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Abstract. In 2016, the conjecture has been settled in a different way by Damian Brotbek, making
a more direct use of Wronskian differential operators and associated multiplier ideals; shortly after-
wards, Ya Deng showed how the proof could be modified to yield an explicit value of dn. We give
here a short proof based on a drastic simplification of their ideas, along with a further improvement
of Deng’s bound, namely dn = b 1
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0. Introduction

The goal of these lectures is to study the conjecture of Kobayashi [Kob70, Kob78] on the hyper-
bolicity of generic hypersurfaces of high degree in projective space, and the related conjecture by
Green-Griffiths [GG79] and Lang [Lan86] on the structure of entire curve loci.

1. Semple tower associated to a directed manifold

1.A. Category of directed manifolds

We start by recalling the main definitions concerning the category of directed varieties. For the
sake of simplicity, we first assume that the objects under consideration are nonsingular.

1.1. Definition. A (complex) directed manifold is a pair (X,V ) consisting of a n-dimensional
complex manifold X equipped with a A morphism Φ : (X,V ) → (Y,W ) in the category of directed
manifolds is a holomorphic map such that Φ∗(V ) ⊂W .

It is eventually interesting to allow singularities for V . We then assume that there exists a dense
Zariski open set X ′ = X r Y ⊂ X such that V|X′ is a subbundle of (TX))|X ′ and the closure V|X′
in the total space of TX is an anaytic subset. The rank r ∈ {0, 1, . . . , n} of V is by definition the
dimension of Vx at points x ∈ X ′ ; the dimension may be larger at points x ∈ Y . This happens e.g.
on X = Cn for the rank 1 linear space V generated by the Euler vector field: Vz = C

∑
16j6n zj

∂
∂zj

for z 6= 0, and V0 = Cn. The absolute situation is the case V = TX and the relative situation is
the case when V = TX/S is the relative tangent space to a smooth holomorphic map X → S. In
general, we can associate to V a sheaf V = O(V ) ⊂ O(TX) of holomorphic sections. No assumption
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need be made on the Lie bracket tensor [•, •] : V × V → O(TX)/V, i.e. we do not assume any kind
of integrability for V. One of the most central conjectures in the theory is the

1.2. Generalized Green-Griffiths-Lang conjecture. Let (X,V ) be a projective directed
manifold where V ⊂ TX is nonsingular (i.e. a subbundle of TX). Assume that (X,V ) is of “general
type” in the sense that KV := detV ∗ is a big line bundle. Then there should exist a proper algebraic
subvariety Y ( X containing the images f(C) of all entire curves f : C→ X tangent to V .

A similar statement can be made when V is singular, but then KV has to be replaced by a certain
(nonnecessarily invertible) rank 1 sheaf of “locally bounded” forms of O(detV ∗), with respect to a
smooth hermitian form ω on TX . The reader will find a more precise definition in [Dem18].

1.B. The 1-jet fonctor

The basic idea is to introduce a fonctorial process which produces a new complex directed
manifold (X̃, Ṽ ) from a given one (X,V ). The new structure (X̃, Ṽ ) plays the role of a space of
1-jets over X. We let

(1.3) X̃ = P (V ), Ṽ ⊂ TX̃
be the projectivized bundle of lines of V , together with a subbundle Ṽ of TX̃ defined as follows:
for every point (x, [v]) ∈ X̃ associated with a vector v ∈ Vx r {0},

(1.3′) Ṽ (x,[v]) =
{
η ∈ TX̃, (x,[v]) ; dπx(η) ∈ Cv

}
, Cv ⊂ Vx ⊂ TX,x,

where π : X̃ = P (V ) → X is the natural projection and π∗ : TX̃ → π∗TX is its differential. On
X̃ = P (V ) we have a tautological line bundleOX̃(−1) ⊂ π∗V ⊂ π∗TX such thatOX̃(−1)(x,[v]) = Cv.
The bundle Ṽ is characterized by the exact sequences

0 −→ TX̃/X −→ TX̃
dπ−→ π∗TX −→ 0,

|| ∪ ∪

0 −→ TX̃/X −→ Ṽ
dπ−→ OX̃(−1) −→ 0,(1.4)

0 −→ OX̃ −→ π∗V ⊗OX̃(1) −→ TX̃/X −→ 0,(1.4′)

where TX̃/X denotes the relative tangent bundle of the fibration π : X̃ → X. The first sequence
is a direct consequence of the definition of Ṽ , whereas the second is a relative version of the Euler
exact sequence describing the tangent bundle of the fibers P (Vx). From these exact sequences we
infer

(1.5) dim X̃ = n+ r − 1, rank Ṽ = rankV = r,

and by taking determinants we find det(TX̃/X) = π∗ detV ⊗OX̃(r), hence

(1.6) det Ṽ = π∗ detV ⊗OX̃(r − 1).

Clearly π : (X̃, Ṽ )→ (X,V ) is a morphism of complex directed manifolds and this construction is
fonctorial with respect to morphisms Φ : (X,V )→ (Y,W ) for which Φ∗ is injective.

1.C. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f : D(0, R) → X parametrized by the disk
D(0, R) of centre 0 and radius R in the complex plane, and that f is a tangent curve of the
directed manifold, i.e., f ′(t) ∈ Vf(t) for every t ∈ D(0, R). If f is nonconstant, there is a well
defined and unique tangent line [f ′(t)] for every t, even at stationary points, and the map

(1.7) f̃ : D(0, R)→ X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t − t0)su(t) with s ∈ N∗ and
u(t0) 6= 0, and we define the tangent line at t0 to be [u(t0)], hence f̃(t) = (f(t), [u(t)]) near
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t0 ; even for t = t0, we still denote [f ′(t0)] = [u(t0)] for simplicity of notation). By definition
f ′(t) ∈ OX̃(−1)f̃(t) = Cu(t), hence the derivative f ′ defines a section

(1.8) f ′ : TD(0,R) → f̃∗OX̃(−1).

Moreover π ◦ f̃ = f , therefore

π∗f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ (f(t),u(t)) = Ṽ f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical lifting of f
to X̃. Conversely, if g : D(0, R) → X̃ is a tangent trajectory of (X̃, Ṽ ), then by definition of Ṽ
we see that f = π ◦ g is a tangent trajectory of (X,V ) and that g = f̃ (unless g is contained in a
vertical fiber P (Vx), in which case f is constant).

For any point x0 ∈ X, there are local coordinates (z1, . . . , zn) on a neighborhood Ω of x0 such
that the fibers (Vz)z∈Ω can be defined by linear equations

(1.9) Vz =
{
v =

∑
16j6n

vj
∂

∂zj
; vj =

∑
16k6r

ajk(z)vk for j = r + 1, . . . , n
}
,

where (ajk) is a holomorphic (n − r) × r matrix. It follows that a vector v ∈ Vz is completely
determined by its first r components (v1, . . . , vr), and the affine chart vj 6= 0 of P (V )�Ω can be
described by the coordinate system

(1.10)
(
z1, . . . , zn;

v1

vj
, . . . ,

vj−1

vj
,
vj+1

vj
, . . . ,

vr
vj

)
.

Let f ' (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn) (we suppose here R
so small that f(D(0, R)) ⊂ Ω). It should be observed that f is uniquely determined by its initial
value x and by the first r components (f1, . . . , fr). Indeed, as f ′(t) ∈ Vf(t) , we can recover the
other components by integrating the system of ordinary differential equations

(1.11) f ′j(t) =
∑

16k6r

ajk(f(t))f ′k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0) the multiplicity of

f at any point t0 ∈ D(0, R), that is, m(f, t0) is the smallest integer m ∈ N∗ such that f
(m)
j (t0) 6= 0

for some j. By (1.11), we can always suppose j ∈ {1, . . . , r}, for example f
(m)
r (t0) 6= 0. Then

f ′(t) = (t − t0)m−1u(t) with ur(t0) 6= 0, and the lifting f̃ is described in the coordinates of the
affine chart vr 6= 0 of P (V )�Ω by

(1.12) f̃ '
(
f1, . . . , fn;

f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
.

1.D. The Semple tower

Following [Dem95], we define inductively the projectivized k-jet bundle Xk (or Semple k-jet
bundle) and the associated subbundle Vk ⊂ TXk by

(1.13) (X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽ k−1).

In other words, (Xk, Vk) is obtained from (X,V ) by iterating k-times the lifting construction
(X,V ) 7→ (X̃, Ṽ ) described in § 1.B. By (1.3–1.5), we find

(1.14) dimXk = n+ k(r − 1), rankVk = r,

together with exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk)∗−−−−→ OXk(−1) −→ 0,(1.15)

0 −→ OXk −→ π∗kVk−1 ⊗OXk(1) −→ TXk/Xk−1
−→ 0.(1.15′)
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where πk is the natural projection πk : Xk → Xk−1 and (πk)∗ its differential. Formula (1.6) yields

(1.16) detVk = π∗k detVk−1 ⊗OXk(r − 1).

Every nonconstant tangent trajectory f : D(0, R)→ X of (X,V ) lifts to a well defined and unique
tangent trajectory f[k] : D(0, R) → Xk of (Xk, Vk). Moreover, the derivative f ′[k−1] gives rise to a

section

(1.17) f ′[k−1] : TD(0,R) → f∗[k]OXk(−1).

In coordinates, one can compute f[k] in terms of its components in the various affine charts (1.10)
occurring at each step: we get inductively

(1.18) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′s1
F ′sr

, . . . ,
F ′sr−1

F ′sr

)
where N = n+ k(r− 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k > 1, {s1, . . . , sr} contains the last r− 1
indices of {1, . . . , N} corresponding to the “vertical” components of the projection Xk → Xk−1, and
in general, sr is an index such that m(Fsr , 0) = m(f[k], 0), that is, Fsr has the smallest vanishing
order among all components Fs (sr may be vertical or not, and the choice of {s1, . . . , sr} need not
be unique).

By definition, there is a canonical injection OXk(−1) ↪→ π∗kVk−1, and a composition with the
projection (πk−1)∗ (analogue for order k − 1 of the arrow (πk)∗ in the sequence (1.15)) yields for
all k > 2 a canonical line bundle morphism

(1.19) OXk(−1) ↪−→ π∗kVk−1
(πk)∗(dπk−1)−−−−−−→ π∗kOXk−1

(−1),

which admits precisely Dk = P (TXk−1/Xk−2
) ⊂ P (Vk−1) = Xk as its zero divisor (clearly, Dk is a

hyperplane subbundle of Xk). Hence we find

(1.20) OXk(1) = π∗kOXk−1
(1)⊗O(Dk).

Now, we consider the composition of projections

(1.21) πk,j = πj+1 ◦ · · · ◦ πk−1 ◦ πk : Xk −→ Xj .

Then πk,0 : Xk → X0 = X is a locally trivial holomorphic fiber bundle over X, and the fibers

Xk,x = π−1
k,0(x) are k-stage towers of Pr−1-bundles. Since we have (in both directions) morphisms

(Cr, TCr) ↔ (X,V ) of directed manifolds which are bijective on the level of bundle morphisms,
the fibers are all isomorphic to a “universal” non singular projective algebraic variety of dimension
k(r−1) which we will denote by Rr,k ; it is not hard to see that Rr,k is rational, since (1.18) provides

affine charts of Rr,k that are isomorphic to Ck(r−1).

1.22. Remark. When (X,V ) is singular, one can easily extend the construction of the Semple
tower by fonctoriality. In fact, assume that X is a closed analytic subset of some open set Z ⊂ CN ,
and that X ′ ⊂ X is a Zariski open subset on which V�X′ is a subbundle of TX′ . Then we consider the
injection of the nonsingular directed manifold (X ′, V ′) into the absolute structure (Z,W ), W = TZ .
This yields an injection (X ′k, V

′
k) ↪→ (Zk,Wk), and we simply define (Xk, Vk) to be the closure of

(X ′k, V
′
k) into (Zk,Wk). It is not hard to see that this is indeed a closed analytic subset of the same

dimension n+ k(r − 1), where r = rankV ′.

1.E. Jet bundles and jet differentials

Following Green-Griffiths [GrGr79], we consider the bundle JkX → X of k-jets of germs of para-
metrized curves in X, i.e., the set of equivalence classes of holomorphic maps f : (C, 0) → (X,x),

with the equivalence relation f ∼ g if and only if all derivatives f (j)(0) = g(j)(0) coincide for
0 6 j 6 k, when computed in some local coordinate system of X near x. The projection map
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JkX → X is simply f 7→ f(0). If (z1, . . . , zn) are local holomorphic coordinates on an open set
Ω ⊂ X, the elements f of any fiber JkXx, x ∈ Ω, can be seen as Cn-valued maps

f = (f1, . . . , fn) : (C, 0)→ Ω ⊂ Cn,
and they are completetely determined by their Taylor expansion of order k at t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber JkXx can thus be identified with the set of k-tuples of vectors
(ξ1, . . . , ξk) = (f ′(0), . . . , f (k)(0)) ∈ (Cn)k. It follows that JkX is a holomorphic fiber bundle
with typical fiber (Cn)k over X. However, JkX is not a vector bundle for k > 2, because of the
nonlinearity of coordinate changes: a coordinate change z 7→ w = Ψ(z) on X induces a polynomial
transition automorphism on the fibers of JkX, given by a formula

(1.23) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑
s=2

∑
j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))

with suitable integer constants cj1...js (this is easily checked by induction on s). According to
the above philosophy, we introduce the concept of jet bundle in the general situation of complex
directed manifolds.

1.24. Definition. Let (X,V ) be a complex directed manifold. We define JkV → X to be the bundle
of k-jets of curves f : (C, 0)→ X which are tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t in a
neighborhood of 0, together with the projection map f 7→ f(0) onto X.

It is easy to check that JkV is actually a subbundle of JkX. In fact, by using (1.11), we see that
the fibers JkVx are parametrized by(

(f ′1(0), . . . , f ′r(0)); (f ′′1 (0), . . . , f ′′r (0)); . . . ; (f
(k)
1 (0), . . . , f (k)

r (0))
)
∈ (Cr)k

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of JkX. Alternatively, we can pick a
local holomorphic connection ∇ on V such that for any germs w =

∑
16j6nwj

∂
∂zj
∈ O(TX,x) and

v =
∑

16λ6r vλeλ ∈ O(V )x in a local trivializing frame (e1, . . . , er) of V�Ω we have

(1.25) ∇wv(x) =
∑

16j6n, 16λ6r

wj
∂vλ
∂zj

eλ(x) +
∑

16j6n, 16λ,µ6r

Γµjλ(x)wjvλ eµ(x).

We can of course take the frame obtained from (1.9) by lifting the vector fields ∂/∂z1, . . . , ∂/∂zr,
and the “trivial connection” given by the zero Christoffel symbolds Γ = 0. One then obtains a
trivialization JkV�Ω ' V ⊕k�Ω by considering

(1.26) JkVx 3 f 7→ (ξ1, ξ2, . . . , ξk) = (∇f(0),∇2f(0), . . . ,∇kf(0)) ∈ V ⊕kx

and computing inductively the successive derivatives ∇f(t) = f ′(t) and ∇sf(t) via

∇sf = (f∗∇)d/dt(∇s−1f) =
∑

16λ6r

d

dt

(
∇s−1f

)
λ
eλ(f) +

∑
16j6n, 16λ,µ6r

Γµjλ(f)f ′j

(
∇s−1f

)
λ
eµ(f).

This identification depends of course on the choice of ∇ and cannot be defined globally in general
(unless we are in the rare situation where V has a global holomorphic connection).

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group of germs
of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j > 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk is a k-dimensional
nilpotent complex Lie group, which admits a natural fiberwise right action on JkV

(1.27) JkV ×Gk → JkV, (f, ϕ) 7→ f ◦ ϕ.
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There is a semidirect decomposition Gk = G′k nC∗ given by a split exact sequence

1→ G′k → Gk → C∗ → 1

where Gk → C∗ is the obvious morphism ϕ 7→ ϕ′(0), the commutator group G′k = [Gk,Gk] is
the group of k-jets of biholomorphisms tangent to the identity, and C∗ ⊂ Gk is the (nonnormal)
subgroup of homotheties ϕ(t) = λt. The corresponding action of C∗ on k-jets is described in
coordinates by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk), ξs = ∇sf(0).

Following [GrGr79], we introduce the bundle EGG
k,mV

∗ → X of polynomials P (x; ξ1, . . . , ξk) that are
homogeneous on the fibers of JkV of weighted degree m with respect to the C∗ action, i.e.

(1.28) P (x;λξ1, . . . , λ
kξk) = λmP (x; ξ1, . . . ξk),

in other words they are polynomials of the form

(1.29) P (x; ξ1, . . . ξk) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(x) ξα1
1 ξα2

2 · · · ξ
αk
k

where ξs = (ξs,1, . . . , ξs,r) ∈ Cr ' Vx and ξαss = ξ
αs,1
s,1 . . . ξ

αs,r
s,r , |αs| =

∑
16j6r αs,j . Sections of the

sheaf O(EGG
k,mV

∗) can also be viewed as algebraic differential operators acting on germs of curves

f : (C, 0)→ X tangent to V , by putting

(1.29′) P (f)(t) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(f(t)) (∇f(t))α1(∇2f(t))α2 · · · (∇kf(t))αk

where the aα1...αk(x) are holomorphic in x. With the graded algebra bundle EGG
k,• V

∗ =
⊕

mE
GG
k,mV

∗

we associate an analytic fiber bundle

(1.30) XGG
k := Proj(EGG

k,• V
∗) = (JkV r {0})/C∗

over X, which has weighted projective spaces P(1[r], 2[r], . . . , k[r]) as fibers; here JkV r {0} is the
set of nonconstant jets of order k. As such, it possesses a tautological sheaf OXGG

k
(1) [the reader

should observe however that OXGG
k

(m) is invertible only when m is a multiple of lcm(1, 2, . . . , k)].

1.31. Proposition. By construction, if πk : XGG
k → X is the natural projection, we have the

direct image formula

(πk)∗OXGG
k

(m) = O(EGG
k,mV

∗)

for all k and m.

In the geometric context, we are not really interested in the bundles (JkV r{0})/C∗ themselves,
but rather on their quotients (JkV r{0}) // Gk (would such nice complex space quotients exist!). In
fact the following fundamental result from [Dem95] shows that the Semple bundle Xk constructed
above plays the role of such a quotient.

1.32. Theorem and Definition. Let Ek,mV
∗ ⊂ EGG

k,mV
∗ be the set of polynomial differential

operators f 7→ P (f) that are invariant under arbitrary changes of parametrization, i.e., such that
for every ϕ ∈ Gk

(∗) P (f ◦ ϕ) = (ϕ′)mP (f) ◦ ϕ

[the weighted degree condition (1.28) being the special case when ϕ(t) = λt, λ ∈ C∗].
Let πk,0 : Xk → X be the Semple jet bundles defined above and let JkV

reg be the bundle of regular
k-jets of maps f : (C, 0)→ (X,V ), that is, jets f such that f ′(0) 6= 0. Then

(i) The quotient JkV
reg/Gk has the structure of a locally trivial bundle over X, and there is a

holomorphic embedding JkV
reg/Gk ↪→ Xk over X, which identifies JkV

reg/Gk with Xreg
k (thus

Xk is a relative compactification of JkV
reg/Gk over X).
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(ii) The direct image sheaf

(πk,0)∗OXk(m) ' O(Ek,mV
∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

(iii)For every m > 1, the relative base locus of the linear system |OXk(m)| is equal to the set Xsing
k

of singular k-jets [one has Xsing
k = ∅ for k = 1]. Moreover, OXk(1) is relatively big over X.

Sketch of proof. We refer to [Dem95] for details. In order to prove (i) and (ii), the main point is
that the lifts f[k] : D(0, R) → (Xk, Vk) of a curve f : D(0, R) → (X,V ) are defined inductively by
f[k] = (f[k−1], [f

′
[k−1]]), hence for any change of variable ϕ : D(0, R′) → D(0, R), they satisfy the

relations

(f ◦ ϕ)[k] = f[k] ◦ ϕ, (f ◦ ϕ)′[k−1] = ϕ′f ′[k−1] ◦ ϕ ∈ OXk(−1) ⊂ π∗k,k−1Vk−1.

We conclude that there is a well defined set-theoretic map

(1.33) JkV
reg/Gk → Xreg

k , f mod Gk 7→ f[k](0).

Given a holomorphic section σ ∈ H0(π−1
k,0(U),OXk(m)), we can then associate a differential operator

(1.34) P (f) = σ(f[k]) · (f ′[k−1])
m.

Clearly, condition (∗) is satisfied and in particular P is homogeneous of degree m on JkV
reg; such

a holomorphic function must be a homogeneous polynomial on the fibers.

2. Algebraic properties of the algebra of differential operators

2.A. Green-Griffiths and Semple algebras

By construction, the Green-Griffiths graded algebra

(2.1) AGG
k V ? =

⊕
m∈Z

EGG
k,mV

?

of differential operators is fiberwise isomorphic to the polynomial ring

C[f ′1, . . . , f
′
r, f
′′
1 , . . . , f

′′
r , . . . , f

(k)
1 , . . . , f (k)

r ]

and in particular it is finitely generated. More geometrically, we get a holomorphic filtration of
EGG
k,mV

? by considering the partial degree of P (f) in terms of the last derivative f (k) and putting

F a(EGG
k,mV

?) =
{
P ∈ EGG

k,mV
? ; degf (k) P (f) 6 a

}
.

Then the graded pieces are polynomials of the form Q(f ′, . . . , f (k−1))(f (k))αk , |αk| = a, i.e.

Ga(EGG
k,mV

?) ' EGG
k−1,m−kaV

? ⊗ SaV ∗.

We can then inductively combine the successive filtrations obtained via the partial degrees in f (k),
f (k−1), . . . , f (1) = f ′ to get a full decomposition

(2.2) G•(EGG
k,mV

?) '
⊕

a=(a1,...,ak)∈Nk
a1+2a2+···+kak=m

Sa1V ∗ ⊗ · · · ⊗ SakV ∗.

Hence AGG
k V ? is just locally isomorphic to a k-fold tensor product of symmetric algebras S•V ∗.

We define the Semple algebra to be the graded subalgebra of AGG
k such that

(2.3) AkV ? = (AGG
k )G

′
k =

⊕
m∈Z

Ek,mV
?,

in particular A1V
? = AGG

1 V ? = S•V ∗. As G′k is a non reductive group, it is a priori unclear
whether AkV ? is finitely generated for k > 2.
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the subalgebra of G′k-invariant differential operators is finitely generated. This can be checked
by hand ([Dem07a], [Dem07b]) for n = 2 and k 6 4. Rousseau [Rou06] also checked the case n = 3,
k = 3, and then Merker [Mer08, Mer10] proved the finiteness for n = 2, 3, 4, k 6 4 and n = 2, k = 5.
Recently, Bérczi and Kirwan [BeKi12] made an attempt to prove the finiteness in full generality,
but it appears that the general case is still unsettled.

Fix coordinates (z1, . . . , zn) near a point x0 ∈ X, such that Vx0 = Vect(∂/∂z1, . . . , ∂/∂zr). Let
f = (f1, . . . , fn) be a regular k-jet tangent to V . Then there exists i ∈ {1, 2, . . . , r} such that
f ′i(0) 6= 0, and there is a unique reparametrization t = ϕ(τ) such that f ◦ ϕ = g = (g1, g2, . . . , gn)
with gi(τ) = τ (we just express the curve as a graph over the zi-axis, by means of a change of
parameter τ = fi(t), i.e. t = ϕ(τ) = f−1

i (τ)). Suppose i = r for the simplicity of notation. The
space Xk is a k-stage tower of Pr−1-bundles. In the corresponding inhomogeneous coordinates on
these Pr−1’s, the point f[k](0) is given by the collection of derivatives(

(g′1(0), . . . , g′r−1(0)); (g′′1(0), . . . , g′′r−1(0)); . . . ; (g
(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr) by integrating
the differential system (5.10)]. Thus the map JkV

reg/Gk → Xk is a bijection onto Xreg
k , and the

fibers of these isomorphic bundles can be seen as unions of r affine charts ' (Cr−1)k, associated with
each choice of the axis zi used to describe the curve as a graph. The change of parameter formula
d
dτ = 1

f ′r(t)
d
dt expresses all derivatives g

(j)
i (τ) = djgi/dτ

j in terms of the derivatives f
(j)
i (t) = djfi/dt

j

(g′1, . . . , g
′
r−1) =

(f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
;

(g′′1 , . . . , g
′′
r−1) =

(f ′′1 f ′r − f ′′r f ′1
f ′3r

, . . . ,
f ′′r−1f

′
r − f ′′r f ′r−1

f ′3r

)
; . . . ;(3.12)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′r − f

(k)
r f ′1

f ′k+1
r

, . . . ,
f

(k)
r−1f

′
r − f

(k)
r f ′r−1

f ′k+1
r

)
+ (order < k).

2.B. Wronskians

Let U be an open set of X, dimX = n, and s0, . . . , sk ∈ OX(U) be holomorphic functions. To
these functions, we can associate a Wronskian operator of order k defined by

(4.1) Wk(s0, . . . , sk)(f) =

∣∣∣∣∣∣∣∣
s0(f) s1(f) . . . sk(f)

D(s0(f)) D(s1(f)) . . . D(sk(f))
...

...
Dk(s0(f)) Dk(s1(f)) . . . Dk(sk(f))

∣∣∣∣∣∣∣∣
where f : t 7→ f(t) ∈ U ⊂ X is a germ of holomorphic curve (or a k-jet of curve), and D = d

dt . For
a biholomorphic change of variable ϕ of (C, 0), we find by induction on ` a polynomial differential
operator Q`,s of order 6 ` acting on ϕ satisfying

D`(sj(f ◦ ϕ)) = ϕ′`D`(sj(f)) ◦ ϕ+
∑
s<`

p`,s(ϕ)Ds(sj(f)) ◦ ϕ.

It follows easily from there that

Wk(s0, . . . , sk)(f ◦ ϕ) = (ϕ′)1+2+···+kWk(s0, . . . , sk)(f) ◦ ϕ,
hence Wk(s0, . . . , sk)(f) is an invariant differential operator of degree k′ = 1

2k(k + 1). Especially,
we get in this way a section that we denote

(4.2) Wk(s0, . . . , sk) =

∣∣∣∣∣∣∣∣
s0 s1 . . . sk

D(s0) D(s1) . . . D(sk)
...

...
Dk(s0) Dk(s1) . . . Dk(sk)

∣∣∣∣∣∣∣∣ ∈ H
0(U,Ek,k′T

∗
X).
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2.2. Proposition. These Wronskian operators satisfy the following properties.

(a) Wk(s0, . . . , sk) is C-multilinear and alternate in (s0, . . . , sk).

(b) For any g ∈ OX(U), we have

Wk(gs0, . . . , gsk) = gk+1Wk(s0, . . . , sk).

Property 2.2 (b) is an easy consequence of the Leibniz formula

D`(g(f)sj(f)) =
∑̀
k=0

(
`

k

)
Dk(g(f))D`−k(sj(f)),

by performing linear combinations of rows in the determinants. This property implies in its turn
that one can define more generally an operator

(2.3) Wk(s0, . . . , sk) ∈ H0(U,Ek,k′T
∗
X ⊗ Lk+1)

for any (k+1)-tuple of sections s0, . . . , sk ∈ H0(U,L) of a holomorphic line bundle L→ X. In fact,
when we compute the Wronskian in a local trivialization of L�U , Property 4.3 (b) shows that the
determinant is independent of the trivialization. Moreover, if g ∈ H0(U,G) for some line bundle
G→ X, we have

(2.4) Wk(gs0, . . . , gsk) = gk+1Wk(s0, . . . , sk) ∈ H0(U,Ek,k′T
∗
X ⊗ Lk+1 ⊗Gk+1).

2.C. Brackets

If P is a differential operator given by a section of O(EGG
k,mV

?), we define DP to be its “obvious”
derivative

(2.5) DP (f) = P (f)′, i.e. DP (f)(t) =
d

dt
P (f)(t).

The operator DP is then a section of O(EGG
k,mV

?). If P is a G′k-invariant operator in O(Ek,mV
?),

the relation P (f ◦ ϕ) = ϕ′mP (f) ◦ ϕ implies

DP (f ◦ ϕ) = (ϕ′mP (f) ◦ ϕ)′ = ϕ′m+1DP (f) ◦ ϕ+mϕ′m−1ϕ′′P (f) ◦ ϕ,

therefore DP is no longer an invariant operator (unless m = 0, in which case DP is of degree 1).
However, if P,Q are G′k-invariant operators of respective degrees δP , δQ; it is easy to check that
their bracket defined as

(2.6) [P,Q] = δPP (DQ)− δQQ(DP )

is again G′k-invariant, of degree δP + δQ + 1. This can be seen by observing that the terms ϕ′′(. . .)
coming from DP and DQ cancel, or by noticing that

(2.6′) [P,Q] = P δQ+1Q−δP+1D

(
QδP

P δQ

)
where QδP /P δQ is homogeneous of degree 0 (i.e. Gk-invariant). A straightforward albeit tedious
calculation shows that this bracket satisfies the usual Jacobi identity

(2.7) [P, [Q,R]] + [Q, [R,P ]] + [R, [P,Q]] = 0.

Formula (2.6′) has the advantage that for any line bundle L (or even any Q-line bundle L) and

P ∈ H0(X,Ek,δP V
∗ ⊗ LδP ), Q ∈ H0(X,Ek,δQV

∗ ⊗ LδQ)

we also get globally defined brackets

[P,Q] ∈ H0(X,Ek+1,δP+δQ+1V
∗ ⊗ LδP+δQ).
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Another special case is the “degree 0” bracket associated with two sections σ1, σ2 ∈ H0(X,L)

(2.8) τ = [σ1, σ2] = σ1Dσ2 − σ2Dσ1 = σ2
1D

(
σ2

σ1

)
∈ H0(X,E1,1T

∗
X ⊗ L2) = H0(X,T ∗X ⊗ L2).

In a similar way, given integers a, b > 1 and families of sections σj ∈ H0(X,La), 1 6 j 6 k − 2,

τj ∈ H0(X,V ∗ ⊗ Lb) = H0(X,E1,1V
∗ ⊗ Lb), 1 6 j 6 k, we define inductively iterated brackets

(2.9) Bk(σ1, . . . , σk−2 ; τ1, . . . , τk) ∈ H0(X,Ek,2k−1V
∗ ⊗ L(k−2)a+kb), k > 2,

by putting

(2.9′) B2(τ1, τ2) = [τ1, τ2] = τ2
1D

(
τ2

τ1

)
,

and, for k > 3 and ck = (k − 3)− (k − 2)b/a ∈ Q,

(2.9′′) Bk(σ1, . . . , σk−2 ; τ1, . . . , τk) = σck+1
1 τ2k−2

1 D

(
Bk−1(σ2, . . . , σk−2 ; τ2, . . . , τk)

σck1 τ
2k−3
1

)
.

If L is very ample, by (2.8), there are many such sections when we take a = 1, b = 2, ck = 1 − k,
and we then get sections Bk(σ1, . . . , σk−2 ; τ1, . . . , τk) ∈ H0(X,Ek,2k−1V

∗ ⊗ L3k−2) whose degrees

m = 2k − 1 grow linearly with k, as well as the correcting twist L3k−2.

3. Morse inequalities and the Green-Griffiths-Lang conjecture

3.A. Statement of Morse inequalities

One of the main purpose of holomorphic Morse inequalities is to provide estimates of cohomology
groups with values in high tensor powers of a given line bundle L, once a smooth hermitian metric
h on L is given. We denote by ΘL,h = − i

2π∂∂ log h the (1, 1)-curvature form of h.

3.1. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex manifolds,
E → X a holomorphic vector bundle of rank r, and (L, h) a hermitian line bundle. The dimensions
hq(X,E ⊗Lm) of cohomology groups of the tensor powers E ⊗Lm satisfy the following asymptotic
estimates as m→ +∞ :

(3.1 WM) Weak Morse inequalities :

hq(X,E ⊗ Lm) 6 r
mn

n!

∫
X(L,h,q)

(−1)qΘn
L,h + o(mn) .

(3.1 SM) Strong Morse inequalities :∑
06j6q

(−1)q−jhj(X,E ⊗ Lm) 6 r
mn

n!

∫
X(L,h,6q)

(−1)qΘn
L,h + o(mn) .

(3.1 RR) Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lm) :=
∑

06j6n

(−1)jhj(X,E ⊗ Lm) = r
mn

n!

∫
X

Θn
L,h + o(mn) .

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e−ϕ is a singular hermitian metric with
analytic singularities of pole set Σ = ϕ−1(−∞), the estimates still hold provided all cohomology
groups are replaced by cohomology groups Hq(X,E⊗Lm⊗I(hm)) twisted with the corresponding
L2 multiplier ideal sheaves

I(hm) = I(kϕ) =
{
f ∈ OX,x, ∃V 3 x,

∫
V
|f(z)|2e−mϕ(z)dλ(z) < +∞

}
,
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and provided the Morse integrals are computed on the regular locus of h, namely restricted to
X(L, h, q) r Σ : ∫

X(L,h,q)rΣ
(−1)qΘn

L,h.

The special case of 3.1 (SM) when q = 1 yields a very useful criterion for the existence of sections
of large multiples of L.

3.2. Corollary. Let L → X be a holomorphic line bundle equipped with a singular hermitian
metric h = e−ϕ with analytic singularities of pole set Σ = ϕ−1(−∞). Then we have the following
lower bounds

(a) at the h0 level :

h0(X,E ⊗ Lm) > h0(X,E ⊗ Lm ⊗ I(hm))

> h0(X,E ⊗ Lm ⊗ I(hm))− h1(X,E ⊗ Lm ⊗ I(hm))

> r
kn

n!

∫
X(L,h,61)rΣ

Θn
L,h − o(kn) .

Especially L is big as soon as
∫
X(L,h,61)rΣ Θn

L,h > 0 for some singular hermitian metric h on L.

(b) at the hq level :

hq(X,E ⊗ Lm ⊗ I(hm)) > r
kn

n!

∑
j=q−1,q,q+1

(−1)q
∫
X(L,h,j)rΣ

Θn
L,h − o(kn) .

The goal of this section is to study the existence and properties of entire curves f : C→ X drawn
in a complex irreducible n-dimensional variety X, and more specifically to show that they must
satisfy certain global algebraic or differential equations as soon as X is projective of general type.
By means of holomorphic Morse inequalities and a probabilistic analysis of the cohomology of jet
spaces, it is possible to prove a significant step of the generalized Green-Griffiths-Lang conjecture.
The use of holomorphic Morse inequalities was first suggested in [Dem07a], and then carried out
in an algebraic context by S. Diverio in his PhD work ([Div08, Div09]). The general more analytic
and more powerful results presented here first appeared in [Dem11, Dem12].

3.B. Positively curved hermitian metric on the Semple tautological bundle

To start with, we consider the directed variety (Cr, TCr) when Cr is equipped with its standard
hermitian metric. Pick a random k-jet

(3.3) f(t) = x+ tξ1 + t2ξ2 + · · ·+ tkξk +O(tk+1), ξs ∈ Cr, 1 6 s 6 k.

Given ε1, . . . , εk > 0, we get a natural Finsler metric on the tautological Green-Griffiths bundle
OGG,(Cr)k(−1) of (Cr, TCr) by putting

(3.4) ‖f‖GG
ε,p =

( k∑
s=1

(εs|ξs|)2p/s

)1/2p

.

In fact if λ · f denotes the t 7→ f(λt), we do have the required homogeneity property under the C∗
action, namely ‖λ · f‖GG

ε,p = |λ| ‖f‖GG
ε,p . The choice of a suitable integer p (e.g. p = lcm(1, 2, . . . , k)

or a multiple) yields a smooth metric on OGG,(Cr)k(−1). However, formula (3.4) is not G′k invariant
and therefore cannot be used to construct a metric on the Semple tautological bundle O(Cr)k(−1)
of (Cr, TCr). Let us assume that we have a regular k-jet, i.e. that ξ1 6= 0. By composing f
with a suitable element ϕ(t) = t + a2t

2 + . . . + akt
k + O(tk+1) and applying a Gram-Schmidt

orthogonalization argument, we can always obtain ξs ∈ (ξ1)⊥ for s > 2 (proceeding inductively
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with changes of variables t 7→ t+ ast
s). In fact, there is a unique ϕ ∈ G′k achieving this condition.

In view of (??), it is natural to define a Finsler metric on f (taken modG′k) by

(3.5) ‖f‖ε,β,p =

(
k∑
s=1

(
εs|ξ1|1−sβs |ξs|βs

)2p)1/2p

,

under the assumption that ξs ∈ (ξ1)⊥ for s > 2 ; here β = (β1, . . . , βs) is a positive weight with
β1 = 1 and 0 < βs 6 1/s for s > 2 (the first term in the sum is equal to (ε1|ξ1|)2p and we will in
fact take ε1 = 1). The curvature of O(Cr)k(1) fiberwise (i.e. on the rational variety Rr,k) is given

by i
2π∂∂ log ‖f‖2ε,p, provided holomorphic coordinates are used. We compute the curvature form

at a point ξ0 = (ξ0
s )16s6k such that ξ0

1 6= 0. By applying a dilation t 7→ f(λt), λ ∈ C∗, we can
assume that |ξ0

1 | = 1. A nearby point ξ = (ξs)16s6k can be written as ξ1 = ξ0
1 + ζ and ξs, s > 2,

with ζ, ξs ∈ (ξ0
1)⊥. Notice that ((ξ0

1)⊥)k is a k(r − 1)-dimensional complex subspace that defines
an affine chart of Rr,k containing ξ0. The difficulty is that we do not necessarily have 〈ξs, ξ1〉 = 0
any more, however 〈ξs, ξ1〉 = 〈ξs, ζ〉 = O(|ζ|) for s > 2, and we have to correct this by applying an
element ϕ ∈ G′k close to identity. When computing i∂∂(...) at ζ = 0, all terms O(ζ2, ζ 2, |ζ|3) can
be neglected, and the calculations performed below will be made modulo such terms. In particular,
higher powers of 〈ξs, ζ〉 can be be neglected as they are of the form O(ζ 2). A suitable choice is

ϕ(t) = t−
k∑
s=2

〈ξs, ζ〉ts.

Then

f ◦ ϕ(t) = x+

k∑
s=1

tsξ̃s +O(tk+1)

where ξ̃1 = ξ1 and

ξ̃s = ξs − 〈ξs, ζ〉ξ1 −
s−1∑
j=2

j〈ξs−j+1, ζ〉ξj modO(ζ2, ζ 2, |ζ|3), s > 2

(the final summation is obtained by expanding the terms (t −
∑

`>2〈ξ`, ζ〉t`)jξj for 2 6 j 6 s − 1

and ` = s− j + 1). Observe that |ξ1|2 = 1 + |ζ|2 and 〈ξj , ξ1〉 = 〈ξj , ξ0
1〉+ 〈ξj , ζ〉 = 〈ξj , ζ〉 for j > 2,

hence

〈ξ̃s, ξ1〉 = 〈ξs, ζ〉 − 〈ξs, ζ〉(1 + |ζ|2)−
s−1∑
j=2

j〈ξs−j+1, ζ〉〈ξj , ζ〉 = O(ζ2, ζ 2, |ζ|3),

so we do not need any more accurate correction. Moreover, by a straightforward calculation

|ξ̃s|2 =

∣∣∣∣ξs − s−1∑
j=2

j〈ξs−j+1, ζ〉ξj
∣∣∣∣2 − |〈ξs, ζ〉|2 modO(ζ2, ζ 2, |ζ|3).

Therefore, for ε1 = 1, we find

‖f‖ε,β,p =

(
|ξ1|2p +

k∑
s=2

(
εs|ξ1|1−sβs |ξ̃s|βs

)2p)1/2p

=

(
(1 + |ζ|2)p +

k∑
s=2

(
ε2
s(1 + |ζ|2)1−sβs |ξ̃s|2βs

)p)1/2p

(3.6)
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We take profit of the constants εs to perform a rescaling and set us = εsξs. Then our formula
becomes

(3.7) ‖f‖2ε,β,p =

(
(1 + |ζ|2)p +

k∑
s=2

(
(1 + |ζ|2)1−sβs |ũs|2βs

)p)1/2p

where (modulo negligible terms) the us and ũs are defined by u1 = u0
1 + ζ, |u0

1|2 = 1,

ũs = us − 〈us, ζ〉u1 −
s−1∑
j=2

εs
εjεs−j+1

j〈us−j+1, ζ〉uj

|ũs|2 =

∣∣∣∣us − s−1∑
j=2

εs
εjεs−j+1

j〈us−j+1, ζ〉uj
∣∣∣∣2 − |〈us, ζ〉|2.

By taking εk � εk−1 � · · · � ε2 � 1, all terms εs/(εjεs−j+1) will become negligible (e.g. equal to
ε if we put εs = ε2s−3, s > 2). However, we have to estimate the errors more precisely and for this,
we observe that for all complex numbers x, y and all γ > 0, we have

|xy| 6 |x|1+γ + |y|1+1/γ

(consider the disjoint cases |y| 6 |x|γ and |x| < |y|1/γ). In particular

(|usj+1||uj |)βs 6 |us−j+1|βs(1+γ) + |uj |βs(1+1/γ).

In this circumstance, we want that βs(1+γ) = βs−j+1 and βs(1+1/γ) = βj , whence γ = βs−j+1/βj ,
and so we get the condition

βs(1 + βs−j+1/βj) = βs−j+1, i.e
1

βj
+

1

βs−j+1
=

1

βs

for all j, s > 2. This leads us to take 1/βs = Const (s − 1), i.e. βs = α/(s− 1) for s > 2, and we
want to take the largest possible value of α > 0. In any case, with the above choise of the βs and
with |ζ| 6 1, we find

(3.8) ‖f‖2ε,β,p =

(
(1 + |ζ|2)p +

k∑
s=2

(1 + |ζ|2)p(1−sβs)
(
|us|2 − |〈us, ζ〉|2

)pβs)1/2p

(1±O(ε))

by expanding the ε terms in the squares |ũs|2. Modulo negligible terms O(ζ2, ζ 2, |ζ|3), we have

|us|2 − |〈us, ζ〉|2 = |us|2 + |us ∧ ζ|2 − |us|2|ζ|2 =
|us|2 + |us ∧ ζ|2

1 + |ζ|2
.

hence

(3.8′) ‖f‖2ε,β,p =

(
(1 + |ζ|2)p +

k∑
s=2

(1 + |ζ|2)p(1−(s+1)βs)
(
|us|2 + |us ∧ ζ|2

)pβs)1/2p

(1±O(ε)).

In order to ensure the plurisubharmonicity of the summation between the big parentheses (so as
to get a singular hermitian metric of OXk(1) of nonnegative relative curvature form), we want
βs = α/(s− 1) 6 1/(s+ 1). For s > 2, this leads us to take α = 1/3, hence βs = 1/3(s− 1).

A suitable choice is

ϕ(t) = t− |ξ0
1 |−2

k∑
s=2

〈ξs, ζ〉ts.

Then

f ◦ ϕ(t) = x+
k∑
s=1

tsξ̃s +O(tk+1)
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where ξ̃1 = ξ1 and

ξ̃s = ξs − |ξ0
1 |−2

(
〈ξs, ζ〉ξ1 +

s−1∑
j=2

j〈ξs−j+1, ζ〉ξj

)
modO(ζ2, ζ 2, |ζ|3), s > 2

(the final summation is obtained by expanding the terms (t−〈ξ`, ζ〉t`)jξj for ` = s−j+1, j 6 s−1.

As 〈ξ̃s, ξ1〉 = |ξ0
1 |2 + |ζ|2, we have

〈ξ̃s, ξ1〉 = 〈ξs, ζ〉 − 〈ξs, ζ〉
|ξ0

1 |2 + |ζ|2

|ξ0
1 |2

− |ξ0
1 |−2

s−1∑
j=2

j〈ξs−j+1, ζ〉〈ξj , ζ〉 = O(ζ2, ζ 2, |ζ|3),

so we do not need any more accurate correction. Moreover, by a straightforward calculation

|ξ̃s|2 =

∣∣∣∣ξs − s−1∑
j=2

j〈ξs−j+1, ζ〉
|ξ0

1 |2
ξj

∣∣∣∣2 − |〈ξs, ζ〉|2|ξ0
1 |2

modO(ζ2, ζ 2, |ζ|3).

Therefore, we find

‖f‖ε,p =

( k∑
s=1

εs
(
|ξ1|s−1|ξ̃s|

)2p/(2s−1)
)1/2p

=

( k∑
s=1

εs
(
(1 + |ζ|2)s−1|ξ̃s|

)p/(2s−1)
)1/2p

(3.6)

By rotating the coordinates and using a dilation, we can always reduce ourselves to computing
the curvature at a point ξ0 = (ξ0

s )16s6k such that ξ0
1 = (1, 0, . . . , 0) and 〈ξ0

s , ξ
0
1〉 = 0, i.e. ξ0

s,1 = 0 for

s > 2. A nearby point (ξs)16s6k is given by ξ1 = ξ0
1 + ζ = (1, ζ2, . . . , ζr) and ξs = (0, ξs,2, . . . , ξs,r),

and the k(r − 1) coordinates ζj and ξs,j , 2 6 s, j 6 r, precisely define the holomorphic structure.
The difficulty is that we do not necessarily have 〈ξs, ξ1〉 = 0 any more, however 〈ξs, ξ1〉 = 〈ξs, ζ〉 =
O(|ζ|) for s > 2, and we have to correct this by applying an element ϕ ∈ G′k close to identity.

When computing i∂∂(...) at ζ = 0, all terms O(ζ2, ζ 2, |ζ|3) can be neglected, and the calculations
performed below will be made modulo such terms. In particular, higher powers of 〈ξ2, ζ〉 can be be
neglected (they are of the form O(ζ 2)).

9.A. Introduction

Let (X,V ) be a directed variety. By definition, proving the algebraic degeneracy of an entire
curve f ; (C, TC) → (X,V ) means finding a non zero polynomial P on X such that P (f) = 0. As
already explained in § 8, all known methods of proof are based on establishing first the existence of
certain algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 of some order k, and then trying
to find enough such equations so that they cut out a proper algebraic locus Y ( X. We use for this
global sections of H0(X,EGG

k,mV
∗⊗O(−A)) where A is ample, and apply the fundamental vanishing

theorem 8.15. It is expected that the global sections of H0(X,EGG
k,mV

∗⊗O(−A)) are precisely those
which ultimately define the algebraic locus Y ( X where the curve f should lie. The problem is
then reduced to (i) showing that there are many non zero sections of H0(X,EGG

k,mV
∗⊗O(−A)) and

(ii) understanding what is their joint base locus. The first part of this program is the main result
of this section.

9.1. Theorem. Let (X,V ) be a directed projective variety such that KV is big and let A be an
ample divisor. Then for k � 1 and δ ∈ Q+ small enough, δ 6 c(log k)/k, the number of sections
h0(X,EGG

k,mV
∗ ⊗O(−mδA)) has maximal growth, i.e. is larger that ckm

n+kr−1 for some m > mk,

where c, ck > 0, n = dimX and r = rankV . In particular, entire curves f : (C, TC) → (X,V )
satisfy (many) algebraic differential equations.
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The statement is very elementary to check when r = rankV = 1, and therefore when n =
dimX = 1. In higher dimensions n > 2, only very partial results were known before Theorem 9.1
was obtained in [Dem11], [and they dealt merely with the absolute case V = TX ]. In dimension 2,
Theorem 9.1 is a consequence of the Riemann-Roch calculation of Green-Griffiths [GrGr79], com-
bined with a vanishing theorem due to Bogomolov [Bog79] – the latter actually only applies to the
top cohomology group Hn, and things become much more delicate when extimates of intermediate
cohomology groups are needed. In higher dimensions, Diverio [Div08, Div09] proved the existence
of sections of H0(X,EGG

k,mV
∗⊗O(−1)) whenever X is a hypersurface of Pn+1

C of high degree d > dn,

assuming k > n and m > mn. More recently, Merker [Mer15] was able to treat the case of arbitrary
hypersurfaces of general type, i.e. d > n + 3, assuming this time k to be very large. The latter
result is obtained through explicit algebraic calculations of the spaces of sections, and the proof is
computationally very intensive. Bérczi [Ber15, Ber18] also obtained related results with a different
approach based on residue formulas, assuming e.g. d > n9n.

All these approaches are algebraic in nature. Here, however, our techniques are based on more
elaborate curvature estimates in the spirit of Cowen-Griffiths [CoGr76]. They require holomorphic
Morse inequalities (see 9.10 below) – and we do not know how to translate our method in an alge-
braic setting. Notice that holomorphic Morse inequalities are essentially insensitive to singularities,

as we can pass to non singular models and blow-up X as much as we want: if µ : X̃ → X is a
modification then µ∗OX̃ = OX and Rqµ∗OX̃ is supported on a codimension 1 analytic subset (even
codimension 2 if X is smooth). It follows from the Leray spectral sequence that the cohomology

estimates for L on X or for L̃ = µ∗L on X̃ differ by negligible terms, i.e.

(9.2) hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, singular holomorphic Morse inequalities (in the form obtained by L. Bonavero [Bon93])
allow us to work with singular Hermitian metrics h; this is the reason why we will only require to
have big line bundles rather than ample line bundles. In the case of linear subspaces V ⊂ TX , we
introduce singular Hermitian metrics as follows.

9.3. Definition. A singular hermitian metric on a linear subspace V ⊂ TX is a metric h on the
fibers of V such that the function log h : ξ 7→ log |ξ|2h is locally integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tautological line bundle
OP (V )(−1) on the projectivized bundle P (V ) = V r{0}/C∗, and therefore its dual metric h∗ defines
a curvature current ΘOP (V )(1),h∗ of type (1, 1) on P (V ) ⊂ P (TX), such that

(9.4) p∗ΘOP (V )(1),h∗ =
i

2π
∂∂ log h, where p : V r {0} → P (V ).

If log h is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a smooth
function) on V , then log h is indeed locally integrable, and we have moreover

(9.5) ΘOP (V )(1),h∗ > −Cω

for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; conversely, if (9.5) holds,
then log h is quasi-psh.

9.6. Definition. We will say that a singular Hermitian metric h on V is admissible if h can be
written as h = eϕh0|V where h0 is a smooth positive definite Hermitian on TX and ϕ is a quasi-psh
weight with analytic singularities on X, as in Definition 9.3. Then h can be seen as a singular
hermitian metric on OP (V )(1), with the property that it induces a smooth positive definite metric
on a Zariski open set X ′ ⊂ X r Sing(V ) ; we will denote by Sing(h) ⊃ Sing(V ) the complement of
the largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V ∗) to be the sheaf of germs of holomorphic sections
sections of V ∗|XrSing(h) which are h∗-bounded near Sing(h); by the assumption on the analytic

singularities, this is a coherent sheaf (as the direct image of some coherent sheaf on P (V )), and
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actually, since h∗ = e−ϕh∗0, it is a subsheaf of the sheaf O(V ∗) := Oh0(V ∗) associated with a smooth
positive definite metric h0 on TX . If r is the generic rank of V and m a positive integer, we define
similarly

bK
[m]
V,h = sheaf of germs of holomorphic sections of (detV ∗|X′)

⊗m = (ΛrV ∗|X′)
⊗m(9.7)

which are deth∗-bounded,

so that bK
[m]
V := bK

[m]
V,h0

according to Def. 2.7. For a given admissible Hermitian structure (V, h),

we define similarly the sheaf EGG
k,mV

∗
h to be the sheaf of polynomials defined over XrSing(h) which

are “h-bounded”. This means that when they are viewed as polynomials P (z ; ξ1, . . . , ξk) in terms

of ξj = (∇1,0
h0

)jf(0) where ∇1,0
h0

is the (1, 0)-component of the induced Chern connection on (V, h0),
there is a uniform bound

(9.8)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ 6 C(∑ ‖ξj‖1/jh

)m
near points of X rX ′ (see section 2 for more details on this). Again, by a direct image argument,
one sees that EGG

k,mV
∗
h is always a coherent sheaf. The sheaf EGG

k,mV
∗ is defined to be EGG

k,mV
∗
h when

h = h0 (it is actually independent of the choice of h0, as follows from arguments similar to those
given in section 2). Notice that this is exactly what is needed to extend the proof of the vanishing
theorem 8.15 to the case of a singular linear space V ; the value distribution theory argument can
only work when the functions P (f ; f ′, . . . , f (k))(t) do not exhibit poles, and this is guaranteed
here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of k-jets
XGG
k = JkV r {0}/C∗, which by (9.3) consists of a fibration in weighted projective spaces, and its

associated tautological sheaf

L = OXGG
k

(1),

viewed rather as a virtual Q-line bundle OXGG
k

(m0)1/m0 with m0 = lcm(1, 2, ... , k). Then, if

πk : XGG
k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the isomorphism

(9.9) Hq(X,EGG
k,mV

∗ ⊗ F ) ' Hq(XGG
k ,OXGG

k
(m)⊗ π∗kF ).

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let us recall the main
statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex manifolds,
E → X a holomorphic vector bundle of rank r, and (L, h) a hermitian line bundle. The dimensions
hq(X,E ⊗Lm) of cohomology groups of the tensor powers E ⊗Lm satisfy the following asymptotic
estimates as m→ +∞ :
(WM) Weak Morse inequalities :

hq(X,E ⊗ Lm) 6 r
mn

n!

∫
X(L,h,q)

(−1)qΘn
L,h + o(mn) .

(SM) Strong Morse inequalities :∑
06j6q

(−1)q−jhj(X,E ⊗ Lm) 6 r
mn

n!

∫
X(L,h,6q)

(−1)qΘn
L,h + o(mn) .

(RR) Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lm) :=
∑

06j6n

(−1)jhj(X,E ⊗ Lm) = r
mn

n!

∫
X

Θn
L,h + o(mn) .
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Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e−ϕ is a singular hermitian metric with
analytic singularities of pole set P = ϕ−1(−∞), the estimates still hold provided all cohomology
groups are replaced by cohomology groups Hq(X,E⊗Lm⊗I(hm)) twisted with the corresponding
L2 multiplier ideal sheaves

I(hm) = I(kϕ) =
{
f ∈ OX,x, ∃V 3 x,

∫
V
|f(z)|2e−mϕ(z)dλ(z) < +∞

}
,

and provided the Morse integrals are computed on the regular locus of h, namely restricted to
X(L, h, q) r Σ : ∫

X(L,h,q)rΣ
(−1)qΘn

L,h.

The special case of 9.10 (SM) when q = 1 yields a very useful criterion for the existence of sections
of large multiples of L.

9.11. Corollary. Let L → X be a holomorphic line bundle equipped with a singular hermitian
metric h = e−ϕ with analytic singularities of pole set Σ = ϕ−1(−∞). Then we have the following
lower bounds

(a) at the h0 level :

h0(X,E ⊗ Lm) > h0(X,E ⊗ Lm ⊗ I(hm))

> h0(X,E ⊗ Lm ⊗ I(hm))− h1(X,E ⊗ Lm ⊗ I(hm))

> r
kn

n!

∫
X(L,h,61)rΣ

Θn
L,h − o(kn) .

Especially L is big as soon as
∫
X(L,h,61)rΣ Θn

L,h > 0 for some singular hermitian metric h on L.

(b) at the hq level :

hq(X,E ⊗ Lm ⊗ I(hm)) > r
kn

n!

∑
j=q−1,q,q+1

(−1)q
∫
X(L,h,j)rΣ

Θn
L,h − o(kn) .

Now, given a directed manifold (X,V ), we can associate with any admissible metric h on V a
metric (or rather a natural family) of metrics on L = OXGG

k
(1). The space XGG

k always possesses

quotient singularities if k > 2 (and even some more if V is singular), but we do not really care
since Morse inequalities still work in this setting thanks to Bonavero’s generalization. As we
will see, it is then possible to get nice asymptotic formulas as m → +∞. They appear to be of a
probabilistic nature if we take the components of the k-jet (i.e. the successive derivatives ξj = f (j)(0),
1 6 j 6 k) as random variables. This probabilistic behaviour was somehow already visible in the
Riemann-Roch calculation of [GrGr79]. In this way, assuming KV big, we produce a lot of sections
σj = H0(XGG

k ,OXGG
k

(m)⊗ π∗kF ), corresponding to certain divisors Zj ⊂ XGG
k . The hard problem

which is left in order to complete a proof of the generalized Green-Griffiths-Lang conjecture is to
compute the base locus Z =

⋂
Zj and to show that Y = πk(Z) ⊂ X must be a proper algebraic

variety.

9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective spaces,
and to evaluate the corresponding volume forms. Here we put dc = i

4π (∂ − ∂) so that ddc = i
2π∂∂.

The normalization of the dc operator is chosen such that we have precisely (ddc log |z|2)n = δ0 for
the Monge-Ampère operator in Cn. Given a k-tuple of “weights” a = (a1, . . . , ak), i.e. of integers
as > 0 with gcd(a1, . . . , ak) = 1, we introduce the weighted projective space P (a1, . . . , ak) to be the
quotient of Ck r {0} by the corresponding weighted C∗ action:

(9.12) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).
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As is well known, this defines a toric (k − 1)-dimensional algebraic variety with quotient singular-
ities. On this variety, we introduce the possibly singular (but almost everywhere smooth and non
degenerate) Kähler form ωa,p defined by

(9.13) π∗aωa,p = ddcϕa,p, ϕa,p(z) =
1

p
log

∑
16s6k

|zs|2p/as ,

where πa : Ckr{0} → P (a1, . . . , ak) is the canonical projection and p > 0 is a positive constant. It
is clear that ϕp,a is real analytic on Ckr{0} if p is an integer and a common multiple of all weights
as, and we will implicitly pick such a p later on to avoid any difficulty. Elementary calculations
give the following well-known formula for the volume

(9.14)

∫
P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since the cohomology class
of ωa,p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of looking at Ck, we
consider the weighted C∗ action defined by

(9.15) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).

Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives rise to a weighted
projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : Cr1 × . . .× Crk r {0} −→ P (a
[r1]
1 , . . . , a

[rk]
k )(9.16)

obtained by repeating rs times each weight as. On this space, we introduce the degenerate Kähler
metric ωa,r,p such that

(9.17) π∗a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =
1

p
log

∑
16s6k

|zs|2p/as

where |zs| stands now for the standard Hermitian norm (
∑

16j6rs |zs,j |
2)1/2 on Crs . This metric

is cohomologous to the corresponding “polydisc-like” metric ωa,p already defined, and therefore
Stokes theorem implies

(9.18)

∫
P (a

[r1]
1 ,...,a

[rk]

k )
ω|r|−1
a,r,p =

1

ar11 . . . arkk
.

Using standard results of integration theory (Fubini, change of variable formula...), one obtains:

9.19. Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which is continuous

outside of the hyperplane sections zs = 0. We also view f as a C∗-invariant continuous function
on
∏

(Crs r {0}). Then∫
P (a

[r1]
1 ,...,a

[rk]

k )
f(z)ω|r|−1

a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫
(x,u)∈∆k−1×

∏
S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏
16s6k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k−1)-simplex {xs > 0,
∑
xs = 1}, dx = dx1∧ . . .∧dxk−1 its standard measure,

and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invariant probability measure on the product∏
s S

2rs−1 of unit spheres in Cr1 × . . .× Crk . As a consequence

lim
p→+∞

∫
P (a

[r1]
1 ,...,a

[rk]

k )
f(z)ω|r|−1

a,r,p =
1∏
s a

rs
s

∫
∏
S2rs−1

f(u) dµ(u).
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Also, by elementary integrations by parts and induction on k, r1, . . . , rk, it can be checked that

(9.20)

∫
x∈∆k−1

∏
16s6k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏
16s6k

(rs − 1)! .

This implies that (|r| − 1)!
∏

16s6k
xrs−1
s

(rs−1)! dx is a probability measure on ∆k−1.

9.C. Probabilistic estimate of the curvature of k-jet bundles

Let (X,V ) be a compact complex directed non singular variety. To avoid any technical difficulty
at this point, we first assume that V is a holomorphic vector subbundle of TX , equipped with a
smooth Hermitian metric h.

According to the notation already specified in § 7, we denote by JkV the bundle of k-jets of
holomorphic curves f : (C, 0) → X tangent to V at each point. Let us set n = dimCX and
r = rankC V . Then JkV → X is an algebraic fiber bundle with typical fiber Crk, and we get a
projectivized k-jet bundle

(9.21) XGG
k := (JkV r {0})/C∗, πk : XGG

k → X

which is a P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X, and we have the direct image
formula (πk)∗OXGG

k
(m) = O(EGG

k,mV
∗) (cf. Proposition 7.9). In the sequel, we do not make a direct

use of coordinates, because they need not be related in any way to the Hermitian metric h of V .
Instead, we choose a local holomorphic coordinate frame (eα(z))16α6r of V on a neighborhood U
of x0, such that

(9.22) 〈eα(z), eβ(z)〉 = δαβ +
∑

16i,j6n, 16α,β6r

cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a normalized coordinate

system always exists, and that the Chern curvature tensor i
2πD

2
V,h of (V, h) at x0 is then given by

(9.23) ΘV,h(x0) = − i

2π

∑
i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ.

Consider a local holomorphic connection ∇ on V|U (e.g. the one which turns (eα) into a parallel

frame), and take ξk = ∇kf(0) ∈ Vx defined inductively by ∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This
gives a local identification

JkV|U → V ⊕k|U , f 7→ (ξ1, . . . , ξk) = (∇f(0), . . . ,∇fk(0)),

and the weighted C∗ action on JkV is expressed in this setting by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

Now, we fix a finite open covering (Uα)α∈I of X by open coordinate charts such that V|Uα is trivial,
along with holomorphic connections ∇α on V|Uα . Let θα be a partition of unity of X subordinate
to the covering (Uα). Let us fix p > 0 and small parameters 1 = ε1 � ε2 � . . . � εk > 0. Then
we define a global weighted Finsler metric on JkV by putting for any k-jet f ∈ JkxV

(9.24) Ψh,p,ε(f) :=
(∑
α∈I

θα(x)
∑

16s6k

ε2p
s ‖∇sαf(0)‖2p/sh(x)

)1/p

where ‖ ‖h(x) is the Hermitian metric h of V evaluated on the fiber Vx, x = f(0). The function
Ψh,p,ε satisfies the fundamental homogeneity property

(9.25) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2

with respect to the C∗ action on JkV , in other words, it induces a Hermitian metric on the dual
L∗ of the tautological Q-line bundle Lk = OXGG

k
(1) over XGG

k . The curvature of Lk is given by

(9.26) π∗kΘLk,Ψ
∗
h,p,ε

= ddc log Ψh,p,ε
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Our next goal is to compute precisely the curvature and to apply holomorphic Morse inequalities
to L → XGG

k with the above metric. It might look a priori like an untractable problem, since
the definition of Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the asymptotic
behavior of Ψh,p,ε as εs/εs−1 → 0 is in some sense uniquely defined and very natural. It will lead
to a computable asymptotic formula, which is moreover simple enough to produce useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic connection ∇ of V|U ,

let us define the components of a k-jet f ∈ JkV by ξs = ∇sf(0), and consider the rescaling
transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) = (ε1
1ξ1, ε

2
2ξ2, . . . , ε

k
kξk) on JkxV , x ∈ U

(it commutes with the C∗-action but is otherwise unrelated and not canonically defined over X as
it depends on the choice of ∇). Then, if p is a multiple of lcm(1, 2, . . . , k) and εs/εs−1 → 0 for all
s = 2, . . . , k, the rescaled function Ψh,p,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges towards( ∑
16s6k

‖ξs‖2p/sh

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with some holomorphic

connection ∇. Let us pick another holomorphic connection ∇̃ = ∇ + Γ where Γ ∈ H0(U,Ω1
X ⊗

Hom(V, V ). Then ∇̃2f = ∇2f + Γ(f)(f ′) · f ′, and inductively we get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U which is of
weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corresponding change in
the parametrization of JkV|U is given by a C∗-homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε1
1ξ1, . . . , ε

k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε1

1ξ̃1, . . . , ε
k
kξ̃k).

Then

ξ̃s,ε = ξs,ε + εss Ps(x ; ε−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients as
εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the sums∑

16s6k

ε2p
s ‖ξk‖

2p/s
h =

∑
16s6k

‖ξk,ε‖
2p/s
h

corresponding to ξk = ∇sαf(0) by means of the partition of unity
∑
θα(x) = 1. We see that

by using the rescaled variables ξs,ε the changes occurring when replacing a connection ∇α by an
alternative one ∇β are arbitrary small in C∞ topology, with error terms uniformly controlled in

terms of the ratios εs/εs−1 on all compact subsets of V k r {0}. This shows that in C∞ topology,

Ψh,p,ε ◦ρ−1
∇,ε(ξ1, . . . , ξk) converges uniformly towards (

∑
16s6k ‖ξk‖

2p/s
h )1/p, whatever the trivializing

open set U and the holomorphic connection ∇ used to evaluate the components and perform the
rescaling are.

Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))16α6r satisfying (9.22) on
a neighborhood U of x0. We introduce the rescaled components ξs = εss∇sf(0) on JkV|U and
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compute the curvature of

Ψh,p,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) '

( ∑
16s6k

‖ξs‖2p/sh

)1/p

(by Lemma 9.27, the errors can be taken arbitrary small in C∞ topology). We write ξs =∑
16α6r ξsαeα. By (9.22) we have

‖ξs‖2h =
∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).

The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

( ∑
16s6k

‖ξs‖2p/sh

)1/p

=

( ∑
16s6k

(∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑

α |ξsα|2. A straightforward calculation yields

log Ψ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑
16s6k

|ξs|2p/s +
∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).

By (9.26), the curvature form of Lk = OXGG
k

(1) is given at the central point x0 by the following

formula.

9.28. Proposition. With the above choice of coordinates and with respect to the rescaled compo-
nents ξs = εss∇sf(0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ
∗
h,p,ε

(x0, [ξ]) ' ωa,r,p(ξ) +
i

2π

∑
16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max26s6k(εs/εs−1)s) uniformly on the compact variety XGG
k . Here

ωa,r,p is the (degenerate) Kähler metric associated with the weight a = (1[r], 2[r], . . . , k[r]) of the

canonical C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error terms in the calcu-
lations below. Since ωa,r,p is positive definite on the fibers of XGG

k → X (at least outside of the
axes ξs = 0), the index of the (1, 1) curvature form ΘLk,Ψ

∗
h,p,ε

(z, [ξ]) is equal to the index of the

(1, 1)-form

(9.29) γk(z, ξ) :=
i

2π

∑
16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj

depending only on the differentials (dzj)16j6n on X. The q-index integral of (Lk,Ψ
∗
h,p,ε) on XGG

k

is therefore equal to∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=

=
(n+ kr − 1)!

n!(kr − 1)!

∫
z∈X

∫
ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)

n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where γk(z, ξ) has sig-
nature (n − q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)

n is a determinant, the product
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1lγk,q(z, ξ)γk(z, ξ)
n gives rise to a continuous function on XGG

k . Formula 9.20 with r1 = . . . = rk = r
and as = s yields the slightly more explicit integral∫

XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r
×∫

z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n
(x1 . . . xk)

r−1

(r − 1)!k
dx dµ(u),

where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(9.30) gk(z, x, u) =
i

2π

∑
16s6k

1

s
xs
∑
i,j,α,β

cijαβ(z)usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(9.31) dνk,r(x) = (kr − 1)!
(x1 . . . xk)

r−1

(r − 1)!k
dx

is a probability measure on ∆k−1, and we can rewrite∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!
×∫

z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n dνk,r(x) dµ(u).(9.32)

Now, formula (9.30) shows that gk(z, x, u) is a “Monte Carlo” evaluation of the curvature tensor,
obtained by averaging the curvature at random points us ∈ S2r−1 with certain positive weights
xs/s ; we should then think of the k-jet f as some sort of random variable such that the derivatives
∇kf(0) are uniformly distributed in all directions. Let us compute the expected value of (x, u) 7→
gk(z, x, u) with respect to the probability measure dνk,r(x) dµ(u). Since

∫
S2r−1 usαusβdµ(us) = 1

r δαβ
and

∫
∆k−1

xs dνk,r(x) = 1
k , we find

E(gk(z, •, •)) =
1

kr

∑
16s6k

1

s
· i

2π

∑
i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(9.33) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,

where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric induced by h. It is
natural to guess that gk(z, x, u) behaves asymptotically as its expected value E(gk(z, •, •)) when k
tends to infinity. If we replace brutally gk by its expected value in (9.32), we get the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫
X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index set in X. The leading
constant is equivalent to (log k)n/n!(k!)r modulo a multiplicative factor 1+O(1/ log k). By working
out a more precise analysis of the deviation, the following result has been proved in [Dem11] and
[Dem12].

9.34. Probabilistic estimate. Fix smooth Hermitian metrics h on V and ω = i
2π

∑
ωijdzi∧dzj

on X. Denote by ΘV,h = − i
2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ the curvature tensor of V with respect to

an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑
16i,j6n

ηijdzi ∧ dzj , ηij =
∑

16α6r

cijαα.
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Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the induced metric

Ψ∗h,p,ε (as defined above, with 1 = ε1 � ε2 � . . .� εk > 0). When k tends to infinity, the integral

of the top power of the curvature of Lk on its q-index set XGG
k (Lk, q) is given by∫

XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(log k)n

n! (k!)r

(∫
X

1lη,qη
n +O((log k)−1)

)
for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms of ΘV , η
and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive along the
fibers of XGG

k → X, by the plurisubharmonicity of the weight (this is true even when the partition
of unity terms are taken into account, since they depend only on the base); therefore the q-index
sets are empty for q > n. It will be useful to extend the above estimates to the case of sections of

(9.35) Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the natural projection.

We assume here that F is also equipped with a smooth Hermitian metric hF . In formulas (9.32–
9.34), the renormalized curvature ηk(z, x, u) of Lk takes the form

(9.36) ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gk(z, x, u) + ΘF,hF (z),

and by the same calculations its expected value is

(9.37) η(z) := E(ηk(z, •, •)) = ΘdetV ∗,deth∗(z) + ΘF,hF (z).

Then the variance estimate for ηk − η is unchanged, and the Lp bounds for ηk are still valid, since
our forms are just shifted by adding the constant smooth term ΘF,hF (z). The probabilistic estimate
9.34 is therefore still true in exactly the same form, provided we use (9.35 – 9.37) instead of the
previously defined Lk, ηk and η. An application of holomorphic Morse inequalities gives the desired
cohomology estimates for

hq
(
X,EGG

k,mV
∗ ⊗O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

9.38. Theorem. Let (X,V ) be a directed manifold, F → X a Q-line bundle, (V, h) and (F, hF )
smooth Hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = ΘdetV ∗,deth∗ + ΘF,hF .

Then for all q > 0 and all m� k � 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗mk )) 6

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,q)

(−1)qηn +O((log k)−1)

)
,(a)

h0(XGG
k ,O(L⊗mk )) >

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,61)

ηn −O((log k)−1)

)
,(b)

χ(XGG
k ,O(L⊗mk )) =

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V ∗ ⊗ F )n +O((log k)−1)

)
.(c)
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Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation (9.38 c) in the spe-
cial case V = T ∗X and F = OX . Their proof is much simpler since it relies only on Chern class
calculations, but it cannot provide any information on the individual cohomology groups, except
in very special cases where vanishing theorems can be applied; in fact in dimension 2, the Euler
characteristic satisfies χ = h0−h1 +h2 6 h0 +h2, hence it is enough to get the vanishing of the top
cohomology group H2 to infer h0 > χ ; this works for surfaces by means of a well-known vanishing
theorem of Bogomolov which implies in general

Hn

(
X,EGG

k,mT
∗
X ⊗O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)))

= 0

as soon as KX ⊗ F is big and m� 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], everything works

almost unchanged in the case where V ⊂ TX has singularities and h is an admissible metric on

V (see Definition 9.6). We only have to find a blow-up µ : X̃k → Xk so that the resulting pull-
backs µ∗Lk and µ∗V are locally free, and µ∗ deth∗, µ∗Ψh,p,ε only have divisorial singularities.
Then η is a (1, 1)-current with logarithmic poles, and we have to deal with smooth metrics on
µ∗L⊗mk ⊗ O(−mEk) where Ek is a certain effective divisor on Xk (which, by our assumption in
9.6, does not project onto X). The cohomology groups involved are then the twisted cohomology
groups

Hq(XGG
k ,O(L⊗mk )⊗ Jk,m)

where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the Morse integrals
need only be evaluated in the complement of the poles, that is on X(η, q)rS where S = Sing(V )∪
Sing(h). Since

(πk)∗
(
O(L⊗mk )⊗ Jk,m

)
⊂ EGG

k,mV
∗ ⊗O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-twisted line bundle
O(L⊗mk ) on XGG

k ). If we assume that KV ⊗ F is big, these considerations also allow us to obtain
a strong estimate in terms of the volume, by using an approximate Zariski decomposition on a
suitable blow-up of (X,V ). The following corollary implies in particular Theorem 9.1.

9.39. Corollary. If F is an arbitrary Q-line bundle over X, one has

h0

(
XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

>
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),

when m� k � 1, in particular there are many sections of the k-jet differentials of degree m twisted
by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable log-resolution µ :

X̃ → X which converts KV into an invertible sheaf. There is of course nothing to prove if KV ⊗F
is not big, so we can assume Vol(KV ⊗F ) > 0. Let us fix smooth Hermitian metrics h0 on TX and
hF on F . They induce a metric µ∗(deth−1

0 ⊗hF ) on µ∗(KV ⊗F ) which, by our definition of KV , is
a smooth metric (the divisor produced by the log-resolution gets simplified with the degeneration
divisor of the pull-back of the quotient metric on detV ∗ induced by O(ΛrT ∗X) → O(ΛrV ∗)). By
the result of Fujita [Fuj94] on approximate Zariski decomposition, for every δ > 0, one can find a

modification µδ : X̃δ → X dominating µ such that

µ∗δ(KV ⊗ F ) = O
X̃δ

(A+ E)

where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An > Vol(KV ⊗ F )− δ.
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If we take a smooth metric hA with positive definite curvature form ΘA,hA , then we get a singular

Hermitian metric hAhE on µ∗δ(KV ⊗F ) with poles along E, i.e. the quotient hAhE/µ
∗
δ(deth−1

0 ⊗hF )

is of the form e−ϕ where ϕ is quasi-psh with log poles log |σE |2 (mod C∞(X̃δ)) precisely given by
the divisor E. We then only need to take the singular metric h on TX defined by

h = h0e
1
r

(µδ)∗ϕ

(the choice of the factor 1
r is there to correct adequately the metric on detV ). By construction h

induces an admissible metric on V and the resulting curvature current η = ΘKV ,deth∗ + ΘF,hF is
such that

µ∗δη = ΘA,hA + [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by∫
X(η,0)rS

ηn =

∫
X̃δ

Θn
A,hA

= An > Vol(KV ⊗ F )− δ

and (9.39) follows from the fact that δ can be taken arbitrary small.

The following corollary implies Theorem 0.12.

9.40. Corollary. Let (X,V ) be a projective directed manifold such that K•V is big, and A an

ample Q-divisor on X such that K•V ⊗O(−A) is still big. Then, if we put δk = 1
kr (1 + 1

2 + . . .+ 1
k ),

r = rankV , the space of global invariant jet differentials

H0(X,Ek,mV
∗ ⊗O(−mδkA))

has (many) non zero sections for m� k � 1 and m sufficiently divisible.

Proof. Corollary 9.39 produces a non zero section P ∈ H0(EGG
k,mV

∗⊗OX(−mδkA)) for m� k � 1,

and the arguments given in subsection 7.D (cf. (7.30)) yield a non zero section

Q ∈ H0(Ek,m′V
∗ ⊗OX(−mδkA)), m′ 6 m.

By raising Q to some power p and using a section σ ∈ H0(X,OX(dA)), we obtain a section

Qpσmq ∈ H0(X,Ek,pm′V
∗ ⊗O(−m(pδk − qd)A)).

One can adjust p and q so that m(pδk − qd) = pm′δk and pm′δkA is an integral divisor.

9.41. Example. In some simple cases, the above estimates can lead to very explicit results.
Take for instance X to be a smooth complete intersection of multidegree (d1, d2, . . . , ds) in Pn+s

C
and consider the absolute case V = TX . Then KX = OX(d1 + . . . + ds − n − s − 1) and one can
check via explicit bounds of the error terms (cf. [Dem11], [Dem12]) that a sufficient condition for
the existence of sections is

k > exp
(

7.38nn+1/2
( ∑

dj + 1∑
dj − n− s− a− 1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete intersections of general
type. On the other hand, even when the degrees dj tend to +∞, we still get a large lower bound

k ∼ exp(7.38nn+1/2) on the order of jets, and this is far from being optimal : Diverio [Div08, Div09]
has shown e.g. that one can take k = n for smooth hypersurfaces of high degree, using the algebraic
Morse inequalities of Trapani [Tra95]. The next paragraph uses essentially the same idea, in our
more analytic setting.
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9.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (cijαβ) satisfies a lower bound

(9.42)
∑
i,j,α,β

cijαβξiξjuαuβ > −
∑

γijξiξj |u|2, ∀ξ ∈ TX , u ∈ V

for some semipositive (1, 1)-form γ = i
2π

∑
γij(z) dzi ∧ dzj on X. This is the same as assuming

that the curvature tensor of (V ∗, h∗) satisfies the semipositivity condition

(9.42′) ΘV ∗,h∗ + γ ⊗ IdV ∗ > 0

in the sense of Griffiths, or equivalently ΘV,h − γ ⊗ IdV 6 0. Thanks to the compactness of X,
such a form γ always exists if h is an admissible metric on V . Now, instead of replacing ΘV

with its trace free part Θ̃V and exploiting a Monte Carlo convergence process, we replace ΘV with
Θγ
V = ΘV − γ ⊗ IdV 6 0, i.e. cijαβ by cγijαβ = cijαβ + γijδαβ. Also, we take a line bundle F = A−1

with ΘA,hA > 0, i.e. F seminegative. Then our earlier formulas (9.28), (9.35), (9.36) become instead

gγk (z, x, u) =
i

2π

∑
16s6k

1

s
xs
∑
i,j,α,β

cγijαβ(z)usαusβ dzi ∧ dzj > 0,(9.43)

Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,(9.44)

ΘLk = ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gγk (z, x, u)− (ΘA,hA(z) + rγ(z)).(9.45)

In fact, replacing ΘV by ΘV − γ⊗ IdV has the effect of replacing ΘdetV ∗ = Tr ΘV ∗ by ΘdetV ∗ + rγ.
The major gain that we have is that ηk = ΘLk is now expressed as a difference of semipositive
(1, 1)-forms, and we can exploit the following simple lemma, which is the key to derive algebraic
Morse inequalities from their analytic form (cf. [Dem94], Theorem 12.3).

9.46. Lemma. Let η = α − β be a difference of semipositive (1, 1)-forms on an n-dimensional
complex manifold X, and let 1lη,6q be the characteristic function of the open set where η is non
degenerate with a number of negative eigenvalues at most equal to q. Then

(−1)q1lη,6q η
n 6

∑
06j6q

(−1)q−jαn−jβj ,

in particular

1lη,61 η
n > αn − nαn−1 ∧ β for q = 1.

Proof. Without loss of generality, we can assume α > 0 positive definite, so that α can be taken as
the base hermitian metric on X. Let us denote by

λ1 > λ2 > . . . > λn > 0

the eigenvalues of β with respect to α. The eigenvalues of η = α− β are then given by

1− λ1 6 . . . 6 1− λq 6 1− λq+1 6 . . . 6 1− λn,

hence the open set {λq+1 < 1} coincides with the support of 1lη,6q, except that it may also contain
a part of the degeneration set ηn = 0. On the other hand we have(

n

j

)
αn−j ∧ βj = σjn(λ)αn,

where σjn(λ) is the j-th elementary symmetric function in the λj ’s. Thus, to prove the lemma, we
only have to check that∑

06j6q

(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q
∏

16j6n

(1− λj) > 0.
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This is easily done by induction on n (just split apart the parameter λn and write σjn(λ) = σjn−1(λ)+

σj−1
n−1(λ)λn).

We apply here Lemma 9.46 with

α = gγk (z, x, u), β = βk =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
(ΘA,hA + rγ),

which are both semipositive by our assumption. The analogue of (9.32) leads to∫
XGG
k (Lk,61)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgγk−βk,61 (gγk − βk)
n dνk,r(x) dµ(u)

>
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

((gγk )n − n(gγk )n−1 ∧ βk) dνk,r(x) dµ(u).

The resulting integral now produces a “closed formula” which can be expressed solely in terms of
Chern classes (at least if we assume that γ is the Chern form of some semipositive line bundle). It
is just a matter of routine to find a sufficient condition for the positivity of the integral. One can
first observe that gγk is bounded from above by taking the trace of (cijαβ), in this way we get

0 6 gγk 6

( ∑
16s6k

xs
s

)(
ΘdetV ∗ + rγ

)
where the right hand side no longer depends on u ∈ (S2r−1)k. Also, gγk can be written as a sum of
semipositive (1, 1)-forms

gγk =
∑

16s6k

xs
s
θγ(us), θγ(u) =

∑
i,j,α,β

cγijαβuαuβ dzi ∧ dzj ,

hence for k > n we have

(gγk )n > n!
∑

16s1<...<sn6k

xs1 . . . xsn
s1 . . . sn

θγ(us1) ∧ θγ(us2) ∧ . . . ∧ θγ(usn).

Since
∫
S2r−1 θ

γ(u) dµ(u) = 1
r Tr(ΘV ∗ + γ) = 1

rΘdetV ∗ + γ, we infer from this∫
(x,u)∈∆k−1×(S2r−1)k

(gγk )n dνk,r(x) dµ(u)

> n!
∑

16s1<...<sn6k

1

s1 . . . sn

(∫
∆k−1

x1 . . . xn dνk,r(x)
)(1

r
ΘdetV ∗ + γ

)n
.

By putting everything together, we conclude:

9.47. Theorem. Assume that ΘV ∗ > −γ⊗ IdV ∗ with a semipositive (1, 1)-form γ on X. Then the
Morse integral of the line bundle

Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
, A > 0

satisfies for k > n the inequality

1

(n+ kr − 1)!

∫
XGG
k (Lk,61)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

>
1

n!(k!)r(kr − 1)!

∫
X
cn,r,k

(
ΘdetV ∗ + rγ

)n − c′n,r,k(ΘdetV ∗ + rγ
)n−1 ∧

(
ΘA,hA + rγ

)
(∗)
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where

cn,r,k =
n!

rn

( ∑
16s1<...<sn6k

1

s1 . . . sn

)∫
∆k−1

x1 . . . xn dνk,r(x),

c′n,r,k =
n

kr

(
1 +

1

2
+ . . .+

1

k

)∫
∆k−1

( ∑
16s6k

xs
s

)n−1
dνk,r(x).

Especially we have a lot of sections in H0(XGG
k ,mLk), m� 1, as soon as the difference occurring

in (∗) is positive.

The statement is also true for k < n, but then cn,r,k = 0 and the lower bound (∗) cannot

be positive. By Corollary 9.11, it still provides a non trivial lower bound for h0(XGG
k ,mLk) −

h1(XGG
k ,mLk), though. For k > n we have cn,r,k > 0 and (∗) will be positive if ΘdetV ∗ is large

enough. By Formula 9.20 we have

(9.48) cn,r,k =
n! (kr − 1)!

(n+ kr − 1)!

∑
16s1<...<sn6k

1

s1 . . . sn
>

(kr − 1)!

(n+ kr − 1)!
,

(with equality for k = n), and by ([Dem11], Lemma 2.20 (b)) we get the upper bound

c′n,k,r
cn,k,r

6
(kr + n− 1)rn−2

k/n

(
1 +

1

2
+ . . .+

1

k

)n[
1 +

1

3

n−1∑
m=2

2m(n− 1)!

(n− 1−m)!

(
1 +

1

2
+ . . .+

1

k

)−m]
.

The case k = n is especially interesting. For k = n > 2 one can show (with r 6 n and Hn denoting
the harmonic sequence) that

(9.49)
c′n,k,r
cn,k,r

6
n2 + n− 1

3
nn−2 exp

(2(n− 1)

Hn
+ n logHn

)
6

1

3

(
n log(n log 24n)

)n
.

We will later need the particular values that can be obtained by direct calculations (cf. Formula
(9.20 and [Dem11, Lemma 2.20]).

c2,2,2 =
1

20
, c′2,2,2 =

9

16
,

c′2,2,2
c2,2,2

=
45

4
,(9.502)

c3,3,3 =
1

990
, c′3,3,3 =

451

4860
,

c′3,3,3
c3,3,3

=
4961

54
.(9.503)
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[Dem85] Demailly, J.-P.: Champs magnétiques et inégalités de Morse pour la d′′-cohomologie. Ann. Inst.

Fourier (Grenoble) 35 (1985) 189–229.
[Dem90a] Demailly, J.-P.: Cohomology of q-convex spaces in top degrees. Math. Zeitschrift 203 (1990)

283–295.
[Dem90b] Demailly, J.-P.: Singular hermitian metrics on positive line bundles. Proceedings of the Bayreuth

conference “Complex algebraic varieties”, April 2–6, 1990, edited by K. Hulek, T. Peternell,
M. Schneider, F. Schreyer, Lecture Notes in Math. n◦ 1507, Springer-Verlag (1992), 87–104.

[Dem92] Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Alg.
Geom. 1 (1992) 361–409.

[Dem94] Demailly, J.-P.: L2 vanishing theorems for positive line bundles and adjunction theory. alg-
geom/9410022 ; Lecture Notes of the CIME Session “Transcendental methods in Algebraic
Geometry”, Cetraro, Italy, July 1994, Ed. F. Catanese, C. Ciliberto, Lecture Notes in Math.,
Vol. 1646, 1–97.



30 JEAN-PIERRE DEMAILLY

[Dem95] Demailly, J.-P.: Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differen-
tials. AMS Summer School on Algebraic Geometry, Santa Cruz 1995, Proc. Symposia in Pure
Math., ed. by J. Kollár and R. Lazarsfeld, Amer. Math. Soc., Providence, RI (1997), 285—360.

[Dem97] Demailly, J.-P.: Variétés hyperboliques et équations différentielles algébriques. Gaz. Math. 73
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