

General extension theorem for cohomology classes on non reduced analytic subspaces

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble Alpes & Académie des Sciences de Paris

Trends in Modern Geometry 2017 Graduate School of Mathematical Sciences The University of Tokyo, July 10–13, 2017

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 1/21

References

This is a joint work with Junyan Cao & Shin-ichi Matsumura

- J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties, arXiv:1510.05230v1, Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after one hundred and fifty years, 2015.
- J.Y. Cao, J.-P. Demailly, S-i. Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, arXiv:1703.00292v2, Science China Mathematics, 60 (2017) 949-962
- T. Ohsawa, K. Takegoshi, On the extension of L²holomorphic functions, Math. Zeitschrift 195 (1987), 197-204.
- T. Ohsawa series of papers I VI, and: On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565-577.

The extension problem

Let (X, ω) be a possibly noncompact n-dimensional Kähler manifold, $\mathcal{J}\subset\mathcal{O}_X$ a coherent ideal sheaf, $Y=V(\mathcal{J})$ its zero variety and

$$\mathcal{O}_{\mathsf{Y}} = \mathcal{O}_{\mathsf{X}}/\mathcal{J}.$$

Here Y may be non reduced, i.e. \mathcal{O}_Y may have nilpotent elements.

Also, let (L, h_L) be a hermitian holomorphic line bundle on X, and

$$\Theta_{L,h_I} = i \, \partial \overline{\partial} \log h_I^{-1}$$

its curvature current (we allow singular metrics, $h_L=e^{-arphi}$, $arphi\in L^1_{\mathrm{loc}}$, Θ_{L,h_L} being computed in the sense of currents).

Question

Under which conditions on X, $Y = V(\mathcal{J})$, (L, h_L) $H^q(X, K_X \otimes L) \to H^q(Y, (K_X \otimes L)|_Y) = H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{O}_X/\mathcal{J})$ a surjective restriction morphism?

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 3/21

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective – or even Kähler – varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m}) / \log m$ and the numerical dimension nd(L) = maximum exponent p of non zero "positive intersections" $\langle T^p \rangle$ of a positive current $T \in c_1(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

$$-\infty \le \kappa(L) \le \operatorname{nd}(L) \le n = \dim X.$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L) = \operatorname{nd}(L)$.

The fundamental abundance conjecture can be stated: for each nonsingular klt pair (X, Δ) the \mathbb{Q} -line bundle $K_X + \Delta$ is abundant.

Generalized base point free theorem ?

One can try to investigate the abundance of $L = K_X + \Delta$ by induction on the dimension $n = \dim X$, by extending sections of $K_X + L_m$, $L_m = (m-1)K_X + m\Delta$ from subvarieties (noticing that $K_X + \Delta$ psef implies L_m psef, and even $L_m - \Delta$ psef). Cf. BCHM and recent work of Demailly-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X, Δ) be a projective klt pair, and L be a nef line bundle such that $L - (K_X + \Delta)$ is nef and big. Then L is semiample, i.e. |mL| is BPF for some m > 0.

Question (weak positivity variant of the BPF property ?)

Assume that X is not uniruled, i.e. that K_X is pseudoeffective, and let L be a line bundle such that $L - \varepsilon K_X$ is pseudoeffective for some $0 < \varepsilon \ll 1$. Does there exist $G \in \operatorname{Pic}^0(X)$ such that L + G is abundant?

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 5/21

First naive (and too restrictive) technique

Consider the exact sequence

$$0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to 0$$

twisted by $\mathcal{O}_X(K_X \otimes L)$, and the corresponding long exact sequence of cohomology groups

$$\cdots \to H^q(X, K_X \otimes L) \to H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{O}_X/\mathcal{J})$$

$$\to H^{q+1}(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{J}) \ \cdots$$

It is therefore enough to have

$$H^{q+1}(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{J}) = 0.$$

In order to kill H^{q+1} it is enough to make a strict positivity (ampleness) assumption, e.g. by the Kodaira-Nakano / Nadel vanishing theorems.

But we only want to make a weak semipositivity assumption! In that case, one cannot expect to kill the cohomology group H^{q+1} .

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 6/21

Assumptions (1)

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation: cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X,\mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space.

Corollary

To solve an equation $\overline{\partial} u = v$ on a holomorphically convex manifold X, it is enough to solve it approximately:

$$\overline{\partial} u_{\varepsilon} = v + w_{\varepsilon}, \qquad w_{\varepsilon} \to 0 \text{ as } \varepsilon \to 0$$

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017 Extension of cohomology classes on nonreduced subspaces 7/21

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

$$\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$$

and $\mathcal{I}(e^{-\psi})\subset\mathcal{O}_X$ is the multiplier ideal sheaf

$$\mathcal{I}(e^{-\psi})_{x_0} = \{ f \in \mathcal{O}_{X,x_0}; \ \exists U \ni x_0, \ \int_U |f|^2 e^{-\psi} d\lambda < +\infty \}$$

Claim (Nadel)

 $\mathcal{I}(e^{-\psi})$ is a coherent ideal sheaf.

Moreover $\mathcal{I}(e^{-\psi})$ is always an integrally closed ideal.

Typical choice: $\psi(z) = c \log |s(z)|_{h_E}^2$, c > 0, $s \in H^0(X, E)$.

Log resolution / reduction to the divisorial case

The simplest case is when $Y = \sum m_j Y_j$ is an effective simple normal crossing divisor and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. We can then take

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0, \ \lfloor c_j \rfloor = m_j,$$

for some smooth hermitian metric h_i on $\mathcal{O}_X(Y_i)$. Then

$$\mathcal{I}(e^{-\psi}) = \mathcal{O}_X(-\sum m_j Y_j), \quad i\partial \overline{\partial} \psi = \sum c_j(2\pi [Y_j] - \Theta_{\mathcal{O}(Y_j),h_j})$$

The case of a higher codimensional multiplier ideal scheme $\mathcal{I}(e^{-\psi})$ can easily be reduced to the divisorial case by using a suitable log resolution (a composition of blow ups, thanks to Hironaka's desingularization theorem).

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 9/21

Main results

Theorem (JY. Cao, D-, S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let (L, h_L) be a hermitian line bundle such that

(**)
$$\Theta_{L,h_l} + (1 + \alpha \delta)i\partial \overline{\partial}\psi \geq 0$$
 in the sense of currents

for some $\delta(x)>0$ continuous and $\alpha=0,1$. Then: the morphism induced by the natural inclusion $\mathcal{I}(h_L e^{-\psi}) \to \mathcal{I}(h_L)$

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h_I e^{-\psi})) \rightarrow H^q(X, K_X \otimes L \otimes \mathcal{I}(h_I))$$

is injective for every $q \geq 0$, in other words, the sheaf morphism $\mathcal{I}(h) \to \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ yields a surjection

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)) o H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$$

Corollary (take h_L smooth $\Rightarrow \mathcal{I}(h_L) = \mathcal{O}_X$, and $Y = V(\mathcal{I}(e^{-\psi}))$

If h_L is smooth, $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{I}(e^{-\psi})$ and h_L , ψ satisfy (**), then $H^q(X, K_X \otimes L) \to H^q(Y, (K_X \otimes L)_{|Y})$ is surjective.

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017 Extension of cohomology classes on nonreduced subspaces 10/21

Comments / algebraic consequences

The exact sequence $0 \to \mathcal{I}(h_L e^{-\psi}) \to \mathcal{I}(h_L) \to \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}) \to 0$ implies that both injectivity and surjectivity hold when

$$H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi}) = 0,$$

and for this it is enough to have a strict curvature assumption

(***)
$$\Theta_{L,h_l} + i\partial \overline{\partial} \psi \geq \delta \omega > 0$$
 in the sense of currents.

Corollary (purely algebraic)

Assume that X is projective (or that one has a projective morphism $X \to S$ over an affine algebraic base S). Let $Y = \sum m_j Y_j$ be an effective divisor and $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{O}_X(-Y)$. If (as \mathbb{Q} -divisors)

$$(**) L - (1+\delta) \sum_{j} c_j Y_j = G_{\delta} + U_{\delta}, \quad \lfloor c_j \rfloor = m_j$$

with $\delta=0$ or $\delta_0\in\mathbb{Q}_+^*$, G_δ semiample and $U_\delta\in\operatorname{Pic}^0(X)$, then

$$H^q(X, K_X \otimes L) \rightarrow H^q(Y, (K_X \otimes L)_{|Y})$$

is surjective.

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 11/21

Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let η , $\lambda > 0$ be smooth functions on X.

For every compacted supported section $u \in \mathcal{C}_c^{\infty}(X, \Lambda^{p,q} T_X^* \otimes L)$ with values in a hermitian line bundle (L, h_L) , one has

$$\|(\eta + \lambda)^{\frac{1}{2}}\overline{\partial}^{*}u\|^{2} + \|\eta^{\frac{1}{2}}\overline{\partial}u\|^{2} + \|\lambda^{\frac{1}{2}}\partial u\|^{2} + 2\|\lambda^{-\frac{1}{2}}\partial\eta \wedge u\|^{2}$$

$$\geq \int_{X} \langle B_{L,h_{L},\omega,\eta,\lambda}^{p,q}u,u\rangle dV_{X,\omega}$$

where $dV_{X,\omega}=\frac{1}{n!}\omega^n$ is the Kähler volume element and $B_{L,h_L,\omega,\eta,\lambda}^{p,q}$ is the Hermitian operator on $\Lambda^{p,q}T_X^*\otimes L$ such that

$$B_{L,h_{L},\omega,\eta,\lambda}^{p,q} = [\eta i\Theta_{L} - i \partial \overline{\partial} \eta - i\lambda^{-1}\partial \eta \wedge \overline{\partial} \eta, \Lambda_{\omega}].$$

Approximate solutions to $\overline{\partial}$ -equations

Main L^2 estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or even slightly negative).

Take a section $v \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that $\overline{\partial}v = 0$ and

$$M(\varepsilon) := \int_X \langle (B + \varepsilon \operatorname{Id})^{-1} v, v \rangle dV_{X,\omega} < +\infty.$$

Then there exists an approximate solution $u_{\varepsilon} \in L^2(X, \Lambda^{n,q-1}T_X^* \otimes E)$ and a correction term $w_{\varepsilon} \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that

$$\overline{\partial} u_{\varepsilon} = v + w_{\varepsilon}$$
 and

$$\int_X (\eta + \lambda)^{-1} |u_{\varepsilon}|^2 dV_{X,\omega} + \frac{1}{\varepsilon} \int_X |w_{\varepsilon}|^2 dV_{X,\omega} \leq M(\varepsilon).$$

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 13/21

Proof: setting up the relevant $\overline{\partial}$ equation (1)

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}))$$

is represented by a holomorphic Čech q-cocycle with respect to a Stein covering $\mathcal{U} = (U_i)$, say $(c_{i_0...i_q})$,

$$c_{i_0...i_q} \in H^0(U_{i_0} \cap ... \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$$

By the standard sheaf theoretic isomorphism with Dolbeault cohomology, this class is represented by a smooth (n, q)-form

$$f = \sum_{i_0, \dots, i_q} c_{i_0 \dots i_q} \rho_{i_0} \overline{\partial} \rho_{i_1} \wedge \dots \overline{\partial} \rho_{i_q}$$

by means of a partition of unity (ρ_i) subordinate to (U_i) . This form is to be interpreted as a form on the (non reduced) analytic subvariety Y associated with the colon ideal sheaf $\mathcal{J}=\mathcal{I}(he^{-\psi}):\mathcal{I}(h)$ and the structure sheaf $\mathcal{O}_Y=\mathcal{O}_X/\mathcal{J}$.

Proof: setting up the relevant $\overline{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n,q)-form on X by taking

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \rho_{i_0} \overline{\partial} \rho_{i_1} \wedge \dots \overline{\partial} \rho_{i_q}$$

where $\widetilde{c}_{i_0...i_q}=$ extension of $c_{i_0...i_q}$ from $U_{i_0}\cap\ldots\cap U_{i_q}\cap Y$ to $U_{i_0}\cap\ldots\cap U_{i_q}$

Now, truncate \widetilde{f} as $\theta(\psi - t)\cdot\widetilde{f}$ on the green hollow tubular neighborhood, and solve an approximate $\overline{\partial}$ -equation

$$(*) \overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon}$$

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 15/21

Proof: setting up the relevant $\overline{\partial}$ equation (3)

Here we have

$$\overline{\partial}(\theta(\psi - t) \cdot \widetilde{f}) = \theta'(\psi - t)\overline{\partial}\psi \wedge \widetilde{f} + \theta(\psi - t) \cdot \overline{\partial}\widetilde{f}$$

where the first term vanishes near Y and the second one is L^2 with respect to $h_L e^{-\psi}$ (as the image of $\overline{\partial} \widetilde{f}$ in $\mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ is $\overline{\partial} f = 0$).

With ad hoc "twisting functions" $\eta=\eta_t:=1-\delta\chi_t(\psi)$, $\lambda:=\pi(1+\delta^2\psi^2)$ and a suitable adjustment $\varepsilon=e^{(1+\beta)t}$, $\beta\ll 1$, we can find approximate L^2 solutions of the $\overline{\partial}$ -equation such that

$$\overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon} , \qquad \int_X |u_{t,\varepsilon}|_{\omega,h_L}^2 e^{-\psi} dV_{X,\omega} < +\infty$$

and

$$\lim_{t\to-\infty}\int_X|w_{t,\varepsilon}|^2_{\omega,h_L}e^{-\psi}dV_{X,\omega}=0.$$

The estimate on $u_{t,\varepsilon}$ with respect to the weight $h_L e^{-\psi}$ shows that $\theta(\psi - t) \cdot \widetilde{f} - u_{t,\varepsilon}$ is an approximate extension of f.

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}(e^{-(1-arepsilon)\psi})=\mathcal{O}_X$ for all $\varepsilon > 0$. Then $Y = V(\mathcal{I}(e^{-\psi}))$ is easily seen to be reduced.

Ohsawa's residue measure

If ψ is log canonical, one can also associate in a natural way a measure $dV_{Y^{\circ},\omega}[\psi]$ on the set Y° of regular points of Y as follows. If $g\in\mathcal{C}_c(Y^\circ)$ is a compactly supported continuous function on Y° and \widetilde{g} a compactly supported extension of g to X, one sets

$$\int_{Y^{\circ}} g \, dV_{Y^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, \ t < \psi(x) < t+1\}} \widetilde{g} e^{-\psi} \, dV_{X,\omega}$$

Theorem

If ψ is lc and the curvature hypothesis is satisfied, for any f in $H^0(Y,K_X\otimes L\otimes \mathcal{I}(h_L)/\mathcal{I}(h_Le^{-\psi}))$ s.t. $\int_{Y^\circ}|f|^2_{\omega,h_L}dV_{Y^\circ,\omega}[\psi]<+\infty$, there exists $\widetilde{f} \in H^0(X, K_X \otimes L \otimes \mathcal{I}(h_L))$ which extends f, such that

$$\int_X (1+\delta^2\psi^2)^{-1} \mathrm{e}^{-\psi} |\widetilde{f}|_{\omega,h_L}^2 dV_{X,\omega} \leq \frac{34}{\delta} \int_{Y^\circ} |f|_{\omega,h_L}^2 dV_{Y^\circ,\omega}[\psi].$$

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017 Extension of cohomology classes on nonreduced subspaces 17/21

Can one get estimates for the extension? (sequel)

If ψ is not log canonical, consider the "last jumps" $m_{p-1} < m_p \le 1$ such that $\mathcal{I}(h_L e^{-m_{p-1}\psi}) \supsetneq \mathcal{I}(h_L e^{-m_p\psi}) = \mathcal{I}(h_L e^{-\psi})$ and assume

$$f \in H^0(Y, K_X \otimes L \otimes \mathcal{I}(h_L e^{-m_{p-1}\psi})/\mathcal{I}(h_L e^{-m_p\psi})),$$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}(h_L e^{-\psi})$). Then there is still a corresponding residue measure:

Higher multiplicity residue measure

If f is as above, and f is a local extension, one can associate a higher multiplicity residue measure $|f|^2 dV_{Y^{\circ},\omega}[\psi]$ (formal notation) as follows. If $g \in \mathcal{C}_c(Y^\circ)$ and \widetilde{g} a compactly supported extension of g to X, one sets

$$\int_{Y^{\circ}} g |f|^2 dV_{Y^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, \ t < \psi(x) < t+1\}} \widetilde{g} |\widetilde{f}|^2 e^{-m_p \psi} dV_{X,\omega}$$

Then a global extension $\widetilde{f}\in H^0(X,K_X\otimes L\otimes \mathcal{I}(h_Le^{-m_{p-1}\psi}))$ exists, that satisfies the expected L^2 estimate.

Special case / limitations of the L^2 estimates

In the special case when ψ is given by $\psi(z) = r \log |s(z)|_{h_E}^2$ for a section $s \in H^0(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y = s^{-1}(0)$ has codimension r, and one can check easily that

$$dV_{Y^{\circ},\omega}[\psi] = \frac{dV_{Y^{\circ},\omega}}{|\Lambda^{r}(ds)|_{\omega,h_{E}}^{2}}.$$

Thus one sees that the residue measure takes into account in a very precise manner the singularities of Y. It may happen that $dV_{Y^{\circ},\omega}[\psi]$ has infinite mass near the singularities of Y, as is the case when Y is a simple normal crossing divisor.

Therefore, sections $s \in H^0(Y, (K_X \otimes L)_{|Y})$ may not be L^2 with respect to $dV_{Y^\circ,\omega}[\psi]$), and the L^2 estimate of the approximate extension can blow up as $\varepsilon \to 0$. The surprising fact is this is however sufficient to prove the qualitative extension theorem, but without any effective L^2 estimate in the limit.

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017

Extension of cohomology classes on nonreduced subspaces 19/21

Remarks: optimal L^2 estimates

In a series of fundamental papers, Z. Błocki and Guan-Zhou have shown that in the log canonical case, the L^2 estimate holds with an optimal constant.

This implies some interesting consequences, such as a proof of the Suita conjecture on the optimal comparison between the Bergman kernel and the logarithmic capacity of domains.

In a very recent paper (June 27), G. Hosono has proved that the L^2 estimate also holds with an optimal constant in case there is only one jump and the multiplier ideal sheaf is a power of the reduced ideal defining the subvariety Y.

In fact, this result can be seen to hold under the sole assumption that there is only one jump, by a variation of the known methods (Błocki, Guan-Zhou, Berndtsson-Lempert).

J.-P. Demailly (Grenoble), TIMG, Tokyo Univ., July 12, 2017 Extension of cohomology classes on nonreduced subspaces 21/21