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Ample vector bundles

Let X be a projective n-dimensional manifold and £E — X a
holomorphic vector bundle of rank r > 1.
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Ample vector bundles
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holomorphic vector bundle of rank r > 1.
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associated line bundle Op(g)(1) on P(E) is ample,
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E — X is said to be ample in the sense of Hartshorne if the
associated line bundle Op(g)(1) on P(E) is ample, i.e. by Kodaira
<= 3 C* hermitian metric on Op)(1) with positive curvature.
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Ample vector bundles

Let X be a projective n-dimensional manifold and £E — X a
holomorphic vector bundle of rank r > 1.

Ample vector bundles

E — X is said to be ample in the sense of Hartshorne if the
associated line bundle Op(g)(1) on P(E) is ample, i.e. by Kodaira
<= 3 C* hermitian metric on Op)(1) with positive curvature.

This is equivalent to the existence of a a strongly pseudoconvex
tubular neighborhood U of the 0-section in E*, i.e. of a negatively
curved Finsler metric on E*.

Geometric interpretation:
U can be taken S! invariant

U~ a1 AU
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Chern curvature tensor and positivity concepts

Chern curvature tensor

This is Oy = iVZ ), € C*(AY' T ® Hom(E, E)), written
@E,h = Z Cjk)\udzj VAN dfk & ej{ ® €u

1<j,k<n, 1<Ap<r
in terms of an orthonormal frame (e))1<x<, of E.
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Chern curvature tensor and positivity concepts

Chern curvature tensor

This is Oy = iVZ ), € C*(AY' T ® Hom(E, E)), written
@E,h = Z Cjk)\udzj VAN dfk & ei ® €u

PAs bl dbZ=cny

in terms of an orthonormal frame (e))1<x<, of E.

Griffiths and Nakano positivity

One looks at the associated quadratic formon S = Tx ® E

éE,h(f ® v) = (Ogn(&, &) v,v)p = Z CikanliExVaV .

1<j,k<n, 1<\ u<r
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Chern curvature tensor and positivity concepts

Chern curvature tensor

This is Oy = iVZ ), € C*(AY' T ® Hom(E, E)), written
@E,h = Z Cjk)\udzj VAN dfk & ei ® €u

in terms of an orthonormal frame (e))1<x<, of E.

Griffiths and Nakano positivity

One looks at the associated quadratic formon S = Tx ® E
Oe (€ ® V) i= (O h(£,E) v, v)h = > Ca&i€xVaV -
Then E is said to be: 1<k, IsAnsr
o Griffiths positive (Griffiths 1969) if at any point z € X
Oen(E@Vv) >0, YO#£E€E Tx,, VO£V EE,
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Chern curvature tensor and positivity concepts

Chern curvature tensor

This is Oy = iVZ ), € C*(AY' T ® Hom(E, E)), written
@E,h = Z Cjk)\udzj VAN dfk & ei ® €u

in terms of an orthonormal frame (e))1<x<, of E.

Griffiths and Nakano positivity

One looks at the associated quadratic formon S = Tx ® E
Oe (€ ® V) i= (O h(£,E) v, v)h = > Ca&i€xVaV -
Then E is said to be: 1<pksm 1A psr
o Griffiths positive (Griffiths 1969) if at any point z € X
Oen(E®@Vv) >0, VO£EE Tx,, VO£ v EE,
@ Nakano positive (Nakano 1955) if at any point z € X
Oen(r)= Y. CowTiaTku >0, YO£TE Tx,®E,.

1<j,k<n, 1<\ u<r
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Geometric interpretation of Griffiths positivity

Griffiths positivity of E is equivalent to the existence of a strongly
pseudoconvex neighborhood U’ of the 0-section in E* whose fibers
are (varying) hermitian balls.

o5 .
1 [ D

(Nakano > 0 is more restrictive than strict pseudoconvexity of U'.)
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Geometric interpretation of Griffiths positivity

Griffiths positivity of E is equivalent to the existence of a strongly
pseudoconvex neighborhood U’ of the 0-section in E* whose fibers
are (varying) hermitian balls.

] s

7 X
| .

(Nakano > 0 is more restrictive than strict pseudoconvexity of U'.)

Easy and well known facts
E Nakano positive = E Griffiths positive = E ample.
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Geometric interpretation of Griffiths positivity

Griffiths positivity of E is equivalent to the existence of a strongly
pseudoconvex neighborhood U’ of the 0-section in E* whose fibers
are (varying) hermitian balls.

] s

7 X
| .

(Nakano > 0 is more restrictive than strict pseudoconvexity of U'.)

Easy and well known facts
E Nakano positive = E Griffiths positive = E ample.

In fact, E Griffiths positive = Op(g)(1) positive.
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Dual Nakano positivity — a conjecture

Curvature tensor of the dual bundle E*

@E*J, = —T@Eh = — Z Cjk,u)\dzj VAN d?k & (e;)* & e

)

"
1<j,k<n, 1<Au<r
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Dual Nakano positivity — a conjecture

Curvature tensor of the dual bundle E*

O p=—"Ogp=— Z Ckurdzj A dZ, ® (€7)" ® €,

"
1<j,k<n, 1<Au<r

V.

Dual Nakano positivity

One requires
—Op: 4(7) = Z CikunTiaTku >0, VO#T€E Tx,® E;.

1<j,k<n, 1<Au<r

<
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Dual Nakano positivity — a conjecture

Curvature tensor of the dual bundle E*

O p=—"Ogp=— Z Ckurdzj A dZ, ® (€7)" ® €,

"
1<j,k<n, 1<Au<r

V.

Dual Nakano positivity

One requires
_eE*vh(T) - Z Cjk,u)\Tj)\?k,u > 07 V0 7£ T € TX,z ® E;<

1<j,k<n, 1<\ u<r

<

Dual Nakano positivity is clearly stronger than Griffiths positivity.
Also, it is better behaved than Nakano positivity, e.g.
E dual Nakano positive

= any quotient @ = E/S is also dual Nakano positive.
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Dual Nakano positivity — a conjecture

Curvature tensor of the dual bundle E*

O p=—"Ogp=— Z Ckurdzj A dZ, ® (€7)" ® €,

"
1<j,k<n, 1<Au<r

|

Dual Nakano positivity
One requires
_eE*vh(T) - Z Cjk,u)\Tj/\?k,u, > 07 V0 7£ T € TX,z ® E;<

1<j,k<n, 1<\ u<r

Dual Nakano positivity is clearly stronger than Griffiths positivity.
Also, it is better behaved than Nakano positivity, e.g.
E dual Nakano positive

= any quotient @ = E/S is also dual Nakano positive.

(Very speculative) conjecture

Is it true that E ample = E dual Nakano positive 7
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Geometric interpretation of the conjecture
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Geometric interpretation of the conjecture

Basic question. Is there a (geometric, analytic) procedure that
turns the strictly pseudoconvex neighborhood U into another
strictly pseudoconvex U’ that would be a ball bundle 7
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Geometric interpretation of the conjecture

Basic question. Is there a (geometric, analytic) procedure that
turns the strictly pseudoconvex neighborhood U into another
strictly pseudoconvex U’ that would be a ball bundle 7

Answer is yes if n = dim X =1 (Umemura, Campana-Flenner) !!
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Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:

E ample < E dual Nakano positive < E Griffiths positive.
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Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:

E ample < E dual Nakano positive < E Griffiths positive.

E ample # E Nakano positive, in fact
E Griffiths positive # E Nakano positive.
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Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:

E ample < E dual Nakano positive < E Griffiths positive.

E ample # E Nakano positive, in fact
E Griffiths positive # E Nakano positive.

For instance, Tpn is easy shown to be ample and Griffiths positive
for the Fubini-Study metric, but it is not Nakano positive.
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Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:
E ample < E dual Nakano positive < E Griffiths positive.

E ample # E Nakano positive, in fact
E Griffiths positive # E Nakano positive.

For instance, Tpn is easy shown to be ample and Griffiths positive
for the Fubini-Study metric, but it is not Nakano positive.
Otherwise the Nakano vanishing theorem would then yield

Hn_l’n_l(]Pm, C) _ Hn_l(]Pm, Qﬁ;l) _ Hn—l(IP)n7 Kpn @ TIP’") =0 Il
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Brief discussion around this positivity conjecture

If true, Griffiths conjecture would follow:
E ample < E dual Nakano positive < E Griffiths positive.

E ample # E Nakano positive, in fact

E Griffiths positive # E Nakano positive.

For instance, Tpn is easy shown to be ample and Griffiths positive
for the Fubini-Study metric, but it is not Nakano positive.
Otherwise the Nakano vanishing theorem would then yield

Hn_l’n_l(]Pm, C) _ Hn_l(]Pm, Qﬁ;l) _ Hn—l(IP)n7 Kpn @ TIP’") =0 Il

Let us mention here that there are already known subtle relations
between ampleness, Griffiths and Nakano positivity are known to
hold — for instance, B. Berndtsson has proved that the ampleness
of E implies the Nakano positivity of S”E @ det E for every m € N.
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“Total” determinant of the curvature tensor

If the Chern curvature tensor ©f j is dual Nakano positive, then
one can introduce the (n x r)-dimensional determinant of the
corresponding Hermitian quadratic form on Tx ® E*

detr, e (TOpn)"" = det(Gin) (| 2y (k) 1AANGZLA ... AidzaNdZ,.
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“Total” determinant of the curvature tensor

If the Chern curvature tensor ©f j is dual Nakano positive, then
one can introduce the (n x r)-dimensional determinant of the
corresponding Hermitian quadratic form on Tx ® E*

detr, e (TOpn)"" = det(Gin) (| 2y (k) 1AANGZLA ... AidzaNdZ,.

This (n, n)-form does not depend on the choice of coordinates (z;)
on X, nor on the choice of the orthonormal frame (e,) on E.
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“Total” determinant of the curvature tensor

If the Chern curvature tensor ©f j is dual Nakano positive, then
one can introduce the (n x r)-dimensional determinant of the
corresponding Hermitian quadratic form on Tx ® E*

detr, oe-( TOp )" = det(cjk,,,A)a;W’u) idzy AdZi A ... Nidz,AdZ,,.

This (n, n)-form does not depend on the choice of coordinates (z;)
on X, nor on the choice of the orthonormal frame (e,) on E.

Assigning a “matrix Monge-Ampere equation”
detTX®E*( TeE7h)1/r =f>0

where f is a positive (n, n)-form, may enforce the dual Nakano
positivity of ©f j if that assignment is combined with a continuity
technique from an initial starting point where positivity is known.
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Continuity method (case of rank 1)

For r =1 and h = hge™%, we have
T@EJ, = @Eh = —105|Og h=wy+ 10599

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 9/21



Continuity method (case of rank 1)
For r =1 and h = hge™%, we have

T@EJ, = @Eh = —105|Og h=wy+ 10599

and the equation reduces to a standard Monge-Ampeére equation

(%) (©ep)" = (wo + i00p)" = f.
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Continuity method (case of rank 1)

For r =1 and h = hge™%, we have
T@EJ, = @Eh = —105|Og h= wp + 10599
and the equation reduces to a standard Monge-Ampeére equation

(%) (©ep)" = (wo + i00p)" = f.

If f is given and independent of h, Yau's theorem guarantees the
existence of a unique solution § = O > 0, provided E is an
ample line bundle and [, f = ¢;(E)".
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Continuity method (case of rank 1)

For r =1 and h = hge™%, we have
T@EJ, = @Eh = —105|Og h=wy+ 10599

and the equation reduces to a standard Monge-Ampeére equation
(*) (©ep)" = (wo + i00p)" = f.

If f is given and independent of h, Yau's theorem guarantees the
existence of a unique solution § = O > 0, provided E is an
ample line bundle and [, f = ¢;(E)".

When the right hand side f = f; of () varies smoothly with
respect to some parameter t € [0, 1], one then gets a smoothly
varying solution

@E,ht = wp + /05801“ > O,

and the positivity of ©f p, forces the positivity of ©f 5, for all t.
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Undeterminacy of the equation

Assuming E to be ample of rank r > 1, the equation
(s5) detr e (T Qe p) =f >0

becomes underdetermined, as the real rank of the space of
hermitian matrices h = (hy,) on E is equal to r?, while (xx)
provides only 1 scalar equation.
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Assuming E to be ample of rank r > 1, the equation
(s5) detr e (T Qe p) =f >0

becomes underdetermined, as the real rank of the space of
hermitian matrices h = (hy,) on E is equal to r?, while (xx)
provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)
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Undeterminacy of the equation

Assuming E to be ample of rank r > 1, the equation
(s5) detr e (T Qe p) =f >0

becomes underdetermined, as the real rank of the space of
hermitian matrices h = (hy,) on E is equal to r?, while (xx)
provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

In order to recover a well determined system of equations, one
needs an additional “matrix equation” of rank (r*> — 1).
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Undeterminacy of the equation

Assuming E to be ample of rank r > 1, the equation
(s5) detr e (T Qe p) =f >0

becomes underdetermined, as the real rank of the space of
hermitian matrices h = (hy,) on E is equal to r?, while (xx)
provides only 1 scalar equation.

(Solutions might still exist, but lack uniqueness and a priori bounds.)

Conclusion

In order to recover a well determined system of equations, one
needs an additional “matrix equation” of rank (r*> — 1).

Observation 1 (from the Donaldson-Uhlenbeck-Yau theorem)

Take a Hermitian metric 7o on det E so that wg := Oget £, > 0.
If E is wo-polystable, 3h Hermitian metric h on E such that

wi ' AOgp = Lwi @Ide (Hermite-Einstein equation, slope 1).
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Resulting trace free condition

Observation 2
The trace part of the above Hermite-Einstein equation is

“automatic”, hence the equation is equivalent to the trace free
condition

wg AOL, =0,
when decomposing any endomorphism u € Herm(E, E) as

U= u° + % Tr(u)Idg € Herm®(E, E) ® R1dg, tr(uv®) =0.
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Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is
“automatic”, hence the equation is equivalent to the trace free

condition
wg AOL, =0,

when decomposing any endomorphism u € Herm(E, E) as

U= u° + % Tr(u)Idg € Herm®(E, E) ® R1dg, tr(uv®) =0.

Observation 3

The trace free condition is a matrix equation of rank (r? — 1) !l
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Resulting trace free condition

Observation 2

The trace part of the above Hermite-Einstein equation is
“automatic”, hence the equation is equivalent to the trace free

condition
wg AOL, =0,

when decomposing any endomorphism u € Herm(E, E) as

U= u° + % Tr(u)Idg € Herm®(E, E) ® R1dg, tr(uv®) =0.

Observation 3

The trace free condition is a matrix equation of rank (r? — 1) !l

Remark

In case dim X = n = 1, the trace free condition means that E is
projectively flat, and the Umemura proof of the Griffiths conjecture
proceeds exactly in that way, using the fact that the graded pieces
of the Harder-Narasimhan filtration are projectively flat.
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Towards a “cushioned” Hermite-Einstein equation

In general, one cannot expect E to be wy-polystable, but
Uhlenbeck-Yau have shown that there always exists a smooth
solution g. to a certain “cushioned” Hermite-Einstein equation.
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Towards a “cushioned” Hermite-Einstein equation

In general, one cannot expect E to be wy-polystable, but
Uhlenbeck-Yau have shown that there always exists a smooth
solution g. to a certain “cushioned” Hermite-Einstein equation.

To make things more precise, let Herm(E) be the space of
Hermitian (non necessarily positive) forms on E. Given a reference
Hermitian metric Hy > 0, let Hermyy, (E, E) be the space of
Ho-Hermitian endomorphisms u € Hom(E, E); denote by

Herm(E) = Hermp,(E,E), g+ g st. q(v,w) = (qG(v),w)n,

the natural isomorphism.
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In general, one cannot expect E to be wy-polystable, but
Uhlenbeck-Yau have shown that there always exists a smooth
solution g. to a certain “cushioned” Hermite-Einstein equation.

To make things more precise, let Herm(E) be the space of
Hermitian (non necessarily positive) forms on E. Given a reference
Hermitian metric Hy > 0, let Hermyy, (E, E) be the space of
Ho-Hermitian endomorphisms u € Hom(E, E); denote by

Herm(E) = Hermp,(E,E), g+ g st. q(v,w) = (qG(v),w)n,
the natural isomorphism. Let also
Hermy, (E, E) = {q € Hermp,(E, E); =0}

be the subspace of “trace free” Hermitian endomorph|sms.
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Towards a “cushioned” Hermite-Einstein equation

In general, one cannot expect E to be wy-polystable, but
Uhlenbeck-Yau have shown that there always exists a smooth
solution g. to a certain “cushioned” Hermite-Einstein equation.

To make things more precise, let Herm(E) be the space of
Hermitian (non necessarily positive) forms on E. Given a reference
Hermitian metric Hy > 0, let Hermyy, (E, E) be the space of
Ho-Hermitian endomorphisms u € Hom(E, E); denote by
Herm(E) = Hermp,(E,E), g+ g st. q(v,w) = (qG(v),w)n,
the natural isomorphism. Let also

Hermy, (E, E) = {q € Hermp,(E, E); =0}
be the subspace of “trace free” Hermitian endomorph|sms.
In the sequel, we fix Hy on E such that

Odet £,det Hy = Wo > 0.
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A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every € > 0, there always exists a (unique) smooth Hermitian
metric g. on E such that

1 ~
Wi A O, = wi ® (r Idg —¢ log qe),

where g, is computed with respect to Hyp, and log g denotes the
logarithm of a positive Hermitian endomorphism g.

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 13/21



A basic result from Uhlenbeck and Yau
Uhlenbeck-Yau 1986, Theorem 3.1

For every € > 0, there always exists a (unique) smooth Hermitian
metric g. on E such that

1 ~
Wi A O, = wi ® (r Idg —¢ log qe),

where g, is computed with respect to Hyp, and log g denotes the
logarithm of a positive Hermitian endomorphism g.

The reason is that the term —¢ log g. is a “friction term” that
prevents the explosion of the a priori estimates, similarly what
happens for Monge-Ampere equations (wp + i90p)" = e wy.
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A basic result from Uhlenbeck and Yau

Uhlenbeck-Yau 1986, Theorem 3.1

For every € > 0, there always exists a (unique) smooth Hermitian
metric g. on E such that

1 ~
Wi A O, = wi ® (r Idg —¢ log qe),

where g, is computed with respect to Hyp, and log g denotes the
logarithm of a positive Hermitian endomorphism g.

The reason is that the term —¢ log g. is a “friction term” that
prevents the explosion of the a priori estimates, similarly what
happens for Monge-Ampere equations (wp + i90p)" = e wy.

The above matrix equation is equivalent to prescribing
det g. = det Hy and the trace free equation of rank (r? — 1)

wy  AOg, = —cw;®logg..
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Search for an appropriate evolution equation

General setup

In this context, given « > 0 large enough, it is natural to search for
a time dependent family of metrics h;(z) on the fibers E, of E,
t € [0, 1], satisfying a generalized Monge-Ampere equation

(D) detryges ("Oen +(1—t)awy®Ide- )1“ = frwy, £ >0,

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 14/21



Search for an appropriate evolution equation

General setup

In this context, given « > 0 large enough, it is natural to search for
a time dependent family of metrics h;(z) on the fibers E, of E,
t € [0, 1], satisfying a generalized Monge-Ampere equation

(D) detryges ("Oen +(1—t)awy®Ide- )1“ = frwy, £ >0,

and trace free, rank r> — 1, Hermite-Einstein conditions
(T) ngl A e(l)_’:,ht = 8t

with smoothly varying families of functions f, € C*(X,R),
Hermitian metrics w; > 0 on X and sections

g € C(X,N\g"T% ® Hermj, (E, E)), te][0,1].

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 14/21



Search for an appropriate evolution equation

General setup

In this context, given « > 0 large enough, it is natural to search for
a time dependent family of metrics h;(z) on the fibers E, of E,
t € [0, 1], satisfying a generalized Monge-Ampere equation

(D) detryges ("Oen +(1—t)awy®Ide- )1“ = frwy, £ >0,

and trace free, rank r> — 1, Hermite-Einstein conditions
(T) ngl A e(l)_’:,ht = 8t

with smoothly varying families of functions f, € C*(X,R),
Hermitian metrics w; > 0 on X and sections

g € C(X,N\g"T% ® Hermj, (E, E)), te][0,1].

Observe that this is a determined (not overdetermined!) system.
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Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution hy = g. of of the
“cushioned” trace free Hermite-Einstein equation, so that
det hg = det Hy, and take o > 0 so large that

TOE py + awp ® Idg- > 0 in the sense of Nakano.
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Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution hy = g. of of the
“cushioned” trace free Hermite-Einstein equation, so that
det hg = det Hy, and take o > 0 so large that

TOE py + awp ® Idg- > 0 in the sense of Nakano.

If conditions (D) and (T) can be met for all t € [0, 1], thus
without any explosion of the solutions h;, we infer from (D) that

TOpp + (1 — t)awy@Ide- >0 in the sense of Nakano
for all t € [0,1].
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Choice of the initial state (t = 0)

We start with the Uhlenbeck-Yau solution hy = g. of of the
“cushioned” trace free Hermite-Einstein equation, so that
det hg = det Hy, and take o > 0 so large that

TOE py + awp ® Idg- > 0 in the sense of Nakano.

If conditions (D) and (T) can be met for all t € [0, 1], thus
without any explosion of the solutions h;, we infer from (D) that

TOpp + (1 — t)awy@Ide- >0 in the sense of Nakano
for all t € [0,1].

Observation

At time t = 1, we would then get a Hermitian metric h; on E such
that ©f p, is dual Nakano positive !!

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 15/21



Possible choices of the right hand side

One still has the freedom of adjusting f;, w; and g; in the general
setup. There are in fact many possibilities:

J.-P. Demailly, Virtual Conference on SCV, August 20, 2020 Griffiths conjecture on the positivity of vector bundles 16/21



Possible choices of the right hand side

One still has the freedom of adjusting f;, w; and g; in the general
setup. There are in fact many possibilities:

Proposition

Let (E, Hp) be a smooth Hermitian holomorphic vector bundle
such that E is ample and wy = Oget £ det H, > 0. Then the system
of determinantal and trace free equations

(D) detryoe-(TOpn + (1 — t)awo @ Ide- )" = F(t, 2, he, D, hy)
(T) wg*AO%,, = G(t,z, hy, D, D2h,) € Herm®(E, E)

(where F > 0), is a well determined system of PDEs.
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Possible choices of the right hand side

One still has the freedom of adjusting f;, w; and g; in the general
setup. There are in fact many possibilities:

Proposition

Let (E, Hp) be a smooth Hermitian holomorphic vector bundle
such that E is ample and wy = Oget £ det H, > 0. Then the system
of determinantal and trace free equations

(D) detryoe-(TOpn + (1 — t)awo @ Ide- )" = F(t, 2, he, D, hy)
(T) wg*AO%,, = G(t,z, hy, D, D2h,) € Herm®(E, E)
(where F > 0), is a well determined system of PDEs.

It is elliptic whenever the symbol 7, of the linearized operator
u +— DGpap(t, z, h, Dh, D?h) - D?u has an Hilbert-Schmidt norm
sup [ (&)l < (P +1)7H207
fET;,‘fle:].
for any metric h; involved, e.g. if G does not depend on D?h.
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Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized
system of equations, starting from the curvature tensor formula

Ocp, = i0(h™20h) = id(h~ 10, h),

where dp,s = Hy '0(Hps) is the (1,0)-component of the Chern
connection on Hom(E, E) associated with Hy on E.
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Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized
system of equations, starting from the curvature tensor formula

Ocp, = i0(h™20h) = id(h~ 10, h),

where dp,s = Hy '0(Hps) is the (1,0)-component of the Chern
connection on Hom(E, E) associated with Hy on E.
Let us recall that the ellipticity of an operator

P Co(V) = C(W), e P(f) =3, 1<ma(x)Df(x)
means the invertibility of the principal symbol

op(X, &) = D a1<m 3a(X) §* € Hom(V, W)

whenever 0 # ¢ € Ty .
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Proof of the ellipticity

The (long, computational) proof consists of analyzing the linearized
system of equations, starting from the curvature tensor formula

Ocp, = i0(h™20h) = id(h~ 10, h),
where dp,s = Hy '0(Hps) is the (1,0)-component of the Chern
connection on Hom(E, E) associated with Hy on E.
Let us recall that the ellipticity of an operator
P Co(V) = C(W), e P(f) =3, 1<ma(x)Df(x)
means the invertibility of the principal symbol

O-P(ng) = Z\(ﬂgm a(’/(X) ga S Hom(vv W)
whenever 0 # ¢ € Ty .

For instance, on the torus R"/Z", f — Py(f) = —Af + \f has
an invertible symbol op, (x,&) = —|¢[?, but Py is invertible only
for A > 0.
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A more specific choice of the right hand side

Theorem
The elliptic differential system defined by R
- det Hyp(z
detTX®E* (Tegh == (1 = t)Oé wo ® Id g« )1/ = <det ho((Z))> ao(z),
t
N det Ho(2)\ ", ~
n—1 0 o\, .n
op=—€|——"7= log h

Wy A OFep €<detht(z)) (log h°) w

possesses an invertible elliptic linearization for ¢ > £o(h;) and
A > Ao(he)(1 + p?), with eg(h;) and \g(h;) large enough.
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A more specific choice of the right hand side

Theorem

The elliptic differential system defined by
. e (det Ho(2)\*
detTX®E* ( @EJ, aF (1 — t)Oé Wy X IdE* ) = <> ao(Z),

det h;(2)
N det Ho(2)\ ", ~
n—1 0 o n
Opop=—<¢c| ———= log h
“o A OEeh : ( det hy(z) ) (log A) ws

possesses an invertible elliptic linearization for ¢ > £o(h;) and
A > Ao(he)(1 + p?), with eg(h;) and \g(h;) large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau
solution hg such that det hy = det Hy at t = 0, the PDE system still
has a solution for t € [0, tp] and t; > 0 small.
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A more specific choice of the right hand side

Theorem

The elliptic differential system defined by
. e (det Ho(2)\*
detTX®E* ( @EJ, aF (1 — t)Oé Wy X IdE* ) = <> ao(Z),

det h;(2)
_ det Hp(2) " =
n—1 ) 0 o n
w o - — s | h w
ARG : ( det ht(z) ) ( o ) 0

possesses an invertible elliptic linearization for ¢ > £o(h;) and
A > Ao(he)(1 + p?), with eg(h;) and \g(h;) large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau
solution hg such that det hy = det Hy at t = 0, the PDE system still
has a solution for t € [0, to] and t; > 0 small. (What for t; =1 7)
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A more specific choice of the right hand side

Theorem

The elliptic differential system defined by
. e (det Ho(2)\*
detTX®E* ( @,_:7,7 aF (1 — t)Oé Wy X IdE* ) = <> ao(Z),

det h;(2)
_ det Hp(2) " =
n—1 ) 0 o n
UJ o - — s | h w
ARG : ( det ht(z) ) ( o ) 0

possesses an invertible elliptic linearization for ¢ > £o(h;) and
A > Ao(he)(1 + p?), with eg(h;) and \g(h;) large enough.

Corollary

Under the above conditions, starting from the Uhlenbeck-Yau
solution hg such that det hy = det Hy at t = 0, the PDE system still
has a solution for t € [0, to] and t; > 0 small. (What for t; =1 7)

Here, the proof consists of analyzing the total symbol of the
linearized operator, and the rest is just linear algebra.
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Monge-Ampere volume for vector bundles

If E — X is an ample vector bundle of rank r that is dual Nakano
positive, one can introduce its Monge-Ampeére volume to be

MAVol(E) = sup/ detr e ((2m) 71 TeE,h)l/ra
hoJx

where the supremum is taken over all smooth metrics h on E such
that "©f , is Nakano positive.
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Monge-Ampere volume for vector bundles

If E — X is an ample vector bundle of rank r that is dual Nakano
positive, one can introduce its Monge-Ampeére volume to be

MAVol(E) = sup/ detr e ((2m) 71 TeE,h)l/ra
hoJx

where the supremum is taken over all smooth metrics h on E such
that "©f , is Nakano positive.

This supremum is always finite, and in fact

Proposition

For any dual Nakano positive vector bundle E, one has

MAVOl(E) < r "1 (E)".
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Monge-Ampere volume for vector bundles

If E — X is an ample vector bundle of rank r that is dual Nakano
positive, one can introduce its Monge-Ampeére volume to be

MAVol(E) = sup/ detr e ((2m) 71 TeE,h)l/ra
hoJx

where the supremum is taken over all smooth metrics h on E such
that "©f , is Nakano positive.

This supremum is always finite, and in fact

Proposition

For any dual Nakano positive vector bundle E, one has
MAVOl(E) < r "1 (E)".

Taking wo = Oqet £, the proof is a consequence of the inequality
(TTA)Y™ < L3 ); between geometric and arithmetic means, for
the eigenvalues \; of (27)! T©g , after raising to power n.
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Concluding remarks

@ Siarhei Finski (PostDoc at Institut Fourier right now) has
observed that the equality holds iff E is projectively flat.
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Concluding remarks

@ Siarhei Finski (PostDoc at Institut Fourier right now) has
observed that the equality holds iff E is projectively flat.

o In the split case £ = P, Ej and h = D, h;, the
inequality reads

1/r
( H Cl(Ej)"> <r"a(E)",

1<j<r
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Concluding remarks

@ Siarhei Finski (PostDoc at Institut Fourier right now) has
observed that the equality holds iff E is projectively flat.

@ In the split case E = P, Ej and h =P, ..., h;, the
inequality reads

1/r
( H Cl(Ej)"> <r"a(E)",

1<j<r

<j<r <j<r

with equality iff ¢;(E1) = -+ = a(E,).
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Concluding remarks

@ Siarhei Finski (PostDoc at Institut Fourier right now) has
observed that the equality holds iff E is projectively flat.

@ In the split case E = P, Ej and h =P, ..., h;, the
inequality reads

1/r
( H Cl(Ej)"> <r"a(E)",

1<j<r

<j<r <j<r

with equality iff ¢;(E1) = -+ = a(E,).

@ In the split case, it seems natural to conjecture that

1/r
MAVol(E) = ( 11 cl(Ej)"> ,

i.e. that the supremum is reached for split metrics h = &P h;.
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Concluding remarks

@ Siarhei Finski (PostDoc at Institut Fourier right now) has
observed that the equality holds iff E is projectively flat.

@ In the split case E = P, Ej and h =P, ..., h;, the
inequality reads

1/r
( H Cl(Ej)"> <r"a(E)",

1<j<r

<j<r <j<r

with equality iff ¢;(E1) = -+ = a(E,).

@ In the split case, it seems natural to conjecture that

1/r
MAVol(E) = ( 11 cl(Ej)"> ,

i.e. that the supremum is reached for split metrics h = &P h;.

@ The Euler-Lagrange equation for the maximizer is 4th order.
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Thank you for your attention

Y/

\
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