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Entire curves

Definition. By an entire curve we mean a non constant
holomorphic map f : C → X into a complex n-dimensional
manifold.

If X is a bounded open subset Ω ⊂ Cn, then there are no
entire curves f : C → Ω (Liouville’s theorem)

X = Cr{0, 1,∞} = Cr{0, 1} has no entire curves (Picard’s
theorem)

A complex torus X = Cn/Λ (Λ lattice) has a lot of entire
curves. As C simply connected, every f : C → X = Cn/Λ lifts
as f̃ : C → Cn,

f̃ (t) = (f̃1(t), . . . , f̃n(t))

and f̃j : C → C can be arbitrary entire functions.
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Projective algebraic varieties

Consider now the complex projective n-space

Pn = Pn
C = (Cn+1 r{0})/C∗, [z ] = [z0 : z1 : . . . : zn].

An entire curve f : C → Pn is given by a map

t 7−→ [f0(t) : f1(t) : . . . : fn(t)]

where fj : C → C are holomorphic functions without common
zeroes (so there are a lot of them).

More generally, look at a (complex) projective manifold, i.e.

X n ⊂ PN , X = {[z ] ; P1(z) = ... = Pk(z) = 0}

where Pj(z) = Pj(z0, z1, . . . , zN) are homogeneous
polynomials (of some degree dj), such that X is
non singular.
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Kobayashi metric / hyperbolic manifolds

For a complex manifold, n = dimC X , one defines the
Kobayashi pseudo-metric : x ∈ X , ξ ∈ TX

κx(ξ) = inf{λ > 0 ; ∃f : D → X , f (0) = x , λf∗(0) = ξ}

On Cn, Pn or complex tori X = Cn/Λ, one has κX ≡ 0.

X is said to be hyperbolic (in the sense of Kobayashi) if the
associated integrated pseudo-distance is a distance
(i.e. it separates points – Hausdorff topology),

Theorem. (Brody) If X is compact then X is Kobayashi
hyperbolic if and only if there are no entire holomorphic
curves f : C → X (Brody hyperbolicity).

Hyperbolic varieties are especially interesting for their
expected diophantine properties :

Conjecture (S. Lang) If a projective variety X defined over Q

is hyperbolic, then X (Q) is finite.
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Complex curves (n = 1) : genus and curvature

KX = ΛnT ∗
X , deg(KX ) = 2g − 2
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Curves : hyperbolicity and curvature

Case n = 1 (compact Riemann surfaces):

X = P1 (g = 0, TX > 0)
X = C/(Z + Zτ) (g = 1, TX = 0)

obviously non hyperbolic : ∃f : C → X .

If g ≥ 2, X ≃ D/Γ (TX < 0), then X hyperbolic.

The n-dimensional case (Kobayashi)
If TX is negatively curved (T ∗

X > 0, i.e. ample), then X is

hyperbolic.

Recall that a holomorphic vector bundle E is ample iff its
symmetric powers SmE have global sections which generate
1-jets of (germs of) sections at any point x ∈ X .

Examples : X = Ω/Γ, Ω bounded symmetric domain.
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Varieties of general type

Definition A non singular projective variety X is said to be of

general type if the growth of pluricanonical sections

dimH0(X ,K⊗m
X ) ∼ cmn, KX = ΛnT ∗

X

is maximal.

(sections locally of the form f (z) (dz1 ∧ . . . ∧ dzn)
⊗m)

Example: A non singular hypersurface X n ⊂ Pn+1 of degree
d satisfies KX = O(d − n − 2),
it is of general type iff d > n+ 2.

Conjecture GT. If a compact manifold X is hyperbolic, then

it should be of general type, and even better KX = ΛnT ∗
X

should be of positive curvature (i.e. KX is ample, or

equivalently ∃ Kähler metric ω such that Ricci(ω) < 0).
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Conjectural characterizations of hyperbolicity

Theorem. Let X be projective algebraic. Consider the

following properties :

(P1) X is hyperbolic

(P2) Every subvariety Y of X is of general type.

(P3) ∃ε > 0, ∀C ⊂ X algebraic curve

2g(C̄ )− 2 ≥ ε deg(C ).

(X “algebraically hyperbolic”)
(P4) X possesses a jet-metric with negative curvature on its

k-jet bundle Xk [to be defined later], for k ≥ k0 ≫ 1.

Then (P4) ⇒ (P1), (P2), (P3),
(P1) ⇒ (P3),

and if Conjecture GT holds, (P1) ⇒ (P2).

It is expected that all 4 properties (P1), (P2), (P3), (P4) are
equivalent for projective varieties.
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Green-Griffiths-Lang conjecture

Conjecture (Green-Griffiths-Lang = GGL) Let X be a

projective variety of general type. Then there exists an

algebraic variety Y ( X such that for all non-constant

holomorphic f : C → X one has f (C) ⊂ Y .

Combining the above conjectures, we get :

Expected consequence (of GT + GGL)
(P1) X is hyperbolic

(P2) Every subvariety Y of X is of general type are equivalent.

The main idea in order to attack GGL is to use differential
equations. Let

C → X , t 7→ f (t) = (f1(t), . . . , fn(t))

be a curve written in some local holomorphic coordinates
(z1, . . . , zn) on X .
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Definition of algebraic differential operators

Consider algebraic differential operators which can be written
locally in multi-index notation

P(f[k]) = P(f ′, f ′′, . . . , f (k))

=
∑

aα1α2...αk
(f (t)) f ′(t)α1 f ′′(t)α2 . . . f (k)(t)αk

where aα1α2...αk
(z) are holomorphic coefficients on X and

t 7→ z = f (t) is a curve, f[k] = (f ′, f ′′, . . . , f (k)) its k-jet.
Obvious C∗-action :

λ · f (t) = f (λt), (λ · f )(k)(t) = λk f (k)(λt)

⇒ weighted degree m = |α1|+ 2|α2|+ . . .+ k |αk |.

Definition. EGG

k,m is the sheaf (bundle) of algebraic differential

operators of order k and weighted degree m.
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Vanishing theorem for differential operators

Fundamental vanishing theorem
([Green-Griffiths 1979], [Demailly 1995],
[Siu-Yeung 1996]
Let P ∈ H0(X ,EGG

k,m ⊗O(−A)) be a global algebraic

differential operator whose coefficients vanish on some ample

divisor A. Then for any f : C → X, P(f[k]) ≡ 0.

Proof. One can assume that A is very ample and intersects
f (C). Also assume f ′ bounded (this is not so restrictive by
Brody !). Then all f (k) are bounded by Cauchy inequality.
Hence

C ∋ t 7→ P(f ′, f ′′, . . . , f (k))(t)

is a bounded holomorphic function on C which vanishes at
some point. Apply Liouville’s theorem !
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Geometric interpretation of vanishing theorem

Let XGG
k = Jk(X )∗/C∗ be the projectivized k-jet bundle of X

= quotient of non constant k-jets by C∗-action.
Fibers are weighted projective spaces.

Observation. If πk : XGG
k → X is canonical projection and

OXGG

k
(1) is the tautological line bundle, then

EGG

k,m = (πk)∗OXGG

k
(m)

Saying that f : C → X satisfies the differential equation
P(f[k]) = 0 means that

f[k](C) ⊂ ZP

where ZP is the zero divisor of the section

σP ∈ H0(XGG

k ,OXGG

k
(m)⊗ π∗kO(−A))

associated with P .
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Consequence of fundamental vanishing theorem

Consequence of fundamental vanishing theorem.
If Pj ∈ H0(X ,EGG

k,m ⊗O(−A)) is a basis of sections then the

image f (C) lies in Y = πk(
⋂

ZPj
), hence property asserted by

the GGL conjecture holds true if there are “enough

independent differential equations” so that

Y = πk(
⋂

j

ZPj
) ( X .

However, some differential equations are useless. On a surface
with coordinates (z1, z2), a Wronskian equation
f ′1f

′′
2 − f ′2f

′′
1 = 0 tells us that f (C) sits on a line, but f ′′2 (t) = 0

says that the second component is linear affine in time, an
essentially meaningless information which is lost by a change
of parameter t 7→ ϕ(t).
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Invariant differential operators

The k-th order Wronskian operator

Wk(f ) = f ′ ∧ f ′′ ∧ . . . ∧ f (k)

(locally defined in coordinates) has degree m = k(k+1)
2 and

Wk(f ◦ ϕ) = ϕ′mWk(f ) ◦ ϕ.

Definition. A differential operator P of order k and degree m

is said to be invariant by reparametrization if

P(f ◦ ϕ) = ϕ′mP(f ) ◦ ϕ

for any parameter change t 7→ ϕ(t). Consider their set

Ek,m ⊂ EGG

k,m (a subbundle)

(Any polynomial Q(W1,W2, . . .Wk) is invariant, but for
k ≥ 3 there are other invariant operators.)
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Category of directed manifolds

Goal. We are interested in curves f : C → X such that
f ′(C) ⊂ V where V is a subbundle (or subsheaf) of TX .

Definition. Category of directed manifolds :

– Objects : pairs (X ,V ), X manifold/C and V ⊂ O(TX )
– Arrows ψ : (X ,V ) → (Y ,W ) holomorphic s.t. ψ∗V ⊂ W

– “Absolute case” (X ,TX )
– “Relative case” (X ,TX/S ) where X → S

– “Integrable case” when [V ,V ] ⊂ V (foliations)

Fonctor “1-jet” : (X ,V ) 7→ (X̃ , Ṽ ) where :

X̃ = P(V ) = bundle of projective spaces of lines in V

π : X̃ = P(V ) → X , (x , [v ]) 7→ x , v ∈ Vx

Ṽ(x ,[v ]) =
{

ξ ∈ TX̃ ,(x ,[v ]) ; π∗ξ ∈ Cv ⊂ TX ,x

}
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Semple jet bundles

For every entire curve f : (C,TC) → (X ,V ) tangent to V

f[1](t) := (f (t), [f ′(t)]) ∈ P(Vf (t)) ⊂ X̃

f[1] : (C,TC) → (X̃ , Ṽ ) (projectivized 1st-jet)

Definition. Semple jet bundles :

– (Xk ,Vk) = k-th iteration of fonctor (X ,V ) 7→ (X̃ , Ṽ )
– f[k] : (C,TC) → (Xk ,Vk) is the projectivized k-jet of f .

Basic exact sequences

0 → TX̃/X → Ṽ
π⋆→ OX̃ (−1) → 0 ⇒ rk Ṽ = r = rkV

0 → OX̃ → π⋆V ⊗OX̃ (1) → TX̃/X → 0 (Euler)

0 → TXk/Xk−1
→ Vk

(πk)⋆
→ OXk

(−1) → 0 ⇒ rkVk = r

0 → OXk
→ π⋆kVk−1 ⊗OXk

(1) → TXk/Xk−1
→ 0 (Euler)
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Direct image formula

For n = dimX and r = rkV , get a tower of Pr−1-bundles

πk,0 : Xk
πk→ Xk−1 → · · · → X1

π1→ X0 = X

with dimXk = n + k(r − 1), rkVk = r ,
and tautological line bundles OXk

(1) on Xk = P(Vk−1).

Theorem. Xk is a smooth compactification of

X
GG,reg
k /Gk = J

GG,reg
k /Gk

where Gk is the group of k-jets of germs of biholomorphisms

of (C, 0), acting on the right by reparametrization:

(f , ϕ) 7→ f ◦ ϕ, and J
reg
k is the space of k-jets of regular

curves.

Direct image formula. (πk,0)∗OXk
(m) = Ek,mV

∗ =
invariant algebraic differential operators f 7→ P(f[k])
acting on germs of curves f : (C,TC) → (X ,V ).
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Results obtained so far

Using this technology and deep results of McQuillan for curve
foliations on surfaces, D. – El Goul proved in 1998
Theorem. (solution of Kobayashi conjecture)
A very generic surface X⊂P3 of degree ≥ 21 is hyperbolic.

(McQuillan got independently degree ≥ 35).

dimC X = n. (S. Diverio, J. Merker, E. Rousseau [DMR09])
If X ⊂ Pn+1 is a generic n-fold of degree d ≥ dn := 2n

5
, then

∃Y ( X s.t. every non constant f :C → X satisfies f (C) ⊂ Y .
[also d3 = 593, d4 = 3203, d5 = 35355, d6 = 172925.]

Additional result. (S. Diverio, S. Trapani, 2009)
One can get codimC Y ≥ 2 and therefore a generic
hypersurface X ⊂ P4 of degree d ≥ 593 is hyperbolic.
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Algebraic structure of differential rings

Although very interesting, results are currently limited by lack
of knowledge on jet bundles and differential operators

Unknown ! Is the ring of germs of invariant differential

operators on (Cn,TCn) at the origin

Ak,n =
⊕

m

Ek,mT
∗
Cn finitely generated ?

At least this is OK for ∀n, k ≤ 2 and n = 2, k ≤ 4:

A1,n = O[f ′1 , . . . , f
′
n]

A2,n = O[f ′1 , . . . , f
′
n,W

[ij ]], W [ij ] = f ′i f
′′
j − f ′j f

′′
i

A3,2 = O[f ′1 , f
′
2 ,W1,W2][W ]2, Wi = f ′i DW − 3f ′′i W

A4,2 = O[f ′1 , f
′
2 ,W11,W22,S ][W ]6, Wii = f ′i DWi − 5f ′′i Wi

where W = f ′1f
′′
2 − f ′2f

′′
1 is 2-dim Wronskian and

S = (W1DW2 −W2DW1)/W . Also known:

A3,3 (E. Rousseau [Rou06a]), A5,2 (J. Merker, [Mer08])
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Strategy : evaluate growth of differential operators

The strategy of the proofs is that the algebraic structure of
Ak,n allows to compute the Euler characteristic
χ(X ,Ek,m ⊗ A−1), e.g. on surfaces

χ(X ,Ek,m ⊗ A−1) =
m4

648
(13c21 − 9c2) + O(m3).

Hence for 13c21 − 9c2 > 0, using Bogomolov’s vanishing
theorem H2(X , (T ∗

X )
⊗m ⊗ A−1) = 0 for m ≫ 0, one gets

h0(X ,Ek,m⊗A−1) ≥ χ = h0−h1 =
m4

648
(13c21 −9c2)+O(m3)

Therefore many global differential operators exist for surfaces
with 13c21 − 9c2 > 0, e.g. surfaces of degree large enough in
P3, d ≥ 15 (end of proof uses stability)
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Trouble / more general perspectives

Trouble is, in higher dimensions n, intermediate coho-
mology groups Hq(X ,Ek,mT

∗
X ), 0 < q < n, don’t vanish !!

Main conjecture (Generalized GGL)
If (X ,V ) is directed manifold of general type, i.e.

detV ∗ big, then ∃Y ( X such that every non-constant

f : (C,TC) → (X ,V ) is contained in Y .

Strategy. OK by Ahlfors-Schwarz lemma if r = rkV = 1.
First try to get differential equations f[k](C) ⊂ Z ( Xk .
Take minimal such k . If k = 0, we are done! Otherwise k ≥ 1
and πk,k−1(Z ) = Xk−1, thus W = Vk ∩ TZ has
rank < rkVk = r and should have again detW ∗ big (unless
some degeneration occurs ?). Use induction on r !

Needed induction step. If (X ,V ) has detV ∗ big and

Z ⊂ Xk irreducible with πk,k−1(Z ) = Xk−1, then (Z ,W ),
W = Vk ∩ TZ has OZℓ

(1) big on (Zℓ,Wℓ), ℓ≫ 0.
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Use holomorphic Morse inequalities !

Simple case of Morse inequalities
(Demailly, Siu, Catanese, Trapani)
If L = O(A− B) is a difference of big nef divisors A, B, then

L is big as soon as

An − nAn−1 · B > 0.

My PhD student S. Diverio has recently worked out this
strategy for hypersurfaces X ⊂ Pn+1, with

L =
⊗

1≤j<k
π∗k,jOXj

(2 · 3k−j−1)⊗OXk
(1),

B = π∗k,0OX (2 · 3
k−1), A = L+ B ⇒ L = A− B .

In this way, one obtains equations of order k = n, when
d ≥ dn and n ≤ 6 (although the method might work also for
n > 6). One can check that

d2 = 15, d3 = 82, d4 = 329, d5 = 1222, d6 exists.
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A differentiation technique by Yum-Tong Siu

One uses an important idea due to Yum-Tong Siu, itself based on
ideas of Claire Voisin and Herb Clemens, and then refined by
M. Păun [Pau08], E. Rousseau [Rou06b] and J. Merker [Mer09].
The idea consists of studying vector fields on the relative jet space
of the universal family of hypersurfaces of Pn+1. Let
X ⊂ Pn+1 × PNd be the universal hypersurface, i.e.

X = {(z , a) ; a = (aα) s.t. Pa(z) =
∑

aαz
α = 0},

Ω ⊂ PNd the open subset of a’s for which Xa = {Pa(z) = 0} is
smooth, and let

p : X → Pn+1, π : X → Ω ⊂ PNd

be the natural projections.
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Meromorphic vector fields on jet spaces

Let
pk : Xk → X → Pn+1, πk : Xk → Ω ⊂ PNd

be the relative Green-Griffiths k-jet space of X → Ω. Then
J. Merker [Mer09] has shown that global sections ηj of

O(TXk
)⊗ p∗kOPn+1(k2 + 2k)⊗ π∗kOPNd (1)

generate the bundle at all points of X reg
k for k = n = dimXa.

From this, it follows that if P is a non zero global section over Ω
of EGG

k,mT ∗
X ⊗ p∗kOPn+1(−s) for some s, then for a suitable

collection of η = (η1, . . . , ηm), the m-th derivatives

Dη1 . . .DηmP

yield sections of H0
(

X ,EGG
k,mT ∗

X ⊗ p∗kOPn+1(m(k2 + 2k)− s)
)

whose joint base locus is contained in X sing
k , whence the result.
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