

On the structure of compact Kähler manifolds with nef anticanonical bundles

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes, France & Académie des Sciences de Paris

Complex Analysis and Geometry - XXIII, June 13, 2017

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

Goals / main positivity concepts

- Analyze the structure of projective or compact Kähler manifolds X with $-K_X$ nef.
- As is well known since the beginning of the XXth century at least, the geometry depends on the sign of the curvature of the canonical line bundle

$$K_X = \Lambda^n T_X^*, \quad n = \dim_{\mathbb{C}} X.$$

- $L \to X$ is pseudoeffective (psef) if $\exists h = e^{-\varphi}$, $\varphi \in L^1_{\mathrm{loc}}$, s.t. $\Theta_{I,h} = -dd^c \log h \ge 0$ on X in the sense of currents \Leftrightarrow (for X projective) $c_1(L) \in \overline{\mathrm{Eff}}$.
- ullet L o X is semi-positive if $\exists h=e^{-arphi}$ smooth (C^∞) such that $\Theta_{L,h} = -dd^c \log h \ge 0$ on X.
- \Leftarrow (for X projective) $L^{\otimes m} = G \otimes H$, G semi-ample, $H \in \operatorname{Pic}^0(X)$.
- ullet L is nef if orall arepsilon > 0, $\exists h_arepsilon = e^{-arphi_arepsilon}$ smooth such that $\Theta_{L,h_{arepsilon}} = -dd^c \log h_{arepsilon} \geq -arepsilon \omega$ on X \Leftrightarrow (for X projective) $L \cdot C \ge 0$, $\forall C$ algebraic curve.

Complex curves (n = 1): genus and curvature

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

3/22

Comparison of positivity concepts

Recall that for a line bundle

positive \Leftrightarrow ample \Rightarrow semi-ample \Rightarrow semi-positive \Rightarrow nef \Rightarrow psef but none of the reverse implications in red holds true.

Example

Let X be the rational surface obtained by blowing up \mathbb{P}^2 in 9distinct points $\{p_i\}$ on a smooth (cubic) elliptic curve $C\subset \mathbb{P}^2$, $\mu: X \to \mathbb{P}^2$ and \hat{C} the strict transform of C. Then

$$\mathcal{K}_X = \mu^* \mathcal{K}_{\mathbb{P}^2} \otimes \mathcal{O}(\sum E_i) \Rightarrow -\mathcal{K}_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(3) \otimes \mathcal{O}(-\sum E_i),$$
thus

$$-K_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(C) \otimes \mathcal{O}(-\sum E_i) = \mathcal{O}_X(\hat{C}).$$

One has

$$-K_X \cdot \Gamma = \hat{C} \cdot \Gamma \ge 0 \quad \text{if } \Gamma \ne \hat{C},$$

$$-K_X \cdot \hat{C} = (-K_X)^2 = (\hat{C})^2 = C^2 - 9 = 0 \quad \Rightarrow \quad -K_X \text{ nef.}$$

Rationally connected manifolds

In fact

$$G:=(-K_X)_{|\hat{C}}\simeq \mathcal{O}_{\mathbb{P}^2|C}(3)\otimes \mathcal{O}_C(-\sum p_i)\in \mathrm{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

Brunella has shown that $-K_X$ is C^{∞} semi-positive if $c_1(G)$ satisfies a diophantine condition found by T. Ueda, but that otherwise it may not be semi-positive (although nef).

 $\mathbb{P}^2\,\#\,9$ points is an example of rationally connected manifold:

Definition

Recall that a compact complex manifold is said to be rationally connected (or RC for short) if any 2 points can be joined by a chain of rational curves

Remark. $X=\mathbb{P}^2$ blown-up in ≥ 10 points is RC but $-K_X$ not nef.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

5/22

Ex. of compact Kähler manifolds with $-K_X \ge 0$

(Recall: By Yau, $-K_X \ge 0 \Leftrightarrow \exists \omega$ Kähler with Ricci(ω) ≥ 0 .)

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$
 - Holomorphic symplectic manifolds S (also called hyperkähler): $\exists \sigma \in H^0(S, \Omega_S^2)$ symplectic
 - Calabi-Yau manifolds Y: $\pi_1(Y)$ finite and some multiple of K_Y is trivial (may assume $\pi_1(Y) = 1$ and K_Y trivial by passing to some finite étale cover)
- the rather large class of rationally connected manifolds Z with $-K_Z \geq 0$
- all products $T \times \prod S_i \times \prod Y_k \times \prod Z_\ell$.

Main result. Essentially, this is a complete list!

Theorem [Campana, D., Peternell, 2012]

Let X be a compact Kähler manifold with $-K_X \ge 0$. Then:

- (a) ∃ holomorphic and isometric splitting in irreducible factors
 - $\widetilde{X} = \text{universal cover of } X \simeq \mathbb{C}^q \times \prod Y_i \times \prod S_k \times \prod Z_\ell$

where $Y_i = \text{Calabi-Yau}$ (holonomy $\text{SU}(n_i)$), $S_k = \text{holomorphic}$ symplectic (holonomy $\operatorname{Sp}(n'_k/2)$), and $Z_\ell = \operatorname{\mathsf{RC}}$ with $-K_{Z_{\ell}} \geq 0$ (holonomy $U(n''_{\ell})$).

- (b) There exists a finite étale Galois cover $\widehat{X} \to X$ such that the Albanese map $\alpha: \widehat{X} \to \mathrm{Alb}(\widehat{X})$ is an (isometrically) locally trivial holomorphic fiber bundle whose fibers are products $\prod Y_j \times \prod S_k \times \prod Z_\ell$, as described in (a).
- (c) $\pi_1(\widehat{X}) \simeq \mathbb{Z}^{2q} \rtimes \Gamma$, Γ finite ("almost abelian" group).

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

7/22

Criterion for rational connectedness

Criterion

Let X be a projective algebraic n-dimensional manifold. The following properties are equivalent.

- (a) X is rationally connected.
- (b) For every invertible subsheaf $\mathcal{F}\subset\Omega_X^p:=\mathcal{O}(\Lambda^pT_X^*)$, $1 \leq p \leq n$, \mathcal{F} is not psef.
- (c) For every invertible subsheaf $\mathcal{F} \subset \mathcal{O}((T_X^*)^{\otimes p}), p \geq 1, \mathcal{F}$ is not psef.
- (d) For some (resp. for any) ample line bundle A on X, there exists a constant $C_A > 0$ such that

$$H^0(X, (T_X^*)^{\otimes m} \otimes A^{\otimes k}) = 0 \quad \forall m, k \in \mathbb{N}^* \text{ with } m \geq C_A k.$$

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Thus the only thing left to complete the proof is $(b) \Rightarrow (a)$.

Consider the MRC quotient $\pi: X \to Y$, given by the "equivalence relation $x \sim y$ if x and y can be joined by a chain of rational curves.

Then (by definition) the fibers are RC, maximal, and a result of Graber-Harris-Starr (2002) implies that Y is not uniruled.

By BDPP (2004), Y not uniruled $\Rightarrow K_Y$ psef. Then $\pi^*K_Y \hookrightarrow \Omega_X^p$ where $p = \dim Y$, which is a contradiction unless p = 0, and therefore X is RC.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

9/22

Generalized holonomy principle

Generalized holonomy principle

Let $(E, h) \to X$ be a hermitian holomorphic vector bundle of rank r over X compact/ \mathbb{C} . Assume that

$$\Theta_{E,h} \wedge \frac{\omega^{n-1}}{(n-1)!} = B \frac{\omega^n}{n!}, \quad B \in \mathrm{Herm}(E,E), \quad B \geq 0 \quad \text{on } X.$$

Let H the restricted holonomy group of (E, h). Then

- (a) If there exists a psef invertible sheaf $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$, then \mathcal{L} is flat and invariant under parallel transport by the connection of $(E^*)^{\otimes m}$ induced by the Chern connection ∇ of (E,h); moreover, H acts trivially on \mathcal{L} .
- (b) If H satisfies H = U(r), then none of the invertible sheaves $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$ can be psef for $m \geq 1$.

Proof. $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$ which has trace of curvature ≤ 0 while $\Theta_{\mathcal{L}} > 0$, use Bochner formula.

Surjectivity of the Albanese morphism

Recall that if X is a compact Kähler manifold, the Albanese map

$$\alpha_X: X \to \mathrm{Alb}(X) := \mathbb{C}^q/\Lambda$$

is the holomorphic map given by

$$z\mapsto lpha_X(z)=\Bigl(\int_{z_0}^z u_j\Bigr)_{1\leq j\leq q}\mod \mathrm{subgroup}\ \Lambda\subset\mathbb{C}^q,$$

where (u_1, \ldots, u_q) is a basis of $H^0(X, \Omega_X^1)$.

Theorem [Qi Zhang, 2005]

If X is projective and $-K_X$ is nef, then α_X is surjective.

Proof. Based on characteristic p techniques.

Theorem [M. Păun, 2012]

If X is compact Kähler and $-K_X$ is nef, then α_X is surjective.

Proof. Based on variation arguments for twisted Kähler-Einstein metrics.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

Approach via generically nef vector bundles (J.Cao)

Definition

Let X compact Kähler manifold, $\mathcal{E} \to X$ torsion free sheaf.

(a) \mathcal{E} is generically nef with respect to a Kähler class ω if

$$\mu_{\omega}(\mathcal{S}) = \omega$$
-slope of $\mathcal{S} := \frac{\int_{X} c_1(\mathcal{S}) \wedge \omega^{n-1}}{\operatorname{rank} \mathcal{S}} \geq 0$

for all torsion free quotients $\mathcal{E} \to \mathcal{S} \to 0$.

If \mathcal{E} is ω -generically nef for all ω , we simply say that \mathcal{E} is generically nef.

(b) Let $0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \ldots \subset \mathcal{E}_s = \mathcal{E}$

be a filtration of $\mathcal E$ by torsion free coherent subsheaves such that the quotients $\mathcal{E}_{i+1}/\mathcal{E}_i$ are ω -stable subsheaves of $\mathcal{E}/\mathcal{E}_i$ of maximal rank. We call such a sequence a refined Harder-Narasimhan (HN) filtration w.r.t. ω .

11/22

Characterization of generically nef vector bundles

It is a standard fact that refined HN-filtrations always exist, moreover

$$\mu_{\omega}(\mathcal{E}_i/\mathcal{E}_{i-1}) \geq \nu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i)$$

for all i.

Proposition

Let (X, ω) be a compact Kähler manifold and \mathcal{E} a torsion free sehaf on X. Then \mathcal{E} is ω -generically nef if and only if

$$\mu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i) \geq 0$$

for some refined HN-filtration.

Proof. Easy arguments on filtrations.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

13/22

A result of J. Cao about manifolds with $-K_X$ nef

Theorem

(Junyan Cao, 2013) Let X be a compact Kähler manifold with $-K_X$ nef. Then the tangent bundle T_X is ω -generically nef for all Kähler classes ω .

Proof. use the fact that $\forall \varepsilon > 0$, \exists Kähler metric with $\operatorname{Ricci}(\omega_{\varepsilon}) \geq -\varepsilon \, \omega_{\varepsilon}$ (Yau, DPS 1995).

From this, one can deduce

$\mathsf{Theorem}$

Let X be a compact Kähler manifold with nef anticanonical bundle. Then the bundles $T_{\mathbf{x}}^{\otimes m}$ are ω -generically nef for all Kähler classes ω and all positive integers m. In particular, the bundles $S^k T_X$ and $\bigwedge^p T_X$ are ω -generically nef.

A lemma on sections of contravariant tensors

Lemma

Let (X,ω) be a compact Kähler manifold with $-K_X$ nef and

$$\eta \in H^0(X,(\Omega^1_X)^{\otimes m}\otimes \mathcal{L})$$

where \mathcal{L} is a numerically trivial line bundle on X.

Then the filtered parts of η w.r.t. the refined HN filtration are parallel w.r.t. the Bando-Siu metric in the 0 slope parts, and the < 0 slope parts vanish.

Proof. By Cao's theorem there exists a refined HN-filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \ldots \subset \mathcal{E}_s = T_X^{\otimes m}$$

with ω -stable quotients $\mathcal{E}_{i+1}/\mathcal{E}_i$ such that $\mu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i) \geq 0$ for all i. Then we use the fact that any section in a (semi-)negative slope reflexive sheaf $\mathcal{E}_{i+1}/\mathcal{E}_i\otimes\mathcal{L}$ is parallel w.r.t. its Bando-Siu metric (resp. vanishes).

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

15/22

Smoothness of the Albanese morphism (after Cao)

Theorem (Junyan Cao 2013)

Non-zero holomorphic p-forms on a compact Kähler manifold Xwith $-K_X$ nef vanish only on the singular locus of the refined HN filtration of T^*X .

This already implies the following result.

Corollary

Let X be a compact Kähler manifold with nef anticanonical bundle. Then the Albanese map $\alpha_X:X\to \mathrm{Alb}(X)$ is a submersion on the complement of the HN filtration singular locus in X [$\Rightarrow \alpha_X$ surjects onto Alb(X)].

Proof. The differential $d\alpha_X$ is given by (du_1,\ldots,du_q) where (u_1,\ldots,u_q) is a basis of 1-forms, $q=\dim H^0(X,\Omega^1_X)$.

Cao's thm \Rightarrow rank of (du_1, \ldots, du_q) is = q generically.

Isotriviality of the Albanese map

Theorem [J. Cao, arXiv:1612.05921]

Let X be a projective manifold with nef anti-canonical bundle. Then the Albanese map $\alpha_X: X \to Y = \mathrm{Alb}(X)$ is locally isotrivial, i.e., for any small open set $U \subset Y$, $\alpha_X^{-1}(U)$ is biholomorphic to the product $U \times F$, where F is the generic fiber of α_X . Moreover $-K_F$ is again nef.

Proof. Let A be a (large) ample line bundle on X and $E = (\alpha_X)_*A$ its direct image. Then $E = (\alpha_X)_* (mK_{X/Y} + L)$ with $L = A - mK_{X/Y} = A - mK_X$ nef. By results of Berndtsson-Păun on direct images, one can show that det *E* is pseudoeffective. Using arguments of [DPS95], one can infer that $E' = E \otimes (\det E)^{-1/r}$, $r = \operatorname{rank}(E)$, is numerically flat, hence a locally constant coefficient system (Simpson, Deng Ya). However, if $A \gg 0$, E provides equations of the fibers.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

17/22

The simply connected case

The above results reduce the study of projective manifolds with $-K_X$ nef to the case when $\pi_1(X)=0$.

Theorem [Junyan Cao, Andreas Höring, 2 days ago!]

Let X be a projective manifold such that $-K_X$ is nef and $\pi_1(X)=0$. Then $X=W\times Z$ with $K_W\sim 0$ and Z is a rationally connected manifold.

Corollary [Junyan Cao, Andreas Höring]

Let X be a projective manifold such that $-K_X$ is nef. Then after replacing X with a finite étale cover, the Albanese map α_X is isotrivial and its fibers are of the form $\prod S_j \times \prod Y_k \times \prod Z_\ell$ with S_j holomorphic symplectic, Y_k Calabi-Yau and Z_ℓ rationally connected.

Further problems (I)

Partly solved questions

- Develop further the theory of singular Calabi-Yau and singular holomorphic symplectic manifolds (work of Greb-Kebekus-Peternell).
- Show that the "slope $\pm \varepsilon$ " part corresponds to blown-up tori, singular Calabi-Yau and singular holomorphic symplectic manifolds (as fibers and targets).
- The rest of T_X (slope < 0) should yield a general type orbifold quotient (according to conjectures of Campana).

Expected more general definition

A compact Kähler manifold X is a singular Calabi-Yau if X has a non singular model X' satisfying $\pi_1(X') = 0$ and $K_{X'} = E$ for an effective divisor E of numerical dimension 0, and $H^0(X', \Omega_{X'}^p) = 0$ for 0 .

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

19/22

Further problems (II)

Definition

A compact Kähler manifold $X = X^{2p}$ is a singular hyperkähler manifold if X has a non singular model X' satisfying $\pi_1(X') = 0$ and possessing a section $\sigma \in H^0(X',\Omega^2_{X'})$ such that the zero divisor $E = \operatorname{div}(\sigma^p)$ has numerical dimension 0 (so that $K_{X'} = E$ again).

Conjecture (known by BDPP for X projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Proof? Take the part of slope > 0 in the HN filtration of T_X , w.r.t. to classes in the dual of the psef cone, show that this corresponds to the MRC fibration, and apply duality.

Further problems (III)

An interesting class of manifolds is the larger class of compact Kähler manifolds such that

$$K_X = E - D$$

where D is a pseudoeffective divisor and E an effective divisor of numerical dimension 0.

This class is obviously birationally invariant (while the condition $-K_X$ nef was not !).

One can hopefully expect similar decomposition theorems for varieties in this class.

They might possibly include all rationally connected varieties.

Jean-Pierre Demailly – CAG-XXIII, Levico Terme, 13/06/2017 Structure of compact Kähler manifolds with $-K_X$ nef

21/22

The end

Thank you for your attention!

