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Curvature tensor of a holomorphic vector bundle

Let X be a complex manifold, n = dimC X , and (E , h) a holomorphic
vector bundle of rank r equipped with a hermitian metric h. With
respect to a local holomorphic frame (eλ)1≤λ≤r

〈u, v〉 =
∑

hλµ(z)uλvµ, u, v ∈ Ez .

The Chern curvature tensor of (E , h) is defined to be the global
(1, 1)-form ΘE ,h ∈ C∞(X ,Λ1,1T ∗X ⊗ End(E ))

ΘE ,h =
i

2π

∑
1≤j ,k≤n, 1≤λ,µ≤r

cjkλµ(z) dzj ∧ dzk ⊗ e∗λ ⊗ eµ

locally computed as the matrix − i
2π∂(H

−1
∂H) where H = (hλµ).

One has an associated hermitian form

Θ̃E ,h(τ) =
∑

cjkλµ(z) τjλτkµ, τ ∈ TX ⊗ E ,

and one says that ΘE ,h > 0 (in the sense of Nakano) if Θ̃E ,h(τ) > 0 for
all nonzero tensors τ ∈ TX ⊗ E .
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Kodaira embedding theorem

The special case of a holomorphic hermitian line bundle (L, h) is very
interesting. Then one usually write the hermitian metric as h = e−ϕ

locally on a trivializing open set U ⊂ X , so that

ΘL,h =
i

2π
∂∂ϕ =

i

2π

∑
j ,k

∂2ϕ

∂zj∂zk
dzj ∧ zk ,

and ΘL,h > 0 means that ϕ is strictly plurisubharmonic.

Theorem (Kodaira 1953 - main reason for his Fields medal!)

For X a compact complex manifold, TFAE :

(i) L > 0, i.e. L possesses a smooth hermitian metric s.t. ΘL,h > 0 ;
(ii) L is ample, i.e. there exists a tensor power L⊗m and sections
σ0, . . . , σN ∈ H0(X , L⊗m) such that

X → PN , x 7→ [σ0(x) : σ1(x) : ... : σN(x)] ∈ PN is an embedding.

Then X is in fact an algebraic submanifold {P1 = . . . = Pq = 0} of PN ,
and one says that X is a projective algebraic manifold.
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Projective vs Kähler vs non Kähler varieties

By Kodaira, non projective varieties do not have ample line bundles.

In the Kähler case, a Kähler class {ω} ∈ H1,1(X ,R), ω > 0, may
sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising fact (?)

Every compact complex manifold X carries a “very ample” complex
Hilbert bundle, produced by means of a natural Bergman space
construction; the curvature of this bundle is strongly positive and is
given by a universal formula.
In particular, X can be embedded holomorphically in a
“Hilbert Grassmannian” of infinite dimension and codimension.

Our goal is to investigate further this construction and explain potential
applications to analytic geometry (Kähler invariance of plurigenera,
transcendental holomorphic Morse inequalities...)
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Tubular Stein neighborhoods

Let X be a compact complex manifold, dimC X = n.

Denote by X its complex conjugate (X ,−J), so that OX = OX .

The diagonal of X × X is totally real, and by Grauert, we know that it
possesses a fundamental system of Stein tubular neighborhoods.
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Tubular Stein neighborhoods (continued)

In the special case X = Cn, Uε = {(z ,w) ; |z − w | < ε} is of course
Stein since

|z − w |2 = |z |2 + |w |2 − 2Re
∑

zjwj

and (z ,w) 7→ Re
∑

zjwj is pluriharmonic.

Technical lemma

Let exp : TX → X × X , (z , ξ) 7→ (z , expz(ξ)) be the exponential map
associated with a real analytic hermitian metric γ on X ,
and exph its “holomorphic” part, so that

expz(ξ) =
∑

α,β∈Nn

aαβ(z)ξαξ
β
, exphz(ξ) =

∑
α∈Nn

aα 0(z)ξα.

Let logh : X × X ⊃W → TX be the inverse of exph and

Uε = {(z ,w) ∈ X × X ; | loghz(w)|γ < ε}, ε > 0.

Then, for ε� 1, Uε is Stein and pr1 : Uε → X is a real analytic locally
trivial bundle with fibers biholomorphic to complex balls.
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Bergman sheaves

Let Uε = Uγ,ε ⊂ X × X be the ball bundle as above, and

p = (pr1)|Uε
: Uε → X , p = (pr2)|Uε

: Uε → X

the natural projections.

Definition

The “Bergman sheaf” Bε = Bγ,ε is the L2 direct image

Bε = pL
2

∗ (p∗O(KX )),

i.e. the space of sections over an open subset V ⊂ X defined by
Bε(V ) = holomorphic sections f of p∗O(KX ) on p−1(V ),

f (z ,w) = f1(z ,w) dw1 ∧ . . . ∧ dwn, z ∈ V ,

that are in L2(p−1(K )) for all compact subsets K b V :∫
p−1(K)

in
2
f ∧ f ∧ γn < +∞, ∀K b V .
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Associated Bergman bundle and holom structure

Then Bε is an OX -module, and by the Ohsawa-Takegoshi extension
theorem applied to the subvariety p−1(z) ⊂ Uε, its fiber
Bε,z = Bε,z/mzBε,z is isomorphic to the Hardy-Bergman space
H2(B(0, ε)) of L2 holomorphic n-forms on p−1(z) ' B(0, ε) ⊂ Cn.

Question

By putting ‖f (z)‖2 =

∫
p−1(z)

in
2
f ∧ f , we get a (real analytic)

locally trivial Hilbert bundle Bε → X .
Is there a “complex structure” on Bε such that Bε = O(Bε) ?

For this, consider the “Bergman Dolbeault” complex ∂ : Fq
ε → Fq+1

ε

over X , with Fq
ε (V ) = smooth (n, q)-forms

f (z ,w) =
∑
|J|=q

fJ(z ,w) dw1 ∧ ... ∧ dwn ∧ dzJ , (z ,w) ∈ Uε ∩ (V × X ),

fJ(z ,w) holomorphic in w and all ∂z f (z ,w) ∈ L2(p−1(K )), K b V .
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Very ampleness of Bergman bundles

By construction, ∂ yields a complex of sheaves (F•, ∂ ) and the kernel
Ker ∂ : F0 → F1 coincides with Bε.

Theorem

Assume that ε > 0 is taken so small that ψ(z ,w) := | loghz(w)|2 is
strictly plurisubharmonic up to the boundary on the compact set
Uε ⊂ X × X . Then the complex of sheaves (F•, ∂) is a resolution of Bε
by soft sheaves over X (actually, by C∞X -modules ), and for every
holomorphic vector bundle E → X we have

Hq(X ,Bε ⊗O(E )) = Hq
(
Γ(X ,F•ε ⊗O(E )), ∂

)
= 0, ∀q ≥ 1.

Moreover the fibers Bε,z ⊗ Ez are always generated by global sections of
H0(X ,Bε ⊗O(E )).

In other words, Bε is a “very ample holomorphic vector bundle”
(as a Hilbert bundle of infinite dimension).
But it is NOT holomorphically locally trivial.
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Chern connection of Bergman bundles

Since we have a natural ∇0,1 = ∂ connection, and a natural hermitian
metric on the Bergman bundle, it follows that Bε can be equipped with
a unique Chern connection.

Model case: X = Cn, γ = standard hermitian metric.
Then one sees that a (non holomorphic) orthonormal frame of Bε is
given by

eα(z ,w) = π−n/2ε−|α|−n

√
(|α|+ n)!

α1! . . . αn!
(w − z)α, α ∈ Nn.

The (0, 1)-connection ∇0,1 = ∂ is given by

∇0,1eα = ∂zeα(z ,w) = ε−1
∑

1≤j≤n

√
αj(|α|+ n) dz j ⊗ eα−cj

where cj = (0, ..., 1, ..., 0) ∈ Nn.
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Curvature of Bergman bundles

Let ΘBε,h = ∇1,0∇0,1 +∇0,1∇1,0 be the curvature tensor of Bε with its
natural Hilbertian metric h, and

Θ̃ε(v ⊗ ξ) = 〈ΘBε,hσ(v , Jv)ξ, ξ〉h
the associated quadratic form with v ∈ TX , ξ =

∑
α ξαeα ∈ Bε.

Formula

In the model case X = Cn, the curvature tensor of the Bergman bundle
(Bε, h) is given by

Θ̃ε(v ⊗ ξ) = ε−2
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cj vj

∣∣∣∣2+
∑
j

(|α|+ n) |ξα|2|vj |2
)
.

Observe that Θ̃ε(v ⊗ ξ) is a positive but unbounded quadratic form on
Bε with respect to the standard norm ‖ξ‖2 =

∑
α |ξα|2.

However there is convergence for all ξ =
∑

α ξαeα ∈ Bρε, ρ > 1, since
then

∑
α ρ

2|α||ξα|2 < +∞.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a hermitian metric
γ, and Bε = Bγ,ε the corresponding Bergman bundle. Then its
curvature is given by an asymptotic expansion

Θ̃ε(z , v ⊗ ξ) =
+∞∑
p=0

ε−2+pQp(z , v ⊗ ξ)

where Q0(z , v ⊗ ξ) = Q0(v ⊗ ξ) is given by the model case Cn :

Q0(v ⊗ ξ) = ε−2
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cj vj

∣∣∣∣2+
∑
j

(|α|+ n) |ξα|2|vj |2
)
.

The other terms Qp(z , v ⊗ ξ) are real analytic and depend on the
torsion and curvature tensor of γ, especially Q1, Q2.

A consequence of the above formula is that Bε is strongly Nakano
positive for ε > 0 small enough.
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Transcendental holomorphic Morse inequalities

Conjecture

Let X be a compact n-dimensional complex manifold and
α ∈ H1,1

BC (X ,R) a Bott-Chern class, represented by closed real
(1, 1)-forms modulo ∂∂ exact forms. Set

Vol(α) = sup
T=α+i∂∂ϕ≥0

∫
X
T n
ac , T ≥ 0 current.

Then
Vol(α) ≥ sup

u∈{α}, u∈C∞

∫
X (u,0)

un

where

X (u, 0) = 0-index set of u =
{
x ∈ X ; u(x) positive definite

}
.

Conjectural corollary (fundamental volume estimate)

Let X be compact Kähler, dimX = n, and α, β ∈ H1,1(X ,R) be nef
classes. Then

Vol(α− β) ≥ αn − nαn−1 · β.
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Transcendental Morse: known facts & beyond

The conjecture on Morse inequalities is known to be true when
α = c1(L) is the class of a line bundle ([D-1985]), and the corollary can
be derived from this when α, β are integral classes (by [D-1993] and
independently by [Trapani, 1993]).

Recently, the volume estimate for α, β transcendental has been
established by D. Witt-Nyström when X is projective, and Xiao-Popovici
even proved in general that Vol(α− β) > 0 if αn − nαn−1 · β > 0.

Idea. In the general case, one can find a sequence of non holomorphic
hermitian line bundles (Lm, hm) such that

mα = ΘLm,hm + γ2,0
m + γ0,2

m , γm → 0.

As Uε is Stein, γ0,2
m = ∂vm, vm → 0, and pr∗1 Lm becomes a holomorphic

line bundle with curvature form Θpr∗1 Lm ' m pr∗1 α.

Then apply L2 direct image (pr1)L
2

∗ and use Bergman estimates instead
of dimension counts in Morse inequalities.
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Invariance of plurigenera for polarized families of compact
Kähler manifolds

Conjecture

Let π : X → S be a proper holomorphic map defining a family of
smooth compact Kähler manifolds over an irreducible base S . Assume
that the family admits a polarization, i.e. a closed smooth (1, 1)-form ω
such that ω|Xt

is positive definite on each fiber Xt := π−1(t). Then the
plurigenera

pm(Xt) = h0(Xt ,mKXt ) are independent of t for all m ≥ 0.

The conjecture is known to be true for a projective family X → S :
• Siu and Kawamata (1998) in the case of varieties of general type
• Siu (2000) and Păun (2004) in the arbitrary projective case

No algebraic proof is known in the latter case; one uses deeply the
Ohsawa-Takegoshi L2 extension theorem.
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Invariance of plurigenera: strategy of proof (1)

It is enough to consider the case of a family X → ∆ over the disc, such
that there exists a relatively ample line bundle A over X .

Given s ∈ H0(X0,mKX0), the point is to show that it extends into
s̃ ∈ H0(X ,mKX ), and for this, one only needs to produce a hermitian
metric h = e−ϕ on KX such that:
• Θh = i∂∂ϕ ≥ 0 in the sense of currents
• |s|2h ≤ 1, i.e. ϕ ≥ log |s| on X0.

The Ohsawa-Takegoshi theorem then implies the existence of s̃.

To produce h = e−ϕ, one defines inductively sections of σp,j of
Lp := A+ pKX such that:
• (σp,j) generates Lp for 0 ≤ p < m
• σp,j extends (σp−m,js

m)|X0
to X for p ≥ m

•

∫
X

∑
j |σp,j |2∑

j |σp−1,j |2
≤ C for p ≥ 1.
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Invariance of plurigenera: strategy of proof (2)

By Hölder, the L2 estimates imply
∫
X
(∑

j |σp,j |2
)1/p ≤ C for all p, and

using the fact that lim 1
pΘA = 0, one can take

ϕ = lim supp→+∞
1
p log

∑
j |σp,j |2.

Idea. In the polarized Kähler case, use the Bergman bundle Bε→X
instead of an ample line bundle A → X . This amounts to applying the
Ohsawa-Takegoshi L2 extension on Stein tubular neighborhoods
Uε ⊂ X × X , with projections pr1 : Uε → X and π : X → ∆.

Proposition

In the polarized Kähler case (X , ω), shrinking from Uρε, ρ > 1, to Uε,
one gets

i∂∂
(∑

j

‖σp,j‖2
Uε

)λ/p
≥ −ε−2(log ρ)−1ρnλ/peCλω ∀λ > 0.

This is enough to imply the invariance of plurigenera if ε > 0 can be
taken arbitrarily large.
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The end

Thank you for your attention
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