

Hyperbolic algebraic varieties and holomorphic differential equations

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I. France & Académie des Sciences de Paris

August 26, 2012 / VIASM Yearly Meeting, Hanoi

2/74

Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \to X$ into a complex n-dimensional manifold.

• **Definition.** By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \to X$ into a complex n-dimensional manifold.

X is said to be (Brody) hyperbolic if $\not\exists$ such $f: \mathbb{C} \to X$.

3/74

- **Definition.** By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \to X$ into a complex *n*-dimensional manifold.
 - X is said to be (Brody) hyperbolic if $\not\exists$ such $f: \mathbb{C} \to X$.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^n$, then there are no entire curves $f: \mathbb{C} \to \Omega$ (Liouville's theorem), \Rightarrow every bounded open set $\Omega \subset \mathbb{C}^n$ is hyperbolic

• **Definition.** By an entire curve we mean a non constant holomorphic map $f : \mathbb{C} \to X$ into a complex *n*-dimensional manifold. X is said to be (Brody) hyperbolic if \mathbb{Z} such $f : \mathbb{C} \to X$.

- If X is a bounded open subset $\Omega \subset \mathbb{C}^n$, then there are no entire curves $f: \mathbb{C} \to \Omega$ (Liouville's theorem), \Rightarrow every bounded open set $\Omega \subset \mathbb{C}^n$ is hyperbolic
- $X = \overline{\mathbb{C}} \setminus \{0, 1, \infty\} = \mathbb{C} \setminus \{0, 1\}$ has no entire curves, so it is hyperbolic (Picard's theorem)

5/74

Entire curves 6/74

- **Definition.** By an entire curve we mean a non constant holomorphic map $f : \mathbb{C} \to X$ into a complex *n*-dimensional manifold. X is said to be (Brody) hyperbolic if \mathbb{Z} such $f : \mathbb{C} \to X$.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^n$, then there are no entire curves $f: \mathbb{C} \to \Omega$ (Liouville's theorem), \Rightarrow every bounded open set $\Omega \subset \mathbb{C}^n$ is hyperbolic
- $X = \overline{\mathbb{C}} \setminus \{0, 1, \infty\} = \mathbb{C} \setminus \{0, 1\}$ has no entire curves, so it is hyperbolic (Picard's theorem)
- A complex torus $X = \mathbb{C}^n/\Lambda$ (Λ lattice) has a lot of entire curves. As \mathbb{C} simply connected, every $f: \mathbb{C} \to X = \mathbb{C}^n/\Lambda$ lifts as $\tilde{f}: \mathbb{C} \to \mathbb{C}^n$, $\tilde{f}(t) = (\tilde{f}_1(t), \dots, \tilde{f}_n(t))$, and $\tilde{f}_i: \mathbb{C} \to \mathbb{C}$ can be arbitrary entire functions.

• Consider now the complex projective *n*-space

$$\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$$

• Consider now the complex projective *n*-space

$$\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$$

• An entire curve $f: \mathbb{C} \to \mathbb{P}^n$ is given by a map

$$t \longmapsto [f_0(t):f_1(t):\ldots:f_n(t)]$$

where $f_i: \mathbb{C} \to \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

Consider now the complex projective n-space

$$\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$$

• An entire curve $f: \mathbb{C} \to \mathbb{P}^n$ is given by a map

$$t \longmapsto [f_0(t):f_1(t):\ldots:f_n(t)]$$

where $f_j: \mathbb{C} \to \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

 More generally, look at a (complex) projective manifold, i.e.

$$X^n \subset \mathbb{P}^N$$
, $X = \{[z]; P_1(z) = ... = P_k(z) = 0\}$

where $P_j(z) = P_j(z_0, z_1, ..., z_N)$ are homogeneous polynomials (of some degree d_j), such that X is non singular.

Canonical bundle
$$K_X = \Lambda^n T_X^*$$
 (here $K_X = T_X^*$)

$$g = 0$$
 , $K_{\chi} < 0$ (positive curvature)

Canonical bundle $K_X = \Lambda^n T_X^*$ (here $K_X = T_X^*$)

•
$$g = 0 : X = \mathbb{P}^1$$

courbure $T_X > 0$ not hyperbolic

Canonical bundle
$$K_X = \Lambda^n T_X^*$$
 (here $K_X = T_X^*$)

(positive curvature)

- $ullet g=0: X=\mathbb{P}^1$ courbure $T_X>0$ not hyperbolic
- ullet $g=1: X=\mathbb{C}/(\mathbb{Z}+\mathbb{Z} au)$ courbure $T_X=0$ not hyperbolic

(zero curvature)

$$\deg K_X = 2g-2$$

If $g \geq 2$, $X \simeq \mathbb{D}/\Gamma$ $(T_X < 0) \Rightarrow X$ is hyperbolic.

$$\deg K_X = 2g - 2$$

If $g \geq 2$, $X \simeq \mathbb{D}/\Gamma$ $(T_X < 0) \Rightarrow X$ is hyperbolic.

In fact every curve $f: \mathbb{C} \to X \simeq \mathbb{D}/\Gamma$ lifts to $\widetilde{f}: \mathbb{C} \to \mathbb{D}$, and so must be constant by Liouville.

• For a complex manifold, $n = \dim_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X$, $\xi \in T_X$ $\kappa_x(\xi) = \inf\{\lambda > 0 \; ; \; \exists f : \mathbb{D} \to X, \; f(0) = x, \; \lambda f_*(0) = \xi\}$ On \mathbb{C}^n , \mathbb{P}^n or complex tori $X = \mathbb{C}^n/\Lambda$, one has $\kappa_X \equiv 0$.

Kobayashi metric / hyperbolic manifolds

- For a complex manifold, $n = \dim_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X$, $\xi \in T_X$ $\kappa_x(\xi) = \inf\{\lambda > 0 \; ; \; \exists f : \mathbb{D} \to X, \; f(0) = x, \; \lambda f_*(0) = \xi\}$ On \mathbb{C}^n , \mathbb{P}^n or complex tori $X = \mathbb{C}^n/\Lambda$, one has $\kappa_X \equiv 0$.
- X is said to be hyperbolic in the sense of Kobayashi if the associated integrated pseudo-distance is a distance (i.e. it separates points – i.e. has Hausdorff topology).

- For a complex manifold, $n = \dim_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X$, $\xi \in T_X$ $\kappa_x(\xi) = \inf\{\lambda > 0 \; ; \; \exists f : \mathbb{D} \to X, \; f(0) = x, \; \lambda f_*(0) = \xi\}$ On \mathbb{C}^n , \mathbb{P}^n or complex tori $X = \mathbb{C}^n/\Lambda$, one has $\kappa_X \equiv 0$.
- X is said to be hyperbolic in the sense of Kobayashi if the associated integrated pseudo-distance is a distance (i.e. it separates points – i.e. has Hausdorff topology).
- Examples. $*X = \Omega/\Gamma$, Ω bounded symmetric domain. * any product $X = X_1 \times ... \times X_s$ where X_j hyperbolic.

- For a complex manifold, $n = \dim_{\mathbb{C}} X$, one defines the Kobayashi pseudo-metric : $x \in X$, $\xi \in T_X$ $\kappa_x(\xi) = \inf\{\lambda > 0 \; ; \; \exists f : \mathbb{D} \to X, \; f(0) = x, \; \lambda f_*(0) = \xi\}$ On \mathbb{C}^n , \mathbb{P}^n or complex tori $X = \mathbb{C}^n/\Lambda$, one has $\kappa_X \equiv 0$.
- X is said to be hyperbolic in the sense of Kobayashi if the associated integrated pseudo-distance is a distance (i.e. it separates points – i.e. has Hausdorff topology).
- Examples. $*X = \Omega/\Gamma$, Ω bounded symmetric domain. * any product $X = X_1 \times \ldots \times X_s$ where X_j hyperbolic.
- Theorem (dimension n arbitrary) (Kobayashi, 1970) T_X negatively curved ($T_X^* > 0$, i.e. ample) $\Rightarrow X$ hyperbolic. Recall that a holomorphic vector bundle E is ample iff its symmetric powers S^mE have global sections which generate 1-jets of (germs of) sections at any point $x \in X$.

The proof of the above Kobayashi result depends crucially on:

Ahlfors-Schwarz lemma. Let $\gamma = i \sum \gamma_{jk} dt_j \wedge d\overline{t}_k$ be an almost everywhere positive hermitian form on the ball $B(0,R) \subset \mathbb{C}^p$, such that $-\mathrm{Ricci}(\gamma) := i \, \partial \overline{\partial} \log \det \gamma \geq A \gamma$ in the sense of currents, for some constant A>0 (this means in particular that $\det \gamma = \det(\gamma_{jk})$ is such that $\log \det \gamma$ is plurisubharmonic). Then the γ -volume form is controlled by the Poincaré volume form :

$$\det(\gamma) \le \left(\frac{p+1}{AR^2}\right)^p \frac{1}{(1-|t|^2/R^2)^{p+1}}.$$

Brody reparametrization Lemma. Assume that X is compact, let ω be a hermitian metric on X and $f: \mathbb{D} \to X$ a holomorphic map. For every $\varepsilon > 0$, there exists a radius $R \ge (1-\varepsilon)\|f'(0)\|_{\omega}$ and a homographic transformation ψ of the disk D(0,R) onto $(1-\varepsilon)\mathbb{D}$ such that $\|(f\circ\psi)'(0)\|_{\omega}=1$ and $\|(f\circ\psi)'(t)\|_{\omega} \le (1-|t|^2/R^2)^{-1}$ for every $t\in D(0,R)$. \Rightarrow if f' unbounded, $\exists g=\lim f\circ\psi_{\nu}:\mathbb{C}\to X$ with $\|g'\|_{\omega}<1$.

Brody reparametrization Lemma. Assume that X is compact, let ω be a hermitian metric on X and $f: \mathbb{D} \to X$ a holomorphic map. For every $\varepsilon > 0$, there exists a radius $R \geq (1-\varepsilon)\|f'(0)\|_{\omega}$ and a homographic transformation ψ of the disk D(0,R) onto $(1-\varepsilon)\mathbb{D}$ such that $\|(f\circ\psi)'(0)\|_{\omega}=1$ and $\|(f\circ\psi)'(t)\|_{\omega}\leq (1-|t|^2/R^2)^{-1}$ for every $t\in D(0,R)$. \Rightarrow if f' unbounded, $\exists g=\lim f\circ\psi_{\nu}:\mathbb{C}\to X$ with $\|g'\|_{\omega}\leq 1$.

Brody theorem (1978). If X is compact then X is Kobayashi hyperbolic if and only if there are no entire holomorphic curves $f: \mathbb{C} \to X$ (Brody hyperbolicity).

Brody reparametrization Lemma. Assume that X is compact, let ω be a hermitian metric on X and $f: \mathbb{D} \to X$ a holomorphic map. For every $\varepsilon > 0$, there exists a radius $R > (1-\varepsilon) \|f'(0)\|_{\omega}$ and a homographic transformation ψ of the disk D(0,R) onto $(1-\varepsilon)\mathbb{D}$ such that $\|(f\circ\psi)'(0)\|_{\omega}=1$ and $||(f \circ \psi)'(t)||_{\omega} < (1 - |t|^2/R^2)^{-1}$ for every $t \in D(0, R)$. \Rightarrow if f' unbounded, $\exists g = \lim f \circ \psi_{\nu} : \mathbb{C} \to X$ with $\|g'\|_{\omega} < 1$.

Brody theorem (1978). If X is compact then X is Kobavashi hyperbolic if and only if there are no entire holomorphic curves $f: \mathbb{C} \to X$ (Brody hyperbolicity).

Hyperbolic varieties are especially interesting for their expected diophantine properties:

Conjecture (S. Lang, 1986) An arithmetic projective variety X is hyperbolic iff $X(\mathbb{K})$ is finite for every number field \mathbb{K} .

Definition A non singular projective variety X is said to be of general type if the growth of pluricanonical sections dim H⁰(X, K_X^{⊗m}) ~ cmⁿ, K_X = ΛⁿT_X* is maximal.
 (sections locally of the form f(z) (dz₁ ∧ . . . ∧ dz_n)^{⊗m})
 Example: A non singular hypersurface Xⁿ ⊂ Pⁿ⁺¹ of

degree d satisfies $K_X = \mathcal{O}(d - n - 2)$, X is of general type iff d > n + 2.

• **Definition** A non singular projective variety X is said to be of general type if the growth of pluricanonical sections $\dim H^0(X, K_{\mathbf{y}}^{\otimes m}) \sim cm^n, \qquad K_{\mathbf{X}} = \Lambda^n T_{\mathbf{y}}^*$ is maximal (sections locally of the form f(z) $(dz_1 \wedge ... \wedge dz_n)^{\otimes m}$) **Example**: A non singular hypersurface $X^n \subset \mathbb{P}^{n+1}$ of degree d satisfies $K_X = \mathcal{O}(d - n - 2)$,

• Conjecture CGT. If a compact variety X is hyperbolic, then it should be of general type, and if X is non singular, then $K_X = \Lambda^n T_X^*$ should be ample, i.e. $K_X > 0$ (Kodaira) (equivalently \exists Kähler metric ω such that $\text{Ricci}(\omega) < 0$).

X is of general type iff d > n + 2.

Conjectural characterizations of hyperbolicity

- **Theorem.** Let X be projective algebraic. Consider the following properties :
 - (GT) Every subvariety Y of X is of general type.
 - (AH) $\exists \varepsilon > 0$, $\forall C \subset X$ algebraic curve

$$2g(\bar{C})-2\geq\varepsilon\deg(C).$$

(X "algebraically hyperbolic")

(HY) X is hyperbolic

(JC) X possesses a jet-metric with negative curvature on its k-jet bundle X_k [to be defined later], for $k \ge k_0 \gg 1$.

Then
$$(JC) \Rightarrow (GT)$$
, (AH) , (HY) , $(HY) \Rightarrow (AH)$,

and if Conjecture CGT holds, $(HY) \Rightarrow (GT)$.

Conjectural characterizations of hyperbolicity

- **Theorem.** Let X be projective algebraic. Consider the following properties :
 - (GT) Every subvariety Y of X is of general type.
 - (AH) $\exists \varepsilon > 0$, $\forall C \subset X$ algebraic curve

$$2g(\bar{C})-2\geq\varepsilon\deg(C).$$

(X "algebraically hyperbolic")

(HY) X is hyperbolic

(JC) X possesses a jet-metric with negative curvature on its k-jet bundle X_k [to be defined later], for $k \ge k_0 \gg 1$.

Then
$$(JC) \Rightarrow (GT)$$
, (AH) , (HY) , $(HY) \Rightarrow (AH)$, and if Conjecture CGT holds, $(HY) \Rightarrow (GT)$.

• It is expected that all 4 properties are in fact equivalent for projective varieties.

• Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \to X$ one has $f(\mathbb{C}) \subset Y$.

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subsetneq X$ such that for all non-constant holomorphic $f: \mathbb{C} \to X$ one has $f(\mathbb{C}) \subset Y$.
- Combining the above conjectures, we get:
 Expected consequence (of CGT + GGL) Properties:
 (HY) X is hyperbolic
 (GT) Every subvariety Y of X is of general type are equivalent if CGT + GGL hold.

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then there exists an algebraic variety $Y \subseteq X$ such that for all non-constant holomorphic $f: \mathbb{C} \to X$ one has $f(\mathbb{C}) \subset Y$.
- Combining the above conjectures, we get : **Expected consequence** (of CGT + GGL) Properties: (HY) X is hyperbolic(GT) Every subvariety Y of X is of general type are equivalent if CGT + GGL hold.
- Arithmetic counterpart (Lang 1987). If X is a variety of general type defined over a number field and Y is the Green-Griffiths locus (Zariski closure of $| | f(\mathbb{C}) |$), then $X(\mathbb{K}) \setminus Y$ is finite for every number field \mathbb{K} .

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. El Goul proved Theorem (solution of Kobayashi conjecture, 1998).
 A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35.
 Recently improved to degree ≥ 18 (Păun, 2008).
 For X ⊂ Pⁿ⁺¹, the optimal bound should be degree ≥ 2n + 1 for n ≥ 2 (Zaidenberg).
- Generic GGL conjecture for $\dim_{\mathbb{C}} X = n$ (S. Diverio, J. Merker, E. Rousseau, 2009). If $X \subset \mathbb{P}^{n+1}$ is a generic n-fold of degree $d \geq d_n := 2^{n^5}$, [also $d_3 = 593$, $d_4 = 3203$, $d_5 = 35355$, $d_6 = 172925$] then $\exists Y \subseteq X$ s.t. \forall non const. $f : \mathbb{C} \to X$ satisfies $f(\mathbb{C}) \subset Y$

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. El Goul proved Theorem (solution of Kobayashi conjecture, 1998).
 A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35.
 Recently improved to degree ≥ 18 (Păun, 2008).
 For X ⊂ Pⁿ⁺¹, the optimal bound should be degree ≥ 2n + 1 for n ≥ 2 (Zaidenberg).
- Generic GGL conjecture for $\dim_{\mathbb{C}} X = n$ (S. Diverio, J. Merker, E. Rousseau, 2009). If $X \subset \mathbb{P}^{n+1}$ is a generic n-fold of degree $d \geq d_n := 2^{n^5}$, [also $d_3 = 593$, $d_4 = 3203$, $d_5 = 35355$, $d_6 = 172925$] then $\exists Y \subsetneq X$ s.t. \forall non const. $f : \mathbb{C} \to X$ satisfies $f(\mathbb{C}) \subset Y$ Moreover (S. Diverio, S. Trapani, 2009) $\operatorname{codim}_{\mathbb{C}} Y \geq 2 \Rightarrow$ generic hypersurface $X \subset \mathbb{P}^4$ of degree ≥ 593 is hyperbolic.

Definition of algebraic differential operators

The main idea in order to attack GGL is to use differential equations. Let

$$\mathbb{C} \to X$$
, $t \mapsto f(t) = (f_1(t), \dots, f_n(t))$

be a curve written in some local holomorphic coordinates (z_1, \ldots, z_n) on X.

Definition of algebraic differential operators

The main idea in order to attack GGL is to use differential equations. Let

$$\mathbb{C} \to X, \quad t \mapsto f(t) = (f_1(t), \dots, f_n(t))$$

be a curve written in some local holomorphic coordinates (z_1, \ldots, z_n) on X.

Consider algebraic differential operators which can be written locally in multi-index notation

$$P(f_{[k]}) = P(f', f'', \dots, f^{(k)})$$

= $\sum a_{\alpha_1 \alpha_2 \dots \alpha_k} (f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}$

where $a_{\alpha_1\alpha_2...\alpha_k}(z)$ are holomorphic coefficients on X and $t\mapsto z=f(t)$ is a curve, $f_{[k]}=(f',f'',\ldots,f^{(k)})$ its k-jet.

Definition of algebraic differential operators

The main idea in order to attack GGL is to use differential equations. Let

$$\mathbb{C} \to X, \quad t \mapsto f(t) = (f_1(t), \dots, f_n(t))$$

be a curve written in some local holomorphic coordinates (z_1, \ldots, z_n) on X.

Consider algebraic differential operators which can be written locally in multi-index notation

$$P(f_{[k]}) = P(f', f'', \dots, f^{(k)})$$

= $\sum a_{\alpha_1 \alpha_2 \dots \alpha_k} (f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}$

where $a_{\alpha_1\alpha_2...\alpha_k}(z)$ are holomorphic coefficients on X and $t\mapsto z=f(t)$ is a curve, $f_{[k]}=(f',f'',\ldots,f^{(k)})$ its k-jet. Obvious \mathbb{C}^* -action :

$$\lambda \cdot f(t) = f(\lambda t), \quad (\lambda \cdot f)^{(k)}(t) = \lambda^k f^{(k)}(\lambda t)$$

Vanishing theorem for differential operators

• **Definition.** $E_{k,m}^{GG}$ is the sheaf (bundle) of algebraic differential operators of order k and weighted degree m.

- **Definition.** $E_{k,m}^{GG}$ is the sheaf (bundle) of algebraic differential operators of order k and weighted degree m.
- Fundamental vanishing theorem [Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let P ∈ H⁰(X, E_{k,m}^{GG} ⊗ O(-A)) be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then ∀f: C → X, P(f_[k]) ≡ 0.

Vanishing theorem for differential operators

- **Definition.** $E_{k,m}^{GG}$ is the sheaf (bundle) of algebraic differential operators of order k and weighted degree m.
- Fundamental vanishing theorem [Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let $P \in H^0(X, E_{k,m}^{GG} \otimes \mathcal{O}(-A))$ be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then $\forall f : \mathbb{C} \to X$, $P(f_{[k]}) \equiv 0$.
- *Proof.* One can assume that A is very ample and intersects $f(\mathbb{C})$. Also assume f' bounded (this is not so restrictive by Brody!). Then all $f^{(k)}$ are bounded by Cauchy inequality. Hence

$$\mathbb{C} \ni t \mapsto P(f', f'', \dots, f^{(k)})(t)$$

is a bounded holomorphic function on $\mathbb C$ which vanishes at some point. Apply Liouville's theorem !

Geometric interpretation of vanishing theorem

• Let $X_k^{\text{GG}} = J_k(X)^*/\mathbb{C}^*$ be the projectivized k-jet bundle of X = quotient of non constant k-jets by \mathbb{C}^* -action. Fibers are weighted projective spaces.

Observation. If $\pi_k: X_k^{\text{GG}} \to X$ is canonical projection and $\mathcal{O}_{X_k^{\text{GG}}}(1)$ is the tautological line bundle, then

$$E_{k,m}^{\mathrm{GG}} = (\pi_k)_* \mathcal{O}_{X_k^{\mathrm{GG}}}(m)$$

Geometric interpretation of vanishing theorem

• Let $X_k^{\text{GG}} = J_k(X)^*/\mathbb{C}^*$ be the projectivized k-jet bundle of X = quotient of non constant k-jets by \mathbb{C}^* -action. Fibers are weighted projective spaces.

Observation. If $\pi_k: X_k^{\text{GG}} \to X$ is canonical projection and $\mathcal{O}_{X_{\iota}^{\text{GG}}}(1)$ is the tautological line bundle, then

$$E_{k,m}^{\mathrm{GG}} = (\pi_k)_* \mathcal{O}_{X_k^{\mathrm{GG}}}(m)$$

• Saying that $f: \mathbb{C} \to X$ satisfies the differential equation $P(f_{[k]}) = 0$ means that

$$f_{[k]}(\mathbb{C})\subset Z_P$$

where Z_P is the zero divisor of the section

$$\sigma_P \in H^0(X_k^{\mathrm{GG}}, \mathcal{O}_{X_{\iota}^{\mathrm{GG}}}(m) \otimes \pi_k^* \mathcal{O}(-A))$$

associated with P.

Consequence of fundamental vanishing theorem 40/74

• Consequence of fundamental vanishing theorem. If $P_j \in H^0(X, E_{k,m}^{GG} \otimes \mathcal{O}(-A))$ is a basis of sections then the image $f(\mathbb{C})$ lies in $Y = \pi_k(\bigcap Z_{P_j})$, hence property asserted by the GGL conjecture holds true if there are "enough independent differential equations" so that

$$Y=\pi_k(\bigcap_j Z_{P_j})\subsetneq X.$$

Consequence of fundamental vanishing theorem 41/74

• Consequence of fundamental vanishing theorem. If $P_j \in H^0(X, E_{k,m}^{GG} \otimes \mathcal{O}(-A))$ is a basis of sections then the image $f(\mathbb{C})$ lies in $Y = \pi_k(\bigcap Z_{P_j})$, hence property asserted by the GGL conjecture holds true if there are "enough independent differential equations" so that

$$Y=\pi_k(\bigcap_j Z_{P_j})\subsetneq X.$$

• However, some differential equations are not very useful. On a surface with coordinates (z_1, z_2) , a Wronskian equation $f_1'f_2'' - f_2'f_1'' = 0$ tells us that $f(\mathbb{C})$ sits on a line, but $f_2''(t) = 0$ says that the second component is linear affine in time, an essentially meaningless information which is lost by a change of parameter $t \mapsto \varphi(t)$.

• The k-th order Wronskian operator

$$W_k(f) = f' \wedge f'' \wedge \ldots \wedge f^{(k)}$$

(locally defined in coordinates) has degree $m = \frac{k(k+1)}{2}$ and

$$W_k(f\circ\varphi)=\varphi'^mW_k(f)\circ\varphi.$$

• The k-th order Wronskian operator

$$W_k(f) = f' \wedge f'' \wedge \ldots \wedge f^{(k)}$$

(locally defined in coordinates) has degree $m = \frac{k(k+1)}{2}$ and

$$W_k(f \circ \varphi) = \varphi'^m W_k(f) \circ \varphi.$$

• **Definition.** A differential operator P of order k and degree m is said to be invariant by reparametrization if

$$P(f \circ \varphi) = \varphi'^m P(f) \circ \varphi$$

for any parameter change $t \mapsto \varphi(t)$. Consider their set

$$E_{k,m} \subset E_{k,m}^{\mathrm{GG}}$$
 (a subbundle)

(Any polynomial $Q(W_1, W_2, ..., W_k)$ is invariant, but for $k \geq 3$ there are other invariant operators.)

• **Goal.** We are interested in curves $f : \mathbb{C} \to X$ such that $f'(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_X .

- Goal. We are interested in curves $f: \mathbb{C} \to X$ such that $f'(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_X .
- **Definition.** Category of directed manifolds :
 - Objects: pairs (X, V), X manifold/ \mathbb{C} and $V \subset \mathcal{O}(T_X)$
 - Arrows $\psi: (X, V) \to (Y, W)$ holomorphic s.t. $\psi_* V \subset W$

- Goal. We are interested in curves $f: \mathbb{C} \to X$ such that $f'(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_X .
- Definition. Category of directed manifolds:
 - Objects : pairs (X, V), X manifold/ \mathbb{C} and $V \subset \mathcal{O}(T_X)$
 - Arrows $\psi: (X, V) \to (Y, W)$ holomorphic s.t. $\psi_* V \subset W$
 - "Absolute case" (X, T_X)
 - "Relative case" $(X, T_{X/S})$ where $X \to S$
 - "Integrable case" when $[V, V] \subset V$ (foliations)

- Goal. We are interested in curves $f: \mathbb{C} \to X$ such that $f'(\mathbb{C}) \subset V$ where V is a subbundle (or subsheaf) of T_X .
- **Definition.** Category of directed manifolds :
 - Objects: pairs (X, V), X manifold/ \mathbb{C} and $V \subset \mathcal{O}(T_X)$
 - Arrows $\psi: (X, V) \to (Y, W)$ holomorphic s.t. $\psi_* V \subset W$
 - "Absolute case" (X, T_X)
 - "Relative case" $(X, T_{X/S})$ where $X \to S$
 - "Integrable case" when $[V, V] \subset V$ (foliations)
- Fonctor "1-jet" : $(X, V) \mapsto (\tilde{X}, \tilde{V})$ where :

$$ilde{X} = P(V) = ext{bundle of projective spaces of lines in } V$$
 $\pi: ilde{X} = P(V) o X, \quad (x,[v]) \mapsto x, \quad v \in V_x$ $ilde{V}_{(x,[v])} = \left\{ \xi \in T_{ ilde{X},(x,[v])}; \; \pi_* \xi \in \mathbb{C} v \subset T_{X,x} \right\}$

• For every entire curve $f:(\mathbb{C},T_{\mathbb{C}}) \to (X,V)$ tangent to V

$$f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$$

 $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)

• For every entire curve $f:(\mathbb{C},T_{\mathbb{C}}) \to (X,V)$ tangent to V

$$f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$$

 $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)

- Definition. Semple jet bundles :
 - $-(X_k, V_k) = k$ -th iteration of fonctor $(X, V) \mapsto (\tilde{X}, \tilde{V})$
 - $-f_{[k]}:(\mathbb{C},T_{\mathbb{C}})\to (X_k,V_k)$ is the projectivized k-jet of f.

• For every entire curve $f:(\mathbb{C},T_{\mathbb{C}})\to (X,V)$ tangent to V

$$f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$$

 $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V}) \text{ (projectivized 1st-jet)}$

- Definition. Semple jet bundles :
 - $-(X_k, V_k) = k$ -th iteration of fonctor $(X, V) \mapsto (\tilde{X}, \tilde{V})$
 - $-f_{[k]}:(\mathbb{C},T_{\mathbb{C}})\to (X_k,V_k)$ is the projectivized k-jet of f.
- Basic exact sequences

$$\begin{array}{ccc} 0 \to T_{\tilde{X}/X} \to \tilde{V} \stackrel{\pi_{\star}}{\to} \mathcal{O}_{\tilde{X}}(-1) \to 0 & \Rightarrow \operatorname{rk} \tilde{V} = r = \operatorname{rk} V \\ 0 \to \mathcal{O}_{\tilde{\mathbf{x}}} \to \pi^{\star} V \otimes \mathcal{O}_{\tilde{\mathbf{x}}}(1) \to T_{\tilde{\mathbf{x}}/X} \to 0 & (\text{Euler}) \end{array}$$

• For every entire curve $f:(\mathbb{C},T_{\mathbb{C}}) \to (X,V)$ tangent to V

$$egin{aligned} f_{[1]}(t) &:= (f(t), [f'(t)]) \in P(V_{f(t)}) \subset ilde{X} \ f_{[1]} &: (\mathbb{C}, \mathcal{T}_{\mathbb{C}})
ightarrow (ilde{X}, ilde{V}) & ext{(projectivized 1st-jet)} \end{aligned}$$

- Definition. Semple jet bundles :
 - $-(X_k,V_k)=k$ -th iteration of fonctor $(X,V)\mapsto (\tilde{X},\tilde{V})$
 - $-f_{[k]}:(\mathbb{C},T_{\mathbb{C}})\to (X_k,V_k)$ is the projectivized k-jet of f.
- Basic exact sequences

$$\begin{array}{lll} 0 \to T_{\tilde{X}/X} \to \tilde{V} & \xrightarrow{\pi_{\star}} \mathcal{O}_{\tilde{X}}(-1) \to 0 & \Rightarrow \operatorname{rk} \tilde{V} = r = \operatorname{rk} V \\ 0 \to \mathcal{O}_{\tilde{X}} \to \pi^{\star} V \otimes \mathcal{O}_{\tilde{X}}(1) \to T_{\tilde{X}/X} \to 0 & (\text{Euler}) \\ 0 \to T_{X_{k}/X_{k-1}} \to V_{k} & \xrightarrow{(\pi_{k})_{\star}} \mathcal{O}_{X_{k}}(-1) \to 0 & \Rightarrow \operatorname{rk} V_{k} = r \\ 0 \to \mathcal{O}_{X_{k}} \to \pi_{k}^{\star} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \to T_{X_{k}/X_{k-1}} \to 0 & (\text{Euler}) \end{array}$$

Direct image formula

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• Theorem. X_k is a smooth compactification of

$$X_k^{\mathrm{GG},\mathrm{reg}}/G_k = J_k^{\mathrm{GG},\mathrm{reg}}/G_k$$

where G_k is the group of k-jets of germs of biholomorphisms of $(\mathbb{C},0)$, acting on the right by reparametrization: $(f,\varphi)\mapsto f\circ\varphi$, and J_k^{reg} is the space of k-jets of regular curves.

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• Theorem. X_k is a smooth compactification of

$$X_k^{\mathrm{GG,reg}}/G_k = J_k^{\mathrm{GG,reg}}/G_k$$

where G_k is the group of k-jets of germs of biholomorphisms of $(\mathbb{C},0)$, acting on the right by reparametrization: $(f,\varphi)\mapsto f\circ\varphi$, and J_k^{reg} is the space of k-jets of regular curves.

• **Direct image formula.** $(\pi_{k,0})_* \mathcal{O}_{X_k}(m) = E_{k,m} V^* = invariant algebraic differential operators <math>f \mapsto P(f_{[k]})$ acting on germs of curves $f: (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$.

Algebraic structure of differential rings

- Although very interesting, results are currently limited by lack of knowledge on jet bundles and differential operators
- Theorem (Bérczi-Kirwan, 2009). The ring of germs of invariant differential operators on $(\mathbb{C}^n, T_{\mathbb{C}^n})$ at the origin $\mathcal{A}_{k,n} = \bigoplus E_{k,m} T_{\mathbb{C}^n}^*$ is finitely generated.

Algebraic structure of differential rings

- Although very interesting, results are currently limited by lack of knowledge on jet bundles and differential operators
- Theorem (Bérczi-Kirwan, 2009). The ring of germs of invariant differential operators on $(\mathbb{C}^n, T_{\mathbb{C}^n})$ at the origin $A_{k,n} = \bigoplus E_{k,m} T_{\mathbb{C}^n}^*$ is finitely generated.
- Checked by direct calculations $\forall n, k \leq 2$ and $n = 2, k \leq 4$:

$$\mathcal{A}_{1,n} = \mathcal{O}[f'_1, \dots, f'_n]
\mathcal{A}_{2,n} = \mathcal{O}[f'_1, \dots, f'_n, W^{[ij]}], \quad W^{[ij]} = f'_i f''_j - f'_j f''_i
\mathcal{A}_{3,2} = \mathcal{O}[f'_1, f'_2, W_1, W_2][W]^2, \quad W_i = f'_i DW - 3f''_i W
\mathcal{A}_{4,2} = \mathcal{O}[f'_1, f'_2, W_{11}, W_{22}, S][W]^6, \quad W_{ii} = f'_i DW_i - 5f''_i W_i$$

• **Generalized GGL conjecture.** If (X, V) is directed manifold of general type, i.e. det V^* big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ non const., $f(\mathbb{C}) \subset Y$.

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. det V^* big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ non const., $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1. $t \mapsto \log \|f'(t)\|_{V,h}$ is strictly subharmonic if r = 1 and (V^*, h^*) has > 0 curvature in the sense of currents.

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. det V^* big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ non const., $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1. $t \mapsto \log \|f'(t)\|_{V,h}$ is strictly subharmonic if r = 1 and (V^*, h^*) has > 0 curvature in the sense of currents.
- Strategy. Try some sort of induction on $r = \operatorname{rk} V$. First try to get differential equations $f_{[k]}(\mathbb{C}) \subset Z \subsetneq X_k$. Take minimal such k. If k = 0, we are done! Otherwise $k \geq 1$ and $\pi_{k,k-1}(Z) = X_{k-1}$, thus $V' = V_k \cap T_Z$ has rank $< \operatorname{rk} V_k = r$ and should have again det V'^* big (unless some unprobable geometry situation occurs ?).

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. det V^* big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ non const., $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1. $t \mapsto \log \|f'(t)\|_{V,h}$ is strictly subharmonic if r = 1 and (V^*, h^*) has > 0 curvature in the sense of currents.
- Strategy. Try some sort of induction on $r = \operatorname{rk} V$. First try to get differential equations $f_{[k]}(\mathbb{C}) \subset Z \subsetneq X_k$. Take minimal such k. If k = 0, we are done! Otherwise $k \geq 1$ and $\pi_{k,k-1}(Z) = X_{k-1}$, thus $V' = V_k \cap T_Z$ has rank $< \operatorname{rk} V_k = r$ and should have again det V'^* big (unless some unprobable geometry situation occurs ?).
- Needed induction step. If (X, V) has det V^* big and $Z \subset X_k$ irreducible with $\pi_{k,k-1}(Z) = X_{k-1}$, then (Z, V'), $V' = V_k \cap T_Z$ has $\mathcal{O}_{Z_\ell}(1)$ big on (Z_ℓ, V'_ℓ) , $\ell \gg 0$.

Holomorphic Morse inequalities

Holomorphic Morse inequalities (D-, 1985) Let $L \to X$ be a holomorphic line bundle on a compact complex manifold X, h a smooth hermitian metric on L and

$$\Theta_{L,h} = \frac{i}{2\pi} \nabla_{L,h}^2 = -\frac{i}{2\pi} \partial \overline{\partial} \log h$$

its curvature form. Then $\forall q=0,1,\ldots,n=\dim_{\mathbb{C}}X$

$$\sum_{j=0}^{q} (-1)^{q-j} h^{j}(X, L^{\otimes k}) \leq \frac{k^{n}}{n!} \int_{X(L,h,\leq q)} (-1)^{q} \Theta_{L,h}^{n} + o(k^{n}).$$

where

$$X(L,h,q)=\{x\in X\,;\;\Theta_{L,h}(x)\; {
m has\; signature\;} (n-q,q)\}$$
 (q-index set), and

$$X(L, h, \leq q) = \bigcup_{0 \leq j \leq q} X(L, h, \leq j)$$

Holomorphic Morse inequalities (continued)

As a consequence, one gets an upper bound

$$h^0(X, L^{\otimes k}) \leq \frac{k^n}{n!} \int_{X(L,h,0)} \Theta_{L,h}^n + o(k^n)$$

and a lower bound

$$h^{0}(X, L^{\otimes k}) \geq h^{0}(X, L^{\otimes k}) - h^{1}(X, L^{\otimes k}) \geq \\ \geq \frac{k^{n}}{n!} \Big(\int_{X(L, h, 0)} \Theta_{L, h}^{n} - \int_{X(L, h, 1)} |\Theta_{L, h}^{n}| \Big) - o(k^{n})$$

Holomorphic Morse inequalities (continued)

As a consequence, one gets an upper bound

$$h^0(X, L^{\otimes k}) \leq \frac{k^n}{n!} \int_{X(L,h,0)} \Theta_{L,h}^n + o(k^n)$$

and a lower bound

$$h^{0}(X, L^{\otimes k}) \geq h^{0}(X, L^{\otimes k}) - h^{1}(X, L^{\otimes k}) \geq \\ \geq \frac{k^{n}}{n!} \Big(\int_{X(L,h,0)} \Theta_{L,h}^{n} - \int_{X(L,h,1)} |\Theta_{L,h}^{n}| \Big) - o(k^{n})$$

and similar bounds for the higher cohomology groups H^q :

$$h^{q}(X, L^{\otimes k}) \leq \frac{k^{n}}{n!} \int_{X(L,h,q)} |\Theta_{L,h}^{n}| + o(k^{n})$$

$$h^{q}(X, L^{\otimes k}) \geq \frac{k^{n}}{n!} \Big(\int_{X(L,h,q)} - \int_{X(L,h,q-1)} - \int_{X(L,h,q+1)} |\Theta_{L,h}^{n}| \Big) - o(k^{n})$$

Let $J_k V$ be the bundle of k-jets of curves $f: (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$

Let $J_k V$ be the bundle of k-jets of curves $f: (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^k V$ by taking p = k! and

$$\Psi_{h_k}(f) := \Big(\sum_{1 \leq s \leq k} \varepsilon_s \|\nabla^s f(0)\|_{h(x)}^{2p/s}\Big)^{1/p}, \ \ 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Let $J_k V$ be the bundle of k-jets of curves $f: (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^k V$ by taking p = k! and

$$\Psi_{h_k}(f) := \Big(\sum_{1 \leq s \leq k} \varepsilon_s \|\nabla^s f(0)\|_{h(x)}^{2p/s}\Big)^{1/p}, \ \ 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Letting $\xi_s = \nabla^s f(0)$, this can actually be viewed as a metric h_k on $L_k := \mathcal{O}_{X_{\iota}^{\mathrm{GG}}}(1)$, with curvature form $(x, \xi_1, \dots, \xi_k) \mapsto$

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} \frac{|\xi_s|^{2p/s}}{\sum_t |\xi_t|^{2p/t}} \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta} \frac{\xi_{s\alpha}\xi_{s\beta}}{|\xi_s|^2} dz_i \wedge d\overline{z}_j$$

where $(c_{ij\alpha\beta})$ are the coefficients of the curvature tensor Θ_{V^*,h^*} and $\omega_{\mathrm{FS},k}$ is the vertical Fubini-Study metric on the fibers of $X_k^{\mathrm{GG}} \to X$. The expression gets simpler by using polar coordinates $x_s = |\xi_s|_h^{2p/s}$, $u_s = \xi_s/|\xi_s|_h = \nabla_s^s f(0)/|\nabla_s^s f(0)|$.

Probabilistic interpretation of the curvature

In such polar coordinates, one gets the formula

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},p,k}(\xi) + \frac{i}{2\pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) u_{s\alpha} \overline{u}_{s\beta} dz_i \wedge d\overline{z}_j$$

where $\omega_{\mathrm{FS},k}(\xi)$ is positive definite in ξ . The other terms are a weighted average of the values of the curvature tensor $\Theta_{V,h}$ on vectors u_s in the unit sphere bundle $SV \subset V$. The weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2p/s}=1$, so we can take here $x_s\geq 0$, $\sum x_s=1$. This is essentially a sum of the form $\sum \frac{1}{s}\gamma(u_s)$ where u_s are random points of the sphere, and so as $k\to +\infty$ this can be estimated by a "Monte-Carlo" integral

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)\int_{u\in SV}\gamma(u)\,du.$$

As γ is quadratic here, $\int_{u \in SV} \gamma(u) du = \frac{1}{r} \operatorname{Tr}(\gamma)$.

It follows that the leading term in the estimate only involves the trace of Θ_{V^*,h^*} , i.e. the curvature of $(\det V^*, \det h^*)$, which can be taken to be > 0 if $\det V^*$ is big.

Corollary (D-, 2010) Let (X, V) be a directed manifold, $F \to X$ a \mathbb{Q} -line bundle, (V, h) and (F, h_F) hermitian. Define

$$L_{k} = \mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{kr}\left(1 + \frac{1}{2} + \ldots + \frac{1}{k}\right)F\right),$$

$$\eta = \Theta_{\det V^{*} \det h^{*}} + \Theta_{F,hr}.$$

Then for all $q \ge 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$h^q(X_k^{\mathrm{GG}},\mathcal{O}(L_k^{\otimes m})) \leq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^n}{n! \ (k!)^r} \bigg(\int_{X(\eta,q)} (-1)^q \eta^n + \frac{C}{\log k} \bigg)$$

Main cohomological estimate

It follows that the leading term in the estimate only involves the trace of Θ_{V^*,h^*} , i.e. the curvature of (det V^* , det h^*), which can be taken to be > 0 if det V^* is big.

Corollary (D-, 2010) Let (X, V) be a directed manifold, $F \to X$ a \mathbb{Q} -line bundle, (V, h) and (F, h_F) hermitian. Define

$$L_{k} = \mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{kr}\left(1 + \frac{1}{2} + \ldots + \frac{1}{k}\right)F\right),$$

$$\eta = \Theta_{\det V^{*} \det h^{*}} + \Theta_{F,hr}.$$

Then for all $q \ge 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$h^{q}(X_{k}^{GG}, \mathcal{O}(L_{k}^{\otimes m})) \leq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,q)} (-1)^{q} \eta^{n} + \frac{C}{\log k} \right)$$
$$h^{0}(X_{k}^{GG}, \mathcal{O}(L_{k}^{\otimes m})) \geq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,\leq 1)} \eta^{n} - \frac{C}{\log k} \right).$$

Using the above cohomological estimate, we obtain:

Theorem (D-, 2010) Let (X, V) be of general type, i.e. $K_V = (\det V)^*$ is a big line bundle. Then there exists $k \ge 1$ and an algebraic hypersurface $Z \subsetneq X_k$ such that every entire curve $f: (\mathbb{C}, T_{\mathbb{C}}) \mapsto (X, V)$ satisfies $f_{[k]}(\mathbb{C}) \subset Z$ (in other words, f satisfies an algebraic differential equation of order k).

Using the above cohomological estimate, we obtain:

Theorem (D-, 2010) Let (X, V) be of general type, i.e. $K_V = (\det V)^*$ is a big line bundle. Then there exists k > 1and an algebraic hypersurface $Z \subseteq X_k$ such that every entire curve $f:(\mathbb{C},T_{\mathbb{C}})\mapsto (X,V)$ satisfies $f_{[k]}(\mathbb{C})\subset Z$ (in other words, f satisfies an algebraic differential equation of order k).

Another important consequence is:

Theorem (D-, 2012) A generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d > d_n$ with

$$d_2 = 286, \quad d_3 = 7316, \quad d_n = \left\lfloor \frac{n^4}{3} (n \log(n \log(24n)))^n \right\rfloor$$

(for n > 4) satisfies the Green-Griffiths conjecture.

A differentiation technique by Yum-Tong Siu

The proof of the last result uses an important idea due to Yum-Tong Siu, itself based on ideas of Claire Voisin and Herb Clemens, and then refined by M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].

The idea consists of studying vector fields on the relative jet space of the universal family of hypersurfaces of \mathbb{P}^{n+1} .

The proof of the last result uses an important idea due to Yum-Tong Siu, itself based on ideas of Claire Voisin and Herb Clemens, and then refined by M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].

The idea consists of studying vector fields on the relative jet space of the universal family of hypersurfaces of \mathbb{P}^{n+1} .

Let $\mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{N_d}$ be the universal hypersurface, i.e.

$$\mathcal{X} = \{(z, a); \ a = (a_{\alpha}) \text{ s.t. } P_a(z) = \sum a_{\alpha} z^{\alpha} = 0\},$$

let $\Omega \subset \mathbb{P}^{N_d}$ be the open subset of a's for which $X_a = \{P_a(z) = 0\}$ is smooth, and let

$$p: \mathcal{X} \to \mathbb{P}^{n+1}, \ \pi: \mathcal{X}_{|\Omega} \to \Omega \subset \mathbb{P}^{N_d}$$

be the natural projections.

Let

$$p_k: \mathcal{X}_k \to \mathcal{X} \to \mathbb{P}^{n+1}, \quad \pi_k: \mathcal{X}_k \to \Omega \subset \mathbb{P}^{N_d}$$

be the relative Green-Griffiths k-jet space of $\mathcal{X} \to \Omega$. Then J. Merker [Mer09] has shown that global sections η_i of

$$\mathcal{O}(\mathcal{T}_{\mathcal{X}_k})\otimes p_k^*\mathcal{O}_{\mathbb{P}^{n+1}}(k^2+2k)\otimes \pi_k^*\mathcal{O}_{\mathbb{P}^{N_d}}(1)$$

generate the bundle at all points of $\mathcal{X}_k^{\text{reg}}$ for $k = n = \dim X_a$. From this, it follows that if P is a non zero global section over Ω of $E_{k,m}^{\text{GG}} T_{\mathcal{X}}^* \otimes p_k^* \mathcal{O}_{\mathbb{P}^{n+1}}(-s)$ for some s, then for a suitable collection of $\eta = (\eta_1, \dots, \eta_m)$, the *m*-th derivatives

$$D_{\eta_1} \dots D_{\eta_m} P$$

yield sections of $H^0(\mathcal{X}, E_{k,m}^{\mathrm{GG}}T_{\mathcal{X}}^* \otimes p_k^*\mathcal{O}_{\mathbb{P}^{n+1}}(m(k^2+2k)-s))$ whose joint base locus is contained in $\mathcal{X}_{k}^{\text{sing}}$, whence the result.

References

[**Dem85**] Demailly, J.-P.: Champs Magnétiques et Inégalités de Morse pour la d''-cohomologie. Ann. Inst. Fourier (Grenoble) **35** (1985), no. 4, 189–229.

[Dem95] Demailly, J.-P.: Algebraic Criteria for Kobayashi Hyperbolic Projective Varieties and Jet Differentials. Algebraic geometry – Santa Cruz 1995, 285–360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.

[Dem10] Demailly, J.-P.: Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, November 2010, arXiv: math.AG/1011.3636, dedicated to the memory of Eckart Viehweg; Pure and Applied Mathematics Quarterly **7** (2011) 1165–1208

[Dem12] Demailly, J.-P.: Hyperbolic algebraic varieties and holomorphic differential equations, lecture given at the VIASM Annual Meeting 2012, Hanoi 26 August 2012, 63p, to appear

in Acta Vietnamica

[D-EG00] Demailly, J.-P., El Goul, J.: *Hyperbolicity of Generic Surfaces of High Degree in Projective* 3-*Space*. Amer. J. Math. **122** (2000), no. 3, 515–546.

[Div09] Diverio, S.: Existence of global invariant jet differentials on projective hypersurfaces of high degree. Math. Ann. **344** (2009) 293-315.

[DMR09] Diverio, S., Merker, J., Rousseau, E.: *Effective algebraic degeneracy*. e-print arXiv:0811.2346v5.

[DT9] Diverio, S., Trapani, T.: A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree. e-print arXiv:0902.3741v2.

[F-H91] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991, xvi+551 pp.

- **[G-G79]** Green, M., Griffiths, P.: Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pp. 41–74, Springer, New York-Berlin, 1980.
- **[Kobayashi70]** Kobayashi S.: *Hyperbolic Manifolds and Holomorphic Mappings*. Marcel Dekker, Inc., New York 1970 ix+148 pp.
- [Lang86] Lang S.: Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. 14 (1986), no. 2, 159–205.
- **[Mer08]** An algorithm to generate all polynomials in the k-jet of a holomorphic disc $D \to \mathbb{C}^n$ that are invariant under source reparametrization, arxiv.org:math.CV/0808.3547.
- [Mer09] Merker, J.: Low pole order frames on vertical jets of the universal hypersurface. Ann. Inst. Fourier (Grenoble) **59** (2009) 1077-1104.
- [Pau08] Păun, M.: Vector fields on the total space of

- hypersurfaces in the projective space and hyperbolicity. Math. Ann. **340** (2008), 875-892.
- **[Rou05]** Rousseau, E: Weak Analytic Hyperbolicity of Generic Hypersurfaces of High Degree in the Complex Projective Space of Dimension 4. arXiv:math/0510285v1 [math.AG].
- [Rou06a] Rousseau, E.: Étude des Jets de Demailly-Semple en Dimension 3. Ann. Inst. Fourier (Grenoble) **56** (2006), no. 2, 397–421.
- **[Rou06b]** Rousseau, E: Équations Différentielles sur les Hypersurfaces de \mathbb{P}^4 . J. Math. Pures Appl. (9) **86** (2006), no. 4, 322–341.
- **[Siu04]** Siu, Y.-T.: *Hyperbolicity in Complex Geometry*. The legacy of Niel Henrik Abel, 543–566, Springer, Berlin, 2004.
- [SY96] Siu, Y.T., Yeung, S.K.: Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane. Invent. Math. 124 (1996), 573–618

[SY97] Siu, Y.T., Yeung, S.K.: Defects for ample divisors of Abelian varieties, Schwarz lemma and hyperbolic surfaces of low degree. Amer. J. Math. **119** (1997), 1139–1172

[Tra95] Trapani, S.: Numerical criteria for the positivity of the difference of ample divisors, Math. Z. **219** (1995), no. 3, 387–401.

[Voj87] Vojta, P.: *Diophantine Approximations and Value Distribution Theory*, Springer-Verlag, Lecture Notes in Mathematics no. 1239, 1987.