

Towards the Green-Griffiths-Lang conjecture

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France & Académie des Sciences de Paris

June 19, 2014 Complex Geometry & Lie Groups Conference Universitá degli Studi di Torino

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Entire curves

2/21

- Definition. By an entire curve we mean a non constant holomorphic map $f: \mathbb{C} \to X$ into a complex *n*-dimensional manifold.
 - X is said to be (Brody) hyperbolic if $\not\exists$ such $f: \mathbb{C} \to X$.
- If X is a bounded open subset $\Omega \subset \mathbb{C}^n$, then there are no entire curves $f: \mathbb{C} \to \Omega$ (Liouville's theorem), \Rightarrow every bounded open set $\Omega \subset \mathbb{C}^n$ is hyperbolic
- $X = \overline{\mathbb{C}} \setminus \{0, 1, \infty\} = \mathbb{C} \setminus \{0, 1\}$ has no entire curves, so it is hyperbolic (Picard's theorem)
- A complex torus $X = \mathbb{C}^n/\Lambda$ (Λ lattice) has a lot of entire curves. As \mathbb{C} simply connected, every $f:\mathbb{C}\to X=\mathbb{C}^n/\Lambda$ lifts as $\tilde{f}:\mathbb{C}\to\mathbb{C}^n$, $\tilde{f}(t)=(\tilde{f}_1(t),\ldots,\tilde{f}_n(t))$, and $\tilde{f}_i:\mathbb{C}\to\mathbb{C}$ can be arbitrary entire functions.

Consider now the complex projective n-space

$$\mathbb{P}^n = \mathbb{P}^n_{\mathbb{C}} = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*, \qquad [z] = [z_0 : z_1 : \ldots : z_n].$$

ullet An entire curve $f:\mathbb{C}
ightarrow \mathbb{P}^n$ is given by a map

$$t \longmapsto [f_0(t):f_1(t):\ldots:f_n(t)]$$

where $f_j:\mathbb{C}\to\mathbb{C}$ are holomorphic functions without common zeroes (so there are a lot of them).

More generally, look at a (complex) projective manifold, i.e.

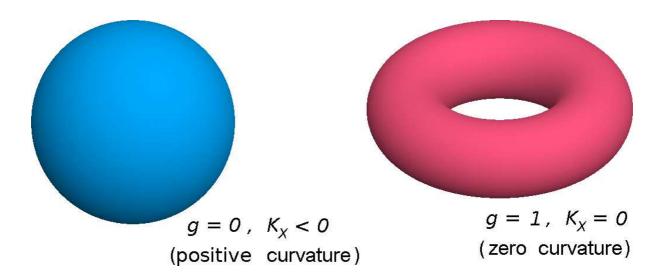
$$X^n \subset \mathbb{P}^N$$
, $X = \{[z]; P_1(z) = ... = P_k(z) = 0\}$

where $P_i(z) = P_i(z_0, z_1, \dots, z_N)$ are homogeneous polynomials (of some degree d_i), such that X is non singular.

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Complex curves (genus 0 and 1)

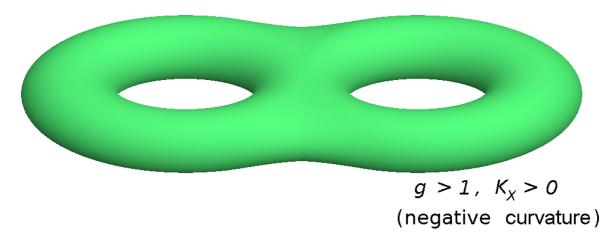
4/21



Canonical bundle $K_X = \Lambda^n T_X^*$ (here $K_X = T_X^*$)

• $g = 0 : X = \mathbb{P}^1$ curvature $T_X > 0$: not hyperbolic

ullet $g=1: X=\mathbb{C}/(\mathbb{Z}+\mathbb{Z} au)$ curvature $T_X=0:$ not hyperbolic



$$\deg K_X = 2g - 2$$

If $g \geq 2$, $X \simeq \mathbb{D}/\Gamma$ $(T_X < 0) \Rightarrow X$ is hyperbolic.
In fact every curve $f : \mathbb{C} \to X \simeq \mathbb{D}/\Gamma$ lifts to $\widetilde{f} : \mathbb{C} \to \mathbb{D}$, and so \widetilde{f} and f must be constant by Liouville.

Positivity concepts/General type varieties

6/21

Definition Let $L \to X$ be a line bundle on a nonsingular complex projective variety X.

• L is said to be ample if for $m \gg 1$ the space of sections $S_m = H^0(X, K_X^{\otimes m})$ gives an embedding

$$\Phi_m: X \hookrightarrow P(S_m^*) = \mathbb{P}^{N_m-1}, \quad N_m = \dim S_m.$$

• L is said to be big if the dimensions of sections

$$\dim H^0(X, L^{\otimes m}) \sim cm^n$$

have maximal growth $\kappa(L) = n = \dim X$.

• X is said to be of general type if K_X is big.

Example: A non singular hypersurface $X^n \subset \mathbb{P}^{n+1}$ of degree d has $K_X = \mathcal{O}(d-n-2)$, X is of general type iff d > n+2.

Conjecture CGT. If a compact variety X is hyperbolic, then it should be of general type, and if X is non singular, then $K_X = \Lambda^n T_X^*$ should be ample, i.e. $K_X > 0$ (Kodaira).

- Conjecture (Green-Griffiths-Lang = GGL) Let X be a projective variety of general type. Then $\exists Y \subseteq X$ algebraic such that all entire curves $f: \mathbb{C} \to X$ satisfy $f(\mathbb{C}) \subset Y$.
- Expected consequence of GGL: If every subvariety Y of X is of general type, then X is hyperbolic.
 - By CGT conjecture, this should be a necessary and sufficient characterization of hyperbolicity for projective varieties.
- Arithmetic counterpart (Lang 1987). If X is a variety of general type defined over a number field and Y is the Green-Griffiths locus (Zariski closure of $| | f(\mathbb{C}) |$), then $X(\mathbb{K}) \setminus Y$ is finite for every number field \mathbb{K} .

Results obtained so far

8/21

- Using "jet technology" and deep results of McQuillan for curve foliations on surfaces, D. – El Goul proved **Theorem** (solution of Kobayashi conjecture, 1998). A very generic surface $X \subset \mathbb{P}^3$ of degree > 21 is hyperbolic. Independently McQuillan got degree > 35. Recently improved to degree ≥ 18 (Păun, 2008). Still far : for $X \subset \mathbb{P}^{n+1}$, the optimal bound should be degree $\geq 2n+1$ for $n \geq 2$ (Zaidenberg).
- Generic GGL conjecture (S. Diverio, J. Merker, E. Rousseau, 2009). A generic hypersurface $X \subset \mathbb{P}^{n+1}$ of degree $d \ge d_n := 2^{n^5}$ satisfies GGL (no entire curves). (D-, 2012) bound improved to $d_n = \left| \frac{n^4}{3} \left(n \log(n \log(24n)) \right)^n \right|$. Moreover (S. Diverio, S. Trapani, 2009) A generic hypersurface $X \subset \mathbb{P}^4$ of degree ≥ 593 is hyperbolic.

- Goal. More generally, we are interested in curves $f: \mathbb{C} \to X$ such that $f'(\mathbb{C}) \subset V$ where V is a subbundle of T_X (or singular linear subspace, i.e. a closed irreducible analytic subspace such that $\forall x \in X$, $V_x := V \cap T_{X,x}$ linear).
- **Definition.** Category of directed manifolds:
 - Objects: pairs (X, V), X manifold/ $\mathbb C$ and $V \subset T_X$
 - Arrows $\psi: (X, V) \to (Y, W)$ holomorphic s.t. $\psi_* V \subset W$
 - "Absolute case" (X, T_X) , i.e. $V = T_X$
 - "Relative case" $(X, T_{X/S})$ where $X \to S$
 - "Integrable case" when $[V, V] \subset V$ (foliations)
- Fonctor "1-jet" : $(X, V) \mapsto (\tilde{X}, \tilde{V})$ where :

$$ilde{X} = P(V) = ext{bundle of projective spaces of lines in } V$$
 $\pi: ilde{X} = P(V) o X, \quad (x,[v]) \mapsto x, \quad v \in V_x$
 $ilde{V}_{(x,[v])} = \left\{ \xi \in T_{ ilde{X},(x,[v])}; \; \pi_* \xi \in \mathbb{C} v \subset T_{X,x} \right\}$

Semple jet bundles

10/21

ullet For every entire curve $f:(\mathbb{C},\mathcal{T}_{\mathbb{C}}) o (X,V)$ tangent to V

$$f_{[1]}(t) := (f(t), [f'(t)]) \in P(V_{f(t)}) \subset \tilde{X}$$

 $f_{[1]} : (\mathbb{C}, T_{\mathbb{C}}) \to (\tilde{X}, \tilde{V})$ (projectivized 1st-jet)

- **Definition.** Semple jet bundles :
 - $-(X_k,V_k)=k$ -th iteration of fonctor $(X,V)\mapsto (\tilde{X},\tilde{V})$
 - $-f_{[k]}:(\mathbb{C},T_{\mathbb{C}})\to (X_k,V_k)$ is the projectivized k-jet of f.
- Basic exact sequences

$$0 \to T_{\tilde{X}/X} \to \tilde{V} \stackrel{\pi_{\star}}{\to} \mathcal{O}_{\tilde{X}}(-1) \to 0 \quad \Rightarrow \mathsf{rk} \; \tilde{V} = r = \mathsf{rk} \; V$$

$$0 o \mathcal{O}_{ ilde{X}} o \pi^{\star} V \otimes \mathcal{O}_{ ilde{X}}(1) o \mathcal{T}_{ ilde{X}/X} o 0$$
 (Euler)

$$0 \to T_{X_k/X_{k-1}} \to V_k \overset{(\pi_k)_\star}{\to} \mathcal{O}_{X_k}(-1) \to 0 \quad \Rightarrow \operatorname{rk} V_k = r$$

$$0 \to \mathcal{O}_{X_k} \to \pi_k^{\star} V_{k-1} \otimes \mathcal{O}_{X_k}(1) \to T_{X_k/X_{k-1}} \to 0$$
 (Euler)

• For $n = \dim X$ and $r = \operatorname{rk} V$, get a tower of \mathbb{P}^{r-1} -bundles

$$\pi_{k,0}: X_k \stackrel{\pi_k}{\to} X_{k-1} \to \cdots \to X_1 \stackrel{\pi_1}{\to} X_0 = X$$

with dim $X_k = n + k(r-1)$, rk $V_k = r$, and tautological line bundles $\mathcal{O}_{X_k}(1)$ on $X_k = P(V_{k-1})$.

• Theorem. X_k is a smooth compactification of

$$X_k^{\mathrm{GG},\mathsf{reg}}/\mathbb{G}_k = J_k^{\mathrm{GG},\mathsf{reg}}/\mathbb{G}_k$$

where \mathbb{G}_k is the group of k-jets of germs of biholomorphisms of $(\mathbb{C},0)$, acting on the right by reparametrization: $(f,\varphi)\mapsto f\circ\varphi$, and J_k^{reg} is the space of k-jets of regular curves.

• Direct image formula. $(\pi_{k,0})_* \mathcal{O}_{X_k}(m) = \mathcal{E}_{k,m} V^* =$ invariant algebraic differential operators $f \mapsto P(f_{[k]})$ acting on germs of curves $f:(\mathbb{C},T_{\mathbb{C}})\to (X,V)$.

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Definition of algebraic differential operators

12/21

Let $(\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$, $t \mapsto f(t) = (f_1(t), \dots, f_n(t))$ be a curve written in some local holomorphic coordinates (z_1, \ldots, z_n) on X. It has a local Taylor expansion

$$f(t) = x + t\xi_1 + \ldots + t^k \xi_k + O(t^{k+1}), \quad \xi_s = \frac{1}{s!} \nabla^s f(0)$$

for some connection ∇ on V.

One considers the Green-Griffiths bundle $E_{k,m}^{GG}V^*$ of polynomials of weighted degree m written locally in coordinate charts as

$$P(x; \xi_1, \ldots, \xi_k) = \sum a_{\alpha_1 \alpha_2 \ldots \alpha_k}(x) \xi_1^{\alpha_1} \ldots \xi_k^{\alpha_k}, \quad \xi_s \in V,$$

also viewed as algebraic differential operators

$$P(f_{[k]}) = P(f', f'', \dots, f^{(k)})$$

= $\sum a_{\alpha_1 \alpha_2 \dots \alpha_k} (f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}.$

Here $t \mapsto z = f(t)$ is a curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its k-jet, and $a_{\alpha_1\alpha_2...\alpha_k}(z)$ are supposed to holomorphic functions on X.

The \mathbb{G}_k -action : $(f, \varphi) \mapsto f \circ \varphi$, yields in particular, $\varphi_{\lambda}(t) = \lambda t \Rightarrow (f \circ \varphi_{\lambda})^{(k)}(t) = \lambda^{k} f^{(k)}(\lambda t)$, whence a \mathbb{C}^{*} -action

$$\lambda \cdot (\xi_1, \xi_1, \dots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \dots, \lambda^k \xi_k).$$

 $E_{k,m}^{\rm GG}$ is precisely the set of polynomials of weighted degree m, corresponding to coefficients $a_{\alpha_1...\alpha_k}$ with $m = |\alpha_1| + 2|\alpha_2| + \ldots + k|\alpha_k|.$

 $E_{k,m}V^*\subset E_{k,m}^{\rm GG}V^*$ is the bundle of \mathbb{G}_k -"invariant" operators, i.e. such that

$$P((f \circ \varphi)_{[k]}) = \varphi'^m P(f_{[k]}) \circ \varphi, \quad \forall \varphi \in \mathbb{G}_k.$$

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Canonical sheaf of a singular pair (X,V)

14/21

When V is nonsingular, we simply set $K_V = \det(V^*)$. When V is singular, the canonical sheaf K_V is the rank 1 analytic sheaf defined as the integral closure of the image of the natural morphism

$$\Lambda^r T_X^* \to \Lambda^r V^* \to \mathcal{L}_V := \text{invert. sheaf } (\Lambda^r V^*)^{**}$$

that is, if the image is $\mathcal{L}_V \otimes \mathcal{J}_V$, $\mathcal{J}_V \subset \mathcal{O}_X$, one sets

$$K_V = \mathcal{L}_V \otimes \overline{\mathcal{J}}_V.$$

Definition. We say that (X, V) is of general type if there exist proper modifications $\mu = \hat{\mu} \circ \tilde{\mu} : \widehat{X} \to \widetilde{X} \to X$ such that $\hat{\mu}^* K_{\widetilde{V}}$ is a big invertible sheaf on \widehat{X} , where \widetilde{X} is equipped with the pull-back directed structure $\widetilde{V} = \overline{\widetilde{\mu}^{-1}(V)}$.

- Generalized GGL conjecture. If (X, V) is directed manifold of general type, i.e. K_V big, then $\exists Y \subseteq X$ such that $\forall f: (\mathbb{C}, T_{\mathbb{C}}) \rightarrow (X, V)$ non const., one has $f(\mathbb{C}) \subset Y$.
- Remark. Elementary by Ahlfors-Schwarz if r = rk V = 1. $t\mapsto \log \|f'(t)\|_{V,h}$ is strictly subharmonic if r=1 and (V^*, h^*) has > 0 curvature in the sense of currents.
- Strategy: fundamental vanishing theorem. [Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] Let $P \in H^0(X, E_{k,m}^{\mathrm{GG}}V^* \otimes \mathcal{O}(-A))$ be a global algebraic differential operator whose coefficients vanish on some ample divisor A. Then $\forall f : \mathbb{C} \to (X, V)$, one has $P(f_{[k]}) \equiv 0$.
- Theorem (D-, 2010). Let (X, V) be of general type, i.e. s.t. K_V is a big rank 1 sheaf. Then $\exists k > 1$ and \exists algebraic hypersurface $\Sigma \subsetneq X_k$ such that every entire curve $f:(\mathbb{C},T_{\mathbb{C}})\mapsto (X,V)$ satisfies $f_{[k]}(\mathbb{C})\subset \Sigma$.

Finsler metric on the *k*-jet bundles

16/21

Let $J_k V$ be the bundle of k-jets of curves $f: (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on J^kV by taking p=k! and

$$\Psi_{h_k}(f) := \Big(\sum_{1 \leq s \leq k} \varepsilon_s \|\nabla^s f(0)\|_{h(x)}^{2p/s}\Big)^{1/p}, \quad 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Letting $\xi_s = \nabla^s f(0)$, this can actually be viewed as a metric h_k on $L_k := \mathcal{O}_{X_k^{\mathrm{GG}}}(1)$, with curvature form $(x, \xi_1, \dots, \xi_k) \mapsto$

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \leq s \leq k} \frac{1}{s} \frac{|\xi_s|^{2p/s}}{\sum_t |\xi_t|^{2p/t}} \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta} \frac{\xi_{s\alpha} \overline{\xi}_{s\beta}}{|\xi_s|^2} dz_i \wedge d\overline{z}_j$$

where $(c_{ij\alpha\beta})$ are the coefficients of the curvature tensor Θ_{V^*,h^*} and $\omega_{\mathrm{FS},k}$ is the vertical Fubini-Study metric on the fibers of $X_{\iota}^{\mathrm{GG}} \to X$. The expression gets simpler by using polar coordinates $x_s = |\xi_s|_b^{2p/s}, \ u_s = \xi_s/|\xi_s|_b = \nabla^s f(0)/|\nabla^s f(0)|.$

In such polar coordinates, one gets the formula

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},p,k}(\xi) + \frac{i}{2\pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\mathrm{FS},k}(\xi)$ is positive definite in ξ . The other terms are a weighted average of the values of the curvature tensor $\Theta_{V,h}$ on vectors u_s in the unit sphere bundle $SV \subset V$.

The weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2p/s} = 1$, so we can take here $x_s \ge 0$, $\sum x_s = 1$. This is essentially a sum of the form $\sum \frac{1}{s} \gamma(u_s)$ where u_s are random points of the sphere, and so as $k o +\infty$ this can be estimated by a "Monte-Carlo" integral

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right)\int_{u\in SV}\gamma(u)\,du.$$

As γ is quadratic here, $\int_{u \in SV} \gamma(u) du = \frac{1}{r} \operatorname{Tr}(\gamma)$.

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture

Main cohomological estimate

18/21

It follows that the leading term in the estimate only involves the trace of Θ_{V^*,h^*} , i.e. the curvature of (det V^* , det h^*), which can be taken to be > 0 if det V^* is big.

Corollary (D-, 2010). Let (X, V) be a directed manifold, $F \to X$ a \mathbb{Q} -line bundle, (V,h) and (F,h_F) hermitian. Define

$$\begin{split} L_k &= \mathcal{O}_{X_k^{\mathrm{GG}}}(1) \otimes \pi_k^* \mathcal{O}\Big(\frac{1}{kr}\Big(1 + \frac{1}{2} + \ldots + \frac{1}{k}\Big)F\Big), \\ \eta &= \Theta_{\det V^*, \det h^*} + \Theta_{F, h_F}. \end{split}$$

Then for all $q \ge 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have

$$h^{q}(X_{k}^{GG}, \mathcal{O}(L_{k}^{\otimes m})) \leq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,q)} (-1)^{q} \eta^{n} + \frac{C}{\log k} \right)$$
$$h^{0}(X_{k}^{GG}, \mathcal{O}(L_{k}^{\otimes m})) \geq \frac{m^{n+kr-1}}{(n+kr-1)!} \frac{(\log k)^{n}}{n! (k!)^{r}} \left(\int_{X(\eta,<1)} \eta^{n} - \frac{C}{\log k} \right).$$

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over X, such that Z projects onto X_{k-1} , i.e.

$$\pi_{k,k-1}(Z) = X_{k-1}.$$

We define the linear subspace $W\subset T_Z\subset T_{X_k|Z}$ to be the closure of $T_{Z'} \cap V_k$ taken on a suitable Zariski open set $Z' \subset Z_{\operatorname{reg}}$ where the intersection has constant rank and is a subbundle of $T_{Z'}$.

Alternatively, one could also take W to be the closure of $T_{Z'} \cap V_k$ in the k-th stage $(\mathcal{X}_k, \mathcal{A}_k)$ of the "absolute Semple tower" associated with $(\mathcal{X}_0, \mathcal{A}_0) = (X, T_X)$.

This produces an induced directed pair

$$(Z, W) \subset (X_k, V_k),$$

and it is easy to show that $rk W < rk V_k = rk V$.

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups

Towards the Green-Griffiths-Lang conjecture

Partial solution of GGL conjecture

20/21

Definition. Let (X, V) be a directed pair where X is projective algebraic. We say that (X, V) is "strongly of general type" if it is of general type and for every irreducible component $Z \subsetneq X_k$ that projects onto X_{k-1} , $X_k \not\subset D_k := P(T_{X_{k-1}/X_{k-2}})$, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$, i.e. $K_W \otimes \mathcal{O}_{X_k}(m)_{|Z}$ is big for some $m \in \mathbb{Q}_+$.

Theorem (D-, 2014) If (X, V) is strongly of general type, the Green-Griffiths-Lang conjecture holds true for (X, V), namely there $\exists Y \subseteq X$ such that every non constant holomorphic curve $f:(\mathbb{C},T_{\mathbb{C}}\to(X,V))$ satisfies $f(\mathbb{C})\subset Y$.

Proof: Induction using existence theorem for jet differentials. Unfortunately by contradiction, and thus non constructive.

Definition. Fix an ample divisor A on X. For every irreducible subvariety $Z \subset X_k$ that projects onto X_{k-1} for $k \geq 1$, $Z \not\subset D_k$, and $Z = X = X_0$ for k = 0, we define the slope of the corresponding directed variety (Z, W) to be $\mu_A(Z, W) =$

$$\frac{\inf\left\{\lambda\in\mathbb{Q}\,;\;\exists m\in\mathbb{Q}_+,\;K_W\otimes\left(\mathcal{O}_{X_k}(m)\otimes\pi_{k,0}^*\mathcal{O}(\lambda A)\right)_{|Z}\;\text{big on }Z\right\}}{\operatorname{rank}W}$$

Notice that (X, V) is of general type iff $\mu_A(X, V) < 0$. We say that (X, V) is A-jet-stable (resp. A-jet-semi-stable) if $\mu_A(Z, W) < \mu_A(X, V)$ (resp. $\mu_A(Z, W) \le \mu_A(X, V)$) for all $Z \subseteq X_k$ as above.

Observation. If (X, V) is of general type and A-jet-semi-stable, then (X, V) is strongly of general type.

Jean-Pierre Demailly (Grenoble), Complex Geom. & Lie Groups Towards the Green-Griffiths-Lang conjecture