

L^2 extension theorem for sections defined on non reduced analytic subvarieties

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble Alpes & Académie des Sciences de Paris

Conference on Geometry and Topology, Harvard University, April 28 – May 2, 2017, celebrating 50 years of the Journal of Differential Geometry

References

This is a joint work with Junyan Cao & Shin-ichi Matsumura

J.-P. Demailly, *Extension of holomorphic functions defined on non reduced analytic subvarieties,* arXiv:1510.05230v1, Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after one hundred and fifty years, 2015.

J.Y. Cao, J.-P. Demailly, S-i. Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, arXiv:1703.00292v2, Science China Mathematics, **60** (2017) 949–962

T. Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. **41** (2005), no. 3, 565–577.

T. Ohsawa, K. Takegoshi, On the extension of L²holomorphic functions, Math. Zeitschrift **195** (1987), 197–204.

The extension problem

Let (X, ω) be a possibly noncompact *n*-dimensional Kähler manifold, $\mathcal{J} \subset \mathcal{O}_X$ a coherent ideal sheaf, $Y = V(\mathcal{J})$ its zero variety and

$$\mathcal{O}_{\mathbf{Y}} = \mathcal{O}_{\mathbf{X}}/\mathcal{J}.$$

Here Y may be non reduced, i.e. \mathcal{O}_Y may have nilpotent elements.

The extension problem

Let (X, ω) be a possibly noncompact *n*-dimensional Kähler manifold, $\mathcal{J} \subset \mathcal{O}_X$ a coherent ideal sheaf, $Y = V(\mathcal{J})$ its zero variety and

$$\mathcal{O}_{\mathbf{Y}} = \mathcal{O}_{\mathbf{X}}/\mathcal{J}.$$

Here Y may be non reduced, i.e. \mathcal{O}_Y may have nilpotent elements. Also, let (L, h_L) be a hermitian holomorphic line bundle on X, and

 $\Theta_{L,h_L} = i \, \partial \overline{\partial} \log h_L^{-1}$

its curvature current (we allow singular metrics, $h_L = e^{-\varphi}$, $\varphi \in L^1_{\text{loc}}$, Θ_{L,h_L} being computed in the sense of currents).

Question

Under which conditions on X, $Y = V(\mathcal{J})$, (L, h_L) is

 $H^{q}(X, K_{X} \otimes L) \rightarrow H^{q}(Y, (K_{X} \otimes L)_{|Y}) = H^{q}(X, \mathcal{O}_{X}(K_{X} \otimes L) \otimes \mathcal{O}_{X}/\mathcal{J})$

a surjective restriction morphism?

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

向下 イヨト イヨト

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

周下 イヨト イヨト 二日

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space.

・吊り イヨト イヨト ニヨ

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \to S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^q(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^q(X, \mathcal{F}) \simeq H^0(S, R^q p_* \mathcal{F})$ is a Fréchet space.

Corollary

To solve an equation $\overline{\partial} u = v$ on a holomorphically convex manifold X, it is enough to solve it approximately:

 $\overline{\partial} u_{arepsilon} = \mathbf{v} + \mathbf{w}_{arepsilon}, \qquad \mathbf{w}_{arepsilon} o \mathbf{0} \;\; \mathrm{as} \; arepsilon o \mathbf{0}$

We assume that the subvariety $Y \subset X$ is defined by

 $Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$

where ψ is a quasi-psh function with *analytic singularities*, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

 $\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (2)

We assume that the subvariety $Y \subset X$ is defined by

 $Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$

where ψ is a quasi-psh function with *analytic singularities*, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

 $\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$

and $\mathcal{I}(e^{-\psi}) \subset \mathcal{O}_X$ is the multiplier ideal sheaf

 $\mathcal{I}(e^{-\psi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\psi} d\lambda < +\infty
ight\}$

We assume that the subvariety $Y \subset X$ is defined by

 $Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$

where ψ is a quasi-psh function with *analytic singularities*, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

 $\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$

and $\mathcal{I}(e^{-\psi}) \subset \mathcal{O}_X$ is the multiplier ideal sheaf

 $\mathcal{I}(e^{-\psi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\psi} d\lambda < +\infty
ight\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Claim (Nadel)

 $\mathcal{I}(e^{-\psi})$ is a coherent ideal sheaf.

We assume that the subvariety $Y \subset X$ is defined by

 $Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$

where ψ is a quasi-psh function with *analytic singularities*, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

 $\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$

and $\mathcal{I}(e^{-\psi}) \subset \mathcal{O}_X$ is the multiplier ideal sheaf

 $\mathcal{I}(e^{-\psi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\psi} d\lambda < +\infty
ight\}$

Claim (Nadel)

 $\mathcal{I}(e^{-\psi})$ is a coherent ideal sheaf.

Moreover $\mathcal{I}(e^{-\psi})$ is always an integrally closed ideal.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

We assume that the subvariety $Y \subset X$ is defined by

 $Y = V(\mathcal{I}(e^{-\psi})), \qquad \mathcal{O}_Y := \mathcal{O}_X/\mathcal{I}(e^{-\psi})$

where ψ is a quasi-psh function with *analytic singularities*, i.e. locally on a neighborhood V of an arbitrary point $x_0 \in X$ we have

 $\psi(z) = c \log \sum |g_j(z)|^2 + v(z), \quad g_j \in \mathcal{O}_X(V), \ c > 0, \ v \in C^{\infty}(V),$

and $\mathcal{I}(e^{-\psi}) \subset \mathcal{O}_X$ is the multiplier ideal sheaf

 $\mathcal{I}(e^{-\psi})_{x_0} = \left\{ f \in \mathcal{O}_{X,x_0} \, ; \, \exists U \ni x_0 \, , \, \int_U |f|^2 e^{-\psi} d\lambda < +\infty
ight\}$

Claim (Nadel)

 $\mathcal{I}(e^{-\psi})$ is a coherent ideal sheaf.

Moreover $\mathcal{I}(e^{-\psi})$ is always an integrally closed ideal.

Typical choice: $\psi(z) = c \log |s(z)|_{h_E}^2$, c > 0, $s \in H^0(X, E)$.

Log resolution / reduction to the divisorial case

The simplest case is when $Y = \sum m_j Y_j$ is an effective simple normal crossing divisor and $\mathcal{O}_Y = \mathcal{O}_X / \mathcal{O}_X (-Y)$. We can then take

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0, \ \lfloor c_j
floor = m_j,$$

for some smooth hermitian metric h_j on $\mathcal{O}_X(Y_j)$. Then

 $\mathcal{I}(e^{-\psi}) = \mathcal{O}_X(-\sum m_j Y_j), \quad i\partial\overline{\partial}\psi = \sum c_j(2\pi[Y_j] - \Theta_{\mathcal{O}(Y_j),h_j})$

同 ション シン・シーン

Log resolution / reduction to the divisorial case

The simplest case is when $Y = \sum m_j Y_j$ is an effective simple normal crossing divisor and $\mathcal{O}_Y = \mathcal{O}_X / \mathcal{O}_X (-Y)$. We can then take

$$\psi(z) = \sum c_j \log |\sigma_{Y_j}|_{h_j}^2, \quad c_j > 0, \ \lfloor c_j
floor = m_j,$$

for some smooth hermitian metric h_j on $\mathcal{O}_X(Y_j)$. Then

 $\mathcal{I}(e^{-\psi}) = \mathcal{O}_X(-\sum m_j Y_j), \quad i\partial\overline{\partial}\psi = \sum c_j(2\pi[Y_j] - \Theta_{\mathcal{O}(Y_j),h_j})$

The case of a higher codimensional multiplier ideal scheme $\mathcal{I}(e^{-\psi})$ can easily be reduced to the divisorial case by using a suitable log resolution (a composition of blow ups, thanks to Hironaka's desingularization theorem).

Theorem (JY. Cao, D-, S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let (L, h_L) be a hermitian line bundle such that

(**) $\Theta_{L,h_L} + (1 + \alpha \delta)i\partial\overline{\partial}\psi \ge 0$ in the sense of currents

for some $\delta(x) > 0$ continuous and $\alpha = 0, 1$. Then:

◆□ > < E > < E > E - のQ ○

Theorem (JY. Cao, D-, S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let (L, h_L) be a hermitian line bundle such that

 $\begin{array}{ll} (**) & \Theta_{L,h_L} + (1 + \alpha \delta)i\partial \overline{\partial}\psi \geq 0 & \text{ in the sense of currents} \\ \text{for some } \delta(x) > 0 \text{ continuous and } \alpha = 0, 1. \text{ Then:} \\ \text{the morphism induced by the natural inclusion } \mathcal{I}(h_L e^{-\psi}) \rightarrow \mathcal{I}(h_L) \\ & H^q(X, \mathcal{K}_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi})) \rightarrow H^q(X, \mathcal{K}_X \otimes L \otimes \mathcal{I}(h_L)) \end{array}$

is injective for every $q \ge 0$,

Theorem (JY. Cao, D-, S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let (L, h_L) be a hermitian line bundle such that

(**) $\Theta_{L,h_L} + (1 + \alpha \delta)i\partial \overline{\partial}\psi \ge 0$ in the sense of currents for some $\delta(x) > 0$ continuous and $\alpha = 0, 1$. Then: the morphism induced by the natural inclusion $\mathcal{I}(h_l e^{-\psi}) \to \mathcal{I}(h_l)$

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi})) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L))$

is injective for every $q \ge 0$, in other words, the sheaf morphism $\mathcal{I}(h) \to \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ yields a surjection

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$

Theorem (JY. Cao, D-, S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let (L, h_L) be a hermitian line bundle such that

(**) $\Theta_{L,h_L} + (1 + \alpha \delta)i\partial \overline{\partial}\psi \ge 0$ in the sense of currents for some $\delta(x) > 0$ continuous and $\alpha = 0, 1$. Then: the morphism induced by the natural inclusion $\mathcal{I}(h_L e^{-\psi}) \to \mathcal{I}(h_L)$

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi})) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L))$

is injective for every $q \ge 0$, in other words, the sheaf morphism $\mathcal{I}(h) \to \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ yields a surjection

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)) \to H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$

Corollary (take h_L smooth $\Rightarrow \mathcal{I}(h_L) = \mathcal{O}_X$, and $Y = V(\mathcal{I}(e^{-\psi}))$ If h_L is smooth, $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{I}(e^{-\psi})$ and h_L , ψ satisfy (**), then

 $H^{q}(X, K_{X} \otimes L) \rightarrow H^{q}(Y, (K_{X} \otimes L)_{|Y})$ is surjective.

Comments / algebraic consequences

The exact sequence $0 \to \mathcal{I}(h_L e^{-\psi}) \to \mathcal{I}(h_L) \to \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}) \to 0$ implies that both injectivity and surjectivity hold when

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi}) = 0,$

and for this it is enough to have a strict curvature assumption

(***) $\Theta_{L,h_L} + i\partial\overline{\partial}\psi \ge \delta\omega > 0$ in the sense of currents.

Comments / algebraic consequences

The exact sequence $0 \rightarrow \mathcal{I}(h_L e^{-\psi}) \rightarrow \mathcal{I}(h_L) \rightarrow \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}) \rightarrow 0$ implies that both injectivity and surjectivity hold when

 $H^q(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-\psi}) = 0,$

and for this it is enough to have a strict curvature assumption

(***) $\Theta_{L,h_L} + i\partial\overline{\partial}\psi \ge \delta\omega > 0$ in the sense of currents.

Corollary (purely algebraic)

Assume that X is projective (or that one has a projective morphism $X \to S$ over an affine algebraic base S). Let $Y = \sum m_j Y_j$ be an effective divisor and $\mathcal{O}_Y = \mathcal{O}_X / \mathcal{O}_X (-Y)$. If (as Q-divisors)

$$(**) L - (1 + \delta) \sum c_j Y_j = G_{\delta} + U_{\delta}, \quad \lfloor c_j \rfloor = m_j$$

with $\delta=0$ or $\delta_0\in\mathbb{Q}^*_+$, \mathcal{G}_δ semiample and $U_\delta\in\operatorname{Pic}^0(X)$, then

 $H^q(X, K_X \otimes L) \rightarrow H^q(Y, (K_X \otimes L)_{|Y})$

is surjective.

Possible use for abundance by induction on dim X ?

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m}) / \log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ power of non zero positive intersection of a positive current $T \in c_1(L)$, if L is pseudo-effective, and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

 $-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n = \dim X.$

• • = • • = • = =

Possible use for abundance by induction on dim X ?

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m}) / \log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ power of non zero positive intersection of a positive current $T \in c_1(L)$, if L is pseudo-effective, and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

 $-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n = \dim X.$

One says that *L* is abundant if $\kappa(L) = \operatorname{nd}(L)$. The abundance conjecture states that K_X is always abundant if *X* is nonsingular and projective (or even compact Kähler). More generally, it is expected that $K_X + \Delta$ is abundant for every effective klt \mathbb{Q} -divisor Δ .

Possible use for abundance by induction on dim X ?

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L) = \limsup_{m \to +\infty} \log \dim H^0(X, L^{\otimes m}) / \log m$ and the numerical dimension $\operatorname{nd}(L) = \operatorname{maximum}$ power of non zero positive intersection of a positive current $T \in c_1(L)$, if L is pseudo-effective, and $\operatorname{nd}(L) = -\infty$ otherwise. They always satisfy

 $-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n = \dim X.$

One says that *L* is abundant if $\kappa(L) = \operatorname{nd}(L)$. The abundance conjecture states that K_X is always abundant if *X* is nonsingular and projective (or even compact Kähler). More generally, it is expected that $K_X + \Delta$ is abundant for every effective klt Q-divisor Δ . When *X* is not uniruled, i.e. K_X is pseudoeffective, one can ask whether the following generalized abundance property holds true: let *L* be a line bundle such that $L - \varepsilon K_X$ is pseudoeffective, $0 < \varepsilon \ll 1$; does there exist $G \in \operatorname{Pic}^0(X)$ such that L + G is abundant.?

Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let η , $\lambda > 0$ be smooth functions on X.

For every compacted supported section $u \in C_c^{\infty}(X, \Lambda^{p,q}T_X^* \otimes L)$ with values in a hermitian line bundle (L, h_L) , one has

$$\begin{split} \|(\eta+\lambda)^{\frac{1}{2}}\overline{\partial}^{*}u\|^{2} + \|\eta^{\frac{1}{2}}\overline{\partial}u\|^{2} + \|\lambda^{\frac{1}{2}}\partial u\|^{2} + 2\|\lambda^{-\frac{1}{2}}\partial\eta\wedge u\|^{2} \\ \geq \int_{X} \langle B_{L,h_{L},\omega,\eta,\lambda}^{p,q}u,u\rangle dV_{X,\omega} \end{split}$$

where $dV_{X,\omega} = \frac{1}{n!}\omega^n$ is the Kähler volume element and $B_{L,h_L,\omega,\eta,\lambda}^{p,q}$ is the Hermitian operator on $\Lambda^{p,q}T_X^* \otimes L$ such that

$$\mathcal{B}_{L,h_{L},\omega,\eta,\lambda}^{p,q} = [\eta \, i\Theta_{L} - i \, \partial\overline{\partial}\eta - i\lambda^{-1}\partial\eta \wedge \overline{\partial}\eta \, , \, \Lambda_{\omega}].$$

□→ ★ 国 → ★ 国 → □ 国

Approximate solutions to $\overline{\partial}$ -equations

Main L^2 estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or even slightly negative).

Approximate solutions to $\overline{\partial}$ -equations

Main L^2 estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or even slightly negative). Take a section $v \in L^2(X, \Lambda^{n,q} T_X^* \otimes E)$ such that $\overline{\partial}v = 0$ and

$$\mathsf{M}(arepsilon) := \int_X \langle (B + arepsilon \operatorname{Id})^{-1} \mathsf{v}, \mathsf{v}
angle \, \mathsf{d} V_{X,\omega} < +\infty.$$

Approximate solutions to $\overline{\partial}$ -equations

Main L^2 estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let (E, h_E) be a Hermitian vector bundle over X. Assume that $B = B_{E,h,\omega,\eta,\lambda}^{n,q}$ satisfies $B + \varepsilon \operatorname{Id} > 0$ for some $\varepsilon > 0$ (so that B can be just semi-positive or even slightly negative). Take a section $v \in L^2(X, \Lambda^{n,q} T_X^* \otimes E)$ such that $\overline{\partial}v = 0$ and

$${\it M}(arepsilon):=\int_X \langle (B+arepsilon \, \mathrm{Id})^{-1} {\it v}, {\it v}
angle \, dV_{X,\omega} < +\infty.$$

Then there exists an approximate solution $u_{\varepsilon} \in L^2(X, \Lambda^{n,q-1}T_X^* \otimes E)$ and a correction term $w_{\varepsilon} \in L^2(X, \Lambda^{n,q}T_X^* \otimes E)$ such that

$$\partial u_{\varepsilon} = v + w_{\varepsilon}$$
 and

$$\int_X (\eta + \lambda)^{-1} |u_{\varepsilon}|^2 \, dV_{X,\omega} + \frac{1}{\varepsilon} \int_X |w_{\varepsilon}|^2 \, dV_{X,\omega} \leq M(\varepsilon).$$

 L^2 extension theorem from nonreduced analytic subvarieties 11/18

Proof: setting up the relevant $\overline{\partial}$ equation (1)

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}))$$

is represented by a holomorphic Čech *q*-cocycle with respect to a Stein covering $\mathcal{U} = (U_i)$, say $(c_{i_0...i_q})$,

 $c_{i_0...i_q} \in H^0(U_{i_0} \cap \ldots \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$

Proof: setting up the relevant $\overline{\partial}$ equation (1)

Every cohomology class in

$$H^q(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}))$$

is represented by a holomorphic Čech *q*-cocycle with respect to a Stein covering $\mathcal{U} = (U_i)$, say $(c_{i_0...i_q})$,

 $c_{i_0...i_q} \in H^0(U_{i_0} \cap \ldots \cap U_{i_q}, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})).$

By the standard sheaf theoretic isomorphism with Dolbeault cohomology, this class is represented by a smooth (n, q)-form

$$f = \sum_{i_0,...,i_q} c_{i_0...i_q}
ho_{i_0} \overline{\partial}
ho_{i_1} \wedge \ldots \overline{\partial}
ho_{i_q}$$

by means of a partition of unity (ρ_i) subordinate to (U_i) . This form is to be interpreted as a form on the (non reduced) analytic subvariety Y associated with the colon ideal sheaf $\mathcal{J} = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$ and the structure sheaf $\mathcal{O}_Y = \mathcal{O}_X/\mathcal{J}$.

Proof: setting up the relevant $\overline{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n, q)-form on X by taking

$$\widetilde{f} = \sum_{i_0,...,i_q} \widetilde{c}_{i_0...i_q}
ho_{i_0} \overline{\partial}
ho_{i_1} \wedge \ldots \overline{\partial}
ho_{i_q}$$

where $\widetilde{c}_{i_0...i_q}$ = extension of $c_{i_0...i_q}$ from $U_{i_0} \cap ... \cap U_{i_q} \cap Y$ to $U_{i_0} \cap ... \cap U_{i_q}$

Proof: setting up the relevant $\overline{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n, q)-form on X by taking

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \rho_{i_0} \overline{\partial} \rho_{i_1} \wedge \dots \overline{\partial} \rho_{i_q}$$

where $\tilde{c}_{i_0...i_q}$ = extension of $c_{i_0...i_q}$ from $U_{i_0} \cap ... \cap U_{i_q} \cap Y$ to $U_{i_0} \cap ... \cap U_{i_q}$ { $x \in X / t < \psi(x) < t+1$ }

Proof: setting up the relevant $\overline{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\overline{\partial}$ -closed) (n, q)-form on X by taking

$$\widetilde{f} = \sum_{i_0, \dots, i_q} \widetilde{c}_{i_0 \dots i_q} \rho_{i_0} \overline{\partial} \rho_{i_1} \wedge \dots \overline{\partial} \rho_{i_q}$$

where $\tilde{c}_{i_0...i_q} = \text{extension of } c_{i_0...i_q} \text{ from } U_{i_0} \cap \ldots \cap U_{i_q} \cap Y \text{ to } U_{i_0} \cap \ldots \cap U_{i_q}$ $\{x \in X \mid t < \psi(x) < t+1\}$

Now, truncate \tilde{f} as $\theta(\psi - t) \cdot \tilde{f}$ on the green hollow tubular neighborhood, and solve an approximate $\overline{\partial}$ -equation

(*)
$$\overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon}$$

高 とう モン・ く ヨ と

Proof: setting up the relevant $\overline{\partial}$ equation (3)

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}+\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}$$

where the first term vanishes near Y and the second one is L^2 with respect to $h_L e^{-\psi}$ (as the image of $\overline{\partial} \tilde{f}$ in $\mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ is $\overline{\partial} f = 0$).

Proof: setting up the relevant $\overline{\partial}$ equation (3)

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}+\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}$$

where the first term vanishes near Y and the second one is L^2 with respect to $h_L e^{-\psi}$ (as the image of $\overline{\partial} \tilde{f}$ in $\mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ is $\overline{\partial} f = 0$). With ad hoc "twisting functions" $\eta = \eta_t := 1 - \delta \chi_t(\psi)$, $\lambda := \pi (1 + \delta^2 \psi^2)$ and a suitable adjustment $\varepsilon = e^{(1+\beta)t}$, $\beta \ll 1$, we can find approximate L^2 solutions of the $\overline{\partial}$ -equation such that

$$\overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon} , \qquad \int_{X} |u_{t,\varepsilon}|^2_{\omega,h_L} e^{-\psi} dV_{X,\omega} < +\infty$$

and

$$\lim_{t\to-\infty}\int_X |w_{t,\varepsilon}|^2_{\omega,h_L}e^{-\psi}dV_{X,\omega}=0.$$

Proof: setting up the relevant $\overline{\partial}$ equation (3)

Here we have

$$\overline{\partial}(\theta(\psi-t)\cdot\widetilde{f})=\theta'(\psi-t)\overline{\partial}\psi\wedge\widetilde{f}+\theta(\psi-t)\cdot\overline{\partial}\widetilde{f}$$

where the first term vanishes near Y and the second one is L^2 with respect to $h_L e^{-\psi}$ (as the image of $\overline{\partial} \tilde{f}$ in $\mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi})$ is $\overline{\partial} f = 0$). With ad hoc "twisting functions" $\eta = \eta_t := 1 - \delta \chi_t(\psi)$, $\lambda := \pi (1 + \delta^2 \psi^2)$ and a suitable adjustment $\varepsilon = e^{(1+\beta)t}$, $\beta \ll 1$, we can find approximate L^2 solutions of the $\overline{\partial}$ -equation such that

$$\overline{\partial} u_{t,\varepsilon} = \overline{\partial} (\theta(\psi - t) \cdot \widetilde{f}) + w_{t,\varepsilon} , \qquad \int_X |u_{t,\varepsilon}|^2_{\omega,h_L} e^{-\psi} dV_{X,\omega} < +\infty$$

and

$$\lim_{t\to-\infty}\int_X |w_{t,\varepsilon}|^2_{\omega,h_L}e^{-\psi}dV_{X,\omega}=0.$$

The estimate on $u_{t,\varepsilon}$ with respect to the weight $h_L e^{-\psi}$ shows that $\theta(\psi - t) \cdot \tilde{f} - u_{t,\varepsilon}$ is an approximate extension of f.

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}(e^{-(1-\varepsilon)\psi}) = \mathcal{O}_X$ for all $\varepsilon > 0$.

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}(e^{-(1-\varepsilon)\psi}) = \mathcal{O}_X$ for all $\varepsilon > 0$.

Ohsawa's residue measure

If ψ is log canonical, one can also associate in a natural way a measure $dV_{Y^{\circ},\omega}[\psi]$ on the set Y° of regular points of Y as follows. If $g \in C_c(Y^{\circ})$ is a compactly supported continuous function on Y° and \tilde{g} a compactly supported extension of g to X, one sets

 $\int_{\mathbf{Y}^{\circ}} g \, dV_{\mathbf{Y}^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, \ t < \psi(x) < t+1\}} \widetilde{g} e^{-\psi} \, dV_{X,\omega}$

伺い イヨン イヨン ニヨ

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}(e^{-(1-\varepsilon)\psi}) = \mathcal{O}_X$ for all $\varepsilon > 0$.

Ohsawa's residue measure

If ψ is log canonical, one can also associate in a natural way a measure $dV_{Y^\circ,\omega}[\psi]$ on the set Y° of regular points of Y as follows. If $g \in C_c(Y^\circ)$ is a compactly supported continuous function on Y° and \tilde{g} a compactly supported extension of g to X, one sets

$$\int_{Y^{\circ}} g \, dV_{Y^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, \ t < \psi(x) < t+1\}} \widetilde{g} e^{-\psi} \, dV$$

Theorem

If ψ is lc and the curvature hypothesis is satisfied, for any f in $H^0(Y, K_X \otimes L \otimes \mathcal{I}(h_L)/\mathcal{I}(h_L e^{-\psi}))$ s.t. $\int_{Y^\circ} |f|^2_{\omega,h_L} dV_{Y^\circ,\omega}[\psi] < +\infty$, there exists $\tilde{f} \in H^0(X, K_X \otimes L \otimes \mathcal{I}(h_L))$ which extends f, such that $\int_X (1 + \delta^2 \psi^2)^{-1} e^{-\psi} |\tilde{f}|^2_{\omega,h_L} dV_{X,\omega} \leq \frac{34}{\delta} \int_{Y^\circ} |f|^2_{\omega,h_L} dV_{Y^\circ,\omega}[\psi].$

 $X.\omega$

Can one get estimates for the extension ? (sequel)

If ψ is not log canonical, consider the "last jumps" $m_{p-1} < m_p \le 1$ such that $\mathcal{I}(h_L e^{-m_p - \psi}) \supseteq \mathcal{I}(h_L e^{-m_p \psi}) = \mathcal{I}(h_L e^{-\psi})$ and assume

 $f \in H^0(Y, K_X \otimes L \otimes \mathcal{I}(h_L e^{-m_{p-1}\psi})/\mathcal{I}(h_L e^{-m_p\psi})),$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}(h_L e^{-\psi})$). Then there is still a corresponding residue measure:

Can one get estimates for the extension ? (sequel)

If ψ is not log canonical, consider the "last jumps" $m_{p-1} < m_p \leq 1$ such that $\mathcal{I}(h_L e^{-m_{p-1}\psi}) \supseteq \mathcal{I}(h_L e^{-m_p\psi}) = \mathcal{I}(h_L e^{-\psi})$ and assume

 $f \in H^0(Y, K_X \otimes L \otimes \mathcal{I}(h_L e^{-m_{p-1}\psi})/\mathcal{I}(h_L e^{-m_p\psi})),$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}(h_L e^{-\psi})$). Then there is still a corresponding residue measure:

Higher multiplicity residue measure

If f is as above, and \tilde{f} is a local extension, one can associate a higher multiplicity residue measure $|f|^2 dV_{Y^\circ,\omega}[\psi]$ (formal notation) as follows. If $g \in \mathcal{C}_c(Y^\circ)$ and \tilde{g} a compactly supported extension of g to X, one sets

$$\int_{Y^{\circ}} g |f|^2 dV_{Y^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, \ t < \psi(x) < t+1\}} \widetilde{g} \, |\widetilde{f}|^2 e^{-m_p \psi} \, dV_{X,\omega}$$

(本間) (本語) (本語) (二語)

Can one get estimates for the extension ? (sequel)

If ψ is not log canonical, consider the "last jumps" $m_{p-1} < m_p \le 1$ such that $\mathcal{I}(h_L e^{-m_{p-1}\psi}) \supseteq \mathcal{I}(h_L e^{-m_p\psi}) = \mathcal{I}(h_L e^{-\psi})$ and assume

 $f \in H^0(Y, K_X \otimes L \otimes \mathcal{I}(h_L e^{-m_{p-1}\psi})/\mathcal{I}(h_L e^{-m_p\psi})),$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}(h_L e^{-\psi})$). Then there is still a corresponding residue measure:

Higher multiplicity residue measure

If f is as above, and \tilde{f} is a local extension, one can associate a higher multiplicity residue measure $|f|^2 dV_{Y^\circ,\omega}[\psi]$ (formal notation) as follows. If $g \in \mathcal{C}_c(Y^\circ)$ and \tilde{g} a compactly supported extension of g to X, one sets

$$\int_{Y^{\circ}} g |f|^2 dV_{Y^{\circ},\omega}[\psi] = \lim_{t \to -\infty} \int_{\{x \in X, t < \psi(x) < t+1\}} \widetilde{g} |\widetilde{f}|^2 e^{-m_p \psi} dV_{X,\omega}$$

Then a global extension $\tilde{f} \in H^0(X, K_X \otimes L \otimes \mathcal{I}(h_L e^{-m_{p-1}\psi}))$ exists, that satisfies the expected L^2 estimate.

J.-P. Demailly (Grenoble), JDG Conference 2017, Harvard

 L^2 extension theorem from nonreduced analytic subvarieties 16/18

Special case / limitations of the L^2 estimates

In the special case when ψ is given by $\psi(z) = r \log |s(z)|_{h_E}^2$ for a section $s \in H^0(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y = s^{-1}(0)$ has codimension r, and one can check easily that

$$dV_{Y^{\circ},\omega}[\psi] = rac{dV_{Y^{\circ},\omega}}{|\Lambda^{r}(ds)|^{2}_{\omega,h_{E}}}.$$

Special case / limitations of the L^2 estimates

In the special case when ψ is given by $\psi(z) = r \log |s(z)|_{h_E}^2$ for a section $s \in H^0(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y = s^{-1}(0)$ has codimension r, and one can check easily that

$$dV_{Y^\circ,\omega}[\psi] = rac{dV_{Y^\circ,\omega}}{|\Lambda^r(ds)|^2_{\omega,h_E}}.$$

Thus one sees that the residue measure takes into account in a very precise manner the singularities of Y. It may happen that $dV_{Y^{\circ},\omega}[\psi]$ has infinite mass near the singularities of Y, as is the case when Y is a simple normal crossing divisor.

(소프) (프) 프

Special case / limitations of the L^2 estimates

In the special case when ψ is given by $\psi(z) = r \log |s(z)|_{h_E}^2$ for a section $s \in H^0(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y = s^{-1}(0)$ has codimension r, and one can check easily that

$$dV_{Y^\circ,\omega}[\psi] = rac{dV_{Y^\circ,\omega}}{|\Lambda^r(ds)|^2_{\omega,h_E}}.$$

Thus one sees that the residue measure takes into account in a very precise manner the singularities of Y. It may happen that $dV_{Y^{\circ},\omega}[\psi]$ has infinite mass near the singularities of Y, as is the case when Y is a simple normal crossing divisor.

Therefore, sections $s \in H^0(Y, (K_X \otimes L)|_Y$ may not be L^2 with respect to $dV_{Y^\circ,\omega}[\psi]$), and the L^2 estimate of the approximate extension can blow up as $\varepsilon \to 0$. The surprising fact is this is however sufficient to prove the qualitative extension theorem, but without any effective L^2 estimate in the limit.

The end

Tentative image of a Calabi-Yau manifold ($K_X = O_X$). It would be important to know about the generalized abundance property in that case.