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MOTIVATION

PROBLEM

Let f be a holomorphic function on a manifold X. We want to
understand the singularities of f at a given point.

e The two classical invariants of the singularity of f at a point
p € H = {f = 0} are the multiplicity ord,(f) and the Milnor number
pp(f).

e In this seminar we are interested in the log canonical threshold, an
invariant that can be thought of as a refinement of the reciprocal of
the multiplicity.
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THE LOG CANONICAL THRESHOLD OF HOLOMORPHIC

FUNCTIONS

DEFINITION

Let f be a holomorphic function in a neighborhood of a point p € C".
The log canonical threshold or complex singularity exponent of f at p is
the number c,(f) such that

e |f|~Sis L? in a neighborhood of p for s < cp(f), and
e [f|~S is not L? in any neighborhood of p for s > cp(f).

Remark: We have cy(f) € (0,1].
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SOME HISTORICAL FACTS

@ The log canonical threshold appears implicitly in the works of
Schwartz, Hérmander, tojasiewicz and Gel'fand as the “division
problem for distributions”(See e.g. Schwartz, Hérmander,
tojasiewicz and Gel'fand).

@ Atiyah and BernsStein made more extensive use of this invariant.

e Conjecture ([D-Kollar]): C = {co(f) : f € Ocnp} C R satisfies the
ascending chain condition: any convergent increasing sequence
in C should be stationary. It was proved by Phong and Sturm in
complex dimension 2 ([Phong]). Recently, it was proved by
T. Fernex, L. Ein and M. Mustata in higher dimension ([DEM10]).
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FACTS

@ The negative of the log canonical threshold is the largest root of
the Bernstein-Sato polynomial associated with |f|2S.

@ Tian’s a-invariant is an asymptotic version of the log canonical
threshold that provides a criterion for the existence of
Kahler-Einstein metrics.

@ The log canonical threshold appears in many applications of
vanishing theorems, due to its relation to multiplier ideals. An
iImportant example is the work of Angehrn and Siu on the global
generation of adjoint line bundles.

@ Lower bounds for the log canonical threshold has also received
applications to birational geometry in recent years ([DEM10]).
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THE LOG CANONICAL THRESHOLD FOR
PLURISUBHARMONIC FUNCTIONS

In order to be able to use pluripotential theory we extend the definition
of the log canonical threshold to plurisubharmonic functions.
DEFINITION ([D-Kollar])

Let X be a complex manifold, p € X, and ¢ be a plurisubharmonic
function defined on X. The log canonical threshold or complex
singularity exponent of ¢ at p is defined by

Cp(p) = sup {c >0 : e %°?is L! on a neighborhood of p} :
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NOTATIONS AND BASIC FACTS

@ A domain Q c C" is called hyperconvex if there exists
Y € PSH(Q), v <0,suchthat {z : ¢(z) <c} € Qforallc <O0.

@ £(X) is the largest subclass of plurisubharmonic functions defined
on a complex manifold X for which the complex Monge-Ampere
operator is well-defined.

Eo(Q2) = {cp € PSHNL>®(Q): ZI_I[BIQ ¢(z) =0, /Q(ddcﬁp)n < +oo}.

o
F(Q) = {90 € PSH(Q) : 3&(Q) 3 vp \¢ v, and
sup [ (dd®pp)" < +oo}.
p=>1.JQ
oy e ST

THE MAIN RESULT

MAIN THEOREM (DEMAILLY & PHAM)
Let p € £(2) and p € Q. If e1(¢) = 0, then cy(p) = co. Otherwise, we

have that
Cp(p) > Z

J+1(<P

where

&i(p) = /{ (@d®p) 1 (detlog]z])".

Remark: The above theorem is optimal.

Remark: To simplify the notions we shall in the rest of this talk assume
that p = 0.
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LEMMA 1
Let o € £(2) and 0 € Q. Then we have that

ej(¢)? < ej_1(p)ej1(p),
forallj=1,...,n—1.
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PROOF OFLEMMA 1

Without loss generality we can assume that €2 is the unit ball and

€ E(Q). For h, ¥ € &(Q) we have by integration by parts, and the
Cauchy-Schwarz inequality that

[ ~h(ade) A daouy| 2

2
— [/ dgp/\dcw/\(ddcap)j1/\(ddc¢)”j1/\dd°h]
Q
g/dw/\dcw/\(ddcgo)j_l/\(ddcw)”_j_l/\ddch
Q
/dgo/\dcgp/\(ddcgo)j_l/\(ddcw)”_j_l/\ddch
Q

- / —h(dd®p) 1 A (dd )i+t / h(ddCp) T A (dd )it
Q Q
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PROOF OFLEMMA 1, CONTINUED

Now, as p — +oo, take

h(z) = hp(z) = max ( -1, % log ||z||) Vs { _01 :I; ig.\{O}

By the monotone convergence theorem we get in the limit that

2
[/ (ddcgp)j I\ (dd%p)hj] < / (ddcgp)j_l A (ddc¢)n_j+1
{0} (0}
/ (ddcgp)j—H' A (ddcw)n_j_l.
{0}

For ¢(z) = In||z||, this is the desired estimate. ]
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LEMMA 2

Let p, € £(2) be such that ¢ < (i.e ¢ is "more singular” than ).
Then we have that

n—1 n—1

_&ilp) &)
Z = Z ej+1(¢¥)

=0 eji+1(p) i
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PROOF OFLEMMA 2

Set
D={t=(tg,...,tn) €[0,400)" : tf <tp,t° < 1tjy1, Vi =2,...,n—1}.

Then D is a convex set in R", as can be checked by a straightforward
application of the Cauchy-Schwarz inequality. Next, consider the
function f : int D — [0, +00) defined by

A,
t, 1 t,

f(tl, .. ,tn)

We have have that

g—;(t)_—tjtj—zlthj%gO, vteD.
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Fora,b cint D suchthata; > bj,j = 1,...,n, the function

[0,1] > A = f(b+ A(a— b))
is decreasing. Hence,
f(a) <f(b) foralla,b cintD, g > b;, j=1,...,n.

On the other hand, the hypothesis ¢ < v implies that g;(¢) > €j(v),
j =1,...,n, by the comparison principle. Therefore we have that

f(e1(¢);-- - enlp)) < f(e1(®), ..., en(®)).
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PROOF OF THEMAIN THEOREM

It will be convenient here to introduce Kiselman’s refined Lelong
number.

DEFINITION
Let o € PSH(£2). Then the function defined by

max {p(z) : |z1| = e, ..., |za| = €X'}

X) = lim
V(P( ) t——o0 t

is called the refined Lelong number of ¢ at O.

The refined Lelong number of ¢ at 0 is increasing in each variable x;,
and concave on R" .,

PHAM HOANG HIEP (GRENOBLE I) MaAy 11, 2012 15/ 28

PROOF OF THEMAIN THEOREM

The proof is divided into the following steps:

@ Proof of the theorem in the toric case, i.e.

©(Z1,...,2Zn) = ¢(|Z1],- .. ,|Zn|) depends only on |z;| and therefore
we can without loss of generality assume that Q = A" is the unit
polydisk.

@ Reduction to the case of plurisubharmonic functions with analytic
singularity, i.e. ¢ = log(|f1|? + ... + [fn]?), where fy, ..., fy are
germs of holomorphic functions at O.

@ Reduction to the case of monomial ideals, i.e. for

¢ = log(|fy|? +.... +|fn]?), where fy, ..., fy are germs of
monomial elements at O.
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PROOF OF THE THEOREM IN THE TORIC CASE

Set
n
Y ={X=(Xg,....%) €ERT: Y x=1}.
=1

We choose x° = (x?,...,x?) € ¥ such that
v,(x%) = max{v,(x) : x € S}.

By Theorem 5.8 in [Kis94] we have the following formula

c(p) = V(X0
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PROOF OF THE THEOREM IN THE TORIC CASE

CONTINUED

C(x) = v,(x°) min (%i—%) . wxex.
n

Then ( is the smallest nonnegative concave increasing function on
such that ¢(x°) = v,(x?), hence ¢ < v,,. This implies that

P21, Zn) < —vp(~Inze],...,—In|zn])
< —((=1In|zg],...,—In|zn|)
In |z, In|z
<u§0(x°)max< |o |,..., |O”|> = (Z1,...,2Zn).
X{ Xp

By Lemma 2 we get that

f(ew(e).....en(p)) <f(e1(¥).....en(¥)) = cp(¥) = ﬁ = Cp(yp).
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REDUCTION TO THE CASE OF PLURISUBHARMONIC

FUNCTIONS WITH ANALYTIC SINGULARITY

Let Hm,(€2) be the Hilbert space of holomorphic functions f on € such
that

/ f]2e™2™PdV < 400,

and let ¢, = 2m log > [gm, «|> where {gmk }k>1 be an orthonormal
basis for #m,(Q2). Using 0-equation with L2-estimates (see Theorem
4.2 in [D-Kollar]), there are constants C,,C, > 0 independent of m
such that
C]_ 1 CZ
——=< < —log —=
p(2) = =¥m(z) = sup ¢(¢)+ —log—

|C—z|<r

foreveryz € Qandr < d(z,0Q)
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REDUCTION TO THE CASE OF PLURISUBHARMONIC
FUNCTIONS WITH ANALYTIC SINGULARITY, CONTINUED

and

n 1

V(QD)_H SVWm)SV(SO)a Cp(QO) %

By Lemma 2, we have that

f(e1(v),....enl(p)) <f(e1(¥m),.--,en(¥m)), Vm > 1.

The above inequalities show that in order to prove the lower bound of
Cp(¢y) in the Main Theorem, we only need prove it for c,(¢m) and then
let m — oo.
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REDUCTION TO THE CASE OF MONOMIAL IDEALS

Forj=0,...,n set
T = (1, 1), Gp(T) = Cp(), and () = ().
Now, by fixing a multiplicative order on the monomials
z%=1z;t .z

(see [Eis95] Chap. 15 and [DEMO04]). It is well known that one can
construct a flat family (Js),.c of ideals of Ocn o depending on a
complex parameter s € C, such that 75 is a monomial ideal, 71 = J

and
dim(OCn,o/jst) = dim(OCn,o/jt) forall s,t € N.
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REDUCTION TO THE CASE OF MONOMIAL IDEALS
CONTINUED

In fact 7y is just the initial ideal associated to 7 with respect to the
monomial order. Moreover, we can arrange by a generic rotation of
coordinates CP C C" that the family of ideals Js N Oc» o is also flat, and
that the dimensions

dim (Ops 0/(Js N Ocp 0)') = dim (Ocv /(T N Ocw 0)')

compute the intermediate multiplicities

. pl,.
ep(Js) = t—llToo ) dim (O@p,o/(js M Ocp,o)t) =ep(J),

in particular, ep(Jp) = ep(J) for all p.

The semicontinuity property of the log canonical threshold (see for

example [D-Kollar]) now implies that ¢, (Jp) < ¢p(Js) = ¢p(J) for all s,

so the lower bound is valid for c, () if it is valid for ¢, (7).
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The End

Any questions?
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