

Towards the Green-Griffiths-Lang conjecture

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France & Académie des Sciences de Paris

June 19, 2014 Complex Geometry & Lie Groups Conference Universitá degli Studi di Torino Definition. By an entire curve we mean a non constant holomorphic map f : C → X into a complex *n*-dimensional manifold.

回 と く ヨ と く ヨ と

Definition. By an entire curve we mean a non constant holomorphic map f : C → X into a complex *n*-dimensional manifold.
 X is said to be (Brody) hyperbolic if such f : C → X.

- Definition. By an entire curve we mean a non constant holomorphic map f : C → X into a complex n-dimensional manifold.
 X is said to be (Brody) hyperbolic if Z such f : C → X.
- If X is a bounded open subset Ω ⊂ ℂⁿ, then there are no entire curves f : ℂ → Ω (Liouville's theorem),
 ⇒ every bounded open set Ω ⊂ ℂⁿ is hyperbolic

- Definition. By an entire curve we mean a non constant holomorphic map f : C → X into a complex *n*-dimensional manifold.
 X is said to be (Brody) hyperbolic if such f : C → X.
- If X is a bounded open subset Ω ⊂ ℂⁿ, then there are no entire curves f : ℂ → Ω (Liouville's theorem),
 ⇒ every bounded open set Ω ⊂ ℂⁿ is hyperbolic
- X = C \{0, 1, ∞} = C \{0, 1} has no entire curves, so it is hyperbolic (Picard's theorem)

- Definition. By an entire curve we mean a non constant holomorphic map f : C → X into a complex *n*-dimensional manifold.
 X is said to be (Brody) hyperbolic if such f : C → X.
- If X is a bounded open subset Ω ⊂ ℂⁿ, then there are no entire curves f : ℂ → Ω (Liouville's theorem),
 ⇒ every bounded open set Ω ⊂ ℂⁿ is hyperbolic
- X = C \{0, 1, ∞} = C \{0, 1} has no entire curves, so it is hyperbolic (Picard's theorem)
- A complex torus X = Cⁿ/Λ (Λ lattice) has a lot of entire curves. As C simply connected, every f : C → X = Cⁿ/Λ lifts as f̃ : C → Cⁿ, f̃(t) = (f̃₁(t),..., f̃_n(t)), and f̃_i : C → C can be arbitrary entire functions.

マロト イヨト イヨト

Projective algebraic varieties

• Consider now the complex projective *n*-space

 $\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$

御 と く ヨ と く ヨ と … ヨ

Projective algebraic varieties

• Consider now the complex projective *n*-space

 $\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$

• An entire curve $f: \mathbb{C} \to \mathbb{P}^n$ is given by a map

 $t \longmapsto [f_0(t):f_1(t):\ldots:f_n(t)]$

where $f_j : \mathbb{C} \to \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

伺い イヨト イヨト 三日

Projective algebraic varieties

• Consider now the complex projective *n*-space

 $\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$

• An entire curve $f : \mathbb{C} \to \mathbb{P}^n$ is given by a map

$$t \longmapsto [f_0(t):f_1(t):\ldots:f_n(t)]$$

where $f_j : \mathbb{C} \to \mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

 More generally, look at a (complex) projective manifold, i.e.

 $X^n \subset \mathbb{P}^N$, $X = \{[z]; P_1(z) = ... = P_k(z) = 0\}$ where $P_j(z) = P_j(z_0, z_1, ..., z_N)$ are homogeneous polynomials (of some degree d_j), such that X is non singular.

Complex curves (genus 0 and 1)

Canonical bundle $K_X = \Lambda^n T_X^*$ (here $K_X = T_X^*$)

伺下 イヨト イヨト

Complex curves (genus 0 and 1)

Canonical bundle $K_X = \Lambda^n T_X^*$ (here $K_X = T_X^*$) • g = 0: $X = \mathbb{P}^1$ curvature $T_X > 0$: not hyperbolic

Complex curves (genus 0 and 1)

Canonical bundle $K_X = \Lambda^n T_X^*$ (here $K_X = T_X^*$)

• g = 0: $X = \mathbb{P}^1$ curvature $T_X > 0$: not hyperbolic • g = 1: $X = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ curvature $T_X = 0$: not hyperbolic

- * 同 * * き * * き * … き

Complex curves (genus $g \ge 2$)

(negative curvature)

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

 $\deg K_X = 2g - 2$ If $g \ge 2$, $X \simeq \mathbb{D}/\Gamma$ $(T_X < 0) \Rightarrow X$ is hyperbolic.

Complex curves (genus $g \ge 2$)

(negative curvature)

deg $K_X = 2g - 2$ If $g \ge 2$, $X \simeq \mathbb{D}/\Gamma$ $(T_X < 0) \Rightarrow X$ is hyperbolic. In fact every curve $f : \mathbb{C} \to X \simeq \mathbb{D}/\Gamma$ lifts to $\tilde{f} : \mathbb{C} \to \mathbb{D}$, and so \tilde{f} and f must be constant by Liouville.

15/69

Definition Let $L \rightarrow X$ be a line bundle on a nonsingular complex projective variety X.

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

$$\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m-1}, \quad N_m = \dim S_m.$$

Definition Let $L \to X$ be a line bundle on a nonsingular complex projective variety X.

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

 $\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m - 1}, \quad N_m = \dim S_m.$

• L is said to be big if the dimensions of sections

 $\dim H^0(X, L^{\otimes m}) \sim cm^n$

have maximal growth $\kappa(L) = n = \dim X$.

Definition Let $L \rightarrow X$ be a line bundle on a nonsingular complex projective variety X.

17/69

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

 $\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m - 1}, \quad N_m = \dim S_m.$

• L is said to be big if the dimensions of sections

 $\dim H^0(X, L^{\otimes m}) \sim cm^n$

have maximal growth $\kappa(L) = n = \dim X$.

• X is said to be of general type if K_X is big.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Let $L \rightarrow X$ be a line bundle on a nonsingular complex projective variety X.

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

 $\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m - 1}, \ N_m = \dim S_m.$

• *L* is said to be big if the dimensions of sections

 $\dim H^0(X, L^{\otimes m}) \sim cm^n$

have maximal growth $\kappa(L) = n = \dim X$.

• X is said to be of general type if K_X is big.

Example: A non singular hypersurface $X^n \subset \mathbb{P}^{n+1}$ of degree d has $K_X = \mathcal{O}(d - n - 2)$, X is of general type iff d > n + 2.

Definition Let $L \rightarrow X$ be a line bundle on a nonsingular complex projective variety X.

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

 $\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m - 1}, \ N_m = \dim S_m.$

• L is said to be big if the dimensions of sections

 $\dim H^0(X, L^{\otimes m}) \sim cm^n$

have maximal growth $\kappa(L) = n = \dim X$.

• X is said to be of general type if K_X is big.

Example: A non singular hypersurface $X^n \subset \mathbb{P}^{n+1}$ of degree d has $K_X = \mathcal{O}(d - n - 2)$, X is of general type iff d > n + 2.

Conjecture CGT. If a compact variety X is hyperbolic, then it should be of general type, and if X is non singular, then $K_X = \Lambda^n T_X^*$ should be ample, i.e. $K_X > 0$ (Kodaira).

20/69

• Conjecture (Green-Griffiths-Lang = GGL)

Let X be a projective variety of general type. Then $\exists Y \subsetneq X$ algebraic such that all entire curves $f : \mathbb{C} \to X$ satisfy $f(\mathbb{C}) \subset Y$.

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then $\exists Y \subsetneq X$ algebraic such that all entire curves $f : \mathbb{C} \to X$ satisfy $f(\mathbb{C}) \subset Y$.
- Expected consequence of GGL:

If every subvariety Y of X is of general type, then X is hyperbolic.

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then $\exists Y \subsetneq X$ algebraic such that all entire curves $f : \mathbb{C} \to X$ satisfy $f(\mathbb{C}) \subset Y$.
- Expected consequence of GGL:

If every subvariety Y of X is of general type, then X is hyperbolic.

By CGT conjecture, this should be a necessary and sufficient characterization of hyperbolicity for projective varieties.

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then $\exists Y \subsetneq X$ algebraic such that all entire curves $f : \mathbb{C} \to X$ satisfy $f(\mathbb{C}) \subset Y$.
- Expected consequence of GGL:

If every subvariety Y of X is of general type, then X is hyperbolic.

By CGT conjecture, this should be a necessary and sufficient characterization of hyperbolicity for projective varieties.

Arithmetic counterpart (Lang 1987). If X is a variety of general type defined over a number field and Y is the Green-Griffiths locus (Zariski closure of ∪ f(ℂ)), then X(K) \ Y is finite for every number field K.

Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. – El Goul proved
 Theorem (solution of Kobayashi conjecture, 1998).
 A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic.
 Independently McQuillan got degree ≥ 35.
 Recently improved to degree ≥ 18 (Păun, 2008).

Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. – El Goul proved Theorem (solution of Kobayashi conjecture, 1998). A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35. Recently improved to degree ≥ 18 (Păun, 2008). Still far : for X ⊂ Pⁿ⁺¹, the optimal bound should be degree ≥ 2n + 1 for n > 2 (Zaidenberg).

25/69

26/69

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. El Goul proved Theorem (solution of Kobayashi conjecture, 1998). A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35. Recently improved to degree ≥ 18 (Păun, 2008). Still far : for X ⊂ Pⁿ⁺¹, the optimal bound should be degree ≥ 2n + 1 for n ≥ 2 (Zaidenberg).
- Generic GGL conjecture (S. Diverio, J. Merker, E. Rousseau, 2009). A generic hypersurface X ⊂ Pⁿ⁺¹ of degree d ≥ d_n := 2^{n⁵} satisfies GGL (no entire curves).

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. El Goul proved Theorem (solution of Kobayashi conjecture, 1998). A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35. Recently improved to degree ≥ 18 (Păun, 2008). Still far : for X ⊂ Pⁿ⁺¹, the optimal bound should be degree > 2n + 1 for n ≥ 2 (Zaidenberg).
- Generic GGL conjecture (S. Diverio, J. Merker, E. Rousseau, 2009). A generic hypersurface X ⊂ Pⁿ⁺¹ of degree d ≥ d_n := 2^{n⁵} satisfies GGL (no entire curves). (D-, 2012) bound improved to d_n = | ^{n⁴}/₃(n log(n log(24n)))ⁿ |.

(日) (同) (三) (三) (三)

28/69

> < 臣 > < 臣 >

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. El Goul proved Theorem (solution of Kobayashi conjecture, 1998). A very generic surface X⊂P³ of degree ≥ 21 is hyperbolic. Independently McQuillan got degree ≥ 35. Recently improved to degree ≥ 18 (Păun, 2008). Still far : for X ⊂ Pⁿ⁺¹, the optimal bound should be degree ≥ 2n + 1 for n ≥ 2 (Zaidenberg).
- Generic GGL conjecture (S. Diverio, J. Merker, E. Rousseau, 2009). A generic hypersurface X ⊂ Pⁿ⁺¹ of degree d ≥ d_n := 2^{n⁵} satisfies GGL (no entire curves).
 (D-, 2012) bound improved to d_n = [^{n⁴}/₃(n log(n log(24n)))ⁿ].
 Moreover (S. Diverio, S. Trapani, 2009) A generic hypersurface X ⊂ P⁴ of degree ≥ 593 is hyperbolic.

Goal. More generally, we are interested in curves
 f : C → X such that f'(C) ⊂ V where V is a subbundle of T_X (or singular linear subspace, i.e. a closed irreducible analytic subspace such that ∀x ∈ X, V_x := V ∩ T_{X,x} linear).

29/69

- Goal. More generally, we are interested in curves
 f : C → X such that f'(C) ⊂ V where V is a subbundle of T_X (or singular linear subspace, i.e. a closed irreducible analytic subspace such that ∀x ∈ X, V_x := V ∩ T_{X,x} linear).
- **Definition.** Category of directed manifolds :
 - Objects : pairs (X, V), X manifold/ $\mathbb C$ and $V \subset T_X$
 - Arrows $\psi : (X, V) \rightarrow (Y, W)$ holomorphic s.t. $\psi_* V \subset W$

- Goal. More generally, we are interested in curves
 f : C → X such that f'(C) ⊂ V where V is a subbundle
 of T_X (or singular linear subspace, i.e. a closed irreducible
 analytic subspace such that ∀x ∈ X, V_x := V ∩ T_{X,x} linear).
- Definition. Category of directed manifolds :
 - Objects : pairs (X, V), X manifold/ \mathbb{C} and $V \subset T_X$
 - Arrows $\psi : (X, V) \rightarrow (Y, W)$ holomorphic s.t. $\psi_* V \subset W$
 - "Absolute case" (X, T_X) , i.e. $V = T_X$
 - "Relative case" $(X, T_{X/S})$ where $X \to S$
 - "Integrable case" when $[V, V] \subset V$ (foliations)

- Goal. More generally, we are interested in curves
 f : C → X such that f'(C) ⊂ V where V is a subbundle of T_X (or singular linear subspace, i.e. a closed irreducible analytic subspace such that ∀x ∈ X, V_x := V ∩ T_{X,x} linear).
- Definition. Category of directed manifolds :
 - Objects : pairs (X, V), X manifold/ \mathbb{C} and $V \subset T_X$
 - Arrows $\psi : (X, V) \rightarrow (Y, W)$ holomorphic s.t. $\psi_* V \subset W$
 - "Absolute case" (X, T_X) , i.e. $V = T_X$
 - "Relative case" $(X, T_{X/S})$ where $X \to S$
 - "Integrable case" when $[V, V] \subset V$ (foliations)
- Fonctor "1-jet" : $(X, V) \mapsto (\tilde{X}, \tilde{V})$ where :

$$\begin{split} \tilde{X} &= P(V) = \text{bundle of projective spaces of lines in } V \\ \pi : \tilde{X} &= P(V) \to X, \quad (x, [v]) \mapsto x, \quad v \in V_x \\ \tilde{V}_{(x, [v])} &= \left\{ \xi \in \mathcal{T}_{\tilde{X}, (x, [v])}; \ \pi_* \xi \in \mathbb{C} v \subset \mathcal{T}_{X, x} \right\} \end{split}$$

• For every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ tangent to V $f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$ $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)

- For every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ tangent to V $f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$ $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)
- Definition. Semple jet bundles :
 - $(X_k, V_k) = k \text{-th iteration of fonctor } (X, V) \mapsto (\tilde{X}, \tilde{V}) \\ f_{[k]} : (\mathbb{C}, T_{\mathbb{C}}) \to (X_k, V_k) \text{ is the projectivized } k \text{-jet of } f.$

伺 と く ヨ と く ヨ と

- For every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ tangent to V $f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$ $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)
- Definition. Semple jet bundles :
 - $(X_k, V_k) = k \text{-th iteration of fonctor } (X, V) \mapsto (\tilde{X}, \tilde{V}) \\ f_{[k]} : (\mathbb{C}, T_{\mathbb{C}}) \to (X_k, V_k) \text{ is the projectivized } k \text{-jet of } f.$
- Basic exact sequences

伺下 イヨト イヨト

- For every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ tangent to V $f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$ $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)
- Definition. Semple jet bundles :
 - $\begin{array}{l} -(X_k,V_k)=k\text{-th iteration of fonctor }(X,V)\mapsto (\tilde{X},\tilde{V})\\ -f_{[k]}:(\mathbb{C},T_{\mathbb{C}})\to (X_k,V_k) \text{ is the projectivized }k\text{-jet of }f. \end{array}$
- Basic exact sequences

$$0 \to T_{\tilde{X}/X} \to \tilde{V} \xrightarrow{\pi_{\star}} \mathcal{O}_{\tilde{X}}(-1) \to 0 \implies \operatorname{rk} \tilde{V} = r = \operatorname{rk} V$$

$$0 \to \mathcal{O}_{\tilde{X}} \to \pi^{\star} V \otimes \mathcal{O}_{\tilde{X}}(1) \to T_{\tilde{X}/X} \to 0 \quad (\operatorname{Euler})$$

$$0 \to T_{X_{k}/X_{k-1}} \to V_{k} \xrightarrow{(\pi_{k})_{\star}} \mathcal{O}_{X_{k}}(-1) \to 0 \implies \operatorname{rk} V_{k} = r$$

$$0 \to \mathcal{O}_{X_{k}} \to \pi_{k}^{\star} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \to T_{X_{k}/X_{k-1}} \to 0 \quad (\operatorname{Euler})$$

Direct image formula

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

伺 ト イヨト イヨト

Direct image formula

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• **Theorem.** X_k is a smooth compactification of

$$X^{\mathrm{GG},\mathsf{reg}}_k/\mathbb{G}_k=J^{\mathrm{GG},\mathsf{reg}}_k/\mathbb{G}_k$$

where \mathbb{G}_k is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and J_k^{reg} is the space of k-jets of regular curves.

Direct image formula

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \xrightarrow{\pi_k} X_{k-1} \to \cdots \to X_1 \xrightarrow{\pi_1} X_0 = X$$

with dim $X_k = n + k(r - 1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• **Theorem.** X_k is a smooth compactification of

$$X^{\mathrm{GG},\mathsf{reg}}_k/\mathbb{G}_k=J^{\mathrm{GG},\mathsf{reg}}_k/\mathbb{G}_k$$

where \mathbb{G}_k is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and J_k^{reg} is the space of k-jets of regular curves.

• Direct image formula. $(\pi_{k,0})_* \mathcal{O}_{X_k}(m) = E_{k,m} V^* =$ invariant algebraic differential operators $f \mapsto P(f_{[k]})$ acting on germs of curves $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$.

Definition of algebraic differential operators

Let $(\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$, $t \mapsto f(t) = (f_1(t), \dots, f_n(t))$ be a curve written in some local holomorphic coordinates (z_1, \dots, z_n) on X. It has a local Taylor expansion

40/69

$$f(t) = x + t\xi_1 + \ldots + t^k\xi_k + O(t^{k+1}), \quad \xi_s = \frac{1}{s!} \nabla^s f(0)$$

for some connection ∇ on V.

Definition of algebraic differential operators

Let $(\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$, $t \mapsto f(t) = (f_1(t), \dots, f_n(t))$ be a curve written in some local holomorphic coordinates (z_1, \dots, z_n) on X. It has a local Taylor expansion

41/69

$$f(t) = x + t\xi_1 + \ldots + t^k\xi_k + O(t^{k+1}), \quad \xi_s = \frac{1}{s!}\nabla^s f(0)$$

for some connection ∇ on V.

One considers the Green-Griffiths bundle $E_{k,m}^{GG}V^*$ of polynomials of weighted degree *m* written locally in coordinate charts as

$$P(x; \xi_1, \ldots, \xi_k) = \sum a_{\alpha_1 \alpha_2 \ldots \alpha_k}(x) \xi_1^{\alpha_1} \ldots \xi_k^{\alpha_k}, \quad \xi_s \in V,$$

also viewed as algebraic differential operators

$$P(f_{[k]}) = P(f', f'', \dots, f^{(k)})$$

= $\sum a_{\alpha_1 \alpha_2 \dots \alpha_k} (f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}.$

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Definition of algebraic differential operators (2) 42/69

Here $t \mapsto z = f(t)$ is a curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its *k*-jet, and $a_{\alpha_1\alpha_2\dots\alpha_k}(z)$ are supposed to holomorphic functions on *X*.

Definition of algebraic differential operators (2) 43/69

Here $t \mapsto z = f(t)$ is a curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its *k*-jet, and $a_{\alpha_1\alpha_2\dots\alpha_k}(z)$ are supposed to holomorphic functions on *X*. The \mathbb{G}_k -action : $(f, \varphi) \mapsto f \circ \varphi$, yields in particular, $\varphi_{\lambda}(t) = \lambda t \Rightarrow (f \circ \varphi_{\lambda})^{(k)}(t) = \lambda^k f^{(k)}(\lambda t)$, whence a \mathbb{C}^* -action

$$\lambda \cdot (\xi_1, \xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

Definition of algebraic differential operators (2) 44/69

Here $t \mapsto z = f(t)$ is a curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its *k*-jet, and $a_{\alpha_1\alpha_2\dots\alpha_k}(z)$ are supposed to holomorphic functions on *X*. The \mathbb{G}_k -action : $(f, \varphi) \mapsto f \circ \varphi$, yields in particular, $\varphi_{\lambda}(t) = \lambda t \Rightarrow (f \circ \varphi_{\lambda})^{(k)}(t) = \lambda^k f^{(k)}(\lambda t)$, whence a \mathbb{C}^* -action

$$\lambda \cdot (\xi_1, \xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

 $E_{k,m}^{GG}$ is precisely the set of polynomials of weighted degree m, corresponding to coefficients $a_{\alpha_1...\alpha_k}$ with $m = |\alpha_1| + 2|\alpha_2| + \ldots + k|\alpha_k|$.

Definition of algebraic differential operators (2) 45/69

Here $t \mapsto z = f(t)$ is a curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its *k*-jet, and $a_{\alpha_1\alpha_2\dots\alpha_k}(z)$ are supposed to holomorphic functions on *X*. The \mathbb{G}_k -action : $(f, \varphi) \mapsto f \circ \varphi$, yields in particular, $\varphi_{\lambda}(t) = \lambda t \Rightarrow (f \circ \varphi_{\lambda})^{(k)}(t) = \lambda^k f^{(k)}(\lambda t)$, whence a \mathbb{C}^* -action

$$\lambda \cdot (\xi_1, \xi_1, \ldots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \ldots, \lambda^k \xi_k).$$

 $E_{k,m}^{GG}$ is precisely the set of polynomials of weighted degree m, corresponding to coefficients $a_{\alpha_1...\alpha_k}$ with $m = |\alpha_1| + 2|\alpha_2| + ... + k|\alpha_k|.$ $E_{k,m}V^* \subset E_{k,m}^{GG}V^*$ is the bundle of \mathbb{G}_k -"invariant" operators, i.e. such that

$$P((f \circ \varphi)_{[k]}) = \varphi'^m P(f_{[k]}) \circ \varphi, \quad \forall \varphi \in \mathbb{G}_k.$$

伺 と く き と く き とう

Canonical sheaf of a singular pair (X,V)

46/69

When V is nonsingular, we simply set $K_V = \det(V^*)$. When V is singular, the canonical sheaf K_V is the rank 1 analytic sheaf defined as the integral closure of the image of the natural morphism

$$\Lambda^r T^*_X \to \Lambda^r V^* \to \mathcal{L}_V := \text{invert. sheaf } (\Lambda^r V^*)^{**}$$

that is, if the image is $\mathcal{L}_V \otimes \mathcal{J}_V$, $\mathcal{J}_V \subset \mathcal{O}_X$, one sets

 $K_V = \mathcal{L}_V \otimes \overline{\mathcal{J}}_V.$

Canonical sheaf of a singular pair (X,V)

When V is nonsingular, we simply set $K_V = \det(V^*)$. When V is singular, the canonical sheaf K_V is the rank 1 analytic sheaf defined as the integral closure of the image of the natural morphism

$$\Lambda^r T^*_X \to \Lambda^r V^* \to \mathcal{L}_V := \text{invert. sheaf } (\Lambda^r V^*)^{**}$$

that is, if the image is $\mathcal{L}_V \otimes \mathcal{J}_V$, $\mathcal{J}_V \subset \mathcal{O}_X$, one sets

 $K_V = \mathcal{L}_V \otimes \overline{\mathcal{J}}_V.$

Definition. We say that (X, V) is of general type if there exist proper modifications $\mu = \hat{\mu} \circ \tilde{\mu} : \hat{X} \to \tilde{X} \to X$ such that $\hat{\mu}^* K_{\tilde{V}}$ is a big invertible sheaf on \hat{X} , where \tilde{X} is equipped with the pull-back directed structure $\tilde{V} = \overline{\tilde{\mu}^{-1}(V)}$.

 Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. K_V big, then ∃Y ⊊ X such that ∀f : (C, T_C) → (X, V) non const., one has f(C) ⊂ Y.

48/69

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. K_V big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \rightarrow (X, V)$ non const., one has $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1.
 t → log ||f'(t)||_{V,h} is strictly subharmonic if r = 1 and (V*, h*) has > 0 curvature in the sense of currents.

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. K_V big, then ∃Y ⊊ X such that ∀f : (C, T_C) → (X, V) non const., one has f(C) ⊂ Y.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1.
 t → log ||f'(t)||_{V,h} is strictly subharmonic if r = 1 and (V*, h*) has > 0 curvature in the sense of currents.
- Strategy : fundamental vanishing theorem. [Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let P ∈ H⁰(X, E^{GG}_{k,m}V* ⊗ O(−A)) be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then ∀f : C → (X, V), one has P(f_[k]) ≡ 0.

伺い イヨト イヨト

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. K_V big, then $\exists Y \subsetneq X$ such that $\forall f : (\mathbb{C}, T_{\mathbb{C}}) \rightarrow (X, V)$ non const., one has $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1.
 t → log ||f'(t)||_{V,h} is strictly subharmonic if r = 1 and (V*, h*) has > 0 curvature in the sense of currents.
- Strategy : fundamental vanishing theorem. [Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let P ∈ H⁰(X, E^{GG}_{k,m}V* ⊗ O(−A)) be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then ∀f : C → (X, V), one has P(f_[k]) ≡ 0.
- Theorem (D-, 2010). Let (X, V) be of general type, i.e. s.t. K_V is a big rank 1 sheaf. Then ∃ k ≥ 1 and ∃ algebraic hypersurface Σ ⊊ X_k such that every entire curve f : (ℂ, T_ℂ) ↦ (X, V) satisfies f_[k](ℂ) ⊂ Σ.

Finsler metric on the *k*-jet bundles

御 と く ヨ と く ヨ と

Let $J_k V$ be the bundle of k-jets of curves $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Finsler metric on the *k*-jet bundles

Let $J_k V$ be the bundle of k-jets of curves $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^k V$ by taking p = k! and

$$\Psi_{h_k}(f) := \Big(\sum_{1 \le s \le k} \varepsilon_s \|\nabla^s f(0)\|_{h(x)}^{2p/s}\Big)^{1/p}, \ 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Finsler metric on the *k*-jet bundles

Let $J_k V$ be the bundle of k-jets of curves $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^k V$ by taking p = k! and

$$\Psi_{h_k}(f) := \Big(\sum_{1 \le s \le k} \varepsilon_s \|\nabla^s f(0)\|_{h(x)}^{2p/s}\Big)^{1/p}, \ 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Letting $\xi_s = \nabla^s f(0)$, this can actually be viewed as a metric h_k on $L_k := \mathcal{O}_{X_k^{GG}}(1)$, with curvature form $(x, \xi_1, \dots, \xi_k) \mapsto$ $\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} \frac{|\xi_s|^{2p/s}}{\sum_t |\xi_t|^{2p/t}} \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta} \frac{\xi_{s\alpha} \overline{\xi}_{s\beta}}{|\xi_s|^2} dz_i \wedge d\overline{z}_j$

where $(c_{ij\alpha\beta})$ are the coefficients of the curvature tensor Θ_{V^*,h^*} and $\omega_{\text{FS},k}$ is the vertical Fubini-Study metric on the fibers of $X_k^{\text{GG}} \to X$. The expression gets simpler by using polar coordinates $x_s = |\xi_s|_h^{2p/s}$, $u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|$.

Probabilistic interpretation of the curvature

55/69

In such polar coordinates, one gets the formula

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},p,k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\text{FS},k}(\xi)$ is positive definite in ξ . The other terms are a weighted average of the values of the curvature tensor $\Theta_{V,h}$ on vectors u_s in the unit sphere bundle $SV \subset V$.

Probabilistic interpretation of the curvature

56/69

In such polar coordinates, one gets the formula

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},p,k}(\xi) + \frac{i}{2\pi} \sum_{1 \le s \le k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\mathrm{FS},k}(\xi)$ is positive definite in ξ . The other terms are a weighted average of the values of the curvature tensor $\Theta_{V,h}$ on vectors u_s in the unit sphere bundle $SV \subset V$. The weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2p/s} = 1$, so we can take here $x_s \geq 0$, $\sum x_s = 1$. This is essentially a sum of the form $\sum \frac{1}{s} \gamma(u_s)$ where u_s are random points of the sphere, and so as $k \to +\infty$ this can be estimated by a "Monte-Carlo" integral

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)\int_{u\in SV}\gamma(u)\,du.$$

As γ is quadratic here, $\int_{u \in SV} \gamma(u) du = \frac{1}{r} \operatorname{Tr}(\gamma)_{a}$

Main cohomological estimate

It follows that the leading term in the estimate only involves the trace of Θ_{V^*,h^*} , i.e. the curvature of (det V^* , det h^*), which can be taken to be > 0 if det V^* is big.

Corollary (D-, 2010). Let (X, V) be a directed manifold, $F \rightarrow X$ a \mathbb{Q} -line bundle, (V, h) and (F, h_F) hermitian. Define

$$L_{k} = \mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{kr}\left(1 + \frac{1}{2} + \ldots + \frac{1}{k}\right)F\right),$$

$$\eta = \Theta_{\det V^{*}, \det h^{*}} + \Theta_{F, h_{F}}.$$

Then for all $q \ge 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$h^{q}(X_{k}^{\mathrm{GG}}, \mathcal{O}(L_{k}^{\otimes m})) \leq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! \ (k!)^{r}} \left(\int_{X(\eta,q)} (-1)^{q} \eta^{n} + \frac{C}{\log k} \right)$$

Main cohomological estimate

It follows that the leading term in the estimate only involves the trace of Θ_{V^*,h^*} , i.e. the curvature of (det V^* , det h^*), which can be taken to be > 0 if det V^* is big.

Corollary (D-, 2010). Let (X, V) be a directed manifold, $F \rightarrow X$ a \mathbb{Q} -line bundle, (V, h) and (F, h_F) hermitian. Define

$$L_{k} = \mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(\frac{1}{kr}\left(1 + \frac{1}{2} + \ldots + \frac{1}{k}\right)F\right),$$

$$\eta = \Theta_{\det V^{*}, \det h^{*}} + \Theta_{F, h_{F}}.$$

Then for all $q \ge 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$h^{q}(X_{k}^{\mathrm{GG}}, \mathcal{O}(L_{k}^{\otimes m})) \leq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,q)} (-1)^{q} \eta^{n} + \frac{C}{\log k} \right)$$
$$h^{0}(X_{k}^{\mathrm{GG}}, \mathcal{O}(L_{k}^{\otimes m})) \geq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,\leq 1)} \eta^{n} - \frac{C}{\log k} \right).$$

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

59/69

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over X, such that Z projects onto X_{k-1} , i.e.

 $\pi_{k,k-1}(Z)=X_{k-1}.$

60/69

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over X, such that Z projects onto X_{k-1} , i.e.

 $\pi_{k,k-1}(Z)=X_{k-1}.$

We define the linear subspace $W \subset T_Z \subset T_{X_k|Z}$ to be the closure of $T_{Z'} \cap V_k$ taken on a suitable Zariski open set $Z' \subset Z_{\text{reg}}$ where the intersection has constant rank and is a subbundle of $T_{Z'}$.

61/69

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over X, such that Z projects onto X_{k-1} , i.e.

 $\pi_{k,k-1}(Z)=X_{k-1}.$

We define the linear subspace $W \subset T_Z \subset T_{X_k|Z}$ to be the closure of $T_{Z'} \cap V_k$ taken on a suitable Zariski open set $Z' \subset Z_{\text{reg}}$ where the intersection has constant rank and is a subbundle of $T_{Z'}$.

Alternatively, one could also take W to be the closure of $T_{Z'} \cap V_k$ in the *k*-th stage $(\mathcal{X}_k, \mathcal{A}_k)$ of the "absolute Semple tower" associated with $(\mathcal{X}_0, \mathcal{A}_0) = (X, T_X)$.

62/69

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over X, such that Z projects onto X_{k-1} , i.e.

 $\pi_{k,k-1}(Z)=X_{k-1}.$

We define the linear subspace $W \subset T_Z \subset T_{X_k|Z}$ to be the closure of $T_{Z'} \cap V_k$ taken on a suitable Zariski open set $Z' \subset Z_{\text{reg}}$ where the intersection has constant rank and is a subbundle of $T_{Z'}$.

Alternatively, one could also take W to be the closure of $T_{Z'} \cap V_k$ in the k-th stage $(\mathcal{X}_k, \mathcal{A}_k)$ of the "absolute Semple tower" associated with $(\mathcal{X}_0, \mathcal{A}_0) = (X, T_X)$.

This produces an induced directed pair

 $(Z, W) \subset (X_k, V_k),$

and it is easy to show that $rk W < rk V_k = rk V$.

63/69

Definition. Let (X, V) be a directed pair where X is projective algebraic. We say that (X, V) is "strongly of general type" if it is of general type and for every irreducible component $Z \subsetneq X_k$ that projects onto X_{k-1} , $X_k \not\subset D_k := P(T_{X_{k-1}/X_{k-2}})$, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \rightarrow X$, i.e. $K_W \otimes \mathcal{O}_{X_k}(m)_{|Z}$ is big for some $m \in \mathbb{Q}_+$.

64/69

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition. Let (X, V) be a directed pair where X is projective algebraic. We say that (X, V) is "strongly of general type" if it is of general type and for every irreducible component $Z \subsetneq X_k$ that projects onto X_{k-1} , $X_k \not\subset D_k := P(T_{X_{k-1}/X_{k-2}})$, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \rightarrow X$, i.e. $K_W \otimes \mathcal{O}_{X_k}(m)_{|Z}$ is big for some $m \in \mathbb{Q}_+$.

Theorem (D-, 2014) If (X, V) is strongly of general type, the Green-Griffiths-Lang conjecture holds true for (X, V), namely there $\exists Y \subsetneq X$ such that every non constant holomorphic curve $f : (\mathbb{C}, T_{\mathbb{C}} \to (X, V)$ satisfies $f(\mathbb{C}) \subset Y$.

65/69

Definition. Let (X, V) be a directed pair where X is projective algebraic. We say that (X, V) is "strongly of general type" if it is of general type and for every irreducible component $Z \subsetneq X_k$ that projects onto X_{k-1} , $X_k \not\subset D_k := P(T_{X_{k-1}/X_{k-2}})$, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$, i.e. $K_W \otimes \mathcal{O}_{X_k}(m)_{|Z}$ is big for some $m \in \mathbb{Q}_+$.

Theorem (D-, 2014) If (X, V) is strongly of general type, the Green-Griffiths-Lang conjecture holds true for (X, V), namely there $\exists Y \subsetneq X$ such that every non constant holomorphic curve $f : (\mathbb{C}, T_{\mathbb{C}} \to (X, V)$ satisfies $f(\mathbb{C}) \subset Y$.

Proof: Induction using existence theorem for jet differentials. Unfortunately by contradiction, and thus non constructive.

イロト イポト イヨト イヨト

 $\frac{\inf\left\{\lambda \in \mathbb{Q} ; \exists m \in \mathbb{Q}_+, \ K_W \otimes \left(\mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* \mathcal{O}(\lambda A)\right)_{|Z} \text{ big on } Z\right\}}{\operatorname{rank} W}$

伺 と く ヨ と く ヨ と

$$\frac{\inf\left\{\lambda\in\mathbb{Q}\,;\;\exists m\in\mathbb{Q}_+,\; K_W\otimes\left(\mathcal{O}_{X_k}(m)\otimes\pi_{k,0}^*\mathcal{O}(\lambda A)\right)_{\mid Z} \text{ big on } Z\right\}}{\operatorname{rank} W}$$

Notice that (X, V) is of general type iff $\mu_A(X, V) < 0$.

 $\frac{\inf\left\{\lambda \in \mathbb{Q} ; \exists m \in \mathbb{Q}_+, K_W \otimes \left(\mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* \mathcal{O}(\lambda A)\right)_{|Z} \text{ big on } Z\right\}}{\operatorname{rank} W}$

Notice that (X, V) is of general type iff $\mu_A(X, V) < 0$. We say that (X, V) is *A*-jet-stable (resp. *A*-jet-semi-stable) if $\mu_A(Z, W) < \mu_A(X, V)$ (resp. $\mu_A(Z, W) \le \mu_A(X, V)$) for all $Z \subsetneq X_k$ as above.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\frac{\inf \left\{ \lambda \in \mathbb{Q} \, ; \, \exists m \in \mathbb{Q}_+, \, K_W \otimes \left(\mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* \mathcal{O}(\lambda A) \right)_{|Z} \text{ big on } Z \right\}}{\operatorname{rank} W}$

Notice that (X, V) is of general type iff $\mu_A(X, V) < 0$. We say that (X, V) is *A*-jet-stable (resp. *A*-jet-semi-stable) if $\mu_A(Z, W) < \mu_A(X, V)$ (resp. $\mu_A(Z, W) \le \mu_A(X, V)$) for all $Z \subsetneq X_k$ as above.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Observation. If (X, V) is of general type and *A*-jet-semi-stable, then (X, V) is strongly of general type.