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Abstract

This article is a survey on the theory of Monge-Ampère operators and Lelong numbers.
The definition of complex Monge-Ampère operators is extended in such a way that wedge
products of closed positive currents become admissible in a large variety of situations; the
only basic requirement is that the polar set singularities have mutual intersections of the
correct codimension. This makes possible to develope the intersection theory of analytic
cycles by means of current theory and Lelong numbers. The advantage of this point of
view, in addition to its wider generality, is to produce simpler proofs of previously known
results, as well as to relate some of these results to other questions in analytic geometry
or number theory. For instance, the generalized Lelong-Jensen formula provides a useful
tool for studying the location and multiplicities of zeros of entire functions on Cn or
on a manifold, in relation with the growth at infinity (Schwarz lemma type estimates).
Finally, we obtain a general self-intersection inequality for divisors and positive (1, 1)-
currents on compact Kähler manifolds, based on a singularity attenuation technique for
quasi-plurisubharmonic functions.
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0. Introduction

This contribution is a survey article on the theory of Lelong numbers, viewed
as a tool for studying intersection theory by complex differential geometry.
We have not attempted to make an exhaustive compilation of the existing
literature on the subject, nor to present a complete account of the state-of-
the-art. Instead, we have tried to present a coherent unifying frame for the
most basic results of the theory, based in part on our earlier works [De1,2,3,4]
and on Siu’s fundamental work [Siu]. To a large extent, the asserted results
are given with complete proofs, many of them substantially shorter and
simpler than their original counterparts. We only assume that the reader has
some familiarity with differential calculus on complex manifolds and with the
elementary facts concerning analytic sets and plurisubharmonic functions.
The reader can consult Lelong’s books [Le2,3] for an introduction to the
subject. Most of our results still work on arbitrary complex analytic spaces,
provided that suitable definitions are given for currents, plurisubharmonic
functions, etc, in this more general situation. We have refrained ourselves
from doing so for simplicity of exposition; we refer the reader to [De3] for
the technical definitions required in the context of analytic spaces.

Let us first recall a few basic definitions. A current of degree q on an
oriented differentiable manifold M is simply a differential q-form Θ with
distribution coefficients. Alternatively, a current of degree q is an element Θ
in the dual space D′

p(M) of the space Dp(M) of smooth differential forms of
degree p = dimM − q with compact support; the duality pairing is given by

(0.1) 〈Θ,α〉 =

∫

M

Θ ∧ α, α ∈ Dp(M).

A basic example is the current of integration [S] over a compact oriented
submanifold S of M :

(0.2) 〈[S], α〉 =

∫

S

α, degα = p = dimIR S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows
that d[S] = (−1)q−1[∂S], in particular d[S] = 0 if S has no boundary.
Because of this example, the integer p is said to be the dimension of Θ
when Θ ∈ D′

p(M). The current Θ is said to be closed if dΘ = 0.

On a complex manifold X , we have similar notions of bidegree and
bidimension. According to Lelong [Le1], a current T of bidimension (p, p)
is said to be (weakly) positive if for every choice of smooth (1, 0)-forms
α1, . . . , αp on X the distribution

(0.3) T ∧ iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp is a positive measure.

Then, the coefficients TI,J of T are complex measures, and up to constants,
they are dominated by the trace measure

∑
TI,I which is positive. With
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every closed analytic set A ⊂ X of pure dimension p is associated a current
of integration

(0.4) 〈[A], α〉 =

∫

Areg

α, α ∈ Dp,p(X),

obtained by integrating over the regular points of A. It is easy to see that
[A] is positive. Lelong [Le1] has shown that [A] has locally finite mass near
Asing and that [A] is closed in X . This last result can be seen today as a
consequence of the Skoda-El Mir extension theorem ([EM], [Sk3]; also [Sib]).

(0.5) Theorem. Let E be a closed complete pluripolar set in X, and let Θ
be a closed positive current on X \ E such that the coefficients ΘI,J of Θ

are measures with locally finite mass near E. Then the trivial extension Θ̃
obtained by extending the measures ΘI,J by 0 on E is still closed.

A complete pluripolar set is by definition a set E such that there
is an open covering (Ωj) of X and plurisubharmonic functions uj on Ωj
with E ∩ Ωj = u−1

j (−∞). Any (closed) analytic set is of course complete
pluripolar. Lelong’s result d[A] = 0 is obtained by applying the El Mir-Skoda
theorem to Θ = [Areg] on X \Asing. Another interesting consequence is

(0.6) Corollary. Let T be a closed positive current on X and let E be a
complete pluripolar set. Then 1lET and 1lX \ET are closed positive currents.
In fact 1lET = T \ T̃ , where T̃ is the trivial extension of T|̀X \E to X.

The other main tool used in this paper is the theory of plurisubharmonic
functions. If u is a plurisubharmonic function on X , we can associate with
u a closed positive current T = i∂∂u of bidegree (1, 1). Conversely, every
closed positive current of bidegree (1, 1) can be written under this form if
H2
DR(X, IR) = H1(X,O) = 0. In the special case u = log |F | with a non zero

holomorphic function F ∈ O(X), we have the important Lelong-Poincaré
equation

(0.7)
i

π
∂∂ log |F | = [ZF ],

where ZF =
∑
mjZj , mj ∈ IN, is the zero divisor of F and [ZF ] =

∑
mj [Zj ]

is the associated current of integration.

Our goal is to develope the intersection theory of analytic cycles from
this point of view. In particular, we would like to define the wedge product
T ∧i∂∂u1∧. . .∧i∂∂uq of a closed positive current T by “generalized” divisors
i∂∂uj . In general this is not possible, because measures cannot be multiplied.
However, we will show in sections 1,2 that Monge-Ampère operators of this
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type are well defined as soon as the set of poles of the uj ’s have intersections
of sufficiently low dimension. The proof rests on a procedure due to Bedford
and Taylor [B-T1], [B-T2] and consists mostly in rather simple integration
by parts. In spite of its simple nature, this result seems to be new.

Then, following [De2,4], we introduce the generalized Lelong numbers
of a closed positive current T ∈ D′

p,p(X) with respect to a plurisubharmonic
weight ϕ. Under suitable exhaustivity conditions for ϕ, we define ν(T, ϕ) as
the residue

(0.8) ν(T, ϕ) =

∫

ϕ−1(∞)

T ∧
( i

2π
∂∂ϕ

)p
.

The standard Lelong number ν(T, x) corresponds to the “isotropic” weight
ϕ(z) = log |z − x| ; it can also be seen as the euclidean density of T at x,
when T is compared to the current of integration over a p-dimensional vector
subspace in Cn. However the generalized definition is more flexible and allows
us to give very simple proofs of several basic properties: in particular, the
Lelong number ν(T, x) does not depend on the choice of coordinates, and
coincides with the algebraic multiplicity in the case of a current of integration
T = [A] (Thie’s theorem [Th]). These facts are obtained as a consequence of
a comparison theorem for the Lelong numbers ν(T, ϕ) and ν(T, ψ) associated
with different weights.

Next, we prove Siu’s semicontinuity theorem in this general setting: if
ϕy is a family of plurisubharmonic functions on X depending on a parameter
y ∈ Y , such that ϕ(x, y) := ϕy(x) is plurisubharmonic and satisfies some
natural exhaustivity and continuity conditions, then y 7→ ν(T, ϕy) is upper
semicontinuous with respect to the (analytic) Zariski topology. Explicitly,
the upperlevel sets

(0.9) Ec(T ) = {y ∈ Y ; ν(T, ϕy) ≥ c}, c > 0

are analytic in Y . The result of [Siu] concerning ordinary Lelong numbers
is obtained for ϕ(x, y) = log |x− y|, but the above result allows much more
general variations of the weight. The proof uses ideas of Kiselman [Ki 1,2] and
rests heavily on L2 estimates for ∂, specifically on the Hörmander-Bombieri-
Skoda theorem ([Hö], [Bo], [Sk2]).

Next, following [De2], we investigate the behaviour of Lelong numbers
under direct images by proper holomorphic maps. Let T be a closed positive
current of bidimension (p, p) on X , let F : X → Y be a proper and
finite analytic map and let F⋆T be the direct image of T by F . We prove
inequalities of the type

ν(F⋆T, y) ≥
∑

x∈SuppT∩F−1(y)

µp(F, x) ν(T, x),(0.10)

ν(F⋆T, y) ≤
∑

x∈SuppT∩F−1(y)

µp(F, x) ν(T, x),(0.10′)
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where µp(F, x) and µp(F, x) are suitable multiplicities attached to F at each
point. In case p = dimX , the multiplicity µp(F, x) coincides with the one
introduced by Stoll [St] (see also Draper [Dr]).

As an application of these inequalities, we prove a general Schwarz
lemma for entire functions in Cn, relating the growth at infinity of such a
function and the location of its zeros ([De1]). The proof is essentially based
on the Lelong-Jensen formula. Finally, we use the Schwarz lemma to derive a
simple proof of Bombieri’s theorem [Bo] on algebraic values of meromorphic
maps satisfying algebraic differential equations.

The above techniques are also useful for relating local intersection
invariants to global ones, e.g. intersection numbers of analytic cycles in
compact Kähler manifolds. In that case, it is very important to consider
self-intersections or situations with excess dimension of intersection. Such
situations can also be handled by the Monge-Ampère techniques, thanks
to a general regularization process for closed positive (1, 1)-currents on
compact manifolds [De7]. The smooth approximations of a positive current
are no longer positive, but they have a small negative part depending on the
curvature of the tangent bundle of the ambient manifold. As an application,
we obtain a general self-intersection inequality giving a bound for the degree
of the strata of constant multiplicity in an effective divisor D, in terms of a
polynomial in the cohomology class {D} ∈ H2

DR(X, IR). This inequality can
be seen as a generalization of the usual bound d(d− 1)/2 for the number of
multiple points of a plane curve of degree d. Other applications are presented
in [De5,6].

This paper is an expanded version of a course made in Nice in July 1989,
at a summer school on Complex Analysis organized by the ICPAM. Since
then, the author has benefited from many valuable remarks made by
several mathematicians, in particular M.S. Narasimhan at the Tata Institute,
Th. Peternell and M. Schneider at Bayreuth University, and Z. B locki,
S. Ko lodziej, J. Siciak and T. Winiarski at the Jagellonian University in
Cracow. The author expresses his warm thanks to these institutions for their
hospitality.

1. Definition of Monge-Ampère Operators

Let X be a n-dimensional complex manifold. We denote by d = d′ + d′′ the
usual decomposition of the exterior derivative in terms of its (1, 0) and (0, 1)
parts, and we set

dc =
1

2iπ
(d′ − d′′).
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It follows in particular that dc is a real operator, i.e. dcu = dcu, and
that ddc = i

π
d′d′′. Although not quite standard, the 1/2iπ normalization

is very convenient for many purposes, since we may then forget 2π almost
everywhere (e.g. in the Lelong-Poincaré equation (0.7)). In this context, we
have the following integration by part formula.

(1.1) Formula. Let Ω ⊂⊂ X be a smoothly bounded open set in X and
let f, g be forms of class C2 on Ω of pure bidegrees (p, p) and (q, q)
with p+ q = n− 1. Then

∫

Ω

f ∧ ddcg − ddcf ∧ g =

∫

∂Ω

f ∧ dcg − dcf ∧ g.

Proof. By Stokes’ theorem the right hand side is the integral over Ω of

d(f ∧ dcg − dcf ∧ g) = f ∧ ddcg − ddcf ∧ g + (df ∧ dcg + dcf ∧ dg).

As all forms of total degree 2n and bidegree 6= (n, n) are zero, we get

df ∧ dcg =
1

2iπ
(d′′f ∧ d′g − d′f ∧ d′′g) = −dcf ∧ dg. ⊓⊔

Let u be a plurisubharmonic function on X and let T be a closed
positive current of bidimension (p, p), i.e. of bidegree (n − p, n − p). Our
desire is to define the wedge product ddcu ∧ T even when neither u nor
T are smooth. A priori, this product does not make sense because ddcu
and T have measure coefficients and measures cannot be multiplied. The
discussion made in section 9 shows that there is no way of defining ddcu∧T
as a closed positive current without further hypotheses (see also [Ki3] for
interesting counterexamples). Assume however that u is a locally bounded
plurisubharmonic function. Then the current uT is well defined since u is a
locally bounded Borel function and T has measure coefficients. According to
Bedford-Taylor [B-T2] we define

ddcu ∧ T = ddc(uT )

where ddc( ) is taken in the sense of distribution (or current) theory.

(1.2) Proposition. The wedge product ddcu ∧ T is again a closed positive
current.

Proof. The result is local. In an open set Ω ⊂ Cn, we can use convolution
with a family of regularizing kernels to find a decreasing sequence of smooth
plurisubharmonic functions uk = u ⋆ ρ1/k converging pointwise to u. Then
u ≤ uk ≤ u1 and Lebesgue’s dominated convergence theorem shows that ukT
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converges weakly to uT ; thus ddc(ukT ) converges weakly to ddc(uT ) by the
weak continuity of differentiations. However, since uk is smooth, ddc(ukT )
coincides with the product ddcuk ∧ T in its usual sense. As T ≥ 0 and as
ddcuk is a positive (1, 1)-form, we have ddcuk ∧ T ≥ 0, hence the weak limit
ddcu ∧ T is ≥ 0 (and obviously closed). ⊓⊔

Given locally bounded plurisubharmonic functions u1, . . . , uq, we define
inductively

ddcu1 ∧ dd
cu2 ∧ . . . ∧ dd

cuq ∧ T = ddc(u1dd
cu2 . . . ∧ dd

cuq ∧ T ).

By (1.2) the product is a closed positive current. In particular, when u is
a locally bounded plurisubharmonic function, the bidegree (n, n) current
(ddcu)n is well defined and is a positive measure. If u is of class C2, a
computation in local coordinates gives

(ddcu)n = det
( ∂2u

∂zj∂zk

)
·
n!

πn
idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

The expression “Monge-Ampère operator” classically refers to the non-
linear partial differential operator u 7−→ det(∂2u/∂zj∂zk). By extension,
all operators (ddc)q defined above are also called Monge-Ampère operators.

Now, let Θ be a current of order 0. When K ⊂⊂ X is an arbitrary
compact subset, we define a mass semi-norm

||Θ||K =
∑

j

∫

Kj

∑

I,J

|ΘI,J |

by taking a partition K =
⋃
Kj where each Kj is contained in a coordinate

patch and where ΘI,J are the corresponding measure coefficients. Up to
constants, the semi-norm ||Θ||K does not depend on the choice of the
coordinate systems involved. When K itself is contained in a coordinate
patch, we set β = ddc|z|2 over K ; then, if Θ ≥ 0, there are constants
C1, C2 > 0 such that

C1||Θ||K ≤

∫

K

Θ ∧ βp ≤ C2||Θ||K.

We denote by L1(K), resp. by L∞(K), the space of integrable (resp. bounded
measurable) functions on K with respect to any smooth positive density
on X .

(1.3) Chern-Levine-Nirenberg inequalities ([C-L-N]). For all compact subsets
K,L of X with L ⊂ K◦, there exists a constant CK,L ≥ 0 such that

||ddcu1 ∧ . . . ∧ dd
cuq ∧ T ||L ≤ CK,L ||u1||L∞(K) . . . ||uq||L∞(K) ||T ||K .



8 Lelong Numbers and Intersection Theory

Proof. By induction, it is sufficient to prove the result for q = 1 and u1 = u.
There is a covering of L by a family of balls B′

j ⊂⊂ Bj ⊂ K contained in
coordinate patches of X . Let χ ∈ D(Bj) be equal to 1 on B

′

j . Then

||ddcu ∧ T ||
L∩B

′

j
≤ C

∫

B
′
j

ddcu ∧ T ∧ βp−1 ≤ C

∫

Bj

χddcu ∧ T ∧ βp−1.

As T and β are closed, an integration by parts yields

||ddcu ∧ T ||
L∩B

′

j
≤ C

∫

Bj

uT ∧ ddcχ ∧ βp−1 ≤ C′||u||L∞(K)||T ||K

where C′ is equal to C multiplied by a bound for the coefficients of the
smooth form ddcχ ∧ βp−1. ⊓⊔

(1.4) Remark. With the same notations as above, any plurisubharmonic
function V on X satisfies inequalities of the type

(a) ||ddcV ||L ≤ CK,L ||V ||L1(K).

(b) sup
L
V+ ≤ CK,L ||V ||L1(K).

In fact the inequality
∫

L∩B
′
j

ddcV ∧ βn−1 ≤

∫

Bj

χddcV ∧ βn−1 =

∫

Bj

V ddcχ ∧ βn−1

implies (a), and (b) follows from the mean value inequality.

(1.5) Remark. Products of the form Θ = γ1 ∧ . . . ∧ γq ∧ T with mixed
(1, 1)-forms γj = ddcuj or γj = dvj ∧ dcwj + dwj ∧ dcvj are also well
defined whenever uj , vj , wj are locally bounded plurisubharmonic functions.
Moreover, for L ⊂ K◦, we have

||Θ||L ≤ CK,L||T ||K
∏

||uj ||L∞(K)

∏
||vj ||L∞(K)

∏
||wj ||L∞(K).

To check this, we may suppose vj , wj ≥ 0 and ||vj || = ||wj || = 1 in L∞(K).
Then the inequality follows from (1.3) by the polarization identity

2(dvj∧d
cwj+dwj∧d

cvj) = ddc(vj+wj)
2−ddcv2

j−dd
cw2

j−vjdd
cwj−wjdd

cvj

in which all ddc operators act on plurisubharmonic functions.

(1.6) Corollary. Let u1, . . . , uq be continuous (finite) plurisubharmonic func-
tions and let uk1 , . . . , u

k
q be sequences of plurisubharmonic functions converg-

ing locally uniformly to u1, . . . , uq. If Tk is a sequence of closed positive
currents converging weakly to T , then
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(a) uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ Tk −→ u1dd

cu2 ∧ . . . ∧ dd
cuq ∧ T weakly.

(b) ddcuk1 ∧ . . . ∧ ddcukq ∧ Tk −→ ddcu1 ∧ . . . ∧ dd
cuq ∧ T weakly.

Proof. We observe that (b) is an immediate consequence of (a) by the weak
continuity of ddc. By using induction on q, it is enough to prove result
(a) when q = 1. If (uk) converges locally uniformly to a finite continuous
plurisubharmonic function u, we introduce local regularizations uε = u ⋆ ρε
and write

ukTk − uT = (uk − u)Tk + (u− uε)Tk + uε(Tk − T ).

As the sequence Tk is weakly convergent, it is locally uniformly bounded
in mass, thus ||(uk − u)Tk||K ≤ ||uk − u||L∞(K)||Tk||K converges to 0 on
every compact set K. The same argument shows that ||(u−uε)Tk||K can be
made arbitrarily small by choosing ε small enough. Finally uε is smooth, so
uε(Tk − T ) converges weakly to 0. ⊓⊔

Now, we prove a deeper monotone continuity theorem due to Bedford-
Taylor [B-T2], according to which the continuity and uniform convergence
assumptions can be dropped if each sequence (ukj ) is decreasing and Tk is a
constant sequence.

(1.7) Theorem. Let u1, . . . , uq be locally bounded plurisubharmonic functions
and let uk1 , . . . , u

k
q be decreasing sequences of plurisubharmonic functions

converging pointwise to u1, . . . , uq. Then

(a) uk1dd
cuk2 ∧ . . . ∧ ddcukq ∧ T −→ u1dd

cu2 ∧ . . . ∧ dd
cuq ∧ T weakly.

(b) ddcuk1 ∧ . . . ∧ ddcukq ∧ T −→ ddcu1 ∧ . . . ∧ dd
cuq ∧ T weakly.

Proof. Again by induction, observing that (a) =⇒ (b) and that (a) is obvious
for q = 1 thanks to Lebesgue’s bounded convergence theorem. To proceed
with the induction step, we first have to make some slight modifications of
our functions uj and ukj .

As the sequence (ukj ) is decreasing and as uj is locally bounded, the
family (ukj )k∈IN is locally uniformly bounded. The results are local, so we can
work on a Stein open set Ω ⊂⊂ X with strongly pseudoconvex boundary.
We use the following notations:

(1.8) Let ψ be a strongly plurisubharmonic function of class C∞ near Ω
with ψ < 0 on Ω and ψ = 0, dψ 6= 0 on ∂Ω.

(1.8′) We set Ωδ = {z ∈ Ω ; ψ(z) < −δ} for all δ > 0.
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After addition of a constant we can assume that −M ≤ ukj ≤ −1 near Ω.
Let us denote by (uk,εj ), ε ∈ ]0, ε0], an increasing family of regularizations
converging to ukj as ε → 0 and such that −M ≤ uk,εj ≤ −1 on Ω. Set
A = M/δ with δ > 0 small and replace ukj by vkj = max{Aψ, ukj} and uk,εj
by vk,εj = maxε{Aψ, u

k,ε
j } where maxε = max ⋆ ρε is a regularized max

function (the construction of vkj is described by Fig. 1).

0

−1

−M

IR

Aψ

Ωδ Ω \Ωδ

ukj

Fig. 1. Construction of v
k
j

Then vkj coincides with ukj on Ωδ since Aψ < −Aδ = −M on Ωδ, and vkj
is equal to Aψ on the corona Ω \ Ωδ/M . Without loss of generality, we can
therefore assume that all ukj (and similarly all uk,εj ) coincide with Aψ on a
fixed neighborhood of ∂Ω. We need a lemma.

(1.9) Lemma. Let fk be a decreasing sequence of upper semi-continuous
functions converging to f on some separable locally compact space X and
µk a sequence of positive measures converging weakly to µ on X. Then every
weak limit ν of fkµk satisfies ν ≤ fµ.

Indeed if (gp) is a decreasing sequence of continuous functions converg-
ing to fk0 for some k0, then fkµk ≤ fk0µk ≤ gpµk for k ≥ k0, thus ν ≤ gpµ
as k → +∞. The monotone convergence theorem then gives ν ≤ fk0µ as
p→ +∞ and ν ≤ fµ as k0 → +∞. ⊓⊔

End of proof of Theorem 1.7. Assume that (a) has been proved for q − 1.
Then

Sk = ddcuk2 ∧ . . . ∧ ddcukq ∧ T −→ S = ddcu2 ∧ . . . ∧ dd
cuq ∧ T.
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By 1.3 the sequence (uk1S
k) has locally bounded mass, hence is relatively

compact for the weak topology. In order to prove (a), we only have to
show that every weak limit Θ of uk1S

k is equal to u1S. Let (m,m) be the
bidimension of S and let γ be an arbitrary smooth and strongly positive form
of bidegree (m,m). Then the positive measures Sk ∧ γ converge weakly to
S∧γ and Lemma 1.9 shows that Θ∧γ ≤ u1S∧γ, hence Θ ≤ u1S. To get the
equality, we set β = ddcψ > 0 and show that

∫
Ω
u1S ∧ βm ≤

∫
Ω
Θ ∧ βm, i.e.

∫

Ω

u1dd
cu2∧ . . .∧dd

cuq∧T ∧βm ≤ lim inf
k→+∞

∫

Ω

uk1dd
cuk2 ∧ . . .∧dd

cukq ∧T ∧βm.

As u1 ≤ uk1 ≤ uk,ε11 for every ε1 > 0, we get

∫

Ω

u1dd
cu2 ∧ . . . ∧ dd

cuq ∧ T ∧ βm

≤

∫

Ω

uk,ε11 ddcu2 ∧ . . . ∧ dd
cuq ∧ T ∧ βm

=

∫

Ω

ddcuk,ε11 ∧ u2dd
cu3 ∧ . . . ∧ dd

cuq ∧ T ∧ βm

after an integration by parts (there is no boundary term because uk,ε11 and
u2 both vanish on ∂Ω). Repeating this argument with u2, . . . , uq, we obtain

∫

Ω

u1dd
cu2 ∧ . . . ∧ dd

cuq ∧ T ∧ βm

≤

∫

Ω

ddcuk,ε11 ∧ . . . ∧ ddcu
k,εq−1

q−1 ∧ uqT ∧ βm

≤

∫

Ω

uk,ε11 ddcuk,ε22 ∧ . . . ∧ ddcuk,εq
q ∧ T ∧ βm.

Now let εq → 0, . . . , ε1 → 0 in this order. We have weak convergence at each
step and uk,ε11 = 0 on the boundary; therefore the integral in the last line
converges and we get the desired inequality
∫

Ω

u1dd
cu2 ∧ . . .∧ dd

cuq ∧ T ∧ βm ≤

∫

Ω

uk1dd
cuk2 ∧ . . .∧ dd

cukq ∧ T ∧ βm. ⊓⊔

(1.10) Corollary. The product ddcu1∧. . .∧dd
cuq∧T is symmetric with respect

to u1, . . . , uq.

Proof. Observe that the definition was unsymmetric. The result is true when
u1, . . . , uq are smooth and follows in general from Th. 1.7 applied to the
sequences ukj = uj ⋆ ρ1/k, 1 ≤ j ≤ q. ⊓⊔



12 Lelong Numbers and Intersection Theory

(1.11) Proposition. Let K,L be compact subsets of X such that L ⊂ K◦. For
any plurisubharmonic functions V, u1, . . . , uq on X such that u1, . . . , uq are
locally bounded, there is an inequality

||V ddcu1 ∧ . . . ∧ dd
cuq||L ≤ CK,L ||V ||L1(K)||u1||L∞(K) . . . ||uq||L∞(K).

Proof. We may assume that L is contained in a strongly pseudoconvex open
set Ω = {ψ < 0} ⊂ K (otherwise we cover L by small balls contained in K).
A suitable normalization gives −2 ≤ uj ≤ −1 on K ; then we can modify
uj on Ω \ L so that uj = Aψ on Ω \ Ωδ with a fixed constant A and δ > 0
such that L ⊂ Ωδ. Let χ ≥ 0 be a smooth function equal to −ψ on Ωδ
with compact support in Ω. If we take ||V ||L1(K) = 1, we see that V+ is
uniformly bounded on Ωδ by 1.4 (b); after subtraction of a fixed constant
we can assume V ≤ 0 on Ωδ. First suppose q ≤ n−1. As uj = Aψ on Ω \Ωδ,
we find∫

Ωδ

−V ddcu1 ∧ . . . ∧ dd
cuq ∧ β

n−q

=

∫

Ω

V ddcu1 ∧ . . . ∧ dd
cuq ∧ β

n−q−1 ∧ ddcχ−Aq
∫

Ω \Ωδ

V βn−1 ∧ ddcχ

=

∫

Ω

χddcV ∧ ddcu1 ∧ . . . ∧ dd
cuq ∧ β

n−q−1 −Aq
∫

Ω \Ωδ

V βn−1 ∧ ddcχ.

The first integral of the last line is uniformly bounded thanks to 1.3 and
1.4 (a), and the second one is bounded by ||V ||L1(Ω) ≤ constant. Inequality
1.11 follows for q ≤ n−1. If q = n, we can work instead on X×C and consider
V, u1, . . . , uq as functions on X × C independent of the extra variable in C.

⊓⊔

2. Case of Unbounded Plurisubharmonic Functions

We would like to define ddcu1 ∧ . . . ∧ ddcuq ∧ T also in some cases when
u1, . . . , uq are not bounded below everywhere, especially when the uj have
logarithmic poles. Consider first the case q = 1 and let u be a plurisubhar-
monic function on X . The pole set of u is by definition P (u) = u−1(−∞).
We define the unbounded locus L(u) to be the set of points x ∈ X such
that u is unbounded in every neighborhood of x. Clearly L(u) is closed
and we have L(u) ⊃ P (u) but in general these sets are different: in fact,

u(z) =
∑
k−2 log(|z−1/k|+e−k

3

) is everywhere finite in C but L(u) = {0}.
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(2.1) Proposition. We make two additional assumptions:

(a) T has non zero bidimension (p, p) (i.e. degree of T < 2n).

(b) X is covered by a family of Stein open sets Ω ⊂⊂ X whose boundaries
∂Ω do not intersect L(u) ∩ Supp T .

Then the current uT has locally finite mass in X.

For any current T , hypothesis 2.1 (b) is clearly satisfied when u has a
discrete unbounded locus L(u); an interesting example is u = log |F | where
F = (F1, . . . , FN ) are holomorphic functions having a discrete set of common
zeros. Observe that the current uT need not have locally finite mass when
T has degree 2n (i.e. T is a measure); example: T = δ0 and u(z) = log |z|
in Cn. The result also fails when the sets Ω are not assumed to be Stein;
example: X = blow-up of Cn at 0, T = [E] = current of integration on the
exceptional divisor and u(z) = log |z|.

Proof. By shrinking Ω slightly, we may assume that Ω has a smooth strongly
pseudoconvex boundary. Let ψ be a defining function of Ω as in (1.8). By
subtracting a constant to u, we may assume u ≤ −ε on Ω. We fix δ so small
that Ω \Ωδ does not intersect L(u) ∩ Supp T and we select a neighborhood
ω of (Ω \Ωδ) ∩ Supp T such that ω ∩ L(u) = ∅. Then we define

us(z) =

{
max{u(z), Aψ(z)} on ω,
max{u(z), s} on Ωδ = {ψ < −δ}.

By construction u ≥ −M on ω for some constant M > 0. We fix A ≥ M/δ
and take s ≤ −M , so

max{u(z), Aψ(z)} = max{u(z), s} = u(z) on ω ∩Ωδ
and our definition of us is coherent. Observe that us is defined on ω ∪ Ωδ,
which is a neighborhood of Ω ∩ Supp T . Now, us = Aψ on ω ∩ (Ω \ Ωε/A),
hence Stokes’ theorem implies∫

Ω

ddcus ∧ T ∧ (ddcψ)p−1 −

∫

Ω

Addcψ ∧ T ∧ (ddcψ)p−1

=

∫

Ω

ddc
[
(us −Aψ)T ∧ (ddcψ)p−1

]
= 0

because the current [. . .] has a compact support contained in Ωε/A. Since us
and ψ both vanish on ∂Ω, an integration by parts gives∫

Ω

usT ∧ (ddcψ)p =

∫

Ω

ψddcus ∧ T ∧ (ddcψ)p−1

≥ −||ψ||L∞(Ω)

∫

Ω

T ∧ ddcus ∧ (ddcψ)p−1

= −||ψ||L∞(Ω)A

∫

Ω

T ∧ (ddcψ)p.
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Finally, take A = M/δ, let s tend to −∞ and use the inequality u ≥ −M
on ω. We obtain

∫

Ω

uT ∧ (ddcψ)p ≥ −M

∫

ω

T ∧ (ddcψ)p + lim
s→−∞

∫

Ωδ

usT ∧ (ddcψ)p

≥ −
(
M + ||ψ||L∞(Ω)M/δ

) ∫

Ω

T ∧ (ddcψ)p.

The last integral is finite. This concludes the proof. ⊓⊔

(2.2) Remark. If Ω is smooth and strongly pseudoconvex, the above proof
shows in fact that

||uT ||Ω ≤
C

δ
||u||L∞((Ω \Ωδ)∩SuppT )||T ||Ω

when L(u) ∩ Supp T ⊂ Ωδ. In fact, if u is continuous and if ω is cho-
sen sufficiently small, the constant M can be taken arbitrarily close to
||u||L∞((Ω \Ωδ)∩SuppT ). Moreover, the maximum principle implies

||u+||L∞(Ω∩SuppT ) = ||u+||L∞(∂Ω∩SuppT ),

so we can achieve u < −ε on a neighborhood of Ω ∩ Supp T by subtracting
||u||L∞((Ω \Ωδ)∩SuppT ) + 2ε [Proof of maximum principle: if u(z0) > 0 at

z0 ∈ Ω ∩ Supp T and u ≤ 0 near ∂Ω ∩ Supp T , then

∫

Ω

u+T ∧ (ddcψ)p =

∫

Ω

ψddcu+ ∧ T ∧ (ddcψ)p−1 ≤ 0,

a contradiction]. ⊓⊔

(2.3) Corollary. Let u1, . . . , uq be plurisubharmonic functions on X such that
X is covered by Stein open sets Ω with ∂Ω ∩ L(uj) ∩ Supp T = ∅. We use
again induction to define

ddcu1 ∧ dd
cu2 ∧ . . . ∧ dd

cuq ∧ T = ddc(u1dd
cu2 . . . ∧ dd

cuq ∧ T ).

Then, if uk1 , . . . , u
k
q are decreasing sequences of plurisubharmonic functions

converging pointwise to u1, . . . , uq, q ≤ p, properties (1.7 a, b) hold.
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0

−1

−M

IR

Ω \ΩδL(uj)

ω

Aψ

ukj

Supp T

Fig. 2. Modified construction of v
k
j

Proof. Same proof as for Th. 1.7, with the following minor modification:
the max procedure vkj := max{ukj , Aψ} is applied only on a neighborhood

ω of SuppT ∩ (Ω \ Ωδ) with δ > 0 small, and ukj is left unchanged near

Supp T ∩Ωδ (see Fig. 2). Observe that the integration by part process
requires the functions ukj and uk,εj to be defined only near Ω ∩ Supp T . ⊓⊔

(2.4) Proposition. Let Ω ⊂⊂ X be a Stein open subset. If V is a plurisubhar-
monic function on X and u1, . . . , uq, 1 ≤ q ≤ n − 1, are plurisubharmonic
functions such that ∂Ω ∩ L(uj) = ∅, then V ddcu1 ∧ . . . ∧ ddcuq has locally
finite mass in Ω.

Proof. Same proof as for 1.11, when δ > 0 is taken so small that Ωδ ⊃ L(uj)
for all 1 ≤ j ≤ q. ⊓⊔

Finally, we show that Monge-Ampère operators can also be defined
in the case of plurisubharmonic functions with non compact pole sets,
provided that the mutual intersections of the pole sets are of sufficiently
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small Hausdorff dimension with respect to the dimension p of T .

(2.5) Theorem. Let u1, . . . , uq be plurisubharmonic functions on X. The
currents u1dd

cu2 ∧ . . . ∧ ddcuq ∧ T and ddcu1 ∧ . . . ∧ ddcuq ∧ T are well
defined and have locally finite mass in X as soon as q ≤ p and

H2p−2m+1

(
L(uj1) ∩ . . . ∩ L(ujm) ∩ Supp T

)
= 0

for all choices of indices j1 < . . . < jm in {1, . . . , q}.

The proof is an easy induction on q, thanks to the following improved
version of the Chern-Levine-Nirenberg inequalities.

(2.6) Proposition. Let A1, . . . , Aq ⊂ X be closed sets such that

H2p−2m+1

(
Aj1 ∩ . . . ∩ Ajm ∩ Supp T

)
= 0

for all choices of j1 < . . . < jm in {1, . . . , q}. Then for all compact sets K,
L of X with L ⊂ K◦, there exist neighborhoods Vj of K ∩Aj and a constant
C = C(K,L,Aj) such that the conditions uj ≤ 0 on K and L(uj) ⊂ Aj
imply

(a) ||u1dd
cu2 ∧ . . .∧dd

cuq ∧T ||L ≤ C||u1||L∞(K \V1) . . . ||uq||L∞(K \Vq)||T ||K

(b) ||ddcu1 ∧ . . . ∧ dd
cuq ∧ T ||L ≤ C||u1||L∞(K \V1) . . . ||uq||L∞(K \Vq)||T ||K.

Proof. We need only show that every point x0 ∈ K◦ has a neighborhood
L such that (a), (b) hold. Hence it is enough to work in a coordinate open
set. We may thus assume that X ⊂ Cn is open, and after a regularization
process uj = limuj ⋆ ρε for j = q, q − 1, . . . , 1 in this order, that u1, . . . , uq
are smooth. We proceed by induction on q in two steps:

Step 1. (bq−1) =⇒ (bq),
Step 2. (aq−1) and (bq) =⇒ (aq),

where (b0) is the trivial statement ||T ||L ≤ ||T ||K and (a0) is void. Observe
that we have (aq) =⇒ (aℓ) and (bq) =⇒ (bℓ) for ℓ ≤ q ≤ p by taking
uℓ+1(z) = . . . = uq(z) = |z|2. We need the following elementary fact.

(2.7) Lemma. Let F ⊂ Cn be a closed set such that H2s+1(F ) = 0 for
some integer 0 ≤ s < n. Then for almost all choices of unitary coordinates
(z1, . . . , zn) = (z′, z′′) with z′ = (z1, . . . , zs), z

′′ = (zs+1, . . . , zn) and almost
all radii of balls B′′ = B(0, r′′) ⊂ Cn−s, the set {0} × ∂B′′ does not
intersect F .
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Proof. The unitary group U(n) has real dimension n2. There is a proper
submersion

Φ : U(n) ×
(
Cn−s \ {0}

)
−→ Cn \ {0}, (g, z′′) 7−→ g(0, z′′),

whose fibers have real dimension N = n2 − 2s. It follows that the inverse
image Φ−1(F ) has zero Hausdorff measure HN+2s+1 = Hn2+1. The set of
pairs (g, r′′) ∈ U(n) × IR⋆

+ such that g({0} × ∂B′′) intersects F is precisely
the image of Φ−1(F ) in U(n)× IR⋆

+ by the Lipschitz map (g, z′′) 7→ (g, |z′′|).
Hence this set has zero Hn2+1-measure. ⊓⊔

Proof of step 1. Take x0 = 0 ∈ K◦. Suppose first 0 ∈ A1 ∩ . . . ∩ Aq and set
F = A1∩ . . .∩Aq∩Supp T . Since H2p−2q+1(F ) = 0, Lemma 2.7 implies that
there are coordinates z′ = (z1, . . . , zs), z

′′ = (zs+1, . . . , zn) with s = p − q

and a ball B
′′

such that F ∩
(
{0} × ∂B′′

)
= ∅ and {0} × B

′′
⊂ K◦. By

compactness of K, we can find neighborhoods Wj of K ∩ Aj and a ball

B′ = B(0, r′) ⊂ Cs such that B
′
×B

′′
⊂ K◦ and

(2.8) W 1 ∩ . . . ∩W q ∩ Supp T ∩
(
B

′
×

(
B

′′
\ (1 − δ)B′′

))
= ∅

for δ > 0 small. If 0 /∈ Aj for some j, we choose instead Wj to be a small

neighborhood of 0 such that W j ⊂ (B
′
× (1 − δ)B′′) \Aj ; property (2.8) is

then automatically satisfied. Let χj ≥ 0 be a function with compact support
in Wj , equal to 1 near K ∩ Aj if Aj ∋ 0 (resp. equal to 1 near 0 if Aj 6∋ 0)
and let χ(z′) ≥ 0 be a function equal to 1 on 1/2B′ with compact support
in B′. Then∫

B′×B′′

ddc(χ1u1) ∧ . . . ∧ ddc(χquq) ∧ T ∧ χ(z′) (ddc|z′|2)s = 0

because the integrand is ddc exact and has compact support in B′ × B′′

thanks to (2.8). If we expand all factors ddc(χjuj), we find a term

χ1 . . . χqχ(z′)ddcu1 ∧ . . . ∧ dd
cuq ∧ T ≥ 0

which coincides with ddcu1 ∧ . . . ∧ ddcuq ∧ T on a small neighborhood of 0
where χj = χ = 1. The other terms involve

dχj ∧ d
cuj + duj ∧ d

cχj + ujdd
cχj

for at least one index j. However dχj and ddcχj vanish on some neighborhood
V ′
j of K ∩ Aj and therefore uj is bounded on B

′
×B

′′
\ V ′

j . We then apply
the induction hypothesis (bq−1) to the current

Θ = ddcu1 ∧ . . . ∧ ̂ddcuj ∧ . . . ∧ ddcuq ∧ T
and the usual Chern-Levine-Nirenberg inequality to the product of Θ with
the mixed term dχj ∧ d

cuj +duj ∧ d
cχj . Remark 1.5 can be applied because

χj is smooth and is therefore a difference χ
(1)
j − χ

(2)
j of locally bounded
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plurisubharmonic functions in Cn. Let K ′ be a compact neighborhood of
B

′
×B

′′
with K ′ ⊂ K◦, and let Vj be a neighborhood of K ∩ Aj with

V j ⊂ V ′
j . Then with L′ := (B

′
×B

′′
) \ V ′

j ⊂ (K ′ \ Vj)
◦ we obtain

||(dχj∧d
cuj + duj∧d

cχj) ∧Θ||
B

′
×B

′′ = ||(dχj∧d
cuj + duj∧d

cχj) ∧Θ||L′

≤ C1||uj||L∞(K′ \Vj)||Θ||K′ \Vj
,

||Θ||K′ \Vj
≤ ||Θ||K′ ≤ C2||u1||L∞(K \V1) . . .

̂||uj|| . . . ||uq||L∞(K \Vq)||T ||K .

Now, we may slightly move the unitary basis in Cn and get coordinate
systems zm = (zm1 , . . . , z

m
n ) with the same properties as above, such that

the forms

(ddc|zm′|2)s =
s!

πs
i dzm1 ∧ dzm1 ∧ . . . ∧ i dzms ∧ dzms , 1 ≤ m ≤ N

define a basis of
∧s,s

(Cn)⋆. It follows that all measures

ddcu1 ∧ . . . ∧ dd
cuq ∧ T ∧ i dzm1 ∧ dzm1 ∧ . . . ∧ i dzms ∧ dzms

satisfy estimate (bq) on a small neighborhood L of 0.

Proof of Step 2. We argue in a similar way with the integrals∫

B′×B′′

χ1u1dd
c(χ2u2) ∧ . . . ddc(χquq) ∧ T ∧ χ(z′)(ddc|z′|2)s ∧ ddc|zs+1|

2

=

∫

B′×B′′

|zs+1|
2ddc(χ1u1) ∧ . . . ddc(χquq) ∧ T ∧ χ(z′)(ddc|z′|2)s.

We already know by (bq) and Remark 1.5 that all terms in the right hand
integral admit the desired bound. For q = 1, this shows that (b1) =⇒ (a1).
Except for χ1 . . . χqχ(z′) u1dd

cu2 ∧ . . . ∧ ddcuq ∧ T , all terms in the left
hand integral involve derivatives of χj . By construction, the support of these
derivatives is disjoint from Aj, thus we only have to obtain a bound for∫

L

u1dd
cu2 ∧ . . . ∧ dd

cuq ∧ T ∧ α

when L = B(x0, r) is disjoint from Aj for some j ≥ 2, say L∩A2 = ∅, and α is
a constant positive form of type (p−q, p−q). Then B(x0, r+ε) ⊂ K◦ \V 2 for
some ε > 0 and some neighborhood V2 of K ∩A2. By the max construction
used e.g. in Prop. 2.1, we can replace u2 by a plurisubharmonic function ũ2

equal to u2 in L and to A(|z−x0|
2−r2)−M in B(x0, r+ε) \B(x0, r+ε/2),

with M = ||u2||L∞(K \V2) and A = M/εr. Let χ ≥ 0 be a smooth function
equal to 1 on B(x0, r + ε/2) with support in B(x0, r). Then∫

B(x0,r+ε)

u1dd
c(χũ2) ∧ ddcu3 ∧ . . . ∧ dd

cuq ∧ T ∧ α

=

∫

B(x0,r+ε)

χũ2dd
cu1 ∧ dd

cu3 ∧ . . . ∧ dd
cuq ∧ T ∧ α

≤ O(1) ||u1||L∞(K \V1) . . . ||uq||L∞(K \Vq)||T ||K
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where the last estimate is obtained by the induction hypothesis (bq−1)
applied to ddcu1 ∧ dd

cu3 ∧ . . . ∧ dd
cuq ∧ T . By construction

ddc(χũ2) = χddcũ2 + (smooth terms involving dχ)

coincides with ddcu2 in L, and (aq−1) implies the required estimate for the
other terms in the left hand integral. ⊓⊔

Proposition 2.9. With the assumptions of Th. 2.5, the analogue of the
monotone convergence Theorem 1.7 (a,b) holds.

Proof. By the arguments already used in the proof of Th. 1.7 (e.g. by
Lemma 1.9), it is enough to show that

∫

B′×B′′

χ1 . . . χq u1 ∧ dd
cu2 ∧ . . . ∧ dd

cuq ∧ T ∧ α

≤ lim inf
k→+∞

∫

B′×B′′

χ1 . . . χq u
k
1dd

cuk2 ∧ . . . ∧ ddcukq ∧ T ∧ α

where α = χ(z′)(ddc|z′|2)s is closed. Here the functions χj , χ are chosen as
in the proof of Step 1 in 2.7, especially their product has compact support in
B′ ×B′′ and χj = χ = 1 in a neighborhood of the given point x0. We argue
by induction on q and also on the number m of functions (uj)j≥1 which are
unbounded near x0. If uj is bounded near x0, we take W ′′

j ⊂⊂ W ′
j ⊂⊂ Wj

to be small balls of center x0 on which uj is bounded and we modify the
sequence ukj on the corona Wj \W ′′

j so as to make it constant and equal to a

smooth function A|z−x0|
2 +B on the smaller corona Wj \W ′

j . In that case,
we take χj equal to 1 near W

′

j and Suppχj ⊂ Wj . For every ℓ = 1, . . . , q,
we are going to check that

lim inf
k→+∞

∫

B′×B′′

χ1u
k
1dd

c(χ2u
k
2) ∧ . . .

ddc(χℓ−1u
k
ℓ−1) ∧ ddc(χℓuℓ) ∧ dd

c(χℓ+1uℓ+1) . . . ddc(χquq) ∧ T ∧ α

≤ lim inf
k→+∞

∫

B′×B′′

χ1u
k
1dd

c(χ2u
k
2) ∧ . . .

ddc(χℓ−1u
k
ℓ−1) ∧ ddc(χℓu

k
ℓ ) ∧ ddc(χℓ+1uℓ+1) . . . ddc(χquq) ∧ T ∧ α.

In order to do this, we integrate by parts χ1u
k
1dd

c(χℓuℓ) into χℓuℓdd
c(χ1u

k
1)

for ℓ ≥ 2, and we use the inequality uℓ ≤ ukℓ . Of course, the derivatives dχj ,
dcχj , dd

cχj produce terms which are no longer positive and we have to take
care of these. However, Supp dχj is disjoint from the unbounded locus of
uj when uj is unbounded, and contained in Wj \ W

′

j when uj is bounded.
The number m of unbounded functions is therefore replaced by m − 1 in
the first case, whereas in the second case ukj = uj is constant and smooth
on Supp dχj , so q can be replaced by q − 1. By induction on q + m (and
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thanks to the polarization technique 1.5), the limit of the terms involving
derivatives of χj is equal on both sides to the corresponding terms obtained
by suppressing all indices k. Hence these terms do not give any contribution
in the inequalities. ⊓⊔

We finally quote the following simple consequences of Th. 2.5 when T is
arbitrary and q = 1, resp. when T = 1 has bidegree (0, 0) and q is arbitrary.

(2.10) Corollary. Let T be a closed positive current of bidimension (p, p)
and let u be a plurisubharmonic function on X such that L(u) ∩ Supp T
is contained in an analytic set of dimension at most p − 1. Then uT and
ddcu ∧ T are well defined and have locally finite mass in X. ⊓⊔

(2.11) Corollary. Let u1, . . . , uq be plurisubharmonic functions on X such
that L(uj) is contained in an analytic set Aj ⊂ X for every j. Then
ddcu1∧ . . .∧dd

cuq is well defined as soon as Aj1 ∩ . . .∩Ajm has codimension
at least m for all choices of indices j1 < . . . < jm in {1, . . . , q}. ⊓⊔

In the particular case when uj = log |fj | for some non zero holomorphic
function fj on X , we see that the intersection product of the associated zero
divisors [Zj] = ddcuj is well defined as soon as the supports |Zj | satisfy
codim |Zj1 | ∩ . . . ∩ |Zjm | = m for every m. Similarly, when T = [A] is an
analytic p-cycle, Cor. 2.10 shows that [Z] ∧ [A] is well defined for every
divisor Z such that dim |Z| ∩ |A| = p − 1. These observations easily imply
the following

(2.12) Proposition. Suppose that the divisors Zj satisfy the above codimen-
sion condition and let (Ck)k≥1 be the irreducible components of the point set
intersection |Z1| ∩ . . . ∩ |Zq|. Then there exist integers mk > 0 such that

[Z1] ∧ . . . ∧ [Zq] =
∑

mk[Ck].

The number mk is called the multiplicity of intersection of Z1, . . . , Zq
along Ck.

Proof. The wedge product has bidegree (q, q) and support in C =
⋃
Ck

where codimC = q, so it must be a sum as above with mk ∈ IR+. We check
by induction on q that mk is a positive integer. If we denote by A some
irreducible component of |Z1|∩. . .∩|Zq−1|, we need only check that [A]∧[Zq]
is an integral analytic cycle of codimension q with positive coefficients on
each component Ck of the intersection. However [A]∧[Zq] = ddc(log |fq| [A]).
First suppose that no component of A ∩ f−1

q (0) is contained in the singular
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part Asing. Then the Lelong-Poincaré equation applied on Areg shows that
ddc(log |fq| [A]) =

∑
mk[Ck] on X \Asing, where mk is the vanishing order

of fq along Ck in Areg. Since C ∩ Asing has codimension q + 1 at least, the
equality must hold onX . In general, we replace fq by fq−ε so that the divisor
of fq−ε has no component contained in Asing. Then ddc(log |fq−ε| [A]) is an
integral codimension q cycle with positive multiplicities on each component
of A ∩ f−1

q (ε) and we conclude by letting ε tend to zero. ⊓⊔

3. Generalized Lelong Numbers

The concepts we are going to study mostly concern the behaviour of currents
or plurisubharmonic functions in a neighborhood of a point at which we
have for instance a logarithmic pole. Since the interesting applications are
local, we assume from now on (unless otherwise stated) that X is a Stein
manifold, i.e. that X has a strictly plurisubharmonic exhaustion function.
Let ϕ : X −→ [−∞,+∞[ be a continuous plurisubharmonic function (in
general ϕ may have −∞ poles, our continuity assumption means that eϕ is
continuous). The sets

S(r) = {x ∈ X ; ϕ(x) = r},(3.1)

B(r) = {x ∈ X ; ϕ(x) < r},(3.1′)

B(r) = {x ∈ X ; ϕ(x) ≤ r}(3.1′′)

will be called pseudo-spheres and pseudo-balls associated with ϕ. Note that
B(r) is not necessarily equal to the closure of B(r), but this is often true in
concrete situations. The most simple example we have in mind is the case
of the function ϕ(z) = log |z − a| on an open subset X ⊂ Cn ; in this case
B(r) is the euclidean ball of center a and radius er ; moreover, the forms

(3.2)
1

2
ddce2ϕ =

i

2π
d′d′′|z|2, ddcϕ =

i

π
d′d′′ log |z − a|

can be interpreted respectively as the flat hermitian metric on Cn and as
the pull-back over Cn of the Fubini-Study metric of IPn−1, translated by a.

(3.3) Definition. We say that ϕ is semi-exhaustive if there exists a real
number R such that B(R) ⊂⊂ X. Similarly, ϕ is said to be semi-exhaustive
on a closed subset A ⊂ X if there exists R such that A ∩B(R) ⊂⊂ X.

We are interested especially in the set of poles S(−∞) = {ϕ = −∞}
and in the behaviour of ϕ near S(−∞). Let T be a closed positive current of
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bidimension (p, p) on X . Assume that ϕ is semi-exhaustive on Supp T and
that B(R) ∩ Supp T ⊂⊂ X . Then P = S(−∞) ∩ SuppT is compact and the
results of §2 show that the measure T ∧ (ddcϕ)p is well defined. Following
[De2], [De4], we introduce:

(3.4) Definition. If ϕ is semi-exhaustive on Supp T and if R is such that
B(R) ∩ Supp T ⊂⊂ X, we set for all r ∈ ] −∞, R[

ν(T, ϕ, r) =

∫

B(r)

T ∧ (ddcϕ)p,

ν(T, ϕ) =

∫

S(−∞)

T ∧ (ddcϕ)p = lim
r→−∞

ν(T, ϕ, r).

The number ν(T, ϕ) will be called the (generalized) Lelong number of T with
respect to the weight ϕ.

If we had not required T ∧(ddcϕ)p to be defined pointwise on ϕ−1(−∞),
the assumption that X is Stein could have been dropped: in fact, the integral
over B(r) always makes sense if we define

ν(T, ϕ, r) =

∫

B(r)

T ∧
(
ddc max{ϕ, s}

)p
with s < r.

Stokes’ formula shows that the right hand integral is actually independent
of s. The example given after (2.1) shows however that T ∧ (ddcϕ)p need not
exist on ϕ−1(−∞) if ϕ−1(−∞) contains an exceptional compact analytic
subset. We leave the reader consider by himself this more general situation
and extend our statements by the max{ϕ, s} technique. Observe that r 7−→
ν(T, ϕ, r) is always an increasing function of r. Before giving examples, we
need a formula.

(3.5) Formula. For any convex increasing function χ : IR −→ IR we have∫

B(r)

T ∧ (ddcχ ◦ ϕ)p = χ′(r − 0)p ν(T, ϕ, r)

where χ′(r − 0) denotes the left derivative of χ at r.

Proof. Let χε be the convex function equal to χ on [r − ε,+∞[ and to a
linear function of slope χ′(r − ε− 0) on ] −∞, r− ε]. We get ddc(χε ◦ ϕ) =
χ′(r − ε− 0)ddcϕ on B(r − ε) and Stokes’ theorem implies∫

B(r)

T ∧ (ddcχ ◦ ϕ)p =

∫

B(r)

T ∧ (ddcχε ◦ ϕ)p

≥

∫

B(r−ε)

T ∧ (ddcχε ◦ ϕ)p

= χ′(r − ε− 0)pν(T, ϕ, r − ε).
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Similarly, taking χ̃ε equal to χ on ] − ∞, r − ε] and linear on [r − ε, r], we
obtain∫

B(r−ε)

T ∧ (ddcχ ◦ ϕ)p ≤

∫

B(r)

T ∧ (ddcχ̃ε ◦ ϕ)p = χ′(r − ε− 0)pν(T, ϕ, r).

The expected formula follows when ε tends to 0. ⊓⊔

We get in particular
∫
B(r)

T ∧ (ddce2ϕ)p = (2e2r)pν(T, ϕ, r), whence the

formula

(3.6) ν(T, ϕ, r) = e−2pr

∫

B(r)

T ∧
(1

2
ddce2ϕ

)p
.

Now, assume that X is an open subset of Cn and that ϕ(z) = log |z−a|
for some a ∈ X . Formula (3.6) gives

ν(T, ϕ, log r) = r−2p

∫

|z−a|<r

T ∧
( i

2π
d′d′′|z|2

)p
.

The positive measure σT = 1
p!T ∧( i

2d
′d′′|z|2)p = 2−p

∑
TI,I . i

ndz1∧ . . .∧dzn
is called the trace measure of T . We get

(3.7) ν(T, ϕ, log r) =
σT

(
B(a, r)

)

πpr2p/p!

and ν(T, ϕ) is the limit of this ratio as r → 0. This limit is called the
(ordinary) Lelong number of T at point a and is denoted ν(T, a). This was
precisely the original definition of Lelong (cf. [Le3]). Let us mention a simple
but important consequence.

(3.8) Consequence. The ratio σT
(
B(a, r)

)
/r2p is an increasing function of r.

Moreover, for every compact subset K ⊂ X and every r0 < d(K, ∂X) we
have

σT
(
B(a, r)

)
≤ Cr2p for a ∈ K and r ≤ r0,

where C = σT
(
K +B(0, r0)

)
/r2p0 .

All these results are particularly interesting when T = [A] is the current
of integration over an analytic subset A ⊂ X of pure dimension p. Then
σT

(
B(a, r)

)
is the euclidean area of A ∩ B(a, r), while πpr2p/p! is the area

of a ball of radius r in a p-dimensional subspace of Cn. Thus ν(T, ϕ, log r)
is the ratio of these areas and the Lelong number ν(T, a) is the limit ratio.

(3.9) Remark. It is immediate to check that
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ν([A], x) =

{
0 for x /∈ A,
1 when x ∈ A is a regular point.

We will see later that ν([A], x) is always an integer (Thie’s theorem 5.8).

(3.10) Remark. When X = Cn, ϕ(z) = log |z − a| and A = X (i.e. T = 1),
we obtain in particular

∫
B(a,r)

(ddc log |z − a|)n = 1 for all r. This implies

(ddc log |z − a|)n = δa.

This fundamental formula can be viewed as a higher dimensional analogue
of the usual formula ∆ log |z − a| = 2πδa in C. ⊓⊔

We next prove a result which shows in particular that the Lelong
numbers of a closed positive current are zero except on a very small set.

(3.11) Proposition. If T is a closed positive current of bidimension (p, p),
then for each c > 0 the set Ec = {x ∈ X ; ν(T, x) ≥ c is a closed set of
locally finite H2p Hausdorff measure in X.

Proof. By (3.7), we infer ν(T, a) = limr→0 σT
(
B(a, r)

)
p!/πpr2p. The function

a 7→ σT
(
B(a, r)

)
is clearly upper semicontinuous. Hence the decreasing limit

ν(T, a) as r decreases to 0 is also upper semicontinuous in a. This implies
that Ec is closed. Now, let K be a compact subset in X and let {aj}1≤j≤N ,
N = N(ε), be a maximal collection of points inEc∩K such that |aj−ak| ≥ 2ε
for j 6= k. The balls B(aj, 2ε) cover Ec ∩K, whereas the balls B(aj, ε) are
disjoint. If Kc,ε is the set of points which are at distance ≤ ε of Ec ∩K, we
get

σT (Kc,ε) ≥
∑

σT
(
B(aj, ε)

)
≥ N(ε) cπpε2p/p!,

since ν(T, aj) ≥ c. By the definition of Hausdorff measure, we infer

H2p(Ec ∩K) ≤ lim inf
ε→0

∑(
diamB(aj, 2ε)

)2p

≤ lim inf
ε→0

N(ε)(4ε)2p ≤
p!42p

cπp
σT (Ec ∩K). ⊓⊔

Finally, we conclude this section by proving two simple semi-continuity
results for Lelong numbers.

(3.12) Proposition. Let Tk be a sequence of closed positive currents of
bidimension (p, p) converging weakly to a limit T . Suppose that there is a
closed set A such that Supp Tk ⊂ A for all k and such that ϕ is semi-
exhaustive on A with A ∩B(R) ⊂⊂ X. Then for all r < R we have



3. Generalized Lelong Numbers 25

∫

B(r)

T ∧ (ddcϕ)p ≤ lim inf
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p

≤ lim sup
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p ≤

∫

B(r)

T ∧ (ddcϕ)p.

When r tends to −∞, we find in particular

lim sup
k→+∞

ν(Tk, ϕ) ≤ ν(T, ϕ).

Proof. Let us prove for instance the third inequality. Let ϕℓ be a sequence
of smooth plurisubharmonic approximations of ϕ with ϕ ≤ ϕℓ < ϕ+ 1/ℓ on
{r − ε ≤ ϕ ≤ r + ε}. We set

ψℓ =

{
ϕ on B(r),
max{ϕ, (1 + ε)(ϕℓ − 1/ℓ) − rε} on X \B(r).

This definition is coherent since ψℓ = ϕ near S(r), and we have

ψℓ = (1 + ε)(ϕℓ − 1/ℓ) − rε near S(r + ε/2)

as soon as ℓ is large enough, i.e. (1+ε)/ℓ ≤ ε2/2. Let χε be a cut-off function
equal to 1 in B(r + ε/2) with support in B(r + ε). Then∫

B(r)

Tk ∧ (ddcϕ)p ≤

∫

B(r+ε/2)

Tk ∧ (ddcψℓ)
p

= (1 + ε)p
∫

B(r+ε/2)

Tk ∧ (ddcϕℓ)
p

≤ (1 + ε)p
∫

B(r+ε)

χεTk ∧ (ddcϕℓ)
p.

As χε(dd
cϕℓ)

p is smooth with compact support and as Tk converges weakly
to T , we infer

lim sup
k→+∞

∫

B(r)

Tk ∧ (ddcϕ)p ≤ (1 + ε)p
∫

B(r+ε)

χεT ∧ (ddcϕℓ)
p.

We then let ℓ tend to +∞ and ε tend to 0 to get the desired inequality. The
first inequality is obtained in a similar way, we define ψℓ so that ψℓ = ϕ on
X \B(r) and ψℓ = max{(1− ε)(ϕℓ−1/ℓ) + rε} on B(r), and we take χε = 1
on B(r − ε) with Suppχε ⊂ B(r − ε/2). Then for ℓ large∫

B(r)

Tk ∧ (ddcϕ)p ≥

∫

B(r−ε/2)

Tk ∧ (ddcψℓ)
p

≥ (1 − ε)p
∫

B(r−ε/2)

χεTk ∧ (ddcϕℓ)
p. ⊓⊔

(3.13) Proposition. Let ϕk be a (non necessarily monotone) sequence of
continuous plurisubharmonic functions such that eϕk converges uniformly
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to eϕ on every compact subset of X. Suppose that {ϕ < R}∩ Supp T ⊂⊂ X.
Then for r < R we have

lim sup
k→+∞

∫

{ϕk≤r}∩{ϕ<R}

T ∧ (ddcϕk)p ≤

∫

{ϕ≤r}

T ∧ (ddcϕ)p.

In particular lim supk→+∞ ν(T, ϕk) ≤ ν(T, ϕ).

When we take ϕk(z) = log |z − ak| with ak → a, Prop. 3.13 implies the
upper semicontinuity of a 7→ ν(T, a) which was already noticed in the proof
of Prop. 3.11.

Proof. Our assumption is equivalent to saying that max{ϕk, t} converges
locally uniformly to max{ϕ, t} for every t. Then Cor. 1.6 shows that
T ∧ (ddc max{ϕk, t})p converges weakly to T ∧ (ddc max{ϕ, t})p. If χε is
a cut-off function equal to 1 on {ϕ ≤ r + ε/2} with support in {ϕ < r + ε},
we get

lim
k→+∞

∫

X

χεT ∧ (ddc max{ϕk, t})p =

∫

X

χεT ∧ (ddc max{ϕ, t})p.

For k large, we have {ϕk ≤ r} ∩ {ϕ < R} ⊂ {ϕ < r + ε/2}, thus when ε
tends to 0 we infer

lim sup
k→+∞

∫

{ϕk≤r}∩{ϕ<R}

T ∧ (ddc max{ϕk, t})p ≤

∫

{ϕ≤r}

T ∧ (ddc max{ϕ, t})p.

When we choose t < r, this is equivalent to the first inequality in statement
(3.13). ⊓⊔

4. The Lelong-Jensen Formula

We assume in this section that X is Stein, that ϕ is semi-exhaustive on X
and that B(R) ⊂⊂ X . We set for simplicity ϕ≥r = max{ϕ, r}. For every
r ∈ ]−∞, R[, the measures ddc(ϕ≥r)

n are well defined. By Cor. 1.6, the map
r 7−→ (ddcϕ≥r)

n is continuous on ]−∞, R[ with respect to the weak topology.
As (ddcϕ≥r)

n = (ddcϕ)n on X \B(r) and as ϕ≥r ≡ r, (ddcϕ≥r)
n = 0 on B(r),

the left continuity implies (ddcϕ≥r)
n ≥ 1lX \B(r)(dd

cϕ)n. Here 1lA denotes
the characteristic function of any subset A ⊂ X . According to the definition
introduced in [De3], the collection of Monge-Ampère measures associated
with ϕ is the family of positive measures µr such that

(4.1) µr = (ddcϕ≥r)
n − 1lX \B(r)(dd

cϕ)n, r ∈ ] −∞, R[.
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The measure µr is supported on S(r) and r 7−→ µr is weakly continuous
on the left by the bounded convergence theorem. Stokes’ formula shows
that

∫
B(s)

(ddcϕ≥r)
n − (ddcϕ)n = 0 for s > r, hence the total mass

µr(S(r)) = µr(B(s)) is equal to the difference between the masses of (ddcϕ)n

and 1lX \B(r)(dd
cϕ)n over B(s), i.e.

(4.2) µr
(
S(r)

)
=

∫

B(r)

(ddcϕ)n.

(4.3) Example. When (ddcϕ)n = 0 on X \ ϕ−1(−∞), formula (4.1) can be
simplified into µr = (ddcϕ≥r)

n. This is so for ϕ(z) = log |z|. In this case,
the invariance of ϕ under unitary transformations implies that µr is also
invariant. As the total mass of µr is equal to 1 by 3.10 and (4.2), we see that
µr is the invariant measure of mass 1 on the euclidean sphere of radius er.

Proposition 4.4. Assume that ϕ is smooth near S(r) and that dϕ 6= 0 on
S(r), i.e. r is a non critical value. Then S(r) = ∂B(r) is a smooth oriented
real hypersurface and the measure µr is given by the (2n − 1)-volume form
(ddcϕ)n−1 ∧ dcϕ|̀S(r).

Proof. Write max{t, r} = limk→+∞ χk(t) where χ is a decreasing sequence
of smooth convex functions with χk(t) = r for t ≤ r − 1/k, χk(t) = t
for t ≥ r + 1/k. Corollary 1.6 shows that (ddcχk ◦ ϕ)n converges weakly
to (ddcϕ≥r)

n. Let h be a smooth function with compact support near S(r).
We first compute the limit, noting that limχ′

k ◦ ϕ = 1lX \B(r) a.e., and then
apply Stokes’ theorem on X \ B(r) (the boundary is S(r) with opposite
orientation):

∫

X

h(ddcϕ≥r)
n = lim

k→+∞

∫

X

h(ddcχk ◦ ϕ)n

= lim
k→+∞

∫

X

−dh ∧ (ddcχk ◦ ϕ)n−1 ∧ dc(χk ◦ ϕ)

= lim
k→+∞

∫

X

−(χ′
k ◦ ϕ)n dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

X \B(r)

−dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

S(r)

h (ddcϕ)n−1 ∧ dcϕ+

∫

X \B(r)

h (ddcϕ)n−1 ∧ dcϕ.

Near S(r) we thus have an equality of measures

(ddcϕ≥r)
n = (ddcϕ)n−1 ∧ dcϕ|̀S(r) + 1lX \B(r)(dd

cϕ)n. ⊓⊔
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(4.5) Lelong-Jensen formula. Let V be any plurisubharmonic function on X.
Then V is µr-integrable for every r ∈ ] −∞, R[ and

µr(V ) −

∫

B(r)

V (ddcϕ)n =

∫ r

−∞

ν(ddcV, ϕ, t) dt.

Proof. Proposition 1.11 shows that V is integrable with respect to (ddcϕ≥r)
n,

hence V is µr-integrable. By definition

ν(ddcV, ϕ, t) =

∫

ϕ(z)<t

ddcV ∧ (ddcϕ)n−1

and the Fubini theorem gives
∫ r

−∞

ν(ddcV, ϕ, t) dt =

∫∫

ϕ(z)<t<r

ddcV (z) ∧ (ddcϕ(z))n−1 dt

=

∫

B(r)

(r − ϕ)ddcV ∧ (ddcϕ)n−1.(4.6)

We first show that formula 4.5 is true when ϕ and V are smooth. As both
members of the formula are left continuous with respect to r and as almost
all values of ϕ are non critical by Sard’s theorem, we may assume r non
critical. Formula 1.1 applied with f = (r − ϕ)(ddcϕ)n−1 and g = V shows
that integral (4.6) is equal to

∫

S(r)

V (ddcϕ)n−1 ∧ dcϕ−

∫

B(r)

V (ddcϕ)n = µr(V ) −

∫

B(r)

V (ddcϕ)n.

Formula 4.5 is thus proved when ϕ and V are smooth. If V is smooth and
ϕ merely continuous and finite, one can write ϕ = limϕk where ϕk is a
decreasing sequence of smooth plurisubharmonic functions (because X is
Stein). Then ddcV ∧ (ddcϕk)n−1 converges weakly to ddcV ∧ (ddcϕ)n−1 and
(4.6) converges, since 1lB(r)(r−ϕ) is continuous with compact support on X .
The left hand side of formula 4.5 also converges because the definition of µr
implies

µk,r(V ) −

∫

ϕk<r

V (ddcϕk)n =

∫

X

V
(
(ddcϕk,≥r)

n − (ddcϕk)n
)

and we can apply again weak convergence on a neighborhood of B(r). If ϕ
assumes −∞ as a value, we replace ϕ by ϕ≥−k where k → +∞. Then µr(V )
is unchanged,

∫
B(r)

V (ddcϕ≥−k)n converges to
∫
B(r)

V (ddcϕ)n and the right

hand side of formula 4.5 is replaced by
∫ r
−k
ν(ddcV, ϕ, t) dt. Finally, for V

arbitrary, write V = lim ↓ Vl with a sequence of smooth functions Vl. Then
ddcVl ∧ (ddcϕ)n−1 converges weakly to ddcV ∧ (ddcϕ)n−1 by Prop. 2.4, so

lim inf
k→+∞

∫

B(r)

(r − ϕ)ddcVl ∧ (ddcϕ)n−1 ≥

∫

B(r)

(r − ϕ)ddcV ∧ (ddcϕ)n−1,
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with equality if ϕ is finite. As µr(Vl) and
∫
B(r)

Vl(dd
cϕ)n converge to the

expected limits by the monotone convergence theorem, we get

µr(V ) −

∫

B(r)

V (ddcϕ)n ≥

∫

B(r)

(r − ϕ)ddcV ∧ (ddcϕ)n−1,

with equality if ϕ does not assume −∞ as a value. In particular, replacing
ϕ by ϕ≥−k, we find

µr(V ) −

∫

B(r)

V (ddcϕ≥−k)n =

∫ r

k

ν(ddcV, ϕ, t) dt,

and from the equality −V = sup−Vl we easily get
∫

B(r)

−V (ddcϕ)n ≤ lim inf
k→+∞

∫

B(r)

−V (ddcϕ≥−k)n.

A limit as k → +∞ yields the expected converse inequality

µr(V ) −

∫

B(r)

V (ddcϕ)n ≤

∫ r

−∞

ν(ddcV, ϕ, t) dt. ⊓⊔

For r < r0 < R, the Lelong-Jensen formula implies

(4.7) µr(V ) − µr0(V ) +

∫

B(r0)\B(r)

V (ddcϕ)n =

∫ r

r0

ν(ddcV, ϕ, t) dt.

(4.8) Corollary. Assume that (ddcϕ)n = 0 on X \S(−∞). Then r 7−→ µr(V )
is a convex increasing function of r and the lelong number ν(ddcV, ϕ) is
given by

ν(ddcV, ϕ) = lim
r→−∞

µr(V )

r
.

Proof. By (4.7) we have

µr(V ) = µr0(V ) +

∫ r

r0

ν(ddcV, ϕ, t) dt.

As ν(ddcV, ϕ, t) is increasing and nonnegative, it follows that r 7−→ µr(V ) is
convex and increasing. The formula for ν(ddcV, ϕ) = limt→−∞ ν(ddcV, ϕ, t)
is then obvious. ⊓⊔

(4.9) Example. Let X be an open subset of Cn equipped with the semi-
exhaustive function ϕ(z) = log |z − a|, a ∈ X . Then (ddcϕ)n = δa and the
Lelong-Jensen formula becomes

µr(V ) = V (a) +

∫ r

−∞

ν(ddcV, ϕ, t) dt.
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As µr is the mean value measure on the sphere S(a, er), we make the change
of variables r 7→ log r, t 7→ log t and obtain the more familiar formula

(4.9 a) µ(V, S(a, r)) = V (a) +

∫ r

0

ν(ddcV, a, t)
dt

t

where ν(ddcV, a, t) = ν(ddcV, ϕ, log t) is given by (3.7):

(4.9 b) ν(ddcV, a, t) =
1

πn−1t2n−2/(n− 1)!

∫

B(a,t)

1

2π
∆V.

In this setting, Cor. 4.8 implies

(4.9 c) ν(ddcV, a) = lim
r→0

µ
(
V, S(a, r)

)

log r
= lim
r→0

supS(a,r) V

log r
.

To prove the last equality, we may assume V ≤ 0 after subtraction of a
constant. Inequality ≥ follows from the obvious estimate µ(V, S(a, r)) ≤
supS(a,r) V , while inequality ≤ follows from the standard Harnack estimate

(4.9 d) sup
S(a,εr)

V ≤
1 − ε

(1 + ε)2n−1
µ
(
V, S(a, r)

)

when ε is small. As supS(a,r) V = supB(a,r) V , Formula (4.9 c) can also be
rewritten ν(ddcV, a) = lim infz→a V (z)/ log |z − a|. Since supS(a,r) V is a
convex (increasing) function of log r, we infer that

(4.9 e) V (z) ≤ γ log |z − a| + O(1)

with γ = ν(ddcV, a), and ν(ddcV, a) is the largest constant γ which satisfies
this inequality. Thus ν(ddcV, a) = γ is equivalent to V having a logarithmic
pole of coefficient γ.

(4.10) Special case. Take in particular V = log |f | where f is a holomorphic
function onX . The Lelong-Poincaré formula shows that ddc log |f | is equal to
the zero divisor [Zf ] =

∑
mj [Hj], where Hj are the irreducible components

of f−1(0) and mj is the multiplicity of f on Hj . The trace 1
2π∆f is then

the euclidean area measure of Zf (with corresponding multiplicities mj).
By Formula (4.9 c), we see that the Lelong number ν([Zf ], a) is equal
to the vanishing order orda(f), that is, the smallest integer m such that
Dαf(a) 6= 0 for some multiindex α with |α| = m. In dimension n = 1, we
have 1

2π
∆f =

∑
mjδaj

. Then (4.9 a) is the usual Jensen formula

µ
(

log |f |, S(0, r)
)
− log |f(0)| =

∫ r

0

ν(t)
dt

t
=

∑
mj log

r

|aj|

where ν(t) is the number of zeros aj in the disk D(0, t), counted with multi-
plicities mj .

(4.11) Example. Take ϕ(z) = log max |zj |
λj where λj > 0. Then B(r) is the

polydisk of radii (er/λ1 , . . . , er/λn). If some coordinate zj is non zero, say z1,
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we can write ϕ(z) as λ1 log |z1| plus some function depending only on the

(n− 1) variables zj/z
λ1/λj

1 . Hence (ddcϕ)n = 0 on Cn \ {0}. It will be shown
later that

(4.11 a) (ddcϕ)n = λ1 . . . λn δ0.

We now determine the measures µr. At any point z where not all terms
|zj |

λj are equal, the smallest one can be omitted without changing ϕ
in a neighborhood of z. Thus ϕ depends only on (n − 1)-variables and
(ddcϕ≥r)

n = 0, µr = 0 near z. It follows that µr is supported by the
distinguished boundary |zj | = er/λj of the polydisk B(r). As ϕ is invariant
by all rotations zj 7−→ eiθjzj , the measure µr is also invariant and we see
that µr is a constant multiple of dθ1 . . . dθn. By formula (4.2) and (4.11 a)
we get

(4.11 b) µr = λ1 . . . λn (2π)−ndθ1 . . . dθn.

In particular, the Lelong number ν(ddcV, ϕ) is given by

ν(ddcV, ϕ) = lim
r→−∞

λ1 . . . λn
r

∫

θj∈[0,2π]

V (er/λ1+iθ1 , . . . , er/λn+iθn)
dθ1 . . . dθn

(2π)n
.

These numbers have been introduced and studied by Kiselman [Ki4]. We
call them directional Lelong numbers with coefficients (λ1, . . . , λn). For an
arbitrary current T , we define

(4.11 c) ν(T, x, λ) = ν
(
T, log max |zj − xj |

λj
)
.

The above formula for ν(ddcV, ϕ) combined with the analogue of Harnack’s
inequality (4.9 d) for polydisks gives

ν(ddcV, x, λ) = lim
r→0

λ1 . . . λn
log r

∫
V (r1/λ1eiθ1 , . . . , r1/λneiθn)

dθ1 . . . dθn
(2π)n

= lim
r→0

λ1 . . . λn
log r

sup
θ1,...,θn

V (r1/λ1eiθ1 , . . . , r1/λneiθn).(4.11 d)

5. Comparison Theorems for Lelong Numbers

Let T be a closed positive current of bidimension (p, p) on a Stein manifold X
equipped with a semi-exhaustive plurisubharmonic weight ϕ. We first show
that the Lelong numbers ν(T, ϕ) only depend on the asymptotic behaviour
of ϕ near the polar set S(−∞). In a precise way:
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(5.1) First comparison theorem. Let ϕ, ψ : X −→ [−∞,+∞[ be continuous
plurisubharmonic functions. We assume that ϕ, ψ are semi-exhaustive on
Supp T and that

ℓ := lim sup
ψ(x)

ϕ(x)
< +∞ as x ∈ Supp T and ϕ(x) → −∞.

Then ν(T, ψ) ≤ ℓpν(T, ϕ), and the equality holds if ℓ = limψ/ϕ.

Proof. Definition 3.4 shows immediately that ν(T, λϕ) = λpν(T, ϕ) for
every scalar λ > 0. It is thus sufficient to verify the inequality ν(T, ψ) ≤
ν(T, ϕ) under the hypothesis lim supψ/ϕ < 1. For all c > 0, consider the
plurisubharmonic function

uc = max(ψ − c, ϕ).

Let Rϕ and Rψ be such that Bϕ(Rϕ) ∩ Supp T and Bψ(Rψ) ∩ Supp T be
relatively compact in X . Let r < Rϕ and a < r be fixed. For c > 0 large
enough, we have uc = ϕ on ϕ−1([a, r]) and Stokes’ formula gives

ν(T, ϕ, r) = ν(T, uc, r) ≥ ν(T, uc).

The hypothesis lim supψ/ϕ < 1 implies on the other hand that there exists
t0 < 0 such that uc = ψ − c on {uc < t0} ∩ Supp T . We infer

ν(T, uc) = ν(T, ψ − c) = ν(T, ψ),

hence ν(T, ψ) ≤ ν(T, ϕ). The equality case is obtained by reversing the roles
of ϕ and ψ and observing that limϕ/ψ = 1/l. ⊓⊔

Assume in particular that zk = (zk1 , . . . , z
k
n), k = 1, 2, are coordinate

systems centered at a point x ∈ X and let

ϕk(z) = log |zk| = log
(
|zk1 |

2 + . . .+ |zkn|
2
)1/2

.

We have limz→x ϕ2(z)/ϕ1(z) = 1, hence ν(T, ϕ1) = ν(T, ϕ2) by Th. 5.1.

(5.2) Corollary. The usual Lelong numbers ν(T, x) are independent of the
choice of local coordinates. ⊓⊔

This result had been originally proved by [Siu] with a much more
delicate proof. Another interesting consequence is:

(5.3) Corollary. On an open subset of Cn, the Lelong numbers and Kiselman
numbers are related by

ν(T, x) = ν
(
T, x, (1, . . . , 1)

)
.



5. Comparison Theorems for Lelong Numbers 33

Proof. By definition, the Lelong number ν(T, x) is associated with the weight
ϕ(z) = log |z−x| and the Kiselman number ν

(
T, x, (1, . . . , 1)

)
to the weight

ψ(z) = log max |zj − xj |. It is clear that limz→x ψ(z)/ϕ(z) = 1, whence the
conclusion. ⊓⊔

Another consequence of Th. 5.1 is that ν(T, x, λ) is an increasing
function of each variable λj . Moreover, if λ1 ≤ . . . ≤ λn, we get the
inequalities

λp1ν(T, x) ≤ ν(T, x, λ) ≤ λpnν(T, x).

These inequalities will be improved in section 7 (see Cor. 7.14). For the
moment, we just prove the following special case.

(5.4) Corollary. For all λ1, . . . , λn > 0 we have
(
ddc log max

1≤j≤n
|zj |

λj
)n

=
(
ddc log

∑

1≤j≤n

|zj |
λj

)n
= λ1 . . . λn δ0.

Proof. In fact, our measures vanish on Cn \ {0} by the arguments explained
in example 4.11. Hence they are equal to c δ0 for some constant c ≥ 0 which
is simply the Lelong number of the bidimension (n, n)-current T = [X ] = 1
with the corresponding weight. The comparison theorem shows that the first
equality holds and that

(
ddc log

∑

1≤j≤n

|zj |
λj

)n
= ℓ−n

(
ddc log

∑

1≤j≤n

|zj |
ℓλj

)n

for all ℓ > 0. By taking ℓ large and approximating ℓλj with 2[ℓλj/2], we may
assume that λj = 2sj is an even integer. Then formula (3.6) gives

∫
∑

|zj |
2sj<r2

(
ddc log

∑
|zj |

2sj

)n
= r−2n

∫
∑

|zj |
2sj<r2

(
ddc

∑
|zj |

2sj

)n

= s1 . . . sn r
−2n

∫
∑

|wj |2<r2
2n

( i

2π
d′d′′|w|2

)n
= λ1 . . . λn

by using the s1 . . . sn-sheeted change of variables wj = z
sj

j . ⊓⊔

Now, we assume that T = [A] is the current of integration over an
analytic set A ⊂ X of pure dimension p (cf. P. Lelong[Le1]). The above
comparison theorem will enable us to give a simple proof of P. Thie’s main
result [Th]: the Lelong number ν([A], x) can be interpreted as the multiplicity
of the analytic set A at point x.

Let x ∈ A be a given point and IA,x the ideal of germs of holomor-
phic functions at x vanishing on A. Then, one can find local coordinates
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z = (z1, . . . , zn) on X centered at x such that there exist distinguished
Weierstrass polynomials Pj ∈ IA,x in the variable zj , p < j ≤ n, of the type

(5.5) Pj(z) = z
dj

j +

dj∑

k=1

aj,k(z1, . . . , zj−1)z
dj−k
j , aj,k ∈ Mk

Cj−1,0

where MX,x is the maximal ideal of X at x.

Indeed, we will prove this property by induction on codimX = n − p.
We fix a coordinate system (w1, . . . , wn) by which we identify the germ (X, x)
to (Cn, 0).

If n − p ≥ 1, there exists a non zero element f ∈ IA,x. Let d be the
smallest integer such that f ∈ Md

Cn,0 and let en ∈ Cn be a non zero vector

such that limt→0 f(ten)/td 6= 0. Complete en into a basis (ẽ1, . . . , ẽn−1, en)
of Cn and denote by (z̃1, . . . , z̃n−1, zn) the corresponding coordinates. The
Weierstrass preparation theorem gives a factorization f = gP where P
is a distinguished polynomial of type (5.5) in the variable zn and where
g is an invertible holomorphic function at point x. If n − p = 1, the
polynomial Pn = P satisfies the requirements. Observe that a generic choice
of en actually works, since en only has to avoid the algebraic hypersurface
fd(z) = 0 where fd is the polynomial of lowest degree in the Taylor expansion
of f at 0.

If n− p ≥ 2, OA,x = OX,x/IA,x is a OCn−1,0 = C{z̃1, . . . , z̃n−1}-module

of finite type, i.e. the projection pr : (X, x) ≈ (Cn, 0) −→ (Cn−1, 0) is a
finite morphism of (A, x) onto a germ (Z, 0) ⊂ (Cn−1, 0) of dimension p. The
induction hypothesis applied to IZ,0 = OCn−1,0 ∩ IA,x implies the existence

of a new basis (e1, . . . , en−1) of Cn−1 and of Weierstrass polynomials
Pp+1, . . . , Pn−1 ∈ IZ,0, of the type (5.5) with respect to the coordinates
(z1, . . . , zn−1) associated with (e1, . . . , en−1). The polynomials Pp+1, . . . , Pn
show that the expected property also holds in codimension n− p.

For any polynomial Q(w) = wd + a1w
d−1 + . . .+ ad ∈ C[w], the roots

w of Q satisfy

(5.6) |w| ≤ 2 max
1≤k≤d

|ak|
1/k,

otherwise Q(w)w−d = 1+a1w
−1 + . . .+adw

−d would have a modulus larger
than 1− (2−1 + . . .+ 2−d) = 2−d, a contradiction. Let us denote z = (z′, z′′)
with z′ = (z1, . . . , zp) and z′′ = (zp+1, . . . , zn). As aj,k ∈ Mk

Cj−1,0
, we get

|aj,k(z1, . . . , zj−1)| = O
(
(|z1| + . . .+ |zj−1|)

k
)

if j > p,

and we deduce from (5.5), (5.6) that |zj | = O(|z1| + . . .+ |zj−1|) on (A, x).
Therefore, we get:
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(5.7) Lemma. For a generic choice of coordinates z′ = (z1, . . . , zp) and
z′′ = (zp+1, . . . , zn) on (X, x), the germ (A, x) is contained in a cone
|z′′| ≤ C|z′|. ⊓⊔

We use this property to compute the Lelong number of [A] at point x.
When z ∈ A tends to x, the functions

ϕ(z) = log |z| = log(|z′|2 + |z′′|2)1/2, ψ(z) = log |z′|.

are equivalent. As ϕ, ψ are semi-exhaustive on A, Th. 5.1 implies

ν([A], x) = ν([A], ϕ) = ν([A], ψ).

Let B′ ⊂ Cp the ball of center 0 and radius r′, B′′ ⊂ Cn−p the ball of center
0 and radius r′′ = Cr′. The inclusion of germ (A, x) in the cone |z′′| ≤ C|z′|
shows that for r′ small enough the projection

pr : A ∩ (B′ ×B′′) −→ B′

is proper. The fibers are finite by (5.5). Hence this projection is a ramified
covering with finite sheet number m (see Fig. 3).

z′′ ∈ Cn−p

z′ ∈ Cp

A

S S

0

B′

B′′ π

Fig. 3. Ramified covering π and ramification locus S

Let us apply formula (3.6) to ψ : for every t < r′ we get
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ν([A], ψ, log t) = t−2p

∫

{ψ<log t}

[A] ∧
(1

2
ddce2ψ

)p

= t−2p

∫

A∩{|z′|<t}

(1

2
pr⋆ddc|z′|2

)p

= mt−2p

∫

Cp∩{|z′|<t}

(1

2
ddc|z′|2

)p
= m,

hence ν(T, ψ) = m. Here, we used the fact that pr is actually a covering with
m sheets over the complement of the ramification locus S ⊂ B′, which is
of zero Lebesgue measure. We thus obtain a new proof of Thie’s result [Th]
that ν([A], x) is equal to the multiplicity of A at x :

(5.8) Theorem. Let A be an analytic set of dimension p in a complex manifold
of dimension n. For every point x ∈ A, there exist local coordinates

z = (z′, z′′), z′ = (z1, . . . , zp), z′′ = (zp+1, . . . , zn)

centered at x and balls B′ ⊂ Cp, B′′ ⊂ Cn−p of radii r′, r′′ in these coordi-
nates, such that A ∩ (B′ × B′′) is contained in the cone |z′′| ≤ (r′′/r′)|z′|.
The multiplicity of A at x is defined as the number m of sheets of any such
ramified covering map A ∩ (B′ ×B′′) −→ B′. Then ν([A], x) = m.

There is another interesting version of the comparison theorem which
compares the Lelong numbers of two currents obtained as intersection
products (in that case, we take the same weight for both).

(5.9) Second comparison theorem. Let u1, . . . , uq and v1, . . . , vq be plurisub-
harmonic functions such that each q-tuple satisfies the hypotheses of Th. 2.5
with respect to T . Suppose moreover that uj = −∞ on Supp T ∩ ϕ−1(−∞)
and that

ℓj := lim sup
vj(z)

uj(z)
< +∞ when z ∈ Supp T \ u−1

j (−∞), ϕ(z) → −∞.

Then

ν(ddcv1 ∧ . . . ∧ dd
cvq ∧ T, ϕ) ≤ ℓ1 . . . ℓq ν(ddcu1 ∧ . . . ∧ dd

cuq ∧ T, ϕ).

Proof. By homogeneity in each factor vj , it is enough to prove the inequality
with constants ℓj = 1 under the hypothesis lim sup vj/uj < 1. We set

wj,c = max{vj − c, uj}.

Our assumption implies that wj,c coincides with vj − c on a neighborhood
Supp T ∩ {ϕ < r0} of SuppT ∩ {ϕ < −∞}, thus
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ν(ddcv1 ∧ . . . ∧ dd
cvq ∧ T, ϕ) = ν(ddcw1,c ∧ . . . ∧ dd

cwq,c ∧ T, ϕ)

for every c. Now, fix r < Rϕ. Proposition 2.9 shows that the current
ddcw1,c ∧ . . . ∧ ddcwq,c ∧ T converges weakly to ddcu1 ∧ . . . ∧ ddcuq ∧ T
when c tends to +∞. By Prop. 3.12 we get

lim sup
c→+∞

ν(ddcw1,c ∧ . . .∧ dd
cwq,c ∧ T, ϕ) ≤ ν(ddcu1 ∧ . . .∧ dd

cuq ∧ T, ϕ). ⊓⊔

(5.10) Corollary. If ddcu1∧ . . .∧dd
cuq∧T is well defined, then at every point

x ∈ X we have

ν
(
ddcu1 ∧ . . . ∧ dd

cuq ∧ T, x
)
≥ ν(ddcu1, x) . . . ν(ddcuq, x) ν(T, x).

Proof. Apply (5.9) with ϕ(z) = v1(z) = . . . = vq(z) = log |z − x| and
observe that ℓj := lim sup vj/uj = 1/ν(ddcuj , x) (there is nothing to prove
if ν(ddcuj , x) = 0). ⊓⊔

Finally, we present an interesting stability property of Lelong numbers
due to [Siu]: almost all slices of a closed positive current T along linear
subspaces passing through a given point have the same Lelong number as T .
Before giving a proof of this, we need a useful formula known as Crofton’s
formula.

(5.11) Lemma. Let α be a closed positive (p, p)-form on Cn \ {0} which is
invariant under the unitary group U(n). Then α has the form

α =
(
ddcχ(log |z|)

)p

where χ is a convex increasing function. Moreover α is invariant by homo-
theties if and only if χ is an affine function, i.e. α = λ (ddc log |z|)p.

Proof. A radial convolution αε(z) =
∫
IR
ρ(t/ε)α(etz) dt produces a smooth

form with the same properties as α and limε→0 αε = α. Hence we can
suppose that α is smooth on Cn \ {0}. At a point z = (0, . . . , 0, zn), the
(p, p)-form α(z) ∈

∧p,p
(Cn)⋆ must be invariant by U(n − 1) acting on the

first (n− 1) coordinates. We claim that the subspace of U(n− 1)-invariants
in

∧p,p
(Cn)⋆ is generated by (ddc|z|2)p and (ddc|z|2)p−1∧ idzn∧dzn. In fact,

a form β =
∑
βI,JdzI ∧dzJ is invariant by U(1)n−1 ⊂ U(n−1) if and only if

βI,J = 0 for I 6= J , and invariant by the permutation group Sn−1 ⊂ U(n−1)
if and only if all coefficients βI,I (resp. βJn,Jn) with I, J ⊂ {1, . . . , n − 1}
are equal. Hence

β = λ
∑

|I|=p

dzI ∧ dzI + µ
( ∑

|J|=p−1

dzJ ∧ dzJ
)
∧ dzn ∧ dzn.
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This proves our claim. As d|z|2 ∧ dc|z|2 = i
π |zn|

2dzn ∧ dzn at (0, . . . , 0, zn),
we conclude that

α(z) = f(z)(ddc|z|2)p + g(z)(ddc|z|2)p−1 ∧ d|z|2 ∧ dc|z|2

for some smooth functions f, g on Cn \ {0}. The U(n)-invariance of α shows
that f and g are radial functions. We may rewrite the last formula as

α(z) = u(log |z|)(ddc log |z|)p + v(log |z|)(ddc log |z|)p−1 ∧ d log |z| ∧ dc log |z|.

Here (ddc log |z|)p is a positive (p, p)-form coming from IPn−1, hence it has
zero contraction in the radial direction, while the contraction of the form
(ddc log |z|)p−1∧d log |z|∧dc log |z| by the radial vector field is (ddc log |z|)p−1.
This shows easily that α(z) ≥ 0 if and only if u, v ≥ 0. Next, the closedness
condition dα = 0 gives u′ − v = 0. Thus u is increasing and we define a
convex increasing function χ by χ′ = u1/p. Then v = u′ = pχ′p−1χ′′ and

α(z) =
(
ddcχ(log |z|)

)p
.

If α is invariant by homotheties, the functions u and v must be constant,
thus v = 0 and α = λ(ddc log |z|)p. ⊓⊔

(5.12) Corollary (Crofton’s formula). Let dv be the unique U(n)-invariant
measure of mass 1 on the Grassmannian G(p, n) of p-dimensional subspaces
in Cn. Then ∫

S∈G(p,n)

[S] dv(S) = (ddc log |z|)n−p.

Proof. The left hand integral is a closed positive bidegree (n − p, n − p)
current which is invariant by U(n) and by homotheties. By lemma 5.11, this
current must coincide with the form λ(ddc log |z|)n−p for some λ ≥ 0. The
coefficient λ is the Lelong number at 0. As ν([S], 0) = 1 for every S, we get
λ =

∫
G(p,n)

dv(S) = 1. ⊓⊔

We now recall the basic facts of slicing theory (see Federer [Fe] and
Harvey [Ha]). Let σ : M → M ′ be a submersion of smooth differentiable
manifolds and let Θ be a locally flat current on M , that is a current which
can be written locally as Θ = U + dV where U , V have locally integrable
coefficients. It can be shown that every current Θ such that both Θ and
dΘ have measure coefficients is locally flat; in particular, closed positive
currents are locally flats. Then, for almost every x′ ∈ M ′, there is a well
defined slice Θx′ , which is the current on the fiber σ−1(x′) defined by

Θx′ = U|̀σ−1(x′) + dV|̀σ−1(x′).

The restrictions of U , V to the fibers exist for almost all x′ by the Fubini
theorem. It is easy to show by a regularization Θε = Θ ⋆ ρε that the slices
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of a closed positive current are again closed and positive: in fact Uε,x′ and
Vε,x′ converge to Ux′ and Vx′ in L1

loc, thus Θε,x′ converges weakly to Θx′

for almost every x′. This kind of slicing can be referred to as parallel slicing
(if we think of σ as being a projection map). The kind of slicing we need
(where the slices are taken over linear subspaces passing through a given
point) is of a slightly different nature and is called concurrent slicing.

The possibility of concurrent slicing is proved as follows. Let T be a
closed positive current of bidimension (p, p) in the ball B(0, R) ⊂ Cn. Let

Y =
{

(x, S) ∈ Cn ×G(q, n) ; x ∈ S
}

be the total space of the tautological rank q vector bundle over the Grass-
mannian G(q, n), equipped with the obvious projections

σ : Y −→ G(q, n), π : Y −→ Cn.

We set YR = π−1(B(0, R)) and Y ⋆R = π−1(B(0, R) \ {0}). The restriction π0

of π to Y ⋆R is a submersion onto B(0, R) \{0}, so we have a well defined pull-
back π⋆0T over Y ⋆R. We would like to extend it as a pull-back π⋆T over YR,
so as to define slices T|̀S = (π⋆T )|̀σ−1(S) ; of course, these slices can be non
zero only if the dimension of S is at least equal to the degree of T , i.e. if
q ≥ n − p. We first claim that π⋆0T has locally finite mass near the zero
section π−1(0) of σ. In fact let ωG be a unitary invariant Kähler metric over
G(q, n) and let β = ddc|z|2 in Cn. Then we get a Kähler metric on Y defined
by ωY = σ⋆ωG + π⋆β. If N = (q − 1)(n − q) is the dimension of the fibers
of π, the projection formula π⋆(u ∧ π⋆v) = (π⋆u) ∧ v gives

π⋆ω
N+p
Y =

∑

1≤k≤p

(
N + p

k

)
βk ∧ π⋆(σ

⋆ωN+p−k
G ).

Here π⋆(σ
⋆ωN+p−k

G ) is a unitary and homothety invariant (p − k, p − k)

closed positive form on Cn \ {0}, so π⋆(σ
⋆ωN+p−k

G ) is proportional to
(ddc log |z|)n−k. With some constants λk > 0, we thus get

∫

Y ⋆
r

π⋆0T ∧ ωN+p
Y =

∑

0≤k≤p

λk

∫

B(0,r)\{0}

T ∧ βk ∧ (ddc log |z|)k−p

=
∑

0≤k≤p

λk2−(p−k)r−2(p−k)

∫

B(0,r)\{0}

T ∧ βp < +∞.

The Skoda-El Mir theorem 0.5 shows that the trivial extension π̃⋆0T of π⋆0T
is a closed positive current on YR. Of course, the zero section π−1(0) might
also carry some extra mass of the desired current π⋆T . Since π−1(0) has
codimension q, this extra mass cannot exist when q > n − p = codimπ⋆T
and we simply set π⋆T = π̃⋆0T . On the other hand, if q = n− p, we set

(5.13) π⋆T := π̃⋆0T + ν(T, 0) [π−1(0)].
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We can now apply parallel slicing with respect to σ : YR → G(q, n), which
is a submersion: for almost all S ∈ G(q, n), there is a well defined slice
T|̀S = (π⋆T )|̀σ−1(S). These slices coincide with the usual restrictions of T to
S if T is smooth.

(5.14) Theorem ([Siu]). For almost all S ∈ G(q, n) with q ≥ n− p, the slice
T|̀S satisfies ν(T|̀S , 0) = ν(T, 0).

Proof. If q = n − p, the slice T|̀S consists of some positive measure with
support in S \ {0} plus a Dirac measure ν(T, 0) δ0 coming from the slice
of ν(T, 0) [π−1(0)]. The equality ν(T|̀S , 0) = ν(T, 0) thus follows directly
from (5.13).

In the general case q > n−p, it is clearly sufficient to prove the following
two properties:

(a) ν(T, 0, r) =

∫

S∈G(q,n)

ν(T|̀S , 0, r) dv(S) for all r ∈ ]0, R[ ;

(b) ν(T|̀S, 0) ≥ ν(T, 0) for almost all S.

In fact, (a) implies that ν(T, 0) is the average of all Lelong numbers ν(T|̀S , 0)
and the conjunction with (b) implies that these numbers must be equal to
ν(T, 0) for almost all S. In order to prove (a) and (b), we can suppose without
loss of generality that T is smooth on B(0, R) \ {0}. Otherwise, we perform
a small convolution with respect to the action of Gln(C) on Cn:

Tε =

∫

g∈Gln(C)

ρε(g) g⋆T dv(g)

where (ρε) is a regularizing family with support in an ε-neighborhood of
the unit element of Gln(C). Then Tε is smooth in B(0, (1 − ε)R) \ {0} and
converges weakly to T . Moreover, we have ν(Tε, 0) = ν(T, 0) by (5.2) and
ν(T|̀S , 0) ≥ lim supε→0 ν(Tε,|̀S , 0) by (3.12), thus (a), (b) are preserved in
the limit. If T is smooth on B(0, R) \ {0}, the slice T|̀S is defined for all S
and is simply the restriction of T to S \{0} (carrying no mass at the origin).

(a) Here we may even assume that T is smooth at 0 by performing an
ordinary convolution. As T|̀S has bidegree (n− p, n− p), we have

ν(T|̀S , 0, r) =

∫

S∩B(0,r)

T ∧ α
q−(n−p)
S =

∫

B(0,r)

T ∧ [S] ∧ αp+q−nS

where αS = ddc log |w| and w = (w1, . . . , wq) are orthonormal coordinates
on S. We simply have to check that∫

S∈G(q,n)

[S] ∧ αp+q−nS dv(S) = (ddc log |z|)p.
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However, both sides are unitary and homothety invariant (p, p)-forms with
Lelong number 1 at the origin, so they must coincide by Lemma 5.11.

(b) We prove the inequality when S = Cq × {0}. By the comparison
theorem 5.1, for every r > 0 and ε > 0 we have∫

B(0,r)

T ∧ γpε ≥ ν(T, 0) where(5.15)

γε =
1

2
ddc log(ε|z1|

2 + . . .+ ε|zq|
2 + |zq+1|

2 + . . .+ |zn|
2).

We claim that the current γpε converges weakly to

[S] ∧ αp+q−nS = [S] ∧
(1

2
ddc log(|z1|

2 + . . .+ |zq|
2)

)p+q−n

as ε tends to 0. In fact, the Lelong number of γpε at 0 is 1, hence by
homogeneity ∫

B(0,r)

γpε ∧ (ddc|z|2)n−p = (2r2)p

for all ε, r > 0. Therefore the family (γpε ) is relatively compact in the weak
topology. Since γ0 = lim γε is smooth on Cn \ S and depends only on n− q
variables (n− q ≤ p), we have lim γpε = γp0 = 0 on Cn \ S. This shows that
every weak limit of (γpε ) has support in S. Each of these is the direct image
by inclusion of a unitary and homothety invariant (p+ q−n, p+ q−n)-form
on S with Lelong number equal to 1 at 0. Therefore we must have

lim
ε→0

γpε = (iS)⋆(α
p+q−n
S ) = [S] ∧ αp+q−nS ,

and our claim is proved (of course, this can also be checked by direct
elementary calculations). By taking the limsup in (5.15) we obtain

ν(T|̀S , 0, r+ 0) =

∫

B(0,r)

T ∧ [S] ∧ αp+q−nS ≥ ν(T, 0)

(the singularity of T at 0 does not create any difficulty because we can modify
T by a ddc-exact form near 0 to make it smooth everywhere). Property (b)
follows when r tends to 0. ⊓⊔

6. Siu’s Semicontinuity Theorem

Let X , Y be complex manifolds of dimension n, m such that X is Stein. Let
ϕ : X × Y −→ [−∞,+∞[ be a continuous plurisubharmonic function. We
assume that ϕ is semi-exhaustive with respect to Supp T , i.e. that for every
compact subset L ⊂ Y there exists R = R(L) < 0 such that
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(6.1) {(x, y) ∈ Supp T × L ; ϕ(x, y) ≤ R} ⊂⊂ X × Y.

Let T be a closed positive current of bidimension (p, p) on X . For every point
y ∈ Y , the function ϕy(x) := ϕ(x, y) is semi-exhaustive on Supp T ; one can
therefore associate with y a generalized Lelong number ν(T, ϕy). Proposition
3.13 implies that the map y 7→ ν(T, ϕy) is upper semi-continuous, hence the
upperlevel sets

(6.2) Ec = Ec(T, ϕ) = {y ∈ Y ; ν(T, ϕy) ≥ c} , c > 0

are closed. Under mild additional hypotheses, we are going to show (following
[De4]) that the sets Ec are in fact analytic subsets of Y .

(6.3) Definition. We say that a function f(x, y) is locally Hölder continuous
with respect to y on X × Y if every point of X × Y has a neighborhood Ω
on which

|f(x, y1) − f(x, y2)| ≤M |y1 − y2|
γ

for all (x, y1) ∈ Ω, (x, y2) ∈ Ω, with some constants M > 0, γ ∈ ]0, 1], and
suitable coordinates on Y .

(6.4) Theorem ([De4]). Let T be a closed positive current on X and let

ϕ : X × Y −→ [−∞,+∞[

be a continuous plurisubharmonic function. Assume that ϕ is semi-exhaustive
on Supp T and that eϕ(x,y) is locally Hölder continuous with respect to y
on X × Y . Then the upperlevel sets

Ec(T, ϕ) = {y ∈ Y ; ν(T, ϕy) ≥ c}

are analytic subsets of Y .

This theorem can be rephrased by saying that y 7−→ ν(T, ϕy) is upper
semi-continuous with respect to the analytic Zariski topology. As a special
case, we get the following important result of [Siu]:

(6.5) Corollary. If T is a closed positive current of bidimension (p, p) on a
complex manifold X, the upperlevel sets Ec(T ) = {x ∈ X ; ν(T, x) ≥ c} of
the usual Lelong numbers are analytic subsets of dimension ≤ p.

Proof. The result is local, so we may assume that X ⊂ Cn is an open subset.
Theorem 6.4 with Y = X and ϕ(x, y) = log |x − y| shows that Ec(T ) is
analytic. Moreover, Prop. 3.11 implies dimEc(T ) ≤ p. ⊓⊔

(6.6) Generalization. Theorem 6.4 can be applied more generally to weight
functions of the type
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ϕ(x, y) = max
j

log
(∑

k

|Fj,k(x, y)|λj,k

)

where Fj,k are holomorphic functions on X × Y and where γj,k are positive
real constants; in this case eϕ is Hölder continuous of exponent γ =
min{λj,k, 1} and ϕ is semi-exhaustive with respect to the whole space X
as soon as the projection pr2 :

⋂
F−1
j,k (0) −→ Y is proper and finite.

For example, when ϕ(x, y) = log max |xj − yj|
λ
j on an open subset X

of Cn , we see that the upperlevel sets for Kiselman’s numbers ν(T, x, λ)
are analytic in X (a result first proved in [Ki4]). More generally, set
ψλ(z) = log max |zj |

λj and ϕ(x, y, g) = ψλ
(
g(x − y)

)
where x, y ∈ Cn and

g ∈ Gl(Cn). Then ν(T, ϕy,g) is the Kiselman number of T at y when the
coordinates have been rotated by g. It is clear that ϕ is plurisubharmonic in
(x, y, g) and semi-exhaustive with respect to x, and that eϕ is locally Hölder
continuous with respect to (y, g). Thus the upperlevel sets

Ec = {(y, g) ∈ X × Gl(Cn) ; ν(T, ϕy,g) ≥ c}

are analytic in X × Gl(Cn). However this result is not meaningful on a
manifold, because it is not invariant under coordinate changes. One can
obtain an invariant version as follows. Let X be a manifold and let JkOX be
the bundle of k-jets of holomorphic functions on X . We consider the bundle
Sk over X whose fiber Sk,y is the set of n-tuples of k-jets u = (u1, . . . , un) ∈
(JkOX,y)n such that uj(y) = 0 and du1 ∧ . . .∧ dun(y) 6= 0. Let (zj) be local
coordinates on an open set Ω ⊂ X . Modulo O(|z − y|k+1), we can write

uj(z) =
∑

1≤|α|≤k

aj,α(z − y)α

with det(aj,(0,...,1k,...,0)) 6= 0. The numbers ((yj), (aj,α)) define a coordinate
system on the total space of Sk |̀Ω . For (x, (y, u)) ∈ X × Sk, we introduce
the function

ϕ(x, y, u) = log max |uj(x)|λj = log max
∣∣∣

∑

1≤|α|≤k

aj,α(x− y)α
∣∣∣
λj

which has all properties required by Th. 6.4 on a neighborhood of the
diagonal x = y, i.e. a neighborhood of X ×X Sk in X × Sk. For k large,
we claim that Kiselman’s directional Lelong numbers

ν(T, y, u, λ) := ν(T, ϕy,u)

with respect to the coordinate system (uj) at y do not depend on the
selection of the jet representives and are therefore canonically defined on Sk.
In fact, a change of uj by O(|z − y|k+1) adds O(|z − y|(k+1)λj ) to eϕ,
and we have eϕ ≥ O(|z − y|maxλj ). Hence by (5.1) it is enough to take
k + 1 ≥ maxλj/minλj . Theorem 6.4 then shows that the upperlevel sets
Ec(T, ϕ) are analytic in Sk. ⊓⊔
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Now we give the detailed proof of Th. 6.4. As the result is local on Y , we
may assume without loss of generality that Y is a ball in Cm. After addition
of a constant to ϕ, we may also assume that there exists a compact subset
K ⊂ X such that

{(x, y) ∈ X × Y ;ϕ(x, y) ≤ 0} ⊂ K × Y.

By Th. 5.1, the Lelong numbers depend only on the asymptotic behaviour
of ϕ near the (compact) polar set ϕ−1(−∞) ∩ (SuppT × Y ). We can add a
smooth strictly plurisubharmonic function on X × Y to make ϕ strictly
plurisuharmonic. Then Richberg’s approximation theorem for continuous
plurisubharmonic functions shows that there exists a smooth plurisubhar-
monic function ϕ̃ such that ϕ ≤ ϕ̃ ≤ ϕ + 1. We may therefore assume that
ϕ is smooth on (X × Y ) \ ϕ−1(−∞).

• First step: construction of a local plurisubharmonic potential.

Our goal is to generalize the usual construction of plurisubharmonic
potentials associated with a closed positive current (cf. P. Lelong[Le2] and
H. Skoda[Sk1]). We replace here the usual kernel |z − ζ|−2p arising from
the hermitian metric of Cn by a kernel depending on the weight ϕ. Let
χ ∈ C∞(IR, IR) be an increasing function such that χ(t) = t for t ≤ −1 and
χ(t) = 0 for t ≥ 0. We consider the half-plane H = {z ∈ C ; Rez < −1} and
associate with T the potential function V on Y ×H defined by

(6.7) V (y, z) = −

∫ 0

Rez

ν(T, ϕy, t)χ
′(t) dt.

For every t > Re z, Stokes’ formula gives

ν(T, ϕy, t) =

∫

ϕ(x,y)<t

T (x) ∧ (ddcxϕ̃(x, y, z))p

with ϕ̃(x, y, z) := max{ϕ(x, y),Rez}. The Fubini theorem applied to (6.7)
gives

V (y, z) = −

∫
x∈X,ϕ(x,y)<t

Re z<t<0

T (x) ∧ (ddcxϕ̃(x, y, z))p χ′(t)dt

=

∫

x∈X

T (x) ∧ χ(ϕ̃(x, y, z)) (ddcxϕ̃(x, y, z))p.

For all (n − 1, n − 1)-form h of class C∞ with compact support in Y ×H,
we get

〈ddcV, h〉 = 〈V, ddch〉

=

∫

X×Y×H

T (x) ∧ χ(ϕ̃(x, y, z))(ddcϕ̃(x, y, z))p ∧ ddch(y, z).

Observe that the replacement of ddcx by the total differentiation ddc = ddcx,y,z
does not modify the integrand, because the terms in dx, dx must have total
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bidegree (n, n). The current T (x)∧χ(ϕ̃(x, y, z))h(y, z) has compact support
in X × Y ×H. An integration by parts can thus be performed to obtain

〈ddcV, h〉 =

∫

X×Y×H

T (x) ∧ ddc(χ ◦ ϕ̃(x, y, z)) ∧ (ddcϕ̃(x, y, z))p.h(y, z).

On the corona {−1 ≤ ϕ(x, y) ≤ 0} we have ϕ̃(x, y, z) = ϕ(x, y), whereas for
ϕ(x, y) < −1 we get ϕ̃ < −1 and χ ◦ ϕ̃ = ϕ̃. As ϕ̃ is plurisubharmonic, we
see that ddcV (y, z) is the sum of the positive (1, 1)-form

(y, z) 7−→

∫

{x∈X;ϕ(x,y)<−1}

T (x) ∧ (ddcx,y,zϕ̃(x, y, z))p+1

and of the (1, 1)-form independent of z

y 7−→

∫

{x∈X;−1≤ϕ(x,y)≤0}

T ∧ ddcx,y(χ ◦ ϕ) ∧ (ddcx,yϕ)p.

As ϕ is smooth outside ϕ−1(−∞), this last form has locally bounded
coefficients. Hence ddcV (y, z) is ≥ 0 except perhaps for locally bounded
terms. In addition, V is continuous on Y × H because T ∧ (ddcϕ̃y,z)

p is
weakly continuous in the variables (y, z) by Cor. 1.6. We therefore obtain
the following result.

(6.8) Proposition. There exists a positive plurisubharmonic function ρ ∈
C∞(Y ) such that ρ(y) + V (y, z) is plurisubharmonic on Y ×H.

If we let Re z tend to −∞, we see that the function

U0(y) = ρ(y) + V (y,−∞) = ρ(y) −

∫ 0

−∞

ν(T, ϕy, t)χ
′(t)dt

is locally plurisubharmonic or identically −∞ on Y . Moreover, it is clear that
U0(y) = −∞ at every point y such that ν(T, ϕy) > 0. If Y is connected and
U0 6≡ −∞, we already conclude that the density set

⋃
c>0 Ec is pluripolar

in Y .

• Second step: application of Kiselman’s minimum principle.

We refer to Kiselman [Ki1] for a proof (in a somewhat more general
situation) of the following basic minimum principle for plurisubharmonic
functions.

(6.9) Kiselman’s minimum principle. Let M be a complex manifold, let
ω ⊂ IRn be a convex open subset and Ω be the “tube domain” Ω = ω+ iIRn.
For every plurisubharmonic function v(ζ, z) on M ×Ω that does not depend
on Im z, the function
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u(ζ) = inf
z∈Ω

v(ζ, z)

is plurisubharmonic or locally ≡ −∞ on M . ⊓⊔

Let a ≥ 0 be arbitrary. The function

Y ×H ∋ (y, z) 7−→ ρ(y) + V (y, z) − aRez

is plurisubharmonic and independent of Im z. By 6.9, the Legendre transform

Ua(y) = inf
r<−1

{
ρ(y) + V (y, r) − ar

}

is locally plurisubharmonic or ≡ −∞ on Y .

(6.10) Lemma. Let y0 ∈ Y be a given point.

(a) If a > ν(T, ϕy0), then Ua is bounded below on a neighborhood of y0.

(b) If a < ν(T, ϕy0), then Ua(y0) = −∞.

Proof. By definition of V (cf. (6.7)) we have

(6.11) V (y, r) ≤ −ν(T, ϕy, r)

∫ 0

r

χ′(t)dt = rν(T, ϕy, r) ≤ rν(T, ϕy).

Then clearly Ua(y0) = −∞ if a < ν(T, ϕy0). On the other hand, if
ν(T, ϕy0) < a, there exists t0 < 0 such that ν(T, ϕy0 , t0) < a. Fix r0 < t0.
The semi-continuity property (3.13) shows that there exists a neighborhood
ω of y0 such that supy∈ω ν(T, ϕy, r0) < a. For all y ∈ ω, we get

V (y, r) ≥ −C − a

∫ r0

r

χ′(t)dt = −C + a(r − r0),

and this implies Ua(y) ≥ −C − ar0. ⊓⊔

(6.12) Theorem. If Y is connected and if Ec 6= Y , then Ec is a closed com-
plete pluripolar subset of Y , i.e. there exists a continuous plurisubharmonic
function w : Y −→ [−∞,+∞[ such that Ec = w−1(−∞).

Proof. We first observe that the family (Ua) is increasing in a, that Ua = −∞
on Ec for all a < c and that supa<c Ua(y) > −∞ if y ∈ Y \ Ec (apply
Lemma 6.10). For any integer k ≥ 1, let wk ∈ C∞(Y ) be a plurisubharmonic
regularization of Uc−1/k such that wk ≥ Uc−1/k on Y and wk ≤ −2k on
Ec ∩ Yk where Yk = {y ∈ Y ; d(y, ∂Y ) ≥ 1/k}. Then Lemma 6.10 (a) shows
that the family (wk) is uniformly bounded below on every compact subset of
Y \ Ec. We can also choose wk uniformly bounded above on every compact
subset of Y because Uc−1/k ≤ Uc. The function
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w =

+∞∑

k=1

2−kwk

satifies our requirements. ⊓⊔

• Third step: estimation of the singularities of the potentials Ua.

(6.13) Lemma. Let y0 ∈ Y be a given point, L a compact neighborhood of y0,
K ⊂ X a compact subset and r0 a real number < −1 such that

{(x, y) ∈ X × L;ϕ(x, y) ≤ r0} ⊂ K × L.

Assume that eϕ(x,y) is locally Hölder continuous in y and that

|f(x, y1) − f(x, y2)| ≤M |y1 − y2|
γ

for all (x, y1, y2) ∈ K × L × L. Then, for all ε ∈ ]0, 1[, there exists a real
number η(ε) > 0 such that all y ∈ Y with |y − y0| < η(ε) satisfy

Ua(y) ≤ ρ(y) +
(
(1 − ε)pν(T, ϕy0) − a

)(
γ log |y − y0| + log

2eM

ε

)
.

Proof. First, we try to estimate ν(T, ϕy, r) when y ∈ L is near y0. Set




ψ(x) = (1 − ε)ϕy0(x) + εr − ε/2

ψ(x) = max
(
ϕy(x), (1 − ε)ϕy0(x) + εr − ε/2

)

ψ(x) = ϕy(x)

if

if

if

ϕy0(x) ≤ r − 1

r − 1 ≤ϕy0(x) ≤ r

r ≤ϕy0(x) ≤ r0

and verify that this definition is coherent when |y − y0| is small enough. By
hypothesis

|eϕy(x) − eϕy0
(x)| ≤M |y − y0|

γ .

This inequality implies

ϕy(x) ≤ ϕy0(x) + log
(
1 +M |y − y0|

γe−ϕy0
(x)

)

ϕy(x) ≥ ϕy0(x) + log
(
1 −M |y − y0|

γe−ϕy0
(x)

)
.

In particular, for ϕy0(x) = r, we have (1 − ε)ϕy0(x) + εr − ε/2 = r − ε/2,
thus

ϕy(x) ≥ r + log(1 −M |y − y0|
γe−r).

Similarly, for ϕy0(x) = r− 1, we have (1− ε)ϕy0(x) + εr− ε/2 = r− 1 + ε/2,
thus

ϕy(x) ≤ r − 1 + log(1 +M |y − y0|
γe1−r).

The definition of ψ is thus coherent as soon as M |y − y0|
γe1−r ≤ ε/2 , i.e.
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γ log |y − y0| + log
2eM

ε
≤ r.

In this case ψ coincides with ϕy on a neighborhood of {ψ = r} , and with

(1 − ε)ϕy0(x) + εr − ε/2

on a neighborhood of the polar set ψ−1(−∞). By Stokes’ formula applied to
ν(T, ψ, r), we infer

ν(T, ϕy, r) = ν(T, ψ, r) ≥ ν(T, ψ) = (1 − ε)pν(T, ϕy0).

From (6.11) we get V (y, r) ≤ rν(T, ϕy, r), hence

Ua(y) ≤ ρ(y) + V (y, r) − ar ≤ ρ(y) + r
(
ν(T, ϕy , r) − a

)
,

Ua(y) ≤ ρ(y) + r
(
(1 − ε)pν(T, ϕy0) − a

)
.(6.14)

Suppose γ log |y − y0| + log(2eM/ε) ≤ r0 , i.e. |y − y0| ≤ (ε/2eM)1/γer0/γ ;
one can then choose r = γ log |y−y0|+log(2eM/ε), and by (6.14) this yields
the inequality asserted in Lemma 6.13. ⊓⊔

• Fourth step: application of Hörmander’s L2 estimates.

The end of the proof rests upon the following crucial result, known as
the Hörmander-Bombieri-Skoda theorem (cf. [Hö], [Bo] and [Sk1,Sk2]).

(6.15) Theorem. Let u be a plurisubharmonic function on a pseudoconvex
open set Ω ⊂ Cn. For every point z0 ∈ Ω such that e−u is integrable in a
neighborhood of z0, there exists a holomorphic function F on Ω such that
F (z0) = 1 and ∫

Ω

|F (z)|2e−u(z)

(1 + |z|2)n+ε
dλ(z) < +∞.

(6.16) Corollary. Let u be a plurisubharmonic function on a complex mani-
fold Y . The set of points in a neighborhood of which e−u is not integrable is
an analytic subset of Y .

Proof. The result is local, so we may assume that Y is a ball in Cn.
Then the set of non integrability points of e−u is the intersection of all
hypersurfaces F−1(0) defined by the holomorphic functions F such that∫
Y
|F |2e−udλ < +∞. Indeed F must vanish at any non integrability point,

and on the other hand Th. 6.15 shows that one can choose F (z0) = 1 at any
integrability point z0. ⊓⊔

End of proof of Th. 6.4. The main idea in what follows is due to Kiselman
[Ki2]. For a, b > 0, we let Za,b be the set of points in a neighborhood of
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which exp(−Ua/b) is not integrable. Then Za,b is analytic, and as the family
(Ua) is increasing in a, we have Za′,b′ ⊃ Za′′,b′′ if a′ ≤ a′′, b′ ≤ b′′.

Let y0 ∈ Y be a given point. If y0 /∈ Ec, then ν(T, ϕy0) < c by definition
of Ec. Choose a such that ν(T, ϕy0) < a < c. Lemma 6.10 (a) implies that
Ua is bounded below in a neighborhood of y0, thus exp(−Ua/b) is integrable
and y0 /∈ Za,b for all b > 0.

On the other hand, if y0 ∈ Ec and if a < c, then Lemma 6.13 implies
for all ε > 0 that

Ua(y) ≤ (1 − ε)(c− a)γ log |y − y0| + C(ε)

on a neighborhood of y0. Hence exp(−Ua/b) is non integrable at y0 as soon
as b < (c− a)γ/2m, where m = dimY . We obtain therefore

Ec =
⋂

a<c
b<(c−a)γ/2m

Za,b.

This proves that Ec is an analytic subset of Y . ⊓⊔

Finally, we use corollary 6.5 to derive an important decomposition
formula for currents, which is again due to [Siu]. We first begin by two
simple observations.

(6.17) Lemma. If T is a closed positive current of bidimension (p, p) and A
is an irreducible analytic set in X, we set

mA = inf{x ∈ A ; ν(T, x)}.

Then ν(T, x) = mA for all x ∈ A \
⋃
A′
j, where (A′

j) is a countable family of
proper analytic subsets of A. We say that mA is the generic Lelong number
of T along A.

Proof. By definition of mA and Ec(T ), we have ν(T, x) ≥ mA for every x ∈ A
and

ν(T, x) = mA on A \

⋃

c∈Q, c>mA

A ∩ Ec(T ).

However, for c > mA, the intersection A∩Ec(T ) is a proper analytic subset
of A. ⊓⊔

(6.18) Proposition. Let T be a closed positive current of bidimension (p, p)
and let A be an irreducible p-dimensional analytic subset of X. Then
1lAT = mA[A], in particular T −mA[A] is positive.
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Proof. As the question is local and as a closed positive current of bidimension
(p, p) cannot carry any mass on a (p− 1)-dimensional analytic subset, it is
enough to work in a neighborhood of a regular point x0 ∈ A. Hence, by
choosing suitable coordinates, we can suppose that X is an open set in Cn

and that A is the intersection of X with a p-dimensional linear subspace.
Then, for every point a ∈ A, the inequality ν(T, a) ≥ mA implies

σT
(
B(a, r)

)
≥ mA π

pr2p/p! = mAσ[A]

(
B(a, r)

)

for all r such that B(a, r) ⊂ X . Now, set Θ = T −mA[A] and β = ddc|z|2.
Our inequality says that

∫
1lB(a,r)Θ∧βp ≥ 0. If we integrate this with respect

to some positive continuous function f with compact support in A, we get∫
X
grΘ ∧ βp ≥ 0 where

gr(z) =

∫

A

1lB(a,r)(z) f(a) dλ(a) =

∫

a∈A∩B(z,r)

f(a) dλ(a).

Here gr is continuous on Cn, and as r tends to 0 the function gr(z)/(π
pr2p/p!)

converges to f on A and to 0 on X \A, with a global uniform bound. Hence
we obtain

∫
1lAf Θ ∧ βp ≥ 0. Since this inequality is true for all continuous

functions f ≥ 0 with compact support in A, we conclude that the measure
1lAΘ ∧ βp is positive. By a linear change of coordinates, we see that

1lAΘ ∧
(
ddc

∑

1≤j≤n

λj |uj|
2
)n

≥ 0

for every basis (u1, . . . , un) of linear forms and for all coefficients λj > 0.
Take λ1 = . . . = λp = 1 and let the other λj tend to 0. Then we get
1lAΘ ∧ idu1 ∧ du1 ∧ . . . ∧ dup ∧ dup ≥ 0. This implies 1lAΘ ≥ 0, or equiva-
lently 1lAT ≥ mA[A]. By a result of Skoda [Sk3], we know that 1lAT is a
closed positive current, thus 1lAT = λ[A] with λ ≥ 0. We have just seen that
λ ≥ mA. On the other hand, T ≥ 1lAT = λ[A] clearly implies mA ≥ λ. ⊓⊔

(6.19) Siu’s decomposition formula. If T is a closed positive current of
bidimension (p, p), there is a unique decomposition of T as a (possibly finite)
weakly convergent series

T =
∑

j≥1

λj [Aj] +R, λj > 0,

where [Aj] is the current of integration over an irreducible p-dimensional
analytic set Aj ⊂ X and where R is a closed positive current with the
property that dimEc(R) < p for every c > 0.

Uniqueness. If T has such a decomposition, the p-dimensional components of
Ec(T ) are (Aj)λj≥c, for ν(T, x) =

∑
λjν([Aj ], x) + ν(R, x) is non zero only

on
⋃
Aj ∪

⋃
Ec(R), and is equal to λj generically on Aj

(
more precisely,
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ν(T, x) = λj at every regular point of Aj which does not belong to any
intersection Aj ∪ Ak, k 6= j or to

⋃
Ec(R)

)
. In particular Aj and λj are

unique.

Existence. Let (Aj)j≥1 be the countable collection of p-dimensional compo-
nents occurring in one of the sets Ec(T ), c ∈ Q⋆

+, and let λj > 0 be the
generic Lelong number of T along Aj . Then Prop. 6.18 shows by induction
on N that RN = T −

∑
1≤j≤N λj [Aj ] is positive. As RN is a decreasing se-

quence, there must be a limit R = limN→+∞RN in the weak topology. Thus
we have the asserted decomposition. By construction, R has zero generic Le-
long number along Aj , so dimEc(R) < p for every c > 0. ⊓⊔

It is very important to note that some components of lower dimension
can actually occur in Ec(R), but they cannot be subtracted because R has
bidimension (p, p). A typical case is the case of a bidimension (n− 1, n− 1)
current T = ddcu with u = log(|Fj|

γ1 + . . . |FN |γN ) and Fj ∈ O(X). In
general

⋃
Ec(T ) =

⋂
F−1
j (0) has dimension < n − 1. In that case, an

important formula due to King plays the role of (6.19). We state it in a
somewhat more general form than its original version [Kg].

(6.20) King’s formula. Let F1, . . . , FN be holomorphic functions on a complex
manifold X, such that the zero variety Z =

⋂
F−1
j (0) has codimension ≥ p,

and set u = log
∑

|Fj |
γj with arbitrary coefficients γj > 0. Let (Zk)k≥1 be

the irreducible components of Z of codimension p exactly. Then there exist
multiplicities λk > 0 such that

(ddcu)p =
∑

k≥1

λk[Zk] +R,

where R is a closed positive current such that 1lZR = 0 and codimEc(R) > p
for every c > 0. Moreover the multiplicities λk are integers if γ1, . . . , γN are
integers, and λk = γ1 . . . γp if γ1 ≤ . . . ≤ γN and some partial Jacobian
determinant of (F1, . . . , Fp) of order p does not vanish identically along Zk.

Proof. Observe that (ddcu)p is well defined thanks to Cor. 2.11. The
comparison theorem 5.9 applied with ϕ(z) = log |z − x|, v1 = . . . = vp = u,
u1 = . . . = up = ϕ and T = 1 shows that the Lelong number of (ddcu)p

is equal to 0 at every point of X \ Z. Hence Ec((dd
cu)p) is contained in Z

and its (n − p)-dimensional components are members of the family (Zk).
The asserted decomposition follows from Siu’s formula 6.19. We must have
1lZk

R = 0 for all irreducible components of Z: when codimZk > p this is
automatically true, and when codimZk = p this follows from (6.18) and
the fact that codimEc(R) > p. If det(∂Fj/∂zk)1≤j,k≤p 6= 0 at some point
x0 ∈ Zk, then (Z, x0) = (Zk, x0) is a smooth germ defined by the equations
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F1 = . . . = Fp = 0. If we denote v = log
∑
j≤p |Fj|

γj with γ1 ≤ . . . ≤ γN ,
then u ∼ v near Zk and Th. 5.9 implies ν((ddcu)p, x) = ν((ddcv)p, x) for all
x ∈ Zk near x0. On the other hand, if G := (F1, . . . , Fp) : X → Cp, Cor. 5.4
gives

(ddcv)p = G⋆
(
ddc log

∑

1≤j≤p

|zj |
γj

)p
= γ1 . . . γpG

⋆δ0 = γ1 . . . γp [Zk]

near x0. This implies that the generic Lelong number of (ddcu)p along Zk
is λk = γ1 . . . γp. The integrality of λk when γ1, . . . , γN are integers will be
proved in the next section. ⊓⊔

7. Transformation of Lelong Numbers by Direct Images

Let F : X → Y be a holomorphic map between complex manifolds of
respective dimensions dimX = n, dimY = m, and let T be a closed positive
current of bidimension (p, p) on X . If F|̀SuppT is proper, the direct image
F⋆T is defined by

(7.1) 〈F⋆T, α〉 = 〈T, F ⋆α〉

for every test form α of bidegree (p, p) on Y . This makes sense because
Supp T ∩ F−1(Suppα) is compact. It is easily seen that F⋆T is a closed
positive current of bidimension (p, p) on Y .

(7.2) Example. Let T = [A] where A is a p-dimensional irreducible analytic
set in X such that F|̀A is proper. We know by Remmert’s theorem [Re1,2]
that F (A) is an analytic set in Y . Two cases may occur. Either F|̀A is
generically finite and F induces an étale covering A \ F−1(Z) −→ F (A) \Z
for some nowhere dense analytic subset Z ⊂ F (A), or F|̀A has generic fibers
of positive dimension and dimF (A) < dimA. In the first case, let s < +∞
be the covering degree. Then for every test form α of bidegree (p, p) on Y
we get

〈F⋆[A], α〉 =

∫

A

F ⋆α =

∫

A\F−1(Z)

F ⋆α = s

∫

F (A)\Z

α = s 〈[F (A)], α〉

because Z and F−1(Z) are negligible sets. Hence F⋆[A] = s[F (A)]. On the
other hand, if dimF (A) < dimA = p, the restriction of α to F (A)reg is zero,
and therefore so is this the restriction of F ⋆α to Areg. Hence F⋆[A] = 0. ⊓⊔

Now, let ψ be a continuous plurisubharmonic function on Y which is
semi-exhaustive on F (Supp T ) (this set certainly contains SuppF⋆T ). Since
F|̀SuppT is proper, it follows that ψ ◦ F is semi-exhaustive on Supp T , for
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Supp T ∩ {ψ ◦ F < R} = F−1
(
F (Supp T ) ∩ {ψ < R}

)
.

(7.3) Proposition. If F (SuppT ) ∩ {ψ < R} ⊂⊂ Y , we have

ν(F⋆T, ψ, r) = ν(T, ψ ◦ F, r) for all r < R,

in particular ν(F⋆T, ψ) = ν(T, ψ ◦ F ).

Here, we do not necessarily assume that X or Y are Stein; we thus
replace ψ with ψ≥s = max{ψ, s}, s < r, in the definition of ν(F⋆T, ψ, r) and
ν(T, ψ ◦ F, r).

Proof. The first equality can be written
∫

Y

F⋆T ∧ 1l{ψ<r}(ddcψ≥s)
p =

∫

X

T ∧ (1l{ψ<r} ◦ F )(ddcψ≥s ◦ F )p.

This follows almost immediately from the adjunction formula (7.1) when
ψ is smooth and when we write 1l{ψ<R} = lim ↑ gk for some sequence
of smooth functions gk. In general, we write ψ≥s as a decreasing limit of
smooth plurisubharmonic functions and we apply our monotone continuity
theorems (if Y is not Stein, Richberg’s theorem shows that we can obtain a
decreasing sequence of almost plurisubharmonic approximations such that
the negative part of ddc converges uniformly to 0 ; this is good enough to
apply the monotone continuity theorem; note that the integration is made
on compact subsets, thanks to the semi-exhaustivity assumption on ψ). ⊓⊔

It follows from this that understanding the transformation of Lelong
numbers under direct images is equivalent to understanding the effect of F
on the weight. We are mostly interested in computing the ordinary Lelong
numbers ν(F⋆T, y) associated with the weight ψ(w) = log |w − y| in some
local coordinates (w1, . . . , wm) on Y near y. Then Prop. 7.3 gives

ν(F⋆T, y) = ν(T, log |F − y|) with(7.4)

log |F (z) − y| =
1

2
log

∑
|Fj(z) − yj |

2, Fj = wj ◦ F.

We are going to show that ν(T, log |F − y|) is bounded below by a linear
combination of the Lelong numbers of T at points x in the fiber F−1(y), with
suitable multiplicities attached to F at these points. These multiplicities can
be seen as generalizations of the notion of multiplicity of an analytic map
introduced by W. Stoll [St].

(7.5) Definition. Let x ∈ X and y = F (x). Suppose that the codimension of
the fiber F−1(y) at x is ≥ p. Then we set µp(F, x) = ν

(
(ddc log |F −y|)p, x

)
.
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Observe that (ddc log |F − y|)p is well defined thanks to Cor. 2.10.
The second comparison theorem 5.9 immediately shows that µp(F, x) is
independent of the choice of local coordinates on Y (and also on X , since
Lelong nombers do not depend on coordinates). By definition, µp(F, x) is
the mass carried by {x} of the measure

(ddc log |F (z) − y|)p ∧ (ddc log |z − x|)n−p.

We are going to give of more geometric interpretation of this multiplicity,
from which it will follow that µp(F, x) is always a positive integer (in
particular, the proof of (6.20) will be complete).

(7.6) Example. For p = n = dimX , the assumption codimx F
−1(y) ≥ p

means that the germ of map F : (X, x) −→ (Y, y) is finite. Let Ux be a
neighborhood of x such that Ux ∩ F

−1(y) = {x}, let Wy be a neighborhood
of y disjoint from F (∂Ux) and let Vx = Ux ∩ F

−1(Wy). Then F : Vx → Wy

is proper and finite, and we have F⋆[Vx] = s [F (Vx)] where s is the local
covering degree of F : Vx → F (Vx) at x. Therefore

µn(F, x) =

∫

{x}

(
ddc log |F − y|

)n
= ν

(
[Vx], log |F − y|

)
= ν

(
F⋆[Vx], y

)

= s ν
(
F (Vx), y

)
.

In the particular case when dimY = dimX , we have (F (Vx), y) = (Y, y), so
µn(F, x) = s. In general, it is a well known fact that the ideal generated by
(F1 − y1, . . . , Fm − ym) in OX,x has the same integral closure as the ideal
generated by n generic linear combinations of the generators, that is, for
a generic choice of coordinates w′ = (w1, . . . , wn), w′′ = (wn+1, . . . , wm)
on (Y, y), we have |F (z) − y| ≤ C|w′ ◦ F (z)| (this is a simple consequence
of Lemma 5.7 applied to A = F (Vx)). Hence for p = n, the comparison
theorem 5.1 gives

µn(F, x) = µn(w′ ◦ F, x) = local covering degree of w′ ◦ F at x,

for a generic choice of coordinates (w′, w′′) on (Y, y). ⊓⊔

(7.7) Geometric interpretation of µp(F, x). A formal application of Crofton’s
formula 5.12 shows, after a translation, that there is a small ball B(x, r0) on
which

(ddc log |F (z) − y|)p ∧ (ddc log |z − x|)n−p =∫

S∈G(p,n)

(ddc log |F (z) − y|)p ∧ [x+ S] dv(S).(7.7 a)

For a rigorous proof of (7.7 a), we replace log |F (z) − y| by the smooth
function 1

2 log(|F (z) − y|2 + ε2) and let ε tend to 0 on both sides. By (2.3)
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(resp. by (2.10)), the wedge product (ddc log |F (z) − y|)p ∧ [x + S] is well
defined on a small ball B(x, r0) as soon as x+S does not intersect F−1(y)∩
∂B(x, r0) (resp. intersects F−1(y)∩B(x, r0) at finitely many points); thanks
to the assumption codim(F−1(y), x) ≥ p, Sard’s theorem shows that this is
the case for all S outside a negligible closed subset E in G(p, n) (resp. by
Bertini, an analytic subset A in G(p, n) with A ⊂ E). Fatou’s lemma then
implies that the inequality ≥ holds in (7.7 a). To get equality, we observe
that we have bounded convergence on all complements G(p, n) \ V (E) of
neighborhoods V (E) of E. However the mass of

∫
V (E)

[x+S] dv(S) inB(x, r0)

is proportional to v(V (E)) and therefore tends to 0 when V (E) is small; this
is sufficient to complete the proof, since Prop. 2.6 (b) gives
∫

z∈B(x,r0)

(
ddc log(|F (z) − y|2 + ε2)

)p
∧

∫

S∈V (E)

[x+ S] dv(S) ≤ C v(V (E))

with a constant C independent of ε. By evaluating (7.7 a) on {x}, we get

(7.7 b) µp(F, x) =

∫

S∈G(p,n)\A

ν
(
(ddc log |F|̀x+S − z|)p, x

)
dv(S).

Let us choose a linear parametrization gS : Cp → S depending analytically
on local coordinates of S in G(p, n). Then Theorem 6.4 with T = [Cp] and
ϕ(z, S) = log |F ◦ gS(z) − y| shows that

ν
(
(ddc log |F|̀x+S − z|)p, x

)
= ν

(
[Cp], log |F ◦ gS(z) − y|

)

is Zariski upper semicontinuous in S on G(p, n) \ A. However, (7.6) shows
that these numbers are integers, so S 7→ ν

(
(ddc log |F|̀x+S−z|)

p, x
)

must be
constant on a Zariski open subset in G(p, n). By (7.7 b), we obtain

(7.7 c) µp(F, x) = µp(F|̀x+S , x) = local degree of w′ ◦ F|̀x+S at x

for generic subspaces S ∈ G(p, n) and generic coordinates w′ = (w1, . . . , wp),
w′′ = (wp+1, . . . , wm) on (Y, y). ⊓⊔

(7.8) Example. Let F : Cn −→ Cn be defined by

F (z1, . . . , zn) = (zs11 , . . . , z
sn
n ), s1 ≤ . . . ≤ sn.

We claim that µp(F, 0) = s1 . . . sp. In fact, for a generic p-dimensional
subspace S ⊂ Cn such that z1, . . . , zp are coordinates on S and zp+1, . . . , zn
are linear forms in z1, . . . , zp, and for generic coordinates w′ = (w1, . . . , wp),
w′′ = (wp+1, . . . , wn) on Cn, we can rearrange w′ by linear combinations
so that wj ◦ F|̀S is a linear combination of (z

sj

j , . . . , z
sn
n ) and has non zero

coefficient in z
sj

j as a polynomial in (zj , . . . , zp). It is then an exercise to
show that w′ ◦ F|̀S has covering degree s1 . . . sp at 0 [ compute inductively
the roots zn, zn−1, . . . , zj of wj ◦F|̀S(z) = aj and use (5.6) to show that the
sj values of zj lie near 0 when (a1, . . . , ap) are small ]. ⊓⊔
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We are now ready to prove the main result of this section, which des-
cribes the behaviour of Lelong numbers under proper morphisms. A similar
weaker result was already proved in [De2] (µp(F, x) was not optimal).

(7.9) Theorem. Let T be a closed positive current of bidimension (p, p) on X
and let F : X −→ Y be an analytic map such that the restriction F|̀SuppT is

proper. Let I(y) be the set of points x ∈ Supp T ∩F−1(y) such that x is equal
to its connected component in Supp T ∩ F−1(y) and codim(F−1(y), x) ≥ p.
Then we have

ν(F⋆T, y) ≥
∑

x∈I(y)

µp(F, x) ν(T, x).

In particular, we have ν(F⋆T, y) ≥
∑
x∈I(y) ν(T, x). This inequality no

longer holds if the summation is extended to all points x ∈ Supp T ∩F−1(Y )
and if this set contains positive dimensional connected components: for
example, if F : X −→ Y is the blow-up of Y at a point and E is the
exceptional divisor, then T = [E] has direct image F⋆[E] = 0 thanks to (7.2).

Proof. We proceed in three steps.

Step 1. Reduction to the case of a single point x in the fiber. It is sufficient
to prove the inequality when the summation is taken over an arbitrary finite
subset {x1, . . . , xN} of I(y). As xj is equal to its connected component
in SuppT ∩ F−1(y), it has a fondamental system of relative open-closed
neighborhoods, hence there are disjoint neighborhoods Uj of xj such that
∂Uj does not intersect Supp T ∩F−1(y). Then the image F (∂Uj ∩Supp T ) is
a closed set which does not contain y. Let W be a neighborhood of y disjoint
from all sets F (∂Uj ∩ Supp T ), and let Vj = Uj ∩ F

−1(W ). It is clear that
Vj is a neighborhood of xj and that F|̀Vj

: Vj → W has a proper restriction

to Supp T ∩ Vj . Moreover, we obviously have F⋆T ≥
∑
j(F|̀Vj

)⋆T on W .

Therefore, it is enough to check the inequality ν(F⋆T, y) ≥ µp(F, x) ν(T, x)
for a single point x ∈ I(y), in the case when X ⊂ Cn, Y ⊂ Cm are open
subsets and x = y = 0.

Step 2. Reduction to the case when F is finite. By (7.4), we have

ν(F⋆T, 0) = inf
V ∋0

∫

V

T ∧ (ddc log |F |)p

= inf
V ∋0

lim
ε→0

∫

V

T ∧
(
ddc log(|F | + ε|z|N )

)p
,

and the integrals are well defined as soon as ∂V does not intersect the set
Supp T ∩ F−1(0) (may be after replacing log |F | by max{log |F |, s} with
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s ≪ 0). For every V and ε, the last integral is larger than ν(G⋆T, 0) where
G is the finite morphism defined by

G : X −→ Y × Cn, (z1, . . . , zn) 7−→ (F1(z), . . . , Fm(z), zN1 , . . . , z
N
n ).

We claim that for N large enough we have µp(F, 0) = µp(G, 0). In fact,
x ∈ I(y) implies by definition codim(F−1(0), 0) ≥ p. Hence, if S =
{u1 = . . . = un−p = 0} is a generic p-dimensional subspace of Cn, the
germ of variety F−1(0) ∩ S defined by (F1, . . . , Fm, u1, . . . , un−p) is {0}.
Hilbert’s Nullstellensatz implies that some powers of z1, . . . , zn are in the
ideal (Fj, uk). Therefore |F (z)| + |u(z)| ≥ C|z|a near 0 for some inte-
ger a independent of S (to see this, take coefficients of the uk’s as ad-
ditional variables); in particular |F (z)| ≥ C|z|a for z ∈ S near 0. The
comparison theorem 5.1 then shows that µp(F, 0) = µp(G, 0) for N ≥ a.
If we are able to prove that ν(G⋆T, 0) ≥ µp(G, 0)ν(T, 0) in case G is finite,
the obvious inequality ν(F⋆T, 0) ≥ ν(G⋆T, 0) concludes the proof.

Step 3. Proof of the inequality ν(F⋆T, y) ≥ µp(F, x) ν(T, x) when F is finite
and F−1(y) = x. Then ϕ(z) = log |F (z) − y| has a single isolated pole at x
and we have µp(F, x) = ν((ddcϕ)p, x). It is therefore sufficient to apply the
following Proposition. ⊓⊔

(7.10) Proposition. Let ϕ be a semi-exhaustive continuous plurisubharmonic
function on X with a single isolated pole at x. Then

ν(T, ϕ) ≥ ν(T, x) ν((ddcϕ)p, x).

Proof. Since the question is local, we can suppose that X is the ball B(0, r0)
in Cn and x = 0. Set X ′ = B(0, r1) with r1 < r0 and Φ(z, g) = ϕ ◦ g(z)
for g ∈ Gln(C). Then there is a small neighborhood Ω of the unitary
group U(n) ⊂ Gln(C) such that Φ is plurisubharmonic on X ′ × Ω and
semi-exhaustive with respect to X ′. Theorem 6.4 implies that the map
g 7→ ν(T, ϕ ◦ g) is Zariski upper semi-continuous on Ω. In particular, we
must have ν(T, ϕ ◦ g) ≤ ν(T, ϕ) for all g ∈ Ω \ A in the complement of a
complex analytic set A. Since Gln(C) is the complexification of U(n), the
intersection U(n)∩A must be a nowhere dense real analytic subset of U(n).
Therefore, if dv is the Haar measure of mass 1 on U(n), we have

ν(T, ϕ) ≥

∫

g∈U(n)

ν(T, ϕ ◦ g) dv(g)

= lim
r→0

∫

g∈U(n)

dv(g)

∫

B(0,r)

T ∧ (ddcϕ ◦ g)p.(7.11)

Since
∫
g∈U(n)

(ddcϕ◦g)pdv(g) is a unitary invariant (p, p)-form on B, Lemma

5.11 implies
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∫

g∈U(n)

(ddcϕ ◦ g)pdv(g) =
(
ddcχ(log |z|)

)p

where χ is a convex increasing function. The Lelong number at 0 of the
left hand side is equal to ν((ddcϕ)p, 0), and must be equal to the Lelong
number of the right hand side, which is limt→−∞ χ′(t)p (to see this, use
either Formula (3.5) or Th. 5.9). Thanks to the last equality, Formulas (7.11)
and (3.5) imply

ν(T, ϕ) ≥ lim
r→0

∫

B(0,r)

T ∧
(
ddcχ(log |z|)

)p

= lim
r→0

χ′(log r − 0)pν(T, 0, r) ≥ ν((ddcϕ)p, 0) ν(T, 0). ⊓⊔

Another interesting question is to know whether it is possible to get
inequalities in the opposite direction, i.e. to find upper bounds for ν(F⋆T, y)
in terms of the Lelong numbers ν(T, x). The example T = [Γ ] with the curve
Γ : t 7→ (ta, ta+1, t) in C3 and F : C3 → C2, (z1, z2, z3) 7→ (z1, z2), for which
ν(T, 0) = 1 and ν(F⋆T, 0) = a, shows that this may be possible only when
F is finite. In this case, we have:

(7.12) Theorem. Let F : X → Y be a proper and finite analytic map and let
T be a closed positive current of bidimension (p, p) on X. Then

(a) ν(F⋆T, y) ≤
∑

x∈SuppT∩F−1(y)

µp(F, x) ν(T, x)

where µp(F, x) is the multiplicity defined as follows: if H : (X, x) → (Cn, 0)
is a germ of finite map, we set

σ(H, x) = inf
{
α > 0 ; ∃C > 0, |H(z)| ≥ C|z − x|α near x

}
,(b)

µp(F, x) = inf
G

σ(G ◦ F, x)p

µp(G, 0)
,(c)

where G runs over all germs of maps (Y, y) −→ (Cn, 0) such that G ◦ F is
finite.

Proof. If F−1(y) = {x1, . . . , xN}, there is a neighborhood W of y and disjoint
neighborhoods Vj of xj such that F−1(W ) =

⋃
Vj . Then F⋆T =

∑
(F|̀Vj

)⋆T

on W , so it is enough to consider the case when F−1(y) consists of a
single point x. Therefore, we assume that F : V → W is proper and
finite, where V , W are neighborhoods of 0 in Cn, Cm and F−1(0) = {0}.
Let G : (Cm, 0) −→ (Cn, 0) be a germ of map such that G ◦ F is finite.
Hilbert’s Nullstellensatz shows that there exists α > 0 and C > 0 such that
|G ◦ F (z)| ≥ C|z|α near 0. Then the comparison theorem 5.1 implies



7. Transformation of Lelong Numbers by Direct Images 59

ν(G⋆F⋆T, 0) = ν(T, log |G ◦ F |) ≤ αpν(T, log |z|) = αpν(T, 0).

On the other hand, Th. 7.9 applied to Θ = F⋆T on W gives

ν(G⋆F⋆T, 0) ≥ µp(G, 0) ν(F⋆T, 0).

Therefore

ν(F⋆T, 0) ≤
αp

µp(G, 0)
ν(T, 0).

The infimum of all possible values of α is by definition σ(G ◦ F, 0), thus by
taking the infimum over G we obtain

ν(F⋆T, 0) ≤ µp(F, 0) ν(T, 0). ⊓⊔

(7.13) Example. Let F (z1, . . . , zn) = (zs11 , . . . , z
sn
n ), s1 ≤ . . . ≤ sn as in 7.8.

Then we have

µp(F, 0) = s1 . . . sp, µp(F, 0) = sn−p+1 . . . sn.

To see this, let s be the lowest common multiple of s1, . . . , sn and let

G(z1, . . . , zn) = (z
s/s1
1 , . . . , z

s/sn
n ). Clearly µp(G, 0) = (s/sn−p+1) . . . (s/sn)

and σ(G◦F, 0) = s, so we get by definition µp(F, 0) ≤ sn−p+1 . . . sn. Finally,
if T = [A] is the current of integration over the p-dimensional subspace
A = {z1 = . . . = zn−p = 0}, then F⋆[A] = sn−p+1 . . . sn [A] because F|̀A

has covering degree sn−p+1 . . . sn. Theorem 7.12 shows that we must have
sn−p+1 . . . sn ≤ µp(F, 0), QED. If λ1 ≤ . . . ≤ λn are positive real numbers
and sj is taken to be the integer part of kλj as k tends to +∞, Theorems 7.9
and 7.12 imply in the limit the following:

(7.14) Corollary. For 0 < λ1 ≤ . . . ≤ λn, Kiselman’s directional Lelong
numbers satisfy the inequalities

λ1 . . . λp ν(T, x) ≤ ν(T, x, λ) ≤ λn−p+1 . . . λn ν(T, x). ⊓⊔

(7.15) Remark. It would be interesting to have a direct geometric interpre-
tation of µp(F, x). In fact, we do not even know whether µp(F, x) is always
an integer.
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8. A Schwarz Lemma. Application to Number Theory

In this section, we show how Jensen’s formula and Lelong numbers can be
used to prove a fairly general Schwarz lemma relating growth and zeros of
entire functions in Cn. In order to simplify notations, we denote by |F |r
the supremum of the modulus of a function F on the ball of center 0 and
radius r. Then, following [De1], we present some applications with a more
arithmetical flavour.

(8.1) Schwarz lemma. Let P1, . . . , PN ∈ C[z1, . . . , zn] be polynomials of
degree δ, such that their homogeneous parts of degree δ do not vanish
simultaneously except at 0. Then there is a constant C ≥ 2 such that for
all entire functions F ∈ O(Cn) and all R ≥ r ≥ 1 we have

log |F |r ≤ log |F |R − δ1−nν([ZF ], log |P |) log
R

Cr

where ZF is the zero divisor of F and P = (P1, . . . , PN ) : Cn −→ CN .
Moreover

ν([ZF ], log |P |) ≥
∑

w∈P−1(0)

ord(F,w)µn−1(P,w)

where ord(F,w) denotes the vanishing order of F at w and µn−1(P,w) is
the (n− 1)-multiplicity of P at w, as defined in (7.5) and (7.7).

Proof. Our assumptions imply that P is a proper and finite map. The last
inequality is then just a formal consequence of formula (7.4) and Th. 7.9
applied to T = [ZF ]. Let Qj be the homogeneous part of degree δ in Pj .
For z0 ∈ B(0, r), we introduce the weight functions

ϕ(z) = log |P (z)|, ψ(z) = log |Q(z − z0)|.

Since Q−1(0) = {0} by hypothesis, the homogeneity of Q shows that there
are constants C1, C2 > 0 such that

(8.2) C1|z|
δ ≤ |Q(z)| ≤ C2|z|

δ on Cn.

The homogeneity also implies (ddcψ)n = δn δz0 . We apply the Lelong Jensen
formula 4.5 to the measures µψ,s associated with ψ and to V = log |F |. This
gives

(8.3) µψ,s(log |F |) − δn log |F (z0)| =

∫ s

−∞

dt

∫

{ψ<t}

[ZF ] ∧ (ddcψ)n−1.

By (4.2), µψ,s has total mass δn and has support in

{ψ(z) = s} = {Q(z − z0) = es} ⊂ B
(
0, r + (es/C1)1/δ

)
.
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Note that the inequality in the Schwarz lemma is obvious if R ≤ Cr, so we
can assume R ≥ Cr ≥ 2r. We take s = δ log(R/2) + logC1 ; then

{ψ(z) = s} ⊂ B(0, r+R/2) ⊂ B(0, R).

In particular, we get µψ,s(log |F |) ≤ δn log |F |R and formula (8.3) gives

(8.4) log |F |R − log |F (z0)| ≥ δ−n
∫ s

s0

dt

∫

{ψ<t}

[ZF ] ∧ (ddcψ)n−1

for any real number s0 < s. The proof will be complete if we are able to
compare the integral in (8.4) to the corresponding integral with ϕ in place
of ψ. The argument for this is quite similar to the proof of the comparison
theorem, if we observe that ψ ∼ ϕ at infinity. We introduce the auxiliary
function

w =

{
max{ψ, (1 − ε)ϕ+ εt− ε} on {ψ ≥ t− 2},
(1 − ε)ϕ+ εt− ε on {ψ ≤ t− 2},

with a constant ε to be determined later, such that (1 − ε)ϕ + εt − ε > ψ
near {ψ = t − 2} and (1 − ε)ϕ + εt − ε < ψ near {ψ = t}. Then Stokes’
theorem implies
∫

{ψ<t}

[ZF ] ∧ (ddcψ)n−1 =

∫

{ψ<t}

[ZF ] ∧ (ddcw)n−1

≥ (1 − ε)n−1

∫

{ψ<t−2}

[ZF ] ∧ (ddcϕ)n−1 ≥ (1 − ε)n−1ν([ZF ], log |P |).(8.5)

By (8.2) and our hypothesis |z0| < r, the condition ψ(z) = t implies

|Q(z − z0)| = et =⇒ et/δ/C
1/δ
1 ≤ |z − z0| ≤ et/δ/C

1/δ
2 ,

|P (z) −Q(z − z0)| ≤ C3(1 + |z0|)(1 + |z| + |z0|)
δ−1 ≤ C4r(r + et/δ)δ−1,

∣∣∣ P (z)

Q(z − z0)
− 1

∣∣∣ ≤ C4re
−t/δ(re−t/δ + 1)δ−1 ≤ 2δ−1C4re

−t/δ,

provided that t ≥ δ log r. Hence for ψ(z) = t ≥ s0 ≥ δ log(2δC4r), we get

|ϕ(z) − ψ(z)| =
∣∣∣ log

|P (z)|

|Q(z − z0)|

∣∣∣ ≤ C5re
−t/δ .

Now, we have
[
(1 − ε)ϕ+ εt− ε

]
− ψ = (1 − ε)(ϕ− ψ) + ε(t− 1 − ψ),

so this difference is < C5re
−t/δ − ε on {ψ = t} and > −C5re

(2−t)/δ + ε on
{ψ = t− 2}. Hence it is sufficient to take ε = C5re

(2−t)/δ. This number has
to be < 1, so we take t ≥ s0 ≥ 2 + δ log(C5r). Moreover, (8.5) actually
holds only if P−1(0) ⊂ {ψ < t − 2}, so by (8.2) it is enough to take
t ≥ s0 ≥ 2 + log(C2(r + C6)δ) where C6 is such that P−1(0) ⊂ B(0, C6).
Finally, we see that we can choose
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s = δ logR− C7, s0 = δ log r + C8,

and inequalities (8.4), (8.5) together imply

log |F |R − log |F (z0)| ≥ δ−n
(∫ s

s0

(1 − C5re
(2−t)/δ)n−1 dt

)
ν([ZF ], log |P |).

The integral is bounded below by
∫ δ log(R/r)−C7

C8

(1 − C9e
−t/δ) dt ≥ δ log(R/Cr).

This concludes the proof, by taking the infimum when z0 runs over B(0, r).
⊓⊔

(8.6) Corollary. Let S be a finite subset of Cn and let δ be the minimal degree
of algebraic hypersurfaces containing S. Then there is a constant C ≥ 2 such
that for all F ∈ O(Cn) and all R ≥ r ≥ 1 we have

log |F |r ≤ log |F |R − ord(F, S)
δ + n(n− 1)/2

n!
log

R

Cr

where ord(F, S) = minw∈S ord(F,w).

Proof. In view of the Schwarz Lemma 8.1, we only have to select suitable
polynomials P1, . . . , PN . The vector space C[z1, . . . , zn]<δ of polynomials of
degree < δ in Cn has dimension

m(δ) =

(
δ + n− 1

n

)
=
δ(δ + 1) . . . (δ + n− 1)

n!
.

By definition of δ, the linear forms

C[z1, . . . , zn]<δ −→ C, P 7−→ P (w), w ∈ S

vanish simultaneously only when P = 0. Hence we can find m = m(δ)
points w1, . . . , wm ∈ S such that the linear forms P 7→ P (wj) define
a basis of C[z1, . . . , zn]⋆<δ. This means that there is a unique polynomial
P ∈ C[z1, . . . , zn]<δ which takes given values P (wj) for 1 ≤ j ≤ m.
In particular, for every multiindex α, |α| = δ, there is a unique polyno-
mial Rα ∈ C[z1, . . . , zn]<δ such that Rα(wj) = wαj . Then the polynomials
Pα(z) = zα −Rα(z) have degree δ, vanish at all points wj and their homo-
geneous parts of maximum degree Qα(z) = zα do not vanish simultaneously
except at 0. We simply use the fact that µn−1(P,wj) ≥ 1 to get

ν([ZF ], log |P |) ≥
∑

w∈P−1(0)

ord(F,w) ≥ m(δ) ord(F, S).

Theorem 8.1 then gives the desired inequality, because m(δ) is a polynomial
with positive coefficients and leading terms (δn + n(n− 1)/2 δn−1 + . . .)/n!

⊓⊔
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Let S be a finite subset of Cn. According to Waldschmidt [Wa1], we
introduce for every integer t > 0 a number ωt(S) equal to the minimal
degree of polynomials P ∈ C[z1, . . . , zn] which vanish at order ≥ t at every
point of S. The obvious subadditivity property

ωt1+t2(S) ≤ ωt1(S) + ωt2(S)

easily shows that

Ω(S) := inf
t>0

ωt(S)

t
= lim
t→+∞

ωt(S)

t
.

We call ω1(S) the degree of S (minimal degree of algebraic hypersurfaces
containing S) and Ω(S) the singular degree of S. If we apply Cor. 8.6 to a
polynomial F vanishing at order t on S and fix r = 1, we get

log |F |R ≥ t
δ + n(n− 1)/2

n!
log

R

C
+ log |F |1

with δ = ω1(S), in particular

degF ≥ t
ω1(S) + n(n− 1)/2

n!
.

The minimum of degF over all such F is by definition ωt(S). If we divide
by t and take the infimum over t, we get the interesting inequality

(8.7)
ωt(S)

t
≥ Ω(S) ≥

ω1(S) + n(n− 1)/2

n!
.

(8.8) Remark. The constant ω1(S)+n(n−1)/2
n! in (8.6) and (8.7) is optimal for

n = 1, 2 but not for n ≥ 3. It can be shown by means of Hörmander’s L2

estimates (see [Wa2]) that for every ε > 0 the Schwarz Lemma holds with
coefficient Ω(S) − ε in Cor. 8.6 :

log |F |r ≤ log |F |R − ord(F, S)(Ω(S) − ε) log
R

Cεr
,

and that Ω(S) ≥ (ωu(S)+1)/(u+n−1) for every u ≥ 1 (this last inequality
is due to Esnault-Viehweg [E-V], who used deep tools of algebraic geometry;
Azhari [Az] reproved it recently by means of Hörmander’s L2 estimates).
Rather simple examples (see [De1]) lead to the conjecture

Ω(S) ≥
ωu(S) + n− 1

u+ n− 1
for every u ≥ 1.

The special case u = 1 of the conjecture is due to Chudnovsky [Ch].

Finally, let us mention that Cor. 8.6 contains Bombieri’s theorem [Bo]
on algebraic values of meromorphic maps satisfying algebraic differential
equations. Recall that an entire function F ∈ O(Cn) is said to be of order ≤ ρ
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if for every ε > 0 there is a constant Cε such that |F (z)| ≤ Cε exp(|z|ρ+ε).
A meromorphic function is said to be of order ≤ ρ if it can be written G/H
where G, H are entire functions of order ≤ ρ.

(8.9) Theorem (Bombieri). Let F1, . . . , FN be meromorphic functions on
Cn, such that F1, . . . , Fd, n < d ≤ N , are algebraically independent
over Q and have finite orders ρ1, . . . , ρd. Let K be a number field of
degree [K : Q]. Suppose that the ring K[f1, . . . , fN ] is stable under all
derivations d/dz1, . . . , d/dzn. Then the set S of points z ∈ Cn, distinct from
the poles of the Fj’s, such that (F1(z), . . . , FN (z)) ∈ KN is contained in an
algebraic hypersurface whose degree δ satisfies

δ + n(n− 1)/2

n!
≤
ρ1 + . . .+ ρd

d− n
[K : Q].

Proof. If the set S is not contained in any algebraic hypersurface of degree
< δ, the linear algebra argument used in the proof of Cor. 8.6 shows that
we can find m = m(δ) points w1, . . . , wm ∈ S which are not located on any
algebraic hypersurface of degree < δ. Let H1, . . . , Hd be the denominators
of F1, . . . , Fd. The standard arithmetical methods of transcendental number
theory allow us to construct a sequence of entire functions in the following
way: we set

G = P (F1, . . . , Fd)(H1 . . .Hd)
s

where P is a polynomial of degree ≤ s in each variable with integer
coefficients. The polynomials P are chosen so that G vanishes at a very
high order at each point wj . This amounts to solving a linear system whose
unknowns are the coefficients of P and whose coefficients are polynomials
in the derivatives of the Fj ’s (hence lying in the number field K). Careful
estimates of size and denominators and a use of the Dirichlet-Siegel box
principle leads to the following lemma (cf. for example Waldschmidt [Wa2]).

(8.10) Lemma. For every ε > 0, there exist constants C1, C2 > 0, r ≥ 1 and
an infinite sequence Gt, t ∈ T ⊂ IN (depending on m and on the choice of
the points wj), such that

(a) Gt vanishes at order ≥ t at all points w1, . . . , wm ;

(b) |Gt|r ≥ (C1t)
−t [K:Q] ;

(c) |Gt|R(t) ≤ Ct2 where R(t) = (td−n/ log t)1/(ρ1+...+ρd+ε).

An application of Cor. 8.6 to F = Gt and R = R(t) gives the desired
bound for the degree δ as t tends to +∞ and ε tends to 0. If δ0 is the largest
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integer which satisfies the inequality of Th. 8.9, we get a contradiction if
we take δ = δ0 + 1. This shows that S must be contained in an algebraic
hypersurface of degree δ ≤ δ0. ⊓⊔

9. Global Intersection Class and Self-intersection

Let X be a compact complex n-dimensional manifold. With every closed
current Θ of degree k (or of bidegree (p, q) with p+ q = k), we can associate
a De Rham cohomology class {Θ} ∈ Hk

DR(X, IR). In fact, it is well known
that De Rham cohomology can be computed either by the complex of smooth
differential forms or by the complex of currents: both complexes of sheaves
are fine resolutions of the locally constant sheaf IR. Moreover, the assignment
Θ 7→ {Θ} is continuous with respect to the weak topology of currents; this
can be easily seen e.g. by Poincaré duality. In particular, with every analytic
cycle A =

∑
λjAj of pure dimension p in X is associated a De Rham

cohomology class

(9.1) {A} =
{∑

λj [Aj]
}
∈ H2n−2p

DR (X, IR).

When the coefficients λj are integers, the class {A} lies in the image of
H2n−2p(X,ZZ) : this is for instance a consequence of the fact that every
analytic set can be triangulated.

The wedge product of smooth differential forms defines a ring structure
on De Rham cohomology. Given two currents Θ1, Θ2 on X , there is a
well defined intersection class {Θ1} · {Θ2} in the cohomology ring, even
when Θ1 ∧ Θ2 is not defined pointwise as a current. Especially, when
deg Θ1 + deg Θ2 = dimIRX , the top degree class {Θ1} · {Θ2} can be
considered as a number after integration over X . These simple observations
show in fact that wedge products of closed positive currents cannot be
defined in a reasonable way without further assumptions: if X is the blow-
up of some other manifold at one point and E ≃ IPn−1 is the exceptional
divisor, then O(E)|̀E ≃ O(−1) and so {E}n =

∫
E
c1(O(E))n−1 = (−1)n−1 ;

thus {E}2 < 0 if X is a surface ! The same example shows that, in general, a
closed positive (1, 1)-current T cannot be approximated in the weak topology
by smooth closed positive currents: a necessary condition for this is that
{T}p · {Y } ≥ 0 for every p-dimensional subvariety Y ⊂ X . However, a result
proved in [De7] which we shall now recall shows that T can be approximated
by closed real currents with small negative part controlled by the curvature
of X . This result allows us to compute self-intersections by taking weak
limits of products in which the original currents have been replaced by their
regularizations. This technique will be applied here to get a fairly general
self-intersection inequality for closed positive currents of bidegree (1, 1).
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We say that a bidimension (p, p) current T is almost positive if there
exists a smooth form v of bidegree (n − p, n − p) such that T + v ≥ 0.
Similarly, a function ϕ on X is said to be almost psh if ϕ is locally equal to
the sum of a psh (plurisubharmonic) function and of a smooth function; then
the (1, 1)-current ddcϕ is almost positive; conversely, if a locally integrable
function ϕ is such that ddcϕ is almost positive, then ϕ is equal a.e. to an
almost psh function. If T is closed and almost positive, the Lelong numbers
ν(T, x) are well defined, since the negative part always contributes to zero.
We refer to [De7] for a proof of the following basic approximation theorem:

(9.2) Theorem. Let T be a closed almost positive (1, 1)-current and let α be
a smooth real (1, 1)-form in the the same ddc-cohomology class as T , i.e.
T = α+ ddcψ where ψ is an almost psh function. Let γ be a continuous real
(1, 1)-form such that T ≥ γ. Suppose that OTX(1) is equipped with a smooth
hermitian metric such that the curvature form satisfies

c
(
OTX(1)

)
+ π⋆u ≥ 0

with π : P (T ⋆X) → X and with some nonnegative smooth (1, 1)-form u
on X. Fix a hermitian metric ω on X. Then for every c > 0, there is a
sequence of closed almost positive (1, 1)-currents Tc,k = α + ddcψc,k such
that ψc,k is smooth on X \ Ec(T ) and decreases to ψ as k tends to +∞ (in
particular, Tc,k is smooth on X \ Ec(T ) and converges weakly to T on X),
and

Tc,k ≥ γ − λc,ku− εkω

where

(i) λc,k(x) is a decreasing sequence of continuous functions on X such that
limk→+∞ λc,k(x) = min

(
ν(T, x), c

)
at every point,

(ii) limk→+∞ εk = 0,

(iii) ν(Tc,k, x) =
(
ν(T, x) − c

)
+

at every point x ∈ X. ⊓⊔

Here OTX(1) is the canonical line bundle associated with TX over the
hyperplane bundle P (T ⋆X). Observe that the theorem gives in particular
approximants Tc,k which are smooth everywhere on X if c is taken such that
c > maxx∈X ν(T, x). The equality in (iii) means that the procedure kills all
Lelong numbers that are ≤ c and shifts all others downwards by c. Hence
Th. 9.2 is an analogue over manifolds of Kiselman’s procedure [Ki1,2] for
killing Lelong numbers of a plurisubharmonic functions on an open subset
of Cn.

(9.3) Corollary. Let Θ be a closed almost positive current of bidimension
(p, p) and let α1, . . . , αq be closed almost positive (1, 1)-currents such that
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α1 ∧ . . . ∧ αq ∧ Θ is well defined by application of criteria 2.3 or 2.5, when
αj is written locally as αj = ddcuj. Then

{α1 ∧ . . . ∧ αq ∧Θ} = {α1} · · · {αq} · {Θ}.

Proof. Theorem 9.2 and the monotone continuity theorems of § 2 show that

α1 ∧ . . . ∧ αq ∧Θ = lim
k→+∞

αk1 ∧ . . . ∧ αkq ∧Θ

where αkj ∈ {αj} is smooth. Since the result is by definition true for smooth
forms, we conclude by the weak continuity of cohomology class assignment.

⊓⊔

Now, let X be a compact Kähler manifold equipped with a Kähler
metric ω. The degree of a closed positive current Θ with respect to ω is by
definition

(9.4) degω Θ =

∫

X

Θ ∧ ωp, bidimΘ = (p, p).

In particular, the degree of a p-dimensional analytic set A ⊂ X is its volume∫
A
ωp with respect to ω. We are interested in the following problem.

(9.5) Problem. Let T be a closed positive (1, 1)-current on X. Is it possible
to derive a bound for the codimension p components in the Lelong upperlevel
sets Ec(T ) in terms of the cohomology class {T} ∈ H2

DR(X, IR) ?

We introduce the sequence 0 = b1 ≤ . . . ≤ bn ≤ bn+1 of “jumping
values” bp such that the dimension of Ec(T ) drops by one unit when c gets
larger than bp, namely codimEc(T ) = p with at least some component of
codimension p when c ∈ ]bp, bp+1]. Let (Zp,k)k≥1 be the p-codimensional
components occurring in any of the sets Ec(T ) for c ∈ ]bp, bp+1], and let

νp,k = min
x∈Zp,k

ν(T, x) ∈ ]bp, bp+1]

be the generic Lelong number of T along Zp,k. Then we have the following
self-intersection inequality.

(9.6) Theorem. Suppose that X is Kähler and that OTX(1) has a hermitian
metric such that c

(
OTX(1)

)
+ π⋆u ≥ 0, where u is a smooth closed semi-

positive (1, 1)-form. For each p = 1, . . . , n, the De Rham cohomology class
({T}+b1{u}) · · · ({T}+bp{u}) can be represented by a closed positive current
Θp of bidegree (p, p) such that

Θp ≥
∑

k≥1

(νp,k − b1) . . . (νp,k − bp) [Zp,k] + (Tabc + b1u) ∧ . . . ∧ (Tabc + bpu)
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where Tabc ≥ 0 is the absolutely continuous part in the Lebesgue decomposi-
tion of the coefficients of T into absolutely continuous and singular measures.

By neglecting the second term in the right hand side and taking the
wedge product with ωn−p, we get the following interesting consequence:

(9.7) Corollary. If ω is a Kähler metric on X and if {u} is a semipositive
cohomology class such that c1

(
OTX(1)

)
+ π⋆{u} is semipositive, the degrees

of the components Zp,k with respect to ω satisfy the estimate

+∞∑

k=1

(νp,k − b1) . . . (νp,k − bp)

∫

X

[Zp,k] ∧ ωn−p

≤
(
{T} + b1{u}

)
· · ·

(
{T} + bp{u}

)
· {ω}n−p.

By a semipositive cohomology class of type (1, 1), we mean a class in
the closure of the Kähler cone of X . As a special case, if D is an effective
divisor and T = [D], we get a bound for the degrees of the p-codimensional
singular strata of D in terms of a polynomial of degree p in the cohomology
class {D}; the multiplicities (νp,k−b1) . . . (νp,k−bp) are then positive integers.
The case when X is IPn or a homogeneous manifold is especially simple:
then TX is generated by sections and we can take u = 0 ; the bound is thus
simply {D}p · {ω}n−p; the same is true more generally as soon as OTX(1)
is semipositive. The main idea of the proof is to kill the Lelong numbers of
T up to the level bj ; then the singularities of the resulting current Tj occur
only in codimension j and it becomes possible to define the wedge product
T1 ∧ . . . ∧ Tp by means of Th. 2.5. Here are the details:

Proof of 9.6. We argue by induction on p. For p = 1, Siu’s decomposition
formula shows that

T =
∑

ν1,k[Z1,k] +R,

and we have R ≥ Tabc since the other part has singular measures as
coefficients. The result is thus true with Θ1 = T . Now, suppose that Θp−1

has been constructed. For c > bp, the current Tc,k = α + ddcψc,k produced
by Th. 9.2 is such that codimL(ψc,k) = codimEc(T ) ≥ p. Hence Cor. 2.10
shows that

Θp,c,k = Θp−1 ∧ (Tc,k + c u+ εkω)

is well defined. If εk tends to zero slowly enough, Tc,k + c u + εkω is
positive by (9.2 i), so Θp,c,k ≥ 0. Moreover, the cohomology class of Θp,c,k
is {Θp−1} · ({T} + c{u} + εk{ω}), converging to {Θp−1} · ({T} + c{u}).
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Since the mass
∫
X
Θp,c,k ∧ ωn−p remains uniformly bounded, the family

(Θp,c,k)c∈]bp,bp+1],k≥1 is relatively compact in the weak topology. We define

Θp = lim
c→bp+0

lim
k→+∞

Θp,c,k,

possibly after extracting some weakly convergent subsequence. Then {Θp} =
{Θp−1} · ({T} + bp{u}), and so {Θp} = ({T} + b1{u}) · · · ({T} + bp{u}).
Moreover, we have

ν(Θp, x) ≥ lim sup
c→bp+0

lim sup
k→+∞

ν
(
Θp−1 ∧ (Tc,k + c u+ εkω), x

)

≥ ν(Θp−1, x) × lim sup
c→bp+0

lim sup
k→+∞

ν(Tc,k, x)

≥ ν(Θp−1, x)
(
ν(T, x) − bp

)
+

by application of (3.12), (5.10) and (9.2 iii). Hence by induction we get

ν(Θp, x) ≥
(
ν(T, x) − b1

)
+
. . .

(
ν(T, x) − bp

)
+
,

in particular, the generic Lelong number of Θp along Zp,k is at least equal
to (νp,k − b1) . . . (νp,k − bp). This already implies

Θp ≥
∑

k≥1

(νp,k − b1) . . . (νp,k − bp) [Zp,k].

Since the right hand side is Lebesgue singular, the desired inequality will be
proved if we show in addition that

Θp,abc ≥ (Tabc + b1u) ∧ . . . ∧ (Tabc + bpu),

or inductively, that Θp,abc ≥ Θp−1,abc ∧ (Tabc + bpu). In order to do this, we
simply have to make sure that limk→+∞ Tc,k,abc = Tabc almost everywhere
and use induction again. But our arguments are not affected if we replace ψc,k
by ψ′

c,k = max{ψ, ψc,k −Ak} with Ak converging quickly to +∞. It is then
easy to show that a suitable choice of Ak gives lim(ddcψ′

c,k)abc = (ddcψ)abc

almost everywhere (see Lemma 10.12 in [De6]). ⊓⊔
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