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1. Introduction

Let X be a compact n-dimensional complex manifold and let T be a closed
positive current of bidegree (1, 1) on X . In general, T cannot be approximated
by closed positive currents of class C∞: a necessary condition for this is that the
cohomology class {T} is numerically effective in the sense that

∫
Y
{T}p ≥ 0 for

every p-dimensional subvariety Y ⊂ X . For example, if E ≃ IPn−1 is the excep-
tional divisor of a one-point blow-up X → X ′, then T = [E] cannot be positively
approximated: for every curve C ⊂ E, we have

∫
C
{E} =

∫
C
c1(O(−1)) < 0. How-

ever, we will see that it is always possible to approximate a closed positive current
T of type (1, 1) by closed real currents admitting a small negative part, and that
this negative part can be estimated in terms of the Lelong numbers of T and the
geometry of X .

Let α be a smooth closed (1, 1)-form representing the same ∂∂-cohomology
class as T and let ψ be a quasi-psh function on X (that is, a function which is
locally the sum of a plurisubharmonic function and a smooth function) such that
T = α+ i

π
∂∂ψ. Such a decomposition exists even when X is non-Kähler, since we

can always find an open covering (Ωk) of X such that T = i
π
∂∂ψk over Ωk, and

construct a global ψ =
∑
θkψk by means of a partition of unity (θk) (note that

ψ − ψk is smooth on Ωk). If ψε is an approximation of ψ, then Tε = α + i
π
∂∂ψε

is an approximation of T . We are thus led to study a regularization process for
quasi-psh functions. In this context, we prove the following result.

Theorem 1.1. — Let T be a closed almost positive (1, 1)-current and

let α be a smooth real (1, 1)-form in the same ∂∂-cohomology class as T , i.e.

T = α + i
π
∂∂ψ where ψ is an almost psh function. Let γ be a continuous real

(1, 1)-form such that T ≥ γ. Suppose that TX is equipped with a smooth hermitian

metric ω such that the Chern curvature form Θ(TX) satisfies(
Θ(TX) + u⊗ IdTX

)
(θ ⊗ ξ, θ⊗ ξ) ≥ 0 ∀θ, ξ ∈ TX with 〈θ, ξ〉 = 0,

for some continuous nonnegative (1, 1)-form u on X . Then there is a family of

closed almost positive (1, 1)-currents Tε = α+ i
π
∂∂ψε, ε ∈ ]0, ε0[, such that ψε is

smooth over X , increases with ε, and converges to ψ as ε tends to 0 (in particular,

Tε is smooth and converges weakly to T on X), and such that
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(i) Tε ≥ γ − λεu− δεω where:

(ii) λε(x) is an increasing family of continuous functions on X such that

limε→0 λε(x) = ν(T, x) (Lelong number of T at x) at every point,

(iii) δε is an increasing family of positive constants such that limε→0 δε = 0.

More precise results are given in Theorems 4.1 and 6.1. Such approximations
can in turn be used to obtain various estimates of intersection theory [De91b], or
asymptotic inequalities for Dolbeault cohomology [De90]. They can be also applied
to study compact complex manifolds with partially semipositive curvature in the
sense of Griffiths (see Section 5); in that case, we prove for instance that every
effective divisor is nef (i.e. numerically effective), and that the variety is projective
if and only if it is Moishezon.

Our proof uses some ideas already developed in [De82], although more
general and more precise results will be obtained here. The main idea is to use a
convolution kernel constructed by means of the exponential map associated to a
Chern connection on TX . To get precise estimates of the Hessian forms involved,
we determine the Taylor expansion of the exponential map at order 3. The third
order coefficients can be calculated explicitly in terms of the curvature tensor of
the metric. What is perhaps most remarkable is that we have been ultimately
able to find the complete Taylor expansion of the exponential convolution kernel
(Proposition 3.8); this is indeed possible because we use a modified exponential
map which is made fiberwise quasi-holomorphic (see Section 2). Finally, we
apply Kiselman’s singularity attenuation technique [Ki78], [Ki79] in combination
with our main estimates to define a partial regularization process for closed
(1, 1)-currents: in that way, the Lelong numbers can be killed up to any given
level (Theorem 6.1).

Further techniques based on Hörmander’s L2 existence theorems [Hö66] are
explained in our recent papers [De91a], [De92]; they lead to similar estimates, but
with a numerical hypothesis instead of a curvature hypothesis: namely, u should
then be a closed real (1, 1)-form such that the cohomology class c1(OTX

(1))+π⋆u is

nef on the total space of the projective bundle P (T ⋆
X)

π
→ X of hyperplanes in TX .

This condition, which is more natural than a curvature hypothesis from the point
of view of algebraic geometry, is also more general than the Griffiths semipositivity
of Θ(TX)+u⊗IdTX

. However, it is not clear how the above numerical condition can
be related to the partial semipositivity hypothesis made in Theorem 1.1 (see the
comments after Definition 5.1); for instance, the partial semipositivity hypothesis
is void for curves. Therefore, both types of hypotheses seem to have their own
domain of applicability. Moreover, the techniques developed here are considerably
simpler and in some sense more precise and more explicit, so we felt interesting
to explain this simpler method, which is probably easier to extend to currents of
higher bidegrees. The main ideas of this work have been worked out during a stay
of the author at Bayreuth University in November 1989. The author wishes to
thank this Institution for its hospitality.
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2. Exponential map associated to the Chern connection

Suppose that the manifold X is equipped with a smooth hermitian metric
ω = i

∑
ωlmdzl ∧ dzm. Denote by D the Chern connection of TX and by Θ(TX) =

i
2π
D2 the curvature tensor. We define an exponential map exp : TX −→ X as

follows: if ζ ∈ TX,z, then expz(ζ) is the position at time t = 1 of the curve t 7→ u(t)
starting at u(0) = z with initial tangent vector u′(0) = ζ and satisfying the second
order differential equation D(du/dt) = 0 (parallel translation with respect to D).
If ω is Kähler, the Chern connection coincides with the Levi-Civita connection, so
exp is given in that case by the riemannian geodesics; otherwise, exp differs from
the usual riemannian exponential map. For any x ∈ X , fix analytic coordinates
(z1, . . . , zn) centered at x such that (∂/∂zl) is an orthonormal basis of TX at x.
Consider the Taylor expansion of second order

ωlm(z) = 〈
∂

∂zl

,
∂

∂zm

〉 = δlm +
∑

j

(ajlmzj + ajmlzj) +
∑

j,k

(b′jklmzjzk + b
′

jkmlzjzk)

+
∑

j,k

c′jklmzjzk +O(|z|3).

We may always arrange that the antisymmetry relation ajlm = −aljm holds;
otherwise the change of variables zm = z′m − 1

4

∑
(ajlm + aljm)z′jz

′
l yields coordi-

nates (z′l) with this property. If ω is Kähler, the symmetry of ajlm = ∂ωlm/∂zj

in j, l implies ajlm = 0 ; in that case b′jklm is also symmetric in j, k, l and a new

change of variables zm = z′m − 1
3

∑
b′jklmz

′
jz

′
kz

′
l gives b′jklm = 0 likewise. The

holomorphic frame of TX defined by

el =
∂

∂zl

−
∑

m

(∑

j

ajlmzj +
∑

j,k

b′jklmzjzk

) ∂

∂zm

satisfies

〈el, em〉 = δlm −
∑

j,k

cjklmzjzk +O(|z|3),(2.1)

∂

∂zl

= el +
∑

m

(∑

j

ajlmzj +
∑

j,k

bjklmzjzk +O(z3)
)
em(2.2)

with cjklm = −c′jklm −
∑

p ajlpakmp and bjklm = b′jklm +
∑

p ajlpakpm. We may
of course suppose that bjklm = bkjlm. Also, by a modification of the third order
terms in (el), we can suppose that no term O(z3) appears in (2.2). The formula
∂〈el, em〉 = 〈Del, em〉 easily gives the expression of Del, D

2el and Θ(TX)x:

Del = −
∑

j,k,m

cjklmzk dzj ⊗ em +O(|z|2),

Θ(TX)x =
i

2π

∑

j,k,l,m

cjklm dzj ∧ dzk ⊗ e⋆
l ⊗ em.(2.3)

Given a vector field ζ =
∑
ζl ∂/∂zl in TX , we denote by (ξl) the components of ζ

with respect to the basis (el), thus ζ =
∑
ξlel. By (2.2) we have

(2.4) ξm = ζm +
∑

j,l

ajlmzjζl +
∑

j,k,l

bjklmzjzkζl.
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In the Kähler case everything is much simpler, we take el = ∂/∂zl and ξm = ζm.
In general, the Chern connection D is given by Dζ = D

(∑
ζl ∂/∂zl

)
with

D
( ∂

∂zl

)
= −

∑

j,k,m

cjklmzk dzj ⊗ em +
∑

j,m

ajlmdzj ⊗ em

+ 2
∑

j,k,m

bjklmzk dzj ⊗ em +O(|z|2) dz

= −
∑

j,k,m

(cjklmzk − 2bjklmzk)dzj ⊗
∂

∂zm

+
∑

j,m

(
ajlm −

∑

k,p

ajlpakpmzk

)
dzj ⊗

∂

∂zm

+O(|z|2) dz,

Dζ =
∑

m

dζm ⊗
∂

∂zm

−
∑

j,k,l,m

(cjklmzk − 2bjklmzk)ζldzj ⊗
∂

∂zm

(2.5)

+
∑

j,l,m

(
ajlm −

∑

k,p

ajlpakpmzk

)
ζldzj ⊗

∂

∂zm

+O(|z|2)·ζ dz.

Consider a curve t 7→ u(t). By a substitution of variables zj = uj(t), ζl = dul/dt
in formula (2.5), the equation D(du/dt) = 0 becomes

(2.6)
d2um

dt2
=

∑

j,k,l

(
cjklmuk(t) − 2bjklmuk(t)

)duj

dt

dul

dt
+O

(
|u(t)|2

)
·
(du
dt

)2

;

the contribution of the terms
∑
ajl•ζldzj is zero by the antisymmetry relation;

moreover the remainder term only contains C-quadratic terms in du/dt. The
initial condition u(0) = z, u′(0) = ζ gives um(t) = zm + tζm +O(t2|ζ|2), hence

d2um

dt2
=

∑

j,k,l

(
cjklm(zk + tζk) − 2bjklm(zk + tζk)

)
ζjζl +O

(
|ζ|2(|z| + |ζ|)2

)
.

Two successive integrations yield

um(t) = zm + tζm +
∑

j,k,l

cjklm

( t2
2
zk +

t3

6
ζk

)
ζjζl

−2
∑

j,k,l

bjklm

( t2
2
zk +

t3

6
ζk

)
ζjζl +O

(
t2|ζ|2(|z| + |ζ|)2

)
.

An iteration of this procedure (substitution in (2.6) followed by an integration)
easily shows that all terms but the first two in the Taylor expansion of um(t)
contain C-quadratic factors of the form ζjζl. Let us substitute ζm by its expression
in terms of z, ξ deduced from (2.4). We find that expz(ζ) = u(1) has a third order
expansion

(2.7) expz(ζ)m = gm(z, ξ) +
∑

j,k,l

cjklm

(1

2
zk +

1

6
ξk

)
ξjξl +O

(
|ξ|2(|z| + |ξ|)2

)
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where
gm(z, ξ) = zm + ξm −

∑

j,l

ajlmzjξl +
∑

j,k,l,p

ajlpakpmzjzkξl

−
∑

j,k,l

bjklm

(
zjzkξl + zkξjξl +

1

3
ξjξkξl

)

is a holomorphic polynomial of degree 3 in z, ξ and where the remainder involves
C-quadratic factors ξjξl in all terms. In the Kähler case we simply have ξm = ζm
and gm(z, ξ) = zm + ξm.

The exponential map is unfortunately non holomorphic. However, we can
make it quasi-holomorphic with respect to ζ as follows: for z fixed, we consider the
formal power series obtained by eliminating all monomials in the Taylor expansion
of ζ 7→ expz(ζ) at the origin which are not holomorphic with respect to ζ. This
defines in a unique way a jet of infinite order along the zero section of TX . E. Borel’s
theorem shows that there is a smooth map

TX −→ X, (z, ζ) 7−→ exphz(ζ)

such that its jet at ζ = 0 coincides with the “holomorphic” part of ζ 7→ expz(ζ)
(of course, this map is defined only up to an addition of flat C∞ functions along
the zero section of TX). Moreover, (2.7) implies that

(2.8) exphz(ζ)m = gm(z, ξ) +
1

2

∑

j,k,l

cjklmzkξjξl +O
(
|ξ|2(|z| + |ξ|)2

)

By including in gm all holomorphic monomials of partial degree at most 2 in z and
N in ξ (N ≥ 2 being a given integer), we get holomorphic polynomials hm(z, ξ) of
linear part zm + ξm and total degree N + 2, such that

exphz(ζ)m = hm(z, ξ) +O
(
z, zz, zz, |z|3, ξN−1

)
ξ2.

Here a notation as O
(
z, zz, zz, |z|3, ξN−1

)
ξ2 indicates an arbitrary function in

the ideal of C∞ functions generated by monomials of the form zkξlξm, zizjξlξm,
zizjξlξm, zαzβξlξm and ξγ, for all multi-indices |α|+ |β| = 3 and |γ| = N +1 (the
notation |z|3 thus stands for an arbitrary monomial of degree 3 in z, z, so that
O(|z|3) is compatible with the usual Landau notation). By the implicit function
theorem applied to the mapping h = (hm)1≤m≤n we thus get:

Proposition 2.9. — Let ω be a smooth hermitian metric on X . There

exists a C∞ map

TX −→ X, (x, ζ) 7−→ exphx(ζ), ζ ∈ TX,x

with the following properties:

(i) For every x ∈ X , exphx(0) = x and dζ exphx(0) = IdTX,x
.

(ii) For every x ∈ X , the map ζ 7→ exphx(ζ) has a holomorphic Taylor expansion

at ζ = 0. Moreover, with respect to ω, there are local normal coordinates

5



(z1, . . . , zn) on X centered at x and holomorphic normal coordinates (ξj)
on the fibers of TX near x such that

exphz(ζ) = hx

(
z, ρx(z, ξ)

)
,

where hx(z, ξ) is a holomorphic polynomial map of degree 2 in z and of

degree N in ξ, and where ρx : Cn × Cn → Cn is a smooth map such that

hx,m(z, ξ) = zm + ξm −
∑

j,l

ajlmzjξl +
∑

j,k,l,p

ajlpakpmzjzkξl

−
∑

j,k,l

bjklm

(
zjzkξl + zkξjξl +

1

3
ξjξkξl

)

+O
(
(|z| + |ξ|)4

)
,

ρx,m(z, ξ) = ξm +
∑

2≤|α|≤N

(∑

k

dαkmξ
αzk +

∑

j,k

eαjkmξ
αzjzk

)

+O
(
z2, |z|3, ξN−1

)
ξ2.

(iii) For α = (0, . . . , 1j, . . . , 1l, . . . , 0) of degree 2, we have dαkm = 1
2
cjklm where

(cjklm) is the curvature tensor of ω at x.

Of course, if the hermitian metric ω is real analytic, all the above expan-
sions are convergent, hence exphz(ζ) is real analytic and holomorphic in ζ in a
neighborhood of the zero section of TX . By taking N = ∞, we obtain a real ana-
lytic map ρ(x, ξ) which is holomorphic in ξ, so the above remainder term becomes
O

(
z2, |z|3

)
ξ2.

3. Regularization of quasi-psh functions

We now come to the main idea. Select a cut-off function χ : IR → IR of
class C∞ such that

χ(t) > 0 for t < 1, χ(t) = 0 for t ≥ 1,

∫

v∈Cn

χ(|v|2) dλ(v) = 1.

If ψ is a quasi-psh function on X , we set

(3.1) ψε(z) =
1

ε2n

∫

ζ∈TX,z

ψ
(
exphz(ζ)

)
χ
( |ζ|2

ε2

)
dλ(ζ), ε > 0.

Here dλ denotes the Lebesgue measure on Cn, resp. on the hermitian space(
TX,z, ω(z)

)
. For w ∈ C with |w| = ε, we have ψε(z) = Ψ(z, w) with

(3.2) Ψ(z, w) =

∫

ζ∈TX,z

ψ
(
exphz(wζ)

)
χ(|ζ|2) dλ(ζ).

The change of variable y = exphz(wζ) expresses wζ as a smooth function of y, z in a
neighborhood of the diagonal inX×X . Hence Ψ is smooth overX×{0 < |w| < ε0}
for some ε0 > 0. We are going to compute ∂∂Ψ over this set and estimate its
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negative part when |w| is small. For this, we fix a point x ∈ X and use the
coordinates (z, ξ) on TX introduced in § 2; for simplicity, we omit the index x in
the notation of hx and ρx. By (2.1), we have

|ζ|2 =
∑

m

|ξm|2 −
∑

j,k,l,m

cjklm zjzkξlξm +O(|z|3)|ξ|2,(3.3)

dλ(ζ) =
1

2nn!
(i∂∂|ζ|2)n(3.4)

=
(
1 −

∑

j,k,l

cjkll zjzk +O(|z|3)
) i

2
dξ1 ∧ dξ1 ∧ . . . ∧

i

2
dξn ∧ dξn.

In (3.2), we make the change of variables s = w−1ρ(z, wξ), hence we can write
exphz(wζ) = h(z, ws). By (2.9) we get

sm = ξm +
∑

2≤|α|≤N

(∑

k

dαkmw
|α|−1ξαzk +

∑

j,k

eαjkmw
|α|−1ξαzjzk

)
(3.5)

+O
(
z2, |z|3, wN−1ξN−1

)
wξ2.

Therefore

ξm = sm −
∑

2≤|α|≤N

(∑

k

dαkmw
|α|−1sαzk +

∑

j,k

eαjkmw
|α|−1sαzjzk

)
(3.6)

+O
(
z2, |z|3, wN−1sN−1

)
ws2

and ξ = s + O(wNsN+1) for z = 0. After a substitution in (3.2), (3.3), (3.4) we
get

(3.7) Ψ(z, w) =

∫

Cn

ψ
(
h(z, ws)

)
χ
(
A(z, w, s)

)
B(z, w, s) dλ(s)

where

A(z, w, s) =
∑

m

|sm|2 −
∑

j,k,l,m

cjklmzjzkslsm

− 2 Re
∑

α,k,m

dαkmw
|α|−1sαsmzk

− 2 Re
∑

α,j,k,m

eαjkmw
|α|−1sαsmzjzk

+
∑

α,β,j,k,m

dαkmdβjmw|α|−1w|β|−1sαsβzjzk

+O
(
z2, z2, |z|3, |w|N−1|s|N−1

)
|w||s|3,
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B(z, w, s) = 1 −
∑

j,k,l

cjkllzjzk

− 2 Re
∑

α,k,m

dαkmw
|α|−1αms

α−1mzk

− 2 Re
∑

α,j,k,m

eαjkmw
|α|−1αms

α−1mzjzk

+
∑

α,β,j,k,l,m

dαkmdβjl w
|α|−1w|β|−1αmβls

α−1msβ−1lzjzk

+O
(
z2, z2, |z|3, |w|N−1|s|N−1

)
|w||s| ;

here (1m)1≤m≤n denotes the standard basis of ZZ
n, hence s1m = sm.

Proposition 3.8. — For any integer N ≥ 2 and any (θ, η) ∈ TX,x × C,

the Hessian form of Ψ at (x, w) ∈ X × C satisfies an estimate

∂∂Ψ(x,w)[θ, η]
2 =

∫

ζ∈TX,x

∂∂ψ ·
(
τ ∧ τ + |w|2V

)
exphx(wζ)

χ(|ζ|2) dλ(ζ)

+O
(
|w|N−1

)
[θ, η]2

where τ (resp. V ) is a vector field (resp. a (1, 1)-vector field) depending smoothly

on the parameters x, w and linearly (resp. quadratically) on θ, η, and where the

notation [τ ]2 stands for the (1, 1)-vector τ ∧ τ ∈ Λ1,1TX . The vector fields τ , V
are given at y = exphx(wζ) by

τy = ∂ exph(x,wζ)

(
θh + ηζv + |w|2Ξv

y

)
,

Vy = ∂ exph(x,wζ)(U
v − |w|2Ξv ∧ Ξv

)
y
,

where θh, ζv ∈ T (TX)(x,wζ) are respectively the horizontal lifting of θ with respect

to the connection D and the vertical tangent vector associated to ζ, and where

Ξ, U can be expressed in the coordinates 2.9 (ii) by

Ξy =
∑

α,j,l,m

1

χ(|ζ|2)

∂

∂ζl

(
χ1(|ζ|

2)ζ
α−1m

)
dαjl

αm

|α|
w|α|−2θj

∂

∂zm

,

Uy =
∑

l,m

1

2
(Um,l + Ul,m)

∂

∂zm

∧
∂

∂zl

,

Um,l = −
χ1(|ζ|

2)

χ(|ζ|2)

{∑

j,k

cjklmθjθk

+ 2
∑

α,j,k

eαjkmw
|α|−1 αl

|α|
ζα−1lθjθk

+ 2
∑

α,k

dαkm(|α| − 1)w|α|−2 αl

|α|
ζα−1lηθk

}

+
∑

α,β,j,k

dαkmdβjlw
|α|−1w|β|−1ζαζβθjθk.
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Here (cjklm) is the curvature tensor of the given hermitian metric ω on X , and

χ1 denotes the primitive χ1(t) =
∫ t

+∞
χ(u) du of χ such that χ1(t) = 0 for t ≥ 1.

Moreover, α, β ∈ INn run over all multi-indices such that 2 ≤ |α|, |β| ≤ N .

The formula is exact when ω is real analytic and N = ∞.

Proof. — A brute force differentiation of (3.7) at z = 0 gives

∂∂Ψ(x,w)[θ, η]
2 =

∫

Cn

∂∂(ψ ◦ h)(0,ws)[θ, ηs]
2 χ

(
A(0, w, s)

)
B(0, w, s) dλ(s)

−

∫

Cn

∂(ψ ◦ h)(0,ws)[θ, ηs]E(w,s)[θ, η] dλ(s)(3.9)

−

∫

Cn

∂(ψ ◦ h)(0,ws)[θ, ηs]E(w,s)[θ, η]dλ(s)

−

∫

Cn

ψ ◦ h(0, ws)F(w,s)[θ, η]
2 dλ(s)(3.9′)

where

E(w,s) = −∂(z,w)

(
χ
(
A(z, w, s)

)
B(z, w, s)

)
,

F(w,s) = −∂∂(z,w)

(
χ
(
A(z, w, s)

)
B(z, w, s)

)

at z = 0, |w| < ε0. Clearly, terms wpzz in A or B play no role in E(w,s) ,
while terms wpz contribute either linearly as dw ∧ dz differentials of F(w,s) or
quadratically as dz ∧ dz differentials. This gives

E(w,s)[θ, η] = χ′(|s|2)
∑

α,j,l

dαjlw
|α|−1sαslθj

+ χ(|s|2)
∑

α,j,l

dαjl w
|α|−1αls

α−1lθj +O(|w|N−1|s|N)[θ, η],

F(w,s)[θ, η]
2 = χ′(|s|2)

∑

j,k,l,m

cjklmslsmθjθk + χ(|s|2)
∑

j,k,l

cjkllθjθk

+ 2 Re

{
χ′(|s|2)

∑

α,j,k,m

eαjkmw
|α|−1sαsmθjθk

+ χ(|s|2)
∑

α,j,k,m

eαjkmw
|α|−1αms

α−1mθjθk

+ χ′(|s|2)
∑

α,k,m

dαkm(|α| − 1)w|α|−2sαsmηθk

+ χ(|s|2)
∑

α,k,m

dαjkm(|α| − 1)w|α|−2αms
α−1mηθk

}

− χ′′(|s|2)
∑

α,β,j,k,l,m

dαkmdβjlw
|α|−1w|β|−1sαsβslsmθjθk

− χ′(|s|2)
∑

α,β,j,k,m

dαkmdβjmw|α|−1w|β|−1sαsβθjθk
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− χ′(|s|2)
∑

α,β,j,k,l,m

dαkmdβjlw
|α|−1w|β|−1sαsmβls

β−1lθjθk

− χ′(|s|2)
∑

α,β,j,k,l,m

dαkmdβjlw
|α|−1w|β|−1αms

α−1msβslθjθk

− χ(|s|2)
∑

α,β,j,k,l,m

dαkmdβjlw
|α|−1w|β|−1αmβls

α−1msβ−1lθjθk

+O(|w|N−2|s|N )[θ, η]2.

We find

E(w,s)[θ, η] =
∑

l,m

∂2

∂sl∂sm

(
χ1(|s|

2)
∑

α,j

dαjl w
|α|−1αm

|α|
sα−1mθj

)

+O(|w|N−1|s|N )[θ, η],

F(w,s)[θ, η]
2 =

∑

l,m

∂2

∂sl∂sm

(
χ1(|s|

2)
∑

j,k

cjklmθjθk

)

+ 2 Re
{∑

l,m

∂2

∂sl∂sm

(
χ1(|s|

2)
∑

α,j,k

eαjkmw
|α|−1 αl

|α|
sα−1lθjθk

)

+
∑

l,m

∂2

∂sl∂sm

(
χ1(|s|

2)
∑

α,k

dαkm(|α| − 1)w|α|−2 αl

|α|
sα−1lηθk

)}

−
∑

l,m

∂2

∂sl∂sm

(
χ(|s|2)

∑

α,β,j,k

dαkmdβjl w
|α|−1w|β|−1sαsβθjθk

)

+O(|w|N−2|s|N )[θ, η]2.

In all these expansions, the remainder terms O(•) involve uniform constants when
the origin x of coordinates belongs to a compact subset of a coordinate patch. By
the mean value properties of plurisubharmonic functions, we have∫

|s|<1

|ψ(x+ ws)| dλ(s) ≤ C
(
1 +

∣∣ log |w|
∣∣)

locally uniformly in x. An integration by parts with compact supports yields∫

|s|<1

∂(ψ ◦ h)(0,ws)O(|w|) dλ(s) =

∫

|s|<1

ψ ◦ h(0, ws) dλ(s) = O
(
log |w|

)
,

hence the remainder terms O(|w|N−1) in E(w,s) and O(|w|N−2) in F(w,s) give

contributions of order at most O(|w|N−2 log |w|) in ∂∂Ψ as |w| tends to 0. An
integration by parts in (3.9) and (3.9′) gives

∂∂Ψ(x,w)[θ, η]
2 =

∫

Cn

∂∂(ψ ◦ h)(0,ws) ·
{
(θ, ηs) ∧ (θ, ηs) + |w|2(0,Ξ) ∧ (θ, ηs)

+ |w|2(θ, ηs) ∧ (0,Ξ) + |w|2(0, U)
}
χ
(
A(0, w, s)

)
B(0, w, s) dλ(s)

+O
(
|w|N−2 log |w|

)
[θ, η]2(3.10)
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with

Ξ =
∑

α,j,l,m

1

χ(|s|2)

∂

∂sl

(
χ1(|s|

2)sα−1m
)
dαjl

αm

|α|
w|α|−2θj

∂

∂zm

,

U =
∑

l,m

1

2
(Um,l + Ul,m)

∂

∂zm

∧
∂

∂zl

,

Um,l = −
χ1(|s|

2)

χ(|s|2)

{∑

j,k

cjklmθjθk

+ 2
∑

α,j,k

eαjkmw
|α|−1 αl

|α|
sα−1lθjθk

+ 2
∑

α,k

dαkm(|α| − 1)w|α|−2 αl

|α|
sα−1lηθk

}

+
∑

α,β,j,k

dαkmdβjl w
|α|−1w|β|−1sαsβθjθk.

The choice χ(t) = C
(1−t)2

exp
(

1
t−1

)
for t < 1 gives χ1(t) = −C exp

(
1

t−1

)
, so

χ1(t)/χ(t) = (1 − t)2 is smooth and bounded, and our vector fields Ξ, U are
smooth. We can write

(θ, ηs) ∧ (θ, ηs) + |w|2(0,Ξ) ∧ (θ, ηs) + |w|2(θ, ηs) ∧ (0,Ξ) + |w|2(0, U)

= (θ, ηs+ |w|2Ξ) ∧ (θ, ηs+ |w|2Ξ) + (0, U − |w|2Ξ ∧ Ξ),

therefore (3.10) implies the formula in proposition 3.8 with

τ = dh(0,ws)(θ, ηs+ |w|2Ξ),

V = dh(0,ws)(0, U − |w|2Ξ ∧ Ξ).

Since exphz(ζ) = h(z, ρ(z, ξ), ρ(0, ξ) = ξ + O(ξN+1) and ∂ρ(0,ξ) = dξ + O(ξN )dξ
by (2.9), we infer that the (1, 0)-differential of exph at (x, ζ) ∈ TX is

∂ exph(x,ζ) = dh(0,ξ) +O(|ξ|N)dξ

modulo the identification of the tangent spaces T (TX)(x,ζ) and T (TCn)(0,ξ) given
by the coordinates (z, ξ) on TX . However, these coordinates are precisely those
which realize the splitting T (TX)(x,ζ) = (TX,x)h ⊕ (TX,x)v with respect to the
connection D. Since s = ξ +O(wNξN+1) and ξ = ζ at z = 0, we get

τ = ∂ exph(x,wζ)(θ
h + ηζv + |w|2Ξv) +O(|w|N |ζ|N ),

V = ∂ exph(x,wζ)(U
v − |w|2Ξv ∧ Ξv) +O(|w|N |ζ|N ).

We can drop the terms O(|w|N ) in τ and V because
∫

|ζ|<1

∂∂ψ
(
exphx(wζ)

)
dλ(ζ) =

1

|w|2n

∫

|ζ|<|w|

∂∂ψ
(
exphx(ζ)

)
dλ(ζ)

= O(|w|−2)(3.11)
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by the usual estimates on Lelong numbers (see e.g. [Le69]), thus
∫

|ζ|<1

∂∂ψ
(
exphx(wζ)

)
O

(
|w|N

)
dλ(ζ) = O

(
|w|N−2

)
.

After substituting ζ to s in the formal expression of Ξ and U , we get precisely
the formulas given in Proposition 3.8. It remains to explain why the remainder
term O(|w|N−2 log |w|) is in fact of the type O(|w|N−1). To see this, we increase
N by two units and estimate the additional terms in the expansions, due to the
contribution of all multi-indices α with |α| = N + 1 or N + 2. It is easily seen
that the additional terms in Ξ and U are O(|w|N−1), so they are O(|w|N+1) in τ
and |w|2V . The contribution of these terms to ∂∂Ψ(x,w) is thus of the form

∫

|ζ|<1

∂∂ψ
(
exphx(wζ)

)
O

(
|w|N+1

)
dλ(ζ) = O

(
|w|N−1

)
.

4. Approximation theorem and estimates

A straightforward consequence of our computations is the following appro-
ximation theorem for closed positive currents.

Theorem 4.1. — Let X be a compact n-dimensional manifold equipped

with a smooth hermitian metric ω. Fix a smooth semipositive (1, 1)-form u on X
such that the Chern curvature tensor Θ(TX) ∈ Herm(TX ⊗TX) of (TX , ω) satisfies

(
Θ(TX) + u⊗ IdTX

)
(θ ⊗ ξ, θ⊗ ξ) ≥ 0

for all θ, ξ ∈ TX such that 〈θ, ξ〉 = 0. Let T = α+ i
π
∂∂ψ be a closed real current

where α is a smooth closed real (1, 1)-form and ψ is quasi-psh. Suppose that T ≥ γ
for some real (1, 1)-form γ with continuous coefficients. As w tends to 0 and x runs

over X , there is a uniform lower bound

αx[θ]2+
i

π
∂∂Ψ(x,w)[θ, η]

2 ≥ γx[θ]2−λ(x, |w|) ux[θ]2−δ(|w|) |θ|2−
1

π
K(|θ||η|+ |η|2)

where K > 0 is a sufficiently large constant, δ(t) a continuous increasing function

with limt→0 δ(t) = 0, and

λ(x, t) = t
∂

∂t

(
Ψ(x, t) +Kt2

)
.

The above derivative λ(x, t) is a nonnegative continuous function on X × ]0, ε0[
which is increasing in t and such that

lim
t→0

λ(x, t) = ν(T, x) (Lelong number of T at x).

In particular, the currents Tε = α + i
π
∂∂Ψ(•, ε) are smooth closed real currents

converging weakly to T as ε tends to 0, such that

Tε ≥ γ − λ(•, ε) u− δ(ε)ω.
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Proof. — It suffices to prove the estimate for |w| < ε(δ), with δ > 0 fixed
in place of δ(|w|). Also, the estimate is local on X . If we change ψ into ψ+ψ0 with
a smooth function ψ0, then α is changed into α− i

π
∂∂ψ0 and Ψ into Ψ+Ψ0, where

Ψ0 is a smooth function on X×C such that Ψ0(z, w) = ψ0(z)+O(|w|2). It follows
that the estimate remains unchanged up to a term O(1)|η|2. We can thus work on
a small coordinate open set Ω ⊂ X and choose ψ0 such that γ − (α − i

π
∂∂ψ0) is

positive definite and small at x, say equal to δ
4
ωx. After shrinking Ω and making

the change ψ 7→ ψ+ψ0, we may in fact suppose that T = α+ i
π
∂∂ψ on Ωx,δ ⊂ Ω,

where α satisfies γx − αx = δ
4ωx and γ − δ

2ω ≤ α ≤ γ on Ωx,δ. In particular,
i
π
∂∂ψ ≥ γ − α and ψ is plurisubharmonic on Ωx,δ. All we have to show is that

(4.2)
i

π
∂∂Ψ(x,w)[θ, η]

2 ≥ −λ(x, |w|) ux[θ]2 −
δ

2
|θ|2 −

1

π
K(|θ||η|+ |η|2)

for |w| < w0(δ) small. For this, we apply proposition 3.8 at order N = 2 ; order 2
is enough for our purposes since we will neglect all terms in ∂∂Ψ which converge
to 0 with w, especially all O(|w|) terms. By (3.11), we can neglect all terms
of the form ∂∂ψ(exphx(wζ))O(|w|3) under the integral sign. Up to such terms,
∂∂ψ ·

(
τ ∧ τ + |w|2V

)
exphx(wζ)

χ(|ζ|2) is equal to

−|w|2χ1(|ζ|
2) Re

∑

l,m

∂2ψ

∂zl∂zm

{ χ(|ζ|2)

−|w|2χ1(|ζ|2)
τ lτm +

∑

j,k

cjklmθjθk

+ 2
∑

|α|=2,k

dαkm(|α| − 1)w|α|−2 αl

|α|
ζα−1lηθk

}

≥ −|w|2χ1(|ζ|
2)

∑

l,m

∂2ψ

∂zl∂zm

{ 1

|w|2
τ lτm +

∑

j,k

cjklm

(
θjθk +

1

2
ζjηθk +

1

2
ζkθjη

)}

= −|w|2χ1(|ζ|
2)

∑

l,m

∂2ψ

∂zl∂zm

{ 1

|w|2
τ lτm +

∑

j,k

cjklmτjτk

−
∑

j,k

cjklm

(1

2
ζjηθk +

1

2
ζkθjη + ζjζkηη

)}

in view of 2.9 (iii) and of the inequality 0 ≤ −χ1 ≤ χ ; in the last equality, we have
also used the fact that τ = θ + ηζ +O(|w|).

By (3.11), the mixed terms θjη, ηθk and the terms ηη give rise to contribu-
tions bounded below by −K ′(|θ||η|+ |η|2). Hence we get the estimate

i

π
∂∂Ψ(x,w)[θ, η]

2 ≥

1

π
|w|2

∫

Cn

−χ1(|ζ|
2)

∑

j,k,l,m

∂2ψ

∂zl∂zm

(
exphx(wζ)

) (
cjklm +

1

|w|2
δjmδkl

)
τjτk dλ(ζ)

−K ′
(
|θ||η|+ |η|2

)
.(4.3)

We need a lemma.
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Lemma 4.4. — Suppose that the curvature assumption of Theorem 4.1 is

satisfied. Then for every ε > 0, there is a constant Mε > 0 such that
∑

j,k,l,m

1

2π
(cjklm +Mεδjmδkl)τjτkξlξm +

∑

j,k,l

ujkτjτkξlξl + ε|τ |2|ξ|2 ≥ 0

for all tangent vectors τ, ξ.

Let us consider the hermitian form H on TX ⊗ TX defined by

H(τ ⊗ ξ, τ ⊗ ξ) =
∑

j,k,l,m

1

2π
cjklmτjτkξlξm +

∑

j,k,l

ujkτjτkξlξl + ε|τ |2|ξ|2.

Let µ be the infimum of H(τ ⊗ ξ, τ ⊗ ξ) on the compact set {|τ | = 1} × {|ξ| = 1}.
By our curvature assumption we have H(τ ⊗ ξ, τ ⊗ ξ) ≥ ε when τ ⊥ ξ = 0 and
|τ | = |ξ| = 1, therefore H(τ ⊗ ξ, τ ⊗ ξ) ≥ 0 on some neighborhood |〈τ, ξ〉| < rε of
that set. It follows that

H(τ ⊗ ξ, τ ⊗ ξ) +
|µ|

r2ε
|〈τ, ξ〉|2 ≥ 0

for all |τ | = |ξ| = 1. Lemma 4.4 follows with Mε = |µ|/r2ε .

Let us apply inequality 4.4 to each vector ξ in a basis of eigenvectors of
∂∂ψ, multiply by the corresponding (nonnegative) eigenvalue and take the sum.
We get

1

2π

∑

j,k,l,m

∂2ψ

∂zl∂zm

(
cjklm +Mεδjmδkl

)
τjτk +

∑

l

∂2ψ

∂zl∂zl

(
u[τ ]2 + ε|τ |2

)
≥ 0.

Combining this with (4.3) for |w|2 < 1/Mε, we infer

i

π
∂∂Ψ(x,w)[θ, η]

2

≥ −2|w|2
∫

Cn

−χ1(|ζ|
2)

∑

l

∂2ψ

∂zl∂zl

(
exphx(wζ)

) (
ux[τ ]2 + ε|τ |2

)
dλ(ζ)

−K ′
(
|θ||η|+ |η|2

)

≥ −
{

2|w|2
∫

Cn

−χ1(|ζ|
2)

∑

l

∂2ψ

∂zl∂zl

(
exphx(wζ)

)
dλ(ζ)

}(
ux[θ]2 + ε|θ|2

)

−K ′′
(
|θ||η|+ |η|2

)

by (3.11) again, in combination with the equality τ = θ + ηζ + O(|w|)). The
change of variables ζ 7→ s defined by exphx(wζ) = x+ ws yields ζ = s+O(w2s3)
by 2.9 (ii), hence choosing ε≪ δ small enough we get

i

π
∂∂Ψ(x,w)[θ, η]

2 ≥ −λΩ(x, |w|) ux[θ]2 −
δ

3
|θ|2 −K

(
|θ||η| + |η|2

)

where

λΩ(x, |w|) = 2|w|2
∫

Cn

−χ1(|s|
2)

∑

l

∂2ψ

∂zl∂zl

(x+ ws) dλ(s).
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By definition, the Lelong number ν(ψ, x) is limr→0 ν(ψ, x, r) where

ν(ψ, x, r) =
1

πn−1r2n−2/(n− 1)!

∫

B(x,r)

2

π

∑

l

∂2ψ

∂zl∂zl

dλ(z).

Therefore we have

ν(ψ, x, |w|r) =
1

πn−1r2n−2/(n− 1)!
|w|2

∫

|s|<r

2

π

∑

l

∂2ψ

∂zl∂zl

(x+ ws) dλ(s).

As −χ1(|s|
2) = 2

∫ +∞

|s|
χ(r2) r dr, the Fubini formula gives

λΩ(x, |w|) = 4|w|2
∫ +∞

0

{∫

|s|<r

∑

l

∂2ψ

∂zl∂zl

(x+ ws) dλ(s)
}
χ(r2) r dr

=
2πn

(n− 1)!

∫ 1

0

ν(ψ, x, |w|r)χ(r2) r2n−1 dr,

λΩ(x, t) =

∫

Cn

ν(ψ, x, t|s|)χ(|s|2) dλ(s).

Hence λΩ(x, t) is smooth in (x, t), increasing in t and limt→0 λΩ(x, t) = ν(ψ, x) =
ν(T, x), as desired.

The expected estimate (4.2) thus holds on Ω with λΩ(x, t) in place of λ(x, t);
we only have to show that λΩ(x, t) − λ(x, t) is small. By (4.2), Ψ(x, w) + K|w|2

is plurisubharmonic in w, and so is a convex function of log |w| ; since Ψ(x, t) is
bounded above as t tends to 0, the sum Ψ(x, t)+Kt2 which is convex in log t must
be increasing in t. Therefore

λ(x, t) =
∂

∂ log t

(
Ψ(x, t) +Kt2

)

is a nonnegative increasing function of t. When we put θ = 0, Proposition 3.8
gives Ξ = V = 0 and τ = ∂ exph(x,wζ)(ηζ

v), thus

∂2Ψ

∂w∂w
(x, w) =

∫

ζ∈TX,x

∂∂ψexphx(wζ)[ζ]
2 χ(|ζ|2) dλ(ζ) +O(|w|N−1)

=

∫

Cn

∂∂ψx+ws[s]
2 χ(|s|2) dλ(s) +O(1),

again by the change of variable exphx(wζ) = x+ ws, for which ζ = s+O(w2s3).
Since ∂2/∂w∂w = (t−1∂/∂t) ◦ (t ∂/∂t) for a function of w depending only on
t = |w|, a multiplication by t followed by an integration implies

t
∂Ψ(x, t)

∂t
= t

∂

∂t

∫

Cn

ψ(x+ ts)χ(|s|2) dλ(s) +O(t2)(4.5)

=

∫

Cn

ν(ψ, x, t|s|)χ(|s|2) dλ(s) +O(t2) = λΩ(x, t) +O(t2) ;

here, we used the well known fact that ν(ψ, x, t) is equal to the derivative ∂/∂ log t
of the mean value of ψ on the sphere S(x, t). Hence λΩ(x, t)−λ(x, t) = O(t2) and
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the first estimate in 4.1 follows. Now, it is clear that ψε converges to ψ in L1
loc, so

Tε converges weakly to T ; note also that ψε +Kε2 is increasing in ε by the above
arguments. The proof is complete.

Remark 4.6. — An integration of the first equality in (4.5) also shows
that

Ψ(x, t) =

∫

|s|<1

ψ(x+ ts)χ(|s|2) dλ(s) +O(t2)

relatively to the system of normal coordinates at x defined in § 2.

Remark 4.7. — The estimates obtained in Theorem 4.1 can be slightly
improved by setting

Ψ̃(x, w) = Ψ(x, w) + |w|, λ̃(x, t) = t
∂

∂t

(
Ψ̃(x, t)

)
.

Indeed λ̃(x, t) = λ(x, t) + t − 2Kt2 is increasing in t and larger than λ(x, t) for

t small, hence Ψ̃(x, w) is convex and increasing in log |w|, while

∂∂Ψ̃(x,w)[θ, η]
2 = ∂∂Ψ(x,w)[θ, η]

2 +
|η|2

4|w|
.

Since K|θ||η| ≤ 2K2|w||θ|2 + |η|2/(8|w|), we get for |w| < ε0 small enough a lower
bound of the form

(4.8) αx[θ]2 +
i

π
∂∂Ψ̃(x,w)[θ, η]

2 ≥ γx[θ]2 − λ̃(x, |w|) ux[θ]2 − δ̃(|w|) |θ|2,

where limt→0 λ̃(x, t) = ν(T, x) and limt→0 δ̃(t) = 0, δ̃ being continuous and
increasing.

5. Compact manifolds with partially semipositive curvature

In case the curvature of the ambient manifold X satisfies suitable semi-
positivity assumptions, our smoothing theorem 4.1 yields interesting geometric
consequences.

Definition 5.1. — We say that X has partially semipositive curvature

(in the sense of Griffiths) if there exists a hermitian metric ω on X such that the

associated Chern curvature tensor Θ(TX ) satisfies

Θ(TX)(θ ⊗ ξ, θ⊗ ξ) ≥ 0

for all θ, ξ ∈ TX with 〈θ, ξ〉 = 0.

The standard Griffiths semipositivity assumption for TX would require that
the above inequality is satisfied for all pairs θ, ξ ∈ TX . This is the case if X
is a compact complex homogeneous manifold, since the tangent bundle is then
generated by global sections; a fortiori, such manifolds satisfy the property in
Def. 5.1. However, the partial semipositivity condition is substantially weaker. In
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fact, every complex curve has partially semipositive curvature, but a curve has a
metric of semipositive curvature if and only if it is of genus 0 or 1. This observation
gives rise immediately to higher dimensional examples; in fact let X = IP1 × C
where C is a curve of genus g ≥ 2, equipped with its unique metric of constant
curvature −1. The Fubini-Study metric on IP1 has curvature +2, hence we have

〈Θ(TX)(θ ⊗ ξ), θ⊗ ξ〉 = 2|θ1|
2|ξ1|

2 − |θ2|
2|ξ2|

2,

where the subscripts 1, 2 denote respectively the first and second projection of a
tangent vector; clearly the difference is nonnegative when 〈θ1, ξ1〉 + 〈θ2, ξ2〉 = 0,
thus IP1 × C has partially semipositive curvature. It would be interesting to
have a more algebraic understanding of the notion of partial semipositivity. This
is certainly a very difficult problem; recall in this context the deep unsolved
conjecture of Griffiths that ampleness is equivalent to Griffiths positivity.

The following results were already obtained in [De92] under the assumption
that TX is nef (i.e. OTX

(1) is nef over P (T ⋆
X)). It is well known that Griffiths

semipositivity implies nefness, and that the converse is not true; however, if
Griffiths’ conjecture holds, nefness would be equivalent to the fact that the
curvature tensor Θ(TX) can be made larger than −ε for every ε > 0 (see [DPS92]).
The above examples show that partial semipositivity covers different situations.

Proposition 5.2. — Let (X,ω) be a compact hermitian manifold with

partially semipositive curvature.

(i) For any closed real (1, 1)-current T on X such that T ≥ γ for some conti-

nuous real (1, 1)-form γ on X , there is a family Tε of smooth approximations

in the same ∂∂-cohomology class as T and converging weakly to T as ε tends

to 0, such that Tε ≥ γ − δεω with limε→0 δε = 0.

(ii) Every closed positive (1, 1)-current T is numerically effective in the sense of

[De92] ; in particular, if X is Kähler, the De Rham cohomology class {T}
satisfies

∫
Y
{T}p ≥ 0 for every p-dimensional analytic subset Y ⊂ X .

Proof. — (i) follows immediately from Theorem 4.1 by taking u = 0.

To get (ii), we apply (i) with γ = 0. We then obtain Tε ≥ −δεω. Let ω0 be
a Kähler metric on X (ω0 need not be related to ω). Multiplying ω0 by a suitable
constant we get ω0 ≥ ω and so Tε + δεω0 ≥ 0. As {T} = {Tε}, this implies

∫

Y

(
{T} + δε{ω0}

)p
=

∫

Y

(
Tε + δεω0

)p
≥ 0,

thus
∫

Y
{T}p ≥ 0 in the limit.

Proposition 5.2 implies that a compact complex manifold with partially
semipositive curvature must be minimal in the sense that it does not contain any
divisor D which can be blown down to some lower dimensional variety. Indeed, in
the latter case, there is always a curve C ⊂ D such that D · C =

∫
C
{D} < 0.
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Proposition 5.3. — LetX be a compact complex manifold with partially

semipositive curvature. Then X is Kähler if and only if X is in the Fujiki class C
(= class of complex varieties which are bimeromorphic to Kähler manifolds), and

X is projective if and only if X is Moishezon.

Proof. — Let X be a manifold in the Fujiki class C such that TX has
partially semipositive curvature. We know by Fujiki [Fu78] that X has a smooth

Kähler modification µ : X̃ → X . Let β be a Kähler metric on X̃ and let T = µ⋆β
be the direct image current. If ω is a hermitian metric on X , we have β ≥ c µ⋆ω
on X̃ for some small constant c > 0, thus by taking the direct image we get
T = µ⋆β ≥ cω on X . Now Proposition 5.2 (i) produces a smooth approximation
Tε of T such that Tε ≥ cω − δεω ≥ c

2ω for ε small enough. Thus Tε is a Kähler
metric and X is Kähler. In particular, if X is Moishezon, we can take β to be
the curvature form of an ample line bundle O(D) over X̃. Then T and Tε are
cohomologous to µ⋆([D]) = [D′] where D′ = µ(D) is the image of D in X . This
implies that O(D′) is ample and therefore X is projective algebraic (we could also
have applied the well-known result of Moishezon that every Kähler Moishezon
manifold is projective algebraic). The converse implications are trivial.

6. Singularity attenuation process for closed (1,1)-currents

If T is a closed positive or almost positive current on a complex manifold X ,
we denote by Ec(T ) the c-upperlevel set of Lelong numbers:

Ec(T ) =
{
x ∈ X ; ν(T, x) ≥ c

}
, c > 0.

A well-known theorem of [Siu74] asserts that Ec(T ) is a closed analytic subset ofX .
A combination of Theorem 4.1 with Kiselman’s singularity attenuation technique
yields the following partial regularization process. The sets Ec(T ) appear precisely
to be the obstructions to smoothing when no loss of positivity is admitted.

Theorem 6.1. — Let T be a closed almost positive (1, 1)-current and

let α be a smooth real (1, 1)-form in the same ∂∂-cohomology class as T , i.e.

T = α + i
π
∂∂ψ where ψ is an almost psh function. Let γ be a continuous real

(1, 1)-form such that T ≥ γ. Suppose that TX is equipped with a smooth hermitian

metric ω such that the Chern curvature form satisfies(
Θ(TX) + u⊗ IdTX

)
(θ ⊗ ξ, θ⊗ ξ) ≥ 0 ∀θ, ξ ∈ TX with 〈θ, ξ〉 = 0,

for some continuous nonnegative (1, 1)-form u on X . Then for every c > 0, there

is a family of closed almost positive (1, 1)-currents Tc,ε = α+ i
π
∂∂ψc,ε, ε ∈ ]0, ε0[,

such that ψc,ε is smooth on X \Ec(T ), increasing with respect to ε, and converges

to ψ as ε tends to 0 (in particular, the current Tc,ε is smooth on X \ Ec(T ) and

converges weakly to T on X), and such that

(i) Tc,ε ≥ γ − min{λε, c}u− δεω where:

(ii) λε(x) is an increasing family of continuous functions on X such that

limε→0 λε(x) = ν(T, x) at every point,
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(iii) δε is an increasing family of positive constants such that limε→0 δε = 0,

(iv) ν(Tc,ε, x) =
(
ν(T, x) − c

)
+

at every point x ∈ X .

Proof. — Following an idea of Kiselman [Ki79], we let ψc,ε be the Legendre
transform

ψc,ε(x) = inf
|w|<1

(
Ψ̃(x, εw) +

ε

1 − |w|2
− c log |w|

)
,

where Ψ̃(x, w) = Ψ(x, w) + |w| is the function defined in Remark 4.7. It is clear
that ψc,ε is increasing in ε and that

lim
ε→0

ψc,ε(x) = Ψ̃(x, 0+) = Ψ(x, 0+) = ψ(x).

Moreover, as Ψ̃(x, w) is convex and increasing in t = log |w|, the function

t 7−→ Φc,ε(x, t) := Ψ̃(x, εt) +
ε

1 − t2
− c log t

is strictly convex in log t and tends to +∞ as t tends to 1. It follows that the
infimum is attained for t = t0(x) ∈ [0, 1[ given either by the zero of the ∂/∂ log t
derivative:

λ̃(x, εt) +
2εt2

(1 − t2)2
− c = 0

when ν(T, x) = limt→0 λ̃(x, t) < c, or by t0(x) = 0 when ν(T, x) ≥ c (in which
case the above strictly convex function is increasing on the whole interval [0, 1[).
Since the ∂/∂ log t derivative is itself strictly increasing in t, the implicit function
theorem shows that t0(x) depends smoothly on x on X \ Ec(T ) = {ν(T, x) < c},
hence ψc,ε(x) = Φc,ε(x, t0(x)) is actually smooth on X \ Ec(T ).

Now, fix a point x ∈ X \Ec(T ) and t1 > t0(x). For all z in a neighborhood
V of x we still have t0(z) < t1, thus

ψc,ε(z) = inf
|w|<t1

(
Ψ̃(z, εw) +

ε

1 − |w|2
− c log |w|

)
on V.

By (4.8), all functions involved in that infimum have a complex Hessian in (z, w)
bounded below by

γz − αz − λ̃(z, εt1)uz − δ̃(εt1)ωz.

Hence ∂∂ψc,ε has the same lower bound (this is an easy consequence of Kisel-
man’s principle [Ki78] that an infimum infw u(z, w) of plurisubharmonic functions
depending only on Rew is plurisubharmonic in z). By taking t1 arbitrarily close
to t0(x) and by shrinking V , the lower bound comes arbitrary close to

γx − αx − λ̃
(
x, εt0(x)

)
ux − δ̃

(
εt0(x)

)
ωx ≥ γx − αx − min{λ̃(x, ε), c} ux − δ̃(ε)ωx,

because λ̃(x, εt0(x)) = c−2εt0(x)
2/(1−t0(x)

2)2 ≤ c and λ̃(x, t), δ̃(t) are increasing
in t. Therefore we get

α+
i

π
∂∂ψc,ε ≥ γ − min{λ̃(•, ε), c} u− δ̃(ε)ω
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on X \ Ec(T ). However, as the lower bound is a continuous (1, 1)-form and as
ψc,ε is quasi-psh, it is immediate to check that the lower bound extends to X by
continuity. Hence properties 6.1 (i), (ii), (iii) are proved.

Remark 4.6 finally shows that ψc,ε differs locally from Kiselman’s usual
Legendre transform only by bounded terms, thus

ν(ψc,ε, x) =
(
ν(ψ, x) − c

)
+

at every point x ∈ X by Kiselman’s results [Ki78], [Ki79]. Therefore property
6.1 (iv) also holds.
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[Le57] Lelong, P. — Intégration sur un ensemble analytique complexe, Bull. Soc. Math.
France, 85 (), 239-262.

[Le69] Lelong, P. — Plurisubharmonic functions and positive differential forms, Gordon
and Breach, New-York, and Dunod, Paris, .

[Siu74] Siu, Y.T. — Analyticity of sets associated to Lelong numbers and the extension of
closed positive currents, Invent. Math., 27 (), 53-156.

(January 22, 1993)

20


