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Abstract.— It is shown that every strongly g—complete subvariety of a complex analytic
space has a fundamental system of strongly g—complete neighborhoods. As a consequence, we
find a simple proof of Ohsawa’s result that every non compact irreducible n—dimensional analytic
space is strongly n—complete. Finally, it is shown that L2?-cohomology theory readily implies
Ohsawa’s Hodge decomposition and Lefschetz isomorphism theorems for absolutely g—convex

manifolds.

1. Introduction.

Let (X,Ox) be a complex analytic space, possibly non reduced. Recall that a
function ¢ on X is said to be strongly g—convex in the sense of Andreotti-Grauert
[A-G] if there exists a covering of X by open patches A, isomorphic to closed
analytic sets in open sets 2, C CN» | A € I, such that each restriction ¢;a,
admits an extension @, on 2 which is strongly g-convex, i.e. such that 1003
has at most ¢ — 1 negative or zero eigenvalues at each point of 2 . The strong
q—convexity property is easily shown not to depend on the covering nor on the
embeddings Ay C Q) .

The space X is said to be strongly g—complete, resp. strongly g—convex, if X
has a smooth exhaustion function ¢ such that ¢ is strongly g—convex on X | resp.
on the complement X \ K of a compact set K C X . The main new result of this
paper is :

Theorem 1.— Let Y be an analytic subvariety in a complex space X . If Y
is strongly gq—complete, then Y has a fundamental family of strongly q—complete
neighborhoods V' in X .

The special case of Stein neighborhoods (¢ = 1) has been proved long ago by
Y.T. Siu [S3]. The special case when ¢ = dimY + 1 is due to D. Barlet, who used
it in the study of the convexity of spaces of cycles (cf. [Ba]). This case is also
a consequence of the results of T. Ohsawa [Oh2], who obtained simultaneously
a proof for ¢ = dimY . Somewhat surprisingly, our proof of the general case is
much simpler that the original proof of Siu for the Stein case, and also probably
simpler than the partial proofs of Barlet and Ohsawa. The main idea is to extend
an exhaustion of Y to a neighborhood by means of a patching procedure. However,
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up to our knowledge, the extension can be done only after the exhaustion of Y
has been slightly modified in a neighborhood of the singular set (cf. theorem 4).
Theorem 1 follows now rather easily from the fact that any subvariety Y is the set
of —oo poles of an “almost plurisubharmonic” function (a function whose complex
Hessian has locally bounded negative part). Theorem 1 can be used to obtain a
short proof of Ohsawa’s results on n—convexity of n—dimensional complex spaces :

Theorem 2 (Ohsawa [Oh2]).— Let X be a complex space such that all
irreducible components have dimension < n .

(a) X is always strongly (n + 1)—complete.

(b) If X has no compact irreducible component of dimension n , then X is strongly
n—complete.

(¢) If X has only finitely many irreducible components of dimension n , then X
is strongly n—convex.

The main step consists in proving that a n—dimensional connected non compact
manifold always has a strongly subharmonic exhaustion function with respect to
any hermitian metric (a result due to Greene and Wu [G-W]). The proof is then
completed by induction on n , using theorem 1.

These results will usually be applied in connection with the Andreotti-Grauert
theorem [A-G]. Let F be a coherent sheaf over an analytic space X . The Andreotti-
Grauert theorem asserts that H9(X,F) is finite dimensional if X is strongly
g—convex and equal to zero if X is strongly g—complete. When dim X < n , a
combination with theorem 2 yields :

e H"(X,F) =0 if X has no compact n—dimensional component ;
o dim H"(X,F) < oo if X has only finitely many ones.

The special case of these statements when F is a vector bundle over a manifold
goes back to Malgrange [Ma]. The general case was first completed by Siu [S1,S2],
with a direct but much more complicated method.

Finally, we show that Ohsawa’s Hodge decomposition theorem for an absolutely
g—convex Kahler manifold M is a direct consequence of Hodge decomposition
for L? harmonic forms; the key fact is the observation that any smooth form of
degree k > n + ¢ becomes L? for some suitably modified Kihler metric; thus
H¥*(M,C) can be considered as a direct limit of L?-cohomology groups. The
Lefschetz isomorphism on L?-cohomology groups then produces in the limit an
isomorphism from the cohomology with compact supports onto the cohomology
without supports.



Theorem 3 (Ohsawa [Ohl], [O-T]).— Let (M,w) be a Kéhler n—dimensional
manifold. Suppose that M is absolutely g—convex, i.e. admits a smooth plurisub-
harmonic exhaustion function that is strongly q—convex on M \ K for some com-
pact set K . Set Q" = O(A"T*M). Then the De Rham cohomology groups with
arbitrary (resp. compact) supports have decompositions

H*(M,C)~ @ H(M,Q"), H(M,Q)~H(MQ), k>n+q,
r+s=k

HY(M,C)~ @ H;(M,Q"), HI(M,Q)~H;MQ), k<n-gq,
r+s=k

and these groups are finite dimensional. Moreover, there is a Lefschetz isomorphism
W Ne 0 HI(M, Q") — H"T(M, Q") , r+s<n-—gq.

Observe that the finiteness statement holds as soon as X is strongly ¢—convex
(this is a consequence of Morse theory for the De Rham groups and a consequence
of the Andreotti-Grauert theorem for the Dolbeault groups). By an example of
Grauert and Riemenschneider [G-R] (cf. also [Oh1]), neither Hodge decomposition
nor Hodge symmetry necessarily hold on a strongly g—convex manifold in degrees
>n—+qor <n—gq:if V is a positive rank ¢ vector bundle over a projective m—fold
Y |, then the space X equal to P(V & O) = V U V., minus the unit ball bundle
B(V) is g—convex, however with n = ¢ + m it can be checked that

H*(X,C)=C, HYX,0)=0, HX,0)>HYY,V*),
and there are examples where ¢ = m > 2 and H'(Y, V*) is arbitrarily large.

The author wishes to express warm thanks to Prof. K. Diederich for valuable
remarks which contributed to improve the original version of this article.

2. Existence of ¢—convex neighborhoods.

The first step in the proof of theorem 1 is the following approximate extension
theorem for strongly g—convex functions.

Theorem 4.— Let Y be an analytic set in a complex space X and v a strongly
qg—convex C*° function on Y . For every continuous function 6 > 0 on Y , there
exists a strongly q—convex C'*° function ¢ on a neighborhood V of Y such that
Y <oy <tp+94.

Proof.— Without loss of generality, we may assume Y closed in X . Let Zj be
the union of all irreducible components of dimension < k of one of the sets Y ,
Ysing » (Ysing)sing » --- - It is clear that Z; \ Z;_; is a smooth k-dimensional
submanifold of Y (possibly empty) and that |JZr = Y . We shall prove by
induction on k the following statement :

There exists a C* function ¢y on X which is strongly g—convex along Y and
on a closed neighborhood V', of Zj, in X , such that ¢ < @y <9 +9 .

We first observe that any smooth extension ¢_; of @ to X satisfies the
requirements with Z_; = V_; = () . Assume that Vi_; and ¢p_1 have been
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constructed. Then Zj \ Vi1 C Zj \ Zi—1 is contained in Zj ;g . The closed set
Zr \ Vik—1 has a locally finite covering (A,) in X by open coordinate patches
Ay C Q) C CM in which Zj is given by equations z5 = (2x k11, --- s 2a.n,) =0 .
Let 65 be C°° functions with compact support in Ay such that 0 < 5, < 1 and
> 0x=1on Z;\ Vix_1 . We set

or(r) = ero1(z) + Y Ox(x)eX log(1+e5*|A°)  on X .

For ey > 0 small enough, we will have ¥ < g1}y < pry < ¥ +9 . Now, we
check that ¢y, is still strongly ¢g—convex along Y and near every point xg € V_1 ,
and that ¢ becomes strongly g—convex near every point zo € Z; \ Vi—1 . We
may assume that x¢ € Supp 6, for some p , otherwise ¢, coincides with ¢p;_; in a
neighborhood of z( . Select 1 and a small neighborhood W CC €2, of zg such that

(a) if zg € Zj \ Vi1 then 6,(z¢) >0 and A, NW cC {6, > 0};

(b) if zg € Ay for some A (there is a finite set I of such A’s), then A, N W CC A,
and zxja,nw has a holomorphic extension zZy to W'

(c) if 29 € Vp_1 then ¢r—114,nw has a strongly g-convex extension Q1 to W
(d) if 2o € Y\ Vi_1 , Pk—_1)ynw has a strongly g—convex extension @1 to W .

Otherwise take an arbitrary smooth extension @1 of Yr_114,nw to W and let
0 be an extension of Ox;4, w to W . Then

Pk = Pr—1 + Zg,\ eX log(1 + &3 *|Z5]%)

is an extension of @i1a,nw to W, resp. of @riyaw to W in case (d). As
the function log(1 + €5 *|Z{|?) is plurisubharmonic and as its first derivative
(Z1,dz]) (% + |Z{|>)~" is bounded by O(e}?) , we see that

Zagﬁk 2 z’@&b’k_l — O(ZS)\> .

Therefore, for £, small enough, @) remains g—convex on W in cases (c) and (d).
Since all functions z; vanish along Z, N W , we have

1003 > i003k—1 + Y _Oxey " i00|Z|* > i00Gk—1 + O, €, 100z, |
Ael
at every point of Z, N W . Moreover i90%,_1 has at most (¢ — 1)-negative or
zero eigenvalues on T'Z), since Zp, C Y, whereas i99|z],|* is positive definite in the
normal directions to Zj, in €, . In case (a), we thus find that ¢y, is strongly g—convex
on W for €, small enough; we also observe that only finitely many conditions
are required on each e if we choose a locally finite covering of | JSupp 6y by
neighborhoods W as ¢ %bove. Therefore, for ) small enough, ¢y is strongly g—convex
on a neighborhood V', of Zj \ Vj,—1 . The function ¢}, and the set V;, = Vj_; UV)
satisfy the requirements at order k . It is clear that we can choose the sequence py,

stationary on every compact subset of X ; the limit ¢ and the open set V = J Vj
fulfill theorem 4. [J

The second step is the existence of almost psh (plurisubharmonic) functions
having poles along a prescribed analytic set. By an almost psh function on a
manifold, we mean a function that is locally equal to the sum of a psh function
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and of a smooth function, or equivalently, a function whose complex Hessian has
bounded negative part. On a complex space, we require that our function can be
locally extended as an almost psh function in the ambient space of an embedding.

Lemma 5.— Let Y be an analytic subvariety in a complex space X . There
exists an almost plurisubharmonic function v on X such that v € C*>°(X \Y) and
v = —o0 on Y (with logarithmic poles along Y').

Proof.— Since Zy C Ox is a coherent subsheaf, there is a locally finite covering
of X by patches A isomorphic to analytic sets in balls B(0,7y) € C™ | such that
Ty admits a system of generators g = (g ;) on a neighborhood of each set A .

We set
1

r2 — |z — 2|2
v(z) =m(...,vr(2),...) for X suchthat A\ >z,

ua(z) = log|gr(2)]* — on Ay,

where m is a regularized max function defined as follows : select a smooth
function p on R with support in [-1/2,1/2] , such that p > 0, [, p(u)du =1,
Jz up(u) du =0, and set

m(ty, ..., tp) = max{ty +uy, ... ,tp +up} H p(uj) du; .
e 1<j<p
It is clear that m is increasing in all variables and convex, thus m preserves
plurisubharmonicity. Moreover, we have

Mty ooty e ty) =mlt, oty )
as soon as t; < max{ti, ... ,tj_1,tj41, ... ,tp} —1 . As the generators (g ;) can
be expressed in terms of one another on a neighborhood of Ay HZM , we see that the
quotient |gx|/|g,| remains bounded on this set. Therefore none of the values vy (z)
for Ay > z and 2 near OA, contributes to the value of v(2) , since 1/(r3 — |z — 25 |?)
tends to +00 on JA . It follows that v is smooth on X \ Y'; as each v is almost
psh on A , we also see that v is almost psh on X . [J

Proof of theorem 1.— By theorem 4 applied to a strongly g—convex exhaustion
of Y and § = 1 , there exists a strongly g—convex function ¢ on a neighborhood
Wy of Y such that ¢y is an exhaustion. Let W; be a neighborhood of Y such
that W1 C Wy and such that © 7, is an exhaustion. We are going to show that
every neighborhood W C W; of Y contains a strongly g—complete neighborhood
V . If v is the function given by lemma 5, we set

t=v+xoe on W

where y : R — R is a smooth convex increasing function. If x grows fast enough,
we get © > 0 on OW and the (¢ — 1)-codimensional subspace on which i9d¢p is
positive definite (in some ambient space) is also positive definite for i09v provided
that x’ be large enough to compensate the bounded negative part of i90v . Then
v is strongly g—convex. Let 6 be a smooth convex increasing function on | — oo, 0[
such that 6(t) = 0 for t < —3 and 6(t) = —1/t on | — 1,0[ . The open set
V ={z € W;v(z) < 0} is a neighborhood of Y and ¢ = ¢ + 6 o v is a strongly
g—convex exhaustion of V' . [J



3. gq—convexity properties in top degrees.

It is obvious by definition that a n—dimensional complex manifold M is strongly
g—complete for ¢ > n+ 1 . If M is connected and non compact, this property also
holds for ¢ = n , i.e. there is a smooth exhaustion 1) on M such that {90 has
at least one positive eigenvalue everywhere. In fact, one can even show that M
has strongly subharmonic exhaustion functions. Let w be an arbitrary hermitian
metric on M . We consider the Laplace operator A, defined by
0%v

A v = Trace, (i00v) = Z wjk(z)m
j0Zk

1<j,k<n

where (w’*) is the conjugate of the inverse matrix of (wji) . Observe that A,
coincides with the usual Laplace-Beltrami operator only if w is Kahler. We will
say that v is strongly w—subharmonic if A,v > 0 . Clearly, this property implies
that 400v has at least one positive eigenvalue at each point, i.e. that v is strongly
n—convex. Moreover, since

0
Aux(vy, oo, vs) = a—f(vl, ,vs)vaj-i—Z
j J

(1, ..., vs) (O, OVk)w,

subharmonicity has the advantage of being preserved by all convex increasing
combinations, whereas a sum of strongly n—convex functions is not necessarily
n—convex. We shall need the following partial converse.

Lemma 6.— If ¢ is strongly n—convex on M , there is a hermitian metric w
such that ) is strongly subharmonic with respect to w .

Proof.— Let Uy cC Uy , A € N, be locally finite coverings of M by open balls
equipped with coordinates such that 9%1)/9210%z; > 0 on U’ . By induction on A ,
we construct a hermitian metric wy on M such that v is strongly wy—subharmonic
on UpU...UUy_ . Starting from an arbitrary wg , we obtain wy from wy_; by
increasing the coefficient w}!, in (wg\k_l) = (wr—1,5;) " on a neighborhood of U .
Then w = limw), is the required metric. [

Lemma 7.— Let UW C M be open sets such that for every connected
component Uy of U there is a connected component Wy of W such that

Wisy NUs # 0 and Wy(s) \ Us # 0 . Then there exists a function v € C*°(M,R) ,
v > 0, with support contained in U UW , such that v is strongly w-subharmonic
and >0onU .

Proof— We first prove that the result is true when U, W are small cylinders

with the same radius and axis. Let ag € M be a given point and 21, ..., 2z,
holomorphic coordinates centered at ag . We set Rez; = 2951 , Imz; = x9; ,
' = (z2, ... ,x2,) and w = Y wji(x)dzr; @ drg. Let U be the cylinder |zi| < 7,

|#'| < 7, and W the cylinder r — e < xy < r+ ¢, |2/| < r . There are constants
¢,C > 0 such that

> oM (@)&8 > cé)? and > @) <C on U .

Let x € C*°(R,R) be a nonnegative function equal to 0 on | — oo, —r|U[r+¢, +o0]
and strictly convex on |—r, r] . We take explicitly x(z1) = (z1-+r) exp(—1/(z1+7)?)
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on | —r,r] and
v(z) = x(z1) exp (1/(|33'|2 —7“2)) on UUW | v=0 on M\(UUW).
We have v € C*°(M,R) , v > 0 on U , and a simple computation gives
ALv(x)
v(z)

=o' (@) (4z1 + )" = 2(z1 +7)7°)

+ > @@ (14 2(z + 1)) (<225) (r* — )72
j>1
+y aﬂ'k(@(xjxk (4—8(r2 — 2']?)) — 2(r2 — |x'|2>25jk)(r2 — a2
Jk>1
For r small, we get
A,v(x)
v(z)
with constants C7,C5 independent of r . The negative term is bounded by
Cs(z1 + 7)1+ c|2’']2(r? — |2'|?)~* | hence
Ayv/v(x) > clxy +7)7° 4 (c|o’|? — Cor®)(r? — |2/ |2) 7% .
The last term is negative only when |2/| < Cyr? , in which case it is bounded by
Csr~* < ¢(z1 + )~ . Hence v is strongly w-subharmonic on U .

> 2c(z141r) "0 =Cy (z147) 722 |(r2 =2’ |2) 724+ (2|2’ |> = Cor) (12 — |2’ |?) 4

Next, assume that U and W are connected. Then U U W is connected. Fix a
point a € W\ U . If zy € U is given, we choose a path ' C U U W from zy to a
which is piecewise linear with respect to holomorphic coordinate patches. Then
we can find a finite sequence of cylinders (U;, W;) of the type described above,
1 <j < N , whose axes are segments contained in I' , such that

UjuW; CUUW , W;CUj;1 and z €Uy, acWyCW\U.

For each such pair, we have a function v; € C°°(M) with support in Uj U Wj ,
v; > 0, strongly w-subharmonic and > 0 on U; . By induction, we can find
constants C; > 0 such that vy + Civ1 + - - - + Cjv; is strongly w-subharmonic on
UpU...UU; and w-subharmonic on M \ W, . Then

sz:vo-l-Clvl-l—...-i-C’NszO

is w—subharmonic on U and strongly w—subharmonic > 0 on a neighborhood 2
of the given point zy . Select a denumerable covering of U by such neighborhoods
Q, and set v(z) = Y epw,, (2) where ¢, is a sequence converging sufficiently fast
to 0 so that v € C°°(M,R) . Then v has the required properties.

In the general case, we find for each pair (Us, Wy(sy) a function vs with support
in Us UWy , strongly w-subharmonic and > 0 on U, . Any convergent series
v =) 505 yields a function with the desired properties. [

Lemma 8.— Let X be a connected, locally connected and locally compact
topological space. If U is a relatively compact open subset of X , we let U be the
union of U with all compact connected components of X \U . Then U is open and
relatively compact in X , and X \ U has only finitely many connected components,
all non compact.



Proof— A rather easy exercise of general topology. Intuitively, U is obtained
by “filling the holes” of U in X . [J

Theorem 9 (Greene-Wu [G-W]).— Every n—dimensional connected non
compact complex manifold M has a strongly subharmonic exhaustion func-
tion with respect to any hermitian metric w . In particular, M is strongly
n—complete.

Proof— Let ¢ € C*°(M,R) be an arbitrary exhaustion function. There exists
a sequence of connected smoothly bounded open sets ), CC M with ﬁly C Q.
and M = |JQ, . Let Q, = Q, be the relatively compact open set given by lemma 8.
Then Q, C Qi1 , M = JQ, and M\ Q, has no compact connected component.
We set

U=Q, U,=Q41\Q_o for v>2.

Then OU,, = 0§2,41U0, _5; any connected component U, s of U, has its boundary
oU, s ¢ 08),_o , otherwise U,,,S would be open and closed in M\ 2, _5 , hence UV,S
would be a compact connected component of M \Q,_s . Therefore OU, 5 intersects
011 CUyyqp I Uy+41,1(s) 18 a connected component of U, 1 containing a point
of OU,,s , then U, 1 1,4(5) Uy, # 0 and Uy 41 4(5) \Up,s # 0 . Lemma 7 implies that
there is a nonnegative function v, € C*°(M,R) with support in U, UU, 41 , which
is strongly w—subharmonic on U,, . An induction yields constants C,, such that

¢u290+01@1+"'+0uvu

is strongly w-subharmonic on Q, C Uy U...UU, , thus ¥ = ¢ + > C,v, is a
strongly w—subharmonic exhaustion function on M . [

By an induction on the dimension, the above result can be generalized to an
arbitrary complex space, as was first shown by T. Ohsawa [Oh2].

Proof of theorem 2 (a,b).— By induction on n = dim X . For n = 0 , property
(b) is void and (a) is obvious (any function can then be considered as strongly
1-convex). Assume that (a) has been proved in dimension < n — 1 . Let X’ be
the union of Xgine and of the irreducible components of X of dimension at most
n—1,and M = X \ X’ the n-dimensional part of X;es . As dim X’ <n —1,
the induction hypothesis shows that X’ is strongly n—complete. By theorem 1,
there exists a strongly n—convex exhaustion function ¢’ on a neighborhood V' of
X' . Take a closed neighborhood V' C V' and an arbitrary exhaustion ¢ on X
that extends ¢}y . Since every function on a n-dimensional manifold is strongly
(n+1)—convex , we conclude that X is at worst (n + 1)—complete, as stated in (a).

In case (b), the hypothesis means that the connected components M, of
M = X \ X’ have non compact closure M; in X . On the other hand, lemma
6 shows that there exists a hermitian metric w on M such that ¢;any is strongly
w-subharmonic. Consider the open sets U;, C M; provided by lemma 10
below. By the arguments already used in theorem 9, one can find a strongly
w-subharmonic exhaustion ¥ = ¢ + Zjﬂj Cjwvj, on X | with v;, strongly
w-subharmonic on Uj, , Suppv;, C U;, UUj,4+1 and C;, large. Then 9 is
strongly n—convex on X .



Lemma 10.— For each j , there exists a sequence of open sets U;,, CC M; ,
v € N | such that

(a) M;\V'cU,U;, and (U;,) is locally finite in M ;

(b) for every connected component Uj , s of U, there is a connected component
Uj,u—l—l,t(s) Oij’,,_H such that Uj,u-i—l,t(s) N Uj’y’s 75 0 and Uj,y_i_l’t(s) \ Uj,,,’s 7é 0.

By lemma 8 applied to the space M , there exists a sequence of relatively
compact connected open sets 2;, in Mj such that Mj \ ©;, has no compact
connected component, ﬁjﬂ, C Qj,+1 and Mj =JQ,, . We define a compact set
K;, C M; and an open set W; , C Mj containing K, by

Kjp= Qi \ Q) \ V', Wi =Q01\ Qo .

By induction on v , we construct an open set U; , CC W, ,, \ X’ C M; and a finite
set Fj, C OU;, \ Qj, . We let Fj _1 = (0 . If these sets are already constructed
for v — 1 , the compact set K;, U Fj,_; is contained in the open set W;, ,
thus contained in a finite union of connected components W; , . . We can write
K; ,UF;,_1 =Lj.s where L;, , is contained in W;, s \ X’ C M; . The open
set W, s\ X' is connected and non contained in ﬁj,y UL; . s , otherwise its closure
WjMS would have no boundary point € 9€2; .1 , thus would be open and compact
in M;\Q;,_2, contradiction. We select a point as € (W; ., s\X’)\(Q;,UL;, ) and
a smoothly bounded connected open set U; ., s CC W, s\ X' containing L; ,, s with
as € OUj , o . Finally, we set U; , = US Uj..s and let F; , be the set of all points a .
By construction, we have U; , D K;, UF;,_1 ,thus UU;, DUK;, =M;\V",
and 0Uj .. s 2 as with as € Fj,, C Uj 41 . Property (b) follows. O

Proof of theorem 2 (c¢).— Let Y C X be the union of Xgi,g with all irreducible
components of X that are non compact or of dimension < n . Then dimY <n-—1,
so Y is n—convex and theorem 1 implies that there is an exhaustion function
1 € C*°(X,R) such that v is strongly n—convex on a neighborhood V of Y . Then
the complement K = X \ V is compact and 1) is strongly n—convex on X \ K . [J

4. A simple proof of Ohsawa’s Hodge decomposition theorem.

Let M be a complex n—dimensional manifold admitting a Kéhler metric w and
a strongly g—convex plurisubharmonic exhaustion function v . For any convex
increasing function x € C*°(R,R) , we consider the new Ké&hler metric

wy = w +i00(x 0 ) = w+ X' (¥) 100 + X" () iy N Y
and the associated geodesic distance &, . Then the norm of x”(¢)'/2dy with

respect to w, is less than 1, thus if p is a primitive of (x”)!/? we have

Ip(¥(x)) = p(1b(y))] < Oy (z,y) -

Hence w, is complete as soon as lim  p(t) = 400 , that is f0+°° X" (£)Y2dt = +o0.
In the sequel, we always assume that x grows sufficiently fast at infinity so that
this condition is fulfilled. We denote by Li’(k)(M) =D, r Li’(r’s)(M) the space
of L? forms of degree k with respect to the metric wy , by Hf((M ) the subspace
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of L? harmonic forms of degree k with respect to the associated Laplace-Beltrami
operator A, = dd} + dyd and by H}*(M) the space of L?-harmonic forms
of bidegree (r,s) with respect to U, = 90y + 030 . As w, is Kihler, we have

O, =0, = 1A, , hence

(1) Hy(M) = P H* (M), HY (M) =H (M)
r+s=k
foreachk = 0,1, ... ,2n . Since w, is complete, we have orthogonal decompositions
2,(r,s __ yr,s r,s 7,8 %
L29)(M) = My (M) & Im™* 9, & Im"* 9%
(2) Ker™ 9, = HP*(M) & Im"™* 0y ,

where 5X is the unbounded O operator acting on L? forms with respect to wy and

where Im"™® means closure of the range (in the specified bidegree). In particular
Hy*(M) is isomorphic to the quotient Ker™®d, /Im™*d, . Of course, similar
results also hold for A, -harmonic forms.

Lemma 11— Let u lge( a)form of type (r,s) with L2 _ coefficients on M . If

r+s>n+q, thenu e Ly (M) as soon as x grows sufficiently fast at infinity.

Proof.— At each point € M |, there is an orthogonal basis (0/0z1, ... ,0/0zy,)
of T, X in which

w=1 Z de/\dzj, Wy =1 Z /\dej/\dzj,
1<j<n 1<j<n
where A\ < ... < A, are the eigenvalues of w, with respect to w . Then the volume
elements dV' = w"/2"n! and dV, = w?/2"n! are related by

AV, = A1 ... M\ dV
and for a (r,s)-form u =3, ;us sdzr A dz; we find

W= Y (T TTM) fural?.

|I|=r|J|=s kel keJ
in particular
Ao A
2 1 n 2
av, < av =
Ve s ST o
On the other hand, we have upper bounds
N S1+CX(¥), 1<j<n—1, X <1+CixX'(¥)+Cox"(¥)
where Cj () is the largest eigenvalue of 109 (x) and Cy(z) = |0w(z)|?; to find the
n — 1 first inequalities, we need only apply the minimax principle on the kernel of
0v . As i00v has at most ¢ — 1 zero eigenvalues on X \ K , the minimax principle
also gives lower bounds

Aj>1, 1<j<qg—-1, N>21+exX'(¥), ¢<j<n,
where ¢(x) > 0 is the ¢-th eigenvalue of 1091 (x) and ¢(z) > 0 on X \ K . Assuming
X' > 1, we infer easily

uldvy _ (1+Cd ()" (14 Cid () + Cox' ()
|u2dV — (1+CX,(¢))s—q+1
< C(}' ()T X ()X (9)"HTTTT) on X\ K
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For r +s > n+ q , this is less than
Ca (X' () + X" ()X () 7?)

and it is easy to show that this quantity can be made arbitrarily small when x
grows sufficiently fast at infinity on M . [J

It is a well-known result of Andreotti-Grauert [A-G| that the natural topology
on the cohomology groups H*(M,F) of a coherent sheaf F over a strongly
g—convex manifold is Hausdorff for k > ¢ . If F = O(FE) is the sheaf of sections
of a holomorphic vector bundle, this topology is given by the Fréchet topology on
the Dolbeault complex of L2 _ forms with L2 = 9-differential. In particular, the
morphism

Ker™*9, — H*(M,Q")

is continuous and has a closed kernel, and therefore this kernel contains Im"* d,, .
We thus obtain a factorization

HY (M) ~ Ker™® 9, /Im™* 0,, — H*(M,Q") .
Consider the direct limit
(3) lim (M) — HE(M, Q)
X
over the set of smooth convex increasing functions y with the ordering

X1 < X2 <= x1 <x2 and Li’l(k)(M) C Liz(k)(M) for k=r+s;
this ordering is filtering by the proof of lemma 13. It is well known that the De
Rham cohomology groups are always Hausdorff, hence there is a similar morphism
(4) lim H% (M) — H*(M,C) .
X
The first decomposition in theorem 3 follows now from (1) and the following simple
lemma.

Lemma 12.— The morphisms (3), (4) are one-to-one fork=r+s>n+q .

Proof.— Let us treat for example the case of (3). Let u be a smooth d-closed
form of bidegree (r,s) , r +s > n + g . Then there is a choice of x for which
we LE™) (M) | so u € Ker™® Dy and (3) is surjective. If a class {u} € H5(M)
is mapped to zero in H*(M, ") , we can write u = dv for some smooth form v of
bidegree (r,s — 1) . In the case r +s > n+q , we have v € Li’(r’s_l)(M) for some
X = Xo - Hence the class of u = 9, v in Hy*(M) is zero and (3) is injective. When
r+s=mn++q , the form v need not lie in any space Li’(T’S_l (M) , but it suffices
to show that u = dv is in the closure of Im"* d,, for some x . Let § € C*°(R,R) be
a cut-off function such that 6(¢t) =1 for t <1/2,6(t) =0for ¢t > 1 and |¢#'| < 3.
Then

d(0(e)v) = () dv + b’ (e90) DY A v .

By the proof of lemma 11, there is a continuous function C(z) > 0 such that
[w]2dVy < C(1+X" (1) /X (1)) [v]2dV , whereas [0¥|2 < 1/x" (1) by the definition
of wy, . Hence we see that

[ 10uzenokav, <o [ oy @)+ 1K )llav
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is finite for x large enough, and 5(9(5@[1)?)) converges to Ov = u in L2 o(r, S)(M) O

By Poincaré-Serre duality, the groups H*(M, C) and H(M, Q") with compact
supports are dual to H?"~*(M, C) and H"~*(M, Q") as soon as the latter groups
are Hausdorff and finite dimensional. This is certainly true for k=r+s<n—gq,
thus we also obtain a Hodge decomposition

(5) HFM,C)~ € Hi(M,Q"), HI(M,Q°)~H;MQ), k<n-q.
r4+s==k

As in Ohsawa [Ohl], it is easy to prove that the Lefschetz isomorphism
(6) wy T N Ne n HYH(M) — HYTH T (M)

X

yields in the limit an isomorphism from the cohomology with compact support
onto the cohomology without supports. Indeed, the natural morphism

(7) H:(M,Q") — Ker™® 9, /Im™* 9, ~ HY* (M), r+s<n-—gq

is dual to Hy™"""*(M) — H"7*(M,Q""") , which is surjective for x large by
lemma 11 and the finite dimensionality of the target space. Hence (7) is injective
for x large and after composition with (6) we get an injection

H (M, Q") — HI=5" " (M) |

If we take the direct limit over all x , combine with the isomorphism (3) and
observe that w, has the same cohomology class as w , we obtain an injective map

(8) W' Ae : HIM, Q") — H'" "(M,Q"°%), r4+s<n-—q.

As both sides have the same dimension by Serre duality and Hodge symmetry, this
map must be an isomorphism. Since (8) can be factorized through H*(M,Q") or
through H?~"(M, Q" *) , we infer that the natural morphism

(9) H:(M,Q") — H*(M,Q")

is injective for r + s < n — ¢ and surjective for r + s > n + g . Of course, similar
properties hold for the De Rham cohomology groups.
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