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Quasi holomorphic line bundles

Let X be a compact complex manifold, and let
Ker & N Ker 0

Im 00
be the corresponding Bott-Chern cohomology groups.

HES(X,C) = in bidegree (p, q)
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Quasi holomorphic line bundles

Let X be a compact complex manifold, and let
Ker & N Ker 0

Im 00
be the corresponding Bott-Chern cohomology groups.

HES(X,C) = in bidegree (p, q)

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class v € Hy (X, R) and a (1,1)-form u representing -,
there exists an infinite subset S C N and C* Hermitian line
bundles (L, hi)xes equipped with Hermitian connections Vy,

J.-P. Demailly, virtual conference Geom. & TACoS, July 7, 2020 ' Cohomology of quasi holomorphic line bundles



Quasi holomorphic line bundles

Let X be a compact complex manifold, and let
Ker 9 N Ker 0
Im 00
be the corresponding Bott-Chern cohomology groups.

HES(X,C) = in bidegree (p, q)

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class v € Hy (X, R) and a (1,1)-form u representing -,
there exists an infinite subset S C N and C*° Hermitian line
bundles (L, hx)xes equipped with Hermitian connections V, such
that the curvature 2-forms 6, = iVi satisfy 0, = ku + [« and

Bi = O(k~V/2), by, = by(X).
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Quasi holomorphic line bundles

Let X be a compact complex manifold, and let
Ker & N Ker 0

Im 00
be the corresponding Bott-Chern cohomology groups.

HES(X,C) = in bidegree (p, q)

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class v € Hy (X, R) and a (1,1)-form u representing -,
there exists an infinite subset S C N and C*° Hermitian line
bundles (L, hx)xes equipped with Hermitian connections V, such
that the curvature 2-forms 6, = iVi satisfy 0, = ku + [« and

Bi = O(k~V/2), by, = by(X).

Proof. This is a consequence of Kronecker's approximation
theorem applied to the lattice H*(X,Z) — H3; (X, R).
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Quasi holomorphic line bundles

Let X be a compact complex manifold, and let
Ker & N Ker 0

Im 00
be the corresponding Bott-Chern cohomology groups.

HES(X,C) = in bidegree (p, q)

Basic observation (cf. Laurent Laeng, PhD thesis 2002)

Given a class v € Hy (X, R) and a (1,1)-form u representing -,
there exists an infinite subset S C N and C*° Hermitian line
bundles (L, hx)xes equipped with Hermitian connections V, such
that the curvature 2-forms 6, = iVi satisfy 0, = ku + [« and

Bi = O(k~V/2), by = by(X).

Proof. This is a consequence of Kronecker's approximation
theorem applied to the lattice H*(X,Z) — H3; (X, R).

In fact §x can be chosen in a finite dimensional space of C*°
closed 2-forms isomorphic to H3; (X, R).
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Approximate holomorphic structure
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L T
.....................
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Approximate holomorphic structure

Consequence
Let Vi = V% + V' Then 6; = ku + B implies
(V9 = 697 = By = O(k~/*).
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Approximate holomorphic structure

Consequence
Let Vi = V% + V' Then 6; = ku + B implies
(V9 = 697 = By = O(k~/*).

Thus the L, are “closer and closer” to be holomorphic as k — +o0.
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(52 + ézgk be the complex Laplace-Beltrami operator
of (Lg, hx, V) with respect to some Hermitian metric w on X.
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.
Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.
Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzmg the (discrete) spectrum of the
elliptic operator Elk c-
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.
Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the
elliptic operator Di’i; Since the curvature is Ok =~ ku, it is better to

renormalize and to consider mstead D
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.

Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the
elliptic operator EZ’Z Since the curvature is Ok =~ ku, it is better to
renormalize and to consider instead D . For A € R, we define

NP9(N) = dim @elgenspaces of —ka £ of eigenvalues < .
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.
Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the
elliptic operator Di’i; Since the curvature is Ok =~ ku, it is better to

renormalize and to consider mstead D . For A € R, we define

NP9(N) = dim @elgenspaces of —ka £ of eigenvalues < .

Let uj(x), 1 <j < n, be the eigenvalues of u(x) with respect to
w(x) at any point x € X, ordered so that if s = rank(u(x)), then

i1 () 2 - = [us(x)] > usa(x)][ = - = [ua(x)] = 0.
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Spectrum of the Laplace-Beltrami operator

Let O, = 5,(5* + 5*5;( be the complex Laplace-Beltrami operator
of (Lk, hk, V) with respect to some Hermitian metric w on X.
Let Dk £ the operator acting on C®(X,AP9T; ® L, ® E), where
(E, hg) is a holomorphic Hermitian vector bundle of rank r.

We are interested in analyzing the (discrete) spectrum of the
elliptic operator Di’i; Since the curvature is Ok =~ ku, it is better to

renormalize and to consider mstead D . For A € R, we define

NP9(N) = dim @elgenspaces of —ka £ of eigenvalues < .

Let uj(x), 1 <j < n, be the eigenvalues of u(x) with respect to
w(x) at any point x € X, ordered so that if s = rank(u(x)), then

i ()] = -+ > Jus(x)] > [ussa(x)| = -+ = |un(x)] = 0.
For a multi-index J = {j1 < o < ... <Jjg} C{1,...,n}, set

uy(x) = Zjej ui(x), xeX.
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Fundamental spectral theory results

Consider the “spectral density functions” v,, 7, defined by

Vu(/\)} 27" un| - || 3
= A= (2p+ 1)yl
yu()\) r(n s 1) (p1,---,ps) EN® [ }
(where 0° = 0 for v, resp. 0° =1 for 7).
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Fundamental spectral theory results

Consider the “spectral density functions” v,, 7, defined by
Vu(/\)} 27" un| - || 3
_ == A= (2p; + 1)yl
Uu(N) M[(n—s+1) (o1 oy [ }

(where 0° = 0 for v, resp. 0° = 1 for 7).

Theorem ([D] 1985)
The spectrum of 5100 on C(X,AP9T§ ® Ly ® E) has an
asymptotic dlstrlbutlon of eigenvalues such that VA € R

()Z/l/u 2\ + ugy — uy)dV, <||m|nfk "NPI(N) <

e
< limsup k~"NP9(\ ( ) > / (2\ + gy — uy) dV,
k——+o00 e

where r = rank(E).
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Fundamental spectral theory results

Consider the “spectral density functions” v,, 7, defined by

Vu(/\)} 27" un| - || 3
= A= (2p+ 1)yl
Uu(N) M[(n—s+1) (o1 oy [ }
(where 0° = 0 for v, resp. 0° = 1 for 7).

Theorem ([D] 1985)

The spectrum of 5100 on C(X,AP9T§ ® Ly ® E) has an
asymptotic dlstrlbutlon of eigenvalues such that VA € R

()Z/l/u 2\ + ugy — uy)dV, <||m|nfk "NPI(N) <

M=

< limsup k="N29(A ( ) Z/ u(2A + ugy — uy) dV,

k—~+o00 e

where r = rank(E). By monotonicity, as 7,(A) = limy_q, v4()),
all four terms are equal for A € R~ D with D countable.
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Approximate cohomology lower bounds

Proof. One first estimates the spectrum of the total Laplacian
Ave = VieVie+ Vi eVie (harmonic oscillator with magnetic
and electric fields),
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Approximate cohomology lower bounds

Proof. One first estimates the spectrum of the total Laplacian

Ave = VieVie+ Vi eVie (harmonic oscillator with magnetic
and electric fields), and then one uses a Bochner formula to relate
ke and Ay g (Oy.e = %Akf + curvature terms) for each (p, q).
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Approximate cohomology lower bounds

Proof. One first estimates the spectrum of the total Laplacian

Ave = VieVie+ Vi eVie (harmonic oscillator with magnetic
and electric fields), and then one uses a Bochner formula to relate
ke and Ay g (Oy.e = %Akf + curvature terms) for each (p, q).

Important special case A = 0 (harmonic forms)
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Approximate cohomology lower bounds

Proof. One first estimates the spectrum of the total Laplacian

Ave = VieVie+ Vi eVie (harmonic oscillator with magnetic
and electric fields), and then one uses a Bochner formula to relate
ke and Ay g (Oy.e = %Akf + curvature terms) for each (p, q).

Important special case A = 0 (harmonic forms)

3" vu(ugy — ug) dV, = (~1)7>

n
nl
[J|=q

Corollary (Laurent laeng, 2002)
For A\« — 0 slowly enough, i.e. with k>*2/2)\, — 400, one has

liminf k="N22(\e) > r(/ u”—l—/ u") where
k—~+o00 ’ n! X (u,0) X(u,1)

X(u,q) = g-index set = {x € X/ u(x) has signature (n—q, q)}.
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Proof of the lower bound

Proof. One uses the fact that for ' > ¢ > 0 and k> 1, the
composition 1o d, with an eigenspace projection yields an injection

@ eigenspaceg’o(—> @ eigenspaceg’l.
AE | Ak,9] A€10,6']
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Proof of the lower bound

Proof. One uses the fact that for ' > ¢ > 0 and k> 1, the
composition 1o d, with an eigenspace projection yields an injection
@ eigenspacei’o — @ eigenspaceg’l.

AE | Ak,9] A€10,6']
In fact, in the holomorphic case gi = 0 implies gkﬁz’o = ﬁ?(’lgk,

hence 0, maps the (0,0)-eigenspaces to the (0, 1)-eigenspaces for
the same eigenvalues, and one can even take \, =0, ¢’ = 4.
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Proof of the lower bound

Proof. One uses the fact that for ' > ¢ > 0 and k> 1, the
composition 1o d, with an eigenspace projection yields an injection
@ eigenspacei’o — @ eigenspaceg’l.

AE | Ak,9] A€10,6']
In fact, in the holomorphic case gi = 0 implies gkﬁz’o = ﬁ?(’lgk,
hence dx maps the (0, 0)-eigenspaces to the (0, 1)-eigenspaces for
the same eigenvalues, and one can even take \, =0, ¢’ = 4.
In the quasi holomorphic case 5i = O(k~/2), one can show that
ﬁi’lgk — ékﬁz’o = ézgi yields a small “deviation” of the eigenvalues
to [Ax —€,0 + €] with € < min(\g, 0" — §), whence the injectivity.
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Proof of the lower bound

Proof. One uses the fact that for ' > ¢ > 0 and k> 1, the
composition 1o d, with an eigenspace projection yields an injection
@ eigenspacei’o — @ eigenspaceg’l.

AE | Ak,9] A€10,6']
In fact, in the holomorphic case gi = 0 implies gkﬁz’o = ﬁ?(’lgk,
hence dx maps the (0, 0)-eigenspaces to the (0, 1)-eigenspaces for
the same eigenvalues, and one can even take \, =0, ¢’ = 4.
In the quasi holomorphic case 5i = O(k~/2), one can show that
ﬁi’lgk — ékﬁz’o = ézgi yields a small “deviation” of the eigenvalues
to [Ax —€,0 + €] with € < min(\g, 0" — §), whence the injectivity.
This implies

Nee(6') = NE(0) — NE ()
thus ’ ' ’

NP2 > NO2(8) — NPE(6),  QED
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Transcendental holomorphic Morse inequalities

Conjecture on Morse inequalities
Let v € HyS(X,R). Then
Vol(y) > sup / u.
X(u,<1)

u€y, ucC®

(One could even suspect equality, an even stronger conjecture !).
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Transcendental holomorphic Morse inequalities

Conjecture on Morse inequalities
Let v € HyS(X,R). Then

Vol(y) > sup / u.
u€y, ueC* J X (u,<1)

(One could even suspect equality, an even stronger conjecture !).

If one sets by definition
Vol(y) =sup lim liminf N2O(\)

ucy >\—>0+ k——+oo
for the eigenspaces of the sequence (L, hx, V) approximating ku,
then the above expected lower bound is a theorem!
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Transcendental holomorphic Morse inequalities

Conjecture on Morse inequalities
Let v € HyS(X,R). Then
Vol(y) > sup / u.
X(u,<1)

u€y, ucC®

(One could even suspect equality, an even stronger conjecture !).

If one sets by definition
Vol(y) =sup lim liminf N2O(\)

ucy >\—>0+ k——+oo
for the eigenspaces of the sequence (L, hx, V) approximating ku,
then the above expected lower bound is a theorem!

There is however a stronger & more usual definition of the volume.

Definition
For v € Hgs(X,R), set Vol(v) = 0 if v # any current T >0,

and otherwise set Vol(v) = sup / T.., upe C™.

_ ac !
Tevy, T=up+i00p>0 X
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Transcendental holomorphic Morse inequalities (2)

The conjecture on Morse inequalities is known to be true when

v = c1(L) is an integral class ([D-1985]). In fact, one then gets a
Hermitian holomorphic line bundle (L, h) and its multiples L®*.
The spectral estimates provide many holomorphic sections o,
and one gets positive currents right away by putting

/ — I
T, — | E 2L __Q,, >
x 2k7raa °8 - o o bh = 0
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Transcendental holomorphic Morse inequalities (2)

The conjecture on Morse inequalities is known to be true when

v = c1(L) is an integral class ([D-1985]). In fact, one then gets a
Hermitian holomorphic line bundle (L, h) and its multiples L®*.
The spectral estimates provide many holomorphic sections o,
and one gets positive currents right away by putting

/ — I
T, — | E 2L __Q,, >
x 2k7raa °8 - o o bh = 0

(the volume estimate can be derived from there by Fujita).
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Transcendental holomorphic Morse inequalities (2)

The conjecture on Morse inequalities is known to be true when
v = c1(L) is an integral class ([D-1985]). In fact, one then gets a
Hermitian holomorphic line bundle (L, h) and its multiples L®*.
The spectral estimates provide many holomorphic sections o,
and one gets positive currents right away by putting

/ — I
T, — | E 2L __Q,, >
x 2k7raa °8 - o o bh = 0

(the volume estimate can be derived from there by Fujita).

In the “quasi-holomorphic” case, one only gets eigenfunctions oy ¢
with small eigenvalues, and the positivity of T is a priori lost.
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Transcendental holomorphic Morse inequalities (2)

The conjecture on Morse inequalities is known to be true when

v = c1(L) is an integral class ([D-1985]). In fact, one then gets a
Hermitian holomorphic line bundle (L, h) and its multiples L®*.
The spectral estimates provide many holomorphic sections o,
and one gets positive currents right away by putting

/ — I
T, — | E 2L __Q,, >
x 2k7raa °8 - o o bh = 0

(the volume estimate can be derived from there by Fujita).

In the “quasi-holomorphic” case, one only gets eigenfunctions oy ¢
with small eigenvalues, and the positivity of T is a priori lost.

Conjectural corollary (fundamental volume estimate)

Let X be compact Kahler, dim X = n, and o, 3 € HY(X,R) be
nef cohomology classes. Then

Vol(a — B) > a" — na" ' - B.
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Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an
elementary symmetric function argument. In fact, one has a
pointwise inequality of forms

lx(a,g7§1)(()é — B)n Z Oén — noe”‘l . 6
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Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an
elementary symmetric function argument. In fact, one has a
pointwise inequality of forms

lx(a,‘gﬂgl)(()é — B)n Z o — noe”‘l : 6

Again, the corollary is known for v = o — 3 when «, 3 are integral
classes (by [D-1993] and independently [Trapani, 1993]).
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Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an
elementary symmetric function argument. In fact, one has a
pointwise inequality of forms

lx(a,‘gﬂgl)(()é — B)n Z o — noe”‘l : 6

Again, the corollary is known for v = o — 3 when «, 3 are integral
classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for v = a — (3 transcendental
has been established by D. Witt-Nystrom when X is projective,
using deep facts on Monge-Ampere operators and upper envelopes.
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Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an
elementary symmetric function argument. In fact, one has a
pointwise inequality of forms

lx(a,‘gﬂgl)(()é — B)n Z Oén — noe”‘l . 6
Again, the corollary is known for v = o — 3 when «, 3 are integral
classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for v = a — (3 transcendental
has been established by D. Witt-Nystrom when X is projective,
using deep facts on Monge-Ampere operators and upper envelopes.
Xiao and Popovici also proved in the Kahler case that
a"—na™t- >0 = Volla—p3)>0

and a — [ contains a Kahler current.
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Known results on holomorphic Morse inequalities

The conjectural corollary is derived from the main conjecture by an
elementary symmetric function argument. In fact, one has a
pointwise inequality of forms

lx(a,‘gﬂgl)(()é — B)n Z o — noe”‘l : 6

Again, the corollary is known for v = o — 3 when «, 3 are integral
classes (by [D-1993] and independently [Trapani, 1993]).

Recently (2016), the volume estimate for v = a — (3 transcendental
has been established by D. Witt-Nystrom when X is projective,
using deep facts on Monge-Ampere operators and upper envelopes.

Xiao and Popovici also proved in the Kahler case that
a"—na™t- >0 = Volla—p3)>0
and a — [ contains a Kahler current.

(The proof is short, once the Calabi-Yau theorem is taken for
granted).
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € HY(X,R), w > 0, may
sometimes be used as a substitute for a polarization.
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € HY(X,R), w > 0, may
sometimes be used as a substitute for a polarization.

What for non Kahler compact complex manifolds?
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € HY(X,R), w > 0, may
sometimes be used as a substitute for a polarization.

What for non Kahler compact complex manifolds?

Surprising facts (?)

— Every compact complex manifold X carries a “very ample”
complex Hilbert bundle, produced by means of a natural Bergman
space construction.
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € HY(X,R), w > 0, may
sometimes be used as a substitute for a polarization.

What for non Kahler compact complex manifolds?

Surprising facts (?)

— Every compact complex manifold X carries a “very ample”
complex Hilbert bundle, produced by means of a natural Bergman
space construction.

— The curvature of this bundle is strongly positive in the sense of
Nakano, and is given by a universal formula.
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Projective vs Kahler vs non Kahler varieties

Problem. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € HY(X,R), w > 0, may
sometimes be used as a substitute for a polarization.

What for non Kahler compact complex manifolds?

Surprising facts (?)

— Every compact complex manifold X carries a “very ample”
complex Hilbert bundle, produced by means of a natural Bergman
space construction.

— The curvature of this bundle is strongly positive in the sense of
Nakano, and is given by a universal formula.

In the sequel of this lecture, we aim to investigate this construction
and look for potential applications, especially to transcendental
holomorphic Morse inequalities ...
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢ X = n.
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢ X = n.
Denote by X its complex conjugate (X, —J), so that Ox = Ox.
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢ X = n.

Denote by X its complex conjugate (X, —J), so that Ox = Ox.

The diagonal of X x X is totally real, and by Grauert, we know that
it possesses a fundamental system of Stein tubular neighborhoods.
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢ X = n.
Denote by X its complex conjugate (X, —J), so that Ox = Ox.

The diagonal of X x X is totally real, and by Grauert, we know that
it possesses a fundamental system of Stein tubular neighborhoods.

Assume that X is equipped with a real analytic hermitian metric -,
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢ X = n.

Denote by X its complex conjugate (X, —J), so that Ox = Ox.
The diagonal of X x X is totally real, and by Grauert, we know that
it possesses a fundamental system of Stein tubular neighborhoods.

Assume that X is equipped with a real analytic hermitian metric -,
and let exp: Tx = X x X, (z,£) — (z,exp,(§)), z€ X, £ € Tx,
be the associated geodesic exponential map.

geodesic
curve

exp,(t%)
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Exponential map diffeomorphism and its inverse

Lemma

Denote by exph the “holomorphic” part of exp, so that for z € X
and £ € Tx,

o, ()= Y aus(2)E, exphy(€) = D ano(2)€”.

a,BEN? aeN?
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Exponential map diffeomorphism and its inverse

Lemma

Denote by exph the “holomorphic” part of exp, so that for z € X
and £ € Tx,

o, ()= Y aus(2)E, exphy(€) = D ano(2)€”.
a,BEN? aeN?
Then d¢ exp,(€)e—o = de exph,(§)e=o = Idr,, and so exph is a
diffeomorphism from a neighborhood V' of the 0 section of Tx to a
neighborhood V' of the diagonal in X x X.
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Exponential map diffeomorphism and its inverse

Lemma

Denote by exph the “holomorphic” part of exp, so that for z € X
and £ € Tx,
o, ()= Y aus(2)E, exphy(€) = D ano(2)€”.
a,BeN? aeN”n
Then d¢ exp,(€)e—o = de exph,(§)e=o = Idr,, and so exph is a
diffeomorphism from a neighborhood V' of the 0 section of Tx to a
neighborhood V' of the diagonal in X x X.

Notation
With the identification X ~gq X, let logh : X x X>V = Tx be
the inverse diffeomorphism of exph and

U.={(z,w) € V' C X x X; |logh,(w)|, <&}, &>0.
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Exponential map diffeomorphism and its inverse

Lemma

Denote by exph the “holomorphic” part of exp, so that for z € X
and £ € Tx,

o, ()= Y aus(2)E, exphy(€) = D ano(2)€”.
a,BeN? aeNP
Then d¢ exp,(€)e—o = de exph,(§)e=o = Idr,, and so exph is a
diffeomorphism from a neighborhood V' of the 0 section of Tx to a
neighborhood V' of the diagonal in X x X.

Notation
With the identification X ~gq X, let logh : X x X>V = Tx be
the inverse diffeomorphism of exph and

U.={(z,w) € V' C X x X; |logh,(w)|, <&}, &>0.

Then, for e < 1, U is Stein and pr; : U. — X is a real analytic
locally trivial bundle with fibers biholomorphic to complex balls.
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Such tubular neighborhoods are Stein

X 1 U. . A
. A

7
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Such tubular neighborhoods are Stein

X 1 U. . A
. A

7

In the special case X = C", U. = {(z,w) € C" x C";

zZ—w|<e}l
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Such tubular neighborhoods are Stein

X 1 U. . A
. A

7

In the special case X =C", U. = {(z,w) e C" x C"; |z

It is of course Stein since
Z = w|]* = |z|* + |w]* = 2Re Y zjw;

and (z, w) — Re ) zjw; is pluriharmonic.
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Bergman sheaves

Let U. = U, C X X X be the ball bundle as above, and
p = (pry)u. : U- = X, p = (pry)ju. : U- — X

the natural projections.
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Bergman sheaves

Let U. = U, C X X X be the ball bundle as above, and
p = (pry)u. : U- = X, p = (pry)ju. : U- — X

the natural projections.

X + D U

X| —— g "
w

/
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Bergman sheaves (continued)

Definition of the Bergman sheaf .

The Bergman sheaf B. = B, . is by definition the L? direct image
B. = p (5" O(K))
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Bergman sheaves (continued)

Definition of the Bergman sheaf .

The Bergman sheaf B. = B, . is by definition the L? direct image
B. = p (5" O(K))

i.e. the space of sections over an open subset V' C X defined by
B.(V) = holomorphic sections f of p*O(Kx) on p~(V),

f(z,w)=fi(z,w)dwm A ... ANdw,, z€V,
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Bergman sheaves (continued)

Definition of the Bergman sheaf .

The Bergman sheaf B. = B, . is by definition the L? direct image
B. = pt (5 O(K)),

i.e. the space of sections over an open subset V' C X defined by

B.(V) = holomorphic sections f of p*O(Kx) on p~(V),

f(z,w)=fi(z,w)dwm A ... ANdw,, z€V,
that are in L?(p~1(K)) for all compact subsets K € V :

/ i"F(z,w) A F(z,w) Ay(2)" < +00, VK E V.
p~H(K)

(This L? condition is the reason we speak of “L? direct image”).
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Bergman sheaves (continued)

Definition of the Bergman sheaf .

The Bergman sheaf B. = B, . is by definition the L? direct image
B. = p (5" O(K))

i.e. the space of sections over an open subset V' C X defined by
B.(V) = holomorphic sections f of p*O(Kx) on p~(V),

f(z,w)=fi(z,w)dwm A ... ANdw,, z€V,
that are in L?(p~1(K)) for all compact subsets K € V :

/ i"F(z,w) A F(z,w) Ay(2)" < +00, VK E V.
p~H(K)

(This L? condition is the reason we speak of “L? direct image”).

Clearly, B, is an Ox-module over X, but since it is a space of
functions in w, it is of infinite rank.
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Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B; ,, consists of
all holomorphic functions f on p~'(z) C U. such that

)P = [ " a0, w) A o w) < o
p~*(20)
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Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B; ,, consists of
all holomorphic functions f on p~'(z) C U. such that

)P = [ " a0, w) A o w) < o
p~*(20)

Then B. is a real analytic locally trivial Hilbert bundle whose fiber
B. ., is isomorphic to the Hardy-Bergman space H?(B(0, <)) of L2
holomorphic n-forms on p~1(z) ~ B(0,¢) C C".
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Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B; ,, consists of
all holomorphic functions f on p~'(z) C U. such that

Ao = [ 7)1 oo w) < oo
P~ (20

Then B. is a real analytic locally trivial Hilbert bundle whose fiber
B. ., is isomorphic to the Hardy-Bergman space H?(B(0, <)) of L2
holomorphic n-forms on p~1(z) ~ B(0,¢) C C".

The Ohsawa-Takegoshi extension theorem implies that every

f € B. , can be extended as a germ f in the sheaf B: 2,

J.-P. Demailly, virtual conference Geom. & TACoS, July 7, 2020 ' Cohomology of quasi holomorphic line bundles



Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B; ,, consists of
all holomorphic functions f on p~'(z) C U. such that

Ao = [ 7)1 oo w) < oo
P~ (20

Then B. is a real analytic locally trivial Hilbert bundle whose fiber
B. ., is isomorphic to the Hardy-Bergman space H?(B(0, <)) of L2
holomorphic n-forms on p~1(z) ~ B(0,¢) C C".

The Ohsawa-Takegoshi extension theorem implies that every

f € B. , can be extended as a germ f in the sheaf B: 2,
Moreover, for ¢’ > ¢, there is a restriction map B/ ,, — B.

such that B. , is the L? completion of B./ ., /m,,B.r .
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Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B; ,, consists of
all holomorphic functions f on p~'(z) C U. such that

Ao = [ 7)1 oo w) < oo
P~ (20

Then B. is a real analytic locally trivial Hilbert bundle whose fiber
B. ., is isomorphic to the Hardy-Bergman space H?(B(0, <)) of L2
holomorphic n-forms on p~1(z) ~ B(0,¢) C C".

The Ohsawa-Takegoshi extension theorem implies that every

f € B. , can be extended as a germ f in the sheaf B: 2,
Moreover, for ¢’ > ¢, there is a restriction map B/ ,, — B.

such that B. ,, is the L? completion of B./ ,/m, B.: .

Is there a “complex structure” on B. such that “B. = O(B.)" ?
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Bergman Dolbeault complex

For this, consider the “Bergman Dolbeault” complex 0 : F9 — F9+!
over X, with F2(V) = smooth (n, g)-forms

f(z,w)= Z fi(z,w)dwi A ... Adw, A dZ,, (z,w) € U.N(V x X)

|Jl=q

Y

such that f;(z, w) is holomorphic in w, and for all K € V one has

f(z,w) € L*(pY(K)) and 0,f(z,w) € L*(p~1(K)).
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Bergman Dolbeault complex

For this, consider the “Bergman Dolbeault” complex 0 : F9 — F9+!
over X, with F2(V) = smooth (n, g)-forms

f(z,w)= Z fi(z,w)dwi A ... Adw, A dZ,, (z,w) € U.N(V x X)

|Jl=q
such that f;(z, w) is holomorphic in w, and for all K € V one has
f(z,w) € L*(pY(K)) and 0,f(z,w) € L*(p~1(K)).

An immediate consequence of this definition is:

Y

Proposition

0 :_(‘_92 yields a complex of sheaves (F*,3), and the kernel
Kerd : F? — F! coincides with B..
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Bergman Dolbeault complex

For this, consider the “Bergman Dolbeault” complex 0 : F9 — F9+!
over X, with F2(V) = smooth (n, g)-forms

f(z,w)= Z fi(z,w)dwi A ... Adw, A dZ,, (z,w) € U.N(V x X)

|Jl=q

Y

such that f;(z, w) is holomorphic in w, and for all K € V one has
f(z,w) € L*(pY(K)) and 0,f(z,w) € L*(p~1(K)).

An immediate consequence of this definition is:

Proposition

0 :_(‘_92 yields a complex of sheaves (F*,3), and the kernel
Kerd : F? — F! coincides with B..

If we define O;2(B:) to be the sheaf of L sections f of B. such
that Of = 0 in the sense of distributions, then we exactly have

O2(B.) = B. as a sheaf.
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Bergman sheaves are “very ample”

Assume that ¢ > 0 is taken so small that 1(z, w) := |logh,(w)|?

is strictly plurisubharmonic up to the boundary on the compact set
U, C X x X.
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Bergman sheaves are “very ample”

Theorem

Assume that ¢ > 0 is taken so small that 1(z, w) := |logh,(w)|?
is strictly plurisubharmonic up to the boundary on the compact set
U. C X x X. Then the complex of sheaves (F*, ) is a resolution
of B. by soft sheaves over X (actually, by C¥°-modules ), and for
every holomorphic vector bundle E — X we have

H(X,B. @ O(E)) = HI(T(X, F2 ® O(E)),0) =0, Vq>1.
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Bergman sheaves are “very ample”

Theorem

Assume that ¢ > 0 is taken so small that 1(z, w) := |logh,(w)|?
is strictly plurisubharmonic up to the boundary on the compact set
U. C X x X. Then the complex of sheaves (F*, ) is a resolution
of B. by soft sheaves over X (actually, by C¥°-modules ), and for
every holomorphic vector bundle E — X we have

H(X,B. @ O(E)) = HI(T(X, F2 ® O(E)),0) =0, Vq>1.

Moreover the fibers B, , ® E, are always generated by global
sections of H(X, B. ® O(E)).

In that sense, B. is a “very ample holomorphic vector bundle”
(as a Hilbert bundle of infinite dimension).
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Bergman sheaves are “very ample”

Theorem

Assume that ¢ > 0 is taken so small that 1(z, w) := |logh,(w)|?
is strictly plurisubharmonic up to the boundary on the compact set
U. C X x X. Then the complex of sheaves (F*, ) is a resolution
of B. by soft sheaves over X (actually, by C¥°-modules ), and for
every holomorphic vector bundle E — X we have

H(X,B. @ O(E)) = HI(T(X, F2 ® O(E)),0) =0, Vq>1.

Moreover the fibers B, , ® E, are always generated by global
sections of H(X, B. ® O(E)).

In that sense, B. is a “very ample holomorphic vector bundle”
(as a Hilbert bundle of infinite dimension).
The proof is a direct consequence of Hormander's L2 estimates.

B. is NOT a locally trivial holomorphic bundle.
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Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, E — X a
holomorphic vector bundle (e.g. the trivial bundle). Consider the
Hilbert space H = H°(X, B. ® O(E)).
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Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, E — X a
holomorphic vector bundle (e.g. the trivial bundle). Consider the
Hilbert space H = H°(X, B. ® O(E)). Then one gets a
“holomorphic embedding” into a Hilbert Grassmannian,

V: X — Gr(H), z~ S,
mapping every point z € X to the infinite codimensional closed

subspace S, consisting of sections f € H such that f(z) =0
in Bs,zv i.e. f|p*1(z) =0.
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Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, E — X a
holomorphic vector bundle (e.g. the trivial bundle). Consider the
Hilbert space H = H°(X, B. ® O(E)). Then one gets a
“holomorphic embedding” into a Hilbert Grassmannian,

V: X — Gr(H), z~ S,
mapping every point z € X to the infinite codimensional closed

subspace S, consisting of sections f € H such that f(z) =0
in Bs,zv i.e. f|p*1(z) =0.

The main problem with this “holomorphic embedding” is that the
holomorphicity is to be understood in a weak sense, for instance
the map W is not even continuous with respect to the strong
metric topology of Gr(H), given by

d(S,S’) = Hausdorff distance of the unit balls of S, S’
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Chern connection of Bergman bundles

Since we have a natural V%! = 9 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that
B. can be equipped with a unique Chern connection.
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Chern connection of Bergman bundles

Since we have a natural V%! = 9 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that
B. can be equipped with a unique Chern connection.

Model case: X = C", v = standard hermitian metric.

J.-P. Demailly, virtual conference Geom. & TACoS, July 7, 2020 ' Cohomology of quasi holomorphic line bundles



Chern connection of Bergman bundles

Since we have a natural V%! = 9 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that
B. can be equipped with a unique Chern connection.

Model case: X = C", v = standard hermitian metric.
Then one sees that a orthonormal frame of B. is given by

|
ea(z,w) = /2= lal=n C(m (w—-2)*, aeN"
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Chern connection of Bergman bundles

Since we have a natural V%! = 9 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that
B. can be equipped with a unique Chern connection.

Model case: X = C", v = standard hermitian metric.
Then one sees that a orthonormal frame of B. is given by

(|| + n)!
arl. o)

(w—-2)*, aeN"

en(z, w) = w2 lel=n

This frame is non holomorphic!
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Chern connection of Bergman bundles

Since we have a natural V%! = 9 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that
B. can be equipped with a unique Chern connection.

Model case: X = C", v = standard hermitian metric.
Then one sees that a orthonormal frame of B. is given by

(la] 4+ n)!

_ _—n/2_—|a|—n
en(z,w) =71 "%
arl. o)

(w—-2)*, aeN"
This frame is non holomorphic! The (0, 1)-connection V% = 0
is given by

Ve, = 0,e,(z,w) =7t Z v aji(lal +n) dz; @ e,

1<j<n

where ¢; = (0, ...,1,...,0) € N,
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Curvature of Bergman bundles

Let ©p 4 = V2 be the curvature tensor of B. with its natural
Hilbertian metric h.
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Curvature of Bergman bundles

Let ©p 4 = V2 be the curvature tensor of B. with its natural
Hilbertian metric h. Remember that

Op.p = VIOV 4 VOIYLO ¢ C(X AN Ty ® Hom(B., B.)),
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Curvature of Bergman bundles

Let ©p 4 = V2 be the curvature tensor of B. with its natural
Hilbertian metric h. Remember that

Op.p = VIOV 4 VOIYLO ¢ C(X AN Ty ® Hom(B., B.)),

and that one gets an associated quadratic Hermitian form on
Tx ® B, such that

O.(v® &) = (Op_po(v, V)E E)p
forve Txand { =) Eae, € B..
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Curvature of Bergman bundles

Let ©p 4 = V2 be the curvature tensor of B. with its natural
Hilbertian metric h. Remember that

Op. » = VIOV + VOV e C(X, AV T} @ Hom(B., B.)),

and that one gets an associated quadratic Hermitian form on
Tx ® B, such that

O.(v® &) = (Op_po(v, V)E E)p
forve Txand { =) Eae, € B..

Definition
One says that the curvature tensor is Griffiths positive if
O.(ve&) >0, VO£veTx, VO£ € B,
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Curvature of Bergman bundles

Let ©p 4 = V2 be the curvature tensor of B. with its natural
Hilbertian metric h. Remember that

Op. » = VIOV + VOV e C(X, AV T} @ Hom(B., B.)),

and that one gets an associated quadratic Hermitian form on
Tx ® B, such that

O.(v® &) = (Op_po(v, V)E E)p
forve Txand { =) Eae, € B..

Definition
One says that the curvature tensor is Griffiths positive if
O.(ve&) >0, VO£veTx, VO£ € B,
and Nakano positive if
0.(r) >0, Y0O#£7€ Tx® B..
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Calculation of the curvature tensor for X = C”

A simple calculation of V2 in the orthonormal frame (e,) leads to:

Formula

In the model case X = C", the curvature tensor of the Bergman
bundle (B., h) is given by

O(v®e) =) (‘Z\ﬁga oV

aeN?

+Z o + n) |&? |vJ|2>

4
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Calculation of the curvature tensor for X = C”

A simple calculation of V2 in the orthonormal frame (e,) leads to:

Formula

In the model case X = C", the curvature tensor of the Bergman
bundle (B., h) is given by

O(v®e) =) (‘Z\ﬁga 6]
aeN”

+Z o + n) |&? |vJ|2>

Consequence

In C”, the curvature tensor ©.(v ® &) is Nakano positive.

J.-P. Demailly, virtual conference Geom. & TACoS, July 7, 2020 ' Cohomology of quasi holomorphic line bundles



Calculation of the curvature tensor for X = C”

A simple calculation of V2 in the orthonormal frame (e,) leads to:

Formula

In the model case X = C", the curvature tensor of the Bergman
bundle (B., h) is given by

O(v®e) =) (‘Z\ﬁga 6]
aeN”

+Z o + n) |&? |vJ|2>

Consequence

In C”, the curvature tensor ©.(v ® &) is Nakano positive.

On should observe that C:)E(v ® &) is an unbounded quadratic form
on B. with respect to the standard metric [|£]|?2 =" |a]?
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Calculation of the curvature tensor for X = C”

A simple calculation of V2 in the orthonormal frame (e,) leads to:

Formula

In the model case X = C", the curvature tensor of the Bergman
bundle (B., h) is given by

O(v®e) =) (‘Z\ﬁga 6]
aeN”

+Z o + n) |&? |vJ|2>

Consequence

In C”, the curvature tensor ©.(v ® &) is Nakano positive.

On should observe that C:)E(v ® &) is an unbounded quadratic form
on B. with respect to the standard metric [|£]|?2 =" |a]?

However there is convergence for all £ =) &,e, € B, £/ > ¢,
since then Y ('/€)?%l|&, ]2 < +o0.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

+o0
O(z,v®E) =) e2PQy(z,v®¢), veTx, £€B.
p=0
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

O.(z,v®¢§) = Z€2+przv®§) veTx, £€B.

where Qo(z,v® &) = Qo(v ®E) is glven by the model case C":

o(v @) = 52Z< DV o +Z(\ar +n) \sa|2|vﬁ>.

aeN”?

J.-P. Demailly, virtual conference Geom. & TACoS, July 7, 2020 ' Cohomology of quasi holomorphic line bundles



Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

O.(z,v®¢§) = Z€2+przv®§) veTx, £€B.

where Qo(z,v® &) = Qo(v ®E) is glven by the model case C":

o(v @) = 52Z< DV o +Z(\ar +n) \sa|2|vﬁ>-

a€eNn
The other terms Q,(z, v ® ) are real analytic; Q; and Q. depend
respectively on the torsion and curvature tensor of ~.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

O.(z,v®¢§) = Z€2+przv®§) veTx, £€B.

where Qo(z,v® &) = Qo(v ®E) is glven by the model case C":

o(v@E) =) ( > VA fagyi| + (ol +n) \§a|2|w2>-
aeNn J J

The other terms Q,(z, v ® ) are real analytic; Q; and Q. depend

respectively on the torsion and curvature tensor of ~.

In particular Q; = 0 is v is Kahler.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C¥
hermitian metric v, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

O.(z,v®¢§) = Z€2+przv®§) veTx, £€B.

where Qo(z,v® &) = Qo(v ®E) is glven by the model case C":

o(v @) = 52Z< DV o +Z(\ar +n) \sa|2|vﬁ>-

aeN"
The other terms Q,(z, v ® ) are real analytic; Q; and Q. depend
respectively on the torsion and curvature tensor of ~.
In particular Q; = 0 is v is Kahler.

A consequence of the above formula is that B. is strongly Nakano
positive for ¢ > 0 small enough.
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|dea of proof of the asymptotic expansion

The formula is in principle a special case of a more general result
proved by Wang Xu, expressing the curvature of weighted Bergman
bundles H; attached to a smooth family {D,} of strongly
pseudoconvex domains.
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|dea of proof of the asymptotic expansion

The formula is in principle a special case of a more general result
proved by Wang Xu, expressing the curvature of weighted Bergman
bundles H; attached to a smooth family {D,} of strongly
pseudoconvex domains. Wang's formula is however in integral form
and not completely explicit.
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|dea of proof of the asymptotic expansion

The formula is in principle a special case of a more general result
proved by Wang Xu, expressing the curvature of weighted Bergman
bundles H; attached to a smooth family {D,} of strongly
pseudoconvex domains. Wang's formula is however in integral form
and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of
logh : X x X — Tx (inverse diffeomorphism of exph)

logh,(w) =w —Z + szaj(w —-Z)+ ZEjaj’-(W —
—i—szzkbjk( w—2Z +szzkb -2)

+ Y zizigi(w — 2) + 0(|z),
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|dea of proof of the asymptotic expansion

The formula is in principle a special case of a more general result
proved by Wang Xu, expressing the curvature of weighted Bergman
bundles H; attached to a smooth family {D,} of strongly
pseudoconvex domains. Wang's formula is however in integral form
and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of
logh : X x X — Tx (inverse diffeomorphism of exph)

logh,(w) =w —Z + szaj(w —-Z)+ ZEjaj’-(W —
—i—szzkbjk( w—2Z +szzkb -2)

+ Y zizigi(w — 2) + 0(|z),

which is used to compute the difference with the model case C”,
for which logh,(w) =w —Z.
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Back to holomorphic Morse inequalities

Idea for the general case. Let v € Hé’é(X,R) and u e ya
smooth form. As we have seen, one can find a sequence of
Hermitian line bundles (L, hx, Vi) such that

0, — ivi = ku+ Bk, Bi = O(k™V/™),
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Back to holomorphic Morse inequalities

Idea for the general case. Let v € Hé’é(X,R) and u e ya
smooth form. As we have seen, one can find a sequence of
Hermitian line bundles (L, hx, Vi) such that

0, — ivi = ku+ Bk, Bi = O(k™V/™),

Then df = 0= 98, =0, and as U. is Stein, pr§ 5y° = I
with a C>= (0,1)-form 7, = O(k~/2).
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Back to holomorphic Morse inequalities

Idea for the general case. Let v € Hé’é(X,R) and u e ya
smooth form. As we have seen, one can find a sequence of
Hermitian line bundles (L, hx, Vi) such that

0, — ivi = ku+ Bk, Bi = O(k™V/™),

Then df, =0 = 5@?’2 =0, and as U is Stein, prj 52’2 = Ok
with a C*> (0,1)-form 1, = O(k~%/#2). This shows that

Ly := pry Lx becomes a holomorphic line bundle when equipped
with the connection V = pri Vi — nk, which has a curvature
form ©; ¢ = kprju+ O(k=t/b2).
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Back to holomorphic Morse inequalities

Idea for the general case. Let v € Hé’é(X,R) and u e ya
smooth form. As we have seen, one can find a sequence of
Hermitian line bundles (L, hx, Vi) such that
O = ivi — ku+ Br, Br= O(k™/™).
Then df, =0 = 5@?’2 =0, and as U is Stein, prj 52’2 = Ok
with a C*> (0,1)-form 1, = O(k~%/#2). This shows that
Ly := pry Lx becomes a holomorphic line bundle when equipped
with the connection V = pri Vi — nk, which has a curvature
form ©;, ¢ = kprju+ O(k/*). Two possibilities emerge:
@ correct the small eigenvalue eigenfunctions prj o, ¢ given by
Laeng’s method to actually get holomorphic sections of L, on U..
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Back to holomorphic Morse inequalities

Idea for the general case. Let v € Hé’é(X,R) and u e ya
smooth form. As we have seen, one can find a sequence of
Hermitian line bundles (L, hx, Vi) such that
O = ivi — ku+ Br, Br= O(k™/™).
Then df, =0 = 5@?’2 =0, and as U is Stein, prj 52’2 = Ok
with a C*> (0,1)-form 1, = O(k~%/#2). This shows that
Ly := pry Lx becomes a holomorphic line bundle when equipped
with the connection V = pri Vi — nk, which has a curvature
form ©;, ¢ = kprju+ O(k/*). Two possibilities emerge:
@ correct the small eigenvalue eigenfunctions prj o, ¢ given by
Laeng’s method to actually get holomorphic sections of L, on U..

o directly deal with the Hilbert Dolbeault complex of
(pr;)L (Ou. (L)), and use Bergman estimates instead of
dimension counts in Morse inequalities.
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber

X; = m71(t).
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber

X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber

X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — §:
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture
Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber
X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — §:
« Siu and Kawamata (1998) in the case of varieties of general type
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture
Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber
X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — §:
« Siu and Kawamata (1998) in the case of varieties of general type
« Siu (2000) and P3un (2004) in the arbitrary projective case
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber

X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — §:
« Siu and Kawamata (1998) in the case of varieties of general type
« Siu (2000) and P3un (2004) in the arbitrary projective case

The proof is based on an iterated application of the
Ohsawa-Takegoshi L? extension theorem w.r.t. an ample line
bundle A on X"
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Other potential target: invariance of plurigenera

for polarized families of compact Kahler manifolds?

Conjecture

Let 7 : X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S.
Assume that the family admits a polarization, i.e. a closed smooth
(1,1)-form w such that wyx, is positive definite on each fiber

X; := 7w 1(t). Then the plurigenera

pm(X:) = h°(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — §:

« Siu and Kawamata (1998) in the case of varieties of general type

« Siu (2000) and P3un (2004) in the arbitrary projective case

The proof is based on an iterated application of the
Ohsawa-Takegoshi L? extension theorem w.r.t. an ample line

bundle A on X: replace A by a Bergman bundle in the Kahler case ?
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Thank you for your attention

>
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