

Variational approach for complex Monge-Ampère equations and geometric applications

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble Alpes & Académie des Sciences de Paris

March 19, 2016 Séminaire Bourbaki Institut Henri Poincaré, Paris

• Recent work by Berman, Berndtsson, Boucksom, Eyssidieux, Guedj, Jonsson, Zeriahi (among others) leads to a new variational approach for the solution of Monge-Ampère equations on compact Kähler manifolds.

- Recent work by Berman, Berndtsson, Boucksom, Eyssidieux, Guedj, Jonsson, Zeriahi (among others) leads to a new variational approach for the solution of Monge-Ampère equations on compact Kähler manifolds.
- The method can be made independent of the previous PDE technicalities of Yau's approach.

- Recent work by Berman, Berndtsson, Boucksom, Eyssidieux, Guedj, Jonsson, Zeriahi (among others) leads to a new variational approach for the solution of Monge-Ampère equations on compact Kähler manifolds.
- The method can be made independent of the previous PDE technicalities of Yau's approach.
- It is based on the study of certain functionals (Ding-Tian, Mabuchi) on the space of Kähler metrics, and their geodesic convexity due to X.X. Chen and Berman-Berndtsson in its full generality.

- Recent work by Berman, Berndtsson, Boucksom, Eyssidieux, Guedj, Jonsson, Zeriahi (among others) leads to a new variational approach for the solution of Monge-Ampère equations on compact Kähler manifolds.
- The method can be made independent of the previous PDE technicalities of Yau's approach.
- It is based on the study of certain functionals (Ding-Tian, Mabuchi) on the space of Kähler metrics, and their geodesic convexity due to X.X. Chen and Berman-Berndtsson in its full generality.
- Applications include the existence and uniqueness of Kähler-Einstein metrics on Q-Fano varieties with log terminal singularities, and a new proof by Berman-Boucksom-Jonsson of a uniform version of the Yau-Tian-Donaldson conjecture solved around 2013 by Chen-Donaldson-Sun.

Kähler-Einstein metrics

To a Kähler metric on a compact complex n fold X

$$\omega = i \sum_{1 \leq j,k \leq n} \omega_{jk}(z) dz_j \wedge d\overline{z}_k, \quad d\omega = 0$$

one associates its Ricci curvature form

$$\mathrm{Ricci}(\omega) = \Theta_{\Lambda^n T_X, \Lambda^n \omega} = -dd^c \log \det(\omega_{jk})$$

where
$$d^c = \frac{1}{4i\pi}(\partial - \overline{\partial})$$
, $dd^c = \frac{i}{2\pi}\partial \overline{\partial}$.

Kähler-Einstein metrics

To a Kähler metric on a compact complex n fold X

$$\omega = i \sum_{1 \leq j,k \leq n} \omega_{jk}(z) dz_j \wedge d\overline{z}_k, \quad d\omega = 0$$

one associates its Ricci curvature form

$$\operatorname{Ricci}(\omega) = \Theta_{\Lambda^n T_X, \Lambda^n \omega} = -dd^c \log \det(\omega_{jk})$$

where $d^c = \frac{1}{4i\pi}(\partial - \overline{\partial})$, $dd^c = \frac{i}{2\pi}\partial \overline{\partial}$. The Kähler metric ω is said to be Kähler-Einstein if

(*)
$$\operatorname{Ricci}(\omega) = \lambda \omega$$
 for some $\lambda \in \mathbb{R}$.

Kähler-Einstein metrics

To a Kähler metric on a compact complex n fold X

$$\omega = i \sum_{1 \leq j,k \leq n} \omega_{jk}(z) dz_j \wedge d\overline{z}_k, \quad d\omega = 0$$

one associates its Ricci curvature form

$$\mathrm{Ricci}(\omega) = \Theta_{\Lambda^n T_X, \Lambda^n \omega} = -dd^c \log \det(\omega_{jk})$$

where $d^c = \frac{1}{4i\pi}(\partial - \overline{\partial})$, $dd^c = \frac{i}{2\pi}\partial \overline{\partial}$. The Kähler metric ω is said to be Kähler-Einstein if

(*)
$$\operatorname{Ricci}(\omega) = \lambda \omega$$
 for some $\lambda \in \mathbb{R}$.

This requires $\lambda\omega\in c_1(X)$, hence (*) can be solved only when $c_1(X)$ is positive definite, negative definite or zero, and after rescaling ω by a constant, one can always assume that $\lambda\in\{0,1,-1\}$.

Kähler-Einstein \iff Monge-Ampère equation (1)

Fix a reference Kähler metric ω_0 and put $\omega = \omega_0 + dd^c \varphi$. The KE condition (*) is equivalent to

$$(**) \qquad (\omega_0 + dd^c \varphi)^n = e^{-\lambda \varphi + f} \omega_0^n.$$

Kähler-Einstein \iff Monge-Ampère equation (1)

Fix a reference Kähler metric ω_0 and put $\omega = \omega_0 + dd^c \varphi$. The KE condition (*) is equivalent to

$$(**) \qquad (\omega_0 + dd^c \varphi)^n = e^{-\lambda \varphi + f} \omega_0^n.$$

• When $\lambda = -1$ and $c_1(X) < 0$, i.e. $c_1(K_X) > 0$, Aubin has shown in 1978 that there is always a unique solution, hence a unique Kähler metric $\omega \in c_1(K_X)$ such that

$$Ricci(\omega) = -\omega.$$

Kähler-Einstein \iff Monge-Ampère equation (1)

Fix a reference Kähler metric ω_0 and put $\omega = \omega_0 + dd^c \varphi$. The KE condition (*) is equivalent to

$$(**) \qquad (\omega_0 + dd^c \varphi)^n = e^{-\lambda \varphi + f} \omega_0^n.$$

• When $\lambda = -1$ and $c_1(X) < 0$, i.e. $c_1(K_X) > 0$, Aubin has shown in 1978 that there is always a unique solution, hence a unique Kähler metric $\omega \in c_1(K_X)$ such that

$$Ricci(\omega) = -\omega.$$

This is a very natural generalization of the existence of constant curvature metrics on complex algebraic curves, implied by Poincaré's uniformization theorem in dimension 1.

Kähler-Einstein \iff Monge-Ampère equation (2)

• For $\lambda=0$ and $c_1(X)=0$, a celebrated result of Yau (solution of the Calabi conjecture, 1978) states that there exists a unique metric $\omega=\omega_0+dd^c\varphi$ in the given cohomology class $\{\omega_0\}$ such that $\mathrm{Ricci}(\omega)=0$.

Kähler-Einstein \iff Monge-Ampère equation (2)

• For $\lambda=0$ and $c_1(X)=0$, a celebrated result of Yau (solution of the Calabi conjecture, 1978) states that there exists a unique metric $\omega=\omega_0+dd^c\varphi$ in the given cohomology class $\{\omega_0\}$ such that $\mathrm{Ricci}(\omega)=0.$ Moreover, the Monge-Ampère equation

$$(\omega_0 + dd^c \varphi)^n = e^f \omega_0^n$$

has a unique solution whenever $\int_X e^f \omega_0^n = \int_X \omega_0^n$.

Kähler-Einstein \iff Monge-Ampère equation (2)

• For $\lambda=0$ and $c_1(X)=0$, a celebrated result of Yau (solution of the Calabi conjecture, 1978) states that there exists a unique metric $\omega=\omega_0+dd^c\varphi$ in the given cohomology class $\{\omega_0\}$ such that $\mathrm{Ricci}(\omega)=0.$ Moreover, the Monge-Ampère equation

$$(\omega_0 + dd^c \varphi)^n = e^f \omega_0^n$$

has a unique solution whenever $\int_X e^f \omega_0^n = \int_X \omega_0^n$. Equivalently, the Ricci curvature form can be prescribed to be equal any given smooth closed (1,1)-form

$$Ricci(\omega) = \rho,$$

provided that $\rho \in c_1(X)$.

The case of Fano manifolds

For $\lambda = +1$, the equation to solve is

$$(**) \qquad (\omega_0 + dd^c \varphi)^n = e^{-\varphi + f} \omega_0^n.$$

This is possible only if $-K_X$ (= $\Lambda^n T_X$) is ample. One then says that X is a Fano manifold.

The case of Fano manifolds

For $\lambda = +1$, the equation to solve is

$$(**) \qquad (\omega_0 + dd^c \varphi)^n = e^{-\varphi + f} \omega_0^n.$$

This is possible only if $-K_X$ (= $\Lambda^n T_X$) is ample. One then says that X is a Fano manifold.

When solutions exist, it is known by Bando Mabuchi (1987) that they are unique up to the action of the identity component $\operatorname{Aut}^0(X)$ in the complex Lie group of biholomorphisms of X.

Berman-Boucksom-Jonsson 2015

Let X be a Fano manifold with finite automorphism group. Then X admits a Kähler-Einstein metric if and only if it is uniformly K-stable.

Recently, Chen, Donaldson and Sun got this result under the more general assumption that X is K-stable (Bourbaki/Ph. Eyssidieux, january 2015).

Definition

A log Fano pair is a klt pair (X, Δ) such that X is projective and the \mathbb{Q} -divisor $A = -(K_X + \Delta)$ is ample.

Definition

A log Fano pair is a klt pair (X, Δ) such that X is projective and the \mathbb{Q} -divisor $A = -(K_X + \Delta)$ is ample.

Here X is a normal compact complex variety X and Δ an effective \mathbb{Q} -divisor such that $K_X + \Delta$ is \mathbb{Q} -Cartier.

Definition

A log Fano pair is a klt pair (X, Δ) such that X is projective and the \mathbb{Q} -divisor $A = -(K_X + \Delta)$ is ample.

Here X is a normal compact complex variety X and Δ an effective \mathbb{Q} -divisor such that $K_X + \Delta$ is \mathbb{Q} -Cartier. By Hironaka, there exists a log resolution $\pi: \tilde{X} \to X$ of (X, Δ) , i.e. a modification of X over the complement of the singular loci of X and X, such that the pull-back of X and of X and of X sing consists of simple normal crossing (snc) divisors in \tilde{X} .

Definition

A log Fano pair is a klt pair (X, Δ) such that X is projective and the \mathbb{Q} -divisor $A = -(K_X + \Delta)$ is ample.

Here X is a normal compact complex variety X and Δ an effective \mathbb{Q} -divisor such that $K_X + \Delta$ is \mathbb{Q} -Cartier. By Hironaka, there exists a log resolution $\pi: \tilde{X} \to X$ of (X, Δ) , i.e. a modification of X over the complement of the singular loci of X and X, such that the pull-back of X and of X and of X consists of simple normal crossing (snc) divisors in X. One writes

$$\pi^*(K_X + \Delta) = K_{\tilde{X}} + E, \qquad E = \sum_j a_j E_j$$

for some \mathbb{Q} -divisor E whose push-forward to X is Δ (since X_{sing} has codimension 2, the components E_j that lie over X_{sing} yield $\pi_*E_j=0$). The coefficient $-a_j\in\mathbb{Q}$ is known as the discrepancy of (X,Δ) along E_j .

The klt condition ("Kawamata Log Terminal")

Definition

 (X, Δ) is klt if $a_j < 1$ for all j.

Let r be a positive integer such that $r(K_X + \Delta)$ is Cartier, and σ a local generator of $\mathcal{O}(r(K_X + \Delta))$ on some open set $U \subset X$. Then the (n, n) form

$$|\sigma|^{2/r} := i^{n^2} \sigma^{1/r} \wedge \overline{\sigma^{1/r}}$$

is a volume form with poles along $S = \operatorname{Supp} \Delta \cup X_{\operatorname{sing}}$.

The klt condition ("Kawamata Log Terminal")

Definition

 (X, Δ) is klt if $a_j < 1$ for all j.

Let r be a positive integer such that $r(K_X + \Delta)$ is Cartier, and σ a local generator of $\mathcal{O}(r(K_X + \Delta))$ on some open set $U \subset X$. Then the (n, n) form

$$|\sigma|^{2/r} := i^{n^2} \, \sigma^{1/r} \wedge \overline{\sigma^{1/r}}$$

is a volume form with poles along $S = \operatorname{Supp} \Delta \cup X_{\operatorname{sing}}$. By the change of variable formula, the local integrability can be checked by pulling back σ to \tilde{X} , in which case it is easily seen that the integrability occurs if and only if $a_j < 1$ for all j, i.e. when (X, Δ) is klt.

The klt condition ("Kawamata Log Terminal")

Definition

 (X, Δ) is klt if $a_i < 1$ for all j.

Let r be a positive integer such that $r(K_X + \Delta)$ is Cartier, and σ a local generator of $\mathcal{O}(r(K_X + \Delta))$ on some open set $U \subset X$. Then the (n, n) form

$$|\sigma|^{2/r} := i^{n^2} \, \sigma^{1/r} \wedge \overline{\sigma^{1/r}}$$

is a volume form with poles along $S = \operatorname{Supp} \Delta \cup X_{\operatorname{sing}}$. By the change of variable formula, the local integrability can be checked by pulling back σ to \tilde{X} , in which case it is easily seen that the integrability occurs if and only if $a_i < 1$ for all j, i.e. when (X, Δ) is klt.

In local coordinates

$$|\sigma|^{2/r} \sim \frac{\text{volume form}}{\prod |z_j|^{2a_j}}.$$

Singular Monge-Ampère equation

By definition (X, Δ) log Fano $\Longrightarrow c_1(X, \Delta) \ni \omega_0$ Kähler.

Singular Monge-Ampère equation

By definition (X, Δ) log Fano $\Longrightarrow c_1(X, \Delta) \ni \omega_0$ Kähler.

Every form $\omega=\omega_0+dd^c\psi\in\{\omega_0\}$ can be seen as the curvature form of a smooth hermitian metric h on $\mathcal{O}(-(K_X+\Delta))$, whose weight is $\phi=u_0+\psi$ where u_0 is a local potential of ω_0 , hence

$$\omega = \omega_0 + dd^c \psi = dd^c \phi$$

where ϕ is understood as the weight of a global metric formally denoted $h=e^{-\phi}$ on the \mathbb{Q} -line bundle $\mathcal{O}(-(K_X+\Delta))$.

Singular Monge-Ampère equation

By definition (X, Δ) log Fano $\Longrightarrow c_1(X, \Delta) \ni \omega_0$ Kähler.

Every form $\omega=\omega_0+dd^c\psi\in\{\omega_0\}$ can be seen as the curvature form of a smooth hermitian metric h on $\mathcal{O}(-(K_X+\Delta))$, whose weight is $\phi=u_0+\psi$ where u_0 is a local potential of ω_0 , hence

$$\omega = \omega_0 + dd^c \psi = dd^c \phi$$

where ϕ is understood as the weight of a global metric formally denoted $h=e^{-\phi}$ on the \mathbb{Q} -line bundle $\mathcal{O}(-(K_X+\Delta))$.

The inverse e^{ϕ} is a hermitian metric on $\mathcal{O}(K_X + \Delta)$. If σ is a local generator of $\mathcal{O}(r(K_X + \Delta))$, the product $|\sigma|^{2/r}e^{\phi} = e^{\psi + u_0}$ is (locally) a smooth positive function whenever φ is smooth, hence

$$e^{-\phi} = |\sigma|^{2/r} e^{-(\psi + u_0)}$$

is an integrable volume form on X with poles along $S := \operatorname{Supp} \Delta \cup \{\text{singularities}\}\$. The KE condition can be rewritten

$$(dd^c\phi)^n=c\ e^{-\phi}\quad \text{on }X\smallsetminus S\Leftrightarrow \mathrm{Ricci}(\omega)=\omega+[\Delta].$$

The space of Kähler metrics

Let $A \in H^{1,1}_{\partial\overline{\partial}}(X,\mathbb{R})$ be a Kähler $\partial\overline{\partial}$ -cohomology class, and let

$$\omega_0 = \alpha + dd^c \psi_0 = dd^c \phi_0 \in A$$

be a Kähler metric.

The space of Kähler metrics

Let $A \in H^{1,1}_{\partial\overline{\partial}}(X,\mathbb{R})$ be a Kähler $\partial\overline{\partial}$ -cohomology class, and let

$$\omega_0 = \alpha + dd^c \psi_0 = dd^c \phi_0 \in A$$

be a Kähler metric.

Here we are mostly interested in the Fano case $A=-K_X$ and the log Fano case $A=-(K_X+\Delta)$. Let $V=\int_X \omega_0^n=A^n$ be the volume of ω_0 .

Definition

The space \mathcal{K}_A of Kähler metrics (resp. \mathcal{P}_A of Kähler potentials) is the set of Kähler metrics ω (resp. functions ψ) such that

$$\omega = \omega_0 + dd^c \psi > 0.$$

Here $\phi = u_0 + \psi$ is thought intrinsically as a hermitian metric $h = e^{-\phi}$ on A with strictly plurisubharmonic (psh) weight ϕ .

The space of Kähler metrics

Let $A \in H^{1,1}_{\partial\overline{\partial}}(X,\mathbb{R})$ be a Kähler $\partial\overline{\partial}$ -cohomology class, and let

$$\omega_0 = \alpha + dd^c \psi_0 = dd^c \phi_0 \in A$$

be a Kähler metric.

Here we are mostly interested in the Fano case $A=-K_X$ and the log Fano case $A=-(K_X+\Delta)$. Let $V=\int_X \omega_0^n=A^n$ be the volume of ω_0 .

Definition

The space \mathcal{K}_A of Kähler metrics (resp. \mathcal{P}_A of Kähler potentials) is the set of Kähler metrics ω (resp. functions ψ) such that

$$\omega = \omega_0 + dd^c \psi > 0.$$

Here $\phi = u_0 + \psi$ is thought intrinsically as a hermitian metric $h = e^{-\phi}$ on A with strictly plurisubharmonic (psh) weight ϕ .

Clearly $\mathcal{K}_{\Delta} \simeq \mathcal{P}_{\Delta}/\mathbb{R}$.

The Riemannian structure on \mathcal{P}_A

The basic operator of interest on \mathcal{P}_A is the Monge-Ampère operator

$$\mathcal{P}_A \to \mathcal{M}_+, \qquad \mathrm{MA}(\phi) = (dd^c \phi)^n = (\omega_0 + dd^c \psi)^n$$

According to Mabuchi the space \mathcal{P}_A can be seen as some sort of infinite dimensional Riemannian manifold: a "tangent vector" to \mathcal{P}_A is an infinitesimal variation $\delta\phi\in C^\infty(X,\mathbb{R})$ of ϕ (or ψ), and the infinitesimal Riemannian metric at a point $h=e^{-\phi}$ is given by

$$\|\delta\phi\|_2^2 = \frac{1}{V} \int_X (\delta\phi)^2 \operatorname{MA}(\phi).$$

The Riemannian structure on \mathcal{P}_A

The basic operator of interest on \mathcal{P}_A is the Monge-Ampère operator

$$\mathcal{P}_A \to \mathcal{M}_+, \qquad \mathrm{MA}(\phi) = (dd^c \phi)^n = (\omega_0 + dd^c \psi)^n$$

According to Mabuchi the space \mathcal{P}_A can be seen as some sort of infinite dimensional Riemannian manifold: a "tangent vector" to \mathcal{P}_A is an infinitesimal variation $\delta\phi\in C^\infty(X,\mathbb{R})$ of ϕ (or ψ), and the infinitesimal Riemannian metric at a point $h=e^{-\phi}$ is given by

$$\|\delta\phi\|_2^2 = \frac{1}{V} \int_X (\delta\phi)^2 \operatorname{MA}(\phi).$$

X.X. Chen and his collaborators have studied the metric and geometric properties of the space \mathcal{P}_A , showing in particular that it is a path metric space (a non trivial assertion in this infinite dimensional setting) of nonpositive curvature in the sense of Alexandrov. A key step has been to produce almost $C^{1,1}$ -geodesics which minimize the geodesic distance.

Basic functionals (1)

Given $\phi_0, \phi \in \mathcal{P}_A$, one defines:

• The Monge-Ampère functional

$$E_{\phi_0}(\phi) = rac{1}{(n+1)V} \sum_{j=0}^n \int_X (\phi - \phi_0) (dd^c \phi)^j \wedge (dd^c \phi_0)^{n-j}$$

$$(***) = \frac{1}{(n+1)V} \sum_{j=0}^{n} \int_{X} \psi(\omega_{0} + dd^{c}\psi)^{j} \wedge \omega_{0}^{n-j}, \quad \psi = \phi - \phi_{0}.$$

Basic functionals (1)

Given $\phi_0, \phi \in \mathcal{P}_A$, one defines:

• The Monge-Ampère functional

$$egin{align} E_{\phi_0}(\phi) &= rac{1}{(n+1)V} \sum_{j=0}^n \int_X (\phi-\phi_0) (dd^c\phi)^j \wedge (dd^c\phi_0)^{n-j} \ (***) &= rac{1}{(n+1)V} \sum_{j=0}^n \int_X \psi(\omega_0+dd^c\psi)^j \wedge \omega_0^{n-j}, \;\; \psi=\phi-\phi_0. \end{split}$$

It is a primitive of the Monge-Ampère operator in the sense that $dE_{\phi_0}(\phi) = \frac{1}{V} \operatorname{MA}(\phi)$, i.e. for any path $[T, T'] \ni t \mapsto \phi_t$, one has

$$rac{d}{dt}E_{\phi_0}(\phi_t) = rac{1}{V}\int_{Y}\dot{\phi}_t\,\mathrm{MA}(\phi_t) \quad ext{where } \dot{\phi}_t = rac{d}{dt}\phi_t.$$

This is easily checked by a differentiation under the integral sign.

Basic functionals (2)

As a consequence E satisfies the cocycle relation

$$E_{\phi_0}(\phi_1) + E_{\phi_1}(\phi_2) = E_{\phi_0}(\phi_2),$$

so its dependence on ϕ_0 is only up to a constant.

Basic functionals (2)

As a consequence E satisfies the cocycle relation

$$E_{\phi_0}(\phi_1) + E_{\phi_1}(\phi_2) = E_{\phi_0}(\phi_2),$$

so its dependence on ϕ_0 is only up to a constant. Finally, if ϕ_t depends linearly on t, one has $\ddot{\phi}_t = \frac{d^2}{dt^2}\phi_t = 0$ and a further differentiation of (***) yields

$$egin{aligned} rac{d^2}{dt^2} \mathcal{E}_{\phi_0}(\phi_t) &= rac{n}{V} \int_X \dot{\phi}_t \, dd^c \dot{\phi}_t \wedge (dd^c \phi_t)^{n-1} \ &= -rac{n}{V} \int_X d\dot{\phi}_t \wedge d^c \dot{\phi}_t \wedge (dd^c \phi_t)^{n-1} \leq 0. \end{aligned}$$

It follows that E_{ϕ_0} is concave on \mathcal{P}_A .

Basic functionals (2)

As a consequence E satisfies the cocycle relation

$$E_{\phi_0}(\phi_1) + E_{\phi_1}(\phi_2) = E_{\phi_0}(\phi_2),$$

so its dependence on ϕ_0 is only up to a constant. Finally, if ϕ_t depends linearly on t, one has $\ddot{\phi}_t = \frac{d^2}{dt^2}\phi_t = 0$ and a further differentiation of (***) yields

$$egin{aligned} rac{d^2}{dt^2} \mathcal{E}_{\phi_0}(\phi_t) &= rac{n}{V} \int_X \dot{\phi}_t \, dd^c \dot{\phi}_t \wedge (dd^c \phi_t)^{n-1} \ &= -rac{n}{V} \int_X d\dot{\phi}_t \wedge d^c \dot{\phi}_t \wedge (dd^c \phi_t)^{n-1} \leq 0. \end{aligned}$$

It follows that E_{ϕ_0} is concave on \mathcal{P}_A .

The J and J^* functionals

• The concavity of E implies the nonnegativity of $J_{\phi_0}(\phi) := dE_{\phi_0}(\phi_0) \cdot (\phi - \phi_0) - E_{\phi_0}(\phi)$, This quantity is called the Aubin J-energy functional

$$J_{\phi_0}(\phi) = V^{-1} \int_X (\phi - \phi_0) (dd^c \phi_0)^n - E_{\phi_0}(\phi) \geq 0.$$

The J and J^* functionals

• The concavity of E implies the nonnegativity of $J_{\phi_0}(\phi) := dE_{\phi_0}(\phi_0) \cdot (\phi - \phi_0) - E_{\phi_0}(\phi)$, This quantity is called the Aubin J-energy functional

$$J_{\phi_0}(\phi) = V^{-1} \int_X (\phi - \phi_0) (dd^c \phi_0)^n - E_{\phi_0}(\phi) \geq 0.$$

• By exchanging the roles of ϕ , ϕ_0 and putting $J_{\phi_0}^*(\phi) = J_{\phi}(\phi_0) \geq 0$, the cocycle relation for E yields $E_{\phi}(-\phi_0) = -E_{\phi_0}(\phi)$. The transposed J-energy functional is

$$egin{align} J_{\phi_0}^*(\phi) &:= E_{\phi_0}(\phi) - V^{-1} \int_X (\phi - \phi_0) (dd^c \phi)^n \ &= E_{\phi_0}(\phi) - V^{-1} \int_X \psi (\omega_0 + dd^c \psi)^n \geq 0, \ \ \psi = \phi - \phi_0. \end{split}$$

The symmetric / functional

• The *I*-functional is the symmetric functional defined by

$$\begin{split} I_{\phi_0}(\phi) &= I_{\phi}(\phi_0) := -\frac{1}{V} \int_X (\phi - \phi_0) \big(\operatorname{MA}(\phi) - \operatorname{MA}(\phi_0) \big) \\ &= \sum_{i=0}^{n-1} V^{-1} \int_X d(\phi - \phi_0) \wedge d^c (\phi - \phi_0) \wedge (dd^c \phi)^j \wedge (dd^c \phi_0)^{n-1-j} \geq 0. \end{split}$$

The symmetric / functional

• The *I*-functional is the symmetric functional defined by

$$I_{\phi_0}(\phi) = I_{\phi}(\phi_0) := -\frac{1}{V} \int_X (\phi - \phi_0) (\operatorname{MA}(\phi) - \operatorname{MA}(\phi_0))$$

= $\sum_{i=0}^{n-1} V^{-1} \int_X d(\phi - \phi_0) \wedge d^c (\phi - \phi_0) \wedge (dd^c \phi)^j \wedge (dd^c \phi_0)^{n-1-j} \ge 0.$

In fact $I_{\phi_0}(\phi) = J_{\phi_0}(\phi) + J_{\phi_0}^*(\phi)$, and one can also write

$$I_{\phi_0}(\phi) = V^{-1} \left(\int_X \psi \, \omega_0^n - \int_X \psi (\omega_0 + dd^c \psi)^n
ight).$$

The symmetric / functional

• The *I*-functional is the symmetric functional defined by

$$\begin{split} I_{\phi_0}(\phi) &= I_{\phi}(\phi_0) := -\frac{1}{V} \int_X (\phi - \phi_0) \big(\operatorname{MA}(\phi) - \operatorname{MA}(\phi_0) \big) \\ &= \sum_{i=0}^{n-1} V^{-1} \int_X d(\phi - \phi_0) \wedge d^c (\phi - \phi_0) \wedge (dd^c \phi)^j \wedge (dd^c \phi_0)^{n-1-j} \geq 0. \end{split}$$

In fact $I_{\phi_0}(\phi) = J_{\phi_0}(\phi) + J_{\phi_0}^*(\phi)$, and one can also write

$$I_{\phi_0}(\phi) = V^{-1} \left(\int_X \psi \, \omega_0^n - \int_X \psi (\omega_0 + dd^c \psi)^n \right).$$

It satisfies the quasi-triangle inequality: $\exists c_n > 0$ s.t.

$$I_{\phi_0}(\phi) \leq c_n \left(I_{\phi_0}(\phi_1) + I_{\phi_1}(\phi)\right). \quad \forall \ \phi_0, \ \phi_1, \ \phi \in \mathcal{P}_A.$$

The Ding and Mabuchi functionals (1)

• In the Fano or log Fano setting, the Ding functional is defined by

$$D_{\phi_0} = L - L(\phi_0) - E_{\phi_0}$$
, where $L(\phi) = -\log \int_X e^{-\phi}$.

The Ding and Mabuchi functionals (1)

• In the Fano or log Fano setting, the Ding functional is defined by

$$D_{\phi_0}=L-L(\phi_0)-E_{\phi_0}, \quad ext{where} \quad L(\phi)=-\log\int_X \mathrm{e}^{-\phi}.$$

Recall: $e^{-\phi}$ is integrable by the klt condition.

• Given probability measures μ, ν on a space X, the relative entropy $\operatorname{Entr}_{\mu}(\nu) \in [0, +\infty]$ of ν with respect to μ is defined as the integral

$$\operatorname{Entr}_{\mu}(
u) := \int_{X} \log \left(rac{d
u}{d\mu}
ight) d
u,$$

if ν is absolutely continuous w.r.t. μ ; $\mathrm{Entr}_{\mu}(\nu)=+\infty$ otherwise. Pinsker inequality: for all proba measures μ,ν one has

$$\operatorname{Entr}_{\mu}(\nu) \ge \frac{1}{2} \|\mu - \nu\|^2 \ge 0.$$

In particular, $\mu = \nu \iff \operatorname{Entr}_{\mu}(\nu) = 0$.

The Ding and Mabuchi functionals (2)

In the Fano or log Fano situation, the entropy functional $H_{\phi_0}(\phi)$ is defined to be the entropy of the probability measure $\frac{1}{V}(dd^c\phi)^n$ with respect to $e^{L(\phi_0)}e^{-\phi_0}$, namely

$$H_{\phi_0}(\phi) = \int_X \log\left(rac{(dd^c\phi)^n/V}{e^{L(\phi_0)}e^{-\phi_0}}
ight)rac{(dd^c\phi)^n}{V} \geq 0.$$

The Ding and Mabuchi functionals (2)

In the Fano or log Fano situation, the entropy functional $H_{\phi_0}(\phi)$ is defined to be the entropy of the probability measure $\frac{1}{V}(dd^c\phi)^n$ with respect to $e^{L(\phi_0)}e^{-\phi_0}$, namely

$$H_{\phi_0}(\phi) = \int_X \log\left(rac{(dd^c\phi)^n/V}{e^{L(\phi_0)}e^{-\phi_0}}
ight)rac{(dd^c\phi)^n}{V} \geq 0.$$

The Mabuchi functional is then defined by

$$M_{\phi_0} = H_{\phi_0} - J_{\phi_0}^*$$
.

The Ding and Mabuchi functionals (2)

In the Fano or log Fano situation, the entropy functional $H_{\phi_0}(\phi)$ is defined to be the entropy of the probability measure $\frac{1}{V}(dd^c\phi)^n$ with respect to $e^{L(\phi_0)}e^{-\phi_0}$, namely

$$H_{\phi_0}(\phi) = \int_X \log\left(rac{(dd^c\phi)^n/V}{e^{L(\phi_0)}e^{-\phi_0}}
ight)rac{(dd^c\phi)^n}{V} \geq 0.$$

The Mabuchi functional is then defined by

$$M_{\phi_0} = H_{\phi_0} - J_{\phi_0}^*$$
.

One gets the more explicit expression

$$M_{\phi_0}(\phi) = \int_X \log\left(rac{e^\phi (dd^c\phi)^n}{V}
ight) rac{(dd^c\phi)^n}{V} - E_{\phi_0}(\phi) - L(\phi_0).$$

Comparison properties

Observation

If c is a constant, then

$$E_{\phi_0}(\phi+c)=E_{\phi_0}(\phi)+c$$
 and $L(\phi+c)=L(\phi)+c$.

On the other hand, the functionals $I_{\phi_0}, J_{\phi_0}, J_{\phi_0}^*, D_{\phi_0}, H_{\phi_0}, M_{\phi_0}$ are invariant by $\phi \mapsto \phi + c$ and therefore descend to the quotient space $\mathcal{K}_A = \mathcal{P}_A/\mathbb{R}$ of Kähler metrics $\omega = dd^c\phi \in A$.

Comparison properties

Observation

If c is a constant, then

$$E_{\phi_0}(\phi+c)=E_{\phi_0}(\phi)+c$$
 and $L(\phi+c)=L(\phi)+c$.

On the other hand, the functionals $I_{\phi_0}, J_{\phi_0}, J_{\phi_0}^*, D_{\phi_0}, H_{\phi_0}, M_{\phi_0}$ are invariant by $\phi \mapsto \phi + c$ and therefore descend to the quotient space $\mathcal{K}_A = \mathcal{P}_A/\mathbb{R}$ of Kähler metrics $\omega = dd^c\phi \in A$.

Comparison between I, J, J*

The functionals I, J, J^* are essentially growth equivalent:

$$\frac{1}{n} J_{\phi}(\phi_0) \leq J_{\phi_0}(\phi) \leq \frac{n+1}{n} J_{\phi_0}(\phi) \leq I_{\phi_0}(\phi) \leq (n+1) J_{\phi_0}(\phi).$$

Comparison between Ding and Mabuchi functionals

Proposition

Let (X, Δ) be a log Fano manifold. Then $M_{\phi_0}(\phi) \geq D_{\phi_0}(\phi)$ and, in case of equality, ϕ must be Kähler-Einstein.

 $M - D = (H - J^*)(L - L(\phi_0) - E),$

 $= \int_{V} \log \left(\frac{(dd^{c}\phi)^{n}/V}{e^{L(\phi)}e^{-\phi}} \right) \frac{(dd^{c}\phi)^{n}}{V} \geq 0.$

Proof. From the definitions one gets

$$egin{aligned} E_{\phi_0}(\phi) - J_{\phi_0}^*(\phi) &= V^{-1} \int_X (\phi - \phi_0) (dd^c \phi)^n, \ M_{\phi_0}(\phi) - D_{\phi_0}(\phi) &= \int_X \left(\log \left(rac{(dd^c \phi)^n / V}{e^{L(\phi_0)} e^{-\phi_0}}
ight) + (\phi - \phi_0)
ight) rac{(dd^c \phi)^n}{V} + L(\phi_0) - L(\phi) \end{aligned}$$

In case of equality, Pinsker implies KE condition: $\frac{(dd^c\phi)^n}{V} = e^{L(\phi)}e^{-\phi}$

ullet Bedford-Taylor Monge-Ampère products : for $u_j \in L^\infty_{\mathrm{loc}}$, one sets inductively

$$dd^c u_1 \wedge dd^c u_2 \wedge \ldots \wedge dd^c u_k := dd^c (u_1 dd^c u_2 \wedge \ldots \wedge dd^c u_k)$$

ullet Bedford-Taylor Monge-Ampère products : for $u_j \in L^\infty_{\mathrm{loc}}$, one sets inductively

$$dd^{c}u_{1}\wedge dd^{c}u_{2}\wedge\ldots\wedge dd^{c}u_{k}:=dd^{c}(u_{1}\,dd^{c}u_{2}\wedge\ldots\wedge dd^{c}u_{k})$$

• Non pluripolar products (Guedj-Zeriahi) Let $\mathcal{P}(X,\omega_0)$ be the set of ω_0 -psh potentials, i.e. $\phi=\phi_0+\psi$ such that $dd^c\phi=\omega_0+dd^c\psi>0$.

ullet Bedford-Taylor Monge-Ampère products : for $u_j \in L^\infty_{\mathrm{loc}}$, one sets inductively

$$dd^c u_1 \wedge dd^c u_2 \wedge \ldots \wedge dd^c u_k := dd^c (u_1 dd^c u_2 \wedge \ldots \wedge dd^c u_k)$$

• Non pluripolar products (Guedj-Zeriahi)

Let $\mathcal{P}(X,\omega_0)$ be the set of ω_0 -psh potentials, i.e. $\phi=\phi_0+\psi$ such that $dd^c\phi=\omega_0+dd^c\psi\geq 0$.

The functions $\psi_{\nu}:=\max\{\psi,-\nu\}$ are again ω_0 -psh and bounded for all $\nu\in\mathbb{N}$. The Monge-Ampère measures $(\omega_0+dd^c\psi_{\nu})^n$ are therefore well-defined in the sense of Bedford-Taylor, and one defines for any bidegree (p,p) a positive current

$$\begin{split} T &= \langle \left(\omega_1 + dd^c \psi_1\right) \wedge ... \wedge \left(\omega_p + dd^c \psi_p\right) \rangle = \lim_{\nu \to +\infty} \\ \mathbf{1}_{\bigcap \{\psi_j > -\nu\}} \left(\omega_1 + dd^c \max\{\psi_1, -\nu\}\right) \wedge ... \wedge \left(\omega_p + dd^c \max\{\psi_p, -\nu\}\right) \end{split}$$

ullet Bedford-Taylor Monge-Ampère products : for $u_j \in L^\infty_{\mathrm{loc}}$, one sets inductively

$$dd^c u_1 \wedge dd^c u_2 \wedge \ldots \wedge dd^c u_k := dd^c (u_1 dd^c u_2 \wedge \ldots \wedge dd^c u_k)$$

• Non pluripolar products (Guedj-Zeriahi)

Let $\mathcal{P}(X, \omega_0)$ be the set of ω_0 -psh potentials, i.e. $\phi = \phi_0 + \psi$ such that $dd^c\phi = \omega_0 + dd^c\psi \geq 0$.

The functions $\psi_{\nu}:=\max\{\psi,-\nu\}$ are again ω_0 -psh and bounded for all $\nu\in\mathbb{N}$. The Monge-Ampère measures $(\omega_0+dd^c\psi_{\nu})^n$ are therefore well-defined in the sense of Bedford-Taylor, and one defines for any bidegree (p,p) a positive current

$$\begin{split} T &= \langle \left(\omega_1 + dd^c \psi_1\right) \wedge ... \wedge \left(\omega_p + dd^c \psi_p\right) \rangle = \lim_{\nu \to +\infty} \\ \mathbf{1}_{\bigcap \{\psi_j > -\nu\}} \left(\omega_1 + dd^c \max \{\psi_1, -\nu\}\right) \wedge ... \wedge \left(\omega_p + dd^c \max \{\psi_p, -\nu\}\right) \end{split}$$

Basic fact: T is still closed [Proof uses ideas of Skoda & Sibony].

Space of potentials of finite energy

One introduces for any $p \in [1, +\infty[$ the space

$$\mathcal{E}^p(X,\omega_0) := \left\{ \phi = \phi_0 + \psi \; ; \; \int_X |\psi|^p \operatorname{MA}(\omega_0 + dd^c \psi) < +\infty \right\},$$

and $\int_X \mathrm{MA}(\omega_0 + dd^c \psi) = \int_X \omega_0^n$ ("full non pluripolar mass"). One says that functions $\psi \in \mathcal{E}^p(X, \omega_0)$ have finite \mathcal{E}^p -energy.

Space of potentials of finite energy

One introduces for any $p \in [1, +\infty[$ the space

$$\mathcal{E}^p(X,\omega_0) := \left\{ \phi = \phi_0 + \psi \; ; \; \int_X |\psi|^p \operatorname{MA}(\omega_0 + dd^c \psi) < +\infty \right\},$$

and $\int_X \mathrm{MA}(\omega_0 + dd^c \psi) = \int_X \omega_0^n$ ("full non pluripolar mass"). One says that functions $\psi \in \mathcal{E}^p(X,\omega_0)$ have finite \mathcal{E}^p -energy. One also denotes by

$$\mathcal{T}^p(X,\omega_0)\subset \mathcal{T}^p_{\mathrm{full}}(X,\omega_0)$$

the corresponding set of *currents with finite* \mathcal{E}^p -energy, which can be identified with the quotient space

$$\mathcal{T}^p(X,\omega_0) = \mathcal{E}^p(X,\omega_0)/\mathbb{R}$$
 via $\phi \mapsto dd^c \phi = \omega_0 + dd^c \psi$.

Space of potentials of finite energy

One introduces for any $p \in [1, +\infty[$ the space

$$\mathcal{E}^p(X,\omega_0) := \left\{ \phi = \phi_0 + \psi \; ; \; \int_X |\psi|^p \operatorname{MA}(\omega_0 + dd^c \psi) < +\infty \right\},$$

and $\int_X \mathrm{MA}(\omega_0 + dd^c \psi) = \int_X \omega_0^n$ ("full non pluripolar mass"). One says that functions $\psi \in \mathcal{E}^p(X, \omega_0)$ have finite \mathcal{E}^p -energy. One also denotes by

$$\mathcal{T}^p(X,\omega_0)\subset \mathcal{T}^p_{\mathrm{full}}(X,\omega_0)$$

the corresponding set of *currents with finite* \mathcal{E}^p -energy, which can be identified with the quotient space

$$\mathcal{T}^p(X,\omega_0)=\mathcal{E}^p(X,\omega_0)/\mathbb{R}$$
 via $\phi\mapsto dd^c\phi=\omega_0+dd^c\psi$.

It is important to note that $\mathcal{T}^p(X,\omega_0)$ is not a closed subset of $\mathcal{T}(X,\omega_0)$ for the weak topology.

Finite energy extension of the functionals

Finite energy extension of the functionals

All functionals E, L, I, J, J^*, D, H, M have a natural extension to arguments $\phi, \phi_0 \in \mathcal{E}^1(X, \omega_0)$, and I, J, J^*, D, H, M descend to $\mathcal{T}^1(X, \omega_0) = \mathcal{E}^1(X, \omega_0)/\mathbb{R}$.

Finite energy extension of the functionals

Finite energy extension of the functionals

All functionals E, L, I, J, J^*, D, H, M have a natural extension to arguments $\phi, \phi_0 \in \mathcal{E}^1(X, \omega_0)$, and I, J, J^*, D, H, M descend to $\mathcal{T}^1(X, \omega_0) = \mathcal{E}^1(X, \omega_0)/\mathbb{R}$.

Theorem (BBGZ)

The map $T = \omega_0 + dd^c \psi \mapsto V^{-1} \langle T^n \rangle$ is a bijection between $\mathcal{T}^1(X, \omega_0)$ and the space of probability measures $\mathcal{M}^1(X, \omega_0)$ of finite energy.

Here one uses the Legendre-Fenchel transform

$$E_0^*(\mu) := \sup_{\phi = \phi_0 + \psi \in \mathcal{E}^1(X, \omega_0)} \left(E_0(\psi) - \int_X \psi \, \mu
ight) \in [0, +\infty]$$

where $E_0(\psi) = E_{\phi_0}(\phi_0 + \psi)$, and μ has finite energy if $E_0^*(\mu) < +\infty$.

Sufficient conditions for existence of KE metrics

Theorem (BBEGZ)

For a current $\omega = dd^c \phi \in \mathcal{T}^1(X,A)$, the following conditions are equivalent.

- (i) ω is a Kähler-Einstein metric for (X, Δ) .
- (ii) The Ding functional reaches its infimum at ϕ : $D_{\phi_0}(\phi) = \inf_{\mathcal{E}^1(X,\mathcal{A})/\mathbb{R}} D_{\phi_0}$.
- (iii) The Mabuchi functional reaches its infimum at ϕ : $M_{\phi_0}(\phi) = \inf_{\mathcal{E}^1(X,\mathcal{A})/\mathbb{R}} M_{\phi_0}$.

Sufficient conditions for existence of KE metrics

Theorem (BBEGZ)

For a current $\omega = dd^c \phi \in \mathcal{T}^1(X,A)$, the following conditions are equivalent.

- (i) ω is a Kähler-Einstein metric for (X, Δ) .
- (ii) The Ding functional reaches its infimum at ϕ : $D_{\phi_0}(\phi) = \inf_{\mathcal{E}^1(X,A)/\mathbb{R}} D_{\phi_0}$.
- (iii) The Mabuchi functional reaches its infimum at ϕ : $M_{\phi_0}(\phi) = \inf_{\mathcal{E}^1(X,A)/\mathbb{R}} M_{\phi_0}$.

Corollary (BBEGZ)

Let X be a \mathbb{Q} -Fano variety with log terminal singularities.

- (i) The identity component $\operatorname{Aut}^0(X)$ of the automorphism group of X acts transitively on the set of KE metrics on X,
- (ii) If the Mabuchi functional of X is proper, then $\operatorname{Aut}^0(X)=\{1\}$ and X admits a unique Kähler-Einstein metric.

Test configurations

Definition

A test configuration $(\mathcal{X}, \mathcal{A})$ for a $(\mathbb{Q}$ -)polarized projective variety (X, \mathcal{A}) consists of the following data:

- (i) a flat and proper morphism $\pi: \mathcal{X} \to \mathbb{C}$ of algebraic varieties; one denotes by $X_t = \pi^{-1}(t)$ the fiber over $t \in \mathbb{C}$.
- (ii) a \mathbb{C}^* -action on \mathcal{X} lifting the canonical action on \mathbb{C} ;
- (iii) an isomorphism $X_1 \simeq X$.
- (iv) a \mathbb{C}^* -linearized ample line bundle $\mathcal A$ on $\mathcal X$; one puts $A_t=\mathcal A_{|X_t}.$
- (v) an isomorphism $(X_1, A_1) \simeq (X, A)$ extending the one in (iii).

Test configurations

Definition

A test configuration $(\mathcal{X}, \mathcal{A})$ for a $(\mathbb{Q}$ -)polarized projective variety (X, \mathcal{A}) consists of the following data:

- (i) a flat and proper morphism $\pi: \mathcal{X} \to \mathbb{C}$ of algebraic varieties; one denotes by $X_t = \pi^{-1}(t)$ the fiber over $t \in \mathbb{C}$.
- (ii) a \mathbb{C}^* -action on \mathcal{X} lifting the canonical action on \mathbb{C} ;
- (iii) an isomorphism $X_1 \simeq X$.
- (iv) a \mathbb{C}^* -linearized ample line bundle $\mathcal A$ on $\mathcal X$; one puts $A_t=\mathcal A_{|X_t}.$
- (v) an isomorphism $(X_1, A_1) \simeq (X, A)$ extending the one in (iii).

K stability (and uniform K-stability) is defined in termes of certain numerical invariants attached to arbitrary test configurations.

Donaldson-Futaki invariants

Donaldson-Futaki invariant

Let $N_m = h^0(X, mA)$ and $w_m \in \mathbb{Z}$ be the weight of the \mathbb{C}^* -action on the determinant $\det H^0(\mathcal{X}_0, mA_0)$. Then there is an asymptotic expansion

$$\frac{w_m}{mN_m} = F_0 + m^{-1}F_1 + m^{-2}F_2 + \dots$$

and one defines $DF(\mathcal{X}, \mathcal{A}) := -2F_1$.

Donaldson-Futaki invariants

Donaldson-Futaki invariant

Let $N_m = h^0(X, mA)$ and $w_m \in \mathbb{Z}$ be the weight of the \mathbb{C}^* -action on the determinant $\det H^0(\mathcal{X}_0, mA_0)$. Then there is an asymptotic expansion

$$\frac{w_m}{mN_m} = F_0 + m^{-1}F_1 + m^{-2}F_2 + \dots$$

and one defines $DF(\mathcal{X}, \mathcal{A}) := -2F_1$.

Definition

The polarized variety (X, A) is said K-stable if $DF(\mathcal{X}, A) \geq 0$ for all normal test configurations, with equality iff (\mathcal{X}, A) is trivial.

Donaldson-Futaki invariants

Donaldson-Futaki invariant

Let $N_m = h^0(X, mA)$ and $w_m \in \mathbb{Z}$ be the weight of the \mathbb{C}^* -action on the determinant det $H^0(\mathcal{X}_0, m\mathcal{A}_0)$. Then there is an asymptotic expansion

$$\frac{w_m}{mN_m} = F_0 + m^{-1}F_1 + m^{-2}F_2 + \dots$$

and one defines $DF(\mathcal{X}, \mathcal{A}) := -2F_1$.

Definition

The polarized variety (X, A) is said K-stable if $DF(\mathcal{X}, A) > 0$ for all normal test configurations, with equality iff $(\mathcal{X}, \mathcal{A})$ is trivial.

Generalized Yau-Tian-Donaldson conjecture

Let (X, A) be a polarized variety. Then X admits a cscK metric (short hand for Kähler metric with constant scalar curvature) $\omega \in c_1(A)$ if and only if (X, A) is K-stable.

Uniform K-stability

The Duistermaat-Heckman measure $\mathrm{DH}_{(X,A)}$ is the probadistribution measure of the \mathbb{C}^* -action weights:

$$\mathrm{DH}_{(X,A)} = \lim_{m \to \infty} \sum_{\lambda \in \mathbb{Z}} \frac{\dim H^0(X, mA)_\lambda}{\dim H^0(X, mA)} \ \delta_{\lambda/m}, \quad \delta_p := \mathrm{Dirac} \ \mathrm{at} \ p,$$

where $H^0(X, mA) = \bigoplus_{\lambda \in \mathbb{Z}} H^0(X, mA)_{\lambda}$ is the weight space decomposition. For each $p \in [1, \infty]$, the L^p -norm $\|(\mathcal{X}, \mathcal{A})\|_p$ of an ample test configuration $(\mathcal{X}, \mathcal{A})$ is defined as the L^p norm

$$\|(\mathcal{X},\mathcal{A})\|_p = \left(\int_{\mathbb{R}} |\lambda - b(\mu)|^p d\mu(\lambda)\right)^{1/p}, \quad b(\mu) = \int_{\mathbb{R}} \lambda d\mu(\lambda).$$

Uniform K-stability

The Duistermaat-Heckman measure $\mathrm{DH}_{(X,A)}$ is the probadistribution measure of the \mathbb{C}^* -action weights:

$$\mathrm{DH}_{(X,A)} = \lim_{m \to \infty} \sum_{\lambda \in \mathbb{Z}} \frac{\dim H^0(X, mA)_\lambda}{\dim H^0(X, mA)} \ \delta_{\lambda/m}, \quad \delta_p := \mathrm{Dirac} \ \mathrm{at} \ p,$$

where $H^0(X, mA) = \bigoplus_{\lambda \in \mathbb{Z}} H^0(X, mA)_{\lambda}$ is the weight space decomposition. For each $p \in [1, \infty]$, the L^p -norm $\|(\mathcal{X}, \mathcal{A})\|_p$ of an ample test configuration $(\mathcal{X}, \mathcal{A})$ is defined as the L^p norm

$$\|(\mathcal{X},\mathcal{A})\|_p = \left(\int_{\mathbb{R}} |\lambda - b(\mu)|^p d\mu(\lambda)\right)^{1/p}, \quad b(\mu) = \int_{\mathbb{R}} \lambda d\mu(\lambda).$$

Definition (Székelyhidi)

The polarized variety (X,A) is said to be L^p -uniformly K-stable if there exists $\delta > 0$ such that $\mathrm{DF}(\mathcal{X},\mathcal{A}) \geq \delta \, \|(\mathcal{X},\mathcal{A})\|_p$ for all normal test configurations. [Note: only possible if $p < \frac{n}{p-1}$.]

Sufficiency of uniform K-stability

Berman-Boucksom-Jonsson 2015

Let X be a Fano manifold with finite automorphism group. Then X admits a Kähler-Einstein metric if and only if it is uniformly K-stable (in a related and simpler "non archimedean" sense).

Sufficiency of uniform K-stability

Berman-Boucksom-Jonsson 2015

Let X be a Fano manifold with finite automorphism group. Then X admits a Kähler-Einstein metric if and only if it is uniformly K-stable (in a related and simpler "non archimedean" sense).

Let $A = -K_X$. A ray $(\phi_t)_{t \geq 0}$ in \mathcal{P}_A corresponds to an S^1 -invariant metric Φ on the pull-back of $-K_X$ to the product of X with the punctured unit disc \mathbb{D}^* . The ray is called subgeodesic when Φ is plurisubharmonic (psh for short). Denoting by F any of the functionals M,D or J, there is a limit

$$\lim_{t\to +\infty} \frac{F(\phi_t)}{t} = F^{\text{NA}}(\mathcal{X}, \mathcal{A})$$

Here F^{NA} can be seen as the corresponding "non-Archimedean" functional.