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Abstract. The goal of this survey is to present various results concerning the cohomology of pseudoeffective
line bundles on compact Kähler manifolds, and related properties of their multiplier ideal sheaves. In case
the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a
generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry.
We are interested here in the case where the curvature is merely semipositive in the sense of currents, and
the base manifold is not necessarily projective. In this situation, one can still obtain interesting information
on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity
statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained
a general Kähler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective
line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1, 1)-
currents, based on the use of Bergman kernels, and the related intersection theory of currents. As an application,
we discuss a structure theorem for compact Kähler threefolds without nontrivial subvarieties, following a joint
work with F. Campana and M. Verbitsky. We hope that these notes will serve as a useful guide to the more
detailed and more technical papers in the litterature; in some cases, we provide here substantially simplified
proofs and unifying viewpoints. Some parts – especially Subsections 3.1 and 3.2 – raise new open questions.

Key-words. Closed positive current, plurisubharmonic function, Ohsawa-Takegoshi extension theorem, cur-
vature current, pseudoeffective line bundle, Bergman approximation, multiplier ideal sheaf, Nadel vanishing
theorem, hard Lefschetz theorem, intersection theory, numerical dimension, openness conjecture, simple Kähler
manifold, complex torus

MSC Classification 2010. 14B05, 14F18, 14J30, 32C30, 32J25, 32L20

0. Introduction and statement of the main results

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric, i.e.
a positive definite Hermitian (1, 1)-form ω = i

∑
1≤j,k≤n ωjk(z) dzj ∧ dzk such that dω = 0.

By definition a holomorphic line bundle L on X is said to be pseudoeffective if there exists a
singular hermitian metric h on L, given by h(z) = e−ϕ(z) with respect to a local trivialization
L|U ' U × C, such that the curvature form

(0.1) i ΘL,h := i ∂∂ϕ

is (semi)positive in the sense of currents, i.e. ϕ is locally integrable and iΘL,h ≥ 0 : in other
words, the weight function ϕ is plurisubharmonic (psh) on the corresponding trivializing open
set U . A basic concept is the notion of multiplier ideal sheaf, introduced in [Nad89].

0.2. Definition. To any psh function ϕ on an open subset U of a complex manifold X,
one associates the “multiplier ideal sheaf” I(ϕ) ⊂ OX|U of germs of holomorphic functions
f ∈ OX,x, x ∈ U , such that |f |2e−ϕ is integrable with respect to the Lebesgue measure in
some local coordinates near x. We also define the global multiplier ideal sheaf I(h) ⊂ OX of
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a hermitian metric h on L ∈ Pic(X) to be equal to I(ϕ) on any open subset U where L|U is
trivial and h = e−ϕ. In such a definition, we may in fact assume i ΘL,h ≥ −Cω, i.e. locally
ϕ = psh + C∞, we say in that case that ϕ is quasi-psh.

Let us observe that a multiplier ideal sheaf I(ϕ) is left unmodified by adding a smooth
function to ϕ, so, for such purposes, the additional C∞ terms are irrelevant in quasi-psh func-
tions. A crucial and well-known fact is that the ideal sheaves I(ϕ) ⊂ OX|U and I(h) ⊂ OX are
always coherent analytic sheaves; when U ⊂ X is a coordinate open ball, this can be shown
by observing that I(ϕ) coincides with the locally stationary limit J = lim ↑N→+∞JN of the
increasing sequence of coherent ideals JN = (gj)0≤j<N associated with a Hilbert basis (gj)j∈N
of the Hilbert space of holomorphic functions f ∈ OX(U) such that

∫
U
|f |2e−ϕdVω < +∞. The

proof is a consequence of Hörmander’s L2 estimates applied to weights of the form

ψ(z) = ϕ(z) + (n+ k) log |z − x|2.

This easily shows that I(ϕ)x + mkx = Jx + mkx, and one then concludes that I(ϕ)x = Jx by
the Krull lemma. When X is projective algebraic, Serre’s GAGA theorem implies that I(h) is
in fact a coherent algebraic sheaf, in spite of the fact that ϕ may have very “wild” analytic
singularities – they might e.g. be everywhere dense in X in the Euclidean topology. Therefore,
in some sense, the multiplier ideal sheaf is a powerful tool to extract algebraic (or at least
analytic) data from arbitrary singularities of psh functions. In this context, assuming strict
positivity of the curvature, one has the following well-known fundamental vanishing theorem.

0.3. Theorem. (Nadel Vanishing Theorem, [Nad89], [Dem93b]) Let (X,ω) be a compact Kähler
n-dimensional manifold, and let L be a holomorphic line bundle over X equipped with a singular
Hermitian metric h. Assume that i ΘL,h ≥ εω for some ε > 0 on X. Then

Hq
(
X,O(KX ⊗ L)⊗ I(h)

)
= 0 for all q ≥ 1,

where KX = ΩnX = ΛnT ∗X denotes the canonical line bundle.

The proof follows from an application of Hörmander’s L2 estimates with singular weights,
themselves derived from the Bochner-Kodaira identity (see [Hör66], [Dem82], [Dem92]). One
should observe that the strict positivity assumption implies L to be big, hence X must be projec-
tive, since every compact manifold that is Kähler and Moishezon is also projective (cf. [Moi66],
[Pet86], [Pet98a]). However, when relaxing the strict positivity assumption, one can enter the
world of general compact Kähler manifolds, and their study is one of our main goals.

In many cases, one has to assume that the psh functions involved have milder singularities.
We say that a psh or quasi-psh function ϕ has analytic singularities if locally on the domain of
definition U of ϕ one can write

(0.4) ϕ(z) = c log
N∑
j=1

|gj |2 +O(1)

where the gj ’s are holomorphic functions, c ∈ R+ and O(1) means a locally bounded remainder
term. Assumption (0.4 ) implies that the set of poles Z = ϕ−1(−∞) is an analytic set, locally
defined as Z =

⋂
g−1
j (0), and that ϕ is locally bounded on U r Z. We also refer to this

situation by saying that ϕ has logarithmic poles. In general, one introduces the following
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comparison relations for psh or quasi-psh functions ϕ and hermitian metrics h = e−ϕ ; a more
flexible comparison relation will be introduced in Section 3 .

0.5. Definition. Let ϕ1, ϕ2 be psh functions on an open subset U of a complex manifold X.
We say that

(a) ϕ1 has less singularities than ϕ2, and write ϕ1 4 ϕ2, if for every point x ∈ U , there exists
a neighborhood V of x and a constant C ≥ 0 such that ϕ1 ≥ ϕ2 − C on V .

(b) ϕ1 and ϕ2 have equivalent singularities, and write ϕ1 ∼ ϕ2, if locally near any point of U
we have ϕ1 − C ≤ ϕ2 ≤ ϕ1 + C.

Similarly, given a pair of hermitian metrics h1, h2 on a line bundle L→ X,

(a’) we say that h1 is less singular than h2, and write h1 4 h2, if locally there exists a constant
C > 0 such that h1 ≤ Ch2.

(b’)we say that h1, h2 have equivalent singularities, and write h1 ∼ h2, if locally there exists a
constant C > 0 such that C−1h2 ≤ h1 ≤ Ch2.

(of course when h1 and h2 are defined on a compact manifold X, the constant C can be taken
global on X in (a’) and (b’)).

Now, if L is a pseudoeffective line bundle, it was observed in [Dem00] that there always exist
a unique equivalence class hmin of singular hermitian metrics with minimal singularities, such
that i ΘL,hmin

≥ 0 (by this we mean that hmin is unique up to equivalence of singularities). In
fact, if h∞ is a smooth metric on L, one can define the corresponding weight ϕmin of hmin as
an upper envelope

(0.6) ϕmin(z) = sup
{
ϕ(z) ; i ΘL,h∞ + i ∂∂ϕ ≥ 0, ϕ ≤ 0 on X

}
,

and put hmin = h∞e
−ϕmin . In general, hmin need not have analytic singularities.

An important fact is that one can approximate arbitrary psh functions by psh functions
with analytic singularities. The appropriate technique consists of using an asymptotic Bergman
kernel procedure (cf. [Dem92] and Section 1 ). If ϕ is a holomorphic function on a ball B ⊂ Cn,
one puts

ϕm(z) =
1

2m
log
∑
`∈N
|gm,`(z)|2

where (gm,`)`∈N is a Hilbert basis of the space H(B,mϕ) of L2 holomorphic functions on B
such that

∫
B
|f |2e−2mϕdV < +∞. When T = α + ddcϕ is a closed (1, 1)-current on X in

the same cohomology class as a smooth (1, 1)-form α and ϕ is a quasi-psh potential on X, a
sequence of global approximations Tm can be produced by taking a finite covering of X by
coordinate balls (Bj). A partition of unity argument allows to glue the local approximations
ϕm,j of ϕ on Bj into a global potential ϕm, and one sets Tm = α + ddcϕm. These currents
Tm converge weakly to T , are smooth in the complement X r Zm of an increasing family of
analytic subsets Zm ⊂ X, and their singularities approach those of T . More precisely, the
Lelong numbers ν(Tm, z) converge uniformly to those of T , and whenever T ≥ 0, it is possible
to produce a current Tm that only suffers a small loss of positivity, namely Tm ≥ −εmω where
limm→+∞ εm = 0. These considerations lead in a natural way to the concept of numerical
dimension of a closed positive (1, 1)-current T . We define

(0.7) nd(T ) = max
{
p = 0, 1, . . . , n ; lim sup

m→+∞

∫
XrZm

(Tm + εmω)p ∧ ωn−p > 0
}
.
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One can easily show (see Section 3 ) that the right hand side of (0.7 ) does not depend on the
sequence (Tm), provided that the singularities approach those of T (we call this an “asymptot-
ically equisingular approximation”).

These concepts are very useful to study cohomology groups with values in pseudoeffective
line bundles (L, h). Without assuming any strict positivity of the curvature, one can obtain
at least a hard Lefschetz theorem with coefficients in L. The technique is based on a use of
harmonic forms with respect to suitable “equisingular approximations” ϕm of the weight ϕ of h
(in that case we demand that I(ϕm) = I(ϕ) for all m); the main idea is to work with complete
Kähler metrics in the open complements X r Zm where ϕm is smooth, and to apply a variant
of the Bochner formula on these sets. More details can be found in Section 2 and in [DPS01].

0.8. Theorem. ([DPS01]) Let (L, h) be a pseudo-effective line bundle on a compact Kähler
manifold (X,ω) of dimension n, let ΘL,h ≥ 0 be its curvature current and I(h) the associated
multiplier ideal sheaf. Then, the wedge multiplication operator ωq ∧ • induces a surjective
morphism

Φqω,h : H0(X,Ωn−qX ⊗ L⊗ I(h)) −→ Hq(X,ΩnX ⊗ L⊗ I(h)).

The special case when L is nef is due to Takegoshi [Tak97]. An even more special case is
when L is semipositive, i.e. possesses a smooth metric with semipositive curvature. In that case
the multiple ideal sheaf I(h) coincides with OX and we get the following consequence already
observed by Enoki [Eno93] and Mourougane [Mou95].

0.9. Corollary. Let (L, h) be a semipositive line bundle on a compact Kähler manifold (X,ω)
of dimension n. Then, the wedge multiplication operator ωq ∧ • induces a surjective morphism

Φqω : H0(X,Ωn−qX ⊗ L) −→ Hq(X,ΩnX ⊗ L).

It should be observed that although all objects involved in Th. 0.8 are algebraic when X is a
projective manifold, there is no known algebraic proof of the statement; it is not even clear how
to define algebraically I(h) for the case when h = hmin is a metric with minimal singularity.
However, even in the special circumstance when L is nef, the multiplier ideal sheaf is crucially
needed.

Our next statement is taken from the PhD thesis of Junyan Cao [JC13]. The proof is a combi-
nation of our Bergman regularization techniques, together with an argument of Ch. Mourougane
[Mou95] relying on a use of the Calabi-Yau theorem for Monge-Ampère equations.

0.10. Theorem. ([JC13], [JC14]) Let (L, h) be a pseudoeffective line bundle on a compact
Kähler n-dimensional manifold X. Then

Hq(X,KX ⊗ L⊗ I+(h)) = 0 for every q ≥ n− nd(L, h) + 1,

where nd(L, h) := nd( i ΘL,h) and I+(h) is the upper semicontinuous regularization of the mul-
tiplier ideal sheaf, i.e.

(0.11) I+(h) = lim
ε→0

I(h1+ε).

In general I+(h) ⊂ I(h) and it is clear that the equality holds when h has analytic singular-
ities (this can be easily seen via Hironaka’s desingularization theorem [Hir64]). The question
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whether it is always true that I+(h) = I(h) was possibly first raised in ([Dem00], Remark 15.2.2),
and then in [DP02], following the proof of the semicontinuity theorem for psh singularities in
[DK01]. Actually, the equality is easy to show in dimension 1, and it follows from the work
of Favre and Jonsson [FJ05] in dimension 2. Bo Berndtsson [Bern13] recently showed that
I(h)x = OX,x implies I+(h)x = I(h)x = OX,x in arbitrary dimension. Finally, during the
Fall 2013, Qi’an Guan and Xiangyu Zhou showed that the equality I+(h) = I(h) holds in all
cases in the most general situation, cf. [GZ13]. Therefore, thanks to [GZ13], the above Theo-
rem 0.10 could also be stated with I(h) in place of I+(h). As a final geometric application of
this circle of ideas, we present the following result which was recently obtained in [CDV13].

0.12. Theorem. ([CDV13]) Let X be a compact Kähler threefold that is “strongly sim-
ple” in the sense that X has no nontrivial analytic subvariety. Then the Albanese morphism
α : X → Alb(X) is a biholomorphism, and therefore X is biholomorphic to a 3-dimensional
complex torus C3/Λ.

1. Approximation of psh functions and of closed (1,1)-currents

We first recall here the basic result on the approximation of psh functions by psh functions
with analytic singularities. The main idea is taken from [Dem92] and relies on the Ohsawa-
Takegoshi extension theorem, For other applications to algebraic geometry, see [Dem93b] and
Demailly-Kollár [DK01]. Let ϕ be a psh function on an open set Ω ⊂ Cn. Recall that the
Lelong number of ϕ at a point x0 ∈ Ω is defined to be

(1.1) ν(ϕ, x0) = lim inf
z→x0

ϕ(z)

log |z − x0|
= lim
r→0+

supB(x0,r) ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing order

ordx0
(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

1.2. Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex open set
Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic functions f on Ω
such that

∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m log
∑
|gm,`|2 where (gm,`) is an orthonormal

basis of HΩ(mϕ). Then there are constants C1, C2 > 0 independent of m such that

(a) ϕ(z) − C1

m
≤ ϕm(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1

m
log

C2

rn
for every z ∈ Ω and r < d(z, ∂Ω). In

particular, ϕm converges to ϕ pointwise and in L1
loc topology on Ω when m→ +∞ and

(b) ν(ϕ, z)− n

m
≤ ν(ϕm, z) ≤ ν(ϕ, z) for every z ∈ Ω.

Proof. (a) Note that
∑
|gm,`(z)|2 is the square of the norm of the evaluation linear form

evz : f 7→ f(z) on HΩ(mϕ), since gm,`(z) = evz(gm,`) is the `-th coordinate of evz in the
orthonormal basis (gm,`). In other words, we have∑

|gm,`(z)|2 = sup
f∈B(1)

|f(z)|2

where B(1) is the unit ball of HΩ(mϕ) (The sum is called the Bergman kernel associated with
HΩ(mϕ)). As ϕ is locally bounded from above, the L2 topology is actually stronger than the
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topology of uniform convergence on compact subsets of Ω. It follows that the series
∑
|gm,`|2

converges uniformly on Ω and that its sum is real analytic. Moreover, by what we just explained,
we have

ϕm(z) = sup
f∈B(1)

1

2m
log |f(z)|2 = sup

f∈B(1)

1

m
log |f(z)|.

For z0 ∈ Ω and r < d(z0, ∂Ω), the mean value inequality applied to the psh function |f |2 implies

|f(z0)|2 ≤ 1

πnr2n/n!

∫
|z−z0|<r

|f(z)|2dλ(z)

≤ 1

πnr2n/n!
exp

(
2m sup
|z−z0|<r

ϕ(z)
)∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z0) ≤ sup
|z−z0|<r

ϕ(z) +
1

2m
log

1

πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence of the mean
value inequality. Conversely, the Ohsawa-Takegoshi extension theorem ([OT87]) applied to the
0-dimensional subvariety {z0} ⊂ Ω shows that for any a ∈ C there is a holomorphic function f
on Ω such that f(z0) = a and∫

Ω

|f |2e−2mϕdλ ≤ C3|a|2e−2mϕ(z0),

where C3 only depends on n and diam Ω. We fix a such that the right hand side is 1. Then
‖f‖ ≤ 1 and so we get

ϕm(z0) ≥ 1

m
log |f(z0)| = 1

m
log |a| = ϕ(z)− log

C3

m
.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that

lim
m→+∞

sup
|ζ−z|<1/m

ϕ(ζ) = ϕ(z)

by the upper semicontinuity of ϕ, and therefore limϕm(z) = ϕ(z), since lim 1
m log(C2m

n) = 0.

(b) The above estimates imply

sup
|z−z0|<r

ϕ(z)− C1

m
≤ sup
|z−z0|<r

ϕm(z) ≤ sup
|z−z0|<2r

ϕ(z) +
1

m
log

C2

rn
.

After dividing by log r < 0 when r → 0, we infer

sup|z−z0|<2r ϕ(z) + 1
m log C2

rn

log r
≤

sup|z−z0|<r ϕm(z)

log r
≤

sup|z−z0|<r ϕ(z)− C1

m

log r
,

and from this and definition (1.1 ), it follows immediately that

ν(ϕ, x)− n

m
≤ ν(ϕm, z) ≤ ν(ϕ, z). �
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Theorem 1.2 implies in a straightforward manner the deep result of [Siu74] on the analyticity
of the Lelong number upperlevel sets.

1.3. Corollary. [Siu74] Let ϕ be a plurisubharmonic function on a complex manifold X. Then,
for every c > 0, the Lelong number upperlevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) ≥ c

}
is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh function
ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in Theorem 13.2 (b) imply
that

Ec(ϕ) =
⋂

m≥m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations g
(α)
m,`(z) = 0 for all

multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable) intersection of
analytic sets. �

1.4. Remark. It has been observed by Dano Kim [Kim13] that the functions ϕm produced
by Th. 1.2 do not in general satisfy ϕm+1 < ϕm, in other words their singularities may not
always increase monotonically to those of ϕ. Thanks to the subbadditivity result of [DEL00],
this is however the case for any subsequence ϕmk such that mk divides mk+1, e.g. mk = 2k

or mk = k! (we will refer to such a sequence below as being a “multiplicative sequence”). In
that case, a use of the Ohsawa-Takegoshi theorem on the diagonal of Ω×Ω shows that one can
obtain ϕmk+1

≤ ϕmk (after possibly replacing ϕmk by ϕmk + C/mk with C large enough), see
[DPS01].

Our next goal is to study the regularization process more globally, i.e. on a compact complex
manifold X. For this, we have to take care of cohomology class. It is convenient to introduce
dn = i

4π (∂ − ∂), so that ddc = i
2π∂∂. Let T be a closed (1, 1)-current on X. We assume

that T is quasi-positive, i.e. that there exists a (1, 1)-form γ with continuous coefficients such
that T ≥ γ ; observe that a function ϕ is quasi-psh iff its complex Hessian is bounded below by
a (1, 1)-form with continuous or locally bounded coefficients, that is, if ddcϕ is quasi-positive.
The case of positive currents (γ = 0) is of course the most important.

1.5. Lemma. There exists a smooth closed (1, 1)-form α representing the same ∂∂-cohomology
class as T and an quasi-psh function ϕ on X such that T = α+ ddcϕ.

Proof. Select an open covering (Bj) of X by coordinate balls such that T = ddcϕj over Bj ,
and construct a global function ϕ =

∑
θjϕj by means of a partition of unity {θj} subordinate

to Bj . Now, we observe that ϕ−ϕk is smooth on Bk because all differences ϕj−ϕk are smooth
in the intersections Bj ∩Bk and we can write ϕ−ϕk =

∑
θj(ϕj−ϕk). Therefore α := T −ddcϕ

is smooth. �

Thanks to Lemma 1.5 , the problem of approximating a quasi-positive closed (1, 1)-current
is reduced to approximating a quasi-psh function. In this way, we get

1.6. Theorem. Let T = α + ddcϕ be a quasi-positive closed (1, 1)-current on a compact
Hermitian manifold (X,ω) such that T ≥ γ for some continuous (1, 1)-form γ. Then there
exists a sequence of quasi-positive currents Tm = α + ddcϕm whose local potentials have the
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same singularities as 1/2m times a logarithm of a sum of squares of holomorphic functions and
a decreasing sequence εm > 0 converging to 0, such that

(a) Tm converges weakly to T ,

(b) ν(T, x)− n

m
≤ ν(Tm, x) ≤ ν(T, x) for every x ∈ X ;

(c) Tm ≥ γ − εmω.

We say that our currents Tm are approximations of T with analytic singularities (possessing
logarithmic poles). Moreover, for any multiplicative subsequence mk, one can arrange that
Tmk = α+ ddcϕmk where (ϕmk) is a non-increasing sequence of potentials.

Proof. We just briefly sketch the idea – essentially a partition of unity argument – and refer to
[Dem92] for the details. Let us write T = α + ddcϕ with α smooth, according to Lemma 1.5 .
After replacing T with T − α and γ with γ − α, we can assume without loss of generality that
{T} = 0, i.e. that T = ddcϕ with a quasi-psh function ϕ on X such that ddcϕ ≥ γ. Now, for
ε > 0 small, we select a finite covering (Bj)1≤j≤N(ε) of X by coordinate balls on which there
exists an ε-approximation of γ as∑

1≤`≤n

λj,` i dzj` ∧ dz
j
` ≤ γ|Bj ≤

∑
1≤`≤n

(λj,` + ε) i dzj` ∧ dz
j
`

in terms of holomorphic coordinates (zj` )1≤`≤n on Bj (for this we just diagonalize γ(aj) at
the center aj of Bj , and take the radius of Bj small enough). By construction ψj,ε(z) =

ϕ(z) −
∑

1≤`≤n λj,`|z
j
` |2 is psh on B`, and we can thus obtain approximations ψj,ε,m of ψj by

the Bergman kernel process applied on each ball Bj . The idea is to define a global approximation
of ϕ by putting

ϕε,m(x) =
1

m
log

( ∑
1≤j≤N(ε)

θj,ε(x) exp
(
m
(
ψj,ε,m(x) +

∑
1≤`≤n

(λj,` − ε)|zj` |
2
)))

where (θj,ε)1≤j≤N(ε) is a partition of unity subordinate to the Bj ’s. If we take ε = εm and
ϕm = ϕεm,m where εm decays very slowly, then it is not hard to check that Tm = ddcϕm
satisfies the required estimates; it is essentially enough to observe that the derivatives of θj,ε
are “killed” by the factor 1

m when m� 1
ε . �

We need a variant of Th. 1.6 providing more “equisingularity” in the sense that the multiplier
ideal sheaves are preserved. A priori, this can be done a priori at the expense of accepting
more complicated singularities, which can no longer be guaranteed to be logarithmic poles;
a posteriori, using the deep result of [GZ13] on the strong openness conjecture, it would be
possible to do so, but we indicate here a way of bypassing that difficult result.

1.7. Theorem. Let T = α+ ddcϕ be a closed (1, 1)-current on a compact Hermitian manifold
(X,ω), where α is a smooth closed (1, 1)-form and ϕ a quasi-psh function. Let γ be a continuous
real (1, 1)-form such that T ≥ γ. Then one can write ϕ = limm→+∞ ϕ̃m where

(a) ϕ̃m is smooth in the complement X r Zm of an analytic set Zm ⊂ X ;

(b) {ϕ̃m} is a non-increasing sequence, and Zm ⊂ Zm+1 for all m ;

(c)
∫
X

(e−ϕ − e−ϕ̃m)dVω is finite for every m and converges to 0 as m→ +∞ ;

(d) (“equisingularity”) I(ϕ̃m) = I(ϕ) for all m ;
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(e) Tm = α+ ddcϕ̃m satisfies Tm ≥ γ − εmω, where limm→+∞ εm = 0.

Proof. (A substantial simplication of the original proof in [DPS01].) As in the previous proof, we
may assume that α = 0 and T = ddcϕ, and after subtracting a constant to ϕ we can also achieve

that ϕ ≤ −1 everywhere on X. For every germ f ∈ OX,x, (c) implies
∫
U
|f |2(e−ϕ−e−ϕ̃m)dVω <

+∞ on some neighborhood U of x, hence the integrals
∫
U
|f |2e−ϕdVω and

∫
U
|f |2e−ϕ̃mdVω are

simultaneously convergent or divergent, and (d) follows trivially. We define

ϕ̃m(x) = sup
k≥m

(1 + 2−k)ϕpk

where (pk) is a multiplicative sequence that grows fast enough, with ϕpk+1
≤ ϕpk ≤ 0 for all k.

Clearly ϕ̃m is a non-increasing sequence, and

lim
m→+∞

ϕ̃m(x) = lim
k→+∞

ϕpk(x) = ϕ(x)

at every point x ∈ X. If Zm is the set of poles of ϕpm , it is easy to see that

ϕ̃m(x) = lim
`→+∞

sup
k∈[m,`]

(1 + 2−k)ϕpk

converges uniformly on every compact subset of X rZm, since any new term (1 + 2−`)ϕp` may
contribute to the sup only in case

ϕp` ≥
1 + 2−pm

1 + 2−p`
ϕpm (≥ 2ϕpm),

and the difference of that term with respect to the previous term (1 + 2−(`−1))ϕp`−1
≥ (1 +

2−(`−1))ϕp` is less than 2−`|ϕp` | ≤ 21−`|ϕpm |. Therefore ϕ̃m is continuous on X r Zm, and
getting it to be smooth is only a matter of applying Richberg’s approximation technique ([Ric68],
[Dem12]). The only serious thing to prove is property (c). To achieve this, we observe that
{ϕ < ϕ̃m} is contained in the union

⋃
k≥m{ϕ < (1 + 2−k)ϕpk}, therefore

(1.8)

∫
X

(
e−ϕ − e−ϕ̃m

)
dVω ≤

+∞∑
k=m

∫
X

1ϕ<(1+2−k)ϕpk
e−ϕdVω

and ∫
X

1ϕ<(1+2−k)ϕpk
e−ϕdVω =

∫
X

1ϕ<(1+2−k)ϕpk
exp

(
2kϕ− (2k + 1)ϕ

)
dVω

≤
∫
X

1ϕ<(1+2−k)ϕpk
exp

(
(2k + 1)(ϕpk − ϕ)

)
dVω

≤
∫
X

1ϕ<(1+2−k)ϕpk
exp

(
2pk(ϕpk − ϕ)

)
dVω(1.9)

if we take pk > 2k−1 (notice that ϕpk − ϕ ≥ 0). Now, by Lemma 1.10 below, our integral (1.9
) is finite. By Lebesgue’s monotone convergence theorem, we have for k fixed

lim
p→+∞

∫
X

1ϕ<(1+2−k)ϕpe
−ϕdVω = 0
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as a decreasing limit, and we can take pk so large that
∫
ϕ<(1+2−k)ϕpk

e−ϕdVω ≤ 2−k. This

ensures that property (c) holds true by (1.8 ). �

1.10. Lemma. On a compact complex manifold, for any quasi-psh potential ϕ, the Bergman
kernel procedure leads to quasi-psh potentials ϕm with analytic singularities such that∫

X

e2m(ϕm−ϕ)dVω < +∞.

Proof. By definition of ϕm in Th. 1.2 , exp(2m(ϕm)) is (up to the irrelevant partition of unity
procedure) equal to the Bergman kernel

∑
`∈N |gm,`|2. By local uniform convergence and the

Noetherian property, it has the same local vanishing behavior as a finite sum
∑
`≤N(m) |gm,`|2

with N(m) sufficiently large. Since all terms gm,` have L2 norm equal to 1 with respect to the
weight e−2mϕ, our contention follows. �

1.11. Remark. A very slight variation of the proof would yield the improved condition

(c’) ∀λ ∈ R+,

∫
X

(e−λϕ − e−λϕ̃m)dVω ≤ 2−m for m ≥ m0(λ),

and thus an equality I(λϕ̃m) = I(λϕ) for m ≥ m0(λ). We just need to replace estimate (1.8 )
by ∫

X

(
e−mϕ − e−mϕ̃m

)
dVω ≤

+∞∑
k=m

∫
X

1ϕ<(1+2−k)ϕpk
e−kϕdVω

and take pk so large that 2pk ≥ k(2k + 1) and
∫
ϕ<(1+2−k)ϕpk

e−kϕdVω ≤ 2−k−1. �

We also quote the following very simple consequence of Lemma 1.10 , which will be needed
a bit later. Since ϕm is less singular than ϕ, we have of course an inclusion I(λϕ) ⊂ I(λϕm) for
all λ ∈ R+. Conversely :

1.12. Corollary. For every pair of positive real numbers λ′ > λ > 0, we have an inclusion of
multiplier ideals

I(λ′ϕm) ⊂ I(λϕ) as soon as m ≥
⌈1

2

λλ′

λ′ − λ

⌉
.

Proof. If f ∈ OX,x and U is a sufficiently small neighborhood of x, the Hölder inequality for
conjugate exponents p, q > 1 yields∫

U

|f |2e−λϕdVω ≤
(∫

U

|f |2e−λ
′ϕmdVω

)1/p(∫
U

|f |2e
q
pλ
′ϕm−qλϕdVω

)1/q

.

Therefore, if f ∈ I(λ′ϕm)x, we infer that f ∈ I(λϕ)x as soon as the integral
∫
X
e
q
pλ
′ϕm−qλϕdVω

is convergent. If we select p ∈ ]1, λ′/λ], this is implied by the condition
∫
X
eqλ(ϕm−ϕ)dVω < +∞.

If we further take qλ = 2m0 to be an even integer so large that

p =
q

q − 1
=

2m0/λ

2m0/λ− 1
≤ λ′

λ
, e.g. m0 = m0(λ, λ′) =

⌈1

2

λλ′

λ′ − λ

⌉
,

then we indeed have
∫
X
e2m0(ϕm−ϕ)dVω ≤

∫
X
e2m(ϕm−ϕ)dVω < +∞ for m ≥ m0(λ, λ′), thanks

to Lemma 1.10 . �
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2. Hard Lefschetz theorem for pseudoeffective line bundles

2.1. A variant of the Bochner formula

We first recall a variation of the Bochner formula that is required in the proof of the Hard
Lefschetz Theorem with values in a positively curved (an therefore non flat) line bundle (L, h).
Here the base manifold is a Kähler (non necessarily compact) manifold (Y, ω). We denote by
| | = | |ω,h the pointwise Hermitian norm on Λp,qT ∗Y ⊗ L associated with ω and h, and by
‖ ‖ = ‖ ‖ω,h the global L2 norm

‖u‖2 =

∫
Y

|u|2dVω where dVω =
ωn

n!

We consider the ∂ operator acting on (p, q)-forms with values in L, its adjoint ∂
∗
h with respect to

h and the complex Laplace-Beltrami operator ∆′′h = ∂∂
∗
h+∂

∗
h∂. Let v be a smooth (n−q, 0)-form

with compact support in Y . Then u = ωq ∧ v satisfies

(2.1.1) ‖∂u‖2 + ‖∂∗hu‖2 = ‖∂v‖2 +

∫
Y

∑
I,J

(∑
j∈J

λj

)
|uIJ |2

where λ1 ≤ · · · ≤ λn are the curvature eigenvalues of ΘL,h expressed in an orthonormal frame
(∂/∂z1, . . . , ∂/∂zn) (at some fixed point x0 ∈ Y ), in such a way that

ωx0
= i

∑
1≤j≤n

dzj ∧ dzj , (ΘL,h)x0
= ddcϕx0

= i
∑

1≤j≤n

λjdzj ∧ dzj .

Formula (2.1.1 ) follows from the more or less straightforward identity

(∂
∗
ϕ ∂ + ∂ ∂

∗
ϕ)(v ∧ ωq)− (∂

∗
ϕ ∂v) ∧ ωq = q i ∂∂ϕ ∧ ωq−1 ∧ v,

by taking the inner product with u = ωq ∧ v and integrating by parts in the left hand side (we
leave the easy details to the reader). Our formula is thus established when v is smooth and
compactly supported. In general, we have:

2.1.2. Proposition. Let (Y, ω) be a complete Kähler manifold and (L, h) a smooth Hermitian
line bundle such that the curvature possesses a uniform lower bound ΘL,h ≥ −Cω. For every
measurable (n − q, 0)-form v with L2 coefficients and values in L such that u = ωq ∧ v has

differentials ∂u, ∂
∗
u also in L2, we have

‖∂u‖2 + ‖∂∗hu‖2 = ‖∂v‖2 +

∫
Y

∑
I,J

(∑
j∈J

λj

)
|uIJ |2

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y, ω) is assumed to be complete, there exists a sequence of smooth forms vν with
compact support in Y (obtained by truncating v and taking the convolution with a regularizing
kernel) such that vν → v in L2 and such that uν = ωq ∧ vν satisfies uν → u, ∂uν → ∂u,

∂
∗
uν → ∂

∗
u in L2. By the curvature assumption, the final integral in the right hand side of

(2.1.1 ) must be under control (i.e. the integrand becomes nonnegative if we add a term C‖u‖2
on both sides, C � 0). We thus get the equality by passing to the limit and using Lebesgue’s
monotone convergence theorem. �
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2.2. Proof of Theorem 0.8

Here X denotes a compact K ähler manifold equipped with a Kähler metric ω, and (L, h)
is a pseudoeffective line bundle on X. To fix the ideas, we first indicate the proof in the much
simpler case when (L, h) has a smooth metric h (so that I(h) = OX), and then treat the general
case.

2.2.1. Special Case: (L, h) is Hermitian semipositive (with a smooth metric).

Let {β} ∈ Hq(X,ΩnX ⊗L) be an arbitrary cohomology class. By standard L2 Hodge theory,
{β} can be represented by a smooth harmonic (0, q)-form β with values in ΩnX ⊗ L. We can
also view β as a (n, q)-form with values in L. The pointwise Lefschetz isomorphism produces a
unique (n− q, 0)-form α such that β = ωq ∧ α. Proposition 2.1.2 then yields

‖∂α‖2 +

∫
Y

∑
I,J

(∑
j∈J

λj

)
|αIJ |2 = ‖∂β‖2 + ‖∂∗hβ‖2 = 0,

and the curvature eigenvalues λj are nonnegative by our assumption. Hence ∂α = 0 and
{α} ∈ H0(X,Ωn−qX ⊗ L) is mapped to {β} by Φqω,h = ωq ∧ • .

2.2.2. General Case.

There are several difficulties. The first difficulty is that the metric h is no longer smooth
and we cannot directly represent cohomology classes by harmonic forms. We circumvent this
problem by smoothing the metric on an (analytic) Zariski open subset and by avoiding the
remaining poles on the complement. However, some careful estimates have to be made in order
to take the error terms into account.

Fix ε = εν and let hε = hεν be an approximation of h, such that hε is smooth on X r Zε
(Zε being an analytic subset of X), ΘL,hε ≥ −εω, hε ≤ h and I(hε) = I(h). This is possible by
Th. 1.7 . Now, we can find a family

ωε,δ = ω + δ( i ∂∂ψε + ω), δ > 0

of complete Kähler metrics on X r Zε, where ψε is a quasi-psh function on X with ψε = −∞
on Zε, ψε on X r Zε and i ∂∂ψε + ω ≥ 0 (see e.g. [Dem82], Théorème 1.5). By construction,
ωε,δ ≥ ω and limδ→0 ωε,δ = ω. We look at the L2 Dolbeault complex K•ε,δ of (n, •)-forms on

X r Zε, where the L2 norms are induced by ωε,δ on differential forms and by hε on elements
in L. Specifically

Kq
ε,δ =

{
u:X r Zε→Λn,qT ∗X ⊗ L;

∫
XrZε

(|u|2Λn,qωε,δ⊗hε + |∂u|2Λn,q+1ωε,δ⊗hε)dVωε,δ <∞
}
.

Let Kq
ε,δ be the corresponding sheaf of germs of locally L2 sections on X (the local L2 condition

should hold on X, not only on X rZε !). Then, for all ε > 0 and δ ≥ 0, (Kq
ε,δ, ∂) is a resolution

of the sheaf ΩnX ⊗ L ⊗ I(hε) = ΩnX ⊗ L ⊗ I(h). This is because L2 estimates hold locally on
small Stein open sets, and the L2 condition on X r Zε forces holomorphic sections to extend
across Zε ([Dem82], Lemma 6.9).

Let {β} ∈ Hq(X,ΩnX ⊗ L ⊗ I(h)) be a cohomology class represented by a smooth form
with values in ΩnX ⊗ L⊗ I(h) (one can use a Čech cocycle and convert it to an element in the
C∞ Dolbeault complex by means of a partition of unity, thanks to the usual De Rham-Weil
isomorphism, see also the final proof in Section 4 for more details). Then

‖β‖2ε,δ ≤ ‖β‖2 =

∫
X

|β|2Λn,qω⊗hdVω < +∞.
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The reason is that |β|2Λn,qω⊗hdVω decreases as ω increases. This is just an easy calculation,
shown by comparing two metrics ω, ω′ which are expressed in diagonal form in suitable coor-
dinates; the norm |β|2Λn,qω⊗h turns out to decrease faster than the volume dVω increases; see

e.g. [Dem82], Lemma 3.2; a special case is q = 0, then |β|2Λn,qω⊗hdVω = in
2

β ∧ β with the

identification L ⊗ L ' C given by the metric h, hence the integrand is even independent of ω
in that case.

By the proof of the De Rham-Weil isomorphism, the map α 7→ {α} from the cocycle space
Zq(K•ε,δ) equipped with its L2 topology, into Hq(X,ΩnX ⊗ L ⊗ I(h)) equipped with its finite
vector space topology, is continuous. Also, Banach’s open mapping theorem implies that the
coboundary space Bq(K•ε,δ) is closed in Zq(K•ε,δ). This is true for all δ ≥ 0 (the limit case δ = 0

yields the strongest L2 topology in bidegree (n, q)). Now, β is a ∂-closed form in the Hilbert
space defined by ωε,δ on X rZε, so there is a ωε,δ-harmonic form uε,δ in the same cohomology
class as β, such that

(2.2.3) ‖uε,δ‖ε,δ ≤ ‖β‖ε,δ.

Let vε,δ be the unique (n− q, 0)-form such that uε,δ = vε,δ ∧ ωqε,δ (vε,δ exists by the pointwise
Lefschetz isomorphism). Then

‖vε,δ‖ε,δ = ‖uε,δ‖ε,δ ≤ ‖β‖ε,δ ≤ ‖β‖.

As
∑
j∈J λj ≥ −qε by the assumption on ΘL,hε , the Bochner formula yields

‖∂vε,δ‖2ε,δ ≤ qε‖uε,δ‖2ε,δ ≤ qε‖β‖2.

These uniform bounds imply that there are subsequences uε,δν and vε,δν with δν → 0, possessing
weak-L2 limits uε = limν→+∞ uε,δν and vε = limν→+∞ vε,δν . The limit uε = limν→+∞ uε,δν is
with respect to L2(ω) = L2(ωε,0). To check this, notice that in bidegree (n − q, 0), the space
L2(ω) has the weakest topology of all spaces L2(ωε,δ); indeed, an easy calculation made in
([Dem82], Lemma 3.2) yields

|f |2Λn−q,0ω⊗hdVω ≤ |f |
2
Λn−q,0ωε,δ⊗hdVωε,δ if f is of type (n− q, 0).

On the other hand, the limit vε = limν→+∞ vε,δν takes place in all spaces L2(ωε,δ), δ > 0, since
the topology gets stronger and stronger as δ ↓ 0 [ possibly not in L2(ω), though, because in
bidegree (n, q) the topology of L2(ω) might be strictly stronger than that of all spaces L2(ωε,δ) ].
The above estimates yield

‖vε‖2ε,0 =

∫
X

|vε|2Λn−q,0ω⊗hεdVω ≤ ‖β‖
2,

‖∂vε‖2ε,0 ≤ qε‖β‖2ε,0,

uε = ωq ∧ vε ≡ β in Hq(X,ΩnX ⊗ L⊗ I(hε)).

Again, by arguing in a given Hilbert space L2(hε0), we find L2 convergent subsequences uε → u,
vε → v as ε→ 0, and in this way get ∂v = 0 and

‖v‖2 ≤ ‖β‖2,
u = ωq ∧ v ≡ β in Hq(X,ΩnX ⊗ L⊗ I(h)).
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Theorem 0.8 is proved. Notice that the equisingularity property I(hε) = I(h) is crucial in the
above proof, otherwise we could not infer that u ≡ β from the fact that uε ≡ β. This is true
only because all cohomology classes {uε} lie in the same fixed cohomology group Hq(X,ΩnX ⊗
L⊗ I(h)), whose topology is induced by the topology of L2(ω) on ∂-closed forms (e.g. through
the De Rham-Weil isomorphism). �

2.2.4. Remark. In (2.2.3 ), the existence of a harmonic representative holds true only for ωε,δ,
δ > 0, because we need to have a complete Kähler metric on X r Zε. The trick of employing
ωε,δ instead of a fixed metric ω, however, is not needed when Zε is (or can be taken to be)
empty. This is the case if (L, h) is such that I(h) = OX and L is nef. Indeed, by definition, L is
nef iff there exists a sequence of smooth metrics hν such that i ΘL,hν ≥ −ενω, so we can take
the ϕν ’s to be everywhere smooth in Th. 1.7 . However, multiplier ideal sheaves are needed in
the surjectivity statement even in case L is nef, as it may happen that I(hmin) 6= OX even then,
and h := limhν is anyway always more singular than hmin. Let us recall a standard example
(see [DPS94], [DPS01]). Let B be an elliptic curve and let V be the rank 2 vector bundle over
B which is defined as the (unique) non split extension

0→ OB → V → OB → 0.

In particular, the bundle V is numerically flat, i.e. c1(V ) = 0, c2(V ) = 0. We consider the ruled
surface X = P(V ). On that surface there is a unique section C = P(OB) ⊂ X with C2 = 0 and

OX(C) = OP(V )(1)

is a nef line bundle. One can check that L = OP(V )(3) leads to a zero Lefschetz map

ω ∧ • : H0(X,Ω1
X ⊗ L) −→ H1(X,KX ⊗ L) ' C,

so this is a counterexample to Cor. 0.9 in the nef case. Incidentally, this also shows (in a
somewhat sophisticated way) that OP(V )(1) is nef but not semipositive, a fact that was first
observed in [DPS94].

3. Numerical dimension of currents

A large part of this section borrows ideas from S. Boucksom’s [Bou02], [Bou04] and Junyan
Cao’s [JC14] PhD theses. We try however to give here a slightly more formal exposition. The
main difference with S. Boucksom’s approach is that we insist on keeping track of singularities
of currents and leaving them unchanged, instead of trying to minimize them in each cohomology
class.

3.1. Monotone asymptotically equisingular approximations

Let X be a compact complex n-dimensional manifold. We consider the closed convex cone of
pseudoeffective classes, namely the set E(X) of cohomology classes {α} ∈ H1,1(X,R) containing
a closed positive (1, 1)-current T = α+ddcϕ (in the non Kähler case one should use Bott-Chern
cohomology groups here, but we will be mostly concerned with the Kähler case in the sequel).
We also introduce the set S(X) of singularity equivalence classes of closed positive (1, 1)-currents
T = α+ ddcϕ (i.e., α being fixed, up to equivalence of singularities of the potentials ϕ, cf.
Def. 0.5 ). Clearly, there is a fibration

(3.1.1) π : S(X)→ E(X), T 7→ {α} ∈ E(X) ⊂ H1,1(X,R).



3. Numerical dimension of currents 15

We will denote by Sα(X) the fiber π−1({α}) of S(X) over a given cohomology class {α} ∈ E(X).
Observe that the base E(X) is a closed convex cone in a finite dimensional vector space, but
in general the fiber Sα(X) must be viewed as a very complicated infinite dimensional space :
if we take e.g. {α1} ∈ H1,1(Pn,R) to be the unit class c1(O(1)), then any current T = 1

d [H]
where Hd is an irreducible hypersurface of degree d defines a point in Sα1

(Pn), and these points
are all distinct. The set S(X) is nevertheless equipped in a natural way with an addition
law S(X) × S(X) → S(X) that maps Sα(X) + Sβ(X) into Sα+β(X), a scalar multiplication
R+ × S(X) → S(X) that takes λ · Sα(X) to the fiber Sλα(X). In this way, S(X) should be
viewed as some sort of infinite dimensional convex cone. The fibers Sα(X) also possess a partial
ordering 4 (cf. Def. 0.5 ) such that ∀j, Sj 4 Tj ⇒

∑
Sj 4

∑
Tj , and a fiberwise “min”

operation

min : Sα(X)× Sα(X) −→ Sα(X),

(T1, T2) = (α+ ddcϕ1, α+ ddcϕ2) 7−→ T = α+ ddc max(ϕ1, ϕ2),(3.1.2)

with respect to which the addition is distributive, i.e.

min(T1 + S, T2 + S) = min(T1, T2) + S.

Notice that when T1 = 1
d [H1], T2 = 1

d [H2] are effective Q-divisors, all these operations +, · ,
min(•) and the ordering 4 coincide with the usual ones known for divisors. Following Junyan
Cao [JC14] (with slightly more restrictive requirements that do not produce much change in
practice), we introduce

3.1.3. Definition. Let T = α + ddcϕ be a closed positive (1, 1)-current on X, where α is
a smooth closed (1, 1)-form and ϕ is a quasi-psh function on X. We say that the sequence of
currents Tk = α+ddcψk, k ∈ N, is a “monotone asymptotically equisingular approximation of T
by currents with analytic singularities” if the sequence of potentials (ψk) satisfies the following
properties:

(a) (monotonicity) The sequence (ψk) is non-increasing and converges to ϕ at every point of X.

(b) The functions ψk have analytic singularities (and ψk 4 ψk+1 by (a)).

(c) (lower bound of positivity)

α+ ddcψk ≥ −εk · ω with lim
k→+∞

εk = 0

for any given smooth positive hermitian (1, 1)-form ω on X.

(d) (asymptotic equisingularity) For every pair of positive numbers λ′ > λ > 0, there exists an
integer k0(λ, λ′) ∈ N such that

I(λ′ψk) ⊂ I(λϕ) for k ≥ k0(λ, λ′).

3.1.4. Remark. Without loss of generality, one can always assume that the quasi-psh potentials
ϕk = ck log |gk|2 +O(1) have rational coefficients ck ∈ Q+. In fact, after subtracting constants,
one can achieve that ϕ ≤ 0 and ψk ≤ 0 for all k. If the ck are arbitrary nonnegative real
numbers, one can always replace ψk by ψ′k = (1− δk)ψk with a decreasing sequence δk ∈ ]0, 1[
such that lim δk = 0 and (1− δk)ck ∈ Q+. Then (a), (b), (d) are still valid, and (c) holds with
ε′k = (1− δk)εk + Cδk and C a constant such that α ≥ −Cω. �
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The fundamental observation is:

3.1.5. Theorem. If ψk := ϕmk is the sequence of potentials obtained by the Bergman kernel
approximation of T = α+ ddcϕ given in the proof of Theorem 1.6 and (mk) is a multiplicative
sequence, then the ψk can be arranged to satisfy the positivity, monotonicity and asymptotic
equisingularity properties of Definition 3.1.3 . Moreover, if we start with currents T 4 T ′ in
the same cohomology class {α}, we obtain corresponding approximations that satisfy ψk 4 ψ′k.

Proof. By Cor. 1.12 , the asymptotic equisingularity property (d) in Def. 3.1.3 is satisfied for

mk ≥ d 1
2
λλ′

λ′−λe. The other properties are already known or obvious, especially the coefficients
ck = 1

mk
are just inverses of integers in that case. �

The following proposition provides a precise comparison of analytic singularities of potentials
when their multiplier ideal sheaves satisfy inclusion relations.

3.1.6. Proposition. Let ϕ, ψ be quasi-psh functions with analytic singularities, let c > 0 be
the constant such that ϕ can be expressed as c log

∑
|gj |2 +O(1) with holomorphic functions gj,

and let λ ∈ R+. Denoting t+ := max(t, 0), we have the implication

I(ψ) ⊂ I(λϕ) ⇒
∫
eψ−λϕdV < +∞ and ψ < 1

c

(
bλcc − n

)
+
ϕ (locally).

Proof. Since everything is local, we may assume that ϕ, ψ are psh functions on a small ball
B ⊂ Cn, and ϕ(z) = c log |g|2 = c log

∑
1≤j≤N |gj(z)|2. If (f`)`∈N is a Hilbert basis of the

space of L2 holomorphic functions f with
∫
B
|f |2e−ψdV < +∞, the proof of Th. 1.2 yields

ψ ≤ C + log
∑
|f`|2 (and locally the singularity is achieved by a finite sum of f`’s by the

Noetherian property). After possibly shrinking B, the condition I(ψ) ⊂ I(λϕ) implies∫
B

|f`|2e−λϕdV =

∫
B

|f`|2|g|−2λcdV < +∞.

This already shows that
∫
eψ−λϕdV < +∞ locally. By openness of convergence exponents (one

can use e.g. a log resolution of the ideal sheaf (f`, gj) to see this), one gets∫
B

|f`|2|g|−2(bλcc+ε)dV < +∞

for ε > 0 small enough. Now, if bλcc ≥ n, Skoda’s division theorem [Sko72a] implies that each
f` can be written f` =

∑
h`,jgj where h`,j satisfies a similar estimate where the exponent of

|g|−2 is decreased by 1. An iteration of the Skoda division theorem for the h`,j yields f` ∈ (gj)
k

where k = (bλcc − n)+. Hence

ψ ≤ C + log
∑
|f`|2 ≤ C ′ + k log |g|2 ≤ C ′ + k

c
ϕ,

and our singularity comparison relation follows. �

3.1.7. Corollary. If T = α + ddcϕ is a closed positive (1, 1)-current and (ψk), (ψ′k) are two
monotone asymptotically equisingular approximations of ϕ with analytic singularities, then for
every k and every ε > 0, there exists ` such that (1− ε)ψk 4 ψ′` (and vice versa by exchanging
the roles of (ψk) and (ψ′k)).
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Proof. Let c > 0 be the constant occurring in the logarithmic poles of ψk (k being fixed). By
condition (d) in Def. 3.1.3 , for λ′ > λ� 1 we have I(λ′ψ′`) ⊂ I(λϕ) ⊂ I(λψk) for ` ≥ `0(λ, λ′)
large enough. Proposition 3.1.6 implies the singularity estimate ψ′` <

1
cλ′ (bcλc] − n)+ψk, and

the final constant in front of ψk can be taken arbitrary close to 1. �

Our next observation is that the min(•) procedure defined above for currents is well behaved
in terms of asymptotic equisingular approximations.

3.1.8. Proposition. Let T = α + ddcϕ and T ′ = α + ddcϕ′ be closed positive (1, 1)-currents
in the same cohomology class {α}. Let (ψk) and (ψ′k) be respective monotone asymptoti-
cally equisingular approximations with analytic singularities and rational coefficients. Then
max(ψk, ψ

′
k) provides a monotone asymptotically equisingular approximation of min(T, T ′) =

α+ ddc max(ϕ,ϕ′) with analytic singularities and rational coefficients.

Proof. If ψk = ck log |gk|2 + O(1) and ψ′k = c′k log |g′k|2 + O(1), we can write ck = pk/qk,
c′k = p′k/q

′
k and

max(ψk, ψ
′
k) =

1

qkq′k
log
(
|gk|2pk + |g′k|2p

′
k
)

+O(1),

hence max(ψk, ψ
′
k) also has analytic singularities with rational coefficients (this would not be

true with our definitions when the ratio c′k/ck is irrational, but of course we could just extend a
little bit the definition of what we call analytic singularities, e.g. by allowing arbitrary positive
real exponents, in order to avoid this extremely minor annoyance). It is well known that

α+ ddcψk ≥ −εkω, α+ ddcψ′k ≥ −ε′kω
⇒ α+ ddc max(ψk, ψ

′
k) ≥ −max(εk, ε

′
k)ω.

Finally, if ψB,k (resp. ψ′B,k and ψ̃B,k)) comes from the Bergman approximation of ϕ (resp. of
ϕ′ and ϕ̃ := max(ϕ,ϕ′)), we have

ϕ̃ ≥ ϕ ⇒ ψ̃B,k ≥ ψB,k, ϕ̃ ≥ ϕ′ ⇒ ψ̃B,k ≥ ψ′B,k

hence ψ̃B,k ≥ max(ψB,k, ψ
′
B,k) and so ψ̃B,k 4 max(ψB,k, ψ

′
B,k). However, for every ε > 0,

one has (1 − ε)ψBk 4 ψ` and (1 − ε)ψ′Bk 4 ψ′` for ` ≥ `0(k, ε) large, therefore (1 − ε)ψ̃B,k 4
max(ψ`, ψ

′
`). This shows that max(ψ`, ψ

′
`) has enough singularities (the “opposite” inequality

max(ψ`, ψ
′
`) ≥ ϕ̃ = max(ϕ,ϕ′), i.e. max(ψ`, ψ

′
`) 4 ϕ̃, holds trivially). �

When we deal with sums of positive currents T = α+ddcϕ and T ′ = β+ddcϕ′ in cohomology
classes {α}, {β} ∈ E(X), the sum α+ β + ddc(ψB,k + ψ′B,k) of the Bergman approximations is
less singular than what comes from the Bergman approximation of ϕ+ϕ′. This is a consequence
of the fundamental “subadditivity” result I(ϕ+ ϕ′) ⊂ I(ϕ)I(ϕ′) observed in [DEL00], itself a
consequence of the Ohsawa-Takegoshi theorem. We do not know whether α + β + ddc(ψB,k +
ψ′B,k) might be asymptotically strictly less singular than the Bergman approximations of ϕ+ϕ′;
this does not happen when ϕ or ϕ′ have analytic singularities (or are sums of quasi-psh functions
with analytic singularities and of functions with zero Lelong numbers), as one can show easily,
but there might be a more subtle issue of a transcendental nature in general. This motivates
the following formal definition.

3.1.9. Definition. For each class {α} ∈ E(X), we define Ŝα(X) as a set of equivalence classes
of sequences of quasi-positive currents Tk = α+ ddcψk such that

(a) Tk = α+ ddcψk ≥ −εk · ω with limk→+∞ εk = 0,
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(b) the functions ψk have analytic singularities and ψk 4 ψk+1 for all k. We say that (Tk) is
weakly less singular than (T ′k) in Ŝα(X), and write (Tk) 4W (T ′k), if for every ε > 0 and k, there
exists ` such that (1− ε)Tk 4 T ′`. Finally, we write (Tk) ∼W (T ′k) when we have (Tk) 4W (T ′k)
and (T ′k) 4W (Tk), and define Ŝα(X) to be the quotient space by this equivalence relation.

The set

(3.1.10) Ŝ(X) =
⋃

{α}∈E(X)

Ŝα(X)

is by construction a fiber space π̂ : Ŝ(X)→ E(X), and, by fixing a multiplicative sequence such
as mk = 2k, we find a natural “Bergman approximation map”

(3.1.11) B : S(X)→ Ŝ(X), T = α+ ddcϕ 7−→ (TB,k), Tk = α+ ddcψB,k.

The set Ŝ(X) is equipped with a natural addition (Tk) + (T ′k) = (Tk + T ′k), with a scalar
multiplication λ·(Tk) = (λTk) for λ ∈ R+, as well as with the min(•) operation min((Tk), (T ′k)) =
(min(Tk, T

′
k)) obtained by taking max(ψk, ψ

′
k) of the corresponding potentials. As explained

earlier, B is a morphism for the min(•) operation, but it is unclear to us whether B is actually
a morphism for addition (B is at least additive when all currents involved except one have
analytic singularities, and these are dense in some sense, so things would be much nicer if there
were no exception!)

For closed positive currents themselses, one could define weak equivalence of singularities
by

T 4W T ′ ⇐⇒def (TB,k) 4W (T ′B,k),(3.1.12)

T ∼W T ′ ⇐⇒ T 4W T ′ and T ′ 4W T,(3.1.13)

but it is unclear at this point whether addition is compatible with 4W and ∼W on S(X), so
the quotient space S(X)/ ∼W might be a little bit problematic. By the well-known result of
Skoda [Sko72b], we have I(ϕ) = OX as soon as the Lelong numbers ν(ϕ, x) are less than 2 at
every point x ∈ X, hence a quasi-psh function with zero Lelong numbers satisfies I(λϕ) = OX
for every λ > 0. Such potentials are negligible (and indistinguishable from smooth potentials)
in the above definition of ∼W .

3.1.14. Remark. When X is projective algebraic and {α} belongs to the Neron-Severi space

NSR(X) = (H1,1(X,C) ∩H2(X,Z)/torsion)⊗Z R,

the fiber Ŝα(X) is essentially an algebraic object. In fact, we could define Ŝα(X) as the set
of suitable equivalence classes of “formal limits” limc1(D)→{α} limk→+∞

1
kak associated with

sequences of graded ideals ak ⊂ H0(X,OX(kD) satisfying the subadditive property ak+` ⊂
aka`, where D are big Q-divisors whose first Chern classes c1(D) approximate {α} ∈ NSR(X).
Many related questions are discussed in the algebraic setting in Lazarfeld’s book [Laz04]. It is
nevertheless an interesting point, even in the projective case, that one can “extrapolate” these
concepts to all transcendental classes, and get in this way a global space Ŝ(X) which looks well
behaved, e.g. semicontinuous, under variation of the complex structure of X.
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3.2. Intersection theory on S(X) and Ŝ(X)

Let X be a compact Kähler n-dimensional manifold equipped with a Kähler metric ω. We
consider closed positive (1, 1)-currents Tj = αj +ddcϕj , 1 ≤ j ≤ p. Let us first assume that the
functions ϕj have analytic singularities, and let Z ⊂ X be an analytic set such that the ϕj ’s
are locally bounded on X r Z. The (p, p)-current

Θ = 1XrZT1 ∧ . . . ∧ Tk

is well defined on XrZ, thanks to Bedford and Taylor [BT76], and it is a closed positive current
there. By [BT76] such a current does not carry mass on any analytic set, so we can enlarge Z
without changing the total mass of Θ. In fact, Θ extends as a closed positive current on the
whole of X. To see this, let us take a simultaneous log resolution of the Tj ’s, i.e. a modification

µ : X̂ → X

such that if ϕj = cj log
∑
` |gj,`|2 + O(1), then the pull-back of the ideals (gj,`)`, namely

µ∗(gj,`)` = (gj,`◦µ)` is a purely divisorial ideal sheaf O
X̂

(−Dj) on X̂. Let uj = 0 be a local holo-

morphic equation of the divisor Dj on X̂. Since log
∑
` |gj,`|2 = log |uj |2 + log

∑
` |gj,`/uj|2 =

log |uj |2 + vj , where vj ∈ C∞ and ddc log |uj |2 = [Dj ] by the Lelong-Poincaré equation, we find

(3.2.1) µ∗Tj = µ∗αj + ddc(ϕj ◦ µ) = cj [Dj ] + T̂j , where T̂j = µ∗αj + ddcϕ̂j

and ϕ̂j is a locally bounded potential on X̂ such that T̂j ≥ 0. Now, if E = µ−1(Z), we get

(3.2.2) 1XrZT1 ∧ . . . ∧ Tp = µ∗(1X̂rE T̂1 ∧ . . . ∧ T̂p) = µ∗(T̂1 ∧ . . . ∧ T̂p).

Hence the right-hand side defines the desired extension of 1XrZT1 ∧ . . .∧Tp to X as the direct

image of a closed positive current on X̂ carrying no mass on E. An essential point is the
following monotonicity lemma.

3.2.3. Lemma. Assume that we have closed positive (1, 1)-currents with analytic singularities
Tj, T

′
j ∈ {αj} with Tj 4 T ′j, 1 ≤ j ≤ p, and let γ ≥ 0 be a closed positive smooth (n− p, n− p)-

form on X. If Z is an analytic set containing the poles of all Tj and T ′j, we have∫
X

1XrZT1 ∧ . . . ∧ Tp ∧ γ ≥
∫
X

1XrZT
′
1 ∧ . . . ∧ T ′p ∧ γ.

Proof. We take a log-resolution µ : X̂ → X that works for all Tj and T ′j simultaneously. By

(3.2.1 ) and (3.2.2 ), we have µ∗Tj = cj [Dj ] + T̂j where T̂j ≥ 0 has a locally bounded potential

on X̂, and ∫
X

1XrZT1 ∧ . . . ∧ Tp ∧ γ =

∫
X̂

T̂1 ∧ . . . ∧ T̂p ∧ µ∗γ.

There are of course similar formulas µ∗T ′j = cj [D
′
j ]+T̂

′
j for the T ′j ’s, and our assumption Tj 4 T ′j

means that the corresponding divisors satisfy cjDj ≤ c′jD
′
j , hence ∆j := c′jD

′
j − cjDj ≥ 0. In

terms of cohomology, we have

µ∗{αj} = {µ∗Tj} = {T̂j}+ {cjDj} = {µ∗T ′j} = {T̂ ′j}+ {c′jD′j},
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hence {T̂j} = {T̂ ′j}+ {∆j} in H2(X̂,R). By Stokes’ theorem, we conclude that∫
X̂

T̂1 ∧ T̂2 ∧ . . . ∧ T̂p ∧ µ∗γ =

∫
X̂

(T̂ ′1 + {∆1}) ∧ T̂2 ∧ . . . ∧ T̂p ∧ µ∗γ

≥
∫
X̂

T̂ ′1 ∧ T̂2 ∧ . . . ∧ T̂p ∧ µ∗γ

thanks to the positivity of our currents T̂j , T̂
′
j and the fact that the product of such currents

with bounded potentials by the current of integration [∆j ] is well defined and positive ([BT76]).

By replacing successively all terms {T̂j} by {T̂ ′j}+ {∆j} we infer∫
X̂

T̂1 ∧ . . . ∧ T̂p ∧ µ∗γ ≥
∫
X̂

T̂ ′1 ∧ . . . ∧ T̂ ′p ∧ µ∗γ. �

Now, assume that we have arbitrary closed positive (1, 1)-currents T1, . . . , Tp. For each
of them, we take a sequence Tj,k = αj + i∂∂ψj,k of monotone asymptotically equisingular
approximations by currents with analytic singularities, Tj,k ≥ −εj,kω, limk→+∞ εj,k = 0. We
have Tj,k 4 Tj,k+1, and we may also assume without loss of generality that εj,k ≥ εj,k+1 > 0 for
all j, k. Let Zk be an analytic containing all poles of the Tj,k, 1 ≤ j ≤ p. It follows immediately
from the above discussion and especially from Lemma 3.2.3 that the integrals∫

X

1XrZk(T1,k + ε1,kω) ∧ . . . ∧ (Tp,k + εp,kω) ∧ γ ≥ 0

are well defined and nonincreasing in k (the fact that εj,k is non increasing even helps here).
From this, we conclude

3.2.4. Theorem. For every p = 1, 2, . . . , n, there is a well defined p-fold intersection product

Ŝ(X)× · · · × Ŝ(X) −→ Hp,p
+ (X,R)

which assigns to any p-tuple of equivalence classes of monotone sequences (Tj,k) in Ŝ(X),
1 ≤ j ≤ p, the limit cohomology class

lim
k→+∞

{
1XrZk(T1,k + ε1,kω) ∧ . . . ∧ (Tp,k + εp,kω)

}
∈ Hp,p

+ (X,R)

where Hp,p
+ (X,R) ⊂ Hp,p(X,R) denotes the cone of cohomology classes of closed positive (p, p)-

currents. This product is additive and homogeneous in each argument in the space Ŝ(X).

3.2.5. Corollary. By combining the above formal intersection product with the Bergman ap-
proximation operator B : S(X)→ Ŝ(X), we get an intersection product

S(X)× · · · × S(X) −→ Hp,p
+ (X,R) denoted (T1, . . . , Tp) 7−→ 〈T1, . . . , Tp〉+,

which is homogeneous in each argument (and additive as long as B is). It always satisfies at
least the subadditivity property

〈T ′1 + T ′′1 , T2, . . . , Tp〉+ ≤ 〈T ′1, T2, . . . , Tp〉+ + 〈T ′′1 , T2, . . . , Tp〉+.
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Proof. The existence of a limit in cohomology is seen by fixing a dual basis ({γj}) of
Hn−p,n−p(X), using the Serre duality pairing

Hp,p(X,R)×Hn−p,n−p(X)→ R, (β, γ) 7→
∫
X

β ∧ γ.

Since X is Kähler, we can take γ1 = ωn−p and replace if necessary γj by γj + Cωn−p, C � 1,
to get γj ≥ 0 for all j ≥ 2. Then the integrals∫

X

1XrZk(T1,k + ε1,kω) ∧ . . . ∧ (Tp,k + εp,kω) ∧ γj ≥ 0

are nonincreasing in k, and the limit must therefore exist by monotonicity. The subadditivity
property on S(X) comes from Lemma 3.2.3 applied to the inequality

B(T ′ + T ′′) <W B(T ′) + B(T ′′)

(itself a consequence of the multiplier ideal sheaf inclusion I(ϕ′ + ϕ′′) ⊂ I(ϕ′)I(ϕ′′)). �

3.3. Kähler definition of the numerical dimension

Using the intersection product defined in Th. 3.2.4 , we can give a precise definition of the
numerical dimension.

3.3.1. Definition. Let (X,ω) be a compact Kähler n-dimensional manifold. We define the
numerical dimension nd(T ) of a closed positive (1, 1)-current T on X to be the largest integer
p = 0, 1, . . . , n such that 〈T p〉+ 6= 0, i.e.

∫
X
〈T p〉+ ∧ ωn−p > 0.

Accordingly, if (L, h) be a pseudoeffective line bundle on X, we define its numerical dimen-
sion to be

(3.3.2) nd(L, h) = nd( i ΘL,h).

By the results of the preceding subsection, nd(L, h) depends only on the weak equivalence class
of singularities of the metric h.

3.3.3. Remark. H. Tsuji [Tsu07] has defined a notion of numerical dimension by a more
algebraic method:

3.3.4. Definition. Let X be a projective variety and (L, h) a pseudo-effective line bundle.
When V runs over all irreducible algebraic suvarieties of X, one defines

νnum(L, h) = sup
{
p = dimV ; lim sup

m→∞

h0
(
Ṽ , µ∗(L⊗m)⊗ I(µ∗hm)

)
mp

> 0
}

where µ : Ṽ → V ⊂ X is an embedded desingularization of V in X.

Junyan Cao [JC14] has shown that νnum(L, h) coincides with nd(L, h) as defined in (3.3.2
). The idea is to make a reduction to the “big” case nd(L, h) = dimX and to use holomorphic
Morse inequalities [Dem85b] in combination with a regularization procedure. We omit the
rather technical details here.
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3.3.5. Remark. If L is there is also a natural concept of numerical dimension nd(L) that does
not depend on the choice of a metric h on L. One can set e.g.

nd(L) = max
{
p ∈ [0, n] ; ∃c > 0, ∀ε > 0, ∃hε, ΘL,hε ≥ −εω, such that∫

XrZε
( i ΘL,hε + εω)p ∧ ωn−p ≥ c

}
,

where hε runs over all metrics with analytic singularities on L. It may happen in general that
nd(L, hmin) < nd(L), even when L is nef; in that case the hε can be taken to be smooth in the
definition of nd(L), and therefore nd(L) is the largest integer p such that c1(L)p 6= 0. In fact,
for the line bundle L already mentioned in Remark 2.2.4 , it is shown in [DPS94] that there is
unique positive current T ∈ c1(L), namely the current of integration T = [C] on the negative
curve C ⊂ X, hence nd(L, hmin) = nd([C]) = 0, although we have nd(L) = 1 here.

4. Proof of Junyan Cao’s vanishing theorem

This section is a brief account and a simplified exposition of Junyan Cao’s proof, as detailed
in his PhD thesis [JC13]. The key curvature and singularity estimates are contained in the
following technical statement, which depends in a crucial way on Bergman regularization and
on Yau’s theorem [Yau78] for solutions of Monge-Ampère equations.

4.1. Proposition. Let (L, h) be a pseudoeffective line bundle on a compact Kähler mani-
fold (X,ω). Let us write T = i

2πΘL,h = α + ddcϕ where α is smooth and ϕ is a quasi-psh
potential. Let p = nd(L, h) be the numerical dimension of (L, h). Then, for every γ ∈ ]0, 1] and
δ ∈ ]0, 1], there exists a quasi-psh potential Φγ,δ on X satisfying the following properties :

(a) Φγ,δ is smooth in the complement X r Zδ of an analytic set Zδ ⊂ X.

(b) α+ δω + ddcΦγ,δ ≥ δ
2 (1− γ)ω on X.

(c) (α+ δω + ddcΦγ,δ)
n ≥ a γnδn−pωn on X r Zδ.

(d) Φγ,δ ≤ (1 + bδ)ψB,k +Cγ,δ where ψB,k ≥ ϕ is a Bergman approximation of ϕ of sufficiently
high index k = k0(δ).

(e) supX Φ1,δ = 0, and for all γ ∈ ]0, 1] there are estimates Φγ,δ ≤ A and

exp
(
− Φγ,δ

)
≤ e−(1+bδ)ϕ exp

(
A− γΦ1,δ

)
(f) For γ0, δ0 > 0 small, γ ∈ ]0, γ0], δ ∈ ]0, δ0] and k = k0(δ) large enough, we have

I(Φγ,δ) = I+(ϕ).

Here a, b, A, γ0, δ0, Cγ,δ > 0 are suitable constants (Cγ,δ being the only one that depends on
γ, δ).

Before starting the proof, notice that the family of multiplier ideals λ 7→ I(λϕ) is nonin-
creasing in λ. By the Noetherian property of ideal sheaves, they can jump only for a locally
finite set of values λ in [0,+∞[, and in particular, there exists a real value λ0 > 1 such that

(4.2) I+(ϕ) := lim
λ→1+0

I(λϕ) = I(λϕ), ∀λ ∈ ]1, λ0].
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Proof. Denote by ψB,k the nonincreasing sequence of Bergman approximations of ϕ (obtained
with denominators mk = 2k, say). We have ψB,k ≥ ϕ for all k, the ψB,k have analytic
singularities and α + ddcψB,k ≥ −εkω with εk ↓ 0. Then εk ≤ δ

4 for k ≥ k0(δ) large enough,
and so

α+ δω + ddc
(
(1 + bδ)ψB,k

)
≥ α+ δω − (1 + bδ)(α+ εkω)

≥ δω − (1 + bδ)εkω − bδα ≥ δ
2ω

for b > 0 small enough (independent of δ and k). Let µ : X̂ → X be a log-resolution of ψB,k,
so that

µ∗
(
α+ δω + ddc((1 + bδ)ψB,k)

)
= ck[Dk] + βk

where βk ≥ δ
2µ
∗ω ≥ 0 is a smooth closed (1, 1)-form on X̂ that is > 0 in the complement X̂rE

of the exceptional divisor, ck = 1+bδ
mk

> 0, and Dk is a divisor that includes all components

E` of E. The map µ can be obtained by Hironaka [Hir64] as a composition of a sequence of
blow-ups with smooth centers, and we can even achieve that Dk and E are normal crossing
divisors. In this circumstance, it is well known that there exist arbitrary small numbers η` > 0
such that βk −

∑
η`[E`] is a Kähler class on X̂. Hence we can find a quasi-psh potential θ̂k on

X̂ such that β̂k := βk −
∑
η`[E`] + ddcθ̂k is a Kähler metric on X̂, and by taking the η` small

enough, we may assume that
∫
X̂

(β̂k)n ≥ 1
2

∫
X̂
βnk . Now, we write

α+ δω + ddc
(
(1 + bδ)ψB,k

)
≥ α+ εkω + ddcψB,k + (δ − εk)ω − bδ(α+ εkω)

≥ (α+ εkω + ddcψB,k) + δ
2ω

for k ≥ k0(δ) and b > 0 small (independent of δ and k). The assumption on the numerical
dimension of i

2πΘL,h = α + ddcϕ implies the existence of a constant c > 0 such that, with
Z = µ(E) ⊂ X, we have∫

X̂

βnk =

∫
X

1XrZ
(
α+ δω + ddc((1 + bδ)ψB,k)

)n
≥
(
n

p

)(δ
2

)n−p ∫
XrZ

(
α+ εkω + ddcψB,k

)p ∧ ωn−p ≥ c δn−p ∫
X

ωn

for all k ≥ k0(δ). Therefore, we may assume∫
X̂

(β̂k)n ≥ c

2
δn−p

∫
X

ωn.

By Yau’s theorem [Yau78], there exists a quasi-psh potential τ̂k on X̂ such that β̂k + ddcτ̂k is

a Kähler metric on X̂ with a prescribed volume form f̂ > 0 such that
∫
X̂
f =

∫
X̂
β̂nk . By the

above discussion, we can take here f̂ > c
3δ
n−pµ∗ωn everywhere on X̂.

Now, we consider θk = µ∗θ̂k and τk = µ∗τ̂k ∈ L1
loc(X). Since θ̂k was defined in such a way

that ddcθ̂k = β̂k − βk +
∑
` η`[E`], we get

µ∗
(
α+ δω + ddc((1 + bδ)ψB,k + γ(θk + τk))

)
= ck[Dk] + (1− γ)βk + γ

(∑
`

η`[E`] + β̂k + ddcτ̂k

)
≥ 0.

This implies in particular that Φγ,δ := (1 + bδ)ψB,k + γ(θk + τk) is a quasi-psh potential on X
and that

µ∗
(
α+ δω + ddcΦγ,δ

)
≥ (1− γ)βk ≥

δ

2
(1− γ)µ∗ω,
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thus condition (b) is satisfied. Putting Zδ = µ(|Dk|) ⊃ µ(E) = Z, we also have

µ∗1XrZδ
(
α+ δω + ddcΦγ,δ

)n ≥ γn β̂nk ≥ c

3
γnδn−pµ∗ωn,

therefore condition (c) is satisfied as well with a = c/3. Property (a) is clear, and (d) holds

since the quasi-psh function θ̂k+ τ̂k must be bounded from above on X̂. We will actually adjust
constants in θ̂k + τ̂k (as we may), so that supX Φ1,δ = 0. Since ϕ ≤ ψB,k ≤ ψB,0 ≤ A0 :=
supX ψB,0 and

Φγ,δ = (1 + bδ)ψB,k + γ
(
Φ1,δ − ψB,k

)
= (1− γ + bδ)ψB,k + γΦ1,δ,

we have
(1 + bδ)ϕ− γ(A0 − ψB,k) ≤ Φγ,δ ≤ (1− γ + bδ)A0

and the estimates in (e) follow with A = (1 + b)A0. The only remaining property to be proved
is (f). Condition (d) actually implies I(Φγ,δ) ⊂ I((1 + bδ)ψB,k), and Cor. 1.12 also gives
I((1 + bδ)ψB,k) ⊂ I((1 + bδ/2)ϕ) if we take k ≥ k0(δ) large enough, hence I(Φγ,δ) ⊂ I+(ϕ)
for δ ≤ δ0 small. In the opposite direction, we observe that Φ1,γ satisfies α + ω + ddcΦ1,δ ≥ 0
and supX Φ1,δ = 0, hence Φ1,δ belongs to a compact family of quasi-psh functions. A standard
result of potential theory then shows the existence of a uniform small constant c0 > 0 such that∫
X

exp(−c0Φ1,δ)dVω < +∞ for all δ ∈ ]0, 1]. If f ∈ OX,x is a germ of holomorphic function and
U a small neighborhood of x, the Hölder inequality combined with estimate (e) implies∫

U

|f |2 exp(−Φγ,δ)dVω ≤ eA
(∫

U

|f |2e−p(1+bδ)ϕdVω

) 1
p
(∫

U

|f |2e−qγΦ1,δdVω

) 1
q

.

We fix λ0 > 1 so that I(λ0ϕ) = I+(ϕ), p ∈ ]1, λ0[ (say p = 1 + λ0)/2), and take

γ ≤ γ0 :=
c0
q

= c0
λ0 − 1

λ0 + 1
and δ ≤ δ0 ∈ ]0, 1] so small that p(1 + bδ0) ≤ λ0.

Then clearly f ∈ I(λ0ϕ) implies f ∈ I(Φγ,δ), and (f) is proved. �

The rest of the arguments proceeds along the lines of [Dem82], [Mou95] and [DP02]. Let
(L, h) be a pseuffective line bundle and p = nd(L, h) = nd( i ΘL,h). We equip L be the hermitian
metric hδ defined by the quasi-psh weight Φδ = Φγ0,δ obtained in Prop. 4.1 , with δ ∈ ]0, δ0].
Since Φδ is smooth on X r Zδ, the well-known Bochner-Kodaira identity shows that for every
smooth (n, q)-form u with values in KX ⊗ L that is compactly supported on X r Zδ, one has

‖∂u‖2δ + ‖∂∗u‖2δ ≥ 2π

∫
X

(λ1,δ + . . .+ λq,δ − qδ)|u|2e−ΦδdVω,

where ‖u‖2δ :=
∫
X
|u|2ω,hδdVω =

∫
X
|u|2e−ΦδdVω and

0 < λ1,δ(x) ≤ . . . ≤ λn,δ(x)

are, at each point x ∈ X, the eigenvalues of α + δω + ddcΦδ with respect to the base Kähler
metric ω. Notice that the λj,δ(x) − δ are the actual eigenvalues of i

2πΘL,hδ = α + ddcΦδ with

respect to ω and that the inequality λj,δ(x) ≥ δ
2 (1 − γ) > 0 is guaranted by Prop. 4.1 (b).

After dividing by 2πq (and neglecting that constant in the left hand side), we get

(4.3) ‖∂u‖2δ + ‖∂∗u‖2δ + δ‖u‖2δ ≥
∫
X

(λ1,δ + . . .+ λq,δ)|u|2e−ΦδdVω.
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A standard Hahn-Banach argument in the L2-theory of the ∂-operator then yields the following
conclusion.

4.5. Proposition. For every L2 section of Λn,qT ∗X ⊗ L such that ‖f‖δ < +∞ and ∂f = 0 in
the sense of distributions, there exists a L2 section v = vδ of Λn,q−1T ∗X ⊗ L and a L2 section
w = wδ of Λn,qT ∗X ⊗ L such that f = ∂v + w with

‖v‖2δ +
1

δ
‖w‖2δ ≤

∫
X

1

λ1,δ + . . .+ λq,δ
|f |2e−ΦδdVω.

Because of the singularities of the weight on Zδ, one should in fact argue first on X r Zδ and
approximate the base Kähler metric ω by a metric ω̂δ,ε = ω + εω̂δ that is complete on X rZδ,
exactly as explained in [Dem82]; we omit the (by now standard) details here. A consequence
of Prop. 4.5 is that the “error term” w satisfies the L2 bound

(4.6)

∫
X

|w|2e−ΦδdVω ≤
∫
X

δ

λ1,δ + . . .+ λq,δ
|f |2e−ΦδdVω.

The idea for the next estimate is taken from Mourougane’s PhD thesis [Mou95].

4.7. Lemma. The ratio ρδ(x) := δ/(λ1,δ(x) + . . . + λq,δ(x)) is uniformly bounded on X
(independently of δ), and, as soon as q ≥ n − nd(L, h) + 1, there exists a subsequence (ρδ`),
δ` → 0, that tends almost everywhere to 0 on X.

Proof. By estimates (b,c) in Prop. 4.1 , we have λj,δ(x) ≥ δ
2 (1− γ0) and

(4.8) λ1,δ(x) . . . λn,δ(x) ≥ aγn0 δn−p where p = nd(L, h).

Therefore we already find ρδ(x) ≤ 2/q(1− γ0). Now, we have∫
XrZδ

λn,δ(x)dVω ≤
∫
X

(α+ δω + ddcΦδ) ∧ ωn−1 =

∫
X

(α+ δω) ∧ ωn−1 ≤ Const,

therefore the “bad set” Sε ⊂ XrZδ of points x where λn,δ(x) > δ−ε has a volume Vol(Sε) ≤ Cδε
converging to 0 as δ → 0 (with a slightly more elaborate argument we could similarly control
any elementary symmetric function in the λj,δ’s, but this is not needed here). Outside of Sε,
the inequality (4.8 ) yields

λq,δ(x)qδ−ε(n−q) ≥ λq,δ(x)qλn,δ(x)n−q ≥ aγn0 δn−p

hence
λq,δ(x) ≥ cδ

n−p+(n−q)ε
q and ρδ(x) ≤ Cδ1−n−p+(n−q)ε

q .

If we take q ≥ n − p + 1 and ε > 0 small enough, the exponent of δ in the final estimate is
positive, and Lemma 4.7 follows. �

Proof of Junyan Cao’s Theorem, Th. 0.10 . Let {f} be a cohomology class in the group
Hq(X,KX ⊗ L ⊗ I+(h)), q ≥ n − nd(L, h) + 1. Consider a finite Stein open covering U =
(Uα)α=1,...,N by coordinate balls Uα. There is an isomorphism between Čech cohomology
Ȟq(U,F) with values in the sheaf F = O(KX ⊗L)⊗ I+(h) and the cohomology of the complex
(K•δ , ∂) of (n, q)-forms u such that both u and ∂u are L2 with respect to the weight Φδ, i.e.∫
X
|u|2 exp(−Φδ)dVω < +∞ and

∫
X
|∂u|2 exp(−Φδ)dVω < +∞. The isomorphism comes from
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Leray’s theorem and from the fact that the sheafified complex (K•δ , ∂) is a complex of C∞-
modules that provides a resolution of the sheaf F : the main point here is that I(Φδ) = I+(ϕ) =
I+(h), as asserted by Prop. 4.1 (f), and that we can locally solve ∂-equations by means of
Hörmander’s estimates [Hör66].

Let (ψα) be a partition of unity subordinate to U. The explicit isomorphism between Čech
cohomology and L2 cohomology yields a smooth L2 representative f =

∑
|I|=q fI(z)dz1 ∧ ... ∧

dzn ∧ dzI which is a combination

f =
∑
α0

ψα0
cα0α1...αq∂ωα1

∧ . . . ∧ ∂ψαq

of the components of the corresponding Čech cocycle

cα0α1...αq ∈ Γ
(
Uα0
∩ Uα1

∩ . . . ∩ Uαq ,O(F)
)
.

Estimate (e) in Prop. 4.1 implies the Hölder inequality∫
X

ρδ|f |2 exp(−Φδ)dVω ≤ eA
(∫

X

ρpδ |f |
2e−p(1+bδ)ϕdVω

)1
p
(∫

X

|f |2e−qγ0Φ1,δdVω

)1
q

.

Our choice of δ ≤ δ0, γ0 and p, q shows that the integrals in the right hand side are convergent,
and especially

∫
X
|f |2e−p(1+bδ)ϕdVω < +∞. Lebesgue’s dominated convergence theorem com-

bined with Lemma 4.7 implies that the Lp-part goes to 0 as δ = δ` → 0, hence the “error term”
w converges to 0 in L2 norm by estimate (4.6 ). If we express the corresponding class {w} in
Čech cohomology and use Hörmander’s estimates on the intersections Uα =

⋂
Uαj , we see that

{w} will be given by a Čech cocycle (w̃α) such that
∫
Uα
|w̃α|2e−ΦδdVω → 0 as δ = δ` → 0 (we

may lose here some fixed constants since Φδ is just quasi-psh on our balls, but this is irrelevant
thanks to the uniform lower bounds for the Hessian). The inequality Φδ ≤ A in Prop. 4.1
(e) shows that we have as well an unweighted L2 estimate

∫
Uα
|w̃α|2dV → 0. However it is

well-known that when one takes unweighted L2 norms on spaces of Čech cocyles (or uniform
convergence on compact subsets, for that purpose), the resulting topology on the finite dimen-
sional space Ȟq(U,F) is Hausdorff, so the subspace of coboundaries is closed in the space of
cocycles. Hence we conclude from the above that f is a coboundary, as desired. �

4.9. Remark. In this proof, it is remarkable that we can control the error term w, but a priori
completely lose control on the element v such that ∂v ≈ f when δ → 0 !

5. Compact Kähler threefolds without nontrivial subvarieties

The bimeromorphic classification of compact Kähler manifolds leads to considering those,
termed as “simple”, that have as little internal structure as possible, and are somehow the
elementary bricks needed to reconstruct all others through meromorphic fibrations (cf. [Cam80],
[Cam85]).

5.1. Definition. A compact Kähler manifold X is said to be simple if there does not exist any
irreducible analytic subvariety Z with 0 < dimZ < dimX through a very generic point x ∈ X,
namely a point x in the complement X r

⋃
Sj of a countable union of analytic sets Sj (X.

Of course, every one dimensional manifold X is simple, but in higher dimensions n > 1, one
can show that a very generic torus X = Cn/Λ has no nontrivial analytic subvariety Z at all (i.e.
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none beyond finite sets and X itself), in any dimension n. In even dimension, a very generic
Hyperkähler manifold can be shown to be simple as well. It has been known since Kodaira that
there are no other simple Kähler surfaces (namely only very generic 2-dimensional tori and K3
surfaces). Theefore, the next dimension to be investigated is dimension 3. A partial answer has
been recently given for “strongly simple” Kähler threefolds in [CDV13]; we give here a short
account of these results and refer to the latter paper for further details.

The simplicity assumption implies that the algebraic dimension is a(X) = 0, in particular
X cannot be projective, and cannot either be uniruled (i.e. covered by rational curves). By
the Kodaira embedding theorem, we also infer that H0(X,Ω2

X) 6= 0, otherwise X would be
projective. One of the most crucial arguments is the following strong and difficult theorem of
Brunella [Bru10].

5.2. Theorem. ([Bru10]) Let X be a compact Kähler manifold with a 1-dimensional holomor-
phic foliation F given by a nonzero morphism of vector bundle L → TX , where L is a line
bundle on X, and TX is its holomorphic tangent bundle. If L−1 is not pseudoeffective, the
closures of the leaves of F are rational curves, and X is thus uniruled.

We use this result in the form of the following corollary, which has been observed in [HPR11],
Proposition 4.2.

5.3. Corollary. If X is a non uniruled n-dimensional compact Kähler manifold with
H0(X,Ωn−1

X ) 6= 0, then KX is pseudoeffective.

Proof. Ωn−1
X is canonically isomorphic to KX ⊗TX . Any nonzero section of Ωn−1

X thus provides
a nonzero map K−1

X → TX , and an associated foliation. �

It follows from the above that the canonical line bundle KX of our simple threefold X must
be pseudoeffective. We then use the following simple observation.

5.4. Proposition. Assume that X is a strongly simple compact complex manifold. Then
every pseudoeffective line bundle (L, h) is nef, and all multiplier sheaves I(hm) are trivial, i.e.
I(hm) = OX . Moreover, we have c1(L)n = 0.

Proof. Since there are not positive dimensional analytic subvarieties, the zero varieties of the
ideal sheaves I(hm) must be finite sets of points, hence, by Skoda [Sko72a], the Lelong numbers
ν( i ΘL,h, x) are zero except on a countable set S ⊂ X. By [Dem92], this implies that L is nef
and c1(L)n ≥

∑
x∈S ν( i ΘL,h, x)n. However, by the Grauert-Riemenschneider conjecture solved

in [Siu84], [Siu85] and [Dem85b], the positivity of c1(L)n would imply that a(X) = n (i.e. X
Moishezon, a contradiction). Therefore c1(L)n = 0 and S = ∅. �

5.5. Proposition. Let X be a compact Kähler manifold of dimension n > 1 without any
non-trivial subvariety, and with KX pseudoeffective. Then

hj(X,K⊗mX ) ≤ h0(X,ΩjX ⊗K
⊗m
X ) ≤

(
n

j

)
for every j ≥ 0,

and the Hilbert polynomial P (m) := χ(X,K⊗mX ) is constant, equal to χ(X,OX).

Proof. The inequality hj(X,K⊗mX ) ≤ h0(X,ΩjX ⊗ K⊗mX ) follows from the Hard Lefschetz
Theorem 0.8 applied with L = KX and the corresponding trivial multiplier ideal sheaf. Also,
for any holomorphic vector bundle E on X, we have h0(X,E) ≤ rank(E), otherwise, some
ratios of determinants of sections would produce a nonconstant meromorphic function, and



28 Jean-Pierre Demailly, On the cohomology of pseudoeffective line bundles

thus a(X) > 0, contradiction; here we take E = ΩjX ⊗K
⊗m
X and get rankE =

(
n
j

)
. The final

claim is clear because a polynomial function P (m) which remains bounded as m → +∞ is
necessarily constant. �

5.6. Corollary. Let X be a strongly simple Kähler threefold. Let hi,j = dimHi,j(X,C) be the
Hodge numbers. We have

c1(X)3 = c1(X) · c2(X) = 0, χ(X,OX) = 0 and q := h1,0 > 0.

Proof. The intersection number K3
X = −c1(X)3 vanishes because it is the leading term of

P (m), up to the factor 3!. The Riemann-Roch formula then gives

P (m) =
(1− 12m)

24
c1(X) · c2(X).

The boundedness of P (m) implies χ(X,OX) = 1
24c1(X) · c2(X) = 0. Now, we write

0 = χ(X,OX) = 1− h1,0 + h2,0 − h3,0.

By Kodaira’s theorem, h2,0 > 0 since X is not projective, and h3,0 ≤ 1 since a(X) = 0. Thus
0 = 1− h1,0 + h2,0 − h3,0 ≥ 1− q + 1− 1 = 1− q, and q > 0. �

Everything is now in place for the final conclusion.

5.7. Theorem. For any strongly simple Kähler threefold X, the Albanese map α : X → Alb(X)
is a biholomorphism of 3-dimensional tori.

Proof. Since q = h1,0 > 0, the Albanese map α is non constant. By simplicity, X cannot
possess any fibration with positive dimensional fibers, so we must have dimα(X) = dimX = 3,
and as q = h1,0 = h0(X,Ω1

X) ≤ 3 (Prop. 5.5 with j = 1, m = 0) the Albanese map α must be
surjective. The function det(dα) cannot vanish, otherwise we would get a non trivial divisor,
so α is étale. Therefore X is a 3-dimensional torus, as a finite étale cover of the 3-dimensional
torus Alb(X), and α must be an isomorphism. �
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[Mŏı66] B. G. Mŏı̌sezon. On n-dimensional compact complex manifolds having n algebraically independent
meromorphic functions. I, II, III. Izv. Akad. Nauk SSSR Ser. Mat., 30:133–174, 345–386, 621–656,
1966.
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