

On the approximate cohomology of quasi holomorphic line bundles

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Virtual Conference Geometry and TACoS hosted at Università di Firenze July 7 – 21, 2020

Let X be a compact complex manifold, and let

$$H^{p,q}_{\mathrm{BC}}(X,\mathbb{C}) = rac{\operatorname{\mathsf{Ker}} \partial \cap \operatorname{\mathsf{Ker}} \overline{\partial}}{\operatorname{Im} \partial \overline{\partial}} \quad ext{in bidegree } (p,q)$$

be the corresponding Bott-Chern cohomology groups.

Let X be a compact complex manifold, and let

$$H^{p,q}_{\mathrm{BC}}(X,\mathbb{C}) = rac{\operatorname{\mathsf{Ker}} \partial \cap \operatorname{\mathsf{Ker}} \overline{\partial}}{\operatorname{Im} \partial \overline{\partial}}$$
 in bidegree (p,q)

be the corresponding Bott-Chern cohomology groups.

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and a (1,1)-form u representing γ , there exists an infinite subset $S \subset \mathbb{N}$ and C^{∞} Hermitian line bundles $(L_k, h_k)_{k \in S}$ equipped with Hermitian connections ∇_k ,

Let X be a compact complex manifold, and let

$$H^{p,q}_{\mathrm{BC}}(X,\mathbb{C}) = rac{\operatorname{\mathsf{Ker}} \partial \cap \operatorname{\mathsf{Ker}} \overline{\partial}}{\operatorname{Im} \partial \overline{\partial}}$$
 in bidegree (p,q)

be the corresponding Bott-Chern cohomology groups.

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and a (1,1)-form u representing γ , there exists an infinite subset $S \subset \mathbb{N}$ and C^{∞} Hermitian line bundles $(L_k,h_k)_{k\in S}$ equipped with Hermitian connections ∇_k , such that the curvature 2-forms $\theta_k = \frac{i}{2\pi}\nabla_k^2$ satisfy $\theta_k = ku + \beta_k$ and

$$\beta_k = O(k^{-1/b_2}), \qquad b_2 = b_2(X).$$

Let X be a compact complex manifold, and let

$$H^{p,q}_{\mathrm{BC}}(X,\mathbb{C}) = rac{\operatorname{\mathsf{Ker}} \partial \cap \operatorname{\mathsf{Ker}} \overline{\partial}}{\operatorname{Im} \partial \overline{\partial}} \qquad ext{in bidegree } (p,q)$$

be the corresponding Bott-Chern cohomology groups.

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and a (1,1)-form u representing γ , there exists an infinite subset $S \subset \mathbb{N}$ and C^{∞} Hermitian line bundles $(L_k,h_k)_{k\in S}$ equipped with Hermitian connections ∇_k , such that the curvature 2-forms $\theta_k = \frac{i}{2\pi}\nabla_k^2$ satisfy $\theta_k = ku + \beta_k$ and

$$\beta_k = O(k^{-1/b_2}), \qquad b_2 = b_2(X).$$

Proof. This is a consequence of Kronecker's approximation theorem applied to the lattice $H^2(X,\mathbb{Z}) \hookrightarrow H^2_{DR}(X,\mathbb{R})$.

Let X be a compact complex manifold, and let

$$H^{p,q}_{\mathrm{BC}}(X,\mathbb{C}) = rac{\operatorname{\mathsf{Ker}} \partial \cap \operatorname{\mathsf{Ker}} \partial}{\operatorname{Im} \partial \overline{\overline{\partial}}} \qquad ext{in bidegree } (p,q)$$

be the corresponding Bott-Chern cohomology groups.

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and a (1,1)-form u representing γ , there exists an infinite subset $S \subset \mathbb{N}$ and C^{∞} Hermitian line bundles $(L_k,h_k)_{k\in S}$ equipped with Hermitian connections ∇_k , such that the curvature 2-forms $\theta_k = \frac{i}{2\pi}\nabla_k^2$ satisfy $\theta_k = ku + \beta_k$ and

$$\beta_k = O(k^{-1/b_2}), \qquad b_2 = b_2(X).$$

Proof. This is a consequence of Kronecker's approximation theorem applied to the lattice $H^2(X,\mathbb{Z}) \hookrightarrow H^2_{\mathrm{DR}}(X,\mathbb{R})$. In fact β_k can be chosen in a finite dimensional space of C^∞ closed 2-forms isomorphic to $H^2_{\mathrm{DR}}(X,\mathbb{R})$.

Approximate holomorphic structure

Approximate holomorphic structure

Consequence

Let
$$\nabla_k = \nabla_k^{1,0} + \nabla_k^{0,1}$$
. Then $\theta_k = ku + \beta_k$ implies $(\nabla_k^{0,1})^2 = \theta_k^{0,2} = \beta_k^{0,2} = O(k^{-1/b_2})$.

Approximate holomorphic structure

Consequence

Let
$$\nabla_k = \nabla_k^{1,0} + \nabla_k^{0,1}$$
. Then $\theta_k = ku + \beta_k$ implies $(\nabla_k^{0,1})^2 = \theta_k^{0,2} = \beta_k^{0,2} = O(k^{-1/b_2})$.

Thus the L_k are "closer and closer" to be holomorphic as $k \to +\infty$.

Let $\overline{\square}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X.

Let $\overline{\Box}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\Box}_{k,E}^{p,q}$ the operator acting on $C^{\infty}(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

Let $\overline{\square}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\square}_{k,E}^{p,q}$ the operator acting on $C^{\infty}(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the elliptic operator $\overline{\square}_{k,E}^{p,q}$.

Let $\overline{\Box}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\Box}_{k,E}^{p,q}$ the operator acting on $C^\infty(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the elliptic operator $\overline{\Box}_{k,E}^{p,q}$. Since the curvature is $\theta_k \simeq ku$, it is better to renormalize and to consider instead $\frac{1}{2\pi k}\overline{\Box}_{k,E}^{p,q}$.

Let $\overline{\Box}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\Box}_{k,E}^{p,q}$ the operator acting on $C^\infty(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the elliptic operator $\overline{\square}_{k,E}^{p,q}$. Since the curvature is $\theta_k \simeq ku$, it is better to renormalize and to consider instead $\frac{1}{2\pi k}\overline{\square}_{k,E}^{p,q}$. For $\lambda \in \mathbb{R}$, we define

$$N_k^{p,q}(\lambda) = \dim \bigoplus \text{ eigenspaces of } \frac{1}{2\pi k} \overline{\square}_{k,E}^{p,q} \text{ of eigenvalues } \leq \lambda.$$

Let $\overline{\Box}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\Box}_{k,E}^{p,q}$ the operator acting on $C^\infty(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the elliptic operator $\overline{\square}_{k,E}^{p,q}$. Since the curvature is $\theta_k \simeq ku$, it is better to renormalize and to consider instead $\frac{1}{2\pi k}\overline{\square}_{k,E}^{p,q}$. For $\lambda \in \mathbb{R}$, we define

$$N_k^{p,q}(\lambda) = \dim \bigoplus \text{ eigenspaces of } \frac{1}{2\pi k} \overline{\square}_{k,E}^{p,q} \text{ of eigenvalues } \leq \lambda.$$

Let $u_j(x)$, $1 \le j \le n$, be the eigenvalues of u(x) with respect to $\omega(x)$ at any point $x \in X$, ordered so that if $s = \operatorname{rank}(u(x))$, then $|u_1(x)| \ge \cdots \ge |u_s(x)| > |u_{s+1}(x)| = \cdots = |u_n(x)| = 0$.

Let $\overline{\Box}_k = \overline{\partial}_k \overline{\partial}_k^* + \overline{\partial}_k^* \overline{\partial}_k$ be the complex Laplace-Beltrami operator of (L_k, h_k, ∇_k) with respect to some Hermitian metric ω on X. Let $\overline{\Box}_{k,E}^{p,q}$ the operator acting on $C^\infty(X, \Lambda^{p,q} T_X^* \otimes L_k \otimes E)$, where (E, h_E) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the elliptic operator $\overline{\square}_{k,E}^{p,q}$. Since the curvature is $\theta_k \simeq ku$, it is better to renormalize and to consider instead $\frac{1}{2\pi k}\overline{\square}_{k,E}^{p,q}$. For $\lambda \in \mathbb{R}$, we define

$$N_k^{p,q}(\lambda) = \dim \bigoplus \text{ eigenspaces of } \frac{1}{2\pi k} \overline{\square}_{k,E}^{p,q} \text{ of eigenvalues } \leq \lambda.$$

Let $u_j(x)$, $1 \le j \le n$, be the eigenvalues of u(x) with respect to $\omega(x)$ at any point $x \in X$, ordered so that if $s = \operatorname{rank}(u(x))$, then $|u_1(x)| \ge \cdots \ge |u_s(x)| > |u_{s+1}(x)| = \cdots = |u_n(x)| = 0$.

For a multi-index $J = \{j_1 < j_2 < \ldots < j_q\} \subset \{1, \ldots, n\}$, set

$$u_J(x) = \sum_{j \in J} u_j(x), \quad x \in X.$$

Fundamental spectral theory results

Consider the "spectral density functions" ν_u , $\overline{\nu}_u$ defined by

$$\frac{\nu_u(\lambda)}{\overline{\nu}_u(\lambda)} \right\} = \frac{2^{s-n} |u_1| \cdots |u_s|}{\Gamma(n-s+1)} \sum_{(p_1, \dots, p_s) \in \mathbb{N}^s} \left[\lambda - \sum (2p_j+1) |u_j| \right]_+^{n-s}.$$
(where $0^0 = 0$ for ν_u , resp. $0^0 = 1$ for $\overline{\nu}_u$).

Fundamental spectral theory results

Consider the "spectral density functions" ν_u , $\overline{\nu}_u$ defined by

$$\frac{\nu_u(\lambda)}{\overline{\nu}_u(\lambda)} = \frac{2^{s-n} |u_1| \cdots |u_s|}{\Gamma(n-s+1)} \sum_{(p_1,\dots,p_s) \in \mathbb{N}^s} \left[\lambda - \sum (2p_j+1) |u_j| \right]_+^{n-s}.$$

(where $0^0=0$ for u_u , resp. $0^0=1$ for $\overline{
u}_u$).

Theorem ([D] 1985)

The spectrum of $\frac{1}{2\pi k}\overline{\square}_k^{p,q}$ on $C^{\infty}(X, \Lambda^{p,q}T_X^*\otimes L_k\otimes E)$ has an asymptotic distribution of eigenvalues such that $\forall \lambda \in \mathbb{R}$

$$r\binom{n}{p}\sum_{|J|=q}\int_{X}\nu_{u}(2\lambda+u_{\complement J}-u_{J})\,dV_{\omega}\leq \liminf_{k\to+\infty}k^{-n}N_{k}^{p,q}(\lambda)\leq$$

$$\leq \limsup_{k \to +\infty} k^{-n} N_k^{p,q}(\lambda) \leq r \binom{n}{p} \sum_{|J|=p} \int_X \overline{\nu}_u(2\lambda + u_{\mathbb{C}J} - u_J) \, dV_{\omega}$$

where r = rank(E).

Fundamental spectral theory results

Consider the "spectral density functions" ν_u , $\overline{\nu}_u$ defined by

$$\frac{\nu_u(\lambda)}{\overline{\nu}_u(\lambda)} \right\} = \frac{2^{s-n} |u_1| \cdots |u_s|}{\Gamma(n-s+1)} \sum_{(p_1, \dots, p_s) \in \mathbb{N}^s} \left[\lambda - \sum (2p_j+1) |u_j| \right]_+^{n-s}.$$
(where $0^0 = 0$ for ν_u , resp. $0^0 = 1$ for $\overline{\nu}_u$).

Theorem ([D] 1985)

The spectrum of $\frac{1}{2\pi k}\overline{\square}_k^{p,q}$ on $C^{\infty}(X, \Lambda^{p,q}T_X^* \otimes L_k \otimes E)$ has an asymptotic distribution of eigenvalues such that $\forall \lambda \in \mathbb{R}$

$$r\binom{n}{p}\sum_{|J|=q}\int_X \nu_u(2\lambda+u_{\complement J}-u_J)\,dV_\omega\leq \liminf_{k\to+\infty}k^{-n}N_k^{p,q}(\lambda)\leq$$

$$\leq \limsup_{k \to +\infty} k^{-n} N_k^{p,q}(\lambda) \leq r \binom{n}{p} \sum_{|J|=p} \int_X \overline{\nu}_u(2\lambda + u_{\mathbb{C}J} - u_J) \, dV_{\omega}$$

where $r = \operatorname{rank}(E)$. By monotonicity, as $\overline{\nu}_u(\lambda) = \lim_{\lambda \to 0_+} \nu_u(\lambda)$, all four terms are equal for $\lambda \in \mathbb{R} \setminus \mathcal{D}$ with \mathcal{D} countable.

Proof. One first estimates the spectrum of the total Laplacian $\Delta_{k,E} = \nabla_{k,E} \nabla_{k,E}^* + \nabla_{k,E}^* \nabla_{k,E}$ (harmonic oscillator with magnetic and electric fields),

Proof. One first estimates the spectrum of the total Laplacian $\Delta_{k,E} = \nabla_{k,E} \nabla_{k,E}^* + \nabla_{k,E}^* \nabla_{k,E}$ (harmonic oscillator with magnetic and electric fields), and then one uses a Bochner formula to relate $\overline{\Box}_{k,E}$ and $\Delta_{k,E}$ ($\overline{\Box}_{k,E} \simeq \frac{1}{2}\Delta_{k,E}$ + curvature terms) for each (p,q).

Proof. One first estimates the spectrum of the total Laplacian $\Delta_{k,E} = \nabla_{k,E} \nabla_{k,E}^* + \nabla_{k,E}^* \nabla_{k,E}$ (harmonic oscillator with magnetic and electric fields), and then one uses a Bochner formula to relate $\overline{\square}_{k,E}$ and $\Delta_{k,E}$ ($\overline{\square}_{k,E} \simeq \frac{1}{2} \Delta_{k,E} + \text{curvature terms}$) for each (p,q).

Important special case $\lambda=0$ (harmonic forms)

$$\sum_{|J|=q} \overline{\nu}_u(u_{\complement J}-u_J) dV_{\omega} = (-1)^q \frac{u^n}{n!}.$$

Proof. One first estimates the spectrum of the total Laplacian $\Delta_{k,E} = \nabla_{k,E} \nabla_{k,E}^* + \nabla_{k,E}^* \nabla_{k,E}$ (harmonic oscillator with magnetic and electric fields), and then one uses a Bochner formula to relate $\overline{\square}_{k,E}$ and $\Delta_{k,E}$ ($\overline{\square}_{k,E} \simeq \frac{1}{2} \Delta_{k,E}$ + curvature terms) for each (p,q).

Important special case $\lambda=0$ (harmonic forms)

$$\sum_{|J|=q} \overline{
u}_u(u_{\complement J}-u_J)\,dV_\omega=(-1)^qrac{u^n}{n!}\,.$$

Corollary (Laurent laeng, 2002)

For $\lambda_k \to 0$ slowly enough, i.e. with $k^{2+2/b_2}\lambda_k \to +\infty$, one has

$$\liminf_{k \to +\infty} k^{-n} N_{k,E}^{0,0}(\lambda_k) \geq \frac{r}{n!} \left(\int_{X(u,0)} u^n + \int_{X(u,1)} u^n \right)$$
 where

$$X(u,q) = q$$
-index set = $\{x \in X \mid u(x) \text{ has signature } (n-q,q)\}.$

Proof. One uses the fact that for $\delta' > \delta > 0$ and $k \gg 1$, the composition $\Pi \circ \overline{\partial}_k$ with an eigenspace projection yields an injection

$$\bigoplus_{\lambda \in \,]\lambda_k,\delta]} \mathsf{eigenspace}_{\lambda}^{0,0} \hookrightarrow \bigoplus_{\lambda \in \,]0,\delta']} \mathsf{eigenspace}_{\lambda}^{0,1}.$$

Proof. One uses the fact that for $\delta' > \delta > 0$ and $k \gg 1$, the composition $\Pi \circ \overline{\partial}_k$ with an eigenspace projection yields an injection

$$\bigoplus_{\lambda \in \,]\lambda_k,\delta]} \mathsf{eigenspace}_{\lambda}^{0,0} \hookrightarrow \bigoplus_{\lambda \in \,]0,\delta']} \mathsf{eigenspace}_{\lambda}^{0,1}.$$

In fact, in the holomorphic case $\overline{\partial}_k^2=0$ implies $\overline{\partial}_k\overline{\Box}_k^{0,0}=\overline{\Box}_k^{0,1}\overline{\partial}_k$, hence $\overline{\partial}_k$ maps the (0,0)-eigenspaces to the (0,1)-eigenspaces for the same eigenvalues, and one can even take $\lambda_k=0$, $\delta'=\delta$.

Proof. One uses the fact that for $\delta' > \delta > 0$ and $k \gg 1$, the composition $\Pi \circ \overline{\partial}_k$ with an eigenspace projection yields an injection

$$\bigoplus_{\lambda \in \,]\lambda_k,\delta]} \mathsf{eigenspace}_{\lambda}^{0,0} \hookrightarrow \bigoplus_{\lambda \in \,]0,\delta']} \mathsf{eigenspace}_{\lambda}^{0,1}.$$

In fact, in the holomorphic case $\overline{\partial}_k^2 = 0$ implies $\overline{\partial}_k \overline{\Box}_k^{0,0} = \overline{\Box}_k^{0,1} \overline{\partial}_k$, hence $\overline{\partial}_k$ maps the (0,0)-eigenspaces to the (0,1)-eigenspaces for the same eigenvalues, and one can even take $\lambda_k = 0$, $\delta' = \delta$.

In the quasi holomorphic case $\overline{\partial}_k^2 = O(k^{-1/b_2})$, one can show that $\overline{\Box}_k^{0,1} \overline{\partial}_k - \overline{\partial}_k \overline{\Box}_k^{0,0} = \overline{\partial}_k^* \overline{\partial}_k^2$ yields a small "deviation" of the eigenvalues to $[\lambda_k - \varepsilon, \delta + \varepsilon]$ with $\varepsilon < \min(\lambda_k, \delta' - \delta)$, whence the injectivity.

Proof. One uses the fact that for $\delta' > \delta > 0$ and $k \gg 1$, the composition $\Pi \circ \overline{\partial}_k$ with an eigenspace projection yields an injection

$$\bigoplus_{\lambda \in \,]\lambda_k,\delta]} \mathsf{eigenspace}_{\lambda}^{0,0} \hookrightarrow \bigoplus_{\lambda \in \,]0,\delta']} \mathsf{eigenspace}_{\lambda}^{0,1}.$$

In fact, in the holomorphic case $\overline{\partial}_k^2 = 0$ implies $\overline{\partial}_k \overline{\Box}_k^{0,0} = \overline{\Box}_k^{0,1} \overline{\partial}_k$, hence $\overline{\partial}_k$ maps the (0,0)-eigenspaces to the (0,1)-eigenspaces for the same eigenvalues, and one can even take $\lambda_k = 0$, $\delta' = \delta$.

In the quasi holomorphic case $\overline{\partial}_k^2 = O(k^{-1/b_2})$, one can show that $\overline{\Box}_k^{0,1} \overline{\partial}_k - \overline{\partial}_k \overline{\Box}_k^{0,0} = \overline{\partial}_k^* \overline{\partial}_k^2$ yields a small "deviation" of the eigenvalues to $[\lambda_k - \varepsilon, \delta + \varepsilon]$ with $\varepsilon < \min(\lambda_k, \delta' - \delta)$, whence the injectivity.

This implies

$$N_{k,E}^{0,1}(\delta') \ge N_{k,E}^{0,0}(\delta) - N_{k,E}^{0,0}(\lambda_k)$$

thus

$$N_{k,E}^{0,0}(\lambda_k) \ge N_{k,E}^{0,0}(\delta) - N_{k,E}^{0,1}(\delta'),$$
 QED

Conjecture on Morse inequalities

Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$. Then

$$\operatorname{Vol}(\gamma) \geq \sup_{u \in \gamma, \, u \in C^{\infty}} \int_{X(u, \leq 1)} u^{n}.$$

(One could even suspect equality, an even stronger conjecture!).

Conjecture on Morse inequalities

Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$. Then

$$\operatorname{Vol}(\gamma) \geq \sup_{u \in \gamma, \, u \in C^{\infty}} \int_{X(u, \leq 1)} u^{n}.$$

(One could even suspect equality, an even stronger conjecture !).

If one sets by definition

$$Vol(\gamma) = \sup_{u \in \gamma} \lim_{\lambda \to 0_+} \liminf_{k \to +\infty} N_k^{0,0}(\lambda)$$

for the eigenspaces of the sequence (L_k, h_k, ∇_k) approximating ku, then the above expected lower bound is a theorem!

Conjecture on Morse inequalities

Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$. Then

$$\operatorname{Vol}(\gamma) \geq \sup_{u \in \gamma, \, u \in C^{\infty}} \int_{X(u, \leq 1)} u^{n}.$$

(One could even suspect equality, an even stronger conjecture !).

If one sets by definition

$$\operatorname{Vol}(\gamma) = \sup_{u \in \gamma} \lim_{\lambda \to 0_+} \liminf_{k \to +\infty} N_k^{0,0}(\lambda)$$

for the eigenspaces of the sequence (L_k, h_k, ∇_k) approximating ku, then the above expected lower bound is a theorem!

There is however a stronger & more usual definition of the volume.

Definition

For
$$\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$$
, set $\mathrm{Vol}(\gamma) = 0$ if $\gamma \not\ni$ any current $T \ge 0$, and otherwise set $\mathrm{Vol}(\gamma) = \sup_{T \in \gamma, \ T = u_0 + i\partial \overline{\partial} \varphi \ge 0} \int_X T^n_{\mathrm{ac}}, \ u_0 \in C^\infty.$

The conjecture on Morse inequalities is known to be true when $\gamma=c_1(L)$ is an integral class ([D-1985]). In fact, one then gets a Hermitian holomorphic line bundle (L,h) and its multiples $L^{\otimes k}.$ The spectral estimates provide many holomorphic sections $\sigma_{k,\ell}$, and one gets positive currents right away by putting

$$T_k = \frac{i}{2k\pi} \partial \overline{\partial} \log \sum_{\ell} |\sigma_{k,\ell}|_h^2 + \frac{i}{2\pi} \Theta_{L,h} \ge 0$$

The conjecture on Morse inequalities is known to be true when $\gamma=c_1(L)$ is an integral class ([D-1985]). In fact, one then gets a Hermitian holomorphic line bundle (L,h) and its multiples $L^{\otimes k}.$ The spectral estimates provide many holomorphic sections $\sigma_{k,\ell}$, and one gets positive currents right away by putting

$$T_k = \frac{i}{2k\pi} \partial \overline{\partial} \log \sum_{\ell} |\sigma_{k,\ell}|_h^2 + \frac{i}{2\pi} \Theta_{L,h} \ge 0$$

(the volume estimate can be derived from there by Fujita).

The conjecture on Morse inequalities is known to be true when $\gamma=c_1(L)$ is an integral class ([D-1985]). In fact, one then gets a Hermitian holomorphic line bundle (L,h) and its multiples $L^{\otimes k}.$ The spectral estimates provide many holomorphic sections $\sigma_{k,\ell}$, and one gets positive currents right away by putting

$$T_k = \frac{i}{2k\pi} \partial \overline{\partial} \log \sum_{\ell} |\sigma_{k,\ell}|_h^2 + \frac{i}{2\pi} \Theta_{L,h} \ge 0$$

(the volume estimate can be derived from there by Fujita).

In the "quasi-holomorphic" case, one only gets eigenfunctions $\sigma_{k,\ell}$ with small eigenvalues, and the positivity of T_k is a priori lost.

The conjecture on Morse inequalities is known to be true when $\gamma=c_1(L)$ is an integral class ([D-1985]). In fact, one then gets a Hermitian holomorphic line bundle (L,h) and its multiples $L^{\otimes k}.$ The spectral estimates provide many holomorphic sections $\sigma_{k,\ell}$, and one gets positive currents right away by putting

$$T_k = \frac{i}{2k\pi} \partial \overline{\partial} \log \sum_{\ell} |\sigma_{k,\ell}|_h^2 + \frac{i}{2\pi} \Theta_{L,h} \ge 0$$

(the volume estimate can be derived from there by Fujita).

In the "quasi-holomorphic" case, one only gets eigenfunctions $\sigma_{k,\ell}$ with small eigenvalues, and the positivity of T_k is a priori lost.

Conjectural corollary (fundamental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef cohomology classes. Then

$$Vol(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an elementary symmetric function argument. In fact, one has a pointwise inequality of forms

$$\mathbf{1}_{X(\alpha-\beta,\leq 1)}(\alpha-\beta)^n \geq \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an elementary symmetric function argument. In fact, one has a pointwise inequality of forms

$$\mathbf{1}_{X(\alpha-\beta,\leq 1)}(\alpha-\beta)^n \geq \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Again, the corollary is known for $\gamma=\alpha-\beta$ when α,β are integral classes (by [D-1993] and independently [Trapani, 1993]).

Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an elementary symmetric function argument. In fact, one has a pointwise inequality of forms

$$\mathbf{1}_{X(\alpha-\beta,\leq 1)}(\alpha-\beta)^n \geq \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Again, the corollary is known for $\gamma=\alpha-\beta$ when α,β are integral classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for $\gamma=\alpha-\beta$ transcendental has been established by D. Witt-Nyström when X is projective, using deep facts on Monge-Ampère operators and upper envelopes.

Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an elementary symmetric function argument. In fact, one has a pointwise inequality of forms

$$\mathbf{1}_{X(\alpha-\beta,\leq 1)}(\alpha-\beta)^n \geq \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Again, the corollary is known for $\gamma=\alpha-\beta$ when α,β are integral classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for $\gamma=\alpha-\beta$ transcendental has been established by D. Witt-Nyström when X is projective, using deep facts on Monge-Ampère operators and upper envelopes.

Xiao and Popovici also proved in the Kähler case that

$$\alpha^n - n\alpha^{n-1} \cdot \beta > 0 \implies \operatorname{Vol}(\alpha - \beta) > 0$$

and $\alpha - \beta$ contains a Kähler current.

Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an elementary symmetric function argument. In fact, one has a pointwise inequality of forms

$$\mathbf{1}_{X(\alpha-\beta,\leq 1)}(\alpha-\beta)^n \geq \alpha^n - n\alpha^{n-1} \cdot \beta.$$

Again, the corollary is known for $\gamma = \alpha - \beta$ when α, β are integral classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for $\gamma = \alpha - \beta$ transcendental has been established by D. Witt-Nyström when X is projective, using deep facts on Monge-Ampère operators and upper envelopes.

Xiao and Popovici also proved in the Kähler case that

$$\alpha^n - n\alpha^{n-1} \cdot \beta > 0 \implies \operatorname{Vol}(\alpha - \beta) > 0$$

and $\alpha - \beta$ contains a Kähler current.

(The proof is short, once the Calabi-Yau theorem is taken for granted).

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} .

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} . Obviously, non projective varieties do not carry any ample line bundle.

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} . Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

– Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

- Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.
- The curvature of this bundle is strongly positive in the sense of Nakano, and is given by a universal formula.

Problem. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

- Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.
- The curvature of this bundle is strongly positive in the sense of Nakano, and is given by a universal formula.

In the sequel of this lecture, we aim to investigate this construction and look for potential applications, especially to transcendental holomorphic Morse inequalities ...

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

Assume that X is equipped with a real analytic hermitian metric γ ,

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

Assume that X is equipped with a real analytic hermitian metric γ , and let $\exp: T_X \to X \times X$, $(z, \xi) \mapsto (z, \exp_z(\xi))$, $z \in X$, $\xi \in T_{X,z}$ be the associated geodesic exponential map.

Lemma

Denote by \mbox{exph} the "holomorphic" part of exp, so that for $z\in X$ and $\xi\in T_{X,z}$

$$\exp_z(\xi) = \sum_{lpha,eta \in \mathbb{N}^n} \mathsf{a}_{lpha\,eta}(z) \xi^lpha \overline{\xi}^eta, \quad \exp\! \mathrm{h}_z(\xi) = \sum_{lpha \in \mathbb{N}^n} \mathsf{a}_{lpha\,0}(z) \xi^lpha.$$

Lemma

Denote by exph the "holomorphic" part of exp, so that for $z \in X$ and $\xi \in \mathcal{T}_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_z(\xi)_{\xi=0} = d_{\xi} \exp h_z(\xi)_{\xi=0} = \operatorname{Id}_{T_X}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of T_X to a neighborhood V' of the diagonal in $X \times X$.

Lemma

Denote by exph the "holomorphic" part of exp , so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_z(\xi)_{\xi=0} = d_{\xi} \exp h_z(\xi)_{\xi=0} = \operatorname{Id}_{\mathcal{T}_X}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of \mathcal{T}_X to a neighborhood V' of the diagonal in $X \times X$.

Notation

With the identification $\overline{X} \simeq_{\mathrm{diff}} X$, let $\mathrm{logh}: X \times \overline{X} \supset V' \to T_{\overline{X}}$ be the inverse diffeomorphism of exph and

$$U_{\varepsilon} = \{(z, w) \in V' \subset X \times \overline{X}; | logh_{z}(w)|_{\gamma} < \varepsilon\}, \quad \varepsilon > 0.$$

Lemma

Denote by exph the "holomorphic" part of exp, so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_{z}(\xi)_{\xi=0} = d_{\xi} \exp h_{z}(\xi)_{\xi=0} = \operatorname{Id}_{T_{x}}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of T_X to a neighborhood V' of the diagonal in $X \times X$.

Notation

With the identification $\overline{X} \simeq_{\text{diff}} X$, let $\log h: X \times \overline{X} \supset V' \to T_{\overline{X}}$ be the inverse diffeomorphism of exph and

$$U_{\varepsilon} = \{(z, w) \in V' \subset X \times \overline{X}; | logh_{z}(w)|_{\gamma} < \varepsilon\}, \quad \varepsilon > 0.$$

Then, for $\varepsilon \ll 1$, U_{ε} is Stein and $\operatorname{pr}_1:U_{\varepsilon}\to X$ is a real analytic locally trivial bundle with fibers biholomorphic to complex balls.

Such tubular neighborhoods are Stein

Such tubular neighborhoods are Stein

In the special case $X=\mathbb{C}^n$, $U_{\varepsilon}=\{(z,w)\in\mathbb{C}^n imes\mathbb{C}^n\,;\;|\overline{z}-w|<\varepsilon\}.$

Such tubular neighborhoods are Stein

In the special case $X=\mathbb{C}^n$, $U_{\varepsilon}=\{(z,w)\in\mathbb{C}^n imes\mathbb{C}^n\,;\;|\overline{z}-w|<\varepsilon\}.$

It is of course Stein since

$$|\overline{z} - w|^2 = |z|^2 + |w|^2 - 2\operatorname{Re}\sum z_j w_j$$

and $(z, w) \mapsto \operatorname{Re} \sum z_i w_i$ is pluriharmonic.

Bergman sheaves

Let $U_{\varepsilon}=U_{\gamma,\varepsilon}\subset X imes \overline{X}$ be the ball bundle as above, and $p=(\mathrm{pr}_1)_{|U_{\varepsilon}}:U_{\varepsilon}\to X, \qquad \overline{p}=(\mathrm{pr}_2)_{|U_{\varepsilon}}:U_{\varepsilon}\to \overline{X}$ the natural projections.

Bergman sheaves

Let $U_{\varepsilon} = U_{\gamma,\varepsilon} \subset X \times \overline{X}$ be the ball bundle as above, and $p = (\operatorname{pr}_1)_{|U_{\varepsilon}} : U_{\varepsilon} \to X, \qquad \overline{p} = (\operatorname{pr}_2)_{|U_{\varepsilon}} : U_{\varepsilon} \to \overline{X}$ the natural projections.

Definition of the Bergman sheaf $\mathcal{B}_{arepsilon}$

The Bergman sheaf $\mathcal{B}_{\varepsilon} = \mathcal{B}_{\gamma,\varepsilon}$ is by definition the L^2 direct image $\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{Y}})),$

Definition of the Bergman sheaf $\mathcal{B}_{\varepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V\subset X$ defined by $\mathcal{B}_{\varepsilon}(V)=$ holomorphic sections f of $\overline{p}^*\mathcal{O}(K_{\overline{X}})$ on $p^{-1}(V)$,

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

Definition of the Bergman sheaf $\mathcal{B}_{arepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V \subset X$ defined by $\mathcal{B}_{\varepsilon}(V) = \text{holomorphic sections } f \text{ of } \overline{p}^*\mathcal{O}(K_{\overline{X}}) \text{ on } p^{-1}(V),$

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

that are in $L^2(p^{-1}(K))$ for all compact subsets $K \in V$:

$$\int_{p^{-1}(K)} i^{n^2} f(z,w) \wedge \overline{f(z,w)} \wedge \gamma(z)^n < +\infty, \quad \forall K \in V.$$

(This L^2 condition is the reason we speak of " L^2 direct image").

Definition of the Bergman sheaf $\mathcal{B}_{\varepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V \subset X$ defined by $\mathcal{B}_{\varepsilon}(V) = \text{holomorphic sections } f \text{ of } \overline{p}^*\mathcal{O}(K_{\overline{X}}) \text{ on } p^{-1}(V),$

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

that are in $L^2(p^{-1}(K))$ for all compact subsets $K \in V$:

$$\int_{p^{-1}(K)} i^{n^2} f(z,w) \wedge \overline{f(z,w)} \wedge \gamma(z)^n < +\infty, \quad \forall K \in V.$$

(This L^2 condition is the reason we speak of " L^2 direct image").

Clearly, $\mathcal{B}_{\varepsilon}$ is an \mathcal{O}_X -module over X, but since it is a space of functions in w, it is of infinite rank.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic n-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic n-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{\varepsilon,z_0}$ can be extended as a germ \tilde{f} in the sheaf $\mathcal{B}_{\varepsilon,z_0}$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic *n*-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{\varepsilon,z_0}$ can be extended as a germ \tilde{f} in the sheaf $\mathcal{B}_{\varepsilon,z_0}$. Moreover, for $\varepsilon' > \varepsilon$, there is a restriction map $\mathcal{B}_{\varepsilon',z_0} \to \mathcal{B}_{\varepsilon,z_0}$ such that $\mathcal{B}_{\varepsilon,z_0}$ is the L^2 completion of $\mathcal{B}_{\varepsilon',z_0}/m_{z_0}\mathcal{B}_{\varepsilon',z_0}$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic *n*-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{\varepsilon,z_0}$ can be extended as a germ \tilde{f} in the sheaf $\mathcal{B}_{\varepsilon,z_0}$. Moreover, for $\varepsilon' > \varepsilon$, there is a restriction map $\mathcal{B}_{\varepsilon',z_0} \to \mathcal{B}_{\varepsilon,z_0}$ such that $\mathcal{B}_{\varepsilon,z_0}$ is the L^2 completion of $\mathcal{B}_{\varepsilon',z_0}/\mathfrak{m}_{z_0}\mathcal{B}_{\varepsilon',z_0}$.

Question

Is there a "complex structure" on B_{ε} such that " $\mathcal{B}_{\varepsilon} = \mathcal{O}(B_{\varepsilon})$ "?

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}^q_{\varepsilon}(V) = \text{smooth } (n,q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z, w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w)\in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w)\in L^2(p^{-1}(K)).$

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}^q_{\varepsilon}(V) = \text{smooth } (n,q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z, w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w)\in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w)\in L^2(p^{-1}(K)).$

An immediate consequence of this definition is:

Proposition

 $\overline{\partial} = \overline{\partial}_z$ yields a complex of sheaves $(\mathcal{F}_{\varepsilon}^{\bullet}, \overline{\partial})$, and the kernel Ker $\overline{\partial} : \mathcal{F}_{\varepsilon}^{0} \to \mathcal{F}_{\varepsilon}^{1}$ coincides with $\mathcal{B}_{\varepsilon}$.

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}^q_{\varepsilon}(V) = \text{smooth } (n,q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z,w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w)\in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w)\in L^2(p^{-1}(K)).$

An immediate consequence of this definition is:

Proposition

 $\overline{\partial} = \overline{\partial}_z$ yields a complex of sheaves $(\mathcal{F}_{\varepsilon}^{\bullet}, \overline{\partial})$, and the kernel Ker $\overline{\partial}: \mathcal{F}_{\varepsilon}^{0} o \mathcal{F}_{\varepsilon}^{1}$ coincides with $\mathcal{B}_{\varepsilon}$.

If we define $\mathcal{O}_{L^2}(B_{\varepsilon})$ to be the sheaf of L^2_{loc} sections f of B_{ε} such that $\overline{\partial} f = 0$ in the sense of distributions, then we exactly have $\mathcal{O}_{L^2}(B_{\varepsilon}) = \mathcal{B}_{\varepsilon}$ as a sheaf.

Theorem

Assume that $\varepsilon > 0$ is taken so small that $\psi(z, w) := |\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_{\varepsilon} \subset X \times \overline{X}$.

Theorem

Assume that $\varepsilon>0$ is taken so small that $\psi(z,w):=|\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_\varepsilon\subset X\times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_\varepsilon^\bullet,\overline{\partial})$ is a resolution of \mathcal{B}_ε by soft sheaves over X (actually, by \mathcal{C}_X^∞ -modules), and for every holomorphic vector bundle $E\to X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Theorem

Assume that $\varepsilon>0$ is taken so small that $\psi(z,w):=|\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_\varepsilon\subset X\times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_\varepsilon^\bullet,\overline{\partial})$ is a resolution of \mathcal{B}_ε by soft sheaves over X (actually, by \mathcal{C}_X^∞ -modules), and for every holomorphic vector bundle $E\to X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Moreover the fibers $B_{\varepsilon,z} \otimes E_z$ are always generated by global sections of $H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

In that sense, B_{ε} is a "very ample holomorphic vector bundle" (as a Hilbert bundle of infinite dimension).

Theorem

Assume that $\varepsilon>0$ is taken so small that $\psi(z,w):=|\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_\varepsilon\subset X\times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_\varepsilon^\bullet,\overline{\partial})$ is a resolution of \mathcal{B}_ε by soft sheaves over X (actually, by \mathcal{C}_X^∞ -modules), and for every holomorphic vector bundle $E\to X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Moreover the fibers $B_{\varepsilon,z} \otimes E_z$ are always generated by global sections of $H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

In that sense, B_{ε} is a "very ample holomorphic vector bundle" (as a Hilbert bundle of infinite dimension).

The proof is a direct consequence of Hörmander's L^2 estimates.

Caution !!

 B_{ε} is NOT a locally trivial holomorphic bundle.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$. Then one gets a "holomorphic embedding" into a Hilbert Grassmannian,

$$\Psi: X \to Gr(\mathbb{H}), \quad z \mapsto S_z,$$

mapping every point $z \in X$ to the infinite codimensional closed subspace S_z consisting of sections $f \in \mathbb{H}$ such that f(z) = 0 in $B_{\varepsilon,z}$, i.e. $f_{|p^{-1}(z)} = 0$.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$. Then one gets a "holomorphic embedding" into a Hilbert Grassmannian,

$$\Psi: X \to Gr(\mathbb{H}), \quad z \mapsto S_z,$$

mapping every point $z \in X$ to the infinite codimensional closed subspace S_z consisting of sections $f \in \mathbb{H}$ such that f(z) = 0 in $B_{\varepsilon,z}$, i.e. $f_{|p^{-1}(z)} = 0$.

The main problem with this "holomorphic embedding" is that the holomorphicity is to be understood in a weak sense, for instance the map Ψ is not even continuous with respect to the strong metric topology of $Gr(\mathbb{H})$, given by d(S,S')= Hausdorff distance of the unit balls of S,S'.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ **standard hermitian metric.** Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

This frame is non holomorphic!

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

This frame is non holomorphic! The (0,1)-connection $\nabla^{0,1}=\overline{\partial}$ is given by

$$\nabla^{0,1}e_{\alpha} = \overline{\partial}_{z}e_{\alpha}(z,w) = \varepsilon^{-1}\sum_{1 \leq j \leq n} \sqrt{\alpha_{j}(|\alpha|+n)} \ d\overline{z}_{j} \otimes e_{\alpha-c_{j}}$$

where $c_i = (0, ..., 1, ..., 0) \in \mathbb{N}^n$.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{\varepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\langle\Theta_{B_{\varepsilon},h}\sigma(\mathbf{v},J\mathbf{v})\xi,\xi\rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{\varepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(v\otimes \xi) = \langle \Theta_{B_{\varepsilon},h}\sigma(v,Jv)\xi,\xi\rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Definition

One says that the curvature tensor is Griffiths positive if

$$\widetilde{\Theta}_{\varepsilon}(v \otimes \xi) > 0$$
, $\forall 0 \neq v \in T_X$, $\forall 0 \neq \xi \in B_{\varepsilon}$,

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{arepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(v\otimes \xi) = \langle \Theta_{B_{\varepsilon},h}\sigma(v,Jv)\xi,\xi \rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Definition

One says that the curvature tensor is Griffiths positive if

$$\widetilde{\Theta}_{\varepsilon}(v \otimes \xi) > 0, \quad \forall 0 \neq v \in T_X, \quad \forall 0 \neq \xi \in B_{\varepsilon},$$

and Nakano positive if

$$\widetilde{\Theta}_{\varepsilon}(\tau) > 0, \quad \forall 0 \neq \tau \in T_X \otimes B_{\varepsilon}.$$

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X = \mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε}, h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes \mathbf{\xi}) = \varepsilon^{-2} \sum_{\alpha\in\mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha-c_j} \mathbf{v}_j \right|^2 + \sum_j (|\alpha|+n) \, |\xi_{\alpha}|^2 |\mathbf{v}_j|^2 \right).$$

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X=\mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε},h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi) = \varepsilon^{-2} \sum_{\alpha\in\mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha-c_j} \mathbf{v}_j \right|^2 + \sum_j (|\alpha|+n) \, |\xi_\alpha|^2 |\mathbf{v}_j|^2 \right).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X = \mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε}, h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\varepsilon^{-2}\sum_{\alpha\in\mathbb{N}^n}\Biggl(\Biggl|\sum_j\sqrt{\alpha_j}\,\xi_{\alpha-\mathbf{c}_j}\mathbf{v}_j\Biggr|^2+\sum_j(|\alpha|+n)\,|\xi_{\alpha}|^2|\mathbf{v}_j|^2\Biggr).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

On should observe that $\widetilde{\Theta}_{\varepsilon}(v \otimes \xi)$ is an unbounded quadratic form on B_{ε} with respect to the standard metric $\|\xi\|^2 = \sum_{\alpha} |\xi_{\alpha}|^2$.

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X = \mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε}, h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\varepsilon^{-2}\sum_{\alpha\in\mathbb{N}^n}\Biggl(\Biggl|\sum_j\sqrt{\alpha_j}\,\xi_{\alpha-\mathbf{c}_j}\mathbf{v}_j\Biggr|^2+\sum_j(|\alpha|+n)\,|\xi_{\alpha}|^2|\mathbf{v}_j|^2\Biggr).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

On should observe that $\widetilde{\Theta}_{\varepsilon}(v \otimes \xi)$ is an unbounded quadratic form on B_{ε} with respect to the standard metric $\|\xi\|^2 = \sum_{\alpha} |\xi_{\alpha}|^2$.

However there is convergence for all $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in \mathcal{B}_{\varepsilon'}$, $\varepsilon' > \varepsilon$, since then $\sum_{\alpha} (\varepsilon'/\varepsilon)^{2|\alpha|} |\xi_{\alpha}|^2 < +\infty$.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^{ω} hermitian metric γ , and $B_{\varepsilon} = B_{\gamma,\varepsilon}$ the associated Bergman bundle.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in T_{X},\ \ \xi\in B_{\varepsilon}$$

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in\mathcal{T}_{X},\ \ \xi\in\mathcal{B}_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in T_{X},\ \ \xi\in B_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ .

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_p(z,v\otimes\xi),\ \ v\in\mathcal{T}_X,\ \ \xi\in\mathcal{B}_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ . In particular $Q_1 = 0$ is γ is Kähler.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in\mathcal{T}_{X},\ \ \xi\in\mathcal{B}_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ . In particular $Q_1 = 0$ is γ is Kähler.

A consequence of the above formula is that B_{ε} is strongly Nakano positive for $\varepsilon > 0$ small enough.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of logh: $X \times \overline{X} \to T_X$ (inverse diffeomorphism of exph)

$$\begin{aligned} \log h_{z}(w) &= w - \overline{z} + \sum z_{j} a_{j}(w - \overline{z}) + \sum \overline{z}_{j} a_{j}'(w - \overline{z}) \\ &+ \sum z_{j} z_{k} b_{jk}(w - \overline{z}) + \sum \overline{z}_{j} \overline{z}_{k} b_{jk}'(w - \overline{z}) \\ &+ \sum z_{j} \overline{z}_{k} c_{jk}(w - \overline{z}) + O(|z|^{3}), \end{aligned}$$

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of $\log h: X \times \overline{X} \to T_X$ (inverse diffeomorphism of exph)

$$\begin{split} \log h_z(w) &= w - \overline{z} + \sum z_j a_j(w - \overline{z}) + \sum \overline{z}_j a_j'(w - \overline{z}) \\ &+ \sum z_j z_k b_{jk}(w - \overline{z}) + \sum \overline{z}_j \overline{z}_k b_{jk}'(w - \overline{z}) \\ &+ \sum z_j \overline{z}_k c_{jk}(w - \overline{z}) + O(|z|^3), \end{split}$$

which is used to compute the difference with the model case \mathbb{C}^n , for which $\log h_{\overline{z}}(w) = w - \overline{z}$.

Idea for the general case. Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and $u \in \gamma$ a smooth form. As we have seen, one can find a sequence of Hermitian line bundles (L_k,h_k,∇_k) such that

$$\theta_k = \frac{i}{2\pi} \nabla_k^2 = ku + \beta_k, \quad \beta_k = O(k^{-1/b_2}).$$

Idea for the general case. Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and $u \in \gamma$ a smooth form. As we have seen, one can find a sequence of Hermitian line bundles (L_k,h_k,∇_k) such that

$$\theta_k = \frac{i}{2\pi} \nabla_k^2 = ku + \beta_k, \quad \beta_k = O(k^{-1/b_2}).$$

Then $d\theta_k=0\Rightarrow \overline{\partial}\beta_k^{0,2}=0$, and as U_ε is Stein, $\operatorname{pr}_1^*\beta_k^{0,2}=\overline{\partial}\eta_k$ with a C^∞ (0,1)-form $\eta_k=O(k^{-1/b_2})$.

Idea for the general case. Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and $u \in \gamma$ a smooth form. As we have seen, one can find a sequence of Hermitian line bundles (L_k,h_k,∇_k) such that

$$\theta_k = \frac{i}{2\pi} \nabla_k^2 = ku + \beta_k, \quad \beta_k = O(k^{-1/b_2}).$$

Then $d\theta_k=0\Rightarrow \overline{\partial}\beta_k^{0,2}=0$, and as U_ε is Stein, $\operatorname{pr}_1^*\beta_k^{0,2}=\overline{\partial}\eta_k$ with a C^∞ (0,1)-form $\eta_k=O(k^{-1/b_2})$. This shows that $\tilde{L}_k:=pr_1^*L_k$ becomes a holomorphic line bundle when equipped with the connection $\tilde{\nabla}_k=\operatorname{pr}_1^*\nabla_k-\eta_k$, which has a curvature form $\Theta_{\tilde{I}_k,\tilde{\nabla}_k}=k\operatorname{pr}_1^*u+O(k^{-1/b_2})$.

Idea for the general case. Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and $u \in \gamma$ a smooth form. As we have seen, one can find a sequence of Hermitian line bundles (L_k,h_k,∇_k) such that

$$\theta_k = \frac{i}{2\pi} \nabla_k^2 = ku + \beta_k, \quad \beta_k = O(k^{-1/b_2}).$$

Then $d\theta_k=0\Rightarrow \overline{\partial}\beta_k^{0,2}=0$, and as U_ε is Stein, $\operatorname{pr}_1^*\beta_k^{0,2}=\overline{\partial}\eta_k$ with a C^∞ (0,1)-form $\eta_k=O(k^{-1/b_2})$. This shows that $\tilde{L}_k:=pr_1^*L_k$ becomes a holomorphic line bundle when equipped with the connection $\tilde{\nabla}_k=\operatorname{pr}_1^*\nabla_k-\eta_k$, which has a curvature form $\Theta_{\tilde{L}_k,\tilde{\nabla}_k}=k\operatorname{pr}_1^*u+O(k^{-1/b_2})$. Two possibilities emerge:

• correct the small eigenvalue eigenfunctions $\operatorname{pr}_1^* \sigma_{k,\ell}$ given by Laeng's method to actually get holomorphic sections of \tilde{L}_k on U_{ε} .

Idea for the general case. Let $\gamma \in H^{1,1}_{\mathrm{BC}}(X,\mathbb{R})$ and $u \in \gamma$ a smooth form. As we have seen, one can find a sequence of Hermitian line bundles (L_k,h_k,∇_k) such that

$$\theta_k = \frac{i}{2\pi} \nabla_k^2 = ku + \beta_k, \quad \beta_k = O(k^{-1/b_2}).$$

Then $d\theta_k=0\Rightarrow \overline{\partial}\beta_k^{0,2}=0$, and as U_ε is Stein, $\operatorname{pr}_1^*\beta_k^{0,2}=\overline{\partial}\eta_k$ with a C^∞ (0,1)-form $\eta_k=O(k^{-1/b_2})$. This shows that $\tilde{L}_k:=pr_1^*L_k$ becomes a holomorphic line bundle when equipped with the connection $\tilde{\nabla}_k=\operatorname{pr}_1^*\nabla_k-\eta_k$, which has a curvature form $\Theta_{\tilde{L}_k,\tilde{\nabla}_k}=k\operatorname{pr}_1^*u+O(k^{-1/b_2})$. Two possibilities emerge:

- correct the small eigenvalue eigenfunctions $\operatorname{pr}_1^*\sigma_{k,\ell}$ given by Laeng's method to actually get holomorphic sections of \tilde{L}_k on U_{ε} .
- directly deal with the Hilbert Dolbeault complex of $(\operatorname{pr}_1)_*^{L^2}(\mathcal{O}_{U_\varepsilon}(\tilde{L}_k))$, and use Bergman estimates instead of dimension counts in Morse inequalities.

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S.

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t := \pi^{-1}(t)$.

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t := \pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

The conjecture is known to be true for a projective family $\mathcal{X} \to S$:

• Siu and Kawamata (1998) in the case of varieties of general type

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t := \pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

- Siu and Kawamata (1998) in the case of varieties of general type
- Siu (2000) and Păun (2004) in the arbitrary projective case

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

$$p_m(X_t) = h^0(X_t, mK_{X_t})$$
 are independent of t for all $m \ge 0$.

- Siu and Kawamata (1998) in the case of varieties of general type
- Siu (2000) and Păun (2004) in the arbitrary projective case The proof is based on an iterated application of the Ohsawa-Takegoshi L^2 extension theorem w.r.t. an ample line bundle \mathcal{A} on \mathcal{X} :

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

$$p_m(X_t) = h^0(X_t, mK_{X_t})$$
 are independent of t for all $m \ge 0$.

- Siu and Kawamata (1998) in the case of varieties of general type
- Siu (2000) and Păun (2004) in the arbitrary projective case The proof is based on an iterated application of the Ohsawa-Takegoshi L^2 extension theorem w.r.t. an ample line bundle $\mathcal A$ on $\mathcal X$: replace $\mathcal A$ by a Bergman bundle in the Kähler case ?

Thank you for your attention

