j2=R2
for every t 2 D.0;R/.

Proof. Select t0 2 � such that .1� jt j2/kf 0..1� "/t/k! reaches its maximum
for t D t0. The reason for this choice is that .1�jt j2/kf 0..1�"/t/k! is the norm
of the differential f 0..1 � "/t/ W T� ! TX with respect to the Poincaré metric
jdt j2=.1�jt j2/2 on T�, which is conformally invariant under Aut.�/. One then
adjusts R and  so that  .0/ D .1 � "/t0 and j 0.0/j kf 0. .0//k! D 1. As
j 0.0/j D 1�"

R
.1 � jt0j2/, the only possible choice for R is

R D .1 � "/.1 � jt0j2/kf 0. .0//k! � .1 � "/kf 0.0/k! :

The inequality for .f ı  /0 follows from the fact that the Poincaré norm is
maximum at the origin, where it is equal to 1 by the choice of R. ut

Using the Ascoli–Arzelà theorem we obtain immediately:
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1.8. Corollary (Brody). Let .X; !/ be a compact complex Hermitian manifold.
Given a sequence of holomorphic mappings f� W � ! X such that lim kf 0

�.0/k! D C1,
one can find a sequence of homographic transformations  � W D.0;R�/ ! .1 � 1=�/�
with limR� D C1, such that, after passing possibly to a subsequence, .f� ı  �/

converges uniformly on every compact subset of C towards a non-constant holo-
morphic map g W C ! X with kg0.0/k! D 1 and supt2C kg0.t/k! � 1.

An entire curve g W C ! X such that supC kg0k! D M < C1 is called
a Brody curve; this concept does not depend on the choice of ! when X is
compact, and one can always assume M D 1 by rescaling the parameter t .

1.9. Brody criterion. Let X be a compact complex manifold. The following
properties are equivalent:

(a) X is hyperbolic;
(b) X does not possess any entire curve f W C ! X;
(c) X does not possess any Brody curve g W C ! X;
(d) The Kobayashi infinitesimal metric kX is uniformly bounded below, namely

kX .	/ � ck	k! ; c > 0;

for any Hermitian metric ! on X .

Proof. (a) ) (b). If X possesses an entire curve f W C ! X , then by looking
at arbitrary large disksD.0;R/ � C, it is easy to see that the Kobayashi distance
of any two points in f .C/ is zero, so X is not hyperbolic.
(b) ) (c). This is trivial.
(c) ) (d). If (d) does not hold, there exists a sequence of tangent vectors
	� 2 TX;x�

with k	�k! D 1 and kX .	�/ ! 0. By definition, this means that
there exists an analytic curve f� W � ! X with f .0/ D x� and kf 0

�.0/k! �
.1 � 1

�
/=kX .	�/ ! C1. One can then produce a Brody curve g D C ! X by

Corollary 1.8, contradicting (c).
(d) ) (a). In fact (d) implies after integrating that dK

X .p; q/ � c d!.p; q/,
where d! is the geodesic distance associated with !, so dK

X must be non-
degenerate. ut

Notice also that if f W C ! X is an entire curve such that kf 0k! is un-
bounded, one can apply the Corollary 1.8 to f�.t/ WD f .t C a�/, where the se-
quence .a�/ is chosen such that kf 0

�.0/k! D kf .a�/k! ! C1. Brody’s result
then produces reparametrizations � W D.0;R�/ ! D.a� ; 1�1=�/ and a Brody
curve g D lim f ı  � W C ! X such that sup kg0k! D 1 and g.C/ � f .C/. It
may happen that the image g.C/ of such a limiting curve is disjoint from f .C/.
In fact Winkelmann [Win07] has given a striking example, actually a projective
3-fold X obtained by blowing-up a 3-dimensional abelian variety Y , such that

roshi
繝上う繝ｩ繧､繝郁｡ｨ遉ｺ



Kobayashi and Green–Griffiths–Lang conjectures 15

every Brody curve g W C ! X lies in the exceptional divisor E � X ; however,
entire curves f W C ! X can be dense, as one can see by taking f to be the
lifting of a generic complex line embedded in the abelian variety Y . For further
precise information on the localization of Brody curves, we refer the reader to
the remarkable results of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is
often referred to as Brody hyperbolicity. Thus, in the compact case, Brody hy-
perbolicity and Kobayashi hyperbolicity coincide (but Brody hyperbolicity is in
general a strictly weaker property when X is non-compact).

1.C. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness
property of hyperbolicity and a hyperbolicity criterion for subvarieties of com-
plex tori. By definition, a holomorphic family of compact complex manifolds is
a holomorphic proper submersion X ! S between two complex manifolds.

1.10. Proposition. Let � W X ! S be a holomorphic family of compact com-
plex manifolds. Then the set of s 2 S such that the fiber Xs D ��1.s/ is
hyperbolic is open in the Euclidean topology.

Proof. Let ! be an arbitrary Hermitian metric on X , .Xs�
/s�2S a sequence of

non-hyperbolic fibers, and s D lim s� . By the Brody criterion, one obtains a se-
quence of entire maps f� W C ! Xs�

such that kf 0
�.0/k! D 1 and kf 0

�k! � 1.
Ascoli’s theorem shows that there is a subsequence of f� converging uniformly
to a limit f W C ! Xs , with kf 0.0/k! D 1. Hence Xs is not hyperbolic and the
collection of non-hyperbolic fibers is closed in S . ut

Consider now an n-dimensional complex torus W , i.e., an additive quotient
W D Cn=ƒ, where ƒ � Cn is a (cocompact) lattice. By taking a composition
of entire curves C ! Cn with the projection Cn ! W we obtain an infinite
dimensional space of entire curves in W .

1.11. Theorem. Let X � W be a compact complex submanifold of a complex
torus. Then X is hyperbolic if and only if it does not contain any translate of a
subtorus.

Proof. If X contains some translate of a subtorus, then it contains lots of entire
curves and so X is not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion
there exists an entire curve f W C ! X such that kf 0k! � kf 0.0/k! D 1,
where ! is the flat metric on W inherited from Cn. This means that any lifting
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ef D . ef ; : : : ; ef�/ W C ! Cn is such that

nX
j D1

jf 0
j j2 � 1:

Then, by Liouville’s theorem, ef 0 is constant and therefore ef is affine linear.
But then the closure of the image of f is a translate a C H of a connected
(possibly real) subgroup H of W . We conclude that X contains the analytic
Zariski closure of a C H , namely a C HC, where HC � W is the smallest
closed complex subgroup of W containing H . ut

2. Directed manifolds

2.A. Basic definitions concerning directed manifolds

Let us consider a pair .X; V / consisting of an n-dimensional complex manifold
X equipped with a linear subspace V � TX : if we assume X to be connected,
this is by definition an irreducible closed analytic subspace of the total space of
TX such that each fiber Vx D V \TX;x is a vector subspace of TX;x . If W � �1

X
is the sheaf of 1-forms vanishing on V , then W is coherent (this follows from
the direct image theorem by looking at the proper morphism P.V / � P.TX / ! X),
and V is locally defined by

Vx D f	 2 TX;x I j̨ .x/ � 	 D 0; 1 � j � N g; j̨ 2 H 0.U;�1
X /; x 2 U;

where .˛1; : : : ; ˛N /, is a local family of generators of W on a small open set U .
We can also associate to V a coherent sheaf V WD W ? D Hom.�1

X=W ;OX / �
O.TX /, which is a saturated subsheaf of O.TX /, i.e., such that O.TX /=V has
no torsion; then V is also reflexive, i.e., V �� D V . We will refer to such a
pair as being a (complex) directed manifold, and we will in general think of
V as a linear space (rather than considering the associated saturated subsheaf
V � O.TX /). A morphism ˆ W .X; V / ! .Y;W / in the category of complex
directed manifolds is a holomorphic map such that ˆ�.V / � W .

Here, the rank x 7! dimC Vx is Zariski lower semi-continuous, and it may
a priori jump. The rank r WD rank.V / 2 f0; 1; : : : ; ng of V is by definition the
dimension of Vx at a generic point. The dimension may be larger at non-generic
points; this happens e.g. on X D Cn for the rank 1 linear space V generated by
the Euler vector field: Vz D C

P
1�j�n zj

@
@zj

for z ¤ 0, and V0 D Cn. Our phi-
losophy is that directed manifolds are also useful to study the “absolute case”,
i.e., the case V D TX , because there are certain functorial constructions which
are quite natural in the category of directed manifolds (see e.g. Sects. 5, 6, 7).
We think of directed manifolds as a kind of “relative situation”, covering e.g.
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the case when V is the relative tangent space to a holomorphic map X ! S . It
is important to notice that the local sections of V need not generate the fibers
of V at singular points, as one sees already in the case of the Euler vector field
when n � 2. We also want to stress that no assumption need be made on the Lie
bracket tensor Œ�; �� W V � V ! O.TX /=V , i.e., we do not assume any kind of
integrability for V or W .

The singular set Sing.V / is by definition the set of points where V is not lo-
cally free, it can also be defined as the indeterminacy set of the (meromorphic)
classifying map ˛ W X > Gr.TX /, z 7! Vz to the Grassmannian of r dimen-
sional subspaces of TX . We thus have V�X�Sing.V / D ˛�S , where S ! Gr.TX /

is the tautological subbundle ofGr.TX /. The singular set Sing.V / is an analytic
subset of X of codim � 2, and hence V is always a holomorphic subbundle
outside of codimension 2. Thanks to this remark, one can most often treat linear
spaces as vector bundles (possibly modulo passing to the Zariski closure along
Sing.V /).

2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in Sect. 1 can be extended to the category of directed
manifolds.

2.1. Definition. Let .X; V / be a complex directed manifold.

(i) The Kobayashi–Royden infinitesimal metric of .X; V / is the Finsler metric
on V defined for any x 2 X and 	 2 Vx by

k.X;V /.	/

D inf f� > 0 I 9f W � ! X; f .0/ D x; �f 0.0/ D 	; f 0.�/ � V g:
Here � � C is the unit disk and the map f is an arbitrary holomorphic
map which is tangent to V , i.e., such that f 0.t/ 2 Vf .t/ for all t 2 �. We
say that .X; V / is infinitesimally hyperbolic if k.X;V / is positive definite
on every fiber Vx and satisfies a uniform lower bound k.X;V /.	/ � "k	k!

in terms of any smooth Hermitian metric ! on X , when x describes a
compact subset of X .

(ii) More generally, the Kobayashi–Eisenman infinitesimal pseudometric of
.X; V / is the pseudometric defined on all decomposable p-vectors 	 D
	1 ^ � � � ^ 	p 2 ƒpVx , 1 � p � r D rank.V /, by

ep

.X;V /
.	/

D inff� > 0 I 9f W Bp ! X; f .0/ D x; �f�.
0/ D 	; f�.TBp
/ � V g;

where Bp is the unit ball in Cp and 
0 D @=@t1 ^ � � � ^@=@tp is the unit p-
vector of Cp at the origin. We say that .X; V / is infinitesimally p-measure
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hyperbolic if ep

.X;V /
is positive definite on every fiber ƒpVx and satisfies

a locally uniform lower bound in terms of any smooth metric.

Ifˆ W .X; V / ! .Y;W / is a morphism of directed manifolds, it is immediate
to check that we have the monotonicity property

k.Y;W /.ˆ�	/ � k.X;V /.	/; 8	 2 V;(2.2)

ep

.Y;W /
.ˆ�	/ � ep

.X;V /
.	/; 8	 D 	1 ^ � � � ^ 	p 2 ƒpV:(2:2p)

The following proposition shows that virtually all reasonable definitions of the
hyperbolicity property are equivalent if X is compact (in particular, the addi-
tional assumption that there is locally uniform lower bound for k.X;V / is not
needed). We merely say in that case that .X; V / is hyperbolic.

2.3. Proposition. For an arbitrary directed manifold .X; V /, the Kobayashi–
Royden infinitesimal metric k.X;V / is upper semi-continuous on the total space
of V . IfX is compact, .X; V / is infinitesimally hyperbolic if and only if there are
no entire curves g W C ! X tangent to V . In that case, k.X;V / is a continuous
(and positive definite) Finsler metric on V .

Proof. The proof is almost identical to the standard proof for kX , for which
we refer to Royden [Roy71], [Roy74]. One of the main ingredients is that one
can find a Stein neighborhood of the graph of any analytic disk (thanks to a
result of [Siu76], cf. also [Dem90a] for more general results). This allows to
obtain “free” small deformations of any given analytic disk, as there are many
holomorphic vector fields on a Stein manifold. ut

Another easy observation is that the concept of p-measure hyperbolicity gets
weaker and weaker as p increases (we leave it as an exercise to the reader, this
is mostly just linear algebra).

2.4. Proposition. If .X; V / is p-measure hyperbolic, then it is .pC1/-measure
hyperbolic for all p 2 f1; : : : ; rank.V / � 1g.

Again, an argument extremely similar to the proof of Proposition 1.10 shows
that relative hyperbolicity is an open property.

2.5. Proposition. Let .X ;V / ! S be a holomorphic family of compact di-
rected manifolds (by this, we mean a proper holomorphic map X ! S together
with an analytic linear subspace V � TX =S � TX of the relative tangent bun-
dle, defining a deformation .Xs; Vs/s2S of the fibers). Then the set of s 2 S such
that the fiber .Xs; Vs/ is hyperbolic is open in S with respect to the Euclidean
topology.

Let us mention here an impressive result proved by Marco Brunella [Bru03],
[Bru05], [Bru06] concerning the behavior of the Kobayashi metric on foliated
varieties.
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2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with
a (possibly singular) rank 1 holomorphic foliation which is not a foliation by
rational curves. Then the canonical bundle KF D F � of the foliation is pseu-
doeffective (i.e., the curvature of KF is � 0 in the sense of currents).

The proof is obtained by putting on KF precisely the metric induced by the
Kobayashi metric on the leaves whenever they are generically hyperbolic (i.e.,
covered by the unit disk). The case of parabolic leaves (covered by C) has to be
treated separately.

2.C. Pluricanonical sheaves of a directed variety

Let .X; V / be a directed projective manifold, where V is possibly singular, and
let r D rankV . If � W bX ! X is a proper modification (a composition of blow-
ups with smooth centers, say), we get a directed manifold .bX; bV / by taking bV
to be the closure of ��1� .V 0/, where V 0 D V�X 0 is the restriction of V over
a Zariski open set X 0 � X � Sing.V / such that � W ��1.X 0/ ! X 0 is a
biholomorphism. We say that .bX; bV / is a modification of .X; V / and write bV D
��V .

We will be interested in taking modifications realized by iterated blow-ups of
certain non-singular subvarieties of the singular set Sing.V /, so as to eventually
“improve” the singularities of V ; outside of Sing.V / the effect of blowing-up
will be irrelevant. The canonical sheaf KV , resp. the pluricanonical sheaf se-
quenceKŒm�

V , will be defined here in several steps, using the concept of bounded
pluricanonical forms that was already introduced in [Dem11].

2.7. Definition. For a directed pair .X; V /withX non-singular, we define bKV

(resp. bK
Œm�

V ) for any integer m � 0, to be the rank 1 analytic sheaves such that

bKV .U / D sheaf of locally bounded sections of OX .ƒ
rV 0�/.U \X 0/;

bK
Œm�

V .U / D sheaf of locally bounded sections of OX ..ƒ
rV 0�/˝m/.U \X 0/;

where r D rank.V /, X 0 D X � Sing.V /, V 0 D V�X 0 , and “locally bounded”
means bounded with respect to a smooth Hermitian metric h on TX , on every
set W \X 0 such that W is relatively compact in U .

In the trivial case r D 0, we simply set bK
Œm�

V D OX for all m; clearly
ECL.X; V / D ; in that case, so there is not much to say. The above defini-

tion of bK
Œm�

V may look like an analytic one, but it can easily be turned into an
equivalent algebraic definition:
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2.8. Proposition. Consider the natural morphism O.ƒrT �
X / ! O.ƒrV �/,

where r D rankV and O.ƒrV �/ is defined as the quotient of O.ƒrT �
X / by

r-forms that have zero restrictions to O.ƒrV �/ on X � Sing.V /. The bidual
LV D OX .ƒ

rV �/�� is an invertible sheaf, and our natural morphism can be
written

(2:81) O.ƒrT �
X / �! O.ƒrV �/ D LV ˝ JV � LV ;

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing.V /,
and the arrow on the left is surjective by definition. Then

(2:82) bK
Œm�

V D L ˝m
V ˝ J m

V ;

where J m
V is the integral closure of J m

V in OX . In particular, bK
Œm�

V is always
a coherent sheaf.

Proof. Let .uk/ be a set of generators of O.ƒrV �/ obtained (say) as the im-
ages of a basis .dzI /jI jDr of ƒrT �

X in some local coordinates near a point
x 2 X . Write uk D gk`, where ` is a local generator of LV at x. Then
JV D .gk/ by definition. The boundedness condition expressed in Defini-
tion 2.7 means that we take sections of the form f `˝m, where f is a holomor-
phic function on U \X 0 (and U a neighborhood of x), such that

(2:83) jf j � C
�X

jgkj
�m

for some constant C > 0. But then f extends holomorphically to U into a
function that lies in the integral closure J

m

V (it is well-known that the latter is
characterized analytically by condition (2:83)). This proves Proposition 2.8. ut
2.9. Lemma. Let .X; V / be a directed variety.

(a) For any modification � W .bX; bV / ! .X; V /, there are always well-defined
injective natural morphisms of rank 1 sheaves

bK
Œm�

V ,�! ��.bK
Œm�bV / ,�! L ˝m

V :

(b) The direct image ��.bK
Œm�bV / may only increase when we replace � by a

“higher” modification e� D �0 ı � W eX ! bX ! X and bV D ��V byeV D e��V , i.e., there are injections

��.bK
Œm�bV / ,�! e��.bK

Œm�eV / ,�! L ˝m
V :

We refer to this property as the monotonicity principle.
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Proof. (a) The existence of the first arrow is seen as follows: the differential
�� D d� W bV ! ��V is smooth, so it is bounded with respect to ambient
Hermitian metrics on X and bX . Going to the duals reverses the arrows while
preserving boundedness with respect to the metrics. We thus get an arrow

��.bV ?/ ,�! bbV ?:

By taking the top exterior power, followed by the m-th tensor product and the

integral closure of the ideals involved, we get an injective arrow ��.bKŒm�

V / ,! bK
Œm�bV .

Finally we apply the direct image functor �� and the canonical morphism
F ! ����F to get the first inclusion morphism. The second arrow comes

from the fact that ��.bKŒm�

V / coincides with L ˝m
V (and with det.V �/˝m) on

the complement of the codimension 2 set S D Sing.V / [ �.Exc.�//, and the
fact that for every open set U � X , sections of LV defined on U � S auto-
matically extend to U by Riemann’s extension theorem (or Hartog’s extension
theorem...), even without any boundedness assumption.
(b) Given �0 W eX ! bX , we argue as in (a) that there is a bounded morphism
d�0 W eV ! bV . ut

By the monotonicity principle and the strong Noetherian property of coher-
ent ideals, we infer that there exists a maximal direct image when � W bX ! X

runs over all non-singular modifications of X . The following definition is thus
legitimate.

2.10. Definition. We define the pluricanonical sheaves Km
V of .X; V / to be the

inductive limits

K
Œm�
V WD lim�!

�

��.bK
Œm�bV / D max

�
��.bK

Œm�bV /

taken over the family of all modifications � W .bX; bV / ! .X; V /, with the trivial
(filtering) partial order. The canonical sheaf KV itself is defined to be the same
as KŒ1�

V . By construction, we have for every m � 0 inclusions

bK
Œm�

V ,�! K
Œm�
V ,�! L ˝m

V ;

and KŒm�
V D J Œm�

V � L ˝m
V for a certain sequence of integrally closed ideals

J Œm�
V � OX .

It is clear from this construction that KŒm�
V is birationally invariant, i.e., that

K
Œm�
V D ��.KŒm�

V 0 / for every modification � W .X 0; V 0/ ! .X; V /. Moreover
the sequence is submultiplicative, i.e., there are injections

K
Œm1�
V ˝K

Œm2�
V ,�! K

Œm1Cm2�
V
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for all non-negative integers m1; m2 ; the corresponding sequence of ideals
J Œm�

V is thus also submultiplicative. By blowing up J Œm�
V and taking a desin-

gularization bX of the blow-up, one can always find a log-resolution of J Œm�
V ,

i.e., a modification �m W bXm ! X such that ��
mJ Œm�

V � O bXm
is an invertible

ideal sheaf; it follows that

��
mK

Œm�
V D ��

mJ Œm�
V � .��

mLV /
˝m

is an invertible sheaf on bXm. We do not know whether �m can be taken inde-
pendent of m, nor whether the inductive limit introduced in Definition 2.10 is
reached for a � that is independent of m. If such a “uniform” � exists, it could
be thought of as some sort of replacement for the resolution of singularities of
directed structures (which do not exist in the naive sense that V could be made
non-singular). By means of a standard Serre–Siegel argument, one can easily
show

2.11. Proposition. Let .X; V / be a directed variety .X; V / and F be an invert-
ible sheaf on X . The following properties are equivalent:

(a) there exists a constant c > 0 andm0 > 0 such that h0.X;K
Œm�
V ˝F˝m/ �

cmn for m � m0, where n D dimX;
(b) the space of sections H 0.X;K

Œm�
V ˝ F˝m/ provides a generic embedding

of X in projective space for sufficiently large m;
(c) there exists m > 0 and a log-resolution �m W bXm ! X of KŒm�

V such that

��
m.K

Œm�
V ˝ F˝m/ is a big invertible sheaf on bXm;

(d) there exists m > 0, a modification e�m W .eXm; eVm/ ! .X; V / and a log-

resolution �0
m W bXm ! eX of bK

Œm�eVm
such that �0 �

m .
bK

Œm�eVm
˝ e��

mF
˝m/ is a

big invertible sheaf on bXm.

We will express any of these equivalent properties by saying that the twisted
pluricanonical sheaf sequence K�

V ˝ F � is big.

In the special case F D OX , we introduce

2.12. Definition. We say that .X; V / is of general type if K�
V is big.

2.13. Remarks.
(a) At this point, it is important to stress the difference between “our” canoni-
cal sheaf KV , and the sheaf LV , which is considered by some experts as “the
canonical sheaf of the foliation” defined by V , in the integrable case. Notice
that LV can also be obtained as the direct image LV D i�O.det.V �// associ-
ated with the injection i W X � Sing.V / ,! X . The discrepancy already occurs
with the rank 1 linear space V � TPn

C
consisting at each point z ¤ 0 of the
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tangent to the line .0z/ (so that necessarily V0 D TPn
C

;0). As a sheaf (and not
as a linear space), i�O.V / is the invertible sheaf generated by the vector field
	 D P

zj @=@zj on the affine open set Cn � Pn
C, and therefore LV WD i�O.V �/

is generated over Cn by the unique 1-form u such that u.	/ D 1. Since 	 van-
ishes at 0, the generator u is unbounded with respect to a smooth metric h0 on
TPn

C
, and it is easily seen thatKV is the non-invertible sheafKV D LV ˝mPn

C
;0.

We can make it invertible by considering the blow-up � W eX ! X of X D Pn
C

at 0, so that ��KV is isomorphic to ��LV ˝ O eX .�E/, where E is the ex-
ceptional divisor. The integral curves C of V are of course lines through 0, and
when a standard parametrization is used, their derivatives do not vanish at 0,
while the sections of i�O.V / do—a first sign that i�O.V / and i�O.V �/ are the
wrong objects to consider.
(b) When V is of rank 1, we get a foliation by curves on X . If .X; V / is of
general type (i.e.,K�

V is big), we will see in Proposition 4.9 that almost all leaves
of V are hyperbolic, i.e., covered by the unit disk. This would not be true if K�

V
was replaced by LV . In fact, the examples of pencils of conics or cubic curves
in P2 already produce this phenomenon, as we have seen in the introduction,
right after generalized GGL conjecture 0.4. For this second reason, we believe
that K�

V is a more appropriate concept of “canonical sheaf” than LV is.
(c) When dimX D 2, a singularity of a (rank 1) foliation V is said to be sim-
ple if the linear part of the local vector field generating O.V / has two distinct
eigenvalues � ¤ 0, � ¤ 0 such that the quotient �=� is not a positive rational
number. Seidenberg’s theorem [Sei68] says there always exists a composition
of blow-ups � W bX ! X such that bV D ��V only has simple singularities. It

is easy to check that the inductive limit canonical sheaf KŒm�
V D ��.bK

Œm�bV / is
reached whenever bV D ��V has simple singularities.

3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be re-
lated to other properties of a more algebraic nature. Theorem 3.1 below is a first
step in this direction.

3.1. Theorem. Let .X; V / be a compact complex directed manifold and letP
!jk dzj ˝dzk be a Hermitian metric on TX , with associated positive .1; 1/-

form ! D i
2

P
!jk dzj ^ dzk . Consider the following three properties, which

may or not be satisfied by .X; V /:

(i) .X; V / is hyperbolic.
(ii) There exists " > 0 such that every compact irreducible curve C � X

tangent to V satisfies

��.C / D 2g.C / � 2 � " deg!.C /;
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where deg!.C / D R
C !, and where g.C / is the genus of the normaliza-

tion C of C and �.C / its Euler characteristic (the degree coincides with
the usual concept of degree if X is projective, embedded in PN via a very
ample line bundle A, and ! D ‚A;hA

> 0; such an estimate is of course
independent of the choice of !, provided that " is changed accordingly).

(iii) There does not exist any non-constant holomorphic mapˆ W Z ! X from
an abelian variety Z to X such that ˆ�.TZ/ � V .

Then (i) ) (ii) ) (iii).

Proof. (i) ) (ii). If .X; V / is hyperbolic, there is a constant "0 > 0 such that
k.X;V /.	/ � "0k	k! for all 	 2 V . Now, let C � X be a compact irreducible
curve tangent to V and let � W C ! C be its normalization. As .X; V / is
hyperbolic, C cannot be a rational or elliptic curve. Hence C admits the disk as
its universal covering � W � ! C .

The Kobayashi–Royden metric k� is the Finsler metric jdzj=.1 � jzj2/ as-
sociated with the Poincaré metric jdzj2=.1 � jzj2/2 on �, and kC is such that
��kC D k�. In other words, the metric kC is induced by the unique Hermitian
metric on C of constant Gaussian curvature �4. If �� D i

2
dz^dz=.1� jzj2/2

and �C are the corresponding area measures, the Gauss–Bonnet formula (inte-
gral of the curvature D 2� �.C /) yieldsZ

C

d�C D �1
4

Z
C

curv.kC / D ��
2
�.C /:

On the other hand, if j W C ! X is the inclusion, the monotonicity property
(2.2) applied to the holomorphic map j ı � W C ! X shows that

kC .t/ � k.X;V /..j ı �/�t/ � "0k.j ı �/�tk! ; 8t 2 TC :

From this, we infer d�C � "2
0.j ı �/�!, thus

��
2
�.C / D

Z
C

d�C � "2
0

Z
C

.j ı �/�! D "2
0

Z
C

!:

Property (ii) follows with " D 2"2
0=� .

(ii) ) (iii). First observe that (ii) excludes the existence of elliptic and ratio-
nal curves tangent to V . Assume that there is a non-constant holomorphic map
ˆ W Z ! X from an abelian variety Z to X such that ˆ�.TZ/ � V . We must
have dimˆ.Z/ � 2, otherwise ˆ.Z/ would be a curve covered by images of
holomorphic maps C ! ˆ.Z/, and so ˆ.Z/ would be elliptic or rational, con-
tradiction. Select a sufficiently general curve � in Z (e.g. a curve obtained as
an intersection of very generic divisors in a given very ample linear system jLj
in Z). Then all isogenies um W Z ! Z, s 7! ms map � in a 1 W 1 way to
curves um.�/ � Z, except maybe for finitely many double points of um.�/
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when dimZ D 2: we leave this as an exercise to the reader, using Bertini type
arguments). It follows that the normalization of um.�/ is isomorphic to � . If
� is general enough and 
a W Z ! Z, w 7! w C a denote translations of Z,
similar arguments show that for general a 2 Z the images

Cm;a WD ˆ.
a.um.�/// � X

are also generically 1 W 1 images of � , thus Cm;a ' � and g.Cm;a/ D g.�/.
We claim that on average Cm;a has degree � Constm2. In fact, if � is the
translation invariant probability measure on ZZ

Cm;a

! D
Z

�

u�
m.


�
aˆ

�!/; and hence
Z

a2Z

� Z
Cm;a

!
�
d�.a/ D

Z
�

u�
mˇ;

where ˇ D R
a2Z.


�
aˆ

�!/ d�.a/ is a translation invariant .1; 1/-form on Z.
Therefore ˇ is a constant coefficient .1; 1/-form, so u�

mˇ D m2ˇ and the right
hand side is cm2 with c D R

� ˇ > 0. For a suitable choice of am 2 Z, we have
deg! Cm;am

� cm2 and .2g.Cm;am
/ � 2/= deg!.Cm;am

/ ! 0, contradiction.
ut

3.2. Definition. We say that a projective directed manifold .X; V / is “alge-
braically hyperbolic” if it satisfies property 3.1 (ii), namely, if there exists " > 0
such that every algebraic curve C � X tangent to V satisfies

2g.C / � 2 � " deg!.C /:

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic ana-
logue of the openness property.

3.3. Proposition. Let .X ;V / ! S be an algebraic family of projective al-
gebraic directed manifolds (given by a projective morphism X ! S). Then
the set of t 2 S such that the fiber .Xt ; Vt / is algebraically hyperbolic is open
with respect to the “countable Zariski topology” of S (by definition, this is the
topology for which closed sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total
space X itself is quasi-projective. Let ! be the Kähler metric on X obtained by
pulling back the Fubini–Study metric via an embedding in a projective space.
If the integers d > 0, g � 0 are fixed, the set Ad;g of t 2 S such that Xt

contains an algebraic 1-cycle C D P
mjCj tangent to Vt with deg!.C / D d

and g.C / D P
mj g.Cj / � g is a closed algebraic subset of S (this follows

from the existence of a relative cycle space of curves of given degree, and from
the fact that the geometric genus is Zariski lower semi-continuous). Now, the
set of non-algebraically hyperbolic fibers is by definition\

k>0

[
2g�2<d=k

Ad;g :
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This concludes the proof (of course, one has to know that the countable Zariski
topology is actually a topology, namely that the class of countable unions of
algebraic sets is stable under arbitrary intersections; this can be easily checked
by an induction on dimension). ut
3.4. Remark. More explicit versions of the openness property have been dealt
with in the literature. H. Clemens ([Cle86] and [CKM88]) has shown that on
a very generic surface of degree d � 5 in P3, the curves of type .d; k/ are of
genus g > kd.d�5/=2 (recall that a very generic surfaceX � P3 of degree � 4

has Picard group generated by OX .1/ thanks to the Noether–Lefschetz theorem;
thus any curve on the surface is a complete intersection with another hypersur-
face of degree k; such a curve is said to be of type .d; k/; genericity is taken
here in the sense of the countable Zariski topology). Improving on this result
of Clemens, Geng Xu [Xu94] has shown that every curve contained in a very
generic surface of degree d � 5 satisfies the sharp bound g � d.d � 3/=2 � 2.
This actually shows that a very generic surface of degree d � 6 is algebraically
hyperbolic. Although a very generic quintic surface has no rational or elliptic
curves, it seems to be unknown whether a (very) generic quintic surface is alge-
braically hyperbolic in the sense of Definition 3.2.

Improving on this result of Clemens, Geng Xu [Xu94] proved that every
curve contained in a very generic surface of degree d � 5 satisfies the sharp
bound g � d.d � 3/=2� 2. In April 2018, I. Coskun and E. Riedl improved the
above bounds and got the more precise bound g � 1C .dk.d � 5/C k/=2; this
result actually shows that a very generic surface of degree d � 5 is algebraically
hyperbolic in the sense of Definition 3.2. In higher dimension, L. Ein ([Ein88],
[Ein91]) proved that every subvariety of a very generic hypersurfaceX � PnC1

of degree d � 2nC1 .n � 2/, is of general type. This was reproved by a simple
efficient technique by C. Voisin in [Voi96], along with other improvements.

3.5. Remark. In view of Proposition 1.10, it would be interesting to know whether
algebraic hyperbolicity is open with respect to the Euclidean topology; still
more interesting would be to know whether Kobayashi hyperbolicity is open
for the countable Zariski topology (of course, both properties would follow im-
mediately if one knew that algebraic hyperbolicity and Kobayashi hyperbolic-
ity coincide, but they seem otherwise highly non-trivial to establish). The latter
openness property has raised an important amount of work around the following
more particular question: is a (very) generic hypersurface X � PnC1 of degree
d large enough (say d � 2nC 1) Kobayashi hyperbolic? Again, “very generic”
is to be taken here in the sense of the countable Zariski topology. Brody–Green
[BrGr77] and Nadel [Nad89] produced examples of hyperbolic surfaces in P3

for all degrees d � 50, and Masuda–Noguchi [MaNo96] gave examples of such
hypersurfaces in Pn for arbitrary n � 2, of degree d � d0.n/ large enough. The
hyperbolicity of complements Pn �H of generic divisors may be inferred from
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the compact case; in fact if H D fP.z0; : : : ; zn/ D 0g is a smooth generic
divisor of degree d , one may look at the hypersurface

X D fzd
nC1 D P.z0; : : : ; zn/g � PnC1

which is a cyclic d W 1 covering of Pn. Since any holomorphic map f W C ! Pn �H

can be lifted to X , it is clear that the hyperbolicity of X would imply the hy-
perbolicity of Pn � H . The hyperbolicity of complements of divisors in Pn

has been investigated by many authors. In the case n D 2, Huynh, Vu and Xie
[HVX17, Theorem 1.2] have announced that P2 � C is hyperbolic for a very
general curve C of degree d � 11 (and that a very general surface X � P3

of degree d � 15 is hyperbolic, [HVX17, Theorem 1.5]). The reader can also
consult [CFZ17, Section 4] for more details and references in these directions.

In the “absolute case” V D TX , it seems reasonable to expect that Properties
3.1 (i), (ii) are equivalent, i.e., that Kobayashi and algebraic hyperbolicity coin-
cide. However, it was observed by Serge Cantat [Can00] that Property 3.1 (iii) is
not sufficient to imply the hyperbolicity of X , at least when X is a general com-
plex surface: a general (non-algebraic) K3 surface is known to have no elliptic
curves and does not admit either any surjective map from an abelian variety;
however such a surface is not Kobayashi hyperbolic. We are uncertain about the
sufficiency of 3.1 (iii) when X is assumed to be projective.

4. The Ahlfors–Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related
with suitable negativity properties of the curvature. For instance, it is a standard
fact already observed in Kobayashi [Kob70] that the negativity of TX (or the
ampleness of T �

X ) implies the hyperbolicity of X . There are many ways of im-
proving or generalizing this result. We present here a few simple examples of
such generalizations.

4.A. Exploiting curvature via potential theory

If .V; h/ is a holomorphic vector bundle equipped with a smooth Hermitian
metric, we denote by rh D r 0

h
C r 00

h
the associated Chern connection and by

‚V;h D i
2	

r2
h

its Chern curvature tensor.

4.1. Proposition. Let .X; V / be a compact directed manifold. Assume that V
is non-singular and that V � is ample. Then .X; V / is hyperbolic.
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Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said
to be ample if SmE has enough global sections �1; : : : ; �N so as to generate
1-jets of sections at any point, when m is large. One obtains a Finsler metric N
on E� by putting

N.	/ D
� X

1�j�N

j�j .x/ � 	mj2
�1=2m

; 	 2 E�
x ;

and N is then a strictly plurisubharmonic function on the total space of E�
minus the zero section (in other words, the line bundle OP.E�/.1/ has a met-
ric of positive curvature). By the ampleness assumption on V �, we thus have a
Finsler metric N on V which is strictly plurisubharmonic outside the zero sec-
tion. By the Brody lemma, if .X; V / is not hyperbolic, there is an entire curve
g W C ! X tangent to V such that supC kg0k! � 1 for some given Hermitian
metric ! on X . Then N.g0/ is a bounded subharmonic function on C which
is strictly subharmonic on fg0 ¤ 0g. This is a contradiction, for any bounded
subharmonic function on C must be constant. ut

4.B. Ahlfors–Schwarz lemma

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors–
Schwarz lemma (see e.g. [Lang87]; we refer to [Dem95] for the generalized
version presented here; the proof is merely an application of the maximum prin-
ciple plus a regularization argument).

4.2. Ahlfors–Schwarz lemma. Let 
.t/ D 
0.t/ i dt^dt be a Hermitian met-
ric on �R, where log 
0 is a subharmonic function such that i @@ log 
0.t/ �
A
.t/ in the sense of currents, for some positive constant A. Then 
 can be
compared with the Poincaré metric of �R as follows:


.t/ � 2

A

R�2jdt j2
.1 � jt j2=R2/2

:

More generally, let 
 D i
P

jk dtj ^ dtk be an almost everywhere positive

Hermitian form on the ball B.0;R/ � Cp, such that � Ricci.
/ WD i @@ log det.
/
� A
 in the sense of currents, for some constantA > 0 (this means in particular
that det.
/ D det.
jk/ is such that log det.
/ is plurisubharmonic). Then the

-volume form is controlled by the Poincaré volume form:

det.
/ �
�p C 1

AR2

�p 1

.1 � jt j2=R2/pC1
:
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4.C. Applications of the Ahlfors–Schwarz lemma to hyperbolicity

Let .X; V / be a projective directed variety. We assume throughout this subsec-
tion that X is non-singular.

4.3. Proposition. Assume that V itself is non-singular and that the dual bundle
V � is “very big” in the following sense: there exists an ample line bundleL and
a sufficiently large integer m such that the global sections in H 0.X; SmV � ˝ L�1/

generate all fibers over X �Y , for some analytic subset Y � X . Then all entire
curves f W C ! X tangent to V satisfy f .C/ � Y .

Proof. Let �1; : : : ; �N 2 H 0.X; SmV � ˝ L�1/ be a basis of sections gener-
ating SmV � ˝ L�1 over X � Y . If f W C ! X is tangent to V , we define a
semi-positive Hermitian form 
.t/ D 
0.t/ jdt j2 on C by putting


0.t/ D
X

k�j .f .t// � f 0.t/mk2=m

L�1 ;

where k kL denotes a Hermitian metric with positive curvature on L. If f .C/ 6� Y ,
the form 
 is not identically 0 and we then find

i @@ log 
0 � 2�

m
f �‚L;

where ‚L is the curvature form. The positivity assumption combined with an
obvious homogeneity argument yield

2�

m
f �‚L � "kf 0.t/k2

! jdt j2 � "0
.t/

for any given Hermitian metric ! on X . Now, for any t0 with 
0.t0/ > 0, the
Ahlfors–Schwarz lemma shows that f can only exist on a disk D.t0; R/ such
that 
0.t0/ � 2

"0R
�2, contradiction. ut

There are similar results for p-measure hyperbolicity, see e.g. [Carl72] and
[Nog77b]:

4.4. Proposition. Assume that V is non-singular and that ƒpV � is ample.
Then .X; V / is infinitesimally p-measure hyperbolic. More generally, assume
that ƒpV � is very big with base locus contained in Y � X (see Proposition
3.3). Then ep is non-degenerate over X � Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on
ƒpV which is strictly plurisubharmonic outside the zero section. We select
also a Hermitian metric ! on X . For any holomorphic map f W Bp ! X

we define a semi-positive Hermitian metric e
 on Bp by putting e
 D f �!.
Since ! need not have any good curvature estimate, we introduce the function
ı.t/ D Nf .t/.ƒ

pf 0.t/ � 
0/, where 
0 D @=@t1 ^ � � � ^ @=@tp , and select a
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metric 
 D �e
 conformal to e
 such that det.
/ D ı. Then �p is equal to the
ratio N=ƒp! on the elementƒpf 0.t/ � 
0 2 ƒpVf .t/. Since X is compact, it is
clear that the conformal factor � is bounded by an absolute constant independent
of f . From the curvature assumption we then get

i @@ log det.
/ D i @@ log ı � .f;ƒpf 0/�.i @@ logN/ � "f �! � "0 
:

By the Ahlfors–Schwarz lemma we infer that det.
.0// � C for some constant
C , i.e., Nf .0/.ƒ

pf 0.0/ � 
0/ � C 0. This means that the Kobayashi–Eisenman
pseudometric ep

.X;V /
is positive definite everywhere and uniformly bounded

from below. In the case ƒpV � is very big with base locus Y , we use essen-
tially the same arguments, but we then only have N being positive definite on
X � Y . ut
4.5. Corollary ([Gri71], [KobO71]). If X is a projective variety of general
type, the Kobayashi–Eisenmann volume form en, n D dimX , can degenerate
only along a proper algebraic set Y � X .

The converse of Corollary 4.5 is expected to be true, namely, the generic
non-degeneracy of en should imply thatX is of general type; this is only known
for surfaces (see [GrGr80] and [MoMu82]):

4.6. General Type Conjecture (Green–Griffiths [GrGr80]). A projective alge-
braic variety X is measure hyperbolic (i.e., en degenerates only along a proper
algebraic subvariety) if and only if X is of general type.

An essential step in the proof of the necessity of having general type subvari-
eties would be to show that manifolds of Kodaira dimension 0 (say, Calabi–Yau
manifolds and holomorphic symplectic manifolds, all of which have c1.X/ D 0)
are not measure hyperbolic, e.g. by exhibiting enough families of curves Cs;`

covering X such that .2g.C s;`/ � 2/= deg.Cs;`/ ! 0.

4.7. Conjectural corollary (Lang). A projective algebraic variety X is hyper-
bolic if and only if all its algebraic subvarieties (including X itself) are of gen-
eral type.

4.8. Remark. The GGL conjecture implies the “if” part of 4.7, and the General
Type Conjecture 4.6 implies the “only if” part of 4.7. In fact if the GGL conjec-
ture holds and every subvariety Y of X is of general type, then it is easy to infer
that every entire curve f W C ! X has to be constant by induction on dimX ,
because in fact f maps C to a certain subvariety Y � X . Therefore X is hy-
perbolic. Conversely, if Conjecture 4.6 holds and X has a certain subvariety Y
which is not of general type, then Y is not measure hyperbolic. However Propo-
sition 2.4 shows that hyperbolicity implies measure hyperbolicity. Therefore Y
is not hyperbolic and so X itself is not hyperbolic either.
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We end this section by another easy application of the Ahlfors–Schwarz
lemma for the case of rank 1 (possibly singular) foliations.

4.9. Proposition. Let .X; V / be a projective directed manifold. Assume that V
is of rank 1 and thatK�

V is big. Then S be the union of the singular set Sing.V /
and of the base locus of K�

V (namely the intersection of the images �m.Bm/ of

the base loci Bm of the invertible sheaves ��
mK

Œm�
V , m > 0, obtained by tak-

ing log-resolutions). Then ECL.X; V / � S , in other words, all non-hyperbolic
leaves of V are contained in S .

Proof. By Proposition 2.11 (d), we can take a blow-up e�m W eXm ! X and

a log-resolution �0
m W bXm ! eXm such that Fm D �0 �

m .
bK

Œm�eVm
/ is a big in-

vertible sheaf. This means that (after possibly increasing m) we can find sec-
tions �1; : : : ; �N 2 H 0.bXm; Fm/ that define a (singular) Hermitian metric with
strictly positive curvature on Fm, cf. Definition 8.1 below. Now, for every en-
tire curve f W .C; TC/ ! .X; V / not contained in S , we can choose m and
a lifting ef W .C; TC/ ! .eX; eV / such that ef .C/ is not contained in the base
locus of our sections. Again, we can define a semi-positive Hermitian form

.t/ D 
0.t/ jdt j2 on C by putting


0.t/ D
X

k�j .f .t// � f 0.t/mk2=m

L�1 :

Then 
 is not identically zero and we have i@@ log 
0 � "
 by the strict posi-
tivity of the curvature. One should also notice that 
0 is locally bounded from
above by the assumption that the �j ’s come from locally bounded sections oneXm. This contradicts the Ahlfors–Schwarz lemma, and thus it cannot happen
that f .C/ 6� S . ut

5. Projectivization of a directed manifold

5.A. The 1-jet functor

The basic idea is to introduce a functorial process which produces a new com-
plex directed manifold .eX; eV / from a given one .X; V /. The new structure
.eX; eV / plays the role of a space of 1-jets over X . Fisrt assume that V is non-
singular. We let eX D P.V /; eV � T eX
be the projectivized bundle of lines of V , together with a subbundle eV of T eX
defined as follows: for every point .x; Œv�/ 2 eX associated with a vector v 2
Vx � f0g,

(5.1) eV .x;Œv�/ D f	 2 T eX; .x;Œv�/ I ��	 2 Cvg; Cv � Vx � TX;x;
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where � W eX D P.V / ! X is the natural projection and �� W T eX ! ��TX is
its differential. On eX D P.V / we have a tautological line bundle O eX .�1/ �
��V such that O eX .�1/.x;Œv�/ D Cv. The bundle eV is characterized by the two
exact sequences

0 �! T eX=X �! eV 	��! O eX .�1/ �! 0;(5.2)

0 �! O eX �! ��V ˝ O eX .1/ �! T eX=X �! 0;(5:20)

where T eX=X denotes the relative tangent bundle of the fibration � W eX ! X .
The first sequence is a direct consequence of the definition of eV , whereas the
second is a relative version of the Euler exact sequence describing the tangent
bundle of the fibers P.Vx/. From these exact sequences we infer

(5.3) dim eX D nC r � 1; rank eV D rankV D r;

and by taking determinants we find det.T eX=X / D �� det.V /˝ O eX .r/. Thus

(5.4) det.eV / D �� det.V /˝ O eX .r � 1/:
By definition, � W .eX; eV / ! .X; V / is a morphism of complex directed mani-
folds. Clearly, our construction is functorial, i.e., for every morphism of directed
manifolds ˆ W .X; V / ! .Y;W /, there is a commutative diagram

(5.5)

.X; V /

eˆ

.X; V /

ˆ

.Y ; W / .Y; W /;

where the left vertical arrow is the meromorphic map P.V / > P.W / induced by
the differential ˆ� W V ! ˆ�W (ê is actually holomorphic if ˆ� W V ! ˆ�W
is injective).

5.B. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f W �R ! X parametrized
by the disk �R of centre 0 and radius R in the complex plane, and that f is a
tangent curve of the directed manifold, i.e., f 0.t/ 2 Vf .t/ for every t 2 �R.
If f is non-constant, there is a well-defined and unique tangent line Œf 0.t/� 2
P.Vf .t// for every t , even at stationary points, and the map

(5.6) ef W �R �! eX; t 7�! ef .t/ WD .f .t/; Œf 0.t/�/

is holomorphic; in fact, at a stationary point t0, we can write

f 0.t/ D .t � t0/su.t/
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with s 2 N� and u.t0/ ¤ 0, and we define the tangent line at t0 to be Œu.t0/�, so
that ef .t/ D .f .t/; Œu.t/�/ near t0; even for t D t0, we still denote Œf 0.t0/� D
Œu.t0/� for simplicity of notation. By definition f 0.t/ 2 O eX .�1/ ef .t/ D Cu.t/,
so the derivative f 0 defines a section

(5.7) f 0 W T�R
�! ef �O eX .�1/:

Moreover � ı ef D f , and thus

�� ef 0.t/ D f 0.t/ 2 Cu.t/ H) ef 0.t/ 2 eV .f .t/;u.t// D eV ef .t/

and we see that ef is a tangent trajectory of .eX; eV /. We say that ef is the canon-
ical lifting of f to eX . Conversely, if g W �R ! eX is a tangent trajectory of
.eX; eV /, then by definition of eV we see that f D � ı g is a tangent trajectory
of .X; V / and that g D ef (unless g is contained in a vertical fiber P.Vx/, in
which case f is constant).

For any point x0 2 X , there are local coordinates .z1; : : : ; zn/ on a neigh-
borhood� of x0 such that the fibers .Vz/z2
 can be defined by linear equations

(5.8) Vz D
n
	 D

X
1�j�n

	j
@

@zj
I 	j D

X
1�k�r

ajk.z/	k for j D r C 1; : : : ; n
o
;

where .ajk/ is a holomorphic .n� r/� r matrix. It follows that a vector 	 2 Vz

is completely determined by its first r components .	1; : : : ; 	r/, and the affine
chart 	j ¤ 0 of P.V /�
 can be described by the coordinate system

(5.9)
�
z1; : : : ; znI 	1

	j
; : : : ;

	j �1

	j
;
	j C1

	j
; : : : ;

	r

	j

�
:

Let f ' .f1; : : : ; fn/ be the components of f in the coordinates .z1; : : : ; zn/

(we suppose here R so small that f .�R/ � �). It should be observed that
f is uniquely determined by its initial value x and by the first r components
.f1; : : : ; fr/. Indeed, as f 0.t/ 2 Vf .t/ , we can recover the other components
by integrating the system of ordinary differential equations

(5.10) f 0
j .t/ D

X
1�k�r

ajk.f .t//f
0

k.t/; j > r;

on a neighborhood of 0, with initial data f .0/ D x. We denote bym D m.f; t0/

the multiplicity of f at any point t0 2 �R, that is,m.f; t0/ is the smallest integer
m 2 N� such that f .m/

j .t0/ ¤ 0 for some j . By (5.10), we can always suppose

j 2 f1; : : : ; rg, for example f .m/
r .t0/ ¤ 0. Then f 0.t/ D .t � t0/m�1u.t/ with

ur.t0/ ¤ 0, and the lifting ef is described in the coordinates of the affine chart
	r ¤ 0 of P.V /�
 by

(5.11) ef '
�
f1; : : : ; fnI f

0
1

f 0
r

; : : : ;
f 0

r�1

f 0
r

�
:
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5.C. Curvature properties of the 1-jet bundle

We end this section with a few curvature computations. Assume that V is non-
singular and equipped with a smooth Hermitian metric h. Denote by rh D r 0

h
C r 00

h

the associated Chern connection and by ‚V;h D i
2	

r2
h

its Chern curvature
tensor. For every point x0 2 X , there exists a “normalized” holomorphic frame
.e�/1���r on a neighborhood of x0, such that

(5.12) he�; e�ih D ı�� �
X

1�j;k�n

cjk��zj zk CO.jzj3/;

with respect to any holomorphic coordinate system .z1; : : : ; zn/ centered at x0.
A computation of d 0he�; e�ih D hr 0

h
e�; e�ih and r2

h
e� D d 00r 0

h
e� then gives

r 0
he� D �

X
j;k;�

cjk��zk dzj ˝ e� CO.jzj2/;

‚V;h.x0/ D i

2�

X
j;k;�;�

cjk�� dzj ^ dzk ˝ e�
� ˝ e�:(5.13)

The above curvature tensor can also be viewed as a Hermitian form on TX ˝V .
In fact, one associates with‚V;h the Hermitian form h‚V;hi on TX ˝V defined
for all .�; v/ 2 TX �X V by

(5.14) h‚V;hi.� ˝ v/ D
X

1�j;k�n; 1��;��r

cjk���j �kv�v�:

Let h1 be the Hermitian metric on the tautological line bundle OP.V /.�1/ �
��V induced by the metric h of V . We compute the curvature .1; 1/-form
‚h1

.OP.V /.�1// at an arbitrary point .x0; Œv0�/ 2 P.V /, in terms of ‚V;h.
For simplicity, we suppose that the frame .e�/1���r has been chosen in such
a way that Œer.x0/� D Œv0� 2 P.V / and jv0jh D 1. We get holomorphic local
coordinates .z1; : : : ; zn I 	1; : : : ; 	r�1/ on a neighborhood of .x0; Œv0�/ in P.V /
by assigning

.z1; : : : ; zn I 	1; : : : ; 	r�1/ 7�! .z; Œ	1e1.z/C � � � C 	r�1er�1.z/C er.z/�/ 2 P.V /:
Then the function

�.z; 	/ D 	1e1.z/C � � � C 	r�1er�1.z/C er.z/

defines a holomorphic section of OP.V /.�1/ in a neighborhood of .x0; Œv0�/.
By using the expansion (5.12) for h, we find
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j�j2h1
D j�j2h D 1C j	j2 �

X
1�j;k�n

cjkrrzj zk CO..jzj C j	j/3/;

‚h1
.OP.V /.�1//.x0;Œv0�/

D � i

2�
@@ log j�j2h1

D i

2�

� X
1�j;k�n

cjkrr dzj ^ dzk �
X

1���r�1

d	� ^ d	�

�
:(5.15)

6. Jets of curves and Semple jet bundles

6.A. Semple tower of non-singular directed varieties

Let X be a complex n-dimensional manifold. Following ideas of Green–Griffiths
[GrGr80], we let JkX ! X be the bundle of k-jets of germs of parametrized
curves in X , that is, the set of equivalence classes of holomorphic maps
f W .C; 0/ ! .X; x/, with the equivalence relation f 	 g if and only if all
derivatives f .j /.0/ D g.j /.0/ coincide for 0 � j � k, when computed in
some local coordinate system of X near x. The projection map JkX ! X is
simply f 7! f .0/. If .z1; : : : ; zn/ are local holomorphic coordinates on an open
set� � X , the elements f of any fiber JkXx , x 2 �, can be seen as Cn-valued
maps

f D .f1; : : : ; fn/ W .C; 0/ ! � � Cn;

and they are completely determined by their Taylor expansion of order k at t D 0

f .t/ D x C tf 0.0/C t2

2Š
f 00.0/C � � � C tk

kŠ
f .k/.0/CO.tkC1/:

In these coordinates, the fiber JkXx can thus be identified with the set of k-
tuples of vectors .	1; : : : ; 	k/ D .f 0.0/; : : : ; f .k/.0// 2 .Cn/k . It follows that
JkX is a holomorphic fiber bundle with typical fiber .Cn/k over X (however,
JkX is not a vector bundle for k � 2, because of the non-linearity of coordinate
changes; see formula (7.2) in Sect. 7).

According to the philosophy developed throughout this paper, we describe
the concept of jet bundle in the general situation of complex directed manifolds.
If X is equipped with a holomorphic subbundle V � TX , we associate to V
a k-jet bundle JkV as follows, assuming V non-singular throughout Subsect.
6.A.

6.1. Definition. Let .X; V / be a complex directed manifold. We define JkV ! X

to be the bundle of k-jets of curves f W .C; 0/ ! X which are tangent to V ,
i.e., such that f 0.t/ 2 Vf .t/ for all t in a neighborhood of 0, together with the
projection map f 7! f .0/ onto X .
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It is easy to check that JkV is actually a subbundle of JkX . In fact, by using
(5.8) and (5.10), we see that the fibers JkVx are parametrized by

..f 0
1.0/; : : : ; f

0
r .0//I .f 00

1 .0/; : : : ; f
00

r .0//I : : : I .f .k/
1 .0/; : : : ; f .k/

r .0/// 2 .Cr/k

for all x 2 �, and hence JkV is a locally trivial .Cr/k-subbundle of JkX .
Alternatively, we can pick a local holomorphic connection r on V such that for
any germs w D P

1�j�nwj
@

@zj
2 O.TX;x/ and v D P

1���r v�e� 2 O.V /x
in a local trivializing frame .e1; : : : ; er/ of V�
 we have

rwv.x/ D
X

1�j�n; 1���r

wj
@v�

@zj
e�.x/C

X
1�j�n; 1��;��r

�
�

j�
.x/wj v� e�.x/:

We can of course take the frame obtained from (5.8) by lifting the vector fields
@=@z1; : : : ; @=@zr , and the “trivial connection” given by the zero Christoffel
symbols � D 0. One then obtains a trivialization J kV�
 ' V ˚k

�
 by consid-
ering

JkVx 3 f 7�! .	1; 	2; : : : ; 	k/ D .rf .0/;r2f .0/; : : : ;rkf .0// 2 V ˚k
x

and computing inductively the successive derivatives rf .t/ D f 0.t/ and rsf .t/

via

rsf D .f �r/d=dt .rs�1f /

D
X

1���r

d

dt
.rs�1f /�e�.f /C

X
1�j�n; 1��;��r

�
�

j�
.f /f 0

j .rs�1f /�e�.f /:

This identification depends of course on the choice of r and cannot be defined
globally in general (unless we are in the rare situation where V has a global
holomorphic connection). ut

We now describe a convenient process for constructing “projectivized jet
bundles”, which will later appear as natural quotients of our jet bundles JkV

(or rather, as suitable desingularized compactifications of the quotients). Such
spaces have already been considered since a long time, at least in the special
case X D P2, V D TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they
have been mostly used as a tool for establishing enumerative formulas dealing
with the order of contact of plane curves (see [Coll88], [CoKe94]); the article
[ASS97] is also concerned with such generalizations of jet bundles, as well as
[LaTh96] by Laksov and Thorup.

We define inductively the projectivized k-jet bundle Xk (or Semple k-jet
bundle) and the associated subbundle Vk � TXk

by

(6.2) .X0; V0/ D .X; V /; .Xk; Vk/ D .eXk�1; eV k�1/:
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In other words, .Xk; Vk/ is obtained from .X; V / by iterating k-times the lifting
construction .X; V / 7! .eX; eV / described in Sect. 5. By (5.2)–(5.7), we find

(6.3) dimXk D nC k.r � 1/; rankVk D r;

together with exact sequences

0 �! TXk=Xk�1
�! Vk

.	k/�����! OXk
.�1/ �! 0;(6.4)

0 �! OXk
�! ��

kVk�1 ˝ OXk
.1/ �! TXk=Xk�1

�! 0;(6:40)

where �k is the natural projection �k W Xk ! Xk�1 and .�k/� its differential.
Formula (5.4) yields

(6.5) det.Vk/ D ��
k det.Vk�1/˝ OXk

.r � 1/:
Every non-constant tangent trajectory f W �R ! X of .X; V / lifts to a well-
defined and unique tangent trajectory fŒk� W �R ! Xk of .Xk; Vk/. Moreover,
the derivative f 0

Œk�1�
gives rise to a section

(6.6) f 0
Œk�1� W T�R

�! f �
Œk�OXk

.�1/:
In coordinates, one can compute fŒk� in terms of its components in the various
affine charts (5.9) occurring at each step: we get inductively

(6.7) fŒk� D .F1; : : : ; FN /; fŒkC1� D
�
F1; : : : ; FN ;

F 0
s1

F 0
sr

; : : : ;
F 0

sr�1

F 0
sr

�
;

where N D nC k.r � 1/ and fs1; : : : ; srg � f1; : : : ; N g. If k � 1, fs1; : : : ; srg
contains the last .r � 1/ indices of f1; : : : ; N g corresponding to the “vertical”
components of the projection Xk ! Xk�1, and in general, sr is an index such
thatm.Fsr

; 0/ D m.fŒk�; 0/, that is, Fsr
has the smallest vanishing order among

all components Fs (sr may be vertical or not, and the choice of fs1; : : : ; srg need
not be unique).

By definition, there is a canonical injection OXk
.�1/ ,! ��

k
Vk�1, and a

composition with the projection .�k�1/� (analogue for order .k � 1/ of the
arrow .�k/� in sequence (6.4)) yields for any k � 2 a natural line bundle mor-
phism

(6.8) OXk
.�1/ ,�! ��

kVk�1

.	k/�.	k�1/��������! ��
k OXk�1

.�1/;

which admits preciselyDk D P.TXk�1=Xk�2
/ � P.Vk�1/ D Xk as its zero di-

visor (clearly, Dk is a hyperplane subbundle of Xk). Hence we find

(6.9) OXk
.1/ D ��

k OXk�1
.1/˝ O.Dk/:
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Now, we consider the composition of projections

(6.10) �j;k D �j C1 ı � � � ı �k�1 ı �k W Xk �! Xj :

Then �0;k W Xk ! X0 D X is a locally trivial holomorphic fiber bundle
over X , and the fibers Xk;x D ��1

0;k
.x/ are k-stage towers of Pr�1-bundles.

Since we have (in both directions) morphisms .Cr ; TCr / $ .X; V / of directed
manifolds which are bijective on the level of bundle morphisms, the fibers are
all isomorphic to a “universal” non-singular projective algebraic variety of di-
mension k.r � 1/ which we will denote by Rr;k ; it is not hard to see that Rr;k

is rational (as will indeed follow from the proof of Theorem 7.11 below).

6.B. Semple tower of singular directed varieties

Let .X; V / be a directed variety. We assume X non-singular, but here V is al-
lowed to have singularities. We are going to give a natural definition of the
Semple tower .Xk; Vk/ in that case.

Let us take X 0 D X � Sing.V / and V 0 D V�X 0 . By Subsect. 6.A, we have a
well-defined Semple tower .X 0

k
; V 0

k
/ over the Zariski open set X 0. We also have

an “absolute” Semple tower .Xa
k
; V a

k
/ obtained from .Xa

0 ; V
a

0 / D .X; TX /,
which is non-singular. The injection V 0 � TX induces by functoriality (cf. (5.5))
an injection

(6.11) .X 0
k; V

0
k/ � .Xa

k ; V
a

k /:

6.12. Definition. Let .X; V / be a directed variety, with X non-singular. When
Sing.V / ¤ ;, we define Xk and Vk to be the respective closures of X 0

k
, V 0

k
associated with X 0 D X � Sing.V / and V 0 D V�X 0 , where the closure is taken
in the non-singular absolute Semple tower .Xa

k
; V a

k
/ obtained from .Xa

0 ; V
a

0 / D
.X; TX /.

We leave the reader check that the following functoriality property still holds.

6.13. Fonctoriality. If ˆ W .X; V / ! .Y;W / is a morphism of directed vari-
eties such that ˆ� W TX ! ˆ�TY is injective (i.e., ˆ is an immersion), then
there is a corresponding natural morphism ˆŒk� W .Xk; Vk/ ! .Yk;Wk/ at the
level of Semple bundles. If one merely assumes that the differential ˆ� W V ! ˆ�W
is non-zero, there is still a natural meromorphic mapˆŒk� W .Xk; Vk/ > .Yk;Wk/

for all k � 0.

In case V is singular, the k-th stage Xk of the Semple tower will also be
singular, but we can replace .Xk; Vk/ by a suitable modification .bXk; bVk/ if we
want to work with a non-singular model bXk of Xk . The exceptional set of bXk
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over Xk can be chosen to lie above Sing.V / � X , and proceeding inductively
with respect to k, we can also arrange the modifications in such a way that we
get a tower structure .bXkC1; bVkC1/ ! .bXk; bVk/; however, in general, it will
not be possible to achieve that bVk is a subbundle of T bXk

.

7. Jet differentials

7.A. Green–Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green–Griffiths
[GrGr80]. The goal is to provide an intrinsic geometric description of holomor-
phic differential equations that a germ of curve f W .C; 0/ ! X may satisfy.
In the sequel, we fix a directed manifold .X; V / and suppose implicitly that all
germs of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of .C; 0/, that
is, the group of germs of biholomorphic maps

t 7�! '.t/ D a1t C a2t
2 C � � � C akt

k; a1 2 C�; aj 2 C; j � 2;

in which the composition law is taken modulo terms tj of degree j > k. Then
Gk is a k-dimensional nilpotent complex Lie group, which admits a natural
fiberwise right action on JkV . The action consists of reparametrizing k-jets of
maps f W .C; 0/ ! X by a biholomorphic change of parameter ' W .C; 0/ ! .C; 0/,
that is, .f; '/ 7! f ı '. There is an exact sequence of groups

1 �! G0
k �! Gk �! C� �! 1;

where Gk ! C� is the obvious morphism ' 7! '0.0/, and G0
k

D ŒGk;Gk�

is the group of k-jets of biholomorphisms tangent to the identity. Moreover, the
subgroup H ' C� of homotheties '.t/ D �t is a (non-normal) subgroup of Gk ,
and we have a semi-direct decomposition Gk D G0

k
� H. The corresponding

action on k-jets is described in coordinates by

� � .f 0; f 00; : : : ; f .k// D .�f 0; �2f 00; : : : ; �kf .k//:

Following [GrGr80], we introduce the vector bundle EGG
k;m
V � ! X whose

fibers are complex valued polynomials Q.f 0; f 00; : : : ; f .k// on the fibers of
JkV , of weighted degree m with respect to the C� action defined by H, that is,
such that

(7.1) Q.�f 0; �2f 00; : : : ; �kf .k// D �mQ.f 0; f 00; : : : ; f .k//

for all � 2 C� and .f 0; f 00; : : : ; f .k// 2 JkV . Here we view .f 0; f 00; : : : ; f .k//

as indeterminates with components

..f 0
1; : : : ; f

0
r /I .f 00

1 ; : : : ; f
00

r /I � � � I .f .k/
1 ; : : : ; f .k/

r // 2 .Cr/k :
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Notice that the concept of polynomial on the fibers of JkV makes sense, for
all coordinate changes z 7! w D ‰.z/ on X induce polynomial transition
automorphisms on the fibers of JkV , given by a formula
(7.2)
.‰ ı f /.j / D ‰0.f / � f .j /

C
sDjX
sD2

X
j1Cj2C���CjsDj

cj1���js
‰.s/.f / � .f .j1/; : : : ; f .js//

with suitable integer constants cj1���js
(this is easily checked by induction on s).

In the “absolute case” V D TX , we simply write EGG
k;m
T �

X D EGG
k;m

. If V � V 0
� V a WD TX are holomorphic subbundles, there are natural inclusions

JkV � JkV
0 � JkV

a; Xk � X 0
k � Xa

k :

The restriction morphisms induce surjective arrows

EGG
k;mT

�
X �! EGG

k;mV
0� �! EGG

k;mV
�;

and in particular EGG
k;m
V � can be seen as a quotient of EGG

k;m
T �

X . (The notation
V � is used here to make the contravariance property implicit from the notation).
Another useful consequence of these inclusions is that one can extend the def-
inition of JkV and Xk to the case where V is an arbitrary linear space, simply
by taking the closure of JkVX�Sing.V / and XkjX�Sing.V / in the smooth bundles
JkX and Xa

k
, respectively.

IfQ 2 EGG
k;m
V � is decomposed into multihomogeneous components of mul-

tidegree .`1; `2; : : : ; `k/ in f 0; f 00; : : : ; f .k/ (the decomposition is of course
coordinate dependent), these multidegrees must satisfy the relation

`1 C 2`2 C � � � C k`k D m:

The bundle EGG
k;m
V � will be called the bundle of jet differentials of order k and

weighted degree m. It is clear from (7.2) that a coordinate change f 7! ‰ ı f
transforms every monomial .f .�//` D .f 0/`1.f 00/`2 � � � .f .k//`k of partial
weighted degree j`js WD `1 C 2`2 C � � � C s`s , 1 � s � k, into a polyno-
mial ..‰ ı f /.�//` in .f 0; f 00; : : : ; f .k// whose non-zero monomials have the
same partial weighted degree of order s if `sC1 D � � � D `k D 0, and a larger or
equal partial degree of order s otherwise. Hence, for each s D 1; : : : ; k, we get
a well-defined (i.e., coordinate invariant) decreasing filtration F �

s on EGG
k;m
V �

as follows:
(7.3)

F p
s .E

GG
k;mV

�/ D
(
Q.f 0; f 00; : : : ; f .k// 2 EGG

k;m
V � involving

only monomials .f .�//` with j`js � p

)
; 8p 2 N:
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The graded terms Grp

k�1
.EGG

k;m
V �/ associated with the filtration F p

k�1
.EGG

k;m
V �/

are precisely the homogeneous polynomials Q.f 0; : : : ; f .k// whose monomi-
als .f �/` all have partial weighted degree j`jk�1 D p (hence their degree `k

in f .k/ is such that m � p D k`k , and Grp

k�1
.EGG

k;m
V �/ D 0 unless kjm � p).

The transition automorphisms of the graded bundle are induced by coordinate
changes f 7! ‰ ı f , and they are described by substituting the arguments
of Q.f 0; : : : ; f .k// according to formula (7.2), namely f .j / 7! .‰ ı f /.j / for
j < k, and f .k/ 7! ‰0.f / ı f .k/ for j D k (when j D k, the other terms fall
in the next stage F pC1

k�1
of the filtration). Therefore f .k/ behaves as an element

of V � TX under coordinate changes. We thus find

(7.4) G
m�k`k

k�1
.EGG

k;mV
�/ D EGG

k�1;m�k`k
V � ˝ S`kV �:

Combining all filtrations F �
s together, we find inductively a filtration F � on

EGG
k;m
V � such that the graded terms are

(7.5)
Gr`.EGG

k;mV
�/ D S`1V � ˝ S`2V � ˝ � � � ˝ S`kV �; ` 2 Nk; j`jk D m:

The bundles EGG
k;m
V � have other interesting properties. In fact,

EGG
k;�V

� WD
M
m�0

EGG
k;mV

�

is in a natural way a bundle of graded algebras (the product is obtained simply
by taking the product of polynomials). There are natural inclusions EGG

k;�V
� �

EGG
kC1;�V

� of algebras, and henceEGG1;�V � D S
k�0E

GG
k;�V

� is also an algebra.
Moreover, the sheaf of holomorphic sections O.EGG1;�V �/ admits a canonical
derivation DGG given by a collection of C-linear maps

DGG W O.EGG
k;mV

�/ �! O.EGG
kC1;mC1V

�/;

constructed in the following way. A holomorphic section of EGG
k;m
V � on a co-

ordinate open set � � X can be seen as a differential operator on the space of
germs f W .C; 0/ ! � of the form

(7.6) Q.f / D
X

j˛1jC2j˛2jC���Ckj˛k jDm

a˛1���˛k
.f / .f 0/˛1.f 00/˛2 � � � .f .k//˛k

in which the coefficients a˛1���˛k
are holomorphic functions on �. Then DGGQ

is given by the formal derivative .DGGQ/.f /.t/ D d.Q.f //=dt with respect
to the 1-dimensional parameter t in f .t/. For example, in dimension 2, if Q 2
H 0.�;O.EGG

2;4// is the section of weighted degree 4

Q.f / D a.f1; f2/ f
03

1 f
0

2 C b.f1; f2/ f
002

1 ;
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we find that DGGQ 2 H 0.�;O.EGG
3;5// is given by

.DGGQ/.f / D @a

@z1
.f1; f2/ f

04
1 f

0
2 C @a

@z2
.f1; f2/ f

03
1 f

02
2

C @b

@z1
.f1; f2/ f

0
1f

002
1 C @b

@z2
.f1; f2/ f

0
2f

002
1

C a.f1; f2/ .3f
02

1 f
00

1 f
0

2 C f 03
1 f

00
2 /C b.f1; f2/ 2f

00
1 f

000
1 :

Associated with the graded algebra bundle EGG
k;�V

�, we have an analytic fiber
bundle

(7.7) XGG
k WD Proj.EGG

k;�V
�/ D .JkV � f0g/=C�

over X , which has weighted projective spaces P.1Œr�; 2Œr�; : : : ; kŒr�/ as fibers
(these weighted projective spaces are singular for k > 1, but they only have
quotient singularities, see [Dol81]; here JkV �f0g is the set of non-constant jets
of order k; we refer e.g. to Hartshorne’s book [Har77] for a definition of the Proj
functor). As such, it possesses a canonical sheaf OXGG

k
.1/ such that OXGG

k
.m/ is

invertible whenm is a multiple of lcm.1; 2; : : : ; k/. Under the natural projection
�k W XGG

k
! X , the direct image .�k/�OXGG

k
.m/ coincides with polynomials

(7.8) P.z I 	1; : : : ; 	k/ D
X

˛`2Nr ; 1�`�k

a˛1���˛k
.z/ 	

˛1

1 � � � 	˛k

k

of weighted degree j˛1j C 2j˛2j C � � � C kj˛kj D m on J kV with holomorphic
coefficients; in other words, we obtain precisely the sheaf of sections of the
bundle EGG

k;m
V � of jet differentials of order k and degree m.

7.9. Proposition. By construction, if �k W XGG
k

! X is the natural projection,
we have the direct image formula

.�k/�OXGG
k
.m/ D O.EGG

k;mV
�/

for all k and m.

7.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles .JkV � f0g/=C�
themselves, but rather in their quotients .JkV �f0g/=Gk (would such nice com-
plex space quotients exist!). We will see that the Semple bundle Xk constructed
in Sect. 6 plays the role of such a quotient. First we introduce a canonical sub-
algebra of the bundle algebra EGG

k;�V
�.
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7.10. Definition. We introduce a subbundle Ek;mV
� � EGG

k;m
V �, called the

bundle of invariant jet differentials of order k and degreem, defined as follows:
Ek;mV

� is the set of polynomial differential operators Q.f 0; f 00; : : : ; f .k//

which are invariant under arbitrary changes of parametrization, i.e., for every
' 2 Gk

Q..f ı '/0; .f ı '/00; : : : ; .f ı '/.k// D '0.0/mQ.f 0; f 00; : : : ; f .k//:

Alternatively, Ek;mV
� D .EGG

k;m
V �/G0

k is the set of invariants of EGG
k;m
V �

under the action of G0
k

. Clearly, E1;�V � D S
k�0

L
m�0Ek;mV

� is a subal-
gebra of EGG

k;m
V � (observe however that this algebra is not invariant under the

derivation DGG, since e.g. f 00
j D DGGfj is not an invariant polynomial). In addition

to this, there are natural induced filtrations F p
s .Ek;mV

�/ D Ek;mV
� \ F p

s .E
GG
k;m
V �/

(all locally trivial over X). These induced filtrations will play an important role
later on.

7.11. Theorem. Suppose that V has rank r � 2. Let �0;k W Xk ! X be
the Semple jet bundles constructed in Sect. 6, and let JkV

reg be the bundle of
regular k-jets of maps f W .C; 0/ ! X , that is, jets f such that f 0.0/ ¤ 0.

(i) The quotient JkV
reg=Gk has the structure of a locally trivial bundle over X ,

and there is a holomorphic embedding JkV
reg=Gk ,! Xk over X , which

identifies JkV
reg=Gk with X reg

k
(thus Xk is a relative compactification

of JkV
reg=Gk over X).

(ii) The direct image sheaf

.�0;k/�OXk
.m/ ' O.Ek;mV

�/

can be identified with the sheaf of holomorphic sections of Ek;mV
�.

(iii) For every m > 0, the relative base locus of the linear system jOXk
.m/j

is equal to the set X sing
k

of singular k-jets. Moreover, OXk
.1/ is relatively

big over X .

Proof. (i) For f 2 JkV
reg, the lifting ef is obtained by taking the derivative

.f; Œf 0�/ without any cancellation of zeroes in f 0, and hence we get a uniquely
defined .k�1/-jet ef W .C; 0/ ! eX . Inductively, we get a well-defined .k�j /-jet
fŒj � in Xj , and the value fŒk�.0/ is independent of the choice of the represen-
tative f for the k-jet. As the lifting process commutes with reparametrization,
i.e., .f ı '/� D ef ı ' and more generally .f ı '/Œk� D fŒk� ı ', we conclude
that there is a well-defined set-theoretic map

JkV
reg=Gk �! X

reg
k
; f mod Gk 7�! fŒk�.0/:

This map is better understood in coordinates as follows. Fix coordinates .z1; : : : ; zn/

near a point x0 2 X , such that Vx0
D Vect.@=@z1; : : : ; @=@zr /. Let f D .f1; : : : ; fn/
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be a regular k-jet tangent to V . Then there exists i 2 f1; 2; : : : ; rg such
that f 0

i .0/ ¤ 0, and there is a unique reparametrization t D '.
/ such that
f ı ' D g D .g1; g2; : : : ; gn/ with gi .
/ D 
 (we just express the curve as
a graph over the zi -axis, by means of a change of parameter 
 D fi .t/, i.e.,
t D '.
/ D f �1

i .
/). Suppose i D r for the simplicity of notation. The
space Xk is a k-stage tower of Pr�1-bundles. In the corresponding inhomoge-
neous coordinates on these Pr�1’s, the point fŒk�.0/ is given by the collection
of derivatives

..g0
1.0/; : : : ; g

0
r�1.0//I .g00

1.0/; : : : ; g
00
r�1.0//I : : : I .g.k/

1 .0/; : : : ; g
.k/
r�1.0///:

[Recall that the other components .grC1; : : : ; gn/ can be recovered from
.g1; : : : ; gr/ by integrating the differential system (5.10).] Thus the map
JkV

reg=Gk ! Xk is a bijection onto X reg
k

, and the fibers of these isomor-
phic bundles can be seen as unions of r affine charts ' .Cr�1/k , associ-
ated with each choice of the axis zi used to describe the curve as a graph. The
change of parameter formula d

d�
D 1

f 0
r .t/

d
dt

expresses all derivatives g.j /
i .
/ D

d jgi=d

j in terms of the derivatives f .j /

i .t/ D d jfi=dt
j

(7.12)

.g0
1; : : : ; g

0
r�1/ D

�f 0
1

f 0
r

; : : : ;
f 0

r�1

f 0
r

�
I

.g00
1 ; : : : ; g

00
r�1/ D

�f 00
1 f

0
r � f 00

r f
0

1

f 03
r

; : : : ;
f 00

r�1f
0

r � f 00
r f

0
r�1

f 03
r

�
I : : : I

.g
.k/
1 ; : : : ; g

.k/
r�1/ D

�f .k/
1 f 0

r � f .k/
r f 0

1

f 0kC1
r

; : : : ;
f

.k/
r�1f

0
r � f .k/

r f 0
r�1

f 0kC1
r

�
C .order < k/:

Also, it is easy to check that f 02k�1
r g

.k/
i is an invariant polynomial in f 0,

f 00; : : : ; f .k/ of total degree .2k � 1/, i.e., a section of Ek;2k�1.
(ii) Since the bundles Xk and Ek;mV

� are both locally trivial over X , it is
sufficient to identify sections � of OXk

.m/ over a fiber Xk;x D ��1
0;k
.x/ with

the fiber Ek;mV
�

x , at any point x 2 X . Let f 2 JkV
reg

x be a regular k-jet at x.
By (6.6), the derivative f 0

Œk�1�
.0/ defines an element of the fiber of OXk

.�1/ at
fŒk�.0/ 2 Xk . Hence we get a well-defined complex valued operator

(7.13) Q.f 0; f 00; : : : ; f .k// D �.fŒk�.0// � .f 0
Œk�1�.0//

m:

Clearly,Q is holomorphic on JkV
reg

x (by the holomorphicity of �), and the Gk-
invariance condition of Definition 7.10 is satisfied since fŒk�.0/ does not depend
on reparametrization and

.f ı '/0Œk�1�.0/ D f 0
Œk�1�.0/'

0.0/:
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Now, JkV
reg

x is the complement of a linear subspace of codimension r in JkVx ,
and hence Q extends holomorphically to all of JkVx ' .Cr/k by Riemann’s
extension theorem (here we use the hypothesis r � 2 ; if r D 1, the situation is
anyway not interesting since Xk D X for all k). Thus Q admits an everywhere
convergent power series

Q.f 0; f 00; : : : ; f .k// D
X

˛1;˛2;:::;˛k2Nr

a˛1���˛k
.f 0/˛1.f 00/˛2 � � � .f .k//˛k :

The Gk-invariance asserted in Definition 7.10 implies in particular that Q must
be multihomogeneous in the sense of (7.1), and thus Q must be a polynomial.
We conclude that Q 2 Ek;mV

�
x , as desired.

Conversely, for all w in a neighborhood of any given point w0 2 Xk;x , we
can find a holomorphic family of germs fw W .C; 0/ ! X such that .fw/Œk�.0/

D w and .fw/
0
Œk�1�

.0/ ¤ 0 (just take the projections to X of integral curves of
.Xk; Vk/ integrating a non-vanishing local holomorphic section of Vk near w0).
Then every Q 2 Ek;mV

�
x yields a holomorphic section � of OXk

.m/ over the
fiber Xk;x by putting

(7.14) �.w/ D Q.f 0
w ; f

00
w ; : : : ; f

.k/
w /.0/ ..fw/

0
Œk�1�.0//

�m:

(iii) By what we saw in (i)–(ii), every section � of OXk
.m/ over the fiber Xk;x

is given by a polynomial Q 2 Ek;mV
�

x , and this polynomial can be expressed
on the Zariski open chart f 0

r ¤ 0 of X reg
k;x

as

(7.15) Q.f 0; f 00; : : : ; f .k// D f 0m
r
bQ.g0; g00; : : : ; g.k//;

where bQ is a polynomial and g is the reparametrization of f such that gr.
/ D 
 .
In fact bQ is obtained from Q by substituting f 0

r D 1 and f .j /
r D 0 for j � 2,

and conversely Q can be recovered easily from bQ by using the substitutions
(7.12).

In this context, the jet differentials f 7! f 0
1; : : : ; f 7! f 0

r can be viewed
as sections of OXk

.1/ on a neighborhood of the fiber Xk;x . Since these sections
vanish exactly on X sing

k
, the relative base locus of OXk

.m/ is contained in X sing
k

for every m > 0. We see that OXk
.1/ is big by considering the sections of

OXk
.2k � 1/ associated with the polynomials Q.f 0; : : : ; f .k// D f 02k�1

r g
.j /
i ,

1 � i � r � 1, 1 � j � k; indeed, these sections separate all points in the open
chart f 0

r ¤ 0 of X reg
k;x

.
Now, we check that every section � of OXk

.m/ over Xk;x must vanish on
X

sing
k;x

. Pick an arbitrary element w 2 X sing
k

and a germ of curve f W .C; 0/ ! X

such that fŒk�.0/ D w, f 0
Œk�1�

.0/ ¤ 0 and s D m.f; 0/ � 0 (such an f ex-
ists by [Dem95, Corollary 5.14]). There are local coordinates .z1; : : : ; zn/ on X
such that f .t/ D .f1.t/; : : : ; fn.t//, where fr.t/ D ts . Let Q, bQ be the poly-
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nomials associated with � in these coordinates and let .f 0/˛1.f 00/˛2 � � � .f .k//˛k be
a monomial occurring in Q, with j̨ 2 Nr , j j̨ j D j̀ , `1 C 2`2 C � � � C k`k D m.
Putting 
 D ts , the curve t 7! f .t/ becomes a Puiseux expansion

 7! g.
/ D .g1.
/; : : : ; gr�1.
/; 
/ in which gi is a power series in 
1=s ,
starting with exponents of 
 at least equal to 1. The derivative g.j /.
/ may in-
volve negative powers of 
 , but the exponent is always � 1C 1

s
� j . Hence the

Puiseux expansion of bQ.g0; g00; : : : ; g.k// can only involve powers of 
 of expo-
nent � � max`..1 � 1

s
/`2 C � � � C .k � 1 � 1

s
/`k/. Finally f 0

r .t/ D sts�1 D
s
1�1=s , and so the lowest exponent of 
 inQ.f 0; : : : ; f .k// is at least equal to�

1 � 1

s

�
m � max

`

��
1 � 1

s

�
`2 C � � � C

�
k � 1 � 1

s

�
`k

�
� min

`

�
1 � 1

s

�
`1 C

�
1 � 1

s

�
`2 C � � � C

�
1 � k � 1

s

�
`k;

where the minimum is taken over all monomials .f 0/˛1.f 00/˛2 � � � .f .k//˛k ,
j j̨ j D j̀ , occurring in Q. Choosing s � k, we already find that the minimal
exponent is positive, and hence Q.f 0; : : : ; f .k//.0/ D 0, so that �.w/ D 0 by
(7.14). ut

Theorem 7.11 (iii) shows that OXk
.1/ is never relatively ample over X for

k � 2. In order to overcome this difficulty, we define for every a� D .a1; : : : ; ak/

2 Zk a line bundle OXk
.a�/ on Xk such that

(7.16) OXk
.a�/ D ��

1;kOX1
.a1/˝ ��

2;kOX2
.a2/˝ � � � ˝ OXk

.ak/:

By (6.9), we have ��
j;k

OXj
.1/ D OXk

.1/ ˝ OXk
.���

j C1;k
Dj C1 � � � � � Dk/.

Therefore by putting D�
j D ��

j C1;k
Dj C1 for 1 � j � k � 1 and D�

k
D 0, we

find an identity

OXk
.a�/ D OXk

.bk/˝ OXk
.�b� �D�/;(7.17)

where b� D .b1; : : : ; bk/ 2 Zk; bj D a1 C � � � C aj ;

b� �D� D
X

1�j�k�1

bj �
�
j C1;kDj C1:

In particular, if b� 2 Nk , i.e., a1 C � � � C aj � 0, we get a morphism

(7.18) OXk
.a�/ D OXk

.bk/˝ OXk
.�b� �D�/ �! OXk

.bk/:

The following result gives a sufficient condition for the relative nefness or am-
pleness of weighted jet bundles. Let us recall that a line bundle L ! X on a
projective variety X is said to be nef if L � C � 0 for all irreducible algebraic
curves C � X , and that a vector bundle E ! X is said to be nef if OP.E/.1/ is
nef on P.E/ WD P.E�/; any vector bundle generated by global sections is nef
(cf. [DePS94] for more details).
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7.19. Proposition. Take a very ample line bundle A on X , and consider on Xk

the line bundle

Lk D OXk
.3k�1; 3k�2; : : : ; 3; 1/˝ ��

k;0A
˝3k

defined inductively by L0 D A and Lk D OXk
.1/ ˝ ��

k;k�1
L˝3

k�1
. Then

V �
k

˝L˝2
k

is a nef vector bundle on Xk , which is in fact generated by its global
sections, for all k � 0. Equivalently, for all k � 1,

L0
k D OXk

.1/˝ ��
k;k�1L

˝2
k�1

D OXk
.2 � 3k�2; 2 � 3k�3; : : : ; 6; 2; 1/˝ ��

k;0A
˝2�3k�1

is nef over Xk and generated by sections.

The statement concerning L0
k

is obtained by projectivizing the vector bun-
dle E D V �

k�1
˝ L˝2

k�1
on Xk�1, whose associated tautological line bundle is

OP.E/.1/ D L0
k

on P.E/ D P.Vk�1/ D Xk . Also one gets inductively that

(7.20) Lk D O
P.Vk�1˝L

˝2

k�1
/
.1/˝ ��

k;k�1Lk�1 is very ample on Xk :

Proof. Let X � PN be the embedding provided by A, so that A D OPN .1/�X .
As is well-known, if Q is the tautological quotient vector bundle on PN , the
twisted cotangent bundle

T �
PN ˝ OPN .2/ D ƒN �1Q

is nef; hence its quotients T �
X ˝ A˝2 and V �

0 ˝ L˝2
0 D V � ˝ A˝2 are nef

(any tensor power of nef vector bundles is nef, and so is any quotient). We now
proceed by induction, assuming V �

k�1
˝ L˝2

k�1
to be nef, k � 1. By taking the

second wedge power of the central term in (6:40), we get an injection

0 �! TXk=Xk�1
�! ƒ2.�?

kVk�1 ˝ OXk
.1//:

By dualizing and twisting with OXk�1
.2/˝ �?

k
L˝2

k�1
, we find a surjection

�?
kƒ

2.V ?
k�1 ˝ Lk�1/ �! T ?

Xk=Xk�1
˝ OXk

.2/˝ �?
kL

˝2
k�1

�! 0:

By the induction hypothesis, we see that T ?
Xk=Xk�1

˝ OXk
.2/˝�?

k
L˝2

k�1
is nef.

Next, the dual of (6.4) yields an exact sequence

0 �! OXk
.1/ �! V ?

k �! T ?
Xk=Xk�1

�! 0:

As an extension of nef vector bundles is nef, the nefness of V �
k

˝ L˝2
k

will
follow if we check that OXk

.1/ ˝ L˝2
k

and T ?
Xk=Xk�1

˝ L˝2
k

are both nef.
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However, this follows again from the induction hypothesis if we observe that
the latter implies

Lk � ��
k;k�1Lk�1 and Lk � OXk

.1/˝ ��
k;k�1Lk�1;

in the sense that L00 � L0 if the “difference” L00 ˝ .L0/�1 is nef. All statements
remain valid if we replace “nef” with “generated by sections” in the above ar-
guments. ut
7.21. Corollary. A Q-line bundle OXk

.a�/˝ ��
k;0
A˝p with a� 2 Qk , p 2 Q,

is nef, resp. ample, on Xk as soon as

aj � 3aj C1 for j D 1; 2; : : : ; k � 2 and ak�1 � 2ak � 0, p � 2
P
aj ;

resp.

aj � 3aj C1 for j D 1; 2; : : : ; k � 2 and ak�1 > 2ak > 0, p > 2
P
aj :

Proof. This follows easily by taking convex combinations of the Lj and L0
j

and applying Proposition 7.19 and our observation (7.20). ut
7.22. Remark. As in Green–Griffiths [GrGr80], Riemann’s extension theorem
shows that for every meromorphic map ˆ W X > Y there are well-defined
pull-back morphisms

ˆ� W H 0.Y;EGG
k;mT

�
Y / �! H 0.X;EGG

k;mT
�

X /;

ˆ� W H 0.Y;Ek;mT
�
Y / �! H 0.X;Ek;mT

�
X /:

In particular the dimensions h0.X;EGG
k;m
T �

X / and h0.X;Ek;mT
�

X / are bimero-
morphic invariants of X .

7.23. Remark. As Gk is a non-reductive group, it is not a priori clear that the
graded ring An;k;r D L

m2ZEk;mV
? (even pointwise over X) is finitely gen-

erated. This can be checked by hand ([Dem07a], [Dem07b]) for n D 2 and
k � 4. Rousseau [Rou06] also checked the case n D 3, k D 3, and then Merker
[Mer08], [Mer10] proved the finiteness for n D 2; 3; 4, k � 4 and n D 2,
k D 5. Recently, Bérczi and Kirwan [BeKi12] made an attempt to prove the
finiteness in full generality, but it appears that the general case is still unsettled.
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7.C. Semple tower of a directed variety of general type

Even if .X; V / is of general type, it is not true that .Xk; Vk/ is of general type:
the fibers of Xk ! X are towers of Pr�1 bundles, and the canonical bundles of
projective spaces are always negative! However, a twisted version holds true.

7.24. Lemma. If .X; V / is of general type, there is a modification .bX; bV / such
that all pairs .bXk; bVk/ of the associated Semple tower have a twisted canonical
bundleKbVk

˝O bXk
.p/ that is big when one multipliesKbVk

by a suitable Q-line
bundle O bXk

.p/, p 2 QC.

Proof. First assume that V has no singularities. The exact sequences (6.4) and
(6:40) provide

KVk
WD detV �

k D det.T �
Xk=Xk�1

/˝OXk
.1/ D ��

k;k�1KVk�1
˝OXk

.�.r�1//;
where r D rank.V /. Inductively we get

(7.25) KVk
D ��

k;0KV ˝ OXk
.�.r � 1/1�/; 1� D .1; : : : ; 1/ 2 Nk :

We know by [Dem95] that OXk
.c�/ is relatively ample over X when we take

the special weight c� D .2 3k�2; : : : ; 2 3k�j �1; : : : ; 6; 2; 1/; hence

KVk
˝ OXk

..r � 1/1� C "c�/ D ��
k;0KV ˝ OXk

."c�/

is big over Xk for any sufficiently small positive rational number " 2 Q�C.
Thanks to Formula (1.9), we can in fact replace the weight .r�1/1� C"c� by its
total degree p D .r � 1/k C "jc�j 2 QC. The general case of a singular linear
space follows by considering suitable “sufficiently high” modifications bX of X ,
the related directed structure bV on bX , and embedding .bXk; bVk/ in the absolute
Semple tower .bXa

k
; bV a

k
/ of bX . We still have a well-defined morphism of rank 1

sheaves

(7.26) ��
k;0KbV ˝ O bXk

.�.r � 1/1�/ �! KbVk

because the multiplier ideal sheaves involved at each stage behave according to
the monotonicity principle applied to the projections �a

k;k�1
W bXa

k
! bXa

k�1
and

their differentials .�a
k;k�1

/�, which yield well-defined transposed morphisms
from the .k � 1/-st stage to the k-th stage at the level of exterior differential
forms. Our contention follows. ut
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7.D. Induced directed structure on a subvariety of a jet bundle

We discuss here the concept of induced directed structure for subvarieties of
the Semple tower of a directed variety .X; V /. This will be very important to
proceed inductively with the base loci of jet differentials. LetZ be an irreducible
algebraic subset of some k-jet bundle Xk over X , k � 0. We define the linear
subspace W � TZ � TXk jZ to be the closure

(7.27) W WD TZ0 \ Vk

taken on a suitable Zariski open set Z0 � Zreg where the intersection TZ0 \ Vk

has a constant rank and is a subbundle of TZ0 . Alternatively, we could also take
W to be the closure of TZ0 \Vk in the k-th stage .Xa

k
; V a

k
/ of the absolute Sem-

ple tower, which has the advantage of being non-singular. We say that .Z;W /
is the induced directed variety structure; this concept of induced structure al-
ready applies of course in the case k D 0. If f W .C; TC/ ! .X; V / satisfies
fŒk�.C/ � Z, then

(7.28) either fŒk�.C/ � Z˛ or f 0
Œk�.C/ � W;

where Z˛ is one of the connected components of Z � Z0 and Z0 is chosen as
in (7.27); especially, if W D 0, we conclude that fŒk�.C/ must be contained
in one of the Z˛’s. In the sequel, we always consider such a subvariety Z of
Xk as a directed pair .Z;W / by taking the induced structure described above.
By (7.28), if we proceed by induction on dimZ, the study of curves tangent to
V that have an order k lifting fŒk�.C/ � Z is reduced to the study of curves
tangent to .Z;W /. Let us first quote the following easy observation.

7.29. Observation. For k � 1, let Z � Xk be an irreducible algebraic subset
that projects onto Xk�1, i.e., �k;k�1.Z/ D Xk�1. Then the induced directed
variety .Z;W / � .Xk; Vk/, satisfies

1 � rankW < r WD rank.Vk/:

Proof. Take a Zariski open subset Z0 � Zreg such that W 0 D TZ0 \ Vk is a
vector bundle overZ0. SinceXk ! Xk�1 is a Pr�1-bundle,Z has codimension
at most .r � 1/ in Xk . Therefore rankW � rankVk � .r � 1/ � 1. On the other
hand, if we had rankW D rankVk generically, then TZ0 would contain VkjZ0 ,
in particular it would contain all vertical directions TXk=Xk�1

� Vk that are
tangent to the fibers of Xk ! Xk�1. By taking the flow along vertical vector
fields, we would conclude that Z0 is a union of fibers of Xk ! Xk�1 up to an
algebraic set of smaller dimension, but this is excluded since Z projects onto
Xk�1 and Z � Xk . ut

We introduce the following definition that slightly differs from the one given
in [Dem14]—it is actually more flexible and more general.
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7.30. Definition. For k � 1, let Z � Xk be an irreducible algebraic subset
of Xk and .Z;W / the induced directed structure. We assume moreover that
Z 6� Dk D P.TXk�1=Xk�2

/ (and put D1 D ; in what follows to avoid to have
to single out the case k D 1). In this situation we say that .Z;W / is of general
type modulo the Semple tower X� ! X if either W D 0, or rankW � 1 and
there exists ` � 0 and p 2 Q�0 such that

(7.31) K�cW`

˝ ObZ`
.p/ D K�cW`

˝ O bXkC`
.p/�bZ`

is big over bZ`;

possibly after replacing .Z`;W`/ by a suitable (non-singular) modification
.bZ`; bW`/ obtained via an embedded resolution of singularities

�` W .bZ` � bXkC`/ �! .Z` � XkC`/:

Notice that by (7.26), Condition (7.31) is satisfied if we assume the existence
of p � 0 such that

(7.32) ��
kC`K

�cW ˝ O bXkC`
.p/�bZ`

is big over bZ` � bXkC`:

In fact we infer (7.31) with ObZ`
.p/ replaced by

ObZ`
..0; : : : ; 0; p/C .rW � 1/1�/ � ObZ`

.p C .rW � 1/`/:
As a consequence, (7.31) is satisfied if K�cW is big (i.e., .Z;W / is of general

type), or if ObZ`
.1/ is big on some bZ`, ` � 1, but (7.32) is weaker than these

two bigness conditions, since we only require that some combination is big.
Also, we have the following easy observation.

7.33. Proposition. Let .X; V / be a projective directed variety. Assume that
there exist ` � 1 and a weight a� 2 Q`

>0 such that OX`
.a�/ is ample over

X`. Then every induced directed variety .Z;W / � .Xk; Vk/ is if general type
modulo X� ! X for every k � 1.

Proof. Corollary 7.21 shows that for `0 > ` and a suitable weight b� 2 Q`0

>0,
the line bundle OX`0 .b�/ is relatively ample with respect to the projectionX`0 ! X`.
From this, one deduces that the assumption also holds for arbitrary `0 > ` and
a suitable weight a0

�
2 Q`0

>0. Now, we use (7.32), in combination with Lemma
2.9 (b); in fact, O bXkC`

.1/�bZ`
is big over bZ` � bXkC` for ` � 1, since we get

many sections by pulling back the sections of O bX`0
.ma0

�
/, `0 D k C `, and by

restricting them to bZ`. ut
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7.E. Relation between invariant and non-invariant jet differentials

We show here that the existence of Gk-invariant global jet differentials is essen-
tially equivalent to the existence of non-invariant ones. We have seen that the
direct image sheaf

�k;0OXk
.m/ WD Ek;mV

� � EGG
k;mV

�

has a stalk at point x 2 X that consists of algebraic differential operators
P.fŒk�/ acting on germs of k-jets f W .C; 0/ ! .X; x/ tangent to V , satisfying
the invariance property

(7.34) P..f ı '/Œk�/ D .'0/mP.fŒk�/ ı '
whenever ' 2 Gk is in the group of k-jets of biholomorphisms ' W .C; 0/ ! .C; 0/.
The right action JkV � Gk ! JkV , .f; '/ 7! f ı ' induces a dual left action
of Gk on

L
m0�mE

GG
k;m0V

� by

(7.35)
Gk �

M
m0�m

EGG
k;m0V

�
x �!

M
m0�m

EGG
k;m0V

�
x ;

.'; P / 7�! '�P; .'�P /.fŒk�/ D P..f ı '/Œk�/;

so that  �.'�P / D . ı '/�P . Notice that for a global curve f W .C; TC/ ! .X; V /

and a global operator P 2 H 0.X;EGG
k;m
V � ˝ F / we have to modify a little bit

the definition to consider germs of curves at points t0 2 C other than 0. This
leads to putting

'�P.fŒk�/.t0/ D P..f ı't0
/Œk�/.0/; where 't0

.t/ D t0 C '.t/, t 2 D.0; "/:
The C�-action on a homogeneous polynomial of degree m is simply h�

�
P D

�mP for a dilation h�.t/ D �t , � 2 C�, but since ' ı h� ¤ h� ı ' in gen-
eral, '�P is no longer homogeneous when P is. However, by expanding the
derivatives of t 7! f .'.t// at t D 0, we find an expression

(7.36) .'�P /.fŒk�/ D
X

˛2Nk ; j˛jwDm

'.˛/.0/ P˛.fŒk�/;

where ˛ D .˛1; : : : ; ˛k/ 2 Nk , '.˛/ D .'0/˛1.'00/˛2 � � � .'.k//˛k , j˛jw D
˛1 C 2˛2 C � � � Ck˛k is the weighted degree and P˛ is a homogeneous polyno-
mial. Since any additional derivative taken on '0 means one less derivative left
for f , it is easy to see that for P homogeneous of degree m we have

m˛ WD deg.P˛/ D m� .˛2 C 2˛3 C � � � C .k � 1/˛k/ D ˛1 C ˛2 C � � � C ˛k;

in particular deg.P˛/ < m unless ˛ D .m; 0; : : : ; 0/, in which case P˛ D P .
Let us fix a non-zero global section P 2 H 0.X;EGG

k;m
V � ˝ F / for some line
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bundle F over X , and pick a non-zero component P˛0
of minimum degreem˛0

in the decomposition of P (of course m˛0
D m if and only if P is already

invariant). We have by construction

P˛0
2 H 0.X;EGG

k;m˛0
V � ˝ F /:

We claim that P˛0
is Gk-invariant. Otherwise, there is for each ˛ a decomposi-

tion

(7.37) . �P˛/.fŒk�/ D
X

ˇ2Nk ; jˇ jwDm˛

 .ˇ/.0/ P˛;ˇ .fŒk�/;

and the non-invariance of P˛0
would yield some non-zero term P˛0;ˇ0

of degree

deg.P˛0;ˇ0
/ < deg.P˛0

/ � deg.P / D m:

By replacing f with f ı  in (7.36) and plugging (7.37) into it, we would get
an identity of the form

. ı '/�P.fŒk�/ D
X

˛2Nk

. ı '/.˛/.0/ P˛.fŒk�/

D
X

˛;ˇ2Nk

'.˛/.0/ .ˇ/.0/ P˛;ˇ .fŒk�/;

but the term in the middle would have all components of degree � m˛0
, while

the term on the right possesses a component of degree < m˛0
for a sufficiently

generic choice of ' and  , contradiction. Therefore, we have shown the exis-
tence of a non-zero invariant section

P˛0
2 H 0.X;Ek;m˛0

V � ˝ F /; m˛0
� m: ut

8. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the
existence of k-jet metrics with suitable negativity properties of the curvature.
The connection between these properties is in fact a simple consequence of the
Ahlfors–Schwarz lemma. Such ideas have been already developed long ago by
Grauert–Reckziegel [GRe65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler
metrics on TX ) and by Cowen–Griffiths [CoGr76], Green–Griffiths [GrGr80]
and Grauert [Gra89] for higher order jet metrics.
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8.A. Definition of k-jet metrics

Even in the standard case V D TX , the definition given below differs from that
of [GrGr80], in which the k-jet metrics are not supposed to be G0

k
-invariant. We

prefer to deal here with G0
k

-invariant objects, because they reflect better the in-
trinsic geometry. Grauert [Gra89] actually deals with G0

k
-invariant metrics, but

he apparently does not take care of the way the quotient space J reg
k
V=Gk can be

compactified; also, his metrics are always induced by the Poincaré metric, and
it is not at all clear whether these metrics have the expected curvature properties
(see Problem 8.14 below). In the present situation, it is important to allow also
Hermitian metrics possessing some singularities (“singular Hermitian metrics”
in the sense of [Dem90b]).

8.1. Definition. Let L ! X be a holomorphic line bundle over a complex
manifold X . We say that h is a singular metric on L if for any trivialization
L�U ' U � C of L, the metric is given by j	j2

h
D j	j2e�' for some real valued

weight function ' 2 L1
loc.U /. The curvature current of L is then defined to be

the closed .1; 1/-current‚L;h D i
2	
@@', computed in the sense of distributions.

We say that h admits a closed subset† � X as its degeneration set if ' is locally
bounded on X �† and is unbounded on a neighborhood of any point of †.

An especially useful situation is the case when the curvature of h is positive
definite. By this, we mean that there exists a smooth positive definite Hermitian
metric ! and a continuous positive function " on X such that ‚L;h � "! in the
sense of currents, and we write in this case ‚L;h � 0. We need the following
basic fact (quite standard when X is projective algebraic); however we want to
avoid any algebraicity assumption here, so as to cover potential applications to
non-algebraic complex tori.

8.2. Proposition. Let L be a holomorphic line bundle on a compact complex
manifold X .

(i) L admits a singular Hermitian metric h with positive definite curvature
current ‚L;h � 0 if and only if L is big. Now, define Bm to be the base
locus of the linear system jH 0.X;L˝m/j and let

ˆm W X � Bm �! PN

be the corresponding meromorphic map. Let †m be the closed analytic
set equal to the union of Bm and of the set of points x 2 X � Bm such
that the fiber ˆ�1

m .ˆm.x// is positive dimensional.
(ii) If †m ¤ X and G is any line bundle, the base locus of L˝k ˝ G�1 is

contained in †m for k large. As a consequence, L admits a singular Her-
mitian metric h with degeneration set †m and with ‚L;h positive definite
on X .
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(iii) Conversely, if L admits a Hermitian metric h with degeneration set† and
positive definite curvature current ‚L;h, there exists an integer m > 0

such that the base locus Bm is contained in † and ˆm W X �† ! Pm is
an embedding.

Proof. (i) is proved e.g. in [Dem90b], [Dem92], and (ii) and (iii) are well-
known results in the basic theory of linear systems. ut

We now come to the main definitions. By (6.6), every regular k-jet f 2 JkV

gives rise to an element f 0
Œk�1�

.0/ 2 OXk
.�1/. Thus, measuring the “norm of

k-jets” is the same as taking a Hermitian metric on OXk
.�1/.

8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a
complex directed manifold .X; V / is a Hermitian metric hk on the line bundle
OXk

.�1/ over Xk (i.e., a Finsler metric on the vector bundle Vk�1 over Xk�1),
such that the weight functions ' representing the metric are smooth (resp. conti-
nuous, L1

loc). We let †hk
� Xk be the singularity set of the metric, i.e., the

closed subset of points in a neighborhood of which the weight ' is not locally
bounded.

We will always assume here that the weight function ' is quasi-plurisubhar-
monic. Recall that a function ' is said to be quasi-plurisubharmonic if ' is
locally the sum of a plurisubharmonic function and of a smooth function (so
that in particular ' 2 L1

loc). Then the curvature current

‚h�1
k
.OXk

.1// D i

2�
@@':

is well-defined as a current and is locally bounded from below by a negative
.1; 1/-form with constant coefficients.

8.4. Definition. Let hk be a k-jet metric on .X; V /. We say that hk has negative
jet curvature (resp. negative total jet curvature) if ‚hk

.OXk
.�1// is negative

definite along the subbundle Vk � TXk
(resp. on all of TXk

), i.e., if there is
" > 0 and a smooth Hermitian metric !k on TXk

such that

h‚h�1
k
.OXk

.1//i.	/ � "j	j2!k
; 8	 2 Vk � TXk

.resp. 8	 2 TXk
/:

(If the metric hk is not smooth, we suppose that its weights ' are quasi-plurisub-
harmonic, and the curvature inequality is taken in the sense of distributions.)

It is important to observe that for k � 2 there cannot exist any smooth
Hermitian metric hk on OXk

.1/ with positive definite curvature along TXk=X ,
since OXk

.1/ is not relatively ample over X . However, it is relatively big, and
Proposition 8.2 (i) shows that OXk

.�1/ admits a singular Hermitian metric with
negative total jet curvature (whatever the singularities of the metric are) if and
only if OXk

.1/ is big over Xk . It is therefore crucial to allow singularities in the
metrics in Definition 8.4.
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8.B. Special case of 1-jet metrics

A 1-jet metric h1 on OX1
.�1/ is the same as a Finsler metricN D p

h1 on V � TX .
Assume until the end of this paragraph that h1 is smooth. By the well-known
Kodaira embedding theorem, the existence of a smooth metric h1 such that
‚h�1

1
.OX1

.1// is positive on all of TX1
is equivalent to OX1

.1/ being ample,
that is, V � ample.

8.5. Remark. In the absolute case V D TX , there are only few examples of
varieties X such that T �

X is ample, mainly quotients of the ball Bn � Cn by a
discrete cocompact group of automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker.
For example, if the Hermitian metric h1 comes from a (smooth) Hermitian met-
ric h on V , then formula (5.15) implies that h1 has negative total jet curva-
ture (i.e., ‚h�1

1
.OX1

.1// is positive) if and only if h‚V;hi.� ˝ v/ < 0 for
all � 2 TX � f0g, v 2 V � f0g, that is, if .V; h/ is negative in the sense of
Griffiths. On the other hand, V1 � TX1

consists by definition of tangent vec-
tors 
 2 TX1;.x;Œv�/ whose horizontal projection H
 is proportional to v. Thus
‚h1

.OX1
.�1// is negative definite on V1 if and only if ‚V;h satisfies the much

weaker condition that the holomorphic sectional curvature h‚V;hi.v ˝ v/ is
negative on every complex line. ut

8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our first
observation is the fact that the k-jet negativity property of the curvature becomes
actually weaker and weaker as k increases.

8.6. Lemma. Let .X; V / be a compact complex directed manifold. If .X; V /
has a .k � 1/-jet metric hk�1 with negative jet curvature, then there is a k-jet
metric hk with negative jet curvature such that†hk

� ��1
k
.†hk�1

/[Dk . (The
same holds true for negative total jet curvature).

Proof. Let !k�1, !k be given smooth Hermitian metrics on TXk�1
and TXk

.
The hypothesis implies

h‚h�1
k�1
.OXk�1

.1//i.	/ � "j	j2!k�1
; 8	 2 Vk�1

for some constant " > 0. On the other hand, as OXk
.Dk/ is relatively ample

over Xk�1 (Dk is a hyperplane section bundle), there exists a smooth metric eh
on OXk

.Dk/ such that

h‚eh.OXk
.Dk//i.	/ � ıj	j2!k

� C j.�k/�	j2!k�1
; 8	 2 TXk
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for some constants ı; C > 0. Combining both inequalities (the second one being
applied to 	 2 Vk and the first one to .�k/�	 2 Vk�1), we get

h‚.	�
k

hk�1/�peh .��
k OXk�1

.p/˝ OXk
.Dk//i.	/

� ıj	j2!k
C .p" � C/j.�k/�	j2!k�1

; 8	 2 Vk :

Hence, for p large enough, .��
k
hk�1/

�peh has positive definite curvature along Vk .
Now, by (6.9), there is a sheaf injection

OXk
.�p/ D ��

k OXk�1
.�p/˝OXk

.�pDk/ ,�! .��
k OXk�1

.p/˝OXk
.Dk//

�1

obtained by twisting with OXk
..p � 1/Dk/. Therefore

hk WD ..��
khk�1/

�peh/�1=p D .��
khk�1/eh�1=p

induces a singular metric on OXk
.1/ in which an additional degeneration divisor

p�1.p � 1/Dk appears. Hence we get †hk
D ��1

k
†hk�1

[Dk and

‚h�1
k
.OXk

.1// D 1

p
‚.	�

k
hk�1/�peh C p � 1

p
ŒDk�

is positive definite along Vk . The same proof works in the case of negative total
jet curvature. ut

One of the main motivations for the introduction of k-jets metrics is the
following list of algebraic sufficient conditions.

8.7. Algebraic sufficient conditions. We suppose here that X is projective alge-
braic, and we make one of the additional assumptions (i), (ii) or (iii) below.
(i) Assume that there exist integers k;m > 0 and b� 2 Nk such that the line
bundle L WD OXk

.m/ ˝ OXk
.�b� � D�/ is ample over Xk . Then there is a

smooth Hermitian metric hL on L with positive definite curvature on Xk . By
means of the morphism � W OXk

.�m/ ! L�1, we get an induced metric hk D
.��h�1

L /1=m on OXk
.�1/ which is degenerate on the support of the zero divisor

div.�/ D b� �D�. Hence †hk
D Supp.b� �D�/ � X

sing
k

and

‚h�1
k
.OXk

.1// D 1

m
‚hL

.L/C 1

m
Œb� �D�� � 1

m
‚hL

.L/ > 0:

In particular hk has negative total jet curvature.
(ii) Assume more generally that there exist integers k;m > 0 and an ample
line bundle A on X such that H 0.Xk;OXk

.m/ ˝ ��
0;k
A�1/ has non-zero sec-

tions �1; : : : ; �N . Let Z � Xk be the base locus of these sections; necessarily
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Z � X
sing
k

by Theorem 7.11 (iii). By taking a smooth metric hA with positive
curvature on A, we get a singular metric h0

k
on OXk

.�1/ such that

h0
k.	/ D

� X
1�j�N

j�j .w/ � 	mj2
h�1

A

�1=m
; w 2 Xk; 	 2 OXk

.�1/w :

Then †h0
k

D Z, and by computing i
2	
@@ log h0

k
.	/ we obtain

‚h0 �1
k
.OXk

.1// � 1

m
��

0;k‚A:

By (7.17) and an induction on k, there exists a weight b� 2 QkC such that
OXk

.1/˝ OXk
.�b� �D�/ is relatively ample over X . Hence

L D OXk
.1/˝ OXk

.�b� �D�/˝ ��
0;kA

˝p

is ample on X for p � 0. The arguments used in (i) show that there is a k-jet
metric h00

k
on OXk

.�1/ with †h00
k

D Supp.b� �D�/ D X
sing
k

and

‚h00 �1
k

.OXk
.1// D ‚L C Œb� �D�� � p ��

0;k‚A;

where ‚L is positive definite on Xk . The metric hk D .h
0 mp

k
h00

k
/1=.mpC1/ then

satisfies †hk
D †h0

k
D Z and

‚h�1
k
.OXk

.1// � 1

mp C 1
‚L > 0:

(iii) If Ek;mV
� is ample, there is an ample line bundle A and a sufficiently high

symmetric power such that Sp.Ek;mV
�/˝A�1 is generated by sections. These

sections can be viewed as sections of OXk
.mp/˝ ��

0;k
A�1 over Xk , and their

base locus is exactly Z D X
sing
k

by Theorem 7.11 (iii). Hence the k-jet metric
hk constructed in (ii) has negative total jet curvature and satisfies †hk

D X
sing
k

.

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80]
in the higher order case, is that k-jet negativity implies hyperbolicity. In partic-
ular, the existence of enough global jet differentials implies hyperbolicity.

8.8. Theorem. Let .X; V / be a compact complex directed manifold. If .X; V /
has a k-jet metric hk with negative jet curvature, then every entire curve
f W C ! X tangent to V is such that fŒk�.C/ � †hk

. In particular, if †hk
� X

sing
k

,
then .X; V / is hyperbolic.
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Proof. The main idea is to use the Ahlfors–Schwarz lemma, following the ap-
proach of [GrGr80]. However we will give here all necessary details because
our setting is slightly different. Assume that there is a k-jet metric hk as in the
hypotheses of Theorem 8.8. Let !k be a smooth Hermitian metric on TXk

. By
hypothesis, there exists " > 0 such that

h‚h�1
k
.OXk

.1//i.	/ � "j	j2!k
; 8	 2 Vk :

Moreover, by (6.4), .�k/� maps Vk continuously to OXk
.�1/ and the weight e'

of hk is locally bounded from above. Hence there is a constant C > 0 such that

j.�k/�	j2hk
� C j	j2!k

; 8	 2 Vk :

Combining these inequalities, we find

h‚h�1
k
.OXk

.1//i.	/ � "

C
j.�k/�	j2hk

; 8	 2 Vk :

Now, let f W �R ! X be a non-constant holomorphic map tangent to V on the
disk �R. We use the line bundle morphism (6.6)

F D f 0
Œk�1� W T�R

�! f �
Œk�OXk

.�1/
to obtain a pull-back metric


 D 
0.t/ dt ˝ dt D F �hk on T�R
:

If fŒk�.�R/ � †hk
then 
 
 0. Otherwise, F.t/ has isolated zeroes at all sin-

gular points of fŒk�1� and so 
.t/ vanishes only at these points and at points of
the degeneration set .fŒk�/

�1.†hk
/ which is a polar set in �R. At other points,

the Gaussian curvature of 
 satisfies

i @@ log 
0.t/


.t/
D �2� .fŒk�/

�‚hk
.OXk

.�1//
F �hk

D
h‚h�1

k
.OXk

.1//i.f 0
Œk�
.t//

jf 0
Œk�1�

.t/j2
hk

� "

C
;

since f 0
Œk�1�

.t/ D .�k/�f 0
Œk�
.t/. The Ahlfors–Schwarz lemma 4.2 implies that


 can be compared with the Poincaré metric as follows:


.t/ � 2C

"

R�2 jdt j2
.1 � jt j2=R2/2

H) jf 0
Œk�1�.t/j2hk

� 2C

"

R�2

.1 � jt j2=R2/2
:

If f W C ! X is an entire curve tangent to V such that fŒk�.C/ 6� †hk
, the

above estimate implies as R ! C1 that fŒk�1� must be a constant, and hence
also f . Now, if †hk

� X
sing
k

, the inclusion fŒk�.C/ � †hk
implies f 0.t/ D 0

at every point. Therefore f is a constant and .X; V / is hyperbolic. ut
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Combining Theorem 8.8 with 8.7 (ii) and (iii), we get the following conse-
quences.

8.9. Vanishing theorem. Assume that there exist integers k;m > 0 and an ample
line bundle L on X such that H 0.Xk;OXk

.m/˝ ��
0;k
L�1/ ' H 0.X;Ek;mV

� ˝ L�1/

has non-zero sections �1; : : : ; �N . Let Z � Xk be the base locus of these
sections. Then every entire curve f W C ! X tangent to V is such that
fŒk�.C/ � Z. In other words, for every global Gk-invariant polynomial dif-
ferential operator P with values in L�1, every entire curve f must satisfy the
algebraic differential equation P.fŒk�/ D 0.

8.10. Corollary. Let .X; V / be a compact complex directed manifold. If Ek;mV
�

is ample for some positive integers k;m, then .X; V / is hyperbolic.

8.11. Remark. Green and Griffiths [GrGr80] stated that Theorem 8.9 is even
true for sections �j 2 H 0.X;EGG

k;m
.V �/ ˝ L�1/, in the special case V D TX

they consider. This is proved below in Subsect. 8.D; the reader is also referred
to Siu and Yeung [SiYe97] for a proof based on a use of Nevanlinna theory
and the logarithmic derivative lemma (the original proof given in [GrGr80]
does not seem to be complete, as it relies on an unsettled pointwise version
of the Ahlfors–Schwarz lemma for general jet differentials); other proofs seem
to have been circulating in the literature in the last years. Let us first give a
very short proof in the case where f is supposed to have a bounded deriva-
tive (thanks to the Brody criterion, this is enough if one is merely interested
in proving hyperbolicity; thus Corollary 8.10 will be valid with EGG

k;m
V � in

place of Ek;mV
�). In fact, if f 0 is bounded, one can apply the Cauchy inequal-

ities to all components fj of f with respect to a finite collection of coordinate
patches covering X . As f 0 is bounded, we can do this on sufficiently small
discs D.t; ı/ � C of constant radius ı > 0. Therefore all derivatives f 0, f 00,
: : : ; f .k/ are bounded. From this we conclude that �j .f / is a bounded section
of f �L�1. Its norm j�j .f /jL�1 (with respect to any positively curved metric
j jL on L) is a bounded subharmonic function, which is moreover strictly sub-
harmonic at all points where f 0 ¤ 0 and �j .f / ¤ 0. This is a contradiction
unless f is constant or �j .f / 
 0.

The above results justify the following definition and problems.

8.12. Definition. We say that X , resp. .X; V /, has non-degenerate negative k-
jet curvature if there exists a k-jet metric hk on OXk

.�1/ with negative jet
curvature such that †hk

� X
sing
k

.

8.13. Conjecture. Let .X; V / be a compact directed manifold. Then .X; V / is
hyperbolic if and only if .X; V / has non-degenerate negative k-jet curvature for
k large enough.
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This is probably a hard problem. In fact, it is shown in [Dem97, Section 8],
that the smallest admissible integer k must depend on the geometry of X and
need not be uniformly bounded as soon as dimX � 2 (even in the absolute
case V D TX ). On the other hand, if .X; V / is hyperbolic, we get for each
integer k � 1 a generalized Kobayashi–Royden metric k.Xk�1;Vk�1/ on Vk�1

(see Definition 2.1), which can be also viewed as a k-jet metric hk on OXk
.�1/ ;

we will call it the Grauert k-jet metric of .X; V /, although it formally differs
from the jet metric considered in [Gra89] (see also [DGr91]). By looking at
the projection �k W .Xk; Vk/ ! .Xk�1; Vk�1/, we see that the sequence hk

is monotonic, namely ��
k
hk � hkC1 for every k. If .X; V / is hyperbolic, then

h1 is non-degenerate and therefore by monotonicity †hk
� X

sing
k

for k � 1.
Conversely, if the Grauert metric satisfies †hk

� X
sing
k

, it is easy to see that
.X; V / is hyperbolic. The following problem is thus especially meaningful.

8.14. Problem. Estimate the k-jet curvature‚h�1
k
.OXk

.1// of the Grauert met-
ric hk on .Xk; Vk/ as k tends to C1.

8.D. Vanishing theorem for non-invariant jet differentials

As an application of the arguments developed in Subsect. 7.E, we indicate here
a proof of the basic vanishing theorem for non-invariant jet differentials. This
version has been first proved in full generality by Siu [Siu97] (cf. also [Dem97]),
with a different and more involved technique based on Nevanlinna theory and
the logarithmic derivative lemma.

8.15. Theorem. Let .X; V / be a projective directed and A an ample divisor
on X . Then one has P.f I f 0; f 00; : : : ; f .k// D 0 for every entire curve
f W .C; TC/ ! .X; V / and every global section P 2 H 0.X;EGG

k;m
V � ˝ O.�A//.

Sketch of proof. In general, we know by Theorem 8.9 that the result is true
when P is invariant, i.e., for P 2 H 0.X;Ek;mV

� ˝ O.�A//. Now, we prove
Theorem 8.15 by induction on k and m (simultaneously for all directed varieties).
Let Z � Xk be the base locus of all polynomials Q 2 H 0.X;EGG

k;m0V
� ˝ O.�A//

with m0 < m. A priori, this defines merely an algebraic set in the Green–
Griffiths bundle XGG

k
D .JkV � f0g/=C�, but since the global polynomials

'�Q also enter the game, we know that the base locus is Gk-invariant, and
thus descends to Xk . Let f W .C; TC/ ! .X; V /. By the induction hypothesis,
we know that fŒk�.C/ � Z. Therefore f can also be viewed as a entire curve
drawn in the directed variety .Z;W / induced by .Xk; Vk/. By (7.36), we have
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a decomposition

.'�P /.gŒk�/ D
X

˛2Nk ; j˛jwDm

'.˛/.0/ P˛.gŒk�/;

with deg.P˛/ < deg.P / for ˛ ¤ .m; 0; : : : ; 0/;

and since P˛.gŒk�/ D 0 for all germs of curves g of .Z;W / when ˛ ¤ .m; 0; : : : ; 0/,
we conclude that P defines an invariant jet differential when it is restricted to
.Z;W /, in other words it still defines a section of

H 0.Z; .OXk
.m/˝ ��

k;0OX .�A//�Z/:
We can then apply the Ahlfors–Schwarz lemma in the way we did it in Subsect.
8.C to conclude that P.fŒk�/ D 0. ut

9. Morse inequalities and the Green–Griffiths–Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f W C ! X drawn in a complex irreducible n-dimensional variety X , and more
specifically to show that they must satisfy certain global algebraic or differential
equations as soon as X is projective of general type. By means of holomorphic
Morse inequalities and a probabilistic analysis of the cohomology of jet spaces,
it is possible to prove a significant step of the generalized Green–Griffiths–Lang
conjecture. The use of holomorphic Morse inequalities was first suggested in
[Dem07a], and then carried out in an algebraic context by S. Diverio in his PhD
work ([Div08], [Div09]). The general more analytic and more powerful results
presented here first appeared in [Dem11], [Dem12].

9.A. Introduction

Let .X; V / be a directed variety. By definition, proving the algebraic degeneracy
of an entire curve f I .C; TC/ ! .X; V /means finding a non-zero polynomialP
onX such thatP.f / D 0. As already explained in Sect. 8, all known methods of
proof are based on establishing first the existence of certain algebraic differen-
tial equations P.f I f 0; f 00; : : : ; f .k// D 0 of some order k, and then trying to
find enough such equations so that they cut out a proper algebraic locus Y � X .
We use for this global sections of H 0.X;EGG

k;m
V � ˝ O.�A//, where A is am-

ple, and apply the fundamental vanishing theorem 8.15. It is expected that the
global sections of H 0.X;EGG

k;m
V � ˝ O.�A// are precisely those which ulti-

mately define the algebraic locus Y � X where the curve f should lie. The
problem is then reduced to (i) showing that there are many non-zero sections of
H 0.X;EGG

k;m
V � ˝O.�A// and (ii) understanding what is their joint base locus.

The first part of this program is the main result of this section.
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9.1. Theorem. Let .X; V / be a directed projective variety such that KV is big
and let A be an ample divisor. Then for k � 1 and ı 2 QC small enough, ı �
c.log k/=k, the number of sections h0.X;EGG

k;m
V � ˝ O.�mıA// has maximal

growth, i.e., is larger that ckm
nCkr�1 for some m � mk , where c; ck > 0,

n D dimX and r D rankV . In particular, entire curves f W .C; TC/ ! .X; V /

satisfy (many) algebraic differential equations.

The statement is very elementary to check when r D rankV D 1, and there-
fore when n D dimX D 1. In higher dimensions n � 2, only very partial
results were known before Theorem 9.1 was obtained in [Dem11], [and they
dealt merely with the absolute case V D TX ]. In dimension 2, Theorem 9.1 is
a consequence of the Riemann–Roch calculation of Green–Griffiths [GrGr80],
combined with a vanishing theorem due to Bogomolov [Bog79]—the latter ac-
tually only applies to the top cohomology group Hn, and things become much
more delicate when extimates of intermediate cohomology groups are needed.
In higher dimensions, Diverio [Div08], [Div09] proved the existence of sec-
tions of H 0.X;EGG

k;m
V � ˝ O.�1// whenever X is a hypersurface of PnC1

C of
high degree d � dn, assuming k � n and m � mn. More recently, Merker
[Mer15] was able to treat the case of arbitrary hypersurfaces of general type,
i.e., d � n C 3, assuming this time k to be very large. The latter result is ob-
tained through explicit algebraic calculations of the spaces of sections, and the
proof is computationally very intensive. Bérczi [Ber15], [Ber18] also obtained
related results with a different approach based on residue formulas, assuming
e.g. d � n9n.

All these approaches are algebraic in nature. Here, however, our techniques
are based on more elaborate curvature estimates in the spirit of Cowen–Griffiths
[CoGr76]. They require holomorphic Morse inequalities (see 9.10 below)—and
we do not know how to translate our method in an algebraic setting. Notice
that holomorphic Morse inequalities are essentially insensitive to singularities,
as we can pass to non-singular models and blow-up X as much as we want: if
� W eX ! X is a modification then ��O eX D OX and for q � 1, Rq��O eX is
supported on a codimension 1 analytic subset (even a codimension 2 subset if
X is smooth). It follows from the Leray spectral sequence that the cohomology
estimates for L on X or for eL D ��L on eX differ by negligible terms, i.e.,

(9.2) hq.eX;eL˝m/ � hq.X;L˝m/ D O.mn�1/:

Finally, singular holomorphic Morse inequalities (in the form obtained by
L. Bonavero [Bon93]) allow us to work with singular Hermitian metrics h; this
is the reason why we will only require to have big line bundles rather than am-
ple line bundles. In the case of linear subspaces V � TX , we introduce singular
Hermitian metrics as follows.
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9.3. Definition. A singular Hermitian metric on a linear subspace V � TX is a
metric h on the fibers of V such that the function log h W 	 7! log j	j2

h
is locally

integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the
tautological line bundle OP.V /.�1/ on the projectivized bundle P.V / D
V � f0g=C�, and therefore its dual metric h� defines a curvature current ‚OP.V /.1/;h�

of type .1; 1/ on P.V / � P.TX /, such that

(9.4) p�‚OP.V /.1/;h� D i

2�
@@ log h; where p W V � f0g �! P.V /:

If log h is quasi-plurisubharmonic (or quasi-psh, which means plurisubharmonic
modulo addition of a smooth function) on V , then log h is indeed locally inte-
grable, and we have moreover

(9.5) ‚OP.V /.1/;h� � �C!
for some smooth positive .1; 1/-form on P.V / and some constant C > 0; con-
versely, if (9.5) holds, then logh is quasi-plurisubharmonic.

9.6. Definition. We will say that a singular Hermitian metric h on V is ad-
missible if h can be written as h D e'h0jV , where h0 is a smooth positive
definite Hermitian on TX and ' is a quasi-plurisubharmonic weight with ana-
lytic singularities on X , as in Definition 9.3. Then h can be seen as a singu-
lar Hermitian metric on OP.V /.1/, with the property that it induces a smooth
positive definite metric on a Zariski open set X 0 � X � Sing.V /; we will de-
note by Sing.h/ the complement of the largest such Zariski open set X 0 (so that
Sing.h/ � Sing.V /).

If h is an admissible metric on V , we define Oh.V
�/ to be the sheaf of germs

of holomorphic sections of V �
�X�Sing.h/

which are h�-bounded near Sing.h/; by
the assumption on the analytic singularities, this is a coherent sheaf (as the direct
image of some coherent sheaf on P.V /), and actually, since h� D e�'h�

0 , it is
a subsheaf of the sheaf O.V �/ WD Oh0

.V �/ associated with a smooth positive
definite metric h0 on TX . If r is the generic rank of V and m a positive integer,
we define similarly

(9.7)

bK
Œm�

V;h D sheaf of germs of holomorphic sections of .detV �
�X 0/

˝m

D .ƒrV �
�X 0/

˝m

which are det h�-bounded;

so that bK
Œm�

V WD bK
Œm�

V;h0
according to Definition 2.7. For a given admissi-

ble Hermitian structure .V; h/, we define similarly the sheaf EGG
k;m
V �

h
to be the
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sheaf of polynomials defined over X � Sing.h/ which are “h-bounded”. This
means that when they are viewed as polynomials P.z I 	1; : : : ; 	k/ in terms of
	j D .r1;0

h0
/jf .0/, where r1;0

h0
is the .1; 0/-component of the induced Chern

connection on .V; h0/, there is a uniform bound

(9.8) jP.z I 	1; : : : ; 	k/j � C
�X

k	j k1=j

h

�m

near points of X � X 0 (see Sect. 2 for more details on this). Again, by a direct
image argument, one sees that EGG

k;m
V �

h
is always a coherent sheaf. The sheaf

EGG
k;m
V � is defined to be EGG

k;m
V �

h
when h D h0 (it is actually independent of

the choice of h0, as follows from arguments similar to those given in Sect. 2).
Notice that this is exactly what is needed to extend the proof of the vanishing
theorem 8.15 to the case of a singular linear space V ; the value distribution
theory argument can only work when the functions P.f I f 0; : : : ; f .k//.t/ do
not exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green–Griffiths
bundle of k-jets XGG

k
D J kV � f0g=C�, which by (7.7) consists of a fibration

in weighted projective spaces, and its associated tautological sheaf

L D OXGG
k
.1/;

viewed rather as a virtual Q-line bundle OXGG
k
.m0/

1=m0 with m0 D lcm.1; 2; : : : ; k/.

Then, if �k W XGG
k

! X is the natural projection, we have

EGG
k;m D .�k/�OXGG

k
.m/ and Rq.�k/�OXGG

k
.m/ D 0 for q � 1:

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X
the isomorphism

(9.9) H q.X;EGG
k;mV

� ˝ F / ' H q.XGG
k ;OXGG

k
.m/˝ ��

kF /:

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let
us recall the main statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact com-
plex manifolds, E ! X a holomorphic vector bundle of rank r , and .L; h/ a
Hermitian line bundle. The dimensions hq.X;E ˝ Lm/ of cohomology groups
of the tensor powers E ˝ Lm satisfy the following asymptotic estimates as
m ! C1:
(WM) Weak Morse inequalities:

hq.X;E ˝ Lm/ � r
mn

nŠ

Z
X.L;h;q/

.�1/q‚n
L;h C o.mn/;



66 J.-P. Demailly

where X.L; h; q/ denotes the open set of points x 2 X at which the curvature
form ‚L;h.x/ has signature .q; n � q/;
(SM) Strong Morse inequalities:X

0�j�q

.�1/q�jhj .X;E ˝ Lm/ � r
mn

nŠ

Z
X.L;h;�q/

.�1/q‚n
L;h C o.mn/;

where X.L; h;� q/ D S
j�q X.L; h; j /;

(RR) Asymptotic Riemann–Roch formula:

�.X;E ˝ Lm/ WD
X

0�j�n

.�1/jhj .X;E ˝ Lm/ D r
mn

nŠ

Z
X

‚n
L;h C o.mn/:

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h D e�' is a singular Hermi-
tian metric with analytic singularities of pole set P D '�1.�1/, the estimates
still hold provided all cohomology groups are replaced by cohomology groups
H q.X;E ˝ Lm ˝ I .hm// twisted with the corresponding L2 multiplier ideal
sheaves

I .hm/ D I .k'/

D
n
f 2 OX;x; 9V 3 x;

Z
V

jf .z/j2e�m'.z/ d�.z/ < C1
o
;

and provided the Morse integrals are computed on the regular locus of h, namely
restricted to X.L; h; q/�†:Z

X.L;h;q/�†

.�1/q‚n
L;h:

The special case of 9.10 (SM) when q D 1 yields a very useful criterion for the
existence of sections of large multiples of L.

9.11. Corollary. Let L ! X be a holomorphic line bundle equipped with a
singular Hermitian metric h D e�' with analytic singularities of pole set † D
'�1.�1/. Then we have the following lower bounds

(a) at the h0 level:

h0.X;E ˝ Lm/ � h0.X;E ˝ Lm ˝ I .hm//

� h0.X;E ˝ Lm ˝ I .hm//

� h1.X;E ˝ Lm ˝ I .hm//

� r
kn

nŠ

Z
X.L;h;�1/�†

‚n
L;h � o.kn/:

Especially L is big as soon as
R
X.L;h;�1/�†‚

n
L;h

> 0 for some singular
Hermitian metric h on L.
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(b) at the hq level:

hq.X;E ˝ Lm ˝ I .hm//

� r
kn

nŠ

X
j Dq�1;q;qC1

.�1/q
Z

X.L;h;j /�†

‚n
L;h � o.kn/:

Now, given a directed manifold .X; V /, we can associate with any admis-
sible metric h on V a metric (or rather a natural family) of metrics on L D
OXGG

k
.1/. The space XGG

k
always possesses quotient singularities if k � 2 (and

even some more if V is singular), but we do not really care since Morse in-
equalities still work in this setting thanks to Bonavero’s generalization. As we
will see, it is then possible to get nice asymptotic formulas as m ! C1. They
appear to be of a probabilistic nature if we take the components of the k-jet
(i.e., the successive derivatives 	j D f .j /.0/, 1 � j � k) as random variables.
This probabilistic behaviour was somehow already visible in the Riemann–Roch
calculation of [GrGr80]. In this way, assuming KV big, we produce a lot of
sections �j D H 0.XGG

k
;OXGG

k
.m/ ˝ ��

k
F /, corresponding to certain divisors

Zj � XGG
k

. The hard problem which is left in order to complete a proof of
the generalized Green–Griffiths–Lang conjecture is to compute the base locus
Z D T

Zj and to show that Y D �k.Z/ � X must be a proper algebraic
variety.

9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted pro-
jective spaces, and to evaluate the corresponding volume forms. Here we put
d c D i

4	
.@ � @/ so that dd c D i

2	
@@. The normalization of the d c operator

is chosen such that we have precisely .dd c log jzj2/n D ı0 (the Dirac mass
at 0) for the Monge–Ampère operator in Cn. Given a k-tuple of “weights” a D
.a1; : : : ; ak/, i.e., of integers as > 0 with gcd.a1; : : : ; ak/ D 1, we introduce
the weighted projective space P.a1; : : : ; ak/ to be the quotient of Ck � f0g by
the corresponding weighted C� action:
(9.12)
P.a1; : : : ; ak/ D Ck � f0g=C�; � � z D .�a1z1; : : : ; �

akzk/; � 2 C�:

As is well-known, this defines a toric .k � 1/-dimensional algebraic variety
with quotient singularities. On this variety, we introduce the possibly singular
(but almost everywhere smooth and non-degenerate) Kähler form !a;p defined
by

(9.13) ��
a!a;p D dd c'a;p; 'a;p.z/ D 1

p
log

X
1�s�k

jzsj2p=as ;
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where �a W Ck � f0g ! P.a1; : : : ; ak/ is the canonical projection and p > 0

is a positive constant. It is clear that 'p;a is real analytic on Ck � f0g if p
is an integer and a common multiple of all weights as , and we will implicitly
pick such a p later on to avoid any difficulty. Elementary calculations give the
following well-known formula for the volume

(9.14)
Z

P.a1;:::;ak/

!k�1
a;p D 1

a1 � � � ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since
the cohomology class of !a;p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of
looking at Ck , we consider the weighted C� action defined by

(9.15) Cjrj D Cr1 � � � � � Crk ; � � z D .�a1z1; : : : ; �
akzk/; � 2 C�:

Here zs 2 Crs for some k-tuple r D .r1; : : : ; rk/ and jr j D r1 C � � � C rk . This
gives rise to a weighted projective space

P.a
Œr1�
1 ; : : : ; a

Œrk�

k
/ D P.a1; : : : ; a1; : : : ; ak; : : : ; ak/;

�a;r W Cr1 � � � � � Crk � f0g �! P.a
Œr1�
1 ; : : : ; a

Œrk�

k
/;(9.16)

obtained by repeating rs times each weight as . On this space, we introduce the
degenerate Kähler metric !a;r;p such that

(9.17) ��
a;r!a;r;p D dd c'a;r;p; 'a;r;p.z/ D 1

p
log

X
1�s�k

jzsj2p=as ;

where jzsj stands now for the standard Hermitian norm .
P

1�j�rs
jzs;j j2/1=2

on Crs . This metric is cohomologous to the corresponding “polydisc-like” met-
ric !a;p already defined, and therefore Stokes theorem implies

(9.18)
Z

P.a
Œr1�

1 ;:::;a
Œrk�

k
/

!jrj�1
a;r;p D 1

a
r1

1 � � � ark

k

:

Using standard results of integration theory (Fubini, change of variable for-
mula...), one obtains:

9.19. Proposition. Let f .z/ be a bounded function on P.aŒr1�
1 ; : : : ; a

Œrk�

k
/ which

is continuous outside of the hyperplane sections zs D 0. We also view f as a
C�-invariant continuous function on

Q
.Crs � f0g/. ThenZ

P.a
Œr1�

1 ;:::;a
Œrk�

k
/

f .z/ !jrj�1
a;r;p

D .jr j � 1/ŠQ
s a

rs
s

Z
.x;u/2�k�1�QS2rs�1

f .x
a1=2p
1 u1; : : : ; x

ak=2p

k
uk/

Y
1�s�k

x
rs�1
s

.rs � 1/Š dx d�.u/;
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where �k�1 is the .k � 1/-simplex fxs � 0,
P
xs D 1g, dx D dx1 ^ � � � ^ dxk�1

its standard measure, and where d�.u/ D d�1.u1/ � � � d�k.uk/ is the rota-
tion invariant probability measure on the product

Q
s S

2rs�1 of unit spheres in
Cr1 � � � � � Crk . As a consequence

lim
p!C1

Z
P.a

Œr1�

1 ;:::;a
Œrk�

k
/

f .z/ !jrj�1
a;r;p D 1Q

s a
rs
s

Z
Q

S2rs�1

f .u/ d�.u/:

Also, by elementary integrations by parts and induction on k; r1; : : : ; rk , it
can be checked that

(9.20)
Z

x2�k�1

Y
1�s�k

xrs�1
s dx1 � � � dxk�1 D 1

.jr j � 1/Š
Y

1�s�k

.rs � 1/Š

This implies that .jr j�1/ŠQ1�s�k
x

rs�1
s

.rs�1/Š
dx is a probability measure on�k�1.

9.C. Probabilistic estimate of the curvature of k-jet bundles

Let .X; V / be a compact complex directed non-singular variety. To avoid any
technical difficulty at this point, we first assume that V is a holomorphic vector
subbundle of TX , equipped with a smooth Hermitian metric h.

According to the notation already specified in Sect. 7, we denote by J kV

the bundle of k-jets of holomorphic curves f W .C; 0/ ! X tangent to V at
each point. Let us set n D dimCX and r D rankC V . Then J kV ! X is an
algebraic fiber bundle with typical fiber Crk , and we get a projectivized k-jet
bundle

(9.21) XGG
k WD .J kV � f0g/=C�; �k W XGG

k �! X;

which is a P.1Œr�; 2Œr�; : : : ; kŒr�/ weighted projective bundle over X , and we
have the direct image formula .�k/�OXGG

k
.m/ D O.EGG

k;m
V �/ (cf. Proposi-

tion 7.9). In the sequel, we do not make a direct use of coordinates, because
they need not be related in any way to the Hermitian metric h of V . Instead, we
choose a local holomorphic coordinate frame .e˛.z//1�˛�r of V on a neighbor-
hood U of x0, such that

(9.22) he˛.z/; eˇ .z/i D ı˛ˇ C
X

1�i;j�n; 1�˛;ˇ�r

cij˛ˇzizj CO.jzj3/

for suitable complex coefficients .cij˛ˇ /. It is a standard fact that such a nor-
malized coordinate system always exists, and that the Chern curvature tensor

i
2	
D2

V;h
of .V; h/ at x0 is then given by

(9.23) ‚V;h.x0/ D � i

2�

X
i;j;˛;ˇ

cij˛ˇ dzi ^ dzj ˝ e�̨ ˝ eˇ :
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Consider a local holomorphic connection r on V�U (e.g. the one which turns
.e˛/ into a parallel frame), and take 	k D rkf .0/ 2 Vx defined inductively by
r1f D f 0 and rsf D rf 0.rs�1f /. This gives a local identification

JkV�U �! V ˚k
�U ; f 7�! .	1; : : : ; 	k/ D .rf .0/; : : : ;rf k.0//;

and the weighted C� action on JkV is expressed in this setting by

� � .	1; 	2; : : : ; 	k/ D .�	1; �
2	2; : : : ; �

k	k/:

Now, we fix a finite open covering .U˛/˛2I ofX by open coordinate charts such
that V�U˛

is trivial, along with holomorphic connections r˛ on V�U˛
. Let �˛ be

a partition of unity of X subordinate to the covering .U˛/. Let us fix p > 0 and
small parameters 1 D "1 � "2 � � � � � "k > 0. Then we define a global
weighted Finsler metric on J kV by putting for any k-jet f 2 J k

x V

(9.24) ‰h;p;".f / WD
�X

˛2I

�˛.x/
X

1�s�k

"2p
s krs

˛f .0/k2p=s

h.x/

�1=p
;

where k kh.x/ is the Hermitian metric h of V evaluated on the fiber Vx ,
x D f .0/. The function ‰h;p;" satisfies the fundamental homogeneity prop-
erty

(9.25) ‰h;p;".� � f / D ‰h;p;".f / j�j2

with respect to the C� action on J kV , in other words, it induces a Hermitian
metric on the dual L� of the tautological Q-line bundle Lk D OXGG

k
.1/ over

XGG
k

. The curvature of Lk is given by

(9.26) ��
k‚Lk ;‰�

h;p;"
D dd c log‰h;p;":

Our next goal is to compute precisely the curvature and to apply holomorphic
Morse inequalities to L ! XGG

k
with the above metric. It might look a priori

like an untractable problem, since the definition of ‰h;p;" is a rather unnatu-
ral one. However, the “miracle” is that the asymptotic behavior of ‰h;p;" as
"s="s�1 ! 0 is in some sense uniquely defined and very natural. It will lead to
a computable asymptotic formula, which is moreover simple enough to produce
useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic con-
nection r of V�U , let us define the components of a k-jet f 2 J kV by
	s D rsf .0/, and consider the rescaling transformation

�r;".	1; 	2; : : : ; 	k/ D ."1
1	1; "

2
2	2; : : : ; "

k
k	k/ on J k

x V , x 2 U ;
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(it commutes with the C�-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice of r). Then, if p is a multiple of
lcm.1; 2; : : : ; k/ and "s="s�1 ! 0 for all s D 2; : : : ; k, the rescaled function
‰h;p;" ı ��1r;".	1; : : : ; 	k/ converges towards� X

1�s�k

k	sk2p=s

h

�1=p

on every compact subset of J kV�U � f0g, uniformly in C1 topology.

Proof. Let U � X be an open set on which V�U is trivial and equipped
with some holomorphic connection r. Let us pick another holomorphic con-
nection er D r C � , where � 2 H 0.U;�1

X ˝ Hom.V; V //. Then er2f D
r2f C �.f /.f 0/ � f 0, and inductively we getersf D rsf C Ps.f I r1f; : : : ;rs�1f /;

where P.x I 	1; : : : ; 	s�1/ is a polynomial of weighted degree s in .	1; : : : ; 	s�1/

with holomorphic coefficients in x 2 U . In other words, the corresponding
change in the parametrization of J kV�U is given by a C�-homogeneous trans-
formation e	s D 	s C Ps.x I 	1; : : : ; 	s�1/:

Let us introduce the corresponding rescaled components

.	1;"; : : : ; 	k;"/ D ."1
1	1; : : : ; "

k
k	k/; .e	1;"; : : : ;e	k;"/ D ."1

1
e	1; : : : ; "k

k
e	k/:

Then e	s;" D 	s;" C "s
s Ps.x I "�1

1 	1;"; : : : ; "
�.s�1/
s�1 	s�1;"/

D 	s;" CO."s="s�1/
s O.k	1;"k C � � � C k	s�1;"k1=.s�1//s

and the error terms are thus polynomials of fixed degree with arbitrarily small
coefficients as "s="s�1 ! 0. Now, the definition of ‰h;p;" consists of glueing
the sums X

1�s�k

"2p
s k	kk2p=s

h
D

X
1�s�k

k	k;"k2p=s

h

corresponding to 	k D rs
˛f .0/ by means of the partition of unity

P
�˛.x/ D 1.

We see that by using the rescaled variables 	s;" the changes occurring when
replacing a connection r˛ by an alternative one rˇ are arbitrary small in
C1 topology, with error terms uniformly controlled in terms of the ratios
"s="s�1 on all compact subsets of V k � f0g. This shows that in C1 topology,
‰h;p;" ı��1r;".	1; : : : ; 	k/ converges uniformly towards .

P
1�s�k k	kk2p=s

h
/1=p,

whatever the trivializing open set U and the holomorphic connection r used to
evaluate the components and to perform the rescaling are. ut
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Now, we fix a point x0 2 X and a local holomorphic frame .e˛.z//1�˛�r

satisfying (9.22) on a neighborhood U of x0. We introduce the rescaled compo-
nents 	s D "s

srsf .0/ on J kV�U and compute the curvature of

‰h;p;" ı ��1r;".z I 	1; : : : ; 	k/ '
� X

1�s�k

k	sk2p=s

h

�1=p
;

(by Lemma 9.27, the errors can be taken arbitrary small in C1 topology). We
write 	s D P

1�˛�r 	s˛e˛. By (9.22) we have

k	sk2
h D

X
˛

j	s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzizj 	s˛	sˇ CO.jzj3j	j2/:

The question is to evaluate the curvature of the weighted metric defined by

‰.z I 	1; : : : ; 	k/
D
� X

1�s�k

k	sk2p=s

h

�1=p

D
� X

1�s�k

�X
˛

j	s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzizj 	s˛	sˇ

�p=s�1=pCO.jzj3/:

We set j	sj2 D P
˛ j	s˛j2. A straightforward calculation yields

log‰.z I 	1; : : : ; 	k/
D 1

p
log

X
1�s�k

j	sj2p=s

C
X

1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇzizj

	s˛	sˇ

j	sj2 CO.jzj3/:

By (9.26), the curvature form of Lk D OXGG
k
.1/ is given at the central point x0

by the following formula.

9.28. Proposition. With the above choice of coordinates and with respect to
the rescaled components 	s D "s

srsf .0/ at x0 2 X , we have the approximate
expression

‚Lk ;‰�
h;p;"

.x0; Œ	�/ ' !a;r;p.	/

C i

2�

X
1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇ

	s˛	sˇ

j	sj2 dzi ^ dzj ;

where the error terms are O.max2�s�k."s="s�1/
s/ uniformly on the compact

variety XGG
k

. Here !a;r;p is the (degenerate) Kähler metric associated with the
weight a D .1Œr�; 2Œr�; : : : ; kŒr�/ of the canonical C� action on J kV .
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Thanks to the uniform approximation, we can (and will) neglect the error
terms in the calculations below. Since !a;r;p is positive definite on the fibers of
XGG

k
! X (at least outside of the axes 	s D 0), the index of the .1; 1/ curvature

form ‚Lk ;‰�
h;p;"

.z; Œ	�/ is equal to the index of the .1; 1/-form

(9.29) 
k.z; 	/ WD i

2�

X
1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇ .z/
	s˛	sˇ

j	sj2 dzi ^ dzj

depending only on the differentials .dzj /1�j�n on X . The q-index integral of
.Lk; ‰

�
h;p;"

/ on XGG
k

is therefore equal toZ
XGG

k
.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kr � 1/Š

Z
z2X

Z

2P.1Œr�;:::;kŒr�/

!kr�1
a;r;p .	/1�k ;q.z; 	/
k.z; 	/

n;

where 1�k ;q.z; 	/ is the characteristic function of the open set of points where

k.z; 	/ has signature .n�q; q/ in terms of the dzj ’s. Notice that since 
k.z; 	/

n

is a determinant, the product 1�k ;q.z; 	/
k.z; 	/
n gives rise to a continuous

function on XGG
k

. Formula (9.20) with r1 D � � � D rk D r and as D s yields
the slightly more explicit integralZ

XGG
k

.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r

�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1gk ;q.z; x; u/gk.z; x; u/
n .x1 � � � xk/

r�1

.r � 1/Šk dx d�.u/;

where gk.z; x; u/ D 
k.z; x
1=2p
1 u1; : : : ; x

k=2p

k
uk/ is given by

(9.30) gk.z; x; u/ D i

2�

X
1�s�k

1

s
xs

X
i;j;˛;ˇ

cij˛ˇ .z/ us˛usˇ dzi ^ dzj

and 1gk ;q.z; x; u/ is the characteristic function of its q-index set. Here

(9.31) d�k;r.x/ D .kr � 1/Š .x1 � � � xk/
r�1

.r � 1/Šk dx

is a probability measure on �k�1, and we can rewrite
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(9.32)Z
XGG

k
.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1gk ;q.z; x; u/gk.z; x; u/
n d�k;r.x/ d�.u/:

Now, formula (9.30) shows that gk.z; x; u/ is a “Monte Carlo” evaluation of
the curvature tensor, obtained by averaging the curvature at random points
us 2 S2r�1 with certain positive weights xs=s; we should then think of the
k-jet f as some sort of random variable such that the derivatives rkf .0/ are
uniformly distributed in all directions. Let us compute the expected value of
.x; u/ 7! gk.z; x; u/ with respect to the probability measure d�k;r.x/ d�.u/.
SinceR

S2r�1 us˛usˇ d�.us/ D 1
r
ı˛ˇ and

R
�k�1

xs d�k;r.x/ D 1
k

, we find

E.gk.z; �; �// D 1

kr

X
1�s�k

1

s
� i

2�

X
i;j;˛

cij˛˛.z/ dzi ^ dzj :

In other words, we get the normalized trace of the curvature, i.e.,

(9.33) E.gk.z; �; �// D 1

kr

�
1C 1

2
C � � � C 1

k

�
‚det.V �/;det h� ;

where ‚det.V �/;det h� is the .1; 1/-curvature form of det.V �/ with the metric
induced by h. It is natural to guess that gk.z; x; u/ behaves asymptotically as its
expected value E.gk.z; �; �// when k tends to infinity. If we replace brutally gk

by its expected value in (9.32), we get the integral

.nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š

1

.kr/n

�
1C 1

2
C � � � C 1

k

�n
Z

X

1�;q�
n;

where � WD ‚det.V �/;det h� and 1�;q is the characteristic function of its q-index
set in X . The leading constant is equivalent to .log k/n=nŠ.kŠ/r modulo a mul-
tiplicative factor .1C O.1= log k//. By working out a more precise analysis of
the deviation, the following result has been proved in [Dem11] and [Dem12].

9.34. Probabilistic-estimate. Fix smooth Hermitian metrics h on V and ! D
i

2	

P
!ij dzi ^dzj onX . Denote by‚V;h D � i

2	

P
cij˛ˇ dzi ^dzj ˝e�̨˝eˇ

the curvature tensor of V with respect to an h-orthonormal frame .e˛/, and put

�.z/ D ‚det.V �/;det h� D i

2�

X
1�i;j�n

�ij dzi ^ dzj ; �ij D
X

1�˛�r

cij˛˛:
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Finally consider the k-jet line bundleLk D OXGG
k
.1/ ! XGG

k
equipped with the

induced metric ‰�
h;p;"

(as defined above, with 1 D "1 � "2 � � � � � "k > 0).
When k tends to infinity, the integral of the top power of the curvature of Lk on
its q-index set XGG

k
.Lk; q/ is given byZ

XGG
k

.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .log k/n

nŠ .kŠ/r

� Z
X

1�;q�
n CO..log k/�1/

�
for all q D 0; 1; : : : ; n, and the error termO..log k/�1/ can be bounded explic-
itly in terms of ‚V , � and !. Moreover, the left hand side is identically zero for
q > n.

The final statement follows from the observation that the curvature of Lk is
positive along the fibers ofXGG

k
! X , by the plurisubharmonicity of the weight

(this is true even when the partition of unity terms are taken into account, since
they depend only on the base); therefore the q-index sets are empty for q > n.
It will be useful to extend the above estimates to the case of sections of

(9.35) Lk D OXGG
k
.1/˝ ��

k O
� 1
kr

�
1C 1

2
C � � � C 1

k

�
F
�
;

where F 2 PicQ.X/ is an arbitrary Q-line bundle on X and �k W XGG
k

! X

is the natural projection. We assume here that F is also equipped with a smooth
Hermitian metric hF . In formulas (9.32), (9.33) and estimate 9.34, the renor-
malized curvature �k.z; x; u/ of Lk takes the form

(9.36) �k.z; x; u/ D 1
1

kr
.1C 1

2
C � � � C 1

k
/
gk.z; x; u/C‚F;hF

.z/;

and by the same calculations its expected value is

(9.37) �.z/ WD E.�k.z; �; �// D ‚det V �;det h�.z/C‚F;hF
.z/:

Then the variance estimate for �k�� is unchanged, and theLp bounds for �k are
still valid, since our forms are just shifted by adding the constant smooth term
‚F;hF

.z/. The probabilistic estimate 9.34 is therefore still true exactly in the
same form, provided we use (9.35)–(9.37) instead of the previously defined Lk ,
�k and �. An application of holomorphic Morse inequalities gives the desired
cohomology estimates for

hq
�
X;EGG

k;mV
� ˝ O

� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

D hq
�
XGG

k ;OXGG
k
.m/˝ ��

k O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��
;

provided m is sufficiently divisible to give a multiple of F which is a Z-line
bundle.
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9.38. Theorem. Let .X; V / be a directed manifold, F ! X a Q-line bundle,
.V; h/ and .F; hF / smooth Hermitian structures on V and F respectively. We
define

Lk D OXGG
k
.1/˝ ��

k O
� 1
kr

�
1C 1

2
C � � � C 1

k

�
F
�
;

� D ‚det V �;det h� C‚F;hF
;

and let X.�; q/ be the open set of points x 2 X , where �.x/ has signature
.q; n � q/. We also set X.�;� q/ D S

j�q X.�; j /. Then for all q � 0 and all
m � k � 1 such that m is sufficiently divisible, we have

hq.XGG
k ;O.L˝m

k
//� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r

� Z
X.�;q/

.�1/q�n CO..log k/�1/
�
;

(a)

h0.XGG
k ;O.L˝m

k
//� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r

� Z
X.�;�1/

�n �O..log k/�1/
�
;

(b)

�.XGG
k ;O.L˝m

k
//D mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r
.c1.V

� ˝ F /n CO..log k/�1//:

(c)

Green and Griffiths [GrGr80] already checked the Riemann–Roch calcula-
tion (9.38c) in the special case V D T �

X and F D OX . Their proof is much
simpler since it relies only on Chern class calculations, but it cannot provide
any information on the individual cohomology groups, except in very special
cases where vanishing theorems can be applied; in fact in dimension 2, the Eu-
ler characteristic satisfies � D h0�h1Ch2 � h0Ch2, and hence it is enough to
get the vanishing of the top cohomology group H 2 to infer h0 � �; this works
for surfaces by means of a well-known vanishing theorem of Bogomolov which
implies in general

Hn
�
X;EGG

k;mT
�

X ˝ O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

D 0

as soon as KX ˝ F is big and m � 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93],

everything works almost unchanged in the case where V � TX has singularities
and h is an admissible metric on V (see Definition 9.6). We only have to find
a blow-up � W eXk ! Xk so that the resulting pull-backs ��Lk and ��V are
locally free, and �� det h�, ��‰h;p;" only have divisorial singularities. Then
� is a .1; 1/-current with logarithmic poles, and we have to deal with smooth
metrics on ��L˝m

k
˝ O.�mEk/, where Ek is a certain effective divisor on
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Xk (which, by our assumption in Definition 9.6, does not project onto X). The
cohomology groups involved are then the twisted cohomology groups

H q.XGG
k ;O.L˝m

k
/˝ Jk;m/;

where Jk;m D ��.O.�mEk// is the corresponding multiplier ideal sheaf, and
the Morse integrals need only be evaluated in the complement of the poles, i.e.,
on X.�; q/� S with S D Sing.V / [ Sing.h/. Since

.�k/�.O.L˝m
k
/˝ Jk;m/ � EGG

k;mV
� ˝ O

� m
kr

�
1C 1

2
C � � � C 1

k

�
F
�

we still get a lower bound for the h0 of the latter sheaf (or for the h0 of the
un-twisted line bundle O.L˝m

k
/ on XGG

k
). If we assume that KV ˝ F is big,

these considerations also allow us to obtain a strong estimate in terms of the
volume, by using an approximate Zariski decomposition on a suitable blow-up
of .X; V /. The following corollary implies Theorem 9.1 as a consequence.

9.39. Corollary. If F is an arbitrary Q-line bundle over X , one has

h0
�
XGG

k ;OXGG
k
.m/˝ ��

k O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r
.Vol.KV ˝ F / �O..log k/�1// � o.mnCkr�1/;

when m � k � 1, in particular there are many sections of the k-jet differen-
tials of degree m twisted by the appropriate power of F if KV ˝ F is big.

Proof. The volume is computed here as usual, i.e., after performing a suit-
able log-resolution � W eX ! X which converts KV into an invertible sheaf.
There is of course nothing to prove if KV ˝ F is not big, so we can assume
Vol.KV ˝ F / > 0. Let us fix smooth Hermitian metrics h0 on TX and hF on
F . They induce a metric ��.det.h�1

0 / ˝ hF / on ��.KV ˝ F / which, by our
definition ofKV , is a smooth metric (the divisor produced by the log-resolution
gets simplified with the degeneration divisor of the pull-back of the quotient
metric on det.V �/ induced by O.ƒrT �

X / ! O.ƒrV �/). By the result of Fujita
[Fuji94] on approximate Zariski decomposition, for every ı > 0, one can find a
modification �ı W eXı ! X dominating � such that

��
ı .KV ˝ F / D O eXı

.ACE/;

where A and E are Q-divisors, A ample and E effective, with

Vol.A/ D An � Vol.KV ˝ F / � ı:
If we take a smooth metric hA with positive definite curvature form‚A;hA

, then
we get a singular Hermitian metric hAhE on ��

ı
.KV ˝ F / with poles along
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E, i.e., the quotient hAhE=�
�
ı
.det.h�1

0 / ˝ hF / is of the form e�' , where '
is quasi-plurisubharmonic with log poles log j�E j2 (mod C1.eXı// precisely
given by the divisor E. We then only need to take the singular metric h on TX

defined by
h D h0e

1
r

.�ı/�'

(the choice of the factor 1
r

is there to correct adequately the metric on detV ).
By construction h induces an admissible metric on V and the resulting curvature
current � D ‚KV ;det h� C‚F;hF

is such that

��
ı� D ‚A;hA

C ŒE�; ŒE� D current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given byZ
X.�;0/�S

�n D
Z
eXı

‚n
A;hA

D An � Vol.KV ˝ F / � ı

and Corollary 9.39 follows from the fact that ı can be taken arbitrary small. ut
The following corollary implies Theorem 0.12.

9.40. Corollary. Let .X; V / be a projective directed manifold such that K�
V

is big, and A an ample Q-divisor on X such that K�
V ˝ O.�A/ is still big.

Then, if we put r D rankV and ık D 1
kr
.1C 1

2
C � � � C 1

k
/, the space of global

invariant jet differentials

H 0.X;Ek;mV
� ˝ O.�mıkA//

has (many) non-zero sections for m � k � 1 and m sufficiently divisible.

Proof. Corollary 9.39 produces a non-zero section P 2 H 0.EGG
k;m
V � ˝ OX .�mıkA//

for m � k � 1, and the arguments given in Subsect. 7.E (cf. (7.36)) yield a
non-zero section

Q 2 H 0.Ek;m0V � ˝ OX .�mıkA//; m0 � m:

By raising Q to some power p and using a section � 2 H 0.X;OX .dA//, we
obtain a section

Qp�mq 2 H 0.X;Ek;pm0V � ˝ O.�m.pık � qd/A//:
One can adjust p and q so that m.pık � qd/ D pm0ık and pm0ıkA is an
integral divisor. ut
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9.41. Example. In some simple cases, the above estimates can lead to very ex-
plicit results. Take for instance X to be a smooth complete intersection of mul-
tidegree .d1; d2; : : : ; ds/ in PnCs

C and consider the absolute case V D TX . Then
KX D OX .d1C� � �Cds �n�s�1/ and one can check via explicit bounds of the
error terms (cf. [Dem11], [Dem12]) that a sufficient condition for the existence
of sections is

k � exp
�
7:38 nnC 1

2

� P
dj C 1P

dj � n � s � a � 1
�n�

:

This is good in view of the fact that we can cover arbitrary smooth complete
intersections of general type. On the other hand, even when the degrees dj tend
to C1, we still get a large lower bound k 	 exp.7:38 nnC 1

2 / on the order of
jets, and this is far from being optimal: Diverio [Div08], [Div09] has shown
e.g. that one can take k D n for smooth hypersurfaces of high degree, using
the algebraic Morse inequalities of Trapani [Tra95]. The next paragraph uses
essentially the same idea, in our more analytic setting.

9.D. Non-probabilistic estimate of the Morse integrals

We assume here that the curvature tensor .cij˛ˇ / satisfies a lower bound

(9.42)
X

i;j;˛;ˇ

cij˛ˇ 	i	ju˛uˇ � �
X


ij 	i	j juj2; 8	 2 TX ; u 2 V;

for some semi-positive .1; 1/-form 
 D i
2	

P

ij .z/ dzi ^ dzj on X . This is

the same as assuming that the curvature tensor of .V �; h�/ satisfies the semi-
positivity condition

(9:420) ‚V �;h� C 
 ˝ IdV � � 0

in the sense of Griffiths, or equivalently ‚V;h � 
 ˝ IdV � 0. Thanks to the
compactness ofX , such a form 
 always exists if h is an admissible metric on V .
Now, instead of replacing‚V with its trace free part e‚V and exploiting a Monte
Carlo convergence process, we replace‚V with‚�

V D ‚V �
˝ IdV � 0, i.e.,
cij˛ˇ by c�

ij˛ˇ
D cij˛ˇ C 
ij ı˛ˇ . Also, we take a line bundle F D A�1 with

‚A;hA
� 0, i.e., F semi-negative. Then our earlier formulas Proposition 9.28,

(9.35), (9.36) become instead
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g
�

k
.z; x; u/ D i

2�

X
1�s�k

1

s
xs

X
i;j;˛;ˇ

c
�

ij˛ˇ
.z/ us˛usˇ dzi ^ dzj � 0;(9.43)

Lk D OXGG
k
.1/˝ ��

k O
�

� 1

kr

�
1C 1

2
C � � � C 1

k

�
A
�
;(9.44)

‚Lk
D �k.z; x; u/(9.45)

D 1
1

kr
.1C 1

2
C � � � C 1

k
/
g

�

k
.z; x; u/ � .‚A;hA

.z/C r
.z//:

In fact, replacing ‚V by ‚V � 
 ˝ IdV has the effect of replacing ‚det V � D
Tr‚V � by ‚det V � C r
 . The major gain that we have is that �k D ‚Lk

is now
expressed as a difference of semi-positive .1; 1/-forms, and we can exploit the
following simple lemma, which is the key to derive algebraic Morse inequalities
from their analytic form (cf. [Dem94], Theorem 12.3).

9.46. Lemma. Let � D ˛ � ˇ be a difference of semi-positive .1; 1/-forms
on an n-dimensional complex manifold X , and let 1�;�q be the characteristic
function of the open set, where � is non-degenerate with a number of negative
eigenvalues at most equal to q. Then

.�1/q1�;�q �
n �

X
0�j�q

.�1/q�j˛n�jˇj ;

in particular
1�;�1 �

n � ˛n � n˛n�1 ^ ˇ for q D 1.

Proof. Without loss of generality, we can assume ˛ > 0 positive definite, so
that ˛ can be taken as the base Hermitian metric on X . Let us denote by

�1 � �2 � � � � � �n � 0

the eigenvalues of ˇ with respect to ˛. The eigenvalues of � D ˛ � ˇ are then
given by

1 � �1 � � � � � 1 � �q � 1 � �qC1 � � � � � 1 � �nI
hence the open set f�qC1 < 1g coincides with the support of 1�;�q , except that
it may also contain a part of the degeneration set �n D 0. On the other hand we
have  

n

j

!
˛n�j ^ ˇj D �j

n .�/ ˛
n;

where �j
n .�/ is the j -th elementary symmetric function in the �j ’s. Thus, to

prove the lemma, we only have to check thatX
0�j�q

.�1/q�j�j
n .�/ � 1f�qC1<1g.�1/q

Y
1�j�n

.1 � �j / � 0:
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This is easily done by induction on n (just split apart the parameter �n and write
�

j
n .�/ D �

j
n�1.�/C �

j �1
n�1 .�/ �n). ut

We apply here Lemma 9.46 with

˛ D g
�

k
.z; x; u/; ˇ D ˇk D 1

kr

�
1C 1

2
C � � � C 1

k

�
.‚A;hA

C r
/;

which are both semi-positive by our assumption. The analogue of (9.32) leads
toZ

XGG
k

.Lk ;�1/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1g
�

k
�ˇk ;�1 .g

�

k
� ˇk/

n d�k;r.x/ d�.u/

� .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

..g
�

k
/n � n.g�

k
/n�1 ^ ˇk/ d�k;r.x/ d�.u/:

The resulting integral now produces a “closed formula” which can be expressed
solely in terms of Chern classes (at least if we assume that 
 is the Chern form
of some semi-positive line bundle). It is just a matter of routine to find a suffi-
cient condition for the positivity of the integral. One can first observe that g�

k
is

bounded from above by taking the trace of .cij˛ˇ /, in this way we get

0 � g
�

k
�
� X

1�s�k

xs

s

�
.‚det V � C r
/;

where the right hand side no longer depends on u 2 .S2r�1/k . Also, g�

k
can be

written as a sum of semi-positive .1; 1/-forms

g
�

k
D

X
1�s�k

xs

s
�� .us/; �� .u/ D

X
i;j;˛;ˇ

c
�

ij˛ˇ
u˛uˇ dzi ^ dzj ;

and hence for k � n we have

.g
�

k
/n � nŠ

X
1�s1<���<sn�k

xs1
� � � xsn

s1 � � � sn �� .us1
/ ^ �� .us2

/ ^ � � � ^ �� .usn
/:
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Since
R

S2r�1 �
� .u/ d�.u/ D 1

r
Tr.‚V � C 
/ D 1

r
‚det V � C 
 , we infer from

thisZ
.x;u/2�k�1�.S2r�1/k

.g
�

k
/n d�k;r.x/ d�.u/

� nŠ
X

1�s1<���<sn�k

1

s1 � � � sn
� Z

�k�1

x1 � � � xn d�k;r.x/
��1
r
‚det V � C 


�n
:

By putting everything together, we conclude:

9.47. Theorem. Assume that ‚V � � �
 ˝ IdV � with a semi-positive .1; 1/-
form 
 on X . Then the Morse integral of the line bundle

Lk D OXGG
k
.1/˝ ��

k O
�

� 1

kr

�
1C 1

2
C � � � C 1

k

�
A
�
; A � 0

satisfies for k � n the inequality
(�)

1

.nC kr � 1/Š
Z

XGG
k

.Lk ;�1/

‚nCkr�1
Lk ;‰�

h;p;"

� 1

nŠ.kŠ/r.kr � 1/Š
�
Z

X

cn;r;k.‚det V � C r
/n � c0
n;r;k.‚det V � C r
/n�1 ^ .‚A;hA

C r
/;

where

cn;r;k D nŠ

rn

� X
1�s1<���<sn�k

1

s1 � � � sn
� Z

�k�1

x1 � � � xn d�k;r.x/;

c0
n;r;k D n

kr

�
1C 1

2
C � � � C 1

k

� Z
�k�1

� X
1�s�k

xs

s

�n�1
d�k;r.x/:

Especially we have a lot of sections in H 0.XGG
k
; mLk/, m � 1, as soon as the

difference occurring in .�/ is positive.

The statement is also true for k < n, but then cn;r;k D 0 and the lower
bound .�/ cannot be positive. By Corollary 9.11, it still provides a non-trivial
lower bound for h0.XGG

k
; mLk/ � h1.XGG

k
; mLk/, though. For k � n we have

cn;r;k > 0 and .�/ will be positive if‚det V � is large enough. By formula (9.20)
we have

(9.48) cn;r;k D nŠ .kr � 1/Š
.nC kr � 1/Š

X
1�s1<���<sn�k

1

s1 � � � sn � .kr � 1/Š
.nC kr � 1/Š ;
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(with equality for k D n). On the other hand, for any multi-index .ˇ1; : : : ; ˇk/

2 Nk with
P
ˇs D p, the Hölder inequality impliesZ

�k�1

x
ˇ1

1 � � � xˇk

k
d�k;r.x/ �

Y
sD1

� Z
�k�1

xp
s d�k;r.x/

�ˇs=p

D
Z

�k�1

x
p
1 d�k;r.x/:

An expansion of .
P

1�s�k
xs

s
/n�1 by means of the multinomial formula then

yieldsZ
�k�1

� X
1�s�k

xs

s

�n�1
d�k;r.x/ �

Z
�k�1

� X
1�s�k

1

s

�n�1
xn�1

1 d�k;r.x/:

On the other hand, it is obvious that
R

�k�1
.
P

1�s�k
xs

s
/n�1 d�k;r.x/ �R

�k�1
xn�1

1 d�k;r.x/, thus the error in the above upper bound is at most by a
factor .1C 1

2
C � � � C 1

k
/n � .1C log k/n. From this, we infer again by formula

(9.20) that

c0
n;r;k � n

kr

�
1C 1

2
C � � � C 1

k

�n
Z

�k�1

xn�1
1 d�k;r.x/;

D n

kr

�
1C 1

2
C � � � C 1

k

�n .nC r � 2/Š
.r � 1/Š

.kr � 1/Š
.nC kr � 2/Š :(9.49)

Since nCkr�1
k

D r C n�1
k

� nC r � 1, our bounds (9.48) and (9.49) imply

c0
n;r;k

cn;r;k

� n

k

�
1C 1

2
C � � � C 1

k

�n .nC r � 2/Š
rŠ

.nC kr � 1/;(9.50)

c0
n;r;k

cn;r;k

� n
�
1C 1

2
C � � � C 1

k

�n .nC r � 1/Š
rŠ

:(9.51)

The right hand side of (9.51) increases with r . For r � n, the Stirling formula
yields

(9:52n)

c0
n;r;k

cn;r;k

< .1C log k/n
.2n/Š

2 nŠ

< .1C log k/n
p
2n .2n

e
/2n

2
p
n .n

e
/n

D 1p
2
.4e�1 n.1C log k//n:

Up to the constant 4e�1, this is essentially the same bound as the one obtained
in [Dem12], which, however, included a numerical mistake, making unclear
whether the constant 4e�1 > 1 could be dropped there, as would follow from



84 J.-P. Demailly

the claimed estimate. We will later need the following particular values (cf. For-
mula (9.20) and [Dem11, Lemma 2.20]):

c2;2;2 D 1

20
; c0

2;2;2 D 9

16
;

c0
2;2;2

c2;2;2
D 45

4
;(9:522)

c3;3;3 D 1

990
; c0

3;3;3 D 451

4860
;

c0
3;3;3

c3;3;3
D 4961

54
:(9:523)

10. Hyperbolicity properties of hypersurfaces of high degree

10.A. Global generation of the twisted tangent space of the universal family

In [Siu02], [Siu04], Y.-T. Siu developed a new strategy to produce jet differ-
entials, involving meromorphic vector fields on the total space of jet bundles—
these vector fields are used to differentiate the sections of EGG

k;m
so as to produce

new ones with less zeroes. The approach works especially well on universal
families of hypersurfaces in projective space, thanks to the good positivity prop-
erties of the relative tangent bundle, as shown by L. Ein [Ein88], [Ein91] and
C. Voisin [Voi96]. This allows at least to prove the hyperbolicity of generic sur-
faces and generic 3-dimensional hypersurfaces of sufficiently high degree. We
reproduce here the improved approach given by [Pau08] for the twisted global
generation of the tangent space of the space of vertical two jets. The situation
of k-jets in arbitrary dimension n is substantially more involved, details can be
found in [Mer09].

Consider the universal hypersurface X � PnC1 � PNd of degree d given
by the equation X

j˛jDd

A˛ Z
˛ D 0;

where ŒZ� 2 PnC1, ŒA� 2 PNd , ˛ D .˛0; : : : ; ˛nC1/ 2 NnC2 and

Nd D
 
nC d C 1

d

!
� 1:

Finally, we denote by V � X the vertical tangent space, i.e., the kernel of the
projection

� W X �! U � PNd ;

where U is the Zariski open set parametrizing smooth hypersurfaces, and by
JkV the bundle of k-jets of curves tangent to V , i.e., curves contained in the
fibers Xs D ��1.s/. The goal is to describe certain meromorphic vector fields
on the total space of JkV . By an explicit calculation of vector fields in coordi-
nates, according to Siu’s strategy, Păun [Pau08] was able to prove:
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10.1. Theorem. The twisted tangent space TJ2V ˝OP3.7/˝OPNd .1/ is gener-
ated over by its global sections over the complement J2V �W of the Wronskian
locus W . Moreover, one can choose generating global sections that are invari-
ant with respect to the action of G2 on J2V .

By similar, but more computationally intensive arguments [Mer09], one can
investigate the higher dimensional case. The following result strengthens the
initial announcement of [Siu04].

10.2. Theorem. Let J vert
k
.X / be the space of vertical k-jets of the universal

hypersurface
X � PnC1 � PNd

parametrizing all projective hypersurfaces X � PnC1 of degree d . Then for
k D n, there exist constants cn and c0

n such that the twisted tangent bundle

TJ vert
k

.X / ˝ OPnC1.cn/˝ OPNd .c
0
n/

is generated by its global Gk-invariant sections outside a certain exceptional
algebraic subset † � J vert

k
.X /. One can take either cn D 1

2
.n2 C 5n/, c0

n D 1

and † defined by the vanishing of certain Wronskians, or cn D n2 C 2n and a
smaller set e† � † defined by the vanishing of the 1-jet part.

10.B. General strategy of proof

Let again X � PnC1 �PNd be the universal hypersurface of degree d in PnC1.

10.3. Assume that we can prove the existence of a non-zero polynomial differ-
ential operator

P 2 H 0.X ; EGG
k;mT

�
X ˝ O.�A//;

where A is an ample divisor on X , at least over some Zariski open set U in the
base of the projection � W X ! U � PNd .

Observe that we now have a lot of techniques to do this; the existence of
P over the family follows from lower semi-continuity in the Zariski topology,
once we know that such a section P exists on a generic fiber Xs D ��1.s/. Let
Y � X be the set of points x 2 X where P.x/ D 0, as an element in the
fiber of the vector bundleEGG

k;m
T �

X ˝O.�A/ at x. Then Y is a proper algebraic
subset of X , and after shrinking U we may assume that Ys D Y \ Xs is a
proper algebraic subset of Xs for every s 2 U .

10.4. Assume also, according to Theorems 10.1 and 10.2, that we have enough
global holomorphic Gk-invariant vector fields �i on JkV with values in the
pull-back of some ample divisor B on X , in such a way that they generate
TJkV ˝p�

k
B over the dense open set .JkV /reg of regular k-jets, i.e., k-jets with

non-zero first derivative (here pk W JkV ! X is the natural projection).
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Considering jet differentials P as functions on JkV , the idea is to produce
new ones by taking differentiations

Qj WD �j1
� � � �j`

P; 0 � ` � m; j D .j1; : : : ; j`/:

Since the �j ’s are Gk-invariant, they are in particular C�-invariant; thus

Qj 2 H 0.X ; EGG
k;mT

�
X ˝ O.�AC `B//

(and Q is in fact G0
k

invariant as soon as P is). In order to be able to apply
the vanishing theorems of Sect. 8, we need .A � mB/ to be ample, so A has
to be large compared to B . If f W C ! Xs is an entire curve contained in
some fiber Xs � X , its lifting jk.f / W C ! JkV has to lie in the zero
divisors of all sections Qj . However, every non-zero polynomial of degree m
has at any point some non-zero derivative of order ` � m. Therefore, at any
point where the �i generate the tangent space to JkV , we can find some non-
vanishing section Qj . By the assumptions on the �i , the base locus of the Qj ’s
is contained in the union of p�1

k
.Y / [ .JkV /sing; there is of course no way

of getting a non-zero polynomial at points of Y where P vanishes. Finally,
we observe that jk.f /.C/ 6� .JkV /sing (otherwise f is constant). Therefore
jk.f /.C/ � p�1

k
.Y / and thus f .C/ � Y , i.e., f .C/ � Ys D Y \Xs .

10.5. Corollary. Let X � PnC1�PNd be the universal hypersurface of degree
d in PnC1. If d � dn is taken so large that conditions .10:3/ and .10:4/ are met
with .A�mB/ ample, then the generic fiberXs of the universal family X ! U

satisfies the Green–Griffiths conjecture, namely all entire curves f W C ! Xs

are contained in a proper algebraic subvariety Ys � Xs , and the Ys can be
taken to form an algebraic subset Y � X .

This is unfortunately not enough to get the hyperbolicity of Xs , because
we would have to know that Ys itself is hyperbolic. However, one can use the
following simple observation due to Diverio and Trapani [DT10]. The starting
point is the following general, straightforward remark. Let E ! X be a holo-
morphic vector bundle let � 2 H 0.X ;E / ¤ 0; then, up to factorizing by an
effective divisor D contained in the common zeroes of the components of � ,
one can view � as a section

� 2 H 0.X ;E ˝ OX .�D//;
and this section now has a zero locus without divisorial components. Here, when
n � 2, a very generic fiberXs has Picard number one by the Noether–Lefschetz
theorem, and so, after shrinking U if necessary, we can assume that OX .�D/
is the restriction of OPnC1.�p/, p � 0 by the effectivity of D. Hence D can be
assumed to be nef. After performing this simplification, .A�mB/ is replaced by
.A �mB CD/, which is still ample if .A �mB/ is ample. As a consequence,



Kobayashi and Green–Griffiths–Lang conjectures 87

we may assume codim Y � 2, and after shrinking U again, that all Ys have
codimYs � 2.

10.6. Additional statement. In Corollary 10.5, under the same hypotheses .10:3/
and .10:4/, one can take all fibers Ys to have codimYs � 2.

This is enough to conclude that Xs is hyperbolic if n D dimXs � 3. In fact,
this is clear if n D 2 since the Ys are then reduced to points. If n D 3, the Ys are
at most curves, but we know by Ein and Voisin that a very generic hypersurface
Xs � P4 of degree d � 7 does not possess any rational or elliptic curve. Hence
Ys is hyperbolic and so is Xs , for s generic.

10.7. Corollary. Assume that n D 2 or n D 3, and that X � PnC1 � PNd is
the universal hypersurface of degree d � dn � 2nC 1 so large that conditions
10.3 and 10.4 are met with .A�mB/ ample. Then the very generic hypersurface
Xs � PnC1 of degree d is hyperbolic.

10.C. Proof of the Green–Griffiths conjecture for generic hypersurfaces in
PnC1

One of the first significant steps towards the Green–Griffiths conjecture is the
result of Diverio, Merker and Rousseau [DMR10], confirming the statement
when X � PnC1

C is a generic hypersurface of large degree d . Their proof yields
a non-optimal lower bound d � 2n5

for the degree; it is based on an essential
way on Siu’s strategy as detailed in Subsect. 10.B, combined with the earlier
techniques of [Dem95]. Using our improved bounds from Subsect. 9.D, we ob-
tain here a better estimate (actually, an estimate O.exp.n1C"// of exponential
order 1 rather than 5). For the algebraic degeneracy of entire curves in open
complements X D Pn � H , a better bound d � 5n2nn has been obtained by
Darondeau [Dar14], [Dar16b].

10.8. Theorem. A generic hypersurface X � PnC1 of degree d � dn with

d2 D 286; d3 D 7316; dn D
j n4

p
2
.4e�1 n.1C logn//n

k
for n � 4;

satisfies the Green–Griffiths conjecture.

Proof. Let us apply Theorem 9.47 with V D TX , r D n and k D n. The main
starting point is the well-known fact that T �

PnC1 ˝ OPnC1.2/ is semi-positive (in
fact, generated by its sections). Hence the exact sequence

0 �! OPnC1.�d/ �! T �
PnC1jX �! T �

X �! 0
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implies that T �
X ˝ OX .2/ � 0. We can therefore take 
 D ‚O.2/ D 2!, where

! is the Fubini–Study metric. Moreover det.V �/ D KX D OX .d � n � 2/ has
curvature .d � n � 2/!, and thus ‚det.V �/ C r
 D .d C n � 2/!. The Morse
integral to be computed when A D OX .p/ isZ

X

.cn;n;n.d C n � 2/n � c0
n;n;n.d C n � 2/n�1.p C 2n//!n;

so the critical condition we need is

d C n � 2 > c0
n;n;n

cn;n;n
.p C 2n/:

On the other hand, Siu’s differentiation technique requires m
n2 .1 C 1

2
C � � �

C 1
n
/A�mB to be ample, where B D OX .n

2 C 2n/ by Merker’s result (Theorem 10.2).
This ampleness condition yields

1

n2

�
1C 1

2
C � � � C 1

n

�
p � .n2 C 2n/ > 0;

so one easily sees that it is enough to take p D n4 �2n for n � 3. Our estimates
(9:52n) give the expected bound dn. ut

Thanks to 10.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

10.9. Theorem. For n D 2 or n D 3, a generic hypersurface X � PnC1 of
degree d � dn is Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather
than Green–Griffiths jets) Diverio–Trapani [DT10] obtained the better lower
bound d � d3 D 593 in dimension 3. In the case of surfaces, Păun [Pau08]
obtained d � d2 D 18, using deep results of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order k < n in the
proofs of Theorems 10.8 and 10.9. Diverio [Div08] showed that the answer is
negative (his proof is based on elementary facts of representation theory and a
vanishing theorem of Brückmann–Rackwitz [BR90]):

10.10. Proposition ([Div08]). Let X � PnC1 be a smooth hypersurface. Then

H 0.X;EGG
k;mT

�
X / D 0

for m � 1 and 1 � k < n. More generally, if X � PnCs is a smooth complete
intersection of codimension s, there are no global jet differentials for m � 1

and k < n=s.
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11. Strong general type condition and the GGL conjecture

11.A. A partial result towards the Green–Griffiths–Lang conjecture

The main result of this section is a proof of the partial solution to the Green–
Griffiths–Lang conjecture asserted in Theorem 0.15. The following important
“induction step” can be derived by Corollary 9.39. Here Dk denotes again the
sequence of “vertical divsors” defined in (6.9).

11.1. Proposition. Let .X; V / be a directed pair, where X is projective alge-
braic. Take an irreducible algebraic subset Z 6� Dk of the associated k-jet
Semple bundle Xk that projects onto Xk�1, k � 1, and assume that the in-
duced directed space .Z;W / � .Xk; Vk/ is of general type modulo X� ! X ,
rankW � 1. Then there exists a divisor † � Z` in a sufficiently high stage
of the Semple tower .Z`;W`/ associated with .Z;W /, such that every non-
constant holomorphic map f W C ! X whose k-jet defines a morphism fŒk� W
.C; TC/ ! .Z;W / also satisfies fŒkC`�.C/ � †.

Proof. Our hypothesis is that we can find an embedded resolution of singular-
ities

�`0
W .bZ`0

� bXkC`0
/ �! .Z`0

� XkC`0
/; `0 � 0

and p 2 Q�0 such that

K�cW`0

˝ ObZ`0

.p/�bZ`0

is big over bZ`0
:

Since Corollary 9.39 and the related lower bound of h0 are universal in the
category of directed varieties, we can apply them by replacing .X; V / with
.bZ`0

; bW`0
/, r with r0 D rankW , and F by

F`0
D ObZ`0

.p/˝ ��
`0
��

kC`0;0OX .�"A/;

where A is an ample divisor on X and " 2 Q>0. The assumptions show that
KcW`0

˝ F`0
is still big on bZ`0

for " small enough, therefore, by applying our
theorem and taking m � ` � `0, we get a large number of (metric bounded)
sections of

ObZ`
.m/˝b��

kC`;kC`0
O
� m
`r0

�
1C 1

2
C � � � C 1

`

�
F`0

�
D ObZ`

.ma�/˝ ��
`�

�
kC`;0O

�
� m"

`r0

�
1C 1

2
C � � � C 1

`

�
A
�
�bZ`

� ObZ`
..1C �/m/˝ ��

`�
�
kC`;0O

�
� m"

`r0

�
1C 1

2
C � � � C 1

`

�
A
�
�bZ`

;(11.2)



90 J.-P. Demailly

where�` W .bZ` � bXkC`/ ! .Z` � XkC`/ is an embedded resolution dominat-
ing bXkC`0

, and a� 2 Q`0

C a positive weight of the form .0; : : : ; �; : : : ; 0; 1/ with
some non-zero component � 2 QC at index `0. Let b† � bZ` be the divisor of
such a section. We apply the fundamental vanishing theorem 8.9 to lifted curvesbfŒkC`� W C ! bZ` and sections of (11.2), and conclude that bfŒkC`�.C/ � b†.
Therefore fŒkC`�.C/ � † WD �`.b†/ and Proposition 11.1 is proved. ut

We now introduce the ad hoc condition that will enable us to check the GGL
conjecture.

11.3. Definition. Let .X; V / be a directed pair, whereX is projective algebraic.
We say that .X; V / is “strongly of general type” if it is of general type and
for every irreducible algebraic set Z � Xk , Z 6� Dk , that projects onto X ,
the induced directed structure .Z;W / � .Xk; Vk/ is of general type modulo
X� ! X .

11.4. Example. The situation of a product .X; V / D .X 0; V 0/ � .X 00; V 00/ de-
scribed in (0.14) shows that .X; V / can be of general type without being strongly
of general type. In fact, if .X 0; V 0/ and .X 00; V 00/ are of general type, then
KV D pr0 �KV 0 ˝pr00 �KV 00 is big, so .X; V / is again of general type. However

Z D P.pr0 � V 0/ D X 0
1 �X 00 � X1

has a directed structure W D pr0 � V 0
1 which does not possess a big canonical

bundle over Z, since the restriction of KW to any fiber fx0g � X 00 is trivial.
The higher stages .Zk;Wk/ of the Semple tower of .Z;W / are given by Zk D
X 0

kC1
� X 00 and Wk D pr0 � V 0

kC1
, so it is easy to see that GGk.X; V / contains

Zk�1. Since Zk projects onto X , we have here GG.X; V / D X (see [DR15]
for more sophisticated indecomposable examples).

11.5. Hypersurface case. Assume that Z ¤ Dk is an irreducible hypersurface
of Xk that projects onto Xk�1. To simplify things further, also assume that
V is non-singular. Since the Semple jet-bundles Xk form a tower of Pr�1-
bundles, their Picard groups satisfy Pic.Xk/ ' Pic.X/ ˚ Zk and we have
OXk

.Z/ ' OXk
.a�/ ˝ ��

k;0
B for some a� 2 Zk and B 2 Pic.X/, where

ak D d > 0 is the relative degree of the hypersurface over Xk�1. Let
� 2 H 0.Xk;OXk

.Z// be the section defining Z in Xk . The induced directed
variety .Z;W / has rankW D r � 1 D rank.V / � 1 and formula (7.25) yields
KVk

D OXk
.�.r � 1/1�/˝ ��

k;0
.KV /. We claim that

(11:5:1)
KW � .KVk

˝ OXk
.Z//�Z ˝ JS

D .OXk
.a� � .r � 1/1�/˝ ��

k;0.B ˝KV //�Z ˝ JS ;

where S � Z is the set (containing Zsing) where � and d��Vk
both vanish, and

JS is the ideal locally generated by the coefficients of d��Vk
along
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Z D ��1.0/. In fact, the intersection W D TZ \ Vk is transverse on Z � S ;
then (11:5:1) can be seen by looking at the morphism

VkjZ
d��Vk! OXk

.Z/�Z ;

and observing that the contraction by KVk
D ƒrV �

k
provides a metric bounded

section of the canonical sheaf KW . In order to investigate the positivity prop-
erties of KW , one has to show that B cannot be too negative, and in addition
to control the singularity set S . The second point is a priori very challenging,
but we get useful information for the first point by observing that � provides a
morphism ��

k;0
OX .�B/ ! OXk

.a�/, whence a non-trivial morphism

OX .�B/ �! Ea�
WD .�k;0/�OXk

.a�/:

By [Dem95, Sect. 12], there exists a filtration onEa�
such that the graded pieces

are irreducible representations of GL.V / contained in .V �/˝`, ` � ja�j. There-
fore we get a non-trivial morphism

(11:5:2) OX .�B/ ! .V �/˝`; ` � ja�j:
If we know about certain (semi-)stability properties of V , this can be used to
control the negativity of B . ut
We further need the following useful concept that slightly generalizes entire
curve loci.

11.6. Definition. If Z is an algebraic set contained in some stage Xk of the
Semple tower of .X; V /, we define its “induced entire curve locus” IELX;V .Z/

� Z to be the Zariski closure of the union
S
fŒk�.C/ of all jets of entire curves

f W .C; TC/ ! .X; V / such that fŒk�.C/ � Z.

We have of course IELX;V .IELX;V .Z// D IELX;V .Z/ by definition. It is
not hard to check that modulo certain “vertical divisors” of Xk , the IELX;V .Z/

locus is essentially the same as the entire curve locus ECL.Z;W / of the induced
directed variety, but we will not use this fact here. Notice that if Z D S

Z˛ is a
decomposition of Z into irreducible components, then

IELX;V .Z/ D
[
˛

IELX;V .Z˛/:

Since IELX;V .Xk/ D ECLk.X; V /, proving the Green–Griffiths–Lang property
amounts to showing that IELX;V .X/ � X in the stage k D 0 of the tower. The
basic step of our approach is expressed in the following statement.
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11.7. Proposition. Let .X; V / be a directed variety and p0 � n D dimX ,
p0 � 1. Assume that there is an integer k0 � 0 such that for every k � k0 and
every irreducible algebraic setZ � Xk , Z 6� Dk , such that dim�k;k0

.Z/ � p0,
the induced directed structure .Z;W / � .Xk; Vk/ is of general type modulo
X� ! X . Then dim ECLk0

.X; V / < p0.

Proof. We argue here by contradiction, assuming that dim ECLk0
.X; V / � p0.

If
p0

0 WD dim ECLk0
.X; V / > p0

and if we can prove the result for p0
0, we will already get a contradiction. Hence

we can assume without loss of generality that dim ECLk0
.X; V / D p0. The

main argument consists of producing inductively an increasing sequence of in-
tegers

k0 < k1 < � � � < kj < � � �
and directed varieties .Zj ;W j / � .Xkj

; Vkj
/ satisfying the following proper-

ties:

(11.7.1) Z0 is one of the irreducible components of ECLk0
.X; V / and dimZ0

D p0;
(11.7.2) Zj is one of the irreducible components of ECLkj

.X; V / and �kj ;k0
.Zj /

D Z0;
(11.7.3) for all j � 0, IELX;V .Z

j / D Zj and rankWj � 1;
(11.7.4) for all j � 0, the directed variety .Zj C1;W j C1/ is contained in some

stage (of order j̀ D kj C1 � kj ) of the Semple tower of .Zj ;W j /,
namely

.Zj C1;W j C1/ � .Z
j

j̀
;W

j

j̀
/ � .Xkj C1

; Vkj C1
/

and
W j C1 D TZj C1 0 \W j

j̀
D TZj C1 0 \ Vkj

is the induced directed structure; moreover �kj C1;kj
.Zj C1/ D Zj ,

(11.7.5) for all j � 0, we have Zj C1 � Z
j

j̀
but �kj C1;kj C1�1.Z

j C1/ D Z
j

j̀ �1
.

For j D 0, we simply take Z0 to be one of the irreducible components S˛

of ECLk0
.X; V / such that dimS˛ D p0, which exists by our hypothesis that

dim ECLk0
.X; V / D p0. Clearly, ECLk0

.X; V / is the union of the IELX;V .S˛/

and we have IELX;V .S˛/ D S˛ for all those components. Thus IELX;V .Z
0/ D Z0

and dimZ0 D p0. Assume that .Zj ;W j / has been constructed. The subvari-
ety Zj cannot be contained in the vertical divisor Dkj

. In fact no irreducible
algebraic set Z such that IELX;V .Z/ D Z can be contained in a vertical di-
visor Dk , because �k;k�2.Dk/ corresponds to stationary jets in Xk�2; as ev-
ery non-constant curve f has non-stationary points, its k-jet fŒk� cannot be
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entirely contained in Dk; also the induced directed structure .Z;W / must sat-
isfy rankW � 1, otherwise IELX;V .Z/ � Z. Condition (11.7.2) implies that
dim�kj ;k0

.Zj / � p0. Therefore .Zj ;W j / is of general type moduloX� ! X

by the assumptions of the proposition. Thanks to Proposition 2.5, we get an al-
gebraic subset † � Z

j

`
in some stage of the Semple tower .Zj

`
/ of Zj such

that every entire curve f W .C; TC/ ! .X; V / satisfying fŒkj �.C/ � Zj also
satisfies fŒkj C`�.C/ � †. By definition, this implies the first inclusion in the
sequence

Zj D IELX;V .Z
j / � �kj C`;kj

.IELX;V .†// � �kj C`;kj
.†/ � Zj

(the other ones being obvious), so we have in fact an equality throughout. Let
.S 0̨ / be the irreducible components of IELX;V .†/. We have IELX;V .S

0̨ / D S 0̨
and one of the components S 0̨ must satisfy

�kj C`;kj
.S 0̨ / D Zj D Z

j
0 :

We take j̀ 2 Œ1; `� to be the smallest order such that Zj C1 WD �kj C`;kj C j̀
.S 0̨ / � Z

j

j̀
,

and set kj C1 D kj C j̀ > kj . By definition of j̀ , we have �kj C1;kj C1�1.Z
j C1/ D Z

j

j̀ �1
,

otherwise j̀ would not be minimal. We then get �kj C1;kj
.Zj C1/ D Zj and

thus �kj C1;k0
.Zj C1/ D Z0 by induction, and all properties (11.7.1)–(11.7.5)

follow easily. Now, by Observation 7.29, we have

rankW j < rankW j �1 < � � � < rankW 1 < rankW 0 D rankV:

This is a contradiction because we cannot have such an infinite sequence. Propo-
sition 11.7 is proved. ut
The special case k0 D 0, p0 D n of Proposition 11.7 yields the following
consequence.

11.8. Partial solution to the generalized GGL conjecture. Let .X; V / be a di-
rected pair that is strongly of general type. Then the Green–Griffiths–Lang con-
jecture holds true for .X; V /, namely ECL.X; V / � X ; in other words there
exists a proper algebraic variety Y � X such that every non-constant holomor-
phic curve f W C ! X tangent to V satisfies f .C/ � Y .

11.9. Remark. The proof is not very constructive, but it is however theoretically
effective. By this we mean that if .X; V / is strongly of general type and is taken
in a bounded family of directed varieties, i.e., X is embedded in some projec-
tive space PN with some bound ı on the degree, and P.V / also has bounded
degree � ı0 when viewed as a subvariety of P.TPN /, then one could theoreti-
cally derive bounds dY .n; ı; ı

0/ for the degree of the locus Y . Also, there would
exist bounds k0.n; ı; ı

0/ for the orders k and bounds dk.n; ı; ı
0/ for the degrees
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of subvarieties Z � Xk that have to be checked in the definition of a pair of
strong general type. In fact, [Dem11] produces more or less explicit bounds for
the order k such that Corollary 9.39 holds true. The degree of the divisor † is
given by a section of a certain twisted line bundle OXk

.m/˝ ��
k;0

OX .�A/ that
we know to be big by an application of holomorphic Morse inequalities—and
the bounds for the degrees of .Xk; Vk/ then provide bounds for m.

11.10. Remark. The condition that .X; V / is strongly of general type seems to
be related to some sort of stability condition. We are unsure what is the most
appropriate definition, but here is one that makes sense. Fix an ample divisor
A on X . For every irreducible subvariety Z � Xk that projects onto Xk�1 for
k � 1, and Z D X D X0 for k D 0, we define the slope �A.Z;W / of the
corresponding directed variety .Z;W / to be

�A.Z;W / D inf�
rankW

;

where � runs over all rational numbers such that there exists ` � 0, a modifica-
tion bZ` ! Z` and p 2 QC for which

KcW`
˝ .ObZ`

.p/˝ ��
kC`;0O.�A//�bZ`

is big on bZ`

(again, we assume here that Z 6� Dk for k � 2). Notice that by definition
.Z;W / is of general type modulo X� ! X if and only if �A.Z;W / < 0,
and that �A.Z;W / D �1 if ObZ`

.1/ is big for some `. Also, the proof of
Lemma 7.24 shows that for any .Z;W / we have �A.Z`;W`/ D �A.Z;W /

for all ` � 0. We say that .X; V / is A-jet-stable (resp. A-jet-semi-stable) if
�A.Z;W / < �A.X; V / (resp. �A.Z;W / � �A.X; V /) for all Z � Xk as
above. It is then clear that if .X; V / is of general type and A-jet-semi-stable,
then it is strongly of general type in the sense of Definition 11.3. It would be
useful to have a better understanding of this condition of stability (or any other
one that would have better properties).

11.B. Algebraic jet-hyperbolicity implies Kobayashi hyperbolicity

Let .X; V / be a directed variety, where X is an irreducible projective variety;
the concept still makes sense when X is singular, by embedding .X; V / in a
projective space .PN ; TPN / and taking the linear space V to be an irreducible
algebraic subset of TPn that is contained in TX at regular points of X .
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11.11. Definition. Let .X; V / be a directed variety. We say that .X; V / is alge-
braically jet-hyperbolic if for every k � 0 and every irreducible algebraic sub-
variety Z � Xk that is not contained in the union �k of vertical divisors, the
induced directed structure .Z;W / either satisfies W D 0, or is of general type
moduloX� ! X , i.e., there exists ` � 0 and p 2 Q�0 such thatK�cW`

˝ObZ`
.p/

is big over bZ`, for some modification .bZ`; bW`/ of the `-stage of the Semple
tower of .Z;W /.

Proposition 7.33 can be restated:

11.12. Proposition. If a projective directed variety .X; V / is such that OX`
.a�/

is ample for some ` � 1 and some weight a� 2 Q`
>0, then .X; V / is alge-

braically jet-hyperbolic.

In a similar vein, one would prove that if OX`
.a�/ is big and the “augmented

base locus”B D Bs.OX`
.a�/˝ ��

l;0
A�1/ projects onto a proper subvariety B 0

D �`;0.B/ � X , then .X; V / is strongly of general type. In general, Proposi-
tion 11.7 gives the following:

11.13. Theorem. Let .X; V / be an irreducible projective directed variety that
is algebraically jet-hyperbolic in the sense of the above definition. Then .X; V /
is Brody (or Kobayashi) hyperbolic, i.e., ECL.X; V / D ;.

Proof. Here we apply Proposition 11.7 with k0 D 0 and p0 D 1. It is enough
to deal with subvarieties Z � Xk such that dim�k;0.Z/ � 1; otherwise W D 0

and we can reduce Z to a smaller subvariety by (2.2). Then we conclude that
dim ECL.X; V / < 1. All entire curves tangent to V have to be constant, and we
conclude in fact that ECL.X; V / D ;. ut

12. Proof of the Kobayashi conjecture on generic hyperbolicity

We give here a simple proof of the Kobayashi conjecture, combining ideas of
Green–Griffiths [GrGr80], Nadel [Nad89], Masuda–Noguchi [MaNo96], De-
mailly [Dem95], Siu–Yeung [SiYe96a], Shiffman–Zaidenberg [ShZa02], Brot-
bek [Brot17], Ya Deng [Deng16], in chronological order. Related ideas had been
used earlier in [Xie15], and then in [BrDa17], to establish Debarre’s conjecture
on the ampleness of the cotangent bundle of generic complete intersections of
codimension at least equal to dimension.

12.A. General Wronskian operators

This section follows closely the work of D. Brotbek [Brot17]. Let U be an open
set of a complex manifold X , dimX D n, and s0; : : : ; sk 2 OX .U / be holo-
morphic functions. To these functions, we can associate a Wronskian operator
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of order k defined by
(12.1)

Wk.s0; : : : ; sk/.f / D

ˇ̌̌̌
ˇ̌̌̌

s0.f / s1.f / � � � sk.f /

D.s0.f // D.s1.f // � � � D.sk.f //

:::
:::

:::

Dk.s0.f // Dk.s1.f // � � � Dk.sk.f //

ˇ̌̌̌
ˇ̌̌̌ ;

where f W .C; 0/ 3 t 7! f .t/ 2 U � X is a germ of holomorphic curve
(or a k-jet of curve), and D D d

dt
. For a biholomorphic change of variable

' W .C; 0/ ! .C; 0/, we find by induction on ` a polynomial differential opera-
tor p`;i of order � ` acting on ' satisfying

D`.sj .f ı '// D '0`D`.sj .f // ı ' C
X
i<`

p`;i .'/D
i .sj .f // ı ':

It follows easily from this that

Wk.s0; : : : ; sk/.f ı '/ D .'0/1C2C���CkWk.s0; : : : ; sk/.f / ı ';
and henceWk.s0; : : : ; sk/.f / is an invariant differential operator of degree k0 D
1
2
k.k C 1/. Especially, we get in this way a section that we denote somewhat

sloppily
(12.2)

Wk.s0; : : : ; sk/ D

ˇ̌̌̌
ˇ̌̌̌

s0 s1 � � � sk
D.s0/ D.s1/ � � � D.sk/

:::
:::

:::

Dk.s0/ Dk.s1/ � � � Dk.sk/

ˇ̌̌̌
ˇ̌̌̌ 2 H 0.U;Ek;k0T �

X /:

12.3. Proposition. These Wronskian operators satisfy the following properties.

(a) Wk.s0; : : : ; sk/ is C-multilinear and alternate in .s0; : : : ; sk/.
(b) For any g 2 OX .U /, we have

Wk.gs0; : : : ; gsk/ D gkC1Wk.s0; : : : ; sk/:

Property 12.3 (b) is an easy consequence of the Leibniz formula

D`.g.f /sj .f // D
X̀
kD0

 
`

k

!
Dk.g.f //D`�k.sj .f //;

by performing linear combinations of rows in the determinants. This property
implies in its turn that for any .k C 1/-tuple of sections s0; : : : ; sk 2 H 0.U;L/

of a holomorphic line bundleL ! X , one can define more generally an operator

(12.4) Wk.s0; : : : ; sk/ 2 H 0.U;Ek;k0T �
X ˝ LkC1/:
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In fact, when we compute the Wronskian in a local trivialization of L�U , Prop-
erty 12.3 (b) shows that the determinant is independent of the trivialization.
Moreover, if g 2 H 0.U;G/ for some line bundle G ! X , we have
(12.5)
Wk.gs0; : : : ; gsk/ D gkC1Wk.s0; : : : ; sk/ 2 H 0.U;Ek;k0T �

X ˝ LkC1 ˝GkC1/:

We consider here a line bundle L ! X possessing a linear system † � H 0.X;L/

of global sections such that Wk.s0; : : : ; sk/ 6
 0 for generic elements s0; : : : ; sk 2 †.
We can then view Wk.s0; : : : ; sk/ as a section of H 0.Xk;OXk

.k0/˝ ��
k;0
LkC1/

on the k-stage Xk of the Semple tower. Very roughly, the idea for the proof
of the Kobayashi conjecture is to produce many such Wronskians, and to ap-
ply the fundamental vanishing theorem 8.15 to exclude the existence of en-
tire curves. However, the vanishing theorem only holds for jet differentials in
H 0.Xk;OXk

.k0/ ˝ ��
k;0
A�1/ with A > 0, while the existence of sufficiently

many sections sj 2 H 0.X;L/ can be achieved only when L is ample, so the
strategy seems a priori unapplicable. It turns out that one can sometimes ar-
range the Wronkian operator coefficients to be divisible by a section �� 2
H 0.X;OX .�// possessing a large zero divisor �, so that

��1
� Wk.s0; : : : ; sk/ 2 H 0.Xk;OXk

.k0/˝ ��
k;0.L

kC1 ˝ OX .��///;

and we can then hope that LkC1 ˝ OX .��/ < 0. Our goal is thus to find a
variety X and linear systems † � H 0.X;L/ for which the associated Wron-
skians Wk.s0; : : : ; sk/ have a very high divisibility. The study of the base locus
of line bundles OXk

.k0/˝ ��
k;0
.LkC1 ˝ OX .��// and their related positivity

properties will be taken care of by using suitable blow-ups.

12.B. Using a blow-up of the Wronskian ideal sheaf

We consider again a linear system † � H 0.X;L/ producing some non-zero
Wronskian sections Wk.s0; : : : ; sk/, so that dim† � k C 1. As the Wronskian
is alternate and multilinear in the arguments sj , we get a meromorphic map
Xk > P.ƒkC1†�/ by sending a k-jet 
 D fŒk�.0/ 2 Xk to the point of
projective coordinates ŒWk.ui0

; : : : ; uik
/.f /.0/�i0;:::;ik

, where .uj /j 2J is a ba-
sis of † and i0; : : : ; ik 2 J are in increasing order. This assignment factorizes
through the Plücker embedding into a meromorphic map

ˆ W Xk > GrkC1.†/

into the Grassmannian of dimension .k C 1/ subspaces of †� (or codimension
.kC1/ subspaces of†, alternatively). In fact, ifL�U ' U �C is a trivialization
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of L in a neighborhood of a point x0 D f .0/ 2 X , we can consider the map
‰U W Xk ! Hom.†;CkC1/ given by

��1
k;0.U / 3 fŒk� 7�! .s 7�! .D`.s.f //0�`�k//;

and associate either the kernel „ � † of ‰U .fŒk�/, seen as a point „ 2
GrkC1.†/, or ƒkC1„? � ƒkC1†�, seen as a point of P.ƒkC1†�/ (assum-
ing that we are at a point where the rank is equal to .k C 1/). Let OGr.1/ be
the tautological very ample line bundle on GrkC1.†/ (equal to the restriction of
OP.ƒkC1†�/.1//. By construction,ˆ is induced by the linear system of sections

Wk.ui0
; : : : ; uik

/ 2 H 0.Xk;OXk
.k0/˝ ��

k;0L
kC1/;

and we thus get a natural isomorphism

(12.6) OXk
.k0/˝ ��

k;0L
kC1 ' ˆ�OGr.1/ on Xk � Bk;

where Bk � Xk is the base locus of our linear system of Wronskians. The pres-
ence of the indeterminacy set Bk may create trouble in analyzing the positivity
of our line bundles, so we are going to use an appropriate blow-up to resolve the
indeterminacies. For this purpose, we introduce the ideal sheaf Jk;† � OXk

generated by the linear system †, and take a modification �k;† W bXk;† ! Xk

in such a way that ��
k;†

Jk;† D O bXk;†
.�Fk;†/ for some divisor Fk;† inbXk;†. Then ˆ is resolved into a morphism ˆ ı �k;† W bXk;† ! GrkC1.†/, and

on bXk;†, (12.6) becomes an everywhere defined isomorphism

(12.7) ��
k;†.OXk

.k0/˝��
k;0L

kC1/˝ O bXk;†
.�Fk;†/ ' .ˆ ı�k;†/

�OGr.1/:

In fact, we can simply take bXk to be the normalized blow-up of Jk;†, i.e.,
the normalization of the closure � � Xk � GrkC1.†/ of the graph of ˆ and
�k;† W bXk ! Xk to be the composition of the normalization map bXk ! � with
the first projection � ! Xk . ŒThe Hironaka desingularization theorem would
possibly allow us to replace bXk by a non-singular modification, and Fk;† by
a simple normal crossing divisor on the desingularization; we will avoid doing
so here, as we would otherwise need to show the existence of universal desin-
gularizations when .Xt ; †t / is a family of linear systems of k-jets of sections
associated with a family of algebraic varieties�. The following basic lemma was
observed by Ya Deng [Deng16].

12.8. Lemma. Locally over coordinate open sets U � X on which L�U is
trivial, there is a maximal “Wronskian ideal sheaf” J X

k
� Jk;† in OXk

achieved by linear systems † � H 0.U;L/. It is attained globally on X when-
ever the linear system † � H 0.X;L/ generates k-jets of sections of L at every
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point. Finally, it is “universal” in the sense that is does not depend on L and
behaves functorially under immersions: if  W X ! Y is an immersion and
J X

k
, J Y

k
are the corresponding Wronskian ideal sheaves in OXk

, OYk
, then

 �
k
J Y

k
D J X

k
with respect to the induced immersion  k W Xk ! Yk .

Proof. The (local) existence of such a maximal ideal sheaf is merely a con-
sequence of the strong Noetherian property of coherent ideals. As observed
at the end of Subsect. 6.A, the bundle Xk ! X is a locally trivial tower of
Pn�1-bundles, with a fiber Rn;k that is a rational k.n � 1/-dimensional va-
riety; over any coordinate open set U � X equipped with local coordinates
.z1; : : : ; zn/2B.0; r/�Cn, it is isomorphic to the product U � Rn;k , the fiber
over a point x0 2 U being identified with the central fiber through a translation
.t 7! f .t// 7! .t 7! x0 C f .t// of germs of curves. In this setting, J X

k
is

generated by the functions in OXk
associated with Wronskians

Xk �U 3 	 D fŒk� 7! Wk.s0; : : : ; sk/.f / 2 OXk
.k0/�Rn;k

; sj 2 H 0.U;OX /;

by taking local trivializations OXk
.k0/
0

' OXk ;
0
at points 	0 2 Xk . In fact, it

is enough to take Wronskians associated with polynomials sj 2 CŒz1; : : : ; zn�.
To see this, one can e.g. invoke Krull’s lemma for local rings, which implies
J X

k;
0
D T

`�0.J
X
k;
0

C m`C1

0

/, and to observe that `-jets of Wronskians

Wk.s0; : : : ; sk/ (mod m`C1

0

) depend only on the .k C `/-jets of the sections sj
in OX;x0

=mkC`C1
x0

, where x0 D �k;0.	0/. Therefore, polynomial sections sj
or arbitrary holomorphic functions sj define the same `-jets of Wronskians for
any `. Now, in the case of polynomials, it is clear that translations

.t 7�! f .t// 7�! .t 7�! x0 C f .t//

leave J X
k

invariant, hence J X
k

is the pull-back by the second projection
Xk �U ' U � Rn;k ! Rn;k of its restriction to any of the fibers ��1

k;0
.x0/ ' Rn;k .

As the k-jets of the sj ’s at x0 are sufficient to determine the restriction of our
Wronskians to ��1

k;0
.x0/, the first two claims of Lemma 12.8 follow. The uni-

versality property comes from the fact that L�U is trivial (cf. Property 12.3 (b))
and that germs of sections of OX extend to germs of sections of OY via the
immersion  . (Notice that in this discussion, one may have to pick Taylor ex-
pansions of order > k for f to reach all points of the fiber ��1

k;0
.x0/, the order

.2k � 1/ being sufficient by [Dem95, Proposition 5.11], but this fact does not
play any role here). A consequence of universality is that J X

k
does not depend

on coordinates nor on the geometry of X . ut
The above discussion combined with Lemma 12.8 leads to the following state-
ment.
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12.9. Proposition. Assume that L generates all k-jets of sections (e.g. take
L D Ap with A very ample and p � k), and let † � H 0.X;L/ be a linear
system that also generates k-jets of sections at any point of X . Then we have a
universal isomorphism

��
k.OXk

.k0/˝ ��
k;0L

kC1/˝ O bXk;†
.�Fk/ ' .ˆ ı �k/

�OGrkC1.†/.1/;

where �k W bXk ! Xk is the normalized blow-up of the (maximal) ideal sheaf
J X

k
� OXk

associated with order k Wronskians, and Fk the universal divisor
of bXk resolving J X

k
.

12.C. Specialization to suitable hypersurfaces

Let Z be a non-singular .nC 1/-dimensional projective variety, and let A be a
very ample divisor on Z; the fundamental example is of course Z D PnC1 and
A D OPnC1.1/. Our goal is to show that a sufficiently general (n-dimensional)
hypersurface X D fx 2 Z I �.x/ D 0g defined by a section � 2 H 0.Z;Ad /,
d � 1, is Kobayashi hyperbolic. A basic idea, inspired by some of the main
past contributions, such as Brody–Green [BrGr77], Nadel [Nad89], Masuda–
Noguchi [MaNo96], Shiffman–Zaidenberg [ShZa02] and [Xie15], is to con-
sider hypersurfaces defined by special equations, e.g. deformations of unions of
hyperplane sections 
1 � � � 
d D 0 or of Fermat–Waring hypersurfaces

P
0�j�N 
d

j

D 0, for suitable sections 
j 2 H 0.Z;A/. Brotbek’s main idea developed in
[Brot17] is that a carefully selected hypersurface may have enough Wronskian
sections to imply the ampleness of some tautological jet line bundle—a Zariski
open property. Here, we take � 2 H 0.X;Ad / equal to a sum of terms

(12.10)
� D

X
0�j�N

ajm
ı
j ;

aj 2 H 0.Z;A�/; mj 2 H 0.Z;Ab/; n < N � k; d D ıb C �;

where ı � 1 and the mj are “monomials” of the same degree b, i.e., products
of b “linear” sections 
I 2 H 0.Z;A/, and the factors aj are general enough.
The integer � is taken in the range Œk; kC b� 1�, first to ensure thatH 0.Z;A�/

generates k-jets of sections, and second, to allow d to be an arbitrary large
integer (once ı � ı0 has been chosen large enough).

The monomials mj will be chosen in such a way that for suitable c 2 N,
1 � c � N , any subfamily of c termsmj shares one common factor 
I 2 H 0.X;A/.
To this end, we consider all subsets I � f0; 1; : : : ; N g with card I D c; there
are B WD �

N C1
c

�
subsets of this type. For all such I , we select sections 
I 2 H 0.Z;A/

such that
Q

I 
I D 0 is a simple normal crossing divisor in Z (with all of
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its components of multiplicity 1). For j D 0; 1; : : : ; N given, the number of
subsets I containing j is b WD �

N
c�1

�
. We put

(12.11) mj D
Y
I3j


I 2 H 0.Z;Ab/:

By construction, every family mi1
; : : : ; mic

of sections shares the common fac-
tor 
I 2 H 0.X;A/, where I D fi1; : : : ; icg. The first step consists in checking
that we can achieve X to be smooth with these constraints.

12.12. Lemma. Assume N � c.nC 1/. Then, for a generic choice of the sec-
tions aj 2 H 0.Z;A�/ and 
I 2 H 0.Z;A/, the hypersurface X D ��1.0/ � Z

defined by (12.10), (12.11) is non-singular. Moreover, under the same condition
for N , the intersection of

Q

I D 0 with X can be taken to be a simple normal

crossing divisor in X .

Proof. As the properties considered in the Lemma are Zariski open properties
in terms of the .N CB C 1/-tuple .aj ; 
I /, it is sufficient to prove the result for
a specific choice of the aj ’s: we fix here aj D Q
j 
��1

I.j /
, where Q
j 2 H 0.X;A/,

0 � j � N are new sections such that
Q Q
j Q 
I D 0 is a simple normal

crossing divisor, and I.j / is any subset of cardinal c containing j . Let H be
the hypersurface of degree d of PN CB defined in homogeneous coordinates
.zj ; zI / 2 CN CBC1 by h.z/ D 0, where

h.z/ D
X

0�j�N

zj z
��1

I.j /

Y
I3j

zı
I ;

and consider the morphism ˆ W Z ! PN CB such that ˆ.x/ D . Q
j .x/; 
I .x//.
With our choice of the aj ’s, we have � D h ı ˆ. Now, when the Q
j and 
I are
general enough, the mapˆ defines an embedding ofZ into PN CB (for this, one
needs N C B � 2.dimZ/ C 1 D 2n C 3, which is the case by our assump-
tions). Then, by definition,X is isomorphic to the intersection ofH withˆ.Z/.
Changing generically the Q
j and 
I ’s can be achieved by composing ˆ with a
generic automorphism g 2 Aut.PN CB/ D PGLN CBC1.C/ (as GLN CBC1.C/

acts transitively on .N C B C 1/-tuples of linearly independent linear forms).
As dimg ıˆ.Z/ D dimZ D nC 1, Lemma 12.12 will follow from a standard
Bertini argument if we can check that Sing.H/ has codimension at least .nC2/

in PN CB . In fact, this condition implies Sing.H/ \ .g ı ˆ.Z// D ; for g
generic, while g ıˆ.Z/ can be chosen transverse to Reg.H/. Now, a sufficient
condition for smoothness is that one of the differentials dzj , 0 � j � N , ap-
pears with a non-zero factor in dh.z/ (just neglect the other differentials �dzI in
this argument). We infer from this and the fact that ı � 2 that Sing.H/ consists
of the locus defined by

Q
I3j zI D 0 for all j D 0; 1; : : : ; N . It is the union of

the linear subspaces zI0
D � � � D zIN

D 0 for all possible choices of subsets Ij
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such that Ij 3 j . Since card Ij D c, the equality
S
Ij D f0; 1; : : : ; N g implies

that there are at least d.N C 1/=ce distinct subsets Ij involved in each of these
linear subspaces, and the equality can be reached. Therefore codim Sing.H/ D
d.N C 1/=ce � n C 2 as soon as N � c.n C 1/. By the same argument, we
can assume that the intersection of Z with at least .nC 2/ distinct hyperplanes
zI D 0 is empty. In order that

Q

I D 0 defines a normal crossing divisor at

a point x 2 X , it is sufficient to ensure that for any family G of coordinate
hyperplanes zI D 0, I 2 G , with card G � n C 1, we have a “free” index
j … S

I2G I such that xI ¤ 0 for all I 3 j , so that dh involves a non-zero
term � dzj independent of the dzI , I 2 G . If this fails, there must be at least
.nC 2/ hyperplanes zI D 0 containing x, associated either with I 2 G , or with
other I ’s covering �.

S
I2G I /. The corresponding bad locus is of codimension

at least .nC 2/ in PN CB and can be avoided by g.ˆ.Z// for a generic choice
of g 2 Aut.PN CB/. Then X \ T

I2G 

�1
I .0/ is smooth of codimension equal

to card G . ut

12.D. Construction of highly divisible Wronskians

To any families s; O
 of sections s1; : : : ; sr 2 H 0.Z;Ak/, O
1; : : : ; O
r 2 H 0.Z;A/,
and to each subset J � f0; 1; : : : ; N g with cardJ D c, we associate a Wron-
skian operator of order k (i.e., a .k C 1/ � .k C 1/-determinant)

(12.13)
Wk;s; O�;a;J D Wk.s1 O
d�k

1 ; : : : ; sr O
d�k
r ; .ajm

ı
j /j 2�J /;

r D k C c �N; j�J j D N � c:
We assume here again that the O
j are chosen so that

Q O
j Q 
I D 0 defines a
simple normal crossing divisor in Z and X . Since sj O
d�k

j ; ajm
ı
j 2 H 0.Z;Ad /,

formula (12.4) applied with L D Ad implies that

(12.14) Wk;s; O�;a;J 2 H 0.Z;Ek;k0T �
Z ˝ A.kC1/d /:

However, we are going to see that Wk;s; O�;a;J and its restriction Wk;s; O�;a;J �X
are divisible by monomials O
˛
ˇ of very large degree, where O
 , resp. 
 , de-
notes the collection of sections O
j , resp. 
I in H 0.Z;A/. In this way, we will
see that we can even obtain a negative exponent of A after simplifying O
˛
ˇ

inWk;s; O�;a;J �X . This simplification process is a generalization of techniques al-
ready considered by [Siu87] and [Nad89] (and later [DeEG97]) in relation with
the use of meromorphic connections of low pole order.

12.15. Lemma. Assume that ı � k. Then the Wronskian operator Wk;s; O�;a;J ,
resp. Wk;s; O�;a;J �X , is divisible by a monomial O
˛
ˇ , resp. O
˛
ˇ 
ı�k

J (with a

multiindex notation O
˛
ˇ D Q O
 j̨

j

Q



ˇI

I ), and

˛; ˇ � 0; j˛j D r.d � 2k/; jˇj D .N C 1 � c/.ı � k/b:
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Proof. Wk;s; O�;a;J is obtained as a determinant whose r first columns are the
derivatives D`.sj O
d�k

j / and the last .N C 1 � c/ columns are the D`.ajm
ı
j /,

divisible respectively by O
d�2k
j and mı�k

j . As mj is of the form 
� , j
 j D b,
this implies the divisibility of Wk;s; O�;a;J by a monomial of the form O
˛
ˇ , as
asserted. Now, we explain why one can gain the additional factor 
ı�k

J divid-
ing the restriction Wk;s; O�;a;J �X . First notice that 
J does not appear as a fac-
tor in O
˛
ˇ , precisely because the Wronskian involves only terms ajm

ı
j with

j … J , and thus these mj ’s do not contain 
J . Let us pick j0 D min.�J / 2
f0; 1; : : : ; N g. Since X is defined by

P
0�j�N ajm

ı
j D 0, we have identically

aj0
mı

j0
D �

X
i2J

aim
ı
i �

X
i2�J�fj0g

aim
ı
i

in restriction to X , whence (by the alternate property of Wk.�/)

Wk;s; O�;a;J �X D �
X
i2J

Wk.s1 O
d�k
1 ; : : : ; sr O
d�k

r ; aim
ı
i ; .ajm

ı
j /j 2�J�fj0g/�X :

However, all termsmi , i 2 J , contain by definition the factor 
J , and the deriva-
tives D`.�/ leave us a factor mı�k

i at least. Therefore, the above restricted
Wronskian is also divisible by 
ı�k

J , thanks to the fact that
Q O
j Q 
I D 0

forms a simple normal crossing divisor in X . ut
12.16. Corollary. For ı � k, there exists a monomial O
˛J 
ˇJ dividing Wk;s; O�;a;J �X
such that

j˛J j C jˇJ j D .k C c �N/.d � 2k/C .N C 1 � c/.ı � k/b C .ı � k/;
and we haveeWk;s; O�;a;J �X WD . O
˛J 
ˇJ /�1Wk;s; O�;a;J �X 2 H 0.X;Ek;k0T �

X ˝ A�p/;

where
(12.17)
p D j˛J jCjˇJ j� .kC1/d D .ı�k/� .kCc�N/2k� .N C1Cc/.kbC�/:

In particular, we have p > 0 for ı large enough (all other parameters being
fixed or bounded), and under this assumption, the fundamental vanishing the-
orem 8.15 implies that all entire curves f W C ! X are annihilated by these
Wronskian operators.

Proof. In fact,

.kC1/d D .kCc�N/dC.NC1�c/d D .kCc�N/dC.NC1�c/.ıbC�/;
and we get (12.17) by subtraction. ut
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12.E. Control of the base locus for sufficiently general coefficients aj in �

The next step is to control more precisely the base locus of these Wronskians
and to find conditions on N , k, c, d D bı C � ensuring that the base locus is
empty for a generic choice of the sections aj in � D P

ajmj . Although we
will not formally use it, the next lemma is useful to realize that the base locus is
related to a natural rank condition.

12.18. Lemma. Set uj WD ajm
ı
j . The base locus in X reg

k
of the above Wron-

skians Wk;s; O�;a;J �X , when s; O
 vary, consists of jets fŒk�.0/ 2 X
reg
k

such that
the matrix .D`.uj ı f /.0//0�`�k; j 2�J is not of maximal rank (i.e., of rank <
card �J D NC1�c); if ı > k, the base locus includes all jets fŒk�.0/ such that
f .0/ 2 S

I¤J 

�1
I .0/. When J also varies, the base locus of all Wk;s; O�;a;J �X

in the Zariski open set X 0
k

WD X
reg
k

�
S

jI jDc 

�1
I .0/ consists of all k-jets such

that rank.D`.uj ı f /.0//0�`�k; 0�j�N � N � c.

Proof. If ı > k and mj ı f .0/ D 0 for some j 2 J , we have in fact
D`.uj ı f /.0/ D 0 for all derivatives ` � k, because the exponents in-
volved in all factors of the differentiated monomial ajm

ı
j are at least equal to

ı � k > 0. Hence the rank of the matrix cannot be maximal. Now, assume that
mj ı f .0/ ¤ 0 for all j 2 �J , i.e.,

(12.19) x0 WD f .0/ 2 X �
[

j 2�J

m�1
j .0/ D X �

[
I¤J


�1
I .0/:

We take sections O
j so that O
j .x0/ ¤ 0, and then adjust the k-jet of the sections
s1; : : : ; sr in order to generate any matrix of derivatives

.D`.sj .f / O
j .f /d�k/.0//0�`�k; j 2�J

(the fact that f 0.0/ ¤ 0 is used for this!). Therefore, by expanding the determi-
nant according to the last .N C 1 � c/ columns, we see that the base locus is
defined by the equations
(12.20)
det.D`.uj .f //.0//`2L; j 2�J D 0; 8L � f0; 1; : : : ; kg; jLj D N C 1 � c;

equivalent to the non-maximality of the rank. The last assertion follows by a
simple linear algebra argument. ut

For a finer control of the base locus, we adjust the family of coefficients

(12.21) a D .aj /0�j�N 2 S WD H 0.Z;A�/˚.N C1/

in our section � D P
ajm

ı
j 2 H 0.Z;Ad /, and denote by Xa D ��1.0/ � Z

the corresponding hypersurface. By Lemma 12.12, we know that there is a
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Zariski open set U � S such that Xa is smooth and
Q

I D 0 is a sim-

ple normal crossing divisor in Xa for all a 2 U . We consider the Semple
tower Xa;k WD .Xa/k of Xa, the “universal blow-up” �a;k W bXa;k ! Xa;k

of the Wronskian ideal sheaf Ja;k such that ��
a;k

Ja;k D O bXa;k
.�Fa;k/ for

some “Wronskian divisor” Fa;k in bXa;k . By the universality of this construction
(cf. Lemma 12.8), we can also embed Xa;k in the Semple tower Zk of Z, blow
up the Wronskian ideal sheaf J Z

k
of Zk to get a Wronskian divisor FZ

k
in bZk ,

where �k W bZk ! Zk is the blow-up map. Then Fa;k is the restriction of FZ
k

to bXa;k � bZk . Our section eWk;s; O�;a;J �Xa
is the restriction of a meromorphic

section defined on Z, namely
(12.22)
. O
˛J 
ˇJ /�1Wk;s; O�;a;J D . O
˛J 
ˇJ /�1Wk.s1 O
d�k

1 ; ::: ; sr O
d�k
r ; .ajm

ı
j /j 2�J /:

It induces over the Zariski open setZ0 D Z�
S

I 

�1
I .0/ a holomorphic section

(12.23) �k;s; O�;a;J 2 H 0.bZ0
k; �

�
k.OZk

.k0/˝ ��
k;0A

�p/˝ ObZk
.�FZ

k //

(notice that the relevant factors O
j remain divisible on the whole variety Z).
By construction, thanks to the divisibility property explained in Lemma 12.15,
the restriction of this section to bX 0

a;k
D bXa;k \ bZ0

k
extends holomorphically

to bXa;k , i.e.,
(12.24)
�

k;s; O�;a;J � bXa;k
2 H 0.bXa;k; �

�
a;k.OXa;k

.k0/˝ ��
k;0A

�p/˝ O bXa;k
.�Fa;k//:

(Here the fact that we took bXk;a to be normal implies that the divided section
is indeed holomorphic on bXk;a, as bXk;a \ ��1

k
.��1

k;0

T
I2G 


�1
I .0// has the ex-

pected codimension D card G for any family G ).

12.25. Lemma. Let V be a finite dimensional vector space over C,‰ W V p ! C

a non-zero alternating multilinear form, and let m; c 2 N, c < m � p,
r D p C c � m � 0. Then the subset T � V m of vectors .v1; : : : ; vm/ 2 V m

such that

(��)
‰.h1; : : : ; hr ; .vj /j 2�J / D 0

for all J � f1; : : : ; mg, jJ j D c, and all h1; : : : ; hr 2 V ;
is a closed algebraic subset of codimension � .c C 1/.r C 1/.

Proof. A typical example is ‰ D det on a p-dimensional vector space V ,
then T consists of m-tuples of vectors of rank < p � r , and the assertion con-
cerning the codimension is well-known (we will reprove it anyway). In gen-
eral, the algebraicity of T is obvious. We argue by induction on p, the result
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being trivial for p D 1 (the kernel of a non-zero linear form is indeed of
codimension � 1). If K is the kernel of ‰, i.e., the subspace of vectors v 2 V

such that ‰.h1; : : : ; hp�1; v/ D 0 for all hj 2 V , then ‰ induces an alternating
multilinear form ‰ on V=K, whose kernel is equal to f0g. The proof is thus
reduced to the case when Ker‰ D f0g. Notice that we must have dimV � p,
otherwise ‰ would vanish. If card �J D m � c D 1, condition (��) implies
that vj 2 Ker‰ D f0g for all j , and hence codimT D dimV m � mp D
.c C 1/.r C 1/, as desired. Now, assume m � c � 2, fix vm 2 V � f0g and
consider the non-zero alternating multilinear form on V p�1 such that

‰0
vm
.w1; : : : ; wp�1/ WD ‰.w1; : : : ; wp�1; vm/:

If .v1; : : : ; vm/ 2 T , then .v1; : : : ; vm�1/ belongs to the set T 0
vm

associated with
the new data .‰0

vm
; p � 1;m � 1; c; r/. The induction hypothesis implies that

codimT 0
vm

� .cC 1/.r C 1/, and since the projection T ! V to the first factor
admits the T 0

vm
as its fibers, we conclude that

codimT \ ..V � f0g/ � V m�1/ � .c C 1/.r C 1/:

By permuting the arguments vj , we also conclude that

codimT \ .V k�1 � .V � f0g/ � V m�k/ � .c C 1/.r C 1/

for all k D 1; : : : ; m. The union
S

k.V
k�1 � .V � f0g/� V m�k/ � V m leaves

out only f0g � V m whose codimension is at least mp � .c C 1/.r C 1/, so
Lemma 12.25 follows. ut
12.26. Proposition. Consider in U � bZ0

k
the set � of pairs .a; 	/ such that

�k;s; O�;a;J .	/ D 0 for all choices of s, O
 and J � f0; 1; : : : ; N g with cardJ D c.
Then � is an algebraic set of dimension

dim� � dimS � .c C 1/.k C c �N C 1/C nC 1C kn:

As a consequence, if .c C 1/.k C c � N C 1/ > n C 1 C kn, there exists
a 2 U � S such that the base locus of the family of sections �k;s; O�;a;J in bXa;k

lies over
S

I Xa \ 
�1
I .0/.

Proof. The idea is similar to [Brot17, Lemma 3.8], but somewhat simpler in the
present context. Let us consider a point 	 2 bZ0

k
and the k-jet fŒk� D �k.	/ 2 Z0

k
,

so that x D f .0/ 2 Z0 D Z �
S

I 

�1
I .0/. Let us take the O
j such that O
j .x/ ¤ 0.

Then, we do not have to pay attention to the non-vanishing factors O
˛J 
ˇJ , and
the k-jets of sections mj and O
d�k

j are invertible near x. Let eA be a local
generator of A near x and eL a local generator of the invertible sheaf

L D ��
kOZk

.k0/˝ ObZk
.�FZ

k /
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near 	 2 bZ0
k

. Let J kOZ;x D OZ;x=m
kC1
Z;x be the vector space of k-jets of

functions on Z at x. By definition of the Wronskian ideal and of the associated
divisor FZ

k
, we have a non-zero alternating multilinear form

‰ W .J kOZ;x/
kC1 �! C; .g0; : : : ; gk/ 7�! ��

kWk.g0; : : : ; gk/.	/=eL .	/:

The simultaneous vanishing of our sections at 	 is equivalent to the vanishing of

(12.27) ‰.s1 O
d�k
1 e�d

A ; : : : ; sr O
d�k
r e�d

A ; .ajm
ı
j e

�d
A /j 2�J /

for all .s1; : : : ; sr /. Since A is very ample and � � k, the power A� generates
k-jets at every point x 2 Z, and thus the morphisms

H 0.Z;A�/ �! J kOZ;x; a 7�! amı
j e

�d
A and

H 0.Z;Ak/ �! J kOZ;x; s 7�! s O
d�k
j e�d

A

are surjective. Lemma 12.25 applied with r D k C c � N and .p;m/ replaced
by .kC1;N C1/ implies that the codimension of families a D .a0; : : : ; aN / 2
S D H 0.Z;A�/˚.N C1/ for which �k;s; O�;a;J .	/ D 0 for all choices of s,
O
 and J is at least .c C 1/.k C c � N C 1/, i.e., the dimension is at most
dimS � .cC1/.kC c�N C1/. When we let 	 vary over bZ0

k
which has dimen-

sion .nC 1/C kn and take into account the fibration .a; 	/ 7! 	 , the dimension
estimate of Proposition 12.26 follows. Under the assumption

(12.28) .c C 1/.k C c �N C 1/ > nC 1C kn;

we have dim� < dimS , and so the image of the projection � ! S , .a; 	/ 7! a,
is a constructible algebraic subset distinct from S . This concludes the proof. ut

Our final goal is to completely eliminate the base locus. Proposition 12.26
indicates that we have to pay attention to the intersections Xa \ 
�1

I .0/. For
x 2 Z, we let G be the family of hyperplane sections 
I D 0 that contain x. We
introduce the set P D f0; 1; : : : ; N g �S

I2G I and the smooth intersection

ZG D Z \
\
I2G


�1
I .0/;

so that N 0 C 1 WD cardP � N C 1 � c card G and dimZG D nC 1 � card G .
If a 2 U is such that x 2 Xa, we also look at the intersection

XG ;a D Xa \
\
I2G


�1
I .0/;

which is a smooth hypersurface of ZG . In that situation, we consider Wron-
skians Wk;s; O�;a;J as defined above, but we now take J � P , cardJ D c,
�J D P � J , r 0 D k C c �N 0.
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12.29. Lemma. In the above setting, if we assume ı > k, the restriction
Wk;s; O�;a;J �XG ;a

is still divisible by a monomial O
˛J 
ˇJ such that

j˛J j C jˇJ j D .k C c �N 0/.d � 2k/C .N 0 C 1 � c/.ı � k/b C .ı � k/:

Therefore, if

p0 D j˛J jCjˇJ j�.kC1/d D .ı�k/�.kCc�N 0/2k�.N 0 C1Cc/.kbC�/

as in (12.17), we obtain again holomorphic sections

eWk;s; O�;a;J �XG ;a
WD . O
˛J 
ˇJ /�1Wk;s; O�;a;J �XG ;a

2 H 0.XG ;a; Ek;k0T �
X ˝ A�p0

/;

�k;s; O�;a;J �	�1
k;0

.XG ;a/

2 H 0.��1
k;0.XG ;a/; �

�
a;k.OXa;k

.k0/˝ ��
k;0A

�p0

/˝ O bXa;k
.�Fa;k//:

Proof. The arguments are similar to those employed in the proof of Lemma 12.15.
Let fŒk� 2 Xa;k be a k-jet such that f .0/ 2 XG ;a (the k-jet need not be entirely
contained in XG ;a). Putting j0 D min.�J /, we observe that we have on XG ;a

an identity

aj0
mı

j0
D �

X
i2P�fj0g

aim
ı
i D �

X
i2J

aim
ı
i �

X
P�.J [fj0g/

aim
ı
i ;

because mi D Q
I3i 
I D 0 on XG ;a for i 2 �P D S

I2G I (one of the factors

I is such that I 2 G , so 
I D 0). If we compose with a germ t 7! f .t/ such
that f .0/ 2 XG ;a (even though f does not necessarily lie entirely in XG ;a), we
get

aj0
mı

j0
.f .t// D �

X
i2J

aim
ı
i .f .t// �

X
P�.J [fj0g/

aim
ı
i .f .t//CO.tkC1/

as soon as ı > k. Hence we have an equality for all derivatives D`.�/, ` � k at
t D 0, and

Wk;s; O�;a;J �XG ;a
.fŒk�/

D �
X
i2J

Wk.s1 O
d�k
1 ; : : : ; sr 0 O
d�k

r 0 ; aim
ı
i ; .ajm

ı
j /j 2P�.J [fj0g//�XG ;a

.fŒk�/:

Then, again, 
ı�k
J is a new additional common factor of all terms in the sum,

and we conclude as in Lemma 12.15 and Corollary 12.16. ut
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Now, we analyze the base locus of these new sections on[
a2U

��1
a;k�

�1
k;0.XG ;a/ � ��1

k ��1
k;0.ZG / � bZk :

As x runs inZG andN 0 < N , Lemma 12.25 shows that (12.28) can be replaced
by the less demanding condition

(12:280) .cC1/.kCc�N 0 C1/ > nC1�card G Ckn D dim��1
k ��1

k;0.ZG /:

A proof entirely similar to that of Proposition 12.26 shows that for a generic
choice of a 2 U , the base locus of these sections on bXG ;a;k projects ontoS

I2�G XG ;a \ 
�1
I .0/. Arguing inductively on card G , the base locus can be

shrinked step by step down to empty set (but it is in fact sufficient to stop when
XG ;a \ 
�1

I .0/ reaches dimension 0).

12.F. Nefness and ampleness of appropriate tautological line bundles

At this point, we have produced a smooth family XS ! U � S of particular
hypersurfaces in Z, namely Xa D f�a.z/ D 0g, a 2 U , for which a certain
“tautological” line bundle has an empty base locus for sufficiently general coef-
ficients:

12.30. Corollary. Under condition (12.28) and the hypothesis p > 0 in (12.17),
the following properties hold.

(a) The line bundle

La WD ��
a;k.OXa;k

.k0/˝ ��
k;0A

�1/˝ O bXa;k
.�Fa;k/

is nef on bXa;k for general a 2 U , i.e., for a 2 U 0 � U , where U 0 is a dense
Zariski open subset.

(b) Let �a D P
2�`�k �`Da;` be a positive rational combination of vertical

divisors of the Semple tower and q 2 N, q � 1, an integer such that

L 0
a WD OXa;k

.1/˝ Oa;k.��a/˝ ��
k;0A

q

is ample on Xa;k . Then the Q-line bundle

L 0
a;";� WD ��

a;k.OXa;k
.k0/˝ OXa;k

.�"�a/˝ ��
k;0A

�1Cq"/

˝ O bXa;k
.�.1C "�/Fa;k/

is ample on bXa;k for a 2 U 0, for some q 2 N and "; � 2 Q>0 arbitrarily
small.
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Proof. (a) This would be obvious if we had global sections generating La on
the whole of bXa;k , but our sections are only defined on a stratification of bXa;k .
In any case, if C � bXa;k is an irreducible curve, we take a maximal family G
such that C � XG ;a;k . Then, by what we have seen, for a 2 U general enough,
we can find global sections of La on bXG ;a;k such that C is not contained in
their base locus. Hence La � C � 0 and La is nef for a in a dense Zariski open
set U 0 � U .

(b) The existence of �a and q follows from Proposition 7.19 and Corol-
lary 7.21, which even provide universal values for �` and q. After taking the
blow up �a;k W bXa;k ! Xa;k (cf. (12.7)), we infer that

L 0
a;� WD ��

a;kL 0 ˝ O bXa;k
.��Fa;k/

D ��
a;k.OXa;k

.1/˝ OXa;k
.��a/˝ ��

k;0A
q/˝ O bXa;k

.��Fa;k/

is ample for � > 0 small. The result now follows by taking a combination

La;";� D L 1�"=k0

a ˝ .L 0
a;�/

": �

12.31. Corollary. Let X ! � be the universal family of hypersurfaces X� D
f�.z/ D 0g, � 2 �, where � � P.H 0.Z;Ad // is the dense Zariski open set
over which the family is smooth. On the “Wronskian blow-up” bX�;k of X�;k , let
us consider the line bundle

L�;";� WD ��
�;k.OX�;k

.k0/˝ OX�;k
.�"�� /˝ ��

k;0A
�1Cq"/

˝ O bX�;k
.�.1C "�/F�;k/

associated with the same choice of constants as in Corollary 12.30. Then L 0
�;";�

is ample on bX�;k for � in a dense Zariski open set �0 � �.

Proof. By Corollary 12.30 (b), we can find �0 2 H 0.Z;Ad / such that X�0
D

��1
0 .0/ is smooth and L m

�0;";� is an ample line bundle on bX�0;k (m 2 N�). As
ampleness is a Zariski open condition, we conclude that L m

�;";� remains ample
for a general section � 2 H 0.Z;Ad /, i.e., for Œ�� in some Zariski open set�0 �
�. Since ��;k.F�;k/ is contained in the vertical divisor of X�;k , we conclude
by Theorem 8.8 that X� is Kobayashi hyperbolic for Œ�� 2 �. ut

12.G. Final conclusion and computation of degree bounds

At this point, we fix our integer parameters to meet all conditions that have been
found. We must have N � c.n C 1/ by Lemma 12.12, and for such a large
value of N , condition (12.28) can hold only when c � n, so we take c D n and
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N D n.nC1/. Inequality (12.28) then requires k large enough, k D n3Cn2C1
being the smallest possible value. We find

b D
 
N

c � 1

!
D
 
n2 C n

n � 1

!
D n

.n2 C n/ � � � .n2 C 2/

nŠ
:

We have n2 C k D n2.1 C k=n2/ < n2 exp.k=n2/ and by Stirling’s formula,
nŠ >

p
2�n .n=e/n. Therefore

b <
n2n�1 exp..2C � � � C n/=n2/p

2�n .n=e/n
<
enC 1

2
C 1

2np
2�

nn� 3
2 :

Finally, we divide d � k by b, get in this way d � k D bıC �, 0 � � < b, and
put � D �C k � k. Then ı C 1 � .d � k C 1/=b and formula (12.17) yields

p D .ı � k/ � .n3 C 1/2k � .n2 C 2nC 1/.kb C �/

� .d � k C 1/=b � 1 � .2n3 C 3/k � .n2 C 2nC 1/.kb C k C b � 1/:
Therefore p > 0 is achieved as soon as

d � dn D k C b.1C .2n3 C 3/k C .n2 C 2nC 1/.kb C k C b � 1//;
where

k D n3 C n2 C 1; b D
 
n2 C n

n � 1

!
:

The dominant term in dn is k.n2C2nC1/b2 	 e2nC1n2nC2=2� . By more pre-
cise numerical calculations and Stirling’s asymptotic expansion, one can show
in fact that dn � b.n C 4/ .en/2nC1=2�c for n � 4 (which is also an equiv-
alent and a close approximation as n ! C1), while d1 D 61, d2 D 6685,
d3 D 2825761. We can now state the main result of this section.

12.32. Theorem. Let Z be a projective .nC 1/-dimensional manifold and A a
very ample line bundle on Z. Then, for a general section � 2 H 0.Z;Ad / and
d � dn, the hypersurface X� D ��1.0/ is Kobayashi hyperbolic, and in fact,
algebraically jet hyperbolic in the sense of Definition 11.11. The bound dn for
the degree can be taken to be

dn D b.nC 4/ .en/2nC1=2�c for n � 4;

and for n � 3, one can take d1 D 4, d2 D 6685, d3 D 2825761.

A simpler (and less refined) choice is Qdn D b1
3
.en/2nC2c, which is valid for

all n. These bounds are only slightly weaker than the ones found by Ya Deng in
[Deng16], [Deng17], namely Qdn D O.n2nC6/.
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Proof. The bound d1 D 4 (instead the insane value d1 D 61) can be obtained
in an elementary way by adjunction: sections of A can be used to embed any
polarized surface .Z;A/ in PN (one can always take N D 5), and we have
KX�

D KZ�X�
˝ Ad , along with a surjective morphism �2

PN ! KZ . As
�2

PN ˝ O.3/ D ƒN �2.TPN ˝ O.�1// is generated by sections, this implies
thatKZ ˝A3 is also generated by sections, and henceKX�

is ample for d � 4.
ut

12.H. Further comments

12.33. Our bound dn is rather large, but just as in Ya Deng’s effective approach
of Brotbek’s theorem [Deng17], the bound holds for a property that looks sub-
stantially stronger than hyperbolicity, namely the ampleness of the pull-back
of some (twisted) jet bundle ��

k
O bXk

.a�/˝ O bXk
.�F 0

k
/. Subsect. 11.B provides

much weaker conditions for hyperbolicity, but checking them is probably more
involved.

12.34. After these notes were written, Riedl and Yang [RiYa18] proved the im-
portant and somewhat surprising result that the lower bound estimates dGG.n/

and dKob.n/, respectively for the Green–Griffiths–Lang and Kobayashi conjec-
tures for general hypersurfaces in PnC1, can be related by dKob.n/ WD dGG.2n � 2/.
This should be understood in the sense that a solution of the generic .2n � 2/-
dimensional Green–Griffiths conjecture for d � dGG.2n � 2/ implies a so-
lution of the n-dimensional Kobayashi conjecture for the same lower bound.
We refer to [RiYa18] for the precise statement, which requires an ad hoc as-
sumption on the algebraic dependence of the Green–Griffiths locus with respect
to a variation of coefficients in the defining polynomials. In combination with
[DMR10], this gives a completely new proof of the Kobayashi conjecture, and
the order 1 bound dGG.n/ D O.exp.n1C"// of [Dem12] implies a similar bound
dKob.n/ D O.exp.n1C"// for the Kobayashi conjecture—just a little bit weaker
than what our direct proof gave (Theorem 12.32). In [MeTa19], Merker and Ta
were able to improve the Green–Griffiths bound to dGG.n/ D o..

p
n logn/n/,

using a strengthening of Darondeau’s estimates [Dar16a], [Dar16b], along with
very delicate calculations. The Riedl–Yang result then implies dKob.n/ D
O..n logn/nC1/, which is the best bound known at this time.

12.35. In [Ber18], G. Bérczi stated a positivity conjecture for Thom polynomi-
als of Morin singularities (see also [BeSz12]), and showed that it would imply a
polynomial bound dn D 2n9 C1 for the generic hyperbolicity of hypersurfaces.

12.36. In the unpublished preprint [Dem15], we introduced an alternative strat-
egy for the proof of the Kobayashi conjecture which appears to be still incom-
plete at this point. We nevertheless hope that a refined version could one day
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lead to linear bounds such as dKob.n/ D 2nC 1. The rough idea was to estab-
lish a k-jet analogue of Claire Voisin’s proof [Voi96] of the Clemens conjecture.
Unfortunately, Lemma 5.1.18 as stated in [Dem15] is incorrect—the assertion
concerning the � divisor introduced there simply does not hold. It is however
conceivable that a weaker statement holds, in the form of a control of the de-
gree of the divisor�, and in a way that would still be sufficient to imply similar
consequences for the generic positivity of tautological jet bundles, as demanded
e.g. in Subsect.11.B.
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1. Introduction

This article originated in my two lectures given in honor of Professor Kodaira’s
100th birthday, part of the 16th Takagi Lectures at the University of Tokyo,
November 28–29, 2015.

About ten years ago, I read the biography of Professor Takagi and admired
his great leadership in modernizing the development of mathematics in Japan.

The teaching of Chern on the subject of complex geometry had already
deeply influenced me when, in the spring of 1970, I participated in a seminar
organized by Kobayashi and Ochiai, and learnt the concept of Kobayashi hyper-
bolic manifolds. In the fall of 1971, I was a member of the Institute for Advanced
Study in Princeton. There I met David Giesecker, Hitchin, Iitaka, and several
young Japanese mathematicians. We had a good time together discussing math-
ematics and I started to learn much more about algebraic geometry—especially,
from Iitaka, about the works of Kodaira. I was deeply impressed by the accom-
plishments of the Japanese algebraic geometers. Iitaka taught me the classifica-
tion of algebraic varieties through the Kodaira dimension. He also introduced
me to the work of Ueno, and of others.

In 1974, I met Hironaka and Mumford, and had the good fortune to listen
to the talk given by Inoue on Inoue surfaces, at the big algebraic geometry con-
ference organized by the AMS in Arcata, California. I met Miyaoka and Shioda
in Paris in 1978, Mori at Harvard in 1979, and Mukai and Kawamata during
the special year on algebraic geometry at Princeton in 1982. All these mathe-
maticians had deep influence upon my work as related to this paper. I had also
the good fortune to have taken Bando as my student in 1980, and Hosono and
Yamaguchi as my postdocs in 1993 and 2003, respectively. All of these mathe-
maticians have produced important works. Some of them are mentioned in this
essay.
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It is difficult to imagine how many absolutely first-class original mathemati-
cians were produced by Japan in the 1940s. Among these great men, Professor
Kodaira stood out as one of the most important leaders in modern algebraic
and complex geometry, and his work succeeded that of the great mathematician
Riemann.

2. The Work of Riemann

Riemann was one of the founders of complex analysis, along with Cauchy. Rie-
mann pioneered several directions in the subject of holomorphic functions:

1. The idea of using differential equations and variational principle. The major
work here is the Cauchy–Riemann equation, and the creation of Dirichlet
principle to solve the boundary value problem for harmonic functions. (It
took several great mathematicians, such as David Hilbert, to complete this
work of Riemann.)

2. He gave the proof of the Riemann mapping theorem for simply connected
domains. This theory of uniformization theorems has been extremely influ-
ential. There are methods based on various approaches, including methods of
partial differential equations, hypergeometric functions and algebraic geom-
etry. A natural generalization is to understand the moduli space of Riemann
surfaces where Riemann made an important contribution by showing that it
is a complex variety with dimension 3g � 3.

3. The idea of using geometry to understand multivalued holomorphic func-
tions, where he looked at the largest domain that a multivalued holomorphic
function can define. He created the concept of Riemann surfaces, where he
studied their topology and their moduli space. In fact, he introduced the con-
cept of connectivity of space by cutting Riemann surface into pieces. The
concept of Betti number was introduced by him for spaces in arbitrary di-
mension. The idea of understanding analytic problems through topology or
geometry has far-reaching consequences. It influenced the later works of
Poincaré, Picard, Lefstchetz, Hodge and others. Important examples of Rie-
mann’s research is to use monodromy groups to study analytic functions.
Such study has deep influence on the development of discrete groups in the
20th century. The Riemann–Hilbert problem was inspired by this and up to
now, is still an important subject in geometry and analysis. The study of ram-
ified covering and the Riemann–Hurwitz formula gave an efficient technique
in algebraic geometry and number theory.

4. The discovery of Riemann–Roch formula over algebraic curve. The gener-
alizations by Kodaira, Hirzebruch, Grothendieck, Atiyah–Singer have led to
tremendous progress in mathematics in the 20th century.
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5. His study of period integrals related to Abel–Jacobi map and the hypergeo-
metric equations:

z.1 � z/y00 C Œc � .a C b C c/z�y0 � aby D 0:

6. The study of Riemann bilinear relations, the Riemann forms and the theta
functions. During his study of the periods of Riemann surfaces, he found that
the period matrix must satisfy period relations with a suitable invertible skew
symmetric integral matrix which is called Riemann matrix later. Riemann
realized that the period relations give necessary and sufficient condition for
the existence of non-degenerate Abelian functions.
(According to Siegel [77], his formulation was incomplete and he did not
supply a proof. Later, Weierstrass also failed to establish a complete proof
despite his many efforts in this direction. Complete proofs were finally at-
tained by Appell for the case g D 2 and by Poincaré for arbitrary g.)

It should be noted that Riemann spent most of his last four years in Italy
because he contracted tuberculosis and needed to avoid the severe winter in
Germany. But as a result, he inspired a large group of differential geometers and
projective algebraic geometers in Italy. Their works influenced the development
of geometry and physics in the 20th century.

First of all, we should say that Riemann was the mathematician that brought
us a new concept of space that was not perceived by any mathematician before
him. I believe that was the reason that Gauss was so touched by his famous
address on the foundations of geometry in 1854. I could not read German and
was only able to read this address recently after it was translated into English. I
was rather surprised that Riemann had rather liberal view about what geometry
is supposed to be.

His guiding principle was nature itself (B. Riemann, On the Hypotheses
Which Lie at the Foundation of Geometry, 1854.):

The theorems of geometry cannot be deduced from the general notion
of magnitude alone, but only from those properties which distinguished
space from other conceivable entities, and these properties can only be
found experimentally... . This takes us into the realm of another science–
physics.

He thinks a deep understanding of geometry should be based on concepts
of physics. And this is indeed the case as we experienced in the past century,
especially in the past 50 years development of geometry. Although he was the
one who introduced the concept of Riemann surface, which is the largest domain
that a multivalued holomorphic function lives in, the precise modern concept
was developed much later through the efforts of Klein, Poincaré and others.
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While Felix Klein [43] already used atlas to describe Riemann surface, it has
to wait until Hermann Weyl [89] who first gave the modern rigorous definition
of Riemann surface, in terms of coordinate charts.

It was rather strange that a formal introduction of the concept of complex
manifold was quite a bit later. Historically, generalization of one complex vari-
able to several complex variables began by the study of functions on domains in
Cn. There were fundamental works of Levi, Oka, and Bergman.

The natural generalization of the concept of two dimensional surfaces to
higher dimensional manifolds was done by O. Veblen and J.H.C. Whitehead in
1931–32. H. Whitney (1936) clarified the concept by proving that differentiable
manifolds can be embedded into Euclidean space.

However, it was only in 1932 at the International Congress of Mathemati-
cians in Zurich, did Carathéodory study “four dimensional Riemann surface”
for its own sake. In 1944, Teichmüller mentioned “komplexe analytische Man-
nigfaltigkeit” in his work on “Veränderliche Riemannsce Flächen”.

Chern was perhaps the first to use the English name “complex manifold” in
his work [18].

The general abstract concept of almost complex structure was introduced by
Ehresmann and Hopf in the 1940s. In 1948, Hopf [38] proved that the spheres
S4 and S8 cannot admit almost complex structures.

The concept of Kähler geometry was introduced by Kähler [40] in 1933
where he demanded the Kähler form (which was first constructed by E. Cartan)
to have a Kähler potential. Kähler had already observed special properties of
such metric. He knew that the Ricci tensor associated to the metric tensor gi Nj
can be written rather simply as

R
k Nl D � @2

@zk@Nzl

.log det gi Nj /;

which gave a globally defined closed form on the manifold.
He knew that it defines a topological invariant for the geometry. It defines

a cohomology class independent of the metric. It was found later that, after
normalization, it represents the first Chern class of the manifold. The simplicity
of the Ricci form allows Kähler to define the concept of Kähler–Einstein metric
and he wrote down the equation locally in terms of the Kähler potential. He gave
examples of the Kähler metric of the ball.

Slightly afterwards, Hodge developed Hodge theory, without knowing the
work of Kähler, based on the induced metric from projective space to the alge-
braic manifolds. He studied the theory of harmonic forms with special attention
to algebraic manifolds. The .p; q/ decomposition of the differential forms have
tremendous influence on the global understanding of Kähler manifolds. A very
important observation is that the Hodge Laplacian commutes with the projec-
tion operator to the .p; q/-forms and hence the .p; q/ decomposition descends
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to the de Rham cohomology. The theory was soon generalized to cohomology
with twisted coefficients.

A very important cohomology with twisted coefficient is cohomology with
coefficient in the tangent bundle or cotangent bundle, and their exterior pow-
ers. For the first cohomology with coefficient in tangent bundle, Kodaira and
Spencer developed the fundamental theory of deformation of geometric struc-
tures, which gave far reaching generalization of the works of Riemann, Klein,
Teichmüller and others on parametrization of complex structures over Riemann
surfaces. They realize that the first cohomology with coefficient on tangent bun-
dle, denoted by H 1.T /, parametrize the complex structure infinitesimally and
that the second cohomology with coefficient on tangent bundle, denoted by
H 2.T /, gives rise to obstruction to the deformation. The last statement was
made very precisely by Kurinishi using Harmonic theory of Hodge–Kodaira.
It describes the singular structure of the moduli space locally. Kodaira–Spencer
studied how elements in H 1.T / acts on other cohomology, which leads to study
of variation of Hodge structures. The Hodge groups can be grouped in an ap-
propriate way to form a natural filtration of the natural de Rham group. The
Kodaira–Spencer map plays a very important role in understanding the defor-
mation of such filtrations. Cohomology with coefficient of cotangent bundle or
wedge product of cotangent bundle gives to Hodge .p; q/-forms. The duality
of tangent bundle and cotangent bundle gives rise to something called mirror
symmetry studied extensively in the last thirty years in relation to the theory of
Calabi–Yau manifolds.

A very important tool in complex geometry was the introduction of Chern
classes to complex bundles over a manifold and the representation of such
classes by curvature of the bundle.

When Chern introduced the concept of Chern classes, he was influenced by
the works of Pontryagin classes. In the course of defining Chern classes by de
Rham forms given by symmetric polynomial of the curvature form, Chern de-
fined the Chern connection for holomorphic bundles. He also proved that Chern
classes of holomorphic bundles are represented by algebraic cycles on algebraic
manifolds. This has been the major evidence of the Hodge conjecture: That ev-
ery .p; p/ class can be represented by algebraic cycles.

Chern proved that three different ways to define Chern classes are equivalent.
In particular, he proved they are integral classes. Weil explained how they are
related to Lie algebra invariant polynomials. Weil remarked that the integrality
of Chern classes should play a role in quantum theory. Chern–Weil theory forms
a bridge between topology, geometry, and mathematical physics.

The desire to generalize Riemann–Roch formula to higher dimensional al-
gebraic manifolds has been relatively slow, until the very powerful method of
sheaf theory was introduced by Leray, and important inputs were given by Weil,
Borel and Serre. These basic techniques enabled Hirzebruch to arrive at the im-
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portant Hirzebruch–Riemann–Roch formula in his 1954 paper [36], which can
be stated in the following way:

�.V; E/ D
Z

V

ch.E/td.V /;

where E is a holomorphic vector bundle over a projective variety V .
The formulation of this formula by itself is remarkable. Hirzebruch devel-

oped the splitting principle and the theory of multiplicative sequences to find
important power series of Chern classes. The Todd class is such a power series
which is found by Hirzebruch to represent the arithmetic genus of the alge-
braic manifold, generalizing some old works of Todd in lower dimension. The
Chern character ch.E/ was invented by him to be a homomorphism from space
of holomorphic vector bundles to even dimensional cohomology. The left-hand
side of the formula is the Euler characteristic of cohomology with coefficient in
E. This beautiful formula was observed by Serre when the algebraic manifold
is two dimensional.

In the other direction, Kodaira was the first major mathematician who devel-
oped Hodge theory of harmonic forms right after its announcement by Hodge,
and he generalized the theory of harmonic forms to manifolds with boundaries,
where various boundary conditions have to be imposed.

Perhaps his most important work was his deep understanding that the
Bochner argument in Riemannian geometry can be used to prove a vanishing
theorem for cohomology classes under curvature condition of the manifold. He
realized that the natural place for such vanishing theorem is to deal with coho-
mology with coefficient on bundle or sheaf. The vanishing theorem of Kodaira
says that for positive line bundle L on a compact complex manifold M :

H q.M; KM ˝ L/ D 0

for q > 0.
Coupled with the following theorem of Serre duality:

H q.M; E/ Š H n�q.M; K ˝ E�/;

Kodaira vanishing theorem implies that the Euler characteristic of cohomology
with coefficients in a holomorphic vector bundle E with E ˝ K� positive, is
simply the dimension of the group of holomorphic sections of E.

The above mentioned Hirzebruch–Riemann–Roch theorem then gives a for-
mula to compute the dimension of the sections of the holomorphic bundle in
terms of Chern numbers defined by Chern classes of the manifold and the bun-
dle. This creates the most basic tool to understand algebraic manifolds.

Kodaira also showed that by blowing up points on the manifold, one can find
enough holomorphic sections to separate points of the original manifolds and in
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fact gives an embedding of the manifold into complex projective space by using
holomorphic sections of the bundle.

In particular, he proved that any Kähler manifold, whose Kähler class is
defined by the Chern class of a holomorphic line bundle, can be holomorphically
embedded into the complex projective space. The theorem of Chow then implies
the manifold is in fact defined by an ideal of homogeneous polynomials, and
hence an algebraic manifold.

What Kodaira has proved is one of the most spectacular theorems in geom-
etry, and a glorious generalization of the work of Riemann on the condition of
a complex torus to be abelian. More importantly the method of proving the Ko-
daira vanishing theorem has far reaching consequences in complex geometry. It
was generalized to non-compact complex manifold, by various mathematicians
including C. Morrey, Hörmander, Kohn, Vessintini, and others.

The Kodaira embedding theorem requires a high enough power of the ample
line bundle to accomplish the embedding into projective space. An upper bound
of this power of the line bundle is not clear from his argument.

Later on, Matsusaka [63,64] (improved by Kollár–Matsusaka [44]) proved
the very-ampleness of mL for an ample line bundle L on an n-dimensional
projective variety X , when m is no less than a bound, depending only on the
intersection numbers Ln and KX � Ln�1 on X .

In 1980s, Kawamata proved his famous basepoint freeness theorem about the
pluricanonical systems of minimal models in [41,42]. This is very important in
the study of abundance conjecture. He proved that under the assumption that
the numerical Kodaira dimension of a minimal variety X is equal to its Kodaira
dimension, the pluricanonical system jmKX j is basepoint free for large m. This
implies the basepoint freeness for minimal models of general type varieties.
Later on, in a series paper of Miyaoka and Kawamata, they settled the proof of
abundance conjecture for threefolds.

An important unsolved conjecture was proposed by Fujita in 1985, mLCKX

is base-point free for m � n C 1 and is very ample for m � n C 2. Many
mathematicians did important work on Fujita’s conjecture, including Reider,
Ein–Lazarsfeld, Kawamata, and many others. Demailly proved an effective for-
mula for the bound on very ampleness [22]. Angehrn and Siu proved a quadratic
bound for basepoint freeness [4].

There are many other contributions to algebraic geometry made by Japanese
algebraic geometers. Mori first introduced the ingenious idea of “bend and
break” argument in his proof of Hartshorne conjecture [71]. This leads to his
proof of cone theorem in birational geometry and had deep influences in min-
imal model program. Mukai introduced the Fourier–Mukai transform in 1981
[73]. This became an important tool in the study of derived categories.
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3. Calabi conjecture and Kähler–Einstein metrics

The theorems by Kodaira, Matsusaka, Kawamata provide abundance of holo-
morphic sections for the holomorphic line bundle to embed the manifold into
complex projective with higher dimension. An interesting important problem is
the zero codimension case where we want to embed X to complex projective
space with the same dimension. Hirzebruch and Kodaira [37] conjectured that
every algebraic manifold that is homeomorphic to CPn is actually biholomor-
phic to it. They used Hirzebruch–Riemann–Roch formula, but they could only
treat the case of odd dimensional manifolds due to the indeterminacy of the sign
of the first Chern class. The even dimensional case was finally settled by me
[95] in 1976. While the arguments of Kodaira are based on Hilbert space theory,
which depends on linear analysis, the argument that I used was non-linear in
nature. It has became an important new tool in complex geometry in the past
forty years.

My argument depends on the existence of Kähler–Einstein metrics assuming
the first Chern class is either positive, zero or negative. Although the Kähler–
Einstein metric was already discussed by Kähler in his 1933 paper [40], where
he wrote the equation explicitly, it was not until 1954 when Calabi [11] made a
formal proposal to prove the existence of Kähler metric with prescribed volume
form.

This could be used to prove the existence of Ricci-flat Kähler metric for any
polarization if the first Chern class of the manifold is zero. Then Calabi asked
the question when the first Chern class of the manifold is either negative or
positive. The questions of Calabi were believed to be too good to be true in the
old days, as nobody was able to construct an explicit Kähler–Einstein metric on
any compact Kähler manifolds with no symmetries.

On 1976, I settled the cases when the first Chern class is either trivial or neg-
ative. (Aubin did the work independently for negative first Chern class.) I also
considered the case when the manifold can have singularities, as was announced
in my talk [98] at 1978 ICM in Helsinki.

3.1. Kähler–Einstein metrics on Fano manifolds

When the first Chern class is positive, it is called a Fano manifold. There are
many interesting properties about Fano manifolds. Kollár, Mori and Miyaoka in
[45] showed that smooth Fano varieties are rationally connected, in the sense
that any two points are connected by a rational curve with (effectively) bounded
degree. This implies an effective bound for the degree of the Fano n-fold, with
respect to its anti-canonical bundle. Based on the work of Kollár and Matsusaka,
it also implies that Fano n-folds form a bounded family.



S.-T. Yau

In this case, there is an obstruction for the existence of Kähler–Einstein met-
ric due to Matsushima [65]: the Lie algebra of the automorphism group of the
manifold must be reductive. On [32], Futaki introduced his beautiful invariant
defined on this Lie algebra. The Futaki invariant soon became a fundamental
tool to study Kähler–Einstein metric on Fano manifolds. On the other hand, It
took a long while to find a necessary and sufficient condition for the existence of
Kähler–Einstein metric on Fano manifolds. Many people, including Calabi, was
misled to believe that the non-existence of non-zero holomorphic vector fields
is enough for the existence of Kähler–Einstein metric on Fano manifolds.

Right after I proved the Calabi conjecture on the existence of Kähler metric
with prescribed volume form, I tried to work on the problem of the existence of
Kähler–Einstein metric on Fano manifolds.

It is clear that based on the (non-trivial) higher order estimates that I had (in-
dependently due to Aubin for second order estimate) in the proof of the Calabi
conjecture [97], the only missing point is some integral estimate of the Kähler
potential. I found it is useful to set up the continuity argument

det
�
gi Nj C @2u

@zi@Nzj

�
D exp.h � tu/ det.gi Nj /;

where t D 0 corresponds to a Kähler metric with positive Ricci curvature, as
was given by the Calabi conjecture.

A simple calculation shows that the Ricci curvature of all members in the
family have positive lower bound. This simplifies the analysis quite a bit as we
have experiences with compact manifolds with Ricci curvature bounded from
below by positive constant. In 1978, I returned to Stanford from my visit of
Berkeley. At that time, I succeeded to convince Stanford mathematics depart-
ment to hire Y.-T. Siu to come to Stanford from Yale.

We started to think about a proof of the existence of Kähler–Einstein metric
by finding some integral estimate of the Kähler potential. Many estimates were
found, but they are short of proving the existence of the metric. Some of those
estimates can be sharpened if there are symmetries on the manifold, a procedure
similar to the way that Moser sharpened the Trudinger inequality on the sphere
when there is antipodal symmetry.

In the meanwhile, in 1977, I realized that Bogomolov [8] used the concept
of stability of bundles to prove Chern number inequalities for algebraic sur-
faces which were sharpened by Miyaoka [68] and myself [95] independently.
I started to believe there has to be links between the concept of stability with
the existence of Hermitian Yang–Mills connections on bundles. When I proved
the Calabi conjecture in 1976, I was at UCLA, and had a fruitful discussion
with David Gieseker, who is a great expert on the stability of bundle theory. He
re-proved the Chern number inequality of Bogomolov over characteristic p.
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The fact that a holomorphic bundle admits a Hermitian Yang–Mills connec-
tion if the bundle is polystable was proved by Uhlenbeck–Yau on arbitrary com-
pact Kähler manifolds, and by Simon Donaldson for algebraic surfaces. Simp-
son observed that the proof of Uhlenbeck–Yau can be used to settle the case
when there is a Higgs field. (Up to now, the argument of Uhlenbeck–Yau has
been the only argument to prove existence of the Yang–Mills–Higgs’ equation.)

The Bogomolov inequality is optimal for general stable bundles. But it is not
as sharp as the Miyaoka–Yau inequality when applied to the tangent bundle of
the manifold. Hence I suspected that existence of Kähler–Einstein metric should
be considered as a non-linear version of the existence of Hermitian Yang–Mills
connection, and the stability of bundle should be replaced by manifold stabil-
ity. Therefore, only in 1980, I realized that the right condition for existence of
Kähler–Einstein metric is the stability of the algebraic manifold.

I made the conjecture that the existence of Kähler–Einstein metric is equiva-
lent to stability of manifold. I told all my graduate students about this conjecture,
especially to Gang Tian who showed interest in the problem of Kähler–Einstein
metric. But it took a long time to convince him of the validity of my conjecture.

There are many ways to define stability of manifolds including the concepts
of Chow stability or Hilbert stability. I was not sure which one is correct. But
I started to explore it with my students in my seminars. First of all, one had to
make sure that algebraic stability, which is defined by embeddings of algebraic
manifolds into complex projective space, can be linked to existence of Kähler–
Einstein metric.

In fact, in order to link stability condition to algebraic geometry, I [99,
p. 139] proposed to prove any Hodge metric on an algebraic manifold can
be approximated by normalized Fubini–Study metric induced on the manifold
through embedding of the manifold into complex projective space by high pow-
ers of an ample line bundle.

I asked Tian to follow this line of argument to finish the first step of my
conjecture on the equivalence of stability of Fano manifolds with the existence
of Kähler–Einstein metrics.

I suggested Tian to use my method with Siu [79] on the uniformization of
Kähler manifolds to produce peak functions to achieve such a goal. (The pur-
pose of that paper with Siu was also embedding of Kähler manifolds.)

The proof was reasonably transparent using technology from my paper with
Siu. This became Tian’s thesis at Harvard.

The method can be said to be an understanding of the works of Kodaira in the
analytic setting. The work was carried out as I expected and it was strengthened
by Catlin [14], Zelditch [105] and by Lu [57].

So, we know that we can approximate any Hodge metric by the induced met-
ric of the projective embedding of the manifold into some complex projective
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spaces. However, there is an ambiguity due to the action of complex projective
group. This is of course what geometric invariant theory studies.

It turns out that when I studied first eigenvalue of the Laplacian with Bour-
guignon and Peter Li [10], we need to find a good position for the embedding
upon action by the projective group, which we called the balanced condition. It
can be written in the following form:Z

�.M /

zi Nzj

jz0j2 C � � � C jzN j2 !n D vol.M /

N C 1
ıij

for some � 2 SL.N C 1;C/.
With such a condition, we can use the embedding to give a good estimate of

the first eigenvalue in terms of the total volume and the degree defined by the
Chern form wedge with the Kähler classes.

I suggested this condition as a starting point to my former student Luo to
understand the concept of stability required to prove my conjecture on the exis-
tence of Kähler–Einstein metric based on stability.

Luo [59] found it effective to change the measure in the above formula de-
fined by the induced measure of the ambient projective space. And it turns out
that for a polarized manifold .M; L/ if there exists a metric on L such that the
Bergman function of Lk is constant for some k, then it is Chow stable.

A theorem of Shouwu Zhang [106] says that the existence of a unique bal-
anced embedding is equivalent to the manifold being Chow–Mumford stable.

My conjecture that the existence of Kähler–Einstein metric is equivalent to
stability was announced several times in several conferences and was explicitly
written in my article [101] for the proceedings of UCLA conference on differ-
ential geometry in 1990.

I also communicated to Tian in detail on how to understand the Futaki in-
variant in this setting. The final conjecture of mine was solved recently by
Chen–Donaldson–Sun [15–17] based on earlier works of Donaldson including
the right algebro-geometric definition of K-stability.

According to Donaldson [24], a Fano manifold is called K-stable if all its
non-trivial test configurations (which describe certain degeneration of Kähler
manifolds by flat families) have positive Futaki invariants. For a test configura-
tion X ! C with C� action, the Futaki invariant �F1 can be found from the
total weight wk of C� acting on H 0.X0; Lk/, using

wk

kdk

D F0 C F1k�1 C O.k�2/;

where dk is the dimension of H 0.X0; Lk/.
But the condition of K-stability is not easy to check, even in the case of

surfaces. It would therefore be interesting to prove the existence of balanced
condition for high power embeddings of a Fano manifold implies existence of
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Kähler–Einstein metrics. It is highly desirable to clarify the condition of K-
stability so that it can be checked effectively.

3.2. Balanced metric and Strominger system

Kähler–Einstein metrics are very useful in biregular geometry. We shall discuss
it later. However, it cannot answer the important question whether an algebraic
manifold is rational or not. The existence of Kähler metric is not a concept that
is invariant under birational transformations, while the existence of balanced
metric is. The concept of balanced metric was introduced by Michelsohn [67].
A Hermitian metric is called balanced if its Kähler form satisfied the following
equation:

d.!n�1/ D 0

and it was proved by Alessandrini and Bassanelli [1] that its existence is invari-
ant under birational transformations. However, there is much more freedom to
deform a balanced metric than a Kähler metric. Just demanding that Ricci cur-
vature equal to zero is not enough to determine a unique Balanced metric within
the .n � 1; n � 1/-class.

On the other hand, balanced metric comes up naturally in the theory of Het-
erotic string theory in complex 3-dimension. And (this) balanced condition is
related to the concept of supersymmetry. When there is a nowhere vanishing
holomorphic .3; 0/-form � on a Hermitian 3-fold X with Hermitian form !, we
look for a Hermitian metric which is balanced, and a stable holomorphic bun-
dle E (stable with respect to the balanced metric) whose second Chern Class is
equal to the second Chern Class given by the Hermitian metric. Altogether, the
following equations of the Strominger system need to be satisfied:

(1) d.k�k! � !2/ D 0

(2) F
2;0
h

D F
0;2
h

D 0; Fh ^ !2 D 0

(3)
p�1 @N@! D ˛0

4
.tr.R! ^ R!/ � tr.Fh ^ Fh//

Here ˛0 is a positive number, R! is the curvature tensor of the Hermitian metric
!, h is a Hermitian metric of E and Fh is its curvature form with respect to the
Chern connection.

It provides a natural generalization of the Calabi–Yau geometry, which cou-
ples Hermitian metrics with Hermitian Yang–Mills theory. My belief is that the
above system of equations can be solved when the obvious conditions hold.
Jun Li and I [50] solved this system on any Calabi–Yau manifold by making a
deformation from the original Calabi–Yau metric.

For some intrinsically non-Kähler manifold, Fu and I [29] solved the Stro-
minger system based on some ansätze for a 3-dimensional complex manifolds
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obtained from the Calabi–Eckmann construction. (The construction of the non-
Kähler manifolds based on Calabi–Eckmann construction was also observed
by Goldstein and Prokushkin [35].) It is a non-singular complex torus bundle
over the K3 surface. The proof of existence of non-singular solution to the Stro-
minger system given by Fu–Yau [29] is based on non-trivial estimates related to
complex Monge–Ampère equations. In order to understand the significance of
Strominger system, Tseng and I [85,86], and later with Tsai [84], developed a
new theory of symplectic cohomology which we expect to be dual to this kind
of geometry.

Note that the existence of Ricci-flat Kähler metric provides a reduction
of holonomic group to a subgroup of SU.n/, and according to the work of
Candelas–Horowitz–Strominger–Witten [13], provides a supersymmetric model for
vacuum solutions for Type II string theory. They called such manifolds to be
Calabi–Yau manifolds. The Strominger system was introduced by Strominger
to study Heterotic string where the vacuum is a warped product instead of a
direct product.

3.3. Questions of Kähler–Einstein metrics in algebraic geometry

There are several interesting consequences of the existence of Kähler–Einstein
metric.

3.3.1. Understanding of Kähler–Einstein metrics near singularities A corol-
lary of the above mentioned theorem of Chen–Donaldson–Sun is that the K-
stability of such manifold implies that the tangent bundle is stable with respect
to the polarization given by the anti-canonical line bundle. This is an interesting
statement that is purely algebro-geometric, for which it would be nice to have a
proof based only on algebraic geometry.

Also it implies that a K-stable Fano manifold is biregular to CPn if the ratio
of its two Chern numbers c2cn�2

1 and cn
1 is the same as CPn.

Another interesting question is the following: If a smooth algebraic manifold
has Kodaira dimension either equal to the dimension of the manifold or �1,
and if it is minimal in the sense in birational geometry and the ratio of two Chern
numbers c2cn�2

1 and cn
1 is the same as CPn, then the manifold is either CPn or

complex ball quotient.
For the case of general type, this is likely to be true. But it will be good to

allow singular minimal models and in the case of singular algebraic manifolds,
we need to define the Chern numbers suitably. This is related to the question of
what is the best Kähler–Einstein metric on an algebraic manifold with singular-
ity.

Let us look at the simplest case when the singularity is isolated. If the Kähler
metric is complete at the singularity, it is not hard to prove that the Kähler–
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Einstein metric is unique. However, when it is not complete, it is not necessarily
unique. It depends on the behavior of the volume form near the singularity.

What kind of volume forms are allowed? We need to know that the Ricci
form of this volume form is positive definite and that the n-fold product of the
Ricci form is asymptotic to this volume form near the singularity. (We may
require that the metric defined by the Ricci form should have lower bound on its
bisectional curvature.) It would be interesting to classify the asymptotic models
of such volume forms. In principle, each of them will give rise to a canonical
Kähler–Einstein metric with the given asymptotic behavior of the volume form.

It would be interesting to calculate the contribution of the singularity towards
the Chern numbers. An important case is the canonical singularity appearing in
the minimal model theory, which we recall below.

Suppose that Y is a normal variety and f W X ! Y be a resolution of the
singularities. Then

KX D f �.KY / C
X

i

aiEi ;

where the sum is over the irreducible exceptional divisors and the rational num-
bers ai are called the discrepancies.

Then the singularities of Y are called canonical if ai � 0 for all i and called
terminal if ai > 0 for all i .

A 3-dimensional singularity is terminal of index 1 if and only if it is an iso-
lated composite DuVal (cDV) point in C4. A 3-dimensional terminal singularity
of index r � 2 is a quotient of an isolated cDV point in C4.

The important question is to find a good Kähler–Einstein metric in a neigh-
borhood of the cDV singularity which is invariant under the group action. For
orbifold singularities, one can use those metrics obtained by pushing down from
the non-singular model before quotient by the group. On the other hand, there
may be some other volume form that satisfies the above properties that is dis-
tinct from the orbifold construction. The complicated situation is the case that
the Ricci form of the volume form may define a metric that is partially going to
complete and partially degenerate at the singular point.

It will be important to construct nice model volume form in a neighborhood
of the canonical singularities of the manifold whose Ricci form can give rise to
a nice metric which is asymptotically Kähler–Einstein.

3.3.2. Kähler–Einstein metrics on quasi-projective varieties and Sasakian–
Einstein metrics In my first paper on the Calabi conjecture, we know that given
any Kähler class, we can find a Kähler metric which may degenerate along a di-
visor whose volume is given by the unique volume defined by the divisor of the
pluricanonical sections. How to calculate the second Chern class related to this
divisor would be important. The Chern numbers calculated by the degenerate
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Ricci flat metrics should have residue from the divisor. It would be important to
calculate this contribution.

The non-compact version of complete Ricci-flat metric is more complicated,
partially because we lack of a good model space to build a good ansatz. At
1978 ICM in Helsinki, I [98] announced the way to build complete non-compact
Ricci-flat manifolds.

I conjectured that the manifold can be written as the complement of a divisor
D of a compact Kähler manifold M . (It was pointed out by Michael Anderson
et al. [3] that we should assume the finiteness of the topology of the manifold,
otherwise Gibbons–Hawking ansatz produces counterexamples.)

My program was to take D to be an anti-canonical divisor of M which can-
not be contracted to a codimension two subvarity. There will be a holomorphic
volume form on M which has poles along D. I expect that this is close enough to
provide a necessary and sufficient condition for M n D to admit complete Käh-
ler metric with zero Ricci curvature. When D is non-singular, I have worked out
the program. The details were written up with Tian in two papers [81,82].

However, when D has normal crossing singularities, the problem is un-
solved, largely because we do not have a good model of complete Ricci-flat
metric in a neighborhood of D when D has singularity. An important and in-
teresting case is to allow the complete Kähler metric to have certain type of
singularities. Besides quotient singularity, we can allow cone singularity.

In the last case, the interesting examples are metric cones over a Sasakian–
Einstein manifold. Important progress was made by Gauntlett, Martelli, Sparks
and myself starting with [33] on the existence of Sasakian–Einstein metrics. In
[33,61] we gave several obstructions to their existence by studying the Einstein–
Hilbert functional restricted to the space of Sasakian–Einstein metrics where
it becomes essentially the volume functional. It can further be shown to be a
functional of the Reeb vector field associated to the Sasakian structure alone.

We obtain a useful obstruction from the Lichnerowicz bound on the Lapla-
cian [54] which we could identify precisely as the physics criterion of a uni-
tarity bound in the conformal field theory associated to the hypersurface singu-
larity. We also show that the first variation of the volume functional is related
to the Futaki invariant on the Kähler orbifold, hence volume minimization (and
a-maximization in the physics language) implies vanishing of Futaki invariant.
This includes the cases of regular and quasi-regular Sasakian structures as clas-
sified by Reeb vector orbits. In the irregular case, Collins and Székelyhidi [21]
extended the notion of K-semistability to Sasakian structures, showing constant
scalar curvature Sasakian metric implies K-semistability and also recovered our
results based on the volume functional. The complete classification is still not
known, even for complex hypersurfaces with isolated singularity which admits
C�-action.
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3.3.3. Compactification of Shimura varieties Another very important class of
Kähler–Einstein metrics on quasi-projective varieties appears on the compactifi-
cation of Shimura varieties of non-compact type. There is the work of Mumford
on giving a toroidal compactification which is non-singular. In terms of the di-
visor at infinity, Yi Zhang and I [104] wrote down the behavior of the volume
form of the Hermitian symmetric metric in a neighborhood of the divisor.

Here is a summary of my work with Yi Zhang: Let Ag;� WD Hg=� be a
quotient of the genus g Siegel space Hg by a fixed arithmetic neat subgroup � �
Sp.g;Z/: The Siegel variety Ag;� is then a quasi-projective algebraic manifold.
The positive cone C.F0/ of the standard minimal cusp F0 of the Siegel space
Hg can be regarded as the set of all symmetric positive g � g real matrices.
Let †F0

be any decomposition of C.F0/ such that the corresponding Mumford
toroidal compactification A g;� of Ag;� has normal crossing boundary divisor
D1 D A g;� n Ag;� : Let � be an arbitrary top-dimensional polyhedral cone
in †F0

and let D1; � � � ; DN (N D dimC Ag;� ) be some different irreducible
components of D1 corresponding to edges of �:

Then the volume ˆg;� on Ag;� can be represented by

ˆg;� D dVg

.
QN

j D1 jjsi jj2i /F
gC1
� .log jjs1jj1; � � � ; log jjsN jjN /

;

where

� dVg is a continuous volume form on a partial compactification U�max of
Ag;� with Ag;� � U�max � A g;� ;

� the jj � jji is a suitable Hermitian metric of the line bundle ŒDi � on A g;n for
every integer i 2 Œ1; N �;

� the si is global section of OA g;�
.Di / such that Di D fsi D 0g;

� the F� 2 ZŒx1; � � � ; xN � is a homogenous polynomial of degree g, and the
coefficients of F� are integers dependent only on � and � together with
marking order of edges.

In fact, Yi Zhang and I computed the volume form of the Hermitian sym-
metric metric as is represented on the coordinate given by the toroidal compact-
ification. It shows that K C D is non-negative and positive on M n D.

Whether D1 WD A g;� n Ag;� is normal crossing or not, Yi Zhang and I
showed that there is always a local model of partial compactification associated
to each maximal regular cone � in the cusp F0:

The quotient manifold Hg=.� \ U F0.Q// gives an étale map of the Siegel
variety. For each maximal cone � in the cusp F0; we have associate exponential
maps of the inclusion Hg � U F0.C/ Š Cn; so that these maps endow a local
model of partial compactification

Hg=.� \ U F0.Q// � .C�/n:
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The exponential map Cn ! .C�/n is given by

z 7�! w D .w1; � � � ; wn/; where wi D exp.2�
p�1 li .z//; 8i;

where flign
iD1 is the dual base of edges of the cone �:

The .w1; � � � ; wn/ gives a local coordinate system of the partial compacti-
fication, but it can not be a local coordinate system of A g;� if the D1 is not
normal crossing.

The quotient manifold Hg=.� \U F.Q// also has an induced Kähler–Einstein
metric with volume form

ˆ� D .
p�1

2
/n2

g.g�1/
2 vol�.�/2

V
1�i�n dwi ^ dwi

.
Q

1�i�n jwi j2/.F� .log jw1j; � � � ; log jwnj//gC1
:

The coefficients of the polynomial F� are integers dependent only on � and
�; and the function H WD � log F� must satisfy the following elliptic Monge–
Ampére equation

det
� @2H

@xi@xj

�
i;j

D 2
g.g�1/

2 vol�.�/2 exp..g C 1/H/

on the domain f.x1; � � � ; xn/ 2 Rn j xi � �C < 0; 8ig:
Note that it was known to me [96] that for a Divisor D in an algebraic mani-

fold M , if K CD is strictly positive, then there is a canonical complete Kähler–
Einstein metric on M n D whose volume form behaves like:

ˆ 	 dVQk
j D1 jjsj jj2.� log jjsj jj/2

for some integer k > 0; where si is a section of the line bundle ŒDi � if D DP
Di ; dV is a global smooth volume form on M , and the norm is defined such

that its zero set is D and the minus Ricci tensor of M plus the Ricci curvature
of the metric on D is positive.

In the above work with Yi Zhang, the volume form is more complicated,
because we only know K C D is non-negative and positive outside D. How to
study such quasi-projective manifold? It is important to find the right algebro-
geometric and combinatorial conditions on the Chern forms of M and the Chern
forms of the various divisors D so that the Ricci curvature of the volume form
gives rise to a positive definite Ricci form whose n-fold power is asymptotic to
the volume form itself.

An ansatz we propose to construct complete Kähler–Einstein metric on M n
D is to construct a volume form described similar to the above ˆ� , where H

satisfies the above Monge–Ampère equation with xi D log jsi j. We need to
find the condition on the divisors Di so that ˆ� gives rise to a positive Ricci
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form whose n-fold power is asymptotic to ˆ� . Hopefully we can find a good
existence theorem for complete Kähler–Einstein metric with finite volume on
M n D, when K C D is non-negative.

The existence of complete Kähler–Einstein metric on the Shimura varieties
comes from the Hermitian symmetric domain that covers it. The tangent bundle
and various homogeneous bundles over the symmetric domain are invariant un-
der the discrete group acting on the domain. Hence they can be descended to the
Shimura varieties. As was explained by Mumford, these bundles and their con-
nections can be extended naturally to the Mumford toroidal compactification of
the Shimura variety. (Mumford proved that the extension satisfies the property
of being “good”.)

And the Chern forms defined by the connection were identified by Mumford
to represent the Chern class of the extended bundles in the sense of distribu-
tion. In the case of the cotangent bundle, the cotangent bundle is extended to be
�1.log.D//, where D is the divisor at infinity.

Since the bundles are homogenous, the Chern numbers of these extended
bundles are determined by some numerical combination of its curvature tensor
at one point times the volume of the Shimura variety. The existence of Kähler–
Einstein metric on the Shimura variety shows that the manifold is stable in var-
ious senses and the homogeneous bundles are stable with respect to the polar-
ization K C D of the variety. Besides algebro-geometric characterization of
Shimura variety, it would be good to characterize algebraic geometrically those
holomorphic bundles that are homogenous.

Incidentally, from my observation in 1978 that the positivity of K C D im-
plies the existence of a unique canonical Kähler–Einstein metric on the comple-
ment of D. We can find a map from the space of divisors D such that K C D is
ample to the space of stable bundles defined by cotangent �1.log.D//. It will be
nice to find conditions on D so that we can weaken the conclusion K C D > 0

to K C D � 0.
For a compact algebraic manifolds M , it can be shown to be a Shimura

variety if the canonical line bundle is ample, and if the bundle, formed by sym-
metric powers of the cotangent (or tangent) bundle tensored by some line bun-
dle so that the determinant bundle is trivial, is irreducible and has non-trivial
sections. This is a simple observation (due independently to Kobayashi–Ochiai
and myself [102]) because the existence of Kähler–Einstein metric will make
this non-trivial section to be a parallel section and hence the holonomic group
will be reduced. Algebraic characterization of Shimura varieties allows one to
give a simple proof of the theorem of David Kazhdan, that Shimura varieties
are invariant under Galois conjugation. Unfortunately our knowledge for non-
compact manifold is not good enough to give such a proof in such case.



S.-T. Yau

3.3.4. Explicit construction of Kähler–Einstein metrics and uniformization
For Kähler–Einstein manifolds with negative or zero first Chern class, I pro-
posed [99, p. 139] that the metric can be computed in the following manner:
When the canonical line bundle K is ample, we can embed the manifold into
the complex projective space by n-th power of K.

The embedding can be changed by projective transformation in general. But
there was a concept of balanced position (inspired by my work with Bour-
guignon and Peter Li [10] on first eigenvalue of the Laplacian) that I suggested
to my former student Luo [59].

The embedding is unique up to unitary transformation after putting into such
balanced position. The induced metric from complex projective space defines a
sequence of Kähler metrics on the manifold, which after division by n, will
converge as n ! 1 to a Kähler–Einstein metric of the manifold.

In the above construction, when the manifold has zero first Chern class
(Calabi–Yau manifold), the canonical line bundle should be replaced by any
positive line bundle.

The balanced position is achieved by some projective transformation. We
expect that the projective transformation depends algebraically on the original
embedding of the manifold. The whole procedure should give a reasonable “ex-
plicit” form of the Kähler–Einstein metric. Once we obtain an explicit form of
the Kähler–Einstein metric, we can compute the uniformization of the manifold.

A simple case is the elliptic curve where we know how to calculate its unique
holomorphic 1-form by residue. The absolute value of it gives the Ricci-flat
metric on the elliptic curve. We can calculate the uniformization of the elliptic
curve, using the period calculation.

Computation of the periods of the holomorphic 1-form is obtained by com-
puting the Picard–Fuchs equation. Once one finds the period, one can obtain
a map from the complex line, mod the lattice spanned by the periods, to the
elliptic curve. The components of this map is the Weierstrass } function and
its derivatives. This procedure is classical and went back to Abel, Jacobi and
Riemann.

The uniformization of a general algebraic curve: finding a covering holo-
morphic map from the upper half plane to the curve, is more difficult and is
done only for special curves.

Suppose we can calculate the Poincaré metric on the curve, as was explained
above, we can calculate this map by studying the periods through the Picard–
Fuchs equation. It is of course much more challenging to calculate the uni-
formization map explicitly in higher dimensions.

Given an algebraic manifold, we know it can be uniformized as a quotient
of some classical domain. It is a classical question on how to find such a uni-
formization.
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As mentioned above, we know how to find an algebro-geometric criterion
(by using Chern numbers) for an algebraic manifold to be a ball quotient. But
we can generalize this criterion to more general manifolds covered by Hermitian
symmetric domains.

Once we identify such an algebraic manifold, we need to find suitable multi-
valued holomorphic map from the manifold into a Hermitian symmetric domain.

Chenglong Yu, Peng Gao and I proposed the following program for the ball
quotient:

1. Find a reasonably explicit way to construct the Kähler–Einstein metric on
the algebraic manifold. This involves having a good understanding of the
right projective embedding for the algebraic manifold.

2. Based on Kähler–Einstein metric, we compute its connection Ah and con-
struct a system of holomorphic linear differential equations

ds C
0
@�AT

h
C 1

n C 1
tr.Ah/ � a d Oz @a C AT

h
a � a.d Oz � a/

d Oz d Oz a � 1

n C 1
tr.Ah/

1
A s D 0

where

s D .f 1; f 2; : : : ; f nC1/T ; d Oz D .dz1; dz2; : : : ; dzn/;

a D .a1 � � � an/T ; ai D ��i
j
j C 1

n C 1

X
k

�k
k
i ıi

j :

Here j does not depend on i . The value of a is such that it gives a gauge
transformation making the connection matrix holomorphic.

3. We find a base for the solution of the this system, given by the span of
fs1; s2; : : : ; snC1g. This allows us to define locally a map to the projective
space of dimension n. Up to projective transformations we find a map to the
complex ball of dimension n as well.

These maps are multivalued functions. The inverse of this map should be
given by automorphic forms and one should be able to find information of the
discrete group that acts on the ball based on the information of the algebraic
variety and the monodromy of the map. An example in the case of elliptic curve
is given by the Weierstrass-} function.

For higher genus curve, if the Kähler–Einstein metric is e2u dz ^ d Nz, then
the system above becomes

d

�
f1

f2

�
C

�
0 ..uz/2 � uzz/ dz

dz 0

� �
f1

f2

�
D 0;

or
.f2/00 C ..uz/2 � uzz/f2 D 0:
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The coefficient in the differential equation gives the Schwarzian derivative
for the uniformization map S.u/ D uzz � u2

z .
A complete understanding of this program should create many interesting

special functions and should be related to the GKZ system and the tautological
system introduced by Bong Lian and myself [53] on computing the period of
integrals of holomorphic forms.

3.3.5. Relation with birational geometry The moduli space of algebraic man-
ifolds of general type was studied by Gieseker and Viehweg who proved that
they are quasi-projective. The detailed structure of the moduli space is not well
understood. However, the canonical Kähler–Einstein metric on the manifold can
be useful for such study. It induces a canonical metric on the moduli space which
is called Weil–Petersson metric: A Kähler metric on the manifold gives rise to
a metric on H 1.T / which is the tangent space of the Kuranishi space of the
manifold.

The Weil–Petersson metric can be computed in some cases. But the prop-
erties were best understood only for moduli space of curves. There are several
metrics defined on the moduli space of curves: Weil–Petersson metric defined
by using the Poincaré metric (or the Bergman metric) on the curve, the Teich-
müller metric (which was proved by Royden [74] to be equal to the Kobayashi
metric), the Carathéodory metric, the Bergman metric and the Kähler–Einstein
metric.

The last three metrics can be defined by general method, not just for moduli
space of curves. Hence the computation of them is interesting. Although K.
Liu, X. Sun and I [55,56] showed that the last four metrics on the Teichmüller
space are all uniformly equivalent to each other, it is likely that the Carathéodory
metric is different from the Kobayashi metric. But the precise statement is not
known.

However, Liu–Sun–Yau did calculate the asymptotic behavior of the Kähler–
Einstein metric on the Teichmüller space. In fact, the minus Ricci tensor of
the Weil–Peterson metric defines a complete metric on the Teichmüller space.
The Kähler–Einstein metric could be obtained by perturbing from this metric.
The Teichmüller metric and the Weil–Petersson metric are computable based on
local information of the Riemann surface.

The other metrics are defined by global means. Hence the remarkable the-
orem of Royden, proving that a metric defined by global means to be equal to
locally defined metric, has provided powerful information. It will be very use-
ful to compute all these metrics in the simplest Teichmüller space of genus two
curves.

The second class of canonical metrics are those manifolds with zero Kodaira
dimension. By taking the absolute value of the pluriholomorphic n-form, and
taking roots, we obtain a canonical volume form which may degenerate along
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a divisor. We can solve the Monge–Ampère equation to obtain some Kähler
metric which may be degenerate along the divisor. It will be interesting to know
the birational class of these manifolds.

Let us now consider the possibility of using metrics to understand birational
geometry. First of all, for two classes of manifolds, there are natural measures
that are birational invariant:

For manifolds with Kodaira dimensional equal to zero, we have a canon-
ical volume form by using the absolute value of the pluricanonical form. For
manifolds of general type, I introduced 40 years ago [94] an intrinsic measure
that is invariant under birational transformations. It was a generalization of the
construction given by Kobayashi and Eisenman in 1970s.

In both cases, we can pick any Kähler class and solve the Calabi conjecture
with this volume form as prescribed. In the first case, such metric was studied
in the second part of my paper on Calabi conjecture. The metric can be proved
to be unique and smooth outside the divisor defined by the pluricanonical form.
In the second case, the metric also exists uniquely. But smoothness depends on
the measure that I constructed.

In any case, given two birational manifolds of general type M and M 0, we
can find M 00 and smooth rational maps from M 00 to M and M 0 respectively. If
the pull-backs of polarizations on M and M 0 are the same on M 00, then they
are isometric to each other. It is easy to derive from this fact that the group of
automorphisms of a manifold of general type is finite.

It is not hard to prove that any algebraic manifold of general type admits
a Kähler–Einstein metric with singularity (as was demonstrated by Tsuji and
myself thirty years ago). However, in order for such metrics to be useful, one
needs to know the singular behavior of the metric. Kähler–Einstein metrics do
not respect rational maps. However, the Bergman metric has better behavior
under birational transformation.

Let us look at the line bundle Km where K is the canonical line bundle. For
any holomorphic section s of Km, we can take 2=m power of its absolute value,
which defines a pseudo-norm on the canonical line bundle. If we normalize its
integral to be one and maximize the pseudo-norms among all such s, we obtain
a canonical pseudo-norm on the canonical line bundle. It defines a birational
invariant volume form. The curvature form of this volume form should define a
pseudo-Kähler metric on the manifold. See [19] for a detailed discussion.

We can deform this pseudo-Kähler metric within its class to obtain a pseudo-
Kähler metric which is Einstein when it is smooth. When m is large, the Kähler–
Einstein metric should be less singular and if we know the singular behavior of
the original pseudo-Kähler metric, we should have a way to control the singular-
ity of this pseudo-Kähler–Einstein metric. It should be useful to study birational
geometry.
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For example, when the Kodaira dimension of the manifold is zero, and the
non-zero form s is a section of Km, then the volume form is the absolute value
of s to the power of 2=m. At the non-singular point of the divisor of s, the local
model of the Ricci-flat metric should be the push-forward of the Kähler metric
on an m-fold branch cover of the manifold branched along the divisor s D 0.

Based on this, one can compute the second Chern form of the Ricci-flat
metric degenerate along the divisor s D 0. The second Chern form of this de-
generate metric wedge with Kähler class to the top dimension is positive unless
it is flat. This should give interesting information for manifolds with Kodaira
dimension zero.

Many years ago, I conjectured that there are only a finite number of defor-
mation types for compact Kähler manifolds with c1 D 0 at each dimension (cf.
[100, p.3]). The question is still unknown and is getting more and more im-
portant in string theory. The minimal model of algebraic manifold with Kodaira
dimension zero should play an important role if we want to ask similar questions
for such manifolds.

4. Hermitian Yang–Mills connections

Hermitian metric on a complex manifold has a natural generalization to holo-
morphic bundles over complex manifolds. Given a Hermitian metric on the bun-
dle, there is a natural connection which preserves the metric and also the .0; 1/

part of the covariant derivative of which would be the same as the naturally de-
fined N@ operator that depends only on the complex structure of the bundle and
the complex manifold. The curvature is a .1; 1/-form with values in the endo-
morphism of the bundle.

4.1. Donaldson–Uhlenbeck–Yau correspondence

There is a natural generalization of the Kähler–Einstein condition to this setting
by wedging the curvature 2-form with the Kähler form to the top dimension and
require it to be a scalar multiple of identity tensor with the volume form. This
equation is the natural generalization of anti-self-dual equations for bundles over
a Kähler surface.

In fact, around 1977, C.N. Yang [93] was trying to solve the anti-self-dual
Yang–Mills equation on R4, and he showed that it can be reduced to Cauchy–
Riemann equations. And therefore he demonstrated that the above equation is
part of Yang–Mills equations. It is therefore natural to call such connection to
be Hermitian Yang–Mills connection.

The equation became rather well known in the math community after 1977,
when people recognized the importance of applications of Kähler–Einstein met-
ric to complex geometry. The proof of the existence of such connections would
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be clearly different as the Calabi–Yau theorem was based on the complex
Monge–Ampère equation which depends only on a scalar. The Hermitian Yang–
Mills connection is a vector-valued equation.

In December of 1977, when I was preparing the talk for the ICM in Helsinki,
I thought about the possible conditions for existence of Hermitian Yang–Mills
connections. I concluded that it had to be related to the slope stability of the
holomorphic bundle, as was motivated by the work of Bogomolov and Miyaoka
on Chern number inequalities. I was informed much later that this possibility
was also believed to be true by Hitchin and Kobayashi. (Apparently they toy
around the conjecture starting 1980, also motivated by my proof of the Calabi
conjecture. But they had no idea how to approach the problem.)

However, the proof would have to be quite tough as there is no good way to
handle such a non-linear system of elliptic equations. It turns out that Donald-
son and Uhlenbeck–Yau were working on this problem independently. I learnt
from Hitchin during a trip to England that Donaldson was able to prove the ex-
istence for Hermitian connections of any holomorphic vector bundle that can be
deformed to the tangent bundle of a K3 surface. (Note that the Ricci-flat metric
on a K3 surface provides a natural solution of the Hermitian Yang–Mills con-
nection on the tangent bundle.) This is of course encouraging as it indicates the
possibility of the conjecture.

It turns out that Donaldson [23] was concentrated on algebraic surfaces and
Uhlenbeck–Yau [88] on arbitrary dimensional Kähler manifolds. While Donald-
son used the Bott–Chern form and the Hermitian Yang–Mills flow, Uhlenbeck–
Yau constructed a destabilizing sheaf assuming the non-existence of Hermitian
Yang–Mills connection.

The proof of regularity of the destabilizing subsheaf took non-trivial effort
and as a result, our paper appeared later than the work of Donaldson’s proof for
algebraic surfaces. After we published our work, Donaldson found that some of
our formula can be used to re-prove the Uhlenbeck–Yau theorem for algebraic
manifolds by restriction of the bundle to hyperplane sections of the algebraic
manifold. (It was proved by Maruyama and Mehta–Ramanathan that a stable
bundle is stable on a generic hyperplane section.)

This later argument of Donaldson depends intrinsically on the manifold
being projective for higher dimensional manifolds. As was acknowledged by
Donaldson, the argument of Uhlenbeck–Yau is most natural and in fact, all
the later development for Hermitian Yang–Mills connections for higher dimen-
sional manifolds are based on the procedure of Uhlenbeck–Yau.

Some later paper such as the one by Bando–Siu [5] used the Hermitian
Yang–Mills flow to generalize our result, but the essential feature of Uhlenbeck–
Yau procedure is still needed in an essential manner. It should also be pointed
out that the continuity argument used by Uhlenbeck–Yau is just as convenient
as the Hermitian Yang–Mills flow.
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A few years later, Carlos Simpson [78] generalized the Uhlenbeck–Yau ar-
gument to establish similar theorem when the Higgs field was introduced. Her-
mitian Yang–Mills connections were proposed by me to Edward Witten in 1984
to study heterotic string, which had since became an important subject in math-
ematical physics. But from the very beginning, we knew the importance of Her-
mitian Yang–Mills connections, as it provides important Chern number inequal-
ities, and also the conditions for the bundle to be projectively flat.

4.2. Chern number inequalities and characterization of flat bundles

The very first applications was the sharpening of the Chern number inequality
of Bogomolov and a very important generalization of the theorem of Seshadri–
Narasimhan (1965) that every stable bundle over an algebraic curve is flat if
the degree of the bundle is zero. A very remarkable corollary of the existence
of Hermitian Yang–Mills connection for stable holomorphic bundle is that such
bundle must be projective flat, if the Bogomolov inequality 2r c2.E/ � .r �
1/c1.E/2 becomes equality.

This can be considered as a generalization of my theorem that the equality
of certain Chern numbers can be used to characterize ball quotients. In fact,
Carlos Simpson observed that by generalizing this theorem to the Hermitian
Yang–Mills–Higgs connection, one can reproduce my previous theorem that an
algebraic surface of general type is covered by the ball if the ratio of the two
Chern numbers is the same as the projective plane. In fact, by choosing the
Higgs field carefully, one can generalize the theorem to characterize quotient of
general Hermitian symmetric space assuming suitable stability.

Characterization of flat bundles based on Hermitian Yang–Mills–Higgs con-
nection also allows Simpson to construct variation of Hodge structures. This is
remarkable and led me to believe that there is a good connection with the char-
acterization of quotients of more general Hermitian symmetric domains based
on the existence of Kähler–Einstein metrics.

It is really remarkable that the construction of stable bundles satisfying cer-
tain Chern number equality gives rise to non-trivial projective representation of
the fundamental group of the manifold, which we know little about.

In particular, if some natural bundle constructed from the tangent bundle of
the manifold is stable with respect to certain polarization and if the numbers
defined by wedging the second Chern class of the natural bundle with the polar-
ization n � 2 times, and the square of the first Chern class of the natural bundle
wedged with the polarization n�2 times are equal to zero, then the natural bun-
dle admits a flat Hermitian connection, which means that the fundamental group
of the manifold has a non-trivial unitary representation, unless the natural bun-
dle is trivial. Note that we do not need to assume existence of Kähler–Einstein
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metric on the manifold in this setting. Natural bundles are bundles constructed
from natural decomposition of tensor product of tangent and cotangent bundles.

It raises an interesting question in this regard: given an algebraic manifold M

with a fixed Kähler class, we consider all holomorphic bundles with trivial first
Chern class over M which are polystable with respect to this Kähler class. We
consider two such bundles equivalent if they become isomorphic to each other
after adding trivial bundles. They form a ring consisting of countable number
of algebraic subvarieties which are moduli space of the bundles with a fixed
Hilbert polynomial.

There is a subring formed by those stable bundles whose second Chern class
wedged with the Kähler class n � 2 times vanishes. Does the structure of this
subring determine the algebraic fundamental group of the manifold? (It is quite
likely that we need to consider bundles with Hilbert space fiber in order to obtain
information for the full fundamental group.) What is the structure of this subring
for Shimura varieties? Can they determine the Shimura variety?

4.3. Generalization to non-Kähler and non-compact manifolds

Since the theory of Uhlenbeck–Yau was generalized by Jun Li and myself to
general complex manifolds, we are able to apply it to handle some interest-
ing non-Kähler manifolds. The most notable one was the class VII surfaces of
Kodaira. They were studied by Kodaira, Inoue and Bombieri. Kobayashi and
Ochiai realized the importance of holomorphic connections for such manifolds.
Bogomolov claimed that for such manifolds without curves, they are given by
the examples constructed by Inoue. The proof by Bogomolov [6,9] is not clear.

Jun Li, Fangyang Zheng and I [51] gave a clear proof based on the existence
of Hermitian Yang–Mills connections. It should be possible to generalize our
argument to handle those class VII surfaces with finite number of curves also.
Many years ago, I proposed to study those connections mod the curves long
ago. If this proposal is successful, it should complete the Kodaira classification
of complex non-Kähler surfaces.

The study of Hermitian Yang–Mills connections over quasi-projective curve
was discussed by Simpson. The generalization to the case when the base pair is
.M; D/ with D non-singular, is not hard. The case when D is normal crossing
divisor is more difficult, and was studied by Takuro Mochizuki [70].

4.4. Analytic criterions for various stability conditions

There is no simple criterion to check whether a bundle is stable or not. In many
cases, the existence of Hermitian Yang–Mills connection helps to understand
properties of stability of bundles. Slope stability is only one kind of stability
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that appeared in algebraic geometry. A natural class of stability was introduced
by David Gieseker in early 1970’s. He compared Hilbert polynomials of the
subsheaves.

The analytic analog of Gieseker stability is not well understood, although
Conan Leung studied this problem in his PhD thesis [49], under my guidance
about 20 years ago. There are a sequence of differential equations which can be
considered as a natural generalization of the Hermitian Yang–Mills equations.
(Todd classes are part of the equations as Hilbert polynomial need to be ex-
pressed.) Assuming the curvature is uniformly bounded, Leung proved that the
existence of the equations is equivalent to Gieseker stability of the bundle. This
bound of the curvature has not been proved and whether this set of equations is
the most natural set of equations is not clear.

As was proposed by me [101], the existence of a Kähler–Einstein metric
or metrics with constant scalar curvature on an algebraic manifold is related to
stability of the algebraic manifold. My former student Huazhang Luo, followed
my suggestion of using the concept of balanced condition to study stability of
manifolds. It would be good to relate manifold stability to bundle stability. Now
Chen–Donaldson–Sun proved that K-stability of the manifold implies the ex-
istence of Kähler–Einstein metric. It implies, in particular, the stability of the
tangent bundle of the manifold.

In order to relate two concepts of stability, I propose to define a bundle to be
balanced if the sections of the bundle, after twisted by a very ample line bundle,
can embed the manifold into a balanced submanifold of the Grassmannian.

Hermitian Yang–Mills bundles are mirror to special Lagrangian submani-
folds in the theory of mirror symmetry under the program of Strominger–Yau–
Zaslow. Gieseker stability is slightly weaker than slope stability. It may be inter-
esting to know which class of Lagrangian cycles will be their mirror images. By
studying stability question for Lagrangian cycles carefully and applying mirror
symmetry, Mike Douglas found new concepts of stability of bundles. Based on
his work and the works of F. Denef, Douglas–Reinbacher–Yau [25] proposed
a conjecture on the existence of stable bundles based on Chern classes of the
bundle which can be stated as follows:

Consider an ample class D on a simply connected Calabi–Yau threefold X

and an integer r > 1 and three classes

ci 2 H 2i .X;Z/; i D 1; 2; 3

such that �
2rc2 � .r � 1/c2

1 � r2

12
c2.D/

�
D 2r2D2

and
.c3

1 C 3r.r ch3 � ch2c1// < 8
p

2 � r3D3:
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Then there exists a rank r reflexive sheaf V on X stable with respect to some
ample class such that

ci .V / D ci ; i D 1; 2; 3:

Prior to the SYZ program on mirror symmetry, Kontsevich introduced the
concept of homological mirror symmetry, where he introduced the derived cat-
egory over algebraic manifolds. It was realized later to correspond to branes in
string theory. This has been developed into a rich theory. Bridgeland studied the
concept of stability of derived category and it is now called Bridgeland stabil-
ity. It would be interesting to find a suitable analytic counterpart of Bridgeland
stability.

5. Mirror symmetry

Supersymmetry provides powerful tools to understand Calabi–Yau manifolds.
The intuitions from physics have been powerful. The important concepts intro-
duced by string theorists have deep influence on the geometry of such mani-
folds. The most important one was the idea of mirror symmetry. It called for the
existence of another Calabi–Yau manifold (which we call the mirror manifold)
whose Hodge diamond for cohomology is the transpose of the Hodge diamond
of the original Calabi–Yau manifold.

5.1. Counting of curves

More importantly the conformal field theory based on one Calabi–Yau mani-
fold is dual to that of its mirror manifold. The Type IIA conformal field theory
of Calabi–Yau manifold is isomorphic to the Type IIB theory of the mirror man-
ifold. This is a remarkable theory predicted by Vafa, Dixon and others. But
it was Greene–Plesser and Candelas et al. who developed the details of such
theory. The most remarkable consequence is that it solved an old problem in
enumerative geometry.

The reason is that the Type IIB theory can be computed by deformation the-
ory of Kodaira–Spencer while the type IIA has quantum corrections. The quan-
tum corrections are provided by the rational curves on the Calabi–Yau manifold.
Since Type IIA theory of one manifold is isomorphic to the type IIB of the mir-
ror manifold, we can compute the number of rational curves on the Calabi–Yau
manifolds by the variation of Hodge structure for its mirror family.

The initial theory was mostly based on physical intuition. But two groups of
mathematicians proved such statements rigorously in 1996, by Lian–Liu–Yau
[52] and Givental [34] independently. Despite that the proof is rigorous, the
intuition from string theory played the most important role. The idea of super-
symmetry has become one of the most fundamental philosophies underlying the
current modern development of algebraic geometry.
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The simplest and most elegant examples of geometric structures showing
up in string theory studies are the Calabi–Yau manifolds, where rich structures
related to deep string theory and Quantum Field Theory dualities are discovered.
This includes the so called Gromov–Witten invariants related to the counting of
rational curves mentioned above.

The counting of algebraic curves of higher genus is far more complicated.
One approach was initiated by Bershadsky, Cecotti, Ooguri and Vafa (BCOV),
who developed a theory called Kodaira–Spencer theory of gravity. The compu-
tation gives beautiful predictions based on some master equations. But it suffers
from an ambiguity which is called holomorphic ambiguity. Up to now, we still
have difficulty to overcome this ambiguity, although some important progress
was made by Zinger, Jun Li and their coauthors for genus one or low genus
curves.

Modularity of partition functions of the so-called topological strings con-
tains non-trivial arithmetic information of the Gromov–Witten invariants and it
is still a mystery to understand the appearance of modular forms completely.
Yamaguchi and I were able to demonstrate some polynomial structure on such
partition functions [92], which suggested that there is rich algebraic structure
behind them. Due to especially its impressive power in enumerative geometry,
there was a great desire to understand mirror symmetry mathematically.

5.2. Mathematical approaches to mirror symmetry

As mentioned above, two different approaches were proposed. One is the fa-
mous Kontsevich’s homological mirror symmetry conjecture [46] which says
that the derived category of coherent sheaves of a Calabi–Yau manifold is equiv-
alent to the Fukaya category of its mirror manifold. Fukaya pioneered the re-
search to study the extensive complicated structure of the Floer theory of La-
grangian cycles through A1-algebra [30,31], which is an important ingredient
in the conjecture of Konsevich. Another approach was proposed by Strominger–
Yau–Zaslow [80] that the Calabi–Yau manifold is fibered by special Lagrangian
torus and the mirror manifold is obtained by replacing the torus by its dual torus.
Much progress was made by Auroux, Seidel et al. in this direction. It is impor-
tant that singularities are allowed in the fibration for both topological and more
subtle reasons. The SYZ conjecture has much evidence to be true. Gross and
Siebert made a lot of progress in the last few years using tropical methods.

Mirror symmetry has inspired many important developments in Kähler ge-
ometry. The program of SYZ calls for close relationship between special La-
grangians with bundles. In the paper of Leung–Yau–Zaslow, we explained how,
under the SYZ map, equation for special Lagrangian cycle which intersects the
SYZ torus at one point can be transformed to an equation for a holomorphic
line bundle. The equation turns out to be studied by M. Mariño, R. Minasian, G.
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Moore and Strominger [60]. Recently Tristan Collins, Adam Jacob, and myself
[20] studied this equation and we can prove the existence for many important
cases assuming some form of stability for the .1; 1/-class. The equation has the
form:

Im.J C p�1 !/n D tan. O�/Re.J C p�1 !/n;

where O� is a topological constant determined by J and Œ!�.
The equation admits supersymmetry and the pair consisting of the Kähler

class J and the closed .1; 1/-class ! can be looked as a natural complexifica-
tion of the Kähler class. It defines an open set in the complexified Kähler cone.
This may give a good candidate for the mirror of the moduli space of polarized
complex structures of its mirror manifold. Note that we like to see the “Kähler
moduli” to be isomorphic to the moduli space of the complex structure on its
mirror manifold. It is also important to find a suitable discrete group acting on
this open set in the Kähler cone. The mirror symmetric version of the special
Lagrangian that intersects the SYZ torus for more than a point is supposed to be
a higher rank bundle. The equation defined on it is being explored.

One should note that the homological mirror conjecture of Kontsevich has
inspired a great deal of study of derived category in geometry. While we may not
be used to abstract reasoning of category theory in geometry, we hope that its
relationship to SYZ construction may eventually broaden the scope of geometry.

6. Future directions in mathematical physics and arithmetic geometry

In conclusion, we should say that the beautiful subject initiated by Riemann in
the 19th century on Riemann surfaces had deep influence on the development of
complex geometry in the 20th century. While Hodge provided the fundamental
structure relating complex analysis with topology via Hodge groups, Kodaira
provided fundamental methods to construct holomorphic sections of bundles.
With the works of Chern classes and Hirzebruch–Riemann–Roch formula, the
works of Hodge and Kodaira have been developed to be most powerful tools
in understanding Kähler geometry. The modern development has been empha-
sizing the use of non-linear elliptic equations, relating the concept of Kähler–
Einstein metrics and Hermitian Yang–Mills equations to various fundamental
concepts of stability introduced to study moduli spaces.

The most recent development on Calabi–Yau space due to cooperations be-
tween mathematicians and string theorists has been spectacular. Ideas of many
fields in mathematics were used. We hope to see some more ideas of number
theory in this beautiful subject. For many Calabi–Yau manifolds, the partition
functions related to conformal field theory are related to modular forms. For
example, it was observed in 1996 by Zaslow and I [103] that the partition func-
tion counting rational curves of various degrees in K3 surfaces can be written in
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terms of 	-functions. This was the first time that such modular function appears
in counting curves in algebraic geometry. This motivated Göttsche to generalize
the Yau–Zaslow formula to general surfaces and for curves of arbitrary genus.
This was recently first proved by Y. Tzeng [87] and later by Kool–Shende–
Thomas [47]. For Calabi–Yau manifolds with higher dimension, these formulas
are much more complicated and their organization is still being explored. In re-
cent work with Zhou and others [2], we were able to show the ring generated by
quasi-modular forms associated to PSL.2;Z/ or a congruent subgroup therein
is isomorphic to the ring of higher genus Gromov–Witten invariants for certain
non-compact Calabi–Yau geometries based on the projective plane and also del
Pezzo surfaces. This was later extended to the orbifold case [76] and also to
include open Gromov–Witten theory in [48].

For more classical arithmetic geometry, we may point out that Serge Lang
has noticed long time ago that the importance of Kobayashi hyperbolicity is
relevant to the question of Diophanitine problem, such as the Mordell conjecture
proved by Faltings for algebraic curves of higher genus. Kobayashi conjectured
that for an algebraic manifold of general type, the Kobayashi metric should
be non-degenerate in a Zariski open set. In particular, there is a subvariety of
the manifold such that all rational curves and elliptic curves are subset of this
algebraic subvariety. This is sometimes called the Lang conjecture.

Lang also conjectures that if the manifold is defined over integers, the ra-
tional points of the manifold should all be in this subvariety. There was little
progress on the Kobayashi–Lang conjecture except in the case of surfaces where
Bogomolov [7] and Miyaoka [69] made important contributions. Steven Lu and
I studied the differential geometric aspect of it [58].

For algebraic surfaces with positive index, one can find a Finsler metric with
strongly negative holomorphic sectional curvature, but the metric may degen-
erate in some subvarieties. This statement implies the Kobayashi–Lang con-
jecture. Therefore one would like to make the following conjecture: an alge-
braic manifold is of general type if and only if it admits a complex Finsler
metric which may be degenerate along a subvariety which has strongly nega-
tive holomorphic sectional curvature. It is quite possible that Finsler metric may
be replaced by Kähler metric. The converse was asked by me, there were some
progress due to several people, but only recently Damin Wu and I [91] were able
to prove that if an algebraic manifold admits a Kähler metric with strongly neg-
ative holomorphic sectional curvature, its canonical line bundle must be ample.
(Our original argument assumes manifold to be algebraic, but it was pointed out
by Valentino Tosatti and Xiaokui Yang [83] that our argument, which is based
on solving Monge–Amperè equation, can work for Kähler manifold also.) It is
not hard to generalize the theorem to complete non-compact Kähler manifolds
whose holomorphic sectional curvature is bounded by two negative constants.
A natural question is that a compact manifold admits a pseudo-Kähler metric
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(Kähler metric that may degenerate along some subvarieties) with strongly neg-
ative holomorphic sectional curvature if and only if the manifold is of general
type. Manin has conjectured that Kähler–Einstein metric will play important
role in arithmetic geometry. I believe that is the case. There is still much to learn
about the relation between complex geometry, algebra and number theory.

Appendix. some open questions

Question 1. Classify smooth Calabi–Yau manifold which is a non-trivial fiber
space whose fiber is another Calabi–Yau manifold. The base algebraic variety
should have Kodaira dimension less than or equal to zero. But there should
be much stronger constraints. For dimension four, this is related to F-theory
appeared in string theory. It would be useful to know the discriminant locus
and its singularities. Their structure is important for phenomenology in string
theory. We believe that there is only a finite number of topological types of
Calabi–Yau manifolds in each dimension, hence the constrains on the base and
the discriminate locus should be strong enough to show there are only finite
number of such structures, up to deformations. For references, see [12,26–28,
72].

Question 2. Classify manifolds with positive scalar curvature that can be written
as conformal boundary of a complete Einstein manifold which is asymptotic to a
hyperbolic space form. Witten and I [90] proved that it has to be connected. But
higher connectivity is not known. Schoen and I [75] demonstrated the possibil-
ity of doing codimension-3 surgery on space of manifolds with positive scalar
curvature in 1979. It will be nice to do the same within this category. (It is not so
hard to do connected sum of such manifolds.) We can add some more conditions
on the Einstein manifold in the bulk such as anti-self-dual Einstein metric. One
can also demand the boundary to be Sasaki–Einstein manifolds and would they
always bound an asymptotic hyperbolic Einstein metric? Since Sasaki manifold
can bound asymptotic hyperbolic Einstein metric, it would be interested to con-
struct such manifolds using Kähler geometry. The key question is to understand
the metric in the bulk.

Question 3. What is the appropriate supersymmetric version of bundle theory
over Sasaki–Einstein manifolds, and when can they be looked as boundary data
for connections within the bulk? What are their moduli space? Will the mod-
uli space itself have good structure? For supersymmetric bundles over Sasaki–
Einstein manifolds, are there appropriate generalization of Chern classes and
will they be dual to suitable special cycles?

Question 4. What is the appropriate mirror dual of a complete non-compact
Calabi–Yau manifold asymptotic to a metric cone? And what are their special
Lagrangian submanifold that is asymptotic to a metric cone?
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Question 5. For a Calabi–Yau fourfold, there are parallel 4-forms coming from
linear combination of real and imaginary parts of the standard holomorphic 4-
form and wedge product of the Kähler form. It is very interesting to understand
the cycles calibrated by non-trivial combination of such forms. We do not have
interesting non-trivial global examples! For a Calabi–Yau fourfold, if there ex-
ists an anti-holomorphic involution which fixes the above cohomology class up
to sign, but not the Kähler class, will the fixed point of such involution gives rise
to such calibrated cycles? The special Lagrangian cycles are dual to algebraic
cycles under mirror symmetry, what are the mirror dual of such cycles? They
are presumably dual to itself. What kind of properties do we expect from them?
In analog to the Hodge conjecture, do we expect homology in middle dimen-
sional for Calabi–Yau manifolds be represented by cycles calibrated by parallel
forms? What is the geometric meaning of .2; 2/-cohomology of a Calabi–Yau
fourfold? Are they related to the above cycles?

Question 6. Can one classify elliptic Calabi–Yau fourfolds (i.e., Calabi–Yau
fourfolds that are elliptically fibered over some algebraic 3-folds) up to bira-
tional transformations? Some progress has been made in [39].

Question 7. Let M be a fiber space with base B and fiber F . Suppose there is a
unitary representation of the fundamental group of M into SU.n/ and a stable
bundle V over B with trivial determinant line bundle. Can one construct a stable
bundle (with suitable polarization) over M with trivial determinant line bundle
whose quotient bundle is given by the pullback of a bundle over B , and the
unitary flat vector bundle over F is a subbundle for V restricted to F ? Hopefully
one can manage to find such a bundle whose second Chern class is zero. In this
way, one can construct unitary representation of fundamental group of algebraic
manifolds.

Question 8. Classify all algebraic manifolds whose anti-canonical line bundle
admits an effective divisor. Classify those divisors that have disconnected com-
ponents. If the anti-canonical line bundle is ample along this divisor, would the
complement of the divisor admit a complete non-compact Calabi–Yau metric?

Question 9. It is well known that a stable bundle over an algebraic manifold is
stable when it restricts to a generic hyperplane section of the manifold [62,66].
What is the mirror picture of this statement?

Question 10. For stable bundles over an algebraic manifold, there is the
Bogomolov–Gieseker inequality. What is the mirror dual of such inequality for
the pair: special Lagrangian cycle and complex flat bundle over the cycle.

Question 11. For a bounded complex of holomorphic vector bundles over an
algebraic manifold, there is the concept of quasi-equivalence between them.
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Within this equivalence, can we find a more canonical one such as choosing
harmonic form among closed forms. Can we give a canonical Hermitian metric
of each of the bundles appeared in the complex so that we have a good theory
of stability, presumably recover the concept of Bridgeland stability.

Question 12. Classify stable algebraic 3-dimensional manifolds with constant
scalar curvature. Describe the space of all polarizations that support such met-
rics. Can one construct such metrics by blowing up sufficiently large number of
subvarieties for any given algebraic manifold. Can one find such metrics near
(possibly singular) Kähler–Einstein metrics which we know are stable?
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（リーマンと小平邦彦から複素多様体論の現代の発展へ）
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