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0. Introduction

A compact Riemann surface always has a hermitian metric with constant
curvature, in particular the curvature sign can be taken to be constant: the
negative sign corresponds to curves of general type (genus ≥ 2), while the case
of zero curvature corresponds to elliptic curves (genus 1), positive curvature
being obtained only for IP1 (genus 0). In higher dimensions the situation is
much more subtle and it has been a long standing conjecture due to Frankel to
characterize IPn as the only compact Kähler manifold with positive holomorphic
bisectional curvature. Hartshorne strengthened Frankel’s conjecture and asserted
that IPn is the only compact complex manifold with ample tangent bundle. In his
famous paper [Mo79], Mori solved Hartshorne’s conjecture by using characteristic
p methods. Around the same time Siu and Yau [SY80] gave an analytic proof
of the Frankel conjecture. Combining algebraic and analytic tools Mok [Mk88]
classified all compact Kähler manifolds with semi-positive holomorphic bisectional
curvature.

From the point of view of algebraic geometry, it is natural to consider the
class of projective manifolds X whose tangent bundle is numerically effective (nef).
This has been done by Campana and Peternell [CP91] and –in case of dimension 3–
by Zheng [Zh90]. In particular, a complete classification is obtained for dimension
at most three.

The main purpose of this work is to investigate compact (most often Kähler)
manifolds with nef tangent or anticanonical bundles in arbitrary dimension. We
first discuss some basic properties of nef vector bundles which will be needed in
the sequel in the general context of compact complex manifolds. We refer to
[DPS91] and [DPS92] for detailed proofs. Instead, we put here the emphasis on
some unsolved questions.
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1. Numerically effective vector bundles

In algebraic geometry a powerful and flexible notion of semi-positivity is
numerical effectivity (”nefness”). We will explain here how to extend this notion
to arbitrary compact complex manifolds.

Definition 1.1. — A line bundle L on a projective manifold X is said to be
numerically effective (nef for short) if L · C ≥ 0 for all compact curves C ⊂ X .

It is clear that a line bundle with semi-positive curvature is nef. The converse
had been conjectured by Fujita [Fu83]. Unfortunately this is not true, a simple
counterexample can be obtained as follows:

Example 1.2. — Let Γ be an elliptic curve and let E be a rank 2 vector
bundle over Γ which is a non split extension of O by O ; such a bundle E can be
described as the locally constant vector bundle over Γ whose monodromy is given
by the matrices (

1 0
0 1

)
,

(
1 1
0 1

)

associated to a pair of generators of π1(Γ). We take L = OE(1) over the ruled
surface X = IP(E). Then L is nef and it can be checked that, up to a positive
constant factor, there is only one (possibly singular) hermitian metric on L with
semi-positive curvature; this metric is unfortunately singular and has logarithmic
poles along a curve. Thus L cannot be semi-positive for any smooth hermitian
metric.

Definition 1.3. — A vector bundle E is called nef if the line bundle OE(1) is
nef on IP(E) (= projectivized bundle of hyperplanes in the fibres of E).

Again it is clear that a vector bundle E which admits a metric with semi-
positive curvature (in the sense of Griffiths) is nef. A compact Kähler manifold X
having semi-positive holomorphic bisectional curvature has by definition a tangent
bundle TX with semi-positive curvature. Again the converse does not hold. One
difficulty in carrying over the algebraic definition of nefness to the Kähler case is
the possible lack of curves. This is overcome by the following:

Definition 1.4. — Let X be a compact complex manifold with a fixed hermitian
metric ω. A line bundle L over X is nef if for every ε > 0 there exists a smooth
hermitian metric hε on L such that the curvature satisfies

Θhε ≥ −ε ω .

This means that the curvature of L can have an arbitrarily small negative
part. Clearly a nef line bundle L satisfies L · C ≥ 0 for all curves C ⊂ X , but the
converse is not true (X may have no curves at all, as is the case for instance for
generic complex tori). For projective algebraic X both notions coincide; this is an
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easy consequence of Seshadri’s ampleness criterion: take L to be a nef line bundle
in the sense of Def. 1 and let A be an ample line bundle; then L⊗k ⊗ A is ample
for every integer k and thus L has a smooth hermitian metric with curvature form
Θ(L) ≥ − 1

k
Θ(A).

Definition 1.3 can still be used to define the notion of nef vector bundles over
arbitrary compact manifolds. If (E, h) is a hermitian vector bundle, recall that
the Chern curvature tensor

Θh(E) =
i

2π
D2

E,h = i
∑

1≤j,k≤n
1≤λ,µ≤r

ajkλµdzj ∧ dzk ⊗ e⋆
λ ⊗ eµ

is a hermitian (1,1)-form with values in Hom(E, E). We say that (E, h) is
semi-positive in Griffiths’ sense [Gr69] and write Θh(E) ≥ 0 if Θh(E)(ξ ⊗ t) =∑

ajkλµξjξkvλvµ ≥ 0 for every ξ ∈ TxX , v ∈ Ex, x ∈ X . We write Θh(E) > 0 in
case there is strict inequality for ξ 6= 0, v 6= 0. Numerical effectivity can then be
characterized by the following differential geometric criterion (see [De91]).

Criterion 1.5. — Let ω be a fixed hermitian metric on X . A vector bundle E
on X is nef if and only if there is a sequence of hermitian metrics hm on SmE and
a sequence εm of positive numbers decreasing to 0 such that

Θhm
(SmE) ≥ −mεmω ⊗ IdSmE

in the sense of Griffiths.

The main functorial properties of nef vector bundles are summarized in the
following proposition.

Proposition 1.6. — Let X be an arbitrary compact complex manifold and let
E be a holomorphic vector bundle over X .

(i) If f : Y → X is a holomorphic map with equidimensional fibres, then E is
nef if and only if f⋆E nef.

(ii) Let ΓaE be the irreducible tensor representation of Gl(E) of highest weight
a = (a1, . . . , ar) ∈ ZZ

r, with a1 ≥ . . . ≥ ar ≥ 0. Then ΓaE is nef. In
particular, all symmetric and exterior powers of E are nef.

(iii) let F be a holomorphic vector bundle over X . If E and F are nef, then E⊗F
is nef.

(iv) If some symmetric power SmE is nef (m > 0), then E is nef.

(v) Let 0 → F → E → Q → 0 be an exact sequence of holomorphic vector
bundles over X . Then

(α) E nef ⇒ Q nef.

(β) F , Q nef ⇒ E nef.

(γ) E nef, (detQ)−1 nef ⇒ F nef.
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The proof of these properties in the general analytic context can be easily
obtained by curvature computations. The arguments are parallel to those of the
algebraic case and will therefore be omitted (see [Ha66] and [CP91] for that case).
Another useful result which will be used over and over in the sequel is

Proposition 1.7. — Let E be a nef vector bundle over a connected compact
n-fold X and let σ ∈ H0(X, E⋆) be a non zero section. Then σ does not vanish
anywhere.

Proof. We merely observe that if hm is a sequence of hermitian metrics on SmE
as in criterion 5, then

Tm =
i

π
∂∂

1

m
log ||σm||hm

has zero ∂∂-cohomology class and satisfies Tm ≥ −εmω. It follows that Tm

converges to a weak limit T ≥ 0 with zero cohomology class. Thus T = i∂∂ϕ
for some global plurisubharmonic function ϕ on X . By the maximum principle
this implies T = 0. However, if σ vanishes at some point x, then all Tm have
Lelong number ≥ 1 at x. Therefore so has T , contradiction.

One of our key results is a characterization of vector bundles E which are
numerically flat, i.e. such that both E and E⋆ are nef.

Theorem 1.8. — Suppose that X is Kähler. Then a holomorphic vector bundle
E over X is numerically flat iff E admits a filtration

{0} = E0 ⊂ E1 ⊂ . . . ⊂ Ep = E

by vector subbundles such that the quotients Ek/Ek−1 are hermitian flat, i.e.
given by unitary representations π1(X) → U(rk).

Sketch of proof. — It is clear by 1.6 (v) that every vector bundle which is
filtrated with hermitian flat quotients is nef as well as its dual. Conversely, suppose
that E is numerically flat. This assumption implies c1(E) = 0. Fix a Kähler
metric ω. If E is ω-stable, then E is Hermite-Einstein by the Uhlenbeck-Yau
theorem [UY86]. Moreover we have 0 ≤ c2(E) ≤ c1(E)2 by Theorem 1.9 below, so
c2(E) = 0. Kobayashi’s flatness criterion derived from Lübke’s inequality on Chern
classes then implies that E is hermitian flat. Now suppose that E is unstable and
take F ⊂ O(E) to be a destabilizing subsheaf of minimal rank p. We then have
by definition c1(F) = c1(detF) = 0 and the morphism detF → ΛpE cannot have
any zero (otherwise the zeroes would contribute to give a semi-negative non zero
curvature current on the line bundle detF , contradiction). This implies easily that
F is locally free, and we infer that F is also numerically flat. Since F is stable by
definition, F must be hermitian flat. We set E1 = F , observe that E′ = E/E1 is
again numerically flat and proceed by induction on the rank.

Another key point, which has been indeed used in the above proof, is the fact
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that the Fulton-Lazarsfeld inequalities [FL83] for Chern classes of ample vector
bundles still hold for nef vector bundles over compact Kähler manifolds:

Theorem 1.9. — Let (X, ω) be a compact Kähler manifold and let E be a nef
vector bundle on X . Then for all positive polynomials P the cohomology class
P (c(E)) is numerically positive, that is,

∫
Y

P (c(E)) ∧ ωk ≥ 0 for any k and any
subvariety Y of X .

By a positive polynomial in the Chern classes, we mean as usual a homoge-
neous weighted polynomial P (c1, . . . , cr) with deg ci = 2i, such that P is a positive
integral combination of Schur polynomials:

Pa(c) = det(cai−i+j)1≤i,j≤r, r ≥ a1 ≥ a2 ≥ . . . ≥ ar ≥ 0

(by convention c0 = 1 and ci = 0 if i 6= [0, r], r = rank E). The proof of
Theorem 1.9 is based essentially on the same arguments as the original proof
of [FL83] for the ample case: the starting point is the nonnegativity of all Chern
classes ck(E) (Bloch-Gieseker [BG71]); the general case then follows from a formula
of Schubert calculus known as the Kempf-Laksov formula [KL74], which expresses
any Schur polynomial Pa(c(E)) as a Chern class ck(Fa) of some related vector
bundle Fa. The only change occurs in the proof of Gieseker’s result, where the Hard
Lefschetz theorem is needed for arbitrary Kähler metrics instead of hyperplane
sections (fortunately enough, the technique then gets simplified, covering tricks
being eliminated). Since c1ck−1 − ck is a Schur polynomial, we get by induction

0 ≤ ck(E) ≤ c1(E)k for all k.

Therefore all Chern monomials are bounded above by corresponding powers c1(E)k

of the same degree, and we infer:

Corollary 1.10. — If E is nef and c1(E)n = 0, n = dim X , then all Chern
polynomials P (c(E)) of degree 2n vanish.

2. Compact Kähler manifolds with nef anticanonical line bundle

Compact Kähler manifolds with zero or semi-positive Ricci curvature have
been investigated by various authors (cf. [Ca57], [Ko61], [Li67, 71, 72], [Bo74a, b],
[Be83], [Ko81] and [Kr86]). The purpose of this section is to discuss the following
two conjectures.

Conjecture 2.1. — Let X be a compact Kähler manifold with numerically
effective anticanonical bundle K−1

X . Then the fundamental group π1(X) has
polynomial growth.

Conjecture 2.2. — Let X be a compact Kähler manifold with K−1
X numerically

effective. Then the Albanese map α : X → Alb(X) is a smooth fibration onto the
Albanese torus.
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These conjectures are known to be true if K−1
X is semi-positive. In both cases,

the proof is based on differential geometric techniques (see e.g. [Bi63], [HK78] for
Conjecture 2.1 and [Li71] for Conjecture 2.2). However, the methods of proof
are not so easy to carry over to the nef case. Our main contributions to these
conjectures are derived from Theorem 2.3 below.

Theorem 2.3. — Let X be a compact Kähler manifold with K−1
X nef. Then

π1(X) is a group of subexponential growth.

The proof actually gives the following additional fact (this was already known
before, see [Bi63]).

Corollary 2.4. — If moreover −KX is hermitian semi-positive, then π1(X)
has polynomial growth of degree ≤ 2 dimX , in particular h1(X,OX) ≤ dim X .

As noticed by F. Campana (private communication), Theorem 2.3 also
implies the following consequences.

Corollary 2.5. — Let X be a compact Kähler manifold with K−1
X nef. Let

α : X → Alb(X) be the Albanese map and set n = dim X , d = dimα(X). If
d = 0, 1 or n, then α is surjective. The same is true if d = n − 1 and if X is
projective algebraic.

Corollary 2.6. — Let X be a Kähler surface or a projective 3-fold with
K−1

X nef. Then the Albanese map α : X → Alb(X) is surjective.

We now explain the main ideas required in the proof of Theorem 2.3. If G
is a finitely generated group with generators g1, . . . , gp, we denote by N(k) the
number of elements γ ∈ G which can be written as words

γ = gε1

i1
. . . gεk

ik
, εj = 0, 1 or − 1

of length ≤ k in terms of the generators. The group G is said to have
subexponential growth if for every ε > 0 there is a constant C(ε) such that

N(k) ≤ C(ε)eεk for k ≥ 0.

This notion is independent of the choice of generators. In the free group with two
generators, we have N(k) = 1+4(1+3+32 + ...+3k−1) = 2 · 3k − 1, thus a group
with subexponential growth cannot contain a non abelian free subgroup.

The first step consists in the construction of suitable Kähler metrics by means
of the Calabi-Yau theorem [Y77]. Let ω be a fixed Kähler metric on X . Since K−1

X

is nef, for every ε > 0 there exists a smooth hermitian metric hε on K−1
X such that

uε = Θhε
(K−1

X ) ≥ −εω.

By [Y77] and [Y78] there exists a unique Kähler metric ωε in the cohomology class
{ω} such that

(+) Ricci(ωε) = −εωε + εω + uε.
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In fact uε belongs to the Ricci class c1(K
−1
X ) = c1(X), hence so does the right

hand side −εωε + εω + uε. In particular there exists a function fε such that

uε = Ricci(ω) + i∂∂fε.

If we set ωε = ω + i∂∂ϕ (where ϕ depends on ε), equation (+) is equivalent to the
Monge-Ampère equation

(++)
(ω + i∂∂ϕ)n

ωn
= eεϕ−fε

because
i∂∂ log(ω + i∂∂ϕ)n/ωn = Ricci(ω) − Ricci(ωε)

= ε(ωε − ω) + Ricci(ω) − uε

= i∂∂(εϕ − fε).

It follows from the general results of [Y78] that (++) has a unique solution ϕ,
thanks to the fact the right hand side of (++) is increasing in ϕ. Since uε ≥ −εω,
equation (+) implies in particular that Ricci(ωε) ≥ −εω.

Now, recall the well-known differential geometric technique for boun-
ding N(k) (this technique has been explained to us in a very efficient way by

S. Gallot). Let (M, g) be a compact Riemannian m-fold and let E ⊂ M̃ be a

fundamental domain for the action of π1(M) on the universal covering M̃ . Fix

a ∈ E and set β = diamE. Since π1(M) acts isometrically on M̃ with respect to
the pull-back metric g̃, we infer that

Ek =
⋃

γ∈π1(M), length(γ)≤k

γ(E)

has volume equal to N(k) Vol(M) and is contained in the geodesic ball B(a, αk+β),
where α is the maximum of the length of loops representing the generators gj .
Therefore

(∗) N(k) ≤ Vol
(
B(a, αk + β)

)

Vol(M)

and it is enough to bound the volume of geodesic balls in M̃ . For this we use the
following fundamental inequality due to R. Bishop [Bi63], Heintze-Karcher [HK78]
and M. Gage [Ga80].

Lemma 2.7. — Let

Φ : TaM̃ → M̃, Φ(ζ) = expa(ζ)

be the (geodesic) exponential map. Denote by

Φ∗dVg = a(t, ζ) dt dσ(ζ)

the expression of the volume element in spherical coordinates with t ∈ IR+ and

ζ ∈ Sa(1) = unit sphere in TaM̃ . Suppose that a(t, ζ) does not vanish for
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t ∈ ]0, τ(ζ)[ , with τ(ζ) = +∞ or a(τ(ζ), ζ) = 0. Then b(t, ζ) = a(t, ζ)1/(m−1)

satisfies on ]0, τ(ζ)[ the inequality

∂2

∂t2
b(t, ζ) +

1

m − 1
Riccig(v(t, ζ), v(t, ζ))b(t, ζ) ≤ 0

where

v(t, ζ) =
d

dt
expa(tζ) ∈ SΦ(tζ)(1) ⊂ TΦ(tζ)M̃.

If Riccig ≥ −εg, we infer in particular

∂2b

∂t2
− ε

m − 1
b ≤ 0

and therefore b(t, ζ) ≤ α−1 sinh(αt) with α =
√

ε/(m − 1) (to check this, observe
that b(t, ζ) = t + o(t) at 0 and that sinh(αt) ∂b/∂t − α cosh(αt) b has a negative
derivative). Now, every point x ∈ B(a, r) can be joined to a by a minimal geodesic
arc of length < r. Such a geodesic arc cannot contain any focal point (i.e. any
critical value of Φ), except possibly at the end point x. It follows that B(a, r) is
the image by Φ of the open set

Ω(r) =
{
(t, ζ) ∈ [0, r[× Sa(1) ; t < τ(ζ)

}
.

Therefore

Volg(B(a, r)) ≤
∫

Ω(r)

Φ∗dVg =

∫

Ω(r)

b(t, ζ)m−1dt dσ(ζ).

As α−1 sinh(αt) ≤ t eαt, we get

(∗∗) Volg(B(a, r)) ≤
∫

Sa(1)

dσ(ζ)

∫ r

0

tm−1e(m−1)αtdt ≤ vmrme
√

(m−1)ε r

where vm is the volume of the unit ball in IRm.

In our application, the difficulty is that the metric g = ωε varies with ε as
well as the constants α = αε, β = βε in (∗), and αε

√
(m − 1)ε need not converge

to 0 as ε tends to 0. We overcome this difficulty by the following lemma.

Lemma 2.8. — Let U1, U2 be compact subsets of X̃. Then for every δ > 0,
there are closed subsets U1,ε,δ ⊂ U1 and U2,ε,δ ⊂ U2 with Volω(UjrUj,ε,δ) < δ,
such that any two points x1 ∈ U1,ε,δ, x2 ∈ U2,ε,δ can be joined by a path of length
≤ C δ−1/2 with respect to ωε, where C is a constant independent of ε and δ.

We will not explain the details. The basic observation is that
∫

X

ωε ∧ ωn−1 =

∫

X

ωn

does not depend on ε, therefore ‖ωε‖L1(X) is uniformly bounded. This is enough to
imply the existence of sufficiently many paths of bounded length between random
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points taken in X (this is done for example by computing the average length of
piecewise linear paths).

We let U be a compact set containing the fundamental domain E, so large
that U◦∩gj(U

◦) 6= ∅ for each generator gj . We apply Lemma 2.8 with U1 = U2 = U
and δ > 0 fixed such that

δ <
1

2
Volω(E), δ <

1

2
Volω

(
U ∩ gj(U)

)
.

We get Uε,δ ⊂ U with Volω(UrUε,δ) < δ and diam ωε
(Uε,δ) ≤ Cδ−1/2. The ine-

qualities on volumes imply that Volω(Uε,δ∩E) ≥ 1
2
Volω(E) and Uε,δ∩gj(Uε,δ) 6= ∅

for every j (note that all gj preserve volumes). It is then clear that

Wk,ε,δ :=
⋃

γ∈π1(X), length(γ)≤k

γ(Uε,δ)

satisfies

Volω(Wk,ε,δ) ≥ N(k) Volω(Uε,δ ∩ E) ≥ N(k)
1

2
Volω(E) and

diam ωε
(Wk,ε,δ) ≤ k diam ωε

Uε,δ ≤ kCδ−1/2.

Since m = dimIR X = 2n, inequality (∗∗) implies

Volωε
(Wk,ε,δ) ≤ Volωε

(
B(a, kCδ−1/2)

)
≤ C4k

2neC5

√
ε k.

Now X is compact, so there is a constant C(ε) > 0 such that ωn ≤ C(ε)ωn
ε . We

conclude that

N(k) ≤ 2 Volω(Wk,ε,δ)

Volω(E)
≤ C6C(ε)k2neC5

√
ε k.

The proof of Theorem 2.3 is complete.

Remark 2.9. — It is well known and easy to check that equation (++) implies

C(ε) ≤ exp
(

max
X

fε − min
X

fε

)
.

Therefore it is reasonable to expect that C(ε) has polynomial growth in ε−1 ; this
would imply that π1(X) has polynomial growth by taking ε = k−2. When K−1

X

has a semipositive metric, we can even take ε = 0 and find a metric ω0 with
Ricci(ω0) = u0 ≥ 0. This implies Corollary 2.4.

Proof of Corollary 2.5. — If d = 0, then by definition H0(X, Ω1
X) = 0 and

Alb(X) = {0}.
If d = n, the Albanese map has generic rank n, so there exist holomorphic

1-forms u1, . . . , un such that u1∧ . . .∧un 6≡ 0. However u1 ∧ . . .∧un is a section of
KX which has nef dual, so u1∧. . .∧un cannot vanish by Proposition 1.7 and KX is
trivial. Therefore u1 ∧ . . . ûk . . .∧un ∧ v must be a constant for every holomorphic
1-form v and (u1, . . . , un) is a basis of H0(X, Ω1

X). This implies dim A(X) = n,
hence α is surjective.
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If d = 1, the image C = α(X) is a smooth curve. The genus g of C cannot be
≥ 2, otherwise π1(X) would be mapped onto a subgroup of finite index in π1(C),
and thus would be of exponential growth, contradicting Theorem 2.3. Therefore
C is an elliptic curve and is a subtorus of Alb(X). By the universal property of
the Albanese map, this is possible only if C = Alb(X).

The case d = n− 1 is more subtle and uses Mori theory (this is why we have
to assume X projective algebraic). We refer to [DPS92] for the details.

3. Compact complex manifolds with nef tangent bundles

Several interesting classes of such manifolds are produced by the following
simple observation.

Proposition 3.1. — Every homogeneous compact complex manifold has a nef
tangent bundle.

Indeed, if X is homogeneous, the Killing vector fields generate TX , so TX
is a quotient of a trivial vector bundle. In particular, we get the following

Examples 3.2 (homogeneous case). —

(i) Rational homogeneous manifolds: IPn, flag manifolds, quadrics Qn

(all are Fano manifolds, i.e. projective algebraic with K−1
X ample).

(ii) Tori Cn/Λ
(Kähler, possibly non algebraic).

(iii) Hopf manifolds Cn
r{0}/H where H is a discrete group of homotheties

(non Kähler for n ≥ 2).

(iv) Iwasawa manifolds G/Λ where G is the group of unipotent upper triangular
p × p matrices and Λ the subgroup of matrices with entries in the ring of
integers of some imaginary quadratic field, e.g. ZZ[i]
(non Kähler for p ≥ 3, although TX is trivial).

We must remark at this point that not all manifolds X with nef tangent
bundles are homogeneous, the automorphism group may even be discrete:

Example 3.3. — Let Γ = C/(ZZ + ZZτ), Im τ > 0, be an elliptic curve. Consider
the quotient space X = (Γ × Γ × Γ)/G where G = {1, g1, g2, g1g2} ≃ ZZ2 × ZZ2 is
given by

g1(z1, z2, z3) = (z1 + 1
2
,−z2,−z3),

g2(z1, z2, z3) = (−z1, z2 + 1
2 ,−z3 + 1

2 ),

g1g2(z1, z2, z3) = (−z1 + 1
2
,−z2 + 1

2
, z3 + 1

2
).

Then G acts freely, so X is smooth. It is clear also that TX is nef (in fact TX
is unitary flat). Since the pull-back of TX to Γ × Γ × Γ is trivial, we easily
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conclude that TX has no sections, thanks to the change of signs in g1, g2, g1g2.
Therefore the automorphism group Aut(X) is discrete. The same argument shows
that H0(X, Ω1

X) = 0.

Example 3.4. — Let X be the ruled surface IP(E) over the elliptic curve
Γ = C/(ZZ + ZZτ) defined in Example 1.2. Then the relative tangent bundle of
IP(E) → Γ (=relative anticanonical line bundle) is π⋆(det E⋆) ⊗ OE(2) ≃ OE(2)
and TΓ is trivial, so TX is nef. Moreover X is almost homogeneous, with
automorphisms induced by

(x, z1, z2) 7→ (x + a, z1 + b, z2), (a, b) ∈ C2

and a single closed orbit equal to the curve {z2 = 0}. Here, no finite étale cover of
X can be homogeneous, otherwise K−1

X = OE(2) would be semi-positive. Observe
that no power of K−1

X is generated by sections, although K−1
X is nef.

Our main result is a structure theorem on the Albanese map of compact
Kähler manifolds with nef tangent bundles.

Main Theorem 3.5. — Let X be a compact Kähler manifold with nef tangent
bundle TX . Let X̃ be a finite étale cover of X of maximum irregularity
q = q(X̃) = h1(X̃,O

X̃
). Then

(i) π1(X̃) ≃ ZZ
2q.

(ii) The Albanese map α : X̃ → A(X̃) is a smooth fibration over a q-dimensional
torus with nef relative tangent bundle.

(iii) The fibres F of α are Fano manifolds with nef tangent bundles.

Recall that a Fano manifold is by definition a compact complex manifold
with ample anticanonical bundle K−1

X . It is well known that Fano manifolds are
always simply connected (Kobayashi [Ko61]). As a consequence we get

Corollary 3.6. — With the assumtions of 3.5, the fundamental group π1(X)
is an extension of a finite group by ZZ

2q.

In order to complete the classification of compact Kähler manifolds with
nef tangent bundles (up to finite étale cover), a solution of the following two
conjectures would be needed.

Conjecture 3.7 (Campana-Peternell [CP91]). — Let X be a Fano manifold.
Then X has a nef tangent bundle if and only if X is rational homogeneous.

The evidence we have for Conjecture 3.7 is that it is true up to dimension 3.
In dimension 3 there are more than 100 different types of Fano manifolds, but
only five types have a nef tangent bundle, namely IP3, Q3 (quadric), IP1 × IP2,
IP1 × IP1 × IP1 and the flag manifold F1,2 of lines and planes in C3 ; all five are
homogeneous.
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A positive solution to Conjecture 3.7 would clarify the structure of fibers in
the Albanese map of Theorem 3.5. To get a complete picture of the situation, we
would still need to know how the fibers are deformed and glued together to yield
a holomorphic family over the Albanese torus. We note that K−1

X̃
is relatively

ample, thus for m large the fibers can be embedded in the projectivized bundle of
the direct image bundle α⋆(K

−m

X̃
).

Conjecture 3.8. — In the situation of Theorem 3.5, all direct image bundles
α⋆(K

−m

X̃
) are numerically flat over the Albanese torus.

It is easy to check that Conjecture 3.8 holds if the fibers of α are projective
spaces or quadrics, but the general case seems to be much more involved. We now
explain the main steps in the proof of Theorem 3.5. One of the key points is the
following

Proposition 3.9. — Let X be a compact Kähler n-fold with TX nef. Then

(i) If c1(X)n > 0, then X is a Fano manifold.

(ii) If c1(X)n = 0, then χ(OX) = 0 and there exists a non zero holomorphic

p-form, p suitable odd and a finite étale cover X̃ → X such that q(X̃) > 0.

Proof. We first check that every effective divisor D of X is nef. In fact, let
σ ∈ H0(X,O(D)) be a section with divisor D. Then for k larger than the
maximum vanishing order of σ on X , the k-jet section Jkσ ∈ H0(X, JkO(D))
has no zeroes. Therefore, there is an injection O → JkO(D) and a dual surjection(

JkO(D)
)⋆ ⊗O(D) → O(D).

Now, JkO(D) has a filtration whose graded bundle is
⊕

0≤p≤k SpT ⋆X ⊗O(D), so

(JkO(D))⋆ ⊗O(D) has a dual filtration with graded bundle
⊕

0≤p≤k SpTX . By

1.6 (ii) and 1.6 (v)(β), we conclude that (JkO(D))⋆ ⊗O(D) is nef, so its quotient
O(D) is nef by 1.6 (v)(α).

Part (i) is based on the solution of the Grauert-Riemenschneider conjecture
as proved in [De85]. Namely, L = K−1

X = ΛnTX is nef and satisfies c1(L)n > 0,
so L has Kodaira dimension n (holomorphic Morse inequalities are needed at that
point because X is not supposed a priori to be algebraic). It follows that X is
Moishezon, thus projective algebraic, and for m > 0 large we have Lm = O(D+A)
with divisors D, A such that D is effective and A ample. Since D must be in fact
nef, it follows that L = K−1

X is ample, as desired.

The most difficult part is (ii). Since c1(X)n = 0, Corollary 1.10 implies
χ(OX) = 0. By Hodge symmetry, we get h0(X, Ωp

X) = hp(X,OX) and

χ(OX) =
∑

0≤p≤n

(−1)ph0(X, Ωp
X) = 0.

From this and the fact that h0(X,OX) = 1, we infer the existence of a non zero
p-form u for some suitable odd number p. Let

σ : Λp−1TX −→ Ω1
X

12



be the bundle morphism obtained by contracting (p − 1)-vectors with u. For
every k > 0, the morphism Λkσ can be viewed as a section of the bundle
Λk(Λp−1T ⋆X) ⊗ ΛkT ⋆X which has nef dual. Hence by Proposition 1.7 we know
that Λkσ is either identically zero or does not vanish. This means that σ has
constant rank. Let E be the image of σ. Then E is a quotient bundle of Λp−1TX ,
so E is nef, and E is a subbundle of Ω1

X = T ⋆X , so E⋆ is likewise nef. Theorem 1.8
implies the existence of a hermitian flat subbundle E1 ⊂ E. If E1 would be trivial
after pulling-back to some finite étale cover X̃ , we would get a trivial subbundle
of Ω1

X̃
, hence q(X̃) > 0 and the proposition would be proved. Otherwise E1 is

given by some infinite representation of π1(X) into some unitary group. Let Γ be
the monodromy group (i.e. the image of π1(X) by the representation). We use a
result of Tits [Ti72] according to which every subgroup of a linear group contains
either a non abelian free subgroup or a solvable subgroup of finite index. The first
case cannot occur by Theorem 2.?. In the second case, we may assume Γ solvable
by taking some finite étale cover. We consider the series of derived groups

Γ ⊃ Γ1 ⊃ . . . ⊃ ΓN = {0}
and the largest index k such that Γk has finite index in Γ. Then the inverse image
of Γk in π1(X) defines a finite étale cover X̃ of X with infinite first homology
group (the representation maps this group onto Γk/Γk+1 which is infinite). Hence

q(X̃) > 0, as desired.

Proof of the Main Theorem. — Let X be compact Kähler manifold with
nef tangent bundle. Since a non zero holomorphic form u ∈ H0(X, Ω1

X) can never
vanish by Proposition 1.7, it follows immediately that the Albanese map α has
rank equal to q(X) at every point, hence α is a submersion and q(X) ≤ n. Let X̃

be a finite étale cover with maximum irregularity q = q(X̃) (note that X̃ also has

a nef tangent bundle, so q(X̃) ≤ n). Let F denote the fibers of the Albanese map

α : X̃ → A(X̃). The relative tangent bundle exact sequence

0 → TF → TX
dα−→α⋆TA(X) → 0

in which TA(X) is trivial shows by 1.6 (v)(γ) that TF is nef. Lemma 3.10 (iii)

below implies that all finite étale covers F̃ of F satisfy q(F̃ ) = O. Hence the fibers
F must be Fano by Proposition 3.9 and the Main Theorem follows.

Lemma 3.10. — Let X, Y be compact Kähler manifolds and let g : X → Y be a
smooth fibration with connected fibres. We let q(X) be the irregularity of X and
q̃(X) be the sup of the irregularity of all finite étale covers. If F denotes any fibre
of g, then

(i) q(X) ≤ q(Y ) + q(F ),

(ii) q̃(X) ≤ q̃(Y ) + q̃(F ).

(iii) Suppose that the boundary map π2(Y ) → π1(F ) is zero, that π1(F ) contains
an abelian subgroup of finite index and that Y contains a subvariety S with
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π1(S) ≃ π1(Y ), such that any two generic points in the universal covering Ŝ

can be joined through a chain of holomorphic images C → Ŝ. Then

q̃(X) = q̃(Y ) + q̃(F ).

The proof is based on a use of the Leray spectral sequence and a study of
the resulting monodromy on H1(F, C). Triviality of the monodromy is achieved
in case (iii) because all Kähler deformations of tori over Y must be trivial. We
refer the reader to [DPS91] for the details. In our application, Y is taken to be
the Albanese torus, so assumption (iii) is satisfied with S = Y (π1(F ) contains an
abelian subgroup of finite index thanks to Corollary 3.6, by using an induction on
dimension).

4. Classification in dimension 2 and 3

By using the Kodaira classification of surfaces and the structure theorems
of Section 3, it is not difficult to classify all Kähler surfaces with nef tangent
bundles; except for tori, the Kähler classification is identical to the projective one.
The projective case was already mentioned in [CP91] and [Zh90].

Theorem 4.1. — Let X be a smooth Kähler surface such that TX is nef. Then
X is minimal and is exactly one of the surfaces in the following list:

(i) X is a torus ;

(ii) X is hyperelliptic ;

(iii) X = IP2 ;

(iv) X = IP1 × IP1 ;

(v) X = IP(E), where E is a rank 2-vector bundle on an elliptic curve C with
either

(α) E = O ⊕ L, L ∈ Pic0(C), or

(β) E is given by a non split extension 0 → O → E → L → 0 with L = O
or deg L = 1.

The list of non Kähler surfaces in the Kodaira classification is much smaller.
It is then rather easy to check nefness in each case:

Theorem 4.2. — The smooth non Kähler compact complex surfaces with nef
tangent bundles are precisely:

(i) Kodaira surfaces (that is, surfaces of Kodaira dimension 0 with b1(X) odd) ;

(ii) Hopf surfaces (that is, surfaces whose universal cover is C2
r{0}).
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A similar classification can be obtained for 3-dimensional compact Kähler
manifolds.

Theorem 7.1. — Let X be a Kähler 3-fold. Then TX is nef if and only if X is
up to finite étale cover one of manifolds in the following list:

(i) X = IP3 ;

(ii) X = Q3, the 3-dimensional quadric ;

(iii) X = IP1 × IP2 ;

(iv) X = IP1 × IP1 × IP1 ;

(v) X = F1,2, the flag manifold of subspaces of C3 ;

(vi) X = IP(E), with E a numerically flat rank 3-bundle on an elliptic curve C ;

(vii) X = IP(E)×CIP(F ), with E, F numerically flat rank 2-bundles over an
elliptic curve C ;

(viii) X = IP(E), with E a numerically flat rank 2-bundle over a 2-dimensional
complex torus ;

(ix) X = 3-dimensional complex torus.

The only non algebraic manifolds appear in classes (viii) and (ix) when the
Albanese torus is not algebraic. Let us mention that the classification of projective
3-folds with nef tangent bundles was already carried out in [CP91] and [Zh90]. In
addition to Theorem 3.5, the main ingredient is the classification of Fano 3-folds
by Shokurov and Mori-Mukai. An inspection of the list yields the five first classes
(i)-(v).
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négative et situation analogue dans le cas riemannien, Ist. Naz. Alta Mat., Rome,
Symposia Math., vol. 10, Academic Press, New-York(), 3-18.

[Mk88] Mok, N. — The uniformization theorem for compact Kähler manifolds of non
negative holomorphic bisectional curvature, J. Diff. Geom., 27 (), 179-214.

[Mo79] Mori, S. — Projective manifolds with ample tangent bundles, Ann. Math., 110

(), 593-606.

16



[My41] Myers, S.B. — Riemannian manifolds with positive mean curvature, Duke
Math. J., 8 (), 401-404.

[SY80] Siu, Y.T., Yau, S.T. — Compact Kähler manifolds with positive bisectional
curvature, Inv. Math., 59 (), 189-204.

[Ti72] Tits, J.. — Free subgroups in linear groups, J. of Algebra, 20 (), 250-270.

[UY86] Uhlenbeck, K., Yau, S.T. — On the existence of Hermitian-Yang-Mills
connections in stable vector bundles, Comm. Pure and Appl. Math., 39 (),
258-293.

[Y77] Yau, S.T. — Calabi’s conjecture and some new results in algebraic geometry, Proc.
Nat. Acad. Sci. USA, 74 (), 1789-1790.

[Y78] Yau, S.T. — On the Ricci curvature of a complex Kähler manifold and the complex
Monge-Ampère equation I, Comm. Pure and Appl. Math., 31 (), 339-411.

[Zh90] Zheng, F. — On semi-positive threefolds, Thesis, Harvard, .

(June 15, 1992)

17


