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0. Introduction

The main purpose of these notes is to describe analytic techniques which are useful to study questions such
as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. One century after the
ground-breaking work of Riemann on geometric aspects of function theory, the general progress achieved in
differential geometry and global analysis on manifolds resulted into major advances in the theory of algebraic
and analytic varieties of arbitrary dimension. One central unifying concept is the concept of positivity, which
can ve viewed either in algebraic terms (positivity of divisors and algebraic cycles), or in more analytic terms
(plurisubharmonicity, hermitian connections with positive curvature). In this direction, one of the most basic
result is Kodaira’s vanishing theorem for positive vector bundles (1953-54), which is a deep consequence of the
Bochner technique and of the theory of harmonic forms initiated by W.V.D. Hodge during the 1940’s. This method
quickly led Kodaira to the well-known embedding theorem for projective varieties, a far reaching extension of
Riemann’s characterization of abelian varieties. Further refinements of the Bochner technique led ten years later
to the theory of L? estimates for the Cauchy-Riemann operator, (J.J. Kohn [Koh63, 64], Andreotti-Vesentini
[AV65], [Hor65]). Not only vanishing theorems can be proved of reproved in that manner, but perhaps more
importantly, extremely precise information of a quantitative nature is obtained about solutions of d-equations,
their zeroes, poles and growth at infinity.
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What makes the theory extremely flexible is the possibility to formulate existence theorems with a wide
assortment of different L? norms, namely norms of the form [ < If |2¢=2%¢ where ¢ is a plurisubharmonic or strictly
plurisubharmonic function on the given manifold or variety X. Here, the weight ¢ need not be smooth, and it is on
the contrary extremely important to allow weights which have logarithmic poles of the form ¢(z) = clog > |g; /%,
where ¢ > 0 and (g;) is a collection of holomorphic functions possessing a common zero zet Z C X. Following
Nadel [Nad89], one defines the multiplier ideal sheaf Z(¢) to be the sheaf of germs of holomorphic functions f such
that | f|?e=2% is locally summable. Then Z(¢) is a coherent algebraic sheaf over X and H1(X, Kx @ LQZ(p)) =0
for all ¢ > 1 if the curvature of L is positive as a current. This important result can be seen as a generalization
of the Kawamata-Viehweg vanishing theorem ([Kaw82], [Vie82]), which is one of the cornerstones of higher
dimensional algebraic geometry, especially in relation with Mori’s minimal model program.

In the dictionary between analytic geometry and algebraic geometry, the ideal Z(p) plays a very important
role, since it directly converts an analytic object into an algebraic one, and, simultaneously, takes care of the
singularities in a very efficient way. Another analytic tool used to deal with singularities is the theory of positive
currents introduced by Lelong [Lel57]. Currents can be seen as generalizations of algebraic cycles, and many
classical results of intersection theory still apply to currents. The concept of Lelong number of a current is the
analytic analogue of the concept of multiplicity of a germ of algebraic variety. Intersections of cycles correspond
to wedge products of currents (whenever these products are defined).

Another very important result is the L? extension theorem by Ohsawa-Takegoshi [OT87, Ohs88| (see also
Manivel [Man93]). The main statement is that every L? section f of a suitably positive line bundle defined on
a subavariety Y C X can be extended to a L? section f defined over the whole of X. The positivity condition
can be understood in terms of the canonical sheaf and normal bundle to the subvariety. The extension theorem
turns out to have an incredible amount of important consequences: among them, let us mention for instance
Siu’s theorem [Siu74] on the analyticity of Lelong numbers, Skoda’s division theorem for ideals of holomorphic
functions, a basic approximation theorem of closed positive (1, 1)-currents by divisors, the subadditivity property
I(p + ) C Z(p)Z(¢) of multiplier ideals [DELOOQ], the restriction formula Z(y)y) C Z(¢)}y, ... . A suitable
combination of these results can be used to reprove Fujita’s result [Fuj94] on approximate Zariski decomposition,
as detailed in section 10.

In section 11, we show how subadditivity can be used to derive an “equisingular” approximation theorem
for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost)
plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal
sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in
a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted
by the relevant multiplier ideal sheaves.

Section 12 explains the proof of Siu’s theorem on the invariance of plurigenera, according to a beautiful
approach developped by Mihai Padun [Pau07]. The proofs consists of an iterative process based on the Ohsawa-
Takegoshi theorem, and a very clever limiting argument for currents.

Sections 13 to 15 are devoted to the study of positive cones in Kéhler or projective geometry. Recent “algebro-
analytic” characterizations of the Kéhler cone ([DP04]) and the pseudo-effective cone of divisors ([BDPP04]) are
explained in detail. This leads to a discussion of the important concepts of volume and mobile intersections,
following S.Boucksom’s PhD work [Bou02]. As a consequence, we show that a projective algebraic manifold has
a pseudo-effective canonical line bundle if and only if it is not uniruled.

Section 16 presents some important ideas of H. Tsuji, later refined by Berndtsson and Paun, concerning the
so-called “super-canonical metrics”, and their interpretation in terms of the invariance of plurigenera and of the
abundance conjecture. As the concluding section, we state Paun’s version of the Shokurov-Hacon-McKernan-Siu
non vanishing theorem and give an account of the very recent approach of the proof of the finiteness of the
canonical ring by Birkar-Paun [BiP09], based on the ideas of Hacon-McKernan and Siu.

I would like to thank the organizers of the Graduate Summer School on Analytic and Algebraic Geometry
held at the Park City Mathematical Institute in July 2008 for their invitation to give a series of lectures, and
thus for the opportunity of publishing these notes.
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1. Preliminary material

1.A. Dolbeault cohomology and sheaf cohomology

Let X be a C-analytic manifold of dimension n. We denote by A?¢T% the bundle of differential forms of bidegree
(p,q) on X, i.e., differential forms which can be written as

U= Z uLszI/\dZ].

[I1=p,|J]=q
Here (21, ..., zn) denote arbitrary local holomorphic coordinates, I = (i1,...,%p), J = (j1, ..., Jq) are multiindices
(increasing sequences of integers in the range [1,...,n], of lengths |I| = p, |J| = ¢), and
dzyp :=dzy, Ao Ndz,, dzj :=dzj N... Ndzj,.

Let €77 be the sheaf of germs of complex valued differential (p, ¢)-forms with C*° coefficients. Recall that the
exterior derivative d splits as d = d’ + d’" where

ou
d'u = Z aIJde/\dZ[/\dZ],
Tl=p, |/|=g1<k<n O K
6u1 J
d'v = 2 dzr ANdzp ANdZ
S g g

[I|=p, |J|=q,1<k<n

are of type (p+ 1,q), (p,q + 1) respectively. The well-known Dolbeault-Grothendieck lemma asserts that any
d"-closed form of type (p,q) with ¢ > 0 is locally d”-exact (this is the analogue for d” of the usual Poincaré
lemma for d, see e.g. [Hor66]). In other words, the complex of sheaves (EP:*,d") is exact in degree g > 0; in degree
q =0, Kerd"” is the sheaf 2% of germs of holomorphic forms of degree p on X.

More generally, if F' is a holomorphic vector bundle of rank r over X, there is a natural d’ operator acting
on the space C®(X, AP9T% ® F) of smooth (p, q)-forms with values in F; if s = ZKAQ sxex is a (p, g)-form
expressed in terms of a local holomorphic frame of F', we simply define d’s := > d"s) ® ey, observing that
the holomorphic transition matrices involved in changes of holomorphic frames do not affect the computation
of d”. Tt is then clear that the Dolbeault-Grothendieck lemma still holds for F-valued forms. For every integer
p =0,1,...,n, the Dolbeault Cohomology groups HP'4(X, F) are defined to be the cohomology groups of the
complex of global (p, q) forms (graded by ¢):

(1.1) HPY(X, F) = HY(C™(X, AP*T% @ F)).

Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil isomorphism theorem): let
(L£*,d) be a resolution of a sheaf A by acyclic sheaves, i.e. a complex of sheaves (L£*,d) such that there is an
exact sequence of sheaves

00— A Jup0 8 pt o pa O parl
and H*(X,£%) =0 for all ¢ > 0 and s > 1. Then there is a functorial isomorphism
(1.2) HY(I(X,L%) — HY(X,A).

We apply this to the following situation: let E(F)P? be the sheaf of germs of C* sections of AP7T% ® F. Then
(E(F)P-*,d") is a resolution of the locally free Ox-module 2% @ O(F) (Dolbeault-Grothendieck lemma), and the
sheaves E(F)P? are acyclic as modules over the soft sheaf of rings C*°. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle F' on X, there is a canonical
isomorphism
HP(X,F)~ HI(X, 2% ® O(F)). O

If X is projective algebraic and F' is an algebraic vector bundle, Serre’s GAGA theorem [Ser56] shows that the
algebraic sheaf cohomology group HY(X, 2% ® O(F)) computed with algebraic sections over Zariski open sets is
actually isomorphic to the analytic cohomology group. These results are the most basic tools to attack algebraic
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problems via analytic methods. Another important tool is the theory of plurisubharmonic functions and positive
currents originated by K. Oka and P. Lelong in the decades 1940-1960.

1.B. Plurisubharmonic functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka in the study of holomorphic
convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u : 2 — [—00, +00[ defined on an open subset 2 C C™ is said to be plurisubharmonic
(psh for short) if
(
(

a) u is upper semicontinuous ;

b) for every complex line L C C™, unnr is subharmonic on 2 N L, that is, for all a € 2 and £ € C™ with
|€] < d(a,C82), the function u satisfies the mean value inequality

1 2 0
— &) do.
u(a) < /o u(a +€7¢)

Soor
The set of psh functions on §2 is denoted by Psh({2).
We list below the most basic properties of psh functions. They all follow easily from the definition.

(1.5) Basic properties.

(a) Every function v € Psh({2) is subharmonic, namely it satisfies the mean value inequality on euclidean balls

or spheres:
1
u(a) < Wn/n' /B(a.rr) U(Z) d)\(Z)
for every a € 2 and r < d(a,C2). Either u = —occ or u € L _ on every connected component of (2.

(b) For any decreasing sequence of psh functions uy € Psh(f2), the limit u = lim uy, is psh on (2.

(c) Let u € Psh(£2) be such that u Z —oo on every connected component of 2. If (p.) is a family of smoothing
kernels, then u x p. is C*° and psh on

2. ={ze€2;d=00) > ¢},
the family (u * p.) is increasing in e and lim. g u * p. = u.

(d) Let u1,...,up, € Psh(£2) and x : R» — R be a convex function such that x(¢1,...,t,) is increasing in each
tj. Then x(u1,...,up) is psh on 2. In particular wy +-- - 4 up, max{u1,...,up}, log(e** 4 -- -+ €“») are psh
on {2. O

(1.6) Lemma. A function u € C?(§2,R) is psh on §2 if and only if the hermitian form
Hu(a)(§) = Y 0°u/0z0%k(a) &8,
1<4,k<n

is semi-positive at every point a € {2.

Proof. This is an easy consequence of the following standard formula

1o ” 2 [l
o | ua+?Qdd—ul@ == [ T [ Hula+ ) dAQ),
™ Jo mJo b Jigi<e
where d\ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that plurisubharmonicity is the natural
complex analogue of linear convexity. O

For non smooth functions, a similar characterization of plurisubharmonicity can be obtained by means of a
regularization process.
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(1.7) Theorem. If u € Psh(2), u £ —oo on every connected component of §2, then for all & € C™

0%u —
Hu(€) = I eE eD(0
w)= D g D@
1<j,k<n
is a positive measure. Conversely, if v € D'(£2) is such that Hv(§) is a positive measure for every & € C™, there

exists a unique function u € Psh({£2) which is locally integrable on 2 and such that v is the distribution associated
to u. (I

In order to get a better geometric insight of this notion, we assume more generally that u is a function on a
complex n-dimensional manifold X. If & : X — Y is a holomorphic mapping and if v € C?(Y,R), we have
d'd"(vo®) = &*d'd"v, hence

H(vo®)(a,&) = Hv(®(a), ' (a).£).
In particular Hu, viewed as a hermitian form on Ty, does not depend on the choice of coordinates (z1,...,zn).
Therefore, the notion of psh function makes sense on any complex manifold. More generally, we have

(1.8) Proposition. If & : X — Y is a holomorphic map and v € Psh(Y'), then v o @ € Psh(X). O

(1.9) Example. It is a standard fact that log |z| is psh (i.e. subharmonic) on C. Thus log|f| € Psh(X) for every
holomorphic function f € H°(X,Ox). More generally

log ([f1]** + -+ + [ f4]*?) € Psh(X)

for every f; € H%(X,Ox) and «; > 0 (apply Property 1.5d with u; = «; log|f;|). We will be especially interested
in the singularities obtained at points of the zero variety f; = ... = f; = 0, when the «; are rational numbers. [

(1.10) Definition. A psh function u € Psh(X) will be said to have analytic singularities if u can be written locally
as

«
u = §log(|fl|2 o N P) + o,

where a € Ry, v is a locally bounded function and the f; are holomorphic functions. If X is algebraic, we say
that u has algebraic singularities if u can be written as above on sufficiently small Zariski open sets, with o € Q4
and f; algebraic.

We then introduce the ideal J = J(u/a) of germs of holomorphic functions h such that |h| < Ce®® for some
constant C, i.e.
b < C(lfal+ -+ |fnl)-

This is a globally defined ideal sheaf on X, locally equal to the integral closure Z of the ideal sheaf Z = (f1, ..., fn),
thus J is coherent on X. If (g1,...,gn/) are local generators of 7, we still have

«
u=3log (lg1* + -+ lgn[*) + O(1).

If X is projective algebraic and w has analytic singularities with o € Q, then u automatically has algebraic
singularities. From an algebraic point of view, the singularities of u are in 1:1 correspondence with the “algebraic
data” (J,«). Later on, we will see another important method for associating an ideal sheaf to a psh function.

(1.11) Exercise. Show that . the above definition of the integral closure of an ideal Z is equivalent to the following
more algebraic definition: Z consists of all germs h satisfying an integral equation

h+ah® '+ .. 4+ ag_1h +aq =0, ap € I".

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization of the blow-up of X along
the (non necessarily reduced) zero variety V(7). O
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1.C. Positive currents

The reader can consult [Fed69] for a more thorough treatment of current theory. Let us first recall a few basic
definitions. A current of degree ¢ on an oriented differentiable manifold M is simply a differential g-form @ with
distribution coefficients. The space of currents of degree ¢ over M will be denoted by D'9(M). Alternatively, a
current of degree ¢ can be seen as an element © in the dual space D, (M) := (DP(M))I of the space DP(M) of
smooth differential forms of degree p = dim M — ¢ with compact support; the duality pairing is given by

(1.12) <(9,a>:/ OANa, «o€DP(M).

M
A basic example is the current of integration [S] over a compact oriented submanifold S of M :
(1.13) ([9], e) = / a, dega =p=dimgS.

S

Then [S] is a current with measure coefficients, and Stokes’ formula shows that d[S] = (—1)?71[35], in particular
d[S] = 0 if S has no boundary. Because of this example, the integer p is said to be the dimension of @ when
© € D, (M). The current O is said to be closed if dO© = 0.
On a complex manifold X, we have similar notions of bidegree and bidimension; as in the real case, we denote
by
DPUX) =D, (X), n = dim X,

n—p,n—q

the space of currents of bidegree (p, ¢) and bidimension (n — p,n — ¢q) on X. According to [Lel57], a current ©

of bidimension (p, p) is said to be (weakly) positive if for every choice of smooth (1,0)-forms a1, ...,a, on X the
distribution
(1.14) O ANiag Aag A ... Ny ATy, is a positive measure.

(1.15) Exercise. If © is positive, show that the coefficients @ ; of © are complex measures, and that, up to
constants, they are dominated by the trace measure

1 . .
U@:@/\Hﬁp:2_pZ@[7[, ﬁ:%d’d"|z|2:% Z dzj N\ dz;,

1<j<n

which is a positive measure.
Hint. Observe that Y Op ; is invariant by unitary changes of coordinates and that the (p, p)-forms iy A @1 A
... Niay, A, generate APPTE, as a C-vector space. O

A current © = iZKchgn O,rdz; A dzi, of bidegree (1,1) is easily seen to be positive if and only if the complex

measure > A\;j A0, is a positive measure for every n-tuple (A1, ..., \,) € C™.

(1.16) Example. If u is a (not identically —oo) psh function on X, we can associate with u a (closed) positive
current © = i90u of bidegree (1,1). Conversely, every closed positive current of bidegree (1,1) can be written
under this form on any open subset 2 C X such that H3 ,(2,R) = H'(£2,0) = 0, e.g. on small coordinate balls
(exercise to the reader). O

It is not difficult to show that a product ©1 A ... A O, of positive currents of bidegree (1,1) is positive whenever
the product is well defined (this is certainly the case if all ©; but one at most are smooth; much finer conditions
will be discussed in Section 2).

We now discuss another very important example of closed positive current. In fact, with every closed analytic
set A C X of pure dimension p is associated a current of integration

(1.17) (Al ) :/A 0, acDPP(X),

reg

obtained by integrating over the regular points of A. In order to show that (1.17) is a correct definition of a
current on X, one must show that A, has locally finite area in a neighborhood of Aging. This result, due to
[Lel57] is shown as follows. Suppose that 0 is a singular point of A. By the local parametrization theorem for
analytic sets, there is a linear change of coordinates on C™ such that all projections
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(21, 20) = (Zi, -5 20)

define a finite ramified covering of the intersection A N A with a small polydisk A in C™ onto a small polydisk
Ay in CP. Let nj be the sheet number. Then the p-dimensional area of A N A is bounded above by the sum of
the areas of its projections counted with multiplicities, i.e.

Area(AN A) <Y nyVol(4p).
The fact that [A] is positive is also easy. In fact
g A@y AL Alay Ad, = [ det(agr) | iwr A AL Adwy AT,

if a;j =Y ajpdwy, in terms of local coordinates (w1, ..., wp) on Ayeg. This shows that all such forms are > 0 in
the canonical orientation defined by iwq AWy A ... Aiw, AW,. More importantly, Lelong [Lel57] has shown that
[4] is d-closed in X, even at points of Agne. This last result can be seen today as a consequence of the Skoda-El
Mir extension theorem. For this we need the following definition: a complete pluripolar set is a set E such that
there is an open covering (£2;) of X and psh functions u; on (2; with EN{2; = uj_l(foo). Any (closed) analytic
set is of course complete pluripolar (take u; as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a closed complete pluripolar set in X,
and let © be a closed positive current on X \ E such that the coefficients Or j of © are measures with locally

finite mass near E. Then the trivial extension © obtained by extending the measures O1 ; by 0 on E is still closed
on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to @ = [Ayeg] on X N Aging.

Proof of Theorem 1.18. The statement is local on X, so we may work on a small open set {2 such that EN {2 =
v~ (—00), v € Psh(£2). Let x : R — R be a convex increasing function such that x(t) = 0 for t < —1 and
x(0) = 1. By shrinking 2 and putting vy = x(k~'v % p.,) with e — 0 fast, we get a sequence of functions
v € Psh(2) NC>(£2) such that 0 < v, < 1, v = 0 in a neighborhood of EN {2 and lim v (x) = 1 at every point
of 2\ E. Let 6§ € C*([0,1]) be a function such that § = 0 on [0,1/3],0 = 1 on [2/3,1] and 0 < ¢ < 1. Then
Oouv,=0near EN and 6 ov, — 1 on 2~ E. Therefore © = limg—, 400 (6 0 v5)O and

1o : !
d@—kgr_iloo@/\d(eovk)

in the weak topology of currents. It is therefore sufficient to verify that © A d'(6 o vy.) converges weakly to 0 (note
that d”’© is conjugate to d’'©, thus d”© will also vanish).

Assume first that © € D=1 =1(X). Then © A d'(0 o v) € D'™"1(§2), and we have to show that

CH d’(9 o), Q) = <@,9/(’Uk)d/’0k ANa) — 0, Vac Dl’O(Q).

k—-+oo
As v+ (O,iy A7) is a non-negative hermitian form on D*9(£2), the Cauchy-Schwarz inequality yields
o2 = L
(0,18 AF)|” < (8,iBAB) (B,iyA7T),  VB,v€D(A).
Let v € D(£2), 0 < ¢ < 1, be equal to 1 in a neighborhood of Supp . We find
(O,0 (v)d've A T)|* < (O, Yidvg A d"vi) (6,0 (vp)%ia A ).

By hypothesis [, , ©AlaA@ < +oo and 0’ (vy) converges everywhere to 0 on {2, thus (6,0’ (vx)*ia A@) converges
to 0 by Lebesgue’s dominated convergence theorem. On the other hand

id’d"v,% = 2up, id' d" vy, + 2id'vi, A d"vy, > 2id v A dvg,
2(0, pid v A d"vg) < <(9,1/)id’d”v,%>.

As ¢ € D(2), vy = 0 near F and d© = 0 on {2 \ E, an integration by parts yields

©vid ') = (O fidd" ) <C [ o] <+
O\FE
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where C' is a bound for the coefficients of id’d”+. Thus (O, ¥id'vi A d’vy) is bounded, and the proof is complete
when © € p/n—lLn=1,

In the general case @ € D'PP, p < n, we simply apply the result already proved to all positive currents
O Ny e D" Ln=l where v = iy; A7, A - AYn_p-1, A7,y TUDS OVer a basis of forms of An—p=ln=p=lps
with constant coefficients. Then we get d(© Avy) = dO A+ = 0 for all such v, hence d© = 0. O

(1.19) Corollary. Let © be a closed positive current on X and let E be a complete pluripolar set. Then 156
and 1x g© are closed positive currents. In fact, © = 1x g© is the trivial extension of Ox g to X, and
1p©=6-0. O

As mentioned above, any current © = id’'d"u associated with a psh function u is a closed positive (1, 1)-current.
In the special case u = log | f| where f € H(X,Ox) is a non zero holomorphic function, we have the important

(1.20) Lelong-Poincaré equation. Let f € H(X, Ox) be a non zero holomorphic function, Zy =Y m;Z;, m; € N,
the zero divisor of f and [Zf] =" m;|Z;] the associated current of integration. Then

i —
~g9log]| 1| = 174,

Proof (sketch). It is clear that id’d” log |f| = 0 in a neighborhood of every point x ¢ Supp(Zy) = |J Z;, so it is
enough to check the equation in a neighborhood of every point of Supp(Zy). Let A be the set of singular points
of Supp(Zy), i.e. the union of the pairwise intersections Z; N Zj and of the singular loci Zj gne; we thus have
dim A < n — 2. In a neighborhood of any point « € Supp(Zy) \ A there are local coordinates (z1, ..., z,) such
that f(z) = 2,7 where m; is the multiplicity of f along the component Z; which contains z and z; = 0 is an
equation for Z; near x. Hence

Zd'd" log |f| = mj—d'd" log |z1| = m;|Z;]
™ ™

in a neighborhood of x, as desired (the identity comes from the standard formula 1d’d”log|z| = Dirac measure
8o in C). This shows that the equation holds on X \ A. Hence the difference 1d’d" log | f| —[Z] is a closed current
of degree 2 with measure coefficients, whose support is contained in A. By Exercise 1.21, this current must be 0,
for A has too small dimension to carry its support (A is stratified by submanifolds of real codimension > 4). O

(1.21) Exercise. Let © be a current of degree ¢ on a real manifold M, such that both © and d© have measure
coefficients (“normal current”). Suppose that Supp © is contained in a real submanifold A with codimg A > q.
Show that © = 0.

Hint: Let m = dimg M and let (z1,...,z,,) be a coordinate system in a neighborhood (2 of a point a € A such
that AN ={z1 =... =2, =0}, k > ¢. Observe that 2;0 = z;dO = 0 for 1 < j < k, thanks to the hypothesis
on supports and on the normality of ©, hence dz; A O = d(z,;0) — x;dO =0, 1 < j < k. Infer from this that all
coefficients in © = E|I|:q ©;dz; vanish. O

We now recall a few basic facts of slicing theory (the reader will profitably consult [Fed69] and [Siu74] for further
developments). Let o : M — M’ be a submersion of smooth differentiable manifolds and let © be a locally flat
current on M, that is, a current which can be written locally as © = U + dV where U, V have LlloC coeflicients.
It is a standard fact (see Federer) that every current @ such that both @ and d© have measure coefficients is
locally flat; in particular, closed positive currents are locally flat. Then, for almost every x’ € M’, there is a well

defined slice ©,/, which is the current on the fiber 0~!(z’) defined by
O = Urgfl(x/) + dVrgfl(I/).

The restrictions of U, V to the fibers exist for almost all 2’ by the Fubini theorem. The slices ©,+ are currents on
the fibers with the same degree as © (thus of dimension dim © — dim (fibers)). Of course, every slice @,/ coincides
with the usual restriction of © to the fiber if © has smooth coefficients. By using a regularization 6, = 0 x p.,
it is easy to show that the slices of a closed positive current are again closed and positive: in fact U, ,» and V; 4
converge to U, and Vv in Li (07! (2")), thus O, . converges weakly to O, for almost every /. Now, the basic
slicing formula is
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(1.22) / ONaNo 3= (/ @z,(x”)/\a[rl(ml)(ac”))ﬁ(x’)
M z'eM’ z'’e€o—1(z’)

for every smooth form « on M and 8 on M’, such that « has compact support and dega = dim M — dim M’ —
deg ©, deg 5 = dim M’. This is an easy consequence of the usual Fubini theorem applied to U and V in the
decomposition © = U+dV, if we identify locally o with a projection map M = M'xM" — M', x = (a/,2") — a/,
and use a partitition of unity on the support of a.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory in the context of currents.
A basic observation is that the Poincaré and Dolbeault-Grothendieck lemmas still hold for currents. Namely, if
(D'1,d) and (D'(F)P-1,d") denote the complex of sheaves of degree ¢ currents (resp. of (p, ¢)-currents with values
in a holomorphic vector bundle F'), we still have De Rham and Dolbeault sheaf resolutions

0—-R—D", 0— 2% @ O(F) — D' (F)P°.
Hence we get canonical isomorphisms

(1.23) H%R(M, R) = H‘J((I"(]M7 D"),d)),
HPI(X, F) = HI((D(X, D/ (F)P*),d")).

In other words, we can attach a cohomology class {©} € H{,(M,R) to any closed current © of degree ¢, resp.
a cohomology class {©} € HP4(X, F) to any d”-closed current of bidegree (p,q). Replacing if necessary every
current by a smooth representative in the same cohomology class, we see that there is a well defined cup product
given by the wedge product of differential forms

H?(M,R) x ... x H(M,R) — HO+-Fam (M R),
({61},....{61}) — {O1} A ... A {On ).

In particular, if M is a compact oriented variety and ¢1 + ... + ¢, = dim M, there is a well defined intersection
number

{61} - {62} - -+ '{Qm}:/M{@l}/\.../\{@m}.

However, as we will see in the next section, the pointwise product ©; A ... A ©,, need not exist in general.

2. Lelong numbers and intersection theory

2.A. Multiplication of currents and Monge-Ampeére operators

Let X be a n-dimensional complex manifold. We set

d¢ = .i(d/ N d//).
2im
It follows in particular that d° is a real operator, i.e. d°u = d°m, and that dd® = %d’d” . Although not quite
standard, the 1/2im normalization is very convenient for many purposes, since we may then forget the factor =
or 27 almost everywhere (e.g. in the Lelong-Poincaré equation (1.20)).

Let u be a psh function and let @ be a closed positive current on X. Our desire is to define the wedge
product dd°u A © even when neither v nor © are smooth. In general, this product does not make sense because
dd°u and © have measure coefficients and measures cannot be multiplied; see Kiselman [Kis84] for interesting
counterexamples. Even in the algebraic setting considered here, multiplication of currents is not always possible:
suppose e.g. that © = [D] is the exceptional divisor of a blow-up in a surface; then D - D = —1 cannot be the
cohomology class of a closed positive current [D]?. Assume however that u is a locally bounded psh function.
Then the current u@ is well defined since u is a locally bounded Borel function and © has measure coefficients.
According to Bedford-Taylor [BT82] we define

ddu N © = dd°(uO)

where dd°( ) is taken in the sense of distribution theory.
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(2.1) Proposition. If u is a locally bounded psh function, the wedge product dd°u A © is again a closed positive
current.

Proof. The result is local. Use a convolution u, = ux* p;/, to get a decreasing sequence of smooth psh functions
converging to u. Then write

dd®(u®) = lim dd°(u,0) = dd°u, N O

v——400

as a weak limit of closed positive currents. Observe that u, @ converges weakly to u©® by Lebesgue’s monotone
convergence theorem. O

More generally, if u1, ..., u, are locally bounded psh functions, we can define
dd®uy A ... Addup, A O = dd° (urdd®us A ... A ddup, A O)

by induction on m. Chern, Levine and Nirenberg [CLNG9] noticed the following useful inequality. Define the mass
of a current © on a compact set K to be

1611k :/ S (6n]
K

whenever K is contained in a coordinate patch and © = > O jdz; A dZ;. Up to seminorm equivalence, this
does not depend on the choice of coordinates. If K is not contained in a coordinate patch, we use a partition of
unity to define a suitable seminorm ||O||k. If © > 0, Exercise 1.15 shows that the mass is controlled by the trace
measure, ie. |[O||x < C [, O NP

(2.2.4) Chern-Levine-Nirenberg inequality. For all compact subsets K, L of X with L C K°, there exists a constant
Ck,r = 0 such that

||ddcu1 A AN dd Uy, /\@HL < CK,L ||u1||Loo(K) ...||Um||Loo(K) ||@||K

Proof. By induction, it is sufficient to prove the result for m = 1 and w; = w. There is a covering of L by a
family of open balls B;- CCBj C K contained in coordinate patches of X. Let (p, p) be the bidimension of O, let

B =1d'd"|z|?, and let y € D(B;) be equal to 1 on F;-. Then

dduNO||, = <C | ddunOANFPLLC | xddunO ApBPL
LNB; .
J ! .

J B;

As © and ( are closed, an integration by parts yields

ldd*u A O, < c/ WO A ddy AP < C'llull o) |16
J B]

where C' is equal to C multiplied by a bound for the coefficients of the smooth form dd®y A 5P~ 1. O

Various examples (cf. [Kis84]) show however that products of (1,1)-currents dd°u; cannot be defined in a
reasonable way for arbitrary psh functions u;. However, functions u; with —oo poles can be admitted if the polar
sets are sufficiently small.

(2.3) Proposition. Let u be a psh function on X, and let © be a closed positive current of bidimension (p,p).
Suppose that u is locally bounded on X ~\ A, where A is an analytic subset of X of dimension < p at each point.
Then dd“u N\ O can be defined in such a way that dd°uNO = lim, | o dd°u, A©O in the weak topology of currents,
for any decreasing sequence (uy)y>0 of psh functions converging to u.

Proof. When u is locally bounded everywhere, we have limu, ©® = v © by the monotone convergence theorem
and the result follows from the continuity of dd® with respect to the weak topology.

First assume that A is discrete. Since our results are local, we may suppose that X is a ball B(0, R) C C™ and
that A = {0}. For every s < 0, the function u”* = max(u, s) is locally bounded on X, so the product © A dd®u”*
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is well defined. For |s| large, the function u”* differs from u only in a small neighborhood of the origin, at which
u may have a —oo pole. Let v be a (p—1,p —1)-form with constant coefficients and set s(r) = liminf|.|_,_ou(z).
By Stokes’ formula, we see that the integral

(2.4) I(s) := / ddu”* NO Ay
B(0,r)

does not depend on s when s < s(r), for the difference I(s) — I(s’) of two such integrals involves the dd® of a
current (u”* — u”*') A @ A~ with compact support in B(0,r). Taking v = (dd®|z|>)P~!, we see that the current
dd®u A © has finite mass on B(0,7) \ {0} and we can define (1{g}(dd°u A ©),7) to be the limit of the integrals
(2.4) as r tends to zero and s < s(r). In this case, the weak convergence statement is easily deduced from the
locally bounded case discussed above.

In the case where 0 < dim A < p, we use a slicing technique to reduce the situation to the discrete case.
Set ¢ = p — 1. There are linear coordinates (z1,..., z,) centered at any point of A, such that 0 is an isolated
point of AN ({0} x C"~4). Then there are small balls B’ = B(0,r") in C%, B” = B(0,r"”) in C"~7 such that
AN (B x dB") =0, and the projection map

7:C" = C%  z=(21,...,20) — 2 = (21,...,2)

defines a finite proper mapping A N (B’ x B”) — B’. These properties are preserved if we slightly change the
direction of projection. Take sufficiently many projections m,, associated to coordinate systems (z{,...,z""),
1 <m < N, in such a way that the family of (g, ¢)-forms

idz]" NdED A LN A dZY

defines a basis of the space of (g, q)-forms. Expressing any compactly supported smooth (g, ¢)-form in such a
basis, we see that we need only define

(2.5) / dduNO N f(2',2")idzy Ndzy A ... Nidzg NdzZg =
/><B//
/ { F(', o) ddu(2', ) A O, .)}idzl NdZLA .. Nidzg A dZ,
’ B//

where f is a test function with compact support in B’ x B”, and ©(z’,) denotes the slice of © on the fiber
{2’} x B" of the projection 7 : C" — C%. Each integral [}, in the right hand side of (2.5) makes sense since the
slices ({z'} x B")N A are discrete. Moreover, the double integral [, [, is convergent. Indeed, observe that u is
bounded on any compact cylinder

Kse =B((1=6)) x (BO")~B((1-ep"))
disjoint from A. Take ¢ < § < 1 so small that
Supp f C B((1—8)r") x B((1 —e)r").

For all 2/ € B((1 — 6)r’), the proof of the Chern-Levine-Nirenberg inequality (2.2) with a cut-off function x(z")
equal to 1 on B((1 — &)r”) and with support in B((1 —&/2)r"") shows that

/ ddu(z',e) NO(2', )
B((1—e)r")

< Ca”'U/HLOO(K(;YE)/ O(7,2") Add°|2" 2.
2 €B((1—2/2)r"")

This implies that the double integral is convergent. Now replace u everywhere by wu, and observe that
lim, 4o [, is the expected integral for every z’ such that ©(z’,s) exists (apply the discrete case already
proven). Moreover, the Chern-Levine-Nirenberg inequality yields uniform bounds for all functions wu,, hence
Lebesgue’s dominated convergence theorem can be applied to f g We conclude from this that the sequence of
integrals (2.5) converges when u, | u, as expected. O
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(2.6) Remark. In the above proof, the fact that A is an analytic set does not play an essential role. The main
point is just that the slices ({2} x B”) N A consist of isolated points for generic choices of coordinates (z’, z”).
In fact, the proof even works if the slices are totally discontinuous, in particular if they are of zero Hausdorff
measure H;. It follows that Proposition 2.3 still holds whenever A is a closed set such that Hap—1(A) = 0. [l

2.B. Lelong numbers

The concept of Lelong number is an analytic analogue of the algebraic notion of multiplicity. It is a very use-
ful technique to extend results of the intersection theory of algebraic cycles to currents. Lelong numbers have
been introduced for the first time by Lelong in [Lel57]. See also [Lel69], [Siu74], [Dem82a, 85a, 87| for further
developments.

Let us first recall a few definitions. Let © be a closed positive current of bidimension (p,p) on a coordinate
open set {2 C C" of a complex manifold X. The Lelong number of © at a point x € {2 is defined to be the limit

B
v(0,2) = lim v(@,2,r),  where ¥(O,z,r) = 22LET)
r—0+ WPTQP/p!
measures the ratio of the area of @ in the ball B(xz,r) to the area of the ball of radius r in CP. As oo =
O A L (mdd®|z|?)P by 1.15, we also get
p!
1
(2.7) v(6,2,1) = —/ O(2) A (dd°|=[)P.
B(z,r)

2P

The main results concerning Lelong numbers are summarized in the following theorems, due respectively to
Lelong, Thie and Siu.

(2.8) Theorem ([Lel57]).

(a) For every positive current O, the ratio v(O,x,r) is a nonnegative increasing function of r, in particular the
limit v(O©, ) as 1 — 0+ always exists.

(b) If © = ddu is the bidegree (1,1)-current associated with a psh function u, then
v(0,x) =sup {y > 0; u(z) < ylog|z — 2|+ O(1) at z}.
In particular, if u = log|f| with f € H*(X,Ox) and © = ddu = [Zy], we have
v([Zf], z) = ord,(f) = max{m € N; D*f(x) =0, |a] < m}.

(2.9) Theorem ([Thi67]). In the case where © is a current of integration [A] over an analytic subvariety A, the
Lelong number v([A], x) coincides with the multiplicity of A at x (defined e.g. as the sheet number in the ramified
covering obtained by taking a generic linear projection of the germ (A, x) onto a p-dimensional linear subspace
through x in any coordinate patch (2).

(2.10) Theorem ([Siu74]). Let © be a closed positive current of bidimension (p,p) on the complex manifold X .
(a) The Lelong number v(O,x) is invariant by holomorphic changes of local coordinates.

(b) For every ¢ > 0, the set E.(0) = {x € X; v(0,z) > c} is a closed analytic subset of X of dimension < p.

The most important result is 2.10 b), which is a deep application of Hérmander L? estimates (see Section 5). The
earlier proofs of all other results were rather intricate in spite of their rather simple nature. We reproduce below
a sketch of elementary arguments based on the use of a more general and more flexible notion of Lelong number
introduced in [Dem87]. Let ¢ be a continuous psh function with an isolated —oo pole at x, e.g. a function of the
form ¢(2) =log > < < n 195(2)|77, v; > 0, where (g1, ..., gn) is an ideal of germs of holomorphic functions in O,
with g71(0) = {x}. The generalized Lelong number v(6, ) of © with respect to the weight ¢ is simply defined
to be the mass of the measure © A (dd°p)? carried by the point = (the measure © A (dd°p)? is always well defined
thanks to Proposition 2.3). This number can also be seen as the limit v(O, ¢) = lim;—, o v(O, @, t), where
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(2.11) v(O,p,t) = / O A (dd°p)P.
p(z)<t

The relation with our earlier definition of Lelong numbers (as well as part a) of Theorem 2.8) comes from the
identity

(2.12) v(6,2,7) = v(O,p,logr), (=) =log|z —al,

in particular v(6,z) = v(6,log |« — x|). This equality is in turn a consequence of the following general formula,
applied to x(t) = e* and t = log 7 :

(2.13) / O A (ddx o )P = X'(t — 0)p/ O A (dd°p)P,
p(z)<t

p(z)<t

where x is an arbitrary convex increasing function. To prove the formula, we use a regularization and thus suppose
that ©, ¢ and x are smooth, and that ¢ is a non critical value of ¢. Then Stokes’ formula shows that the integrals
on the left and right hand side of (2.13) are equal respectively to

/ O A (dd o )P~ Ade(x 0 ), / O A (dd°p)"™" A dop,
w(z)=t »(2)

=t

and the differential form of bidegree (p — 1,p) appearing in the integrand of the first integral is equal to (x’ o
©)P (dd°p)P~1 Ad°y. The expected formula follows. Part (b) of Theorem 2.8 is a consequence of the Jensen-Lelong
formula, whose proof is left as an exercise to the reader.

(2.14) Jensen-Lelong formula. Let u be any psh function on X. Then u is integrable with respect to the measure
pr = (dd@)" =t A d°p supported by the pseudo-sphere {p(z) =1} and

T

pr(u) = / u(ddp)" —|—/ v(ddu, p,t) dt. O
{p<r}

— 00

In our case, we set ¢(z) = log |z —z|. Then (dd®p)™ = ¢, and p, is just the unitary invariant mean value measure
on the sphere S(x,e"). For r < rg, Formula 2.14 implies

() — g (w) = / v(ddu, x,t) ~ (r — ro)v(ddu, ) as r — —oo.
To

From this, using the Harnack inequality for subharmonic functions, we get

liminf&: lim pir (1)
z—z loglz —x| r——oc r

= v(dd‘u, x).

These equalities imply statement 2.8 b).

Next, we show that the Lelong numbers v(T, ¢) only depend on the asymptotic behaviour of ¢ near the polar
set ¢~ 1(—o0). In a precise way:

(2.15) Comparison theorem. Let © be a closed positive current on X, and let v, : X — [—00, +00[ be continuous
psh functions with isolated poles at some point x € X. Assume that

£ :=lim sup ()
oz P(2)

Then v(O,v) < Pv(O,¢), and the equality holds if £ = lim /.

< 400

Proof. (2.12) shows that v(O, A\p) = APv(O, ¢) for every positive constant . It is thus sufficient to verify the
inequality v(0,v) < v(0, ¢) under the hypothesis limsup /¢ < 1. For any ¢ > 0, consider the psh function

ue = max(h — ¢, p).

Fix 7 < 0. For ¢ > 0 large enough, we have u. = ¢ on a neighborhood of ¢~!(r) and Stokes’ formula gives
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v(O,p,1) =v(0,uc,r) = v(0,uc).

On the other hand, the hypothesis limsup /¢ < 1 implies that there exists ¢ty < 0 such that u. = ¥ — ¢ on
{ue < to}. We thus get
v(0,uc) =v(0,9 —c) =v(6,1),

hence v(0,¢) < v(O,¢). The equality case is obtained by reversing the roles of ¢ and ¥ and observing that
lim /v = 1/1. U

Part (a) of Theorem 2.10 follows immediately from 2.15 by considering the weights ¢(z) = log|7(z) —

7(2)|, ¥(2) = log|7'(2) — 7/(z)| associated to coordinates systems 7(z) = (21,...,2x4), 7'(2) = (2},...,2}) in a

»n

neighborhood of . Another application is a direct simple proof of Thie’s Theorem 2.9 when © = [A4] is the current
of integration over an analytic set A C X of pure dimension p. For this, we have to observe that Theorem 2.15
still holds provided that z is an isolated point in Supp(©) N p~1(—occ) and Supp(©) N ~!(—o0) (even though z
is not isolated in ¢! (—o0) or ¢! (—00)), under the weaker assumption that lim sups,,,@)s . ¥(2)/¢(2) = L.
The reason for this is that all integrals involve currents supported on Supp(©). Now, by a generic choice of local
coordinates 2’ = (21,..., 2zp) and 2" = (2p41, ..., zn) on (X, z), the germ (A, x) is contained in a cone |2"| < C|2/|.
If B’ € CP? is a ball of center 0 and radius ' small, and B” € C"*P is the ball of center 0 and radius " = C7r’,
the projection
pr: AN(B'xB") — B’

is a ramified covering with finite sheet number m. When z € A tends to x = 0, the functions
p(z) =log|z| = log(|2'[* + ["*)'/%,  4(2) =log]Z'|.
satisfy lim,_,, ¥(2)/¢(z) = 1. Hence Theorem 2.15 implies
v([A], ) = v([A],¢) = v([A], 9).

Now, Formula 2.13 with x(t) = €?! yields

AL o) =7 [ (A (aaret)

{yp<logt}
1

— t72p/ (_ pr* ddc|z/|2)p
An{|z'|<t} 2

1 p
= mt_Qp/ (—ddc|z’|2) =m,
crn{|z|<t} N2

hence v([A],v) = m. Here, we have used the fact that pr is an étale covering with m sheets over the complement
of the ramification locus S C B’, and the fact that S is of zero Lebesgue measure in B’.

(2.16) Proposition. Under the assumptions of Proposition 2.3, we have
v(ddu N O,x) = viu,z)v(O,x)

at every point x € X.
Proof. Assume that X = B(0,r) and 2 = 0. By definition

v(dd°u A ©,x) = lim ddu A © A (dd®log|z])P~".
TRz

Set v = v(u, ) and
u, () = max (u(z), (y — €)log |z| — v)

with 0 < e < v (if ¥ = 0, there is nothing to prove). Then u, decreases to v and

/ dd“u A\ © A (ddlog|z|)P~! > limsup/ ddu, A O A (dd®log |z])P~t
|z |z

I<r v—+00 |<r
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by the weak convergence of dd°u, A ©; here (dd°log|z|)P~! is not smooth on B(0,r), but the integrals remain
unchanged if we replace log|z| by x(log |z|/r) with a smooth convex function y such that x(¢t) = ¢ for t > —1
and x(t) = 0 for ¢ < —2. Now, we have u(z) < vlog|z| + C near 0, so u,(z) coincides with (y — €)log|z| — v on
a small ball B(0,r,) C B(0,r) and we infer

/ ddu, A O A (dd®log |z]|)P~* > (7—5)/ O A (dd°log |z|)P
|zI<r

[2|<ry

> (v — e)v(0, z).

As r €]0,R[ and € € ]0,~[ were arbitrary, the desired inequality follows. O

We will later need an important decomposition formula of [Siu74]. We start with the following lemma.

(2.17) Lemma. If © is a closed positive current of bidimension (p,p) and Z is an irreducible analytic set in X,

we set
myz =inf{z € Z; v(0,x)}.

(a) There is a countable family of proper analytic subsets (Z}) of Z such that v(0,x) =mz for allx € Z~\J Z}.
We say that myz is the generic Lelong number of © along Z.

(b) If dim Z = p, then © = mz[Z] and 1260 = mz[Z].

Proof. (a) By definition of myz and E.(©), we have v(0,x) > my for every © € Z and

v(@,2) =mz on Z~ U Z N E.(O).

ceQ,c>myz

However, for ¢ > my, the intersection Z N E.(O) is a proper analytic subset of A.

(b) Left as an exercise to the reader. It is enough to prove that © > myz[Z.c] at regular points of Z, so one
may assume that Z is a p-dimensional linear subspace in C". Show that the measure (O — mz[Z]) A (dd€|z|?)?
has nonnegative mass on every ball |z — a| < r with center a € Z. Conclude by using arbitrary affine changes of
coordinates that © — mz[Z] > 0. O

(2.18) Decomposition formula ([Siu74]). Let © be a closed positive current of bidimension (p,p). Then © can be
written as a convergent series of closed positive currents

+oo
@:ZAk [Zk] + R,
k=1

where [Zy] is a current of integration over an irreducible analytic set of dimension p, and R is a residual current
with the property that dim E.(R) < p for every ¢ > 0. This decomposition is locally and globally unique: the sets
Zy. are precisely the p-dimensional components occurring in the upperlevel sets E.(©), and A\, = ming¢z, v(O, )
is the generic Lelong number of © along Zj.

Proof of uniqueness. If © has such a decomposition, the p-dimensional components of E.(0) are (Z;)x; >, for
v(0,z) =Y A\v([Z;],2)+v(R, z) is non zero only on | J Z; U|J E¢(R), and is equal to \; generically on Z; (more
precisely, v(©,x) = A; at every regular point of Z; which does not belong to any intersection Z; U Zy, k # j or
to U Ec(R)). In particular Z; and \; are unique.

Proof of existence. Let (Z;);>1 be the countable collection of p-dimensional components occurring in one of the
sets E.(0), ¢ € Qf, and let X\; > 0 be the generic Lelong number of © along Z;. Then Lemma 2.17 shows by
induction on N that Ry = @ — ZKKN Aj[Z,] is positive. As Ry is a decreasing sequence, there must be a limit
R =limy_ 4o Ry in the weak topology. Thus we have the asserted decomposition. By construction, R has zero
generic Lelong number along Z;, so dim E.(R) < p for every ¢ > 0. O

It is very important to note that some components of lower dimension can actually occur in E.(R), but they
cannot be subtracted because R has bidimension (p,p). A typical case is the case of a bidimension (n — 1,n — 1)
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current © = ddu with u = log(|f;|™ +...|fn[") and f; € H°(X,Ox). In general |JE.(©) = () f;'(0) has

dimension < n — 1.

(2.19) Corollary. Let ©; = dd°u;, 1 < j < p, be closed positive (1,1)-currents on a complex manifold X . Suppose
that there are analytic sets As O ... D A, in X with codim A; > j at every point such that each uj, j = 2, is
locally bounded on X ~\ A;. Let {Ap r}i>1 be the irreducible components of Ay, of codimension p exactly and let
Vjk = mingea, , v(0;,x) be the generic Lelong number of ©; along Ap . Then O1 A ... A\ Oy is well-defined and

+oo
ON . NOy = Wik vy Al
k=1

Proof. By induction on p, Proposition 2.3 shows that 61 A ... A @, is well defined. Moreover, Proposition 2.16
implies
VO1A...ANOp ) 2 v(01,2)...0(0p,2) Z V1 k... Upk

at every point x € A, ;. The desired inequality is then a consequence of Siu’s decomposition theorem. ([

3. Hermitian vector bundles, connections and curvature

The goal of this section is to recall the most basic definitions of hemitian differential geometry related to the
concepts of connection, curvature and first Chern class of a line bundle.

Let F' be a complex vector bundle of rank r over a smooth differentiable manifold M. A connection D on F
is a linear differential operator of order 1

D :C>®(M, ATy, ® F) — C®°(M, AT}, @ F)
such that
(3.1) D(f Au) =df Au+ (1) f A Du

for all forms f € C®°(M, APT},), u € C=(X, AT, ® F). On an open set {2 C M where F admits a trivialization
0: Flo =5 2 x C", a connection D can be written

Du~gdu+IT Nu

where I' € C*®(2, A'Ty; ® Hom(C",C")) is an arbitrary matrix of 1-forms and d acts componentwise (the
coefficents of I" are called the Christoffel symbols of the connection). It is then easy to check that

D*u~g (dl' +T'ANT)Au on £2.
Since D? is a globally defined operator, there is a global 2-form
(3.2) Op € C>®(M, A*Ty; ® Hom(F, F))

such that D?u = Op A u for every form u with values in F.
Assume now that F' is endowed with a C*° hermitian metric h along the fibers and that the isomorphism

Fio ~ 2 x C" is given by a C*° frame (ex). We then have a canonical sesquilinear pairing
(3.3) O (M, APT?, & F) x C(M, AT}, @ F) — C% (M, APTT}, @ C)

(u,v) — {u,v}p

given by

{u,v}h:Zu,\/\Uu<e,\,eM)h, u:ZuA®e>\, U:ZW@%-

A

The connection D is said to be hermitian (with respect to h) if it satisfies the additional property
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d{u, v}, = {Du, v}, + (1) “{u, Dv}y.

Assuming that (ey) is orthonormal, one easily checks that D is hermitian if and only if I'™* = —I". In this case
0} = —Op, thus
i0p € C=(M, A*T}; @ Herm(F, F)).

(3.4) Special case. For a bundle F of rank 1, the connection form I" of a hermitian connection D can be seen as
a 1-form with purely imaginary coefficients I' = iA (A real). Then we have ©p = dI" = idA. In particular i@ is
a closed 2-form. The first Chern class of F' is defined to be the cohomology class

1 (Fg = {%@F} € H2, (M,R).

The cohomology class is actually independent of the connection, since any other connection D; differs by a global
1-form, Diu = Du + B A u, so that ©p, = Op + dB. It is well-known that c¢; (F)g is the image in H?(M,R) of
an integral class ¢;(F) € H?(M,Z); by using the exponential exact sequence

0—-Z—E—E —0,

¢1(F) can be defined in Cech cohomology theory as the image by the coboundary map HY(M,E*) — H?*(M,7Z)
of the cocycle {g;r} € H'(M,E*) defining F ; see e.g. [GrH78] for details. O

We now concentrate ourselves on the complex analytic case. If M = X is a complex manifold X, every connection
D on a complex C*° vector bundle F can be splitted in a unique way as a sum of a (1,0) and of a (0, 1)-connection,
D = D'+ D”. In a local trivialization 6 given by a C* frame, one can write

(3.5) D'u~p d'u+T" Au,
(3.5") D"u~gd"u+T" Au,
with I" = I'" 4+ I'"". The connection is hermitian if and ounly if I'" = —(I"”)* in any orthonormal frame. Thus there

exists a unique hermitian connection D corresponding to a prescribed (0,1) part D”.

Assume now that the bundle F itself has a holomorphic structure, and is equipped with a hermitian metric h.
The unique hermitian connection for which D" is the d” operator defined in § 1 is called the Chern connection of F.
In a local holomorphic frame (ey) of Ej, the metric is given by the hermitian matrix H = (hay), hay = (ex, eu).
We have

{u,v}p = Z hapux N0, = uf A Ho,
A p

where u' is the transposed matrix of u, and easy computations yield

d{u,v}p = (du)" A HT + (—=1)%8%u A (dH AT + Hdv)

= (du+ T dHE A u)T AHT + (—1)%8 vyt A (do + B d'H Av)

using the fact that dH = d’H +d'H and H' = H. Therefore the Chern connection D coincides with the hermitian
connection defined by
(3.6) Du ~¢ du + " 'aH Au,

' D ~od +H 'dHNe=H 'd(Hs), D'=d"

It is clear from this relations that D'? = D"? = 0. Consequently D? is given by to D? = D’D"” 4+ D" D’, and the
curvature tensor @p is of type (1,1). Since d'd” + d"d’ = 0, we get

(D'D" + D"D")u ~ H ' H A"+ d”(ﬁ_ld’ﬁ Auw)
=d"(H 'dH) M.
(3.7) Proposition. The Chern curvature tensor Op,p, := Op of (F,h) is such that

1OF) € C®(X, A" T% @ Herm(F, I)).
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If 0 : Fio — (2 x C" is a holomorphic trivialization and if H is the hermitian matriz representing the metric
along the fibers of Fiq, then

iOpp~pid (H 'dH) on Q. 0
Let (z1,...,2,) be holomorphic coordinates on X and let (ex)i1<agr be an orthonormal frame of F'. Writing
iOp) = Z Ciapdzy Ndzi, @ e @ ey,

1<,k <n, 1A, u<r

we can identify the curvature tensor to a hermitian form

(3.8) éF,h(f ®v) = Z Cjkméjgkwﬁu

1<, k<n, 1A, u<r

on Tx ® F. This leads in a natural way to positivity concepts, following definitions introduced by Kodaira [Kod53],
Nakano [Nak55] and Griffiths [Gri69].

(3.9) Definition. The hermitian vector bundle (F,h) is said to be
(a) positive in the sense of Nakano if Op (1) > 0 for all non zero tensors T = 3. 7;20/0z; @ ex € Tx @ F.
(b) positive in the sense of Griffiths if éF,h(é- ®v) > 0 for all non zero decomposable tensors £ @v € Tx @ F';

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.

(3.10) Special case of rank 1 bundles. Assume that F' is a line bundle. The hermitian matrix H = (hq1) associated
to a trivialization 0 : Fjo ~ (2 x C is simply a positive function. It is often convenient to denote it as an
exponential, namely e~2? (and also sometimes e~% simply, if we do not want to stress that H is a quadratic
form), with ¢ € C*°(£2,R). In this case the curvature form @, can be identified to the (1,1)-form d’'d” ¢, and

iQF”‘ - %d’d"@ — dd°p

is a real (1,1)-form. Hence F is semi-positive (in either the Nakano or Griffiths sense) if and only if ¢ is psh,
resp. positive if and only if ¢ is strictly psh. In this setting, the Lelong-Poincaré equation can be generalized as
follows: let 0 € H(X, F) be a non zero holomorphic section. Then

i

3.11 dd°1 =(Z,
(3.11) oglolln = 12:] - -

@F,h-

Formula (3.11) is immediate if we write ||o|| = |0(o)|e”% and if we apply (1.20) to the holomorphic function
f = 0(0). As we shall see later, it is very important for the applications to consider also singular hermitian
metrics.

(3.12) Definition. A singular (hermitian) metric h on a line bundle F is a metric which is given in any trivial-
ization 0 : Flq =, 0xC by
€l =109, zen, (eF,

L (92) is an arbitrary function, called the weight of the metric with respect to the trivialization 0.

loc

where ¢ € L

If ¢ : Fior — 2 x C is another trivialization, ¢’ the associated weight and g € O*(£2 N §2’) the transition
function, then (&) = g(z)0(§) for & € F,, and so ¢’ = ¢ + log|g| on 2N 2. The curvature form of F is
then given formally by the closed (1,1)-current %@F,h = dd®p on 2; our assumption ¢ € L (§2) guarantees
that O}, exists in the sense of distribution theory. As in the smooth case, %@F,h is globally defined on X and
independent of the choice of trivializations, and its De Rham cohomology class is the image of the first Chern
class ¢1(F) € H*(X,Z) in H p(X,R). Before going further, we discuss two basic examples.

(3.13) Example. Let D = ) «;D; be a divisor with coefficients a; € Z and let F' = O(D) be the associated
invertible sheaf of meromorphic functions w such that div(u) + D > 0; the corresponding line bundle can be
equipped with the singular metric defined by ||u|| = |u|. If g; is a generator of the ideal of D; on an open set



4. Bochner technique and vanishing theorems 19

2 C X then 6(u) = u]] gjo-‘j defines a trivialization of O(D) over 2, thus our singular metric is associated to the
weight ¢ = Y a;log|g,|. By the Lelong-Poincaré equation, we find
i
—06 =dd¢ =[D
o O(D) ' [ ]a

where [D] = Y a;[D,] denotes the current of integration over D. O

(3.14) Example. Assume that og, 01, ...,0n are non zero holomorphic sections of F'. Then we can define a natural
(possibly singular) hermitian metric h* on F* by

* 2
€7 = > [€noi(@)|  for &€ Fy.
0<isSN

The dual metric h on F' is given by

0

16l = oo P+ @ NP + -+ lon @)

with respect to any trivialization 6. The associated weight function is thus given by

oa) =1og (2 10(os (@) ) 2.

0<j<N

In this case ¢ is a psh function, thus iO@p, is a closed positive current. Let us denote by X the linear system
defined by g, ...,on and by By =) a;l(O) its base locus. We have a meromorphic map

&5 : X \ By — PV, x— (oo(x) s o1(x) s o2(x) ...t on(2)).

2

Then 5=6p,, is equal to the pull-back over X \ By of the Fubini-Study metric wps = - log(|zo> + |z1|> + ... +
|ZN|2) OfPN by QSE. O

(3.15) Ample and very ample line bundles. A holomorphic line bundle F over a compact complex manifold X is
said to be

(a) wvery ample if the map ®\p| : X — PN associated to the complete linear system |F| = P(H(X,F)) is a
regular embedding (by this we mean in particular that the base locus is empty, i.e. Bjp = 0).

(b) ample if some multiple mF, m > 0, is very ample.

Here we use an additive notation for Pic(X) = H!(X, O*), hence the symbol mF denotes the line bundle F®™.
By Example 3.14, every ample line bundle F' has a smooth hermitian metric with positive definite curvature
form; indeed, if the linear system |mF| gives an embedding in projective space, then we get a smooth hermitian
metric on F®™, and the m-th root yields a metric h on F such that ﬁ@pﬂh = %@Tm FIWFS- Conversely, the

Kodaira embedding theorem [Kod54] tells us that every positive line bundle F' is ample (see Exercise 5.14 for a
straightforward analytic proof of the Kodaira embedding theorem).

4. Bochner technique and vanishing theorems

4.A. Laplace-Beltrami operators and Hodge theory
We first recall briefly a few basic facts of Hodge theory. Assume for the moment that M is a differentiable

manifold equipped with a Riemannian metric g = > g;;dz; ® dx; and that (F,h) is a hermitian vector bundle
over M. Given a g-form v on M with values in F, we consider the global L? norm

Jul? = / eV, (2)
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where |u| is the pointwise hermitian norm and dVj is the Riemannian volume form (we omit the dependence on
the metrics in the notation, but we should really put |u(z)|y, and ||ul|g,, here). The Laplace-Beltrami operator
associated to the connection D is by definition

A=DD*+ D*D
where
D*: C®°(M, AT}, @ F) — C®°(M, AT, @ F)
is the (formal) adjoint of D with respect to the L? inner product. Assume that M is compact. Since
A:C®(M, ATy @ F) — C°(M, AT}, @ F)

is a self-adjoint elliptic operator in each degree, standard results of PDE theory show that there is an orthogonal

decomposition
CO(M, ATy, @ F) =HI(M,F) & Im A

where HY(M, F) = Ker A is the space of harmonic forms of degree ¢; H?(M, F') is a finite dimensional space.
Assume moreover that the connection D is integrable, i.e. that D? = 0. It is then easy to check that there is an

orthogonal direct sum
ImA =ImD & Im D*,

indeed (Du, D*v) = (D?u,v) = 0 for all u,v. Hence we get an orthogonal decomposition
O (M, AT}, ® F) = HY(M, F) & Im D & Im D*,

and Ker A is precisely equal to HY(M, F)®Im D. Especially, the g-th cohomology group Ker A/ Im A is isomorphic
to H(M, F'). All this can be applied for example in the case of the De Rham groups H{j (M, C), taking F' to be
the trivial bundle F' = M x C (notice, however, that a nontrivial bundle F' usually does not admit any integrable
connection):

(4.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there is an isomorphism
HLL(M,C) ~HI(M,C)
from De Rham cohomology groups onto spaces of harmonic forms. (I

A rather important consequence of the Hodge fundamental theorem is a proof of the Poincaré duality theorem.
Assume that the Riemannian manifold (M, g) is oriented. Then there is a (conjugate linear) Hodge star operator

*: ATy, @ C— A™ Ty, @ C, m = dimg M

defined by u A xv = (u, v)dV, for any two complex valued g-forms u, v. A standard computation shows that %
commutes with A, hence xu is harmonic if and only if « is. This implies that the natural pairing

(4.2 (.0 x HE (M), ({uh o)) = [ uno

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form being {*u}.

4.B. Serre duality theorem

Let us now suppose that X is a compact complex manifold equipped with a hermitian metric w = ) w;rdz; AdZy.
Let F' be a holomorphic vector bundle on X equipped with a hermitian metric, and let D = D'+ D" be its Chern
curvature form. All that we said above for the Laplace-Beltrami operator A still applies to the complex Laplace
operators

A/ — D/D/* + D/*D/, A// — D//D//* + D”*D”,
with the great advantage that we always have D'? = D'"? = (. Especially, if X is a compact complex manifold,
there are isomorphisms

(4.3) HP(X, F) ~ HP(X,F)
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between Dolbeault cohomology groups HP*4(X, F') and spaces HP*4(X, F') of A”-harmonic forms of bidegree (p, q)
with values in F'. Now, there is a generalized Hodge star operator

*: APITE @ F — AP IT% @ F*,  n = dimg X,

such that u Axv = (u,v)dVy, for any two F-valued (p, ¢)-forms, when the wedge product u A v is combined with
the pairing F' x F* — C. This leads to the Serre duality theorem [Ser55]: the bilinear pairing

(4.4) HPA(X,F) x H" PP (X, FY),  ({u}, o)) = /X unv

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may restate the result in the
form of the duality formula

(4.4') HYUX, 0% © O(F))* ~ H" (X, 2% @ O(F*)).

4.C. Bochner-Kodaira-Nakano identity on K&ahler manifolds

We now proceed to explain the basic ideas of the Bochner technique used to prove vanishing theorems. Great
simplifications occur in the computations if the hermitian metric on X is supposed to be Kdhler, i.e. if the
associated fundamental (1,1)-form

w= iijkdzj A dzy

satisfies dw = 0. It can be easily shown that w is Kahler if and only if there are holomorphic coordinates
(21,...,2n) centered at any point xy € X such that the matrix of coefficients (w;) is tangent to identity at order
2, i.e.

wik(z) = 0k + O(|z|2) at zg.

It follows that all order 1 operators D, D’, D" and their adjoints D*, D"*, D"* admit at z¢ the same expansion
as the analogous operators obtained when all hermitian metrics on X or F' are constant. From this, the basic
commutation relations of Kéhler geometry can be checked. If A, B are differential operators acting on the algebra
C®(X,A**T% @ F), their graded commutator (or graded Lie bracket) is defined by

[A,B] = AB — (—1)"BA

where a, b are the degrees of A and B respectively. If C' is another endomorphism of degree ¢, the following purely
formal Jacobi identity holds:

(=)[A, [B,C]] + (1) [B,[C, A]] + (-1)"*[C.[4, B]] = 0.

(4.5) Basic commutation relations. Let (X, w) be a Kdhler manifold and let L be the operators defined by Lu = wAu

and A = L*. Then
[D"* L] =iD’, [D™*, L] = —iD",

[A, D] = —iD™, [A, D] =iD"*.

Proof (sketch). The first step is to check the identity [d"*,L] = id' for constant metrics on X = C" and
F = X x C, by a brute force calculation. All three other identities follow by taking conjugates or adjoints. The
case of variable metrics follows by looking at Taylor expansions up to order 1. (I

(4.6) Bochner-Kodaira-Nakano identity. If (X,w) is Kahler, the complex Laplace operators A" and A" acting on
F-valued forms satisfy the identity

A=A+ [i@pﬂh,/l].
Proof. The last equality in (4.5) yields D"* = —i[A, D’], hence

A/I — [DH,(SH] — —i[D”, [A,DI]]
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By the Jacobi identity we get
[D",[A,D']] = [A,[D", D"]| + [D',[D", A]] = [A,Op] +i[D’, D"],

taking into account that [D’, D"] = D? = ©p,. The formula follows. O

4.D. Vanishing theorems

Assume that X is compact and that u € C®°(X, AP9T*X ® F) is an arbitrary (p,¢)-form. An integration by
parts yields
(A'w,u) = || D"u||* + | D™ul* > 0

and similarly for A”, hence we get the basic a priori inequality
(4.7) | D"u||* + | D"*u||? > / (1@Fn, AJu, w)dV,,.
X

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48], [Kod53], [Nak55]). When wu is
A”-harmonic, we get

/X (([@Fn, Alu, u) + (Tou, u))dV < 0.

If the hermitian operator [i@p p, A] acting on AP9T% @ F' is positive on each fiber, we infer that v must be zero,
hence
HPY(X,F)=HPY(X,F)=0

by Hodge theory. The main point is thus to compute the curvature form Op) and find sufficient conditions
under which the operator [i@p j, 4] is positive definite. Elementary (but somewhat tedious) calculations yield the
following formulae: if the curvature of F' is written as in (3.8) and v = Y uy g adzr AdZy ey, |J| =p, |K| =g,
1< A< risa (p,q)-form with values in F, then

(4.8) ((OFn, AJu,u) = Z Cikap W jS,\ YT kS, 1
Jik, A, J, S

+ g Cikap UkR, K\ UjR K, u
Jrk, A, R K

- E Cjjan UT KN UIK 1,
IBWINS o

where the sum is extended to all indices 1 < j,k < n, 1 < A\, pu < r and multiindices |[R| =p—1, |S| = ¢—1 (here
the notation u gy is extended to non necessarily increasing multiindices by making it alternate with respect to
permutations). It is usually hard to decide the sign of the curvature term (4.8), except in some special cases.

The easiest case is when p = n. Then all terms in the second summation of (4.8) must have j = k and
R ={1,...,n} ~{j}, therefore the second and third summations are equal. It follows that [i@p, 4] is positive
on (n,q)-forms under the assumption that F is positive in the sense of Nakano. In this case X is automatically
Kahler since

w = TrF(i@F,h) =i Z Cjk)\,\de NdzZp = i@detF,h
Jok,A

is a Kahler metric.

(4.9) Nakano vanishing theorem ([Nak55)). Let X be a compact complex manifold and let F be a Nakano positive
vector bundle on X. Then

H"(X,F)=HY(X,Kx ® F) =0 for every g > 1. 0

Another tractable case is the case where F' is a line bundle (r = 1). Indeed, at each point z € X, we may then
choose a coordinate system which diagonalizes simultaneously the hermitians forms w(z) and i@ (), in such
a way that



5. L? estimates and existence theorems 23

UJ(.T) =i Z dz; Ndz;, i@pﬁ(ac) =i Z vjdzj N dZ;
1<5<n 1<5<n
with 71 < ... < 75,. The curvature eigenvalues v; = v;(z) are then uniquely defined and depend continuously
on z. With our previous notation, we have v; = ¢;;11 and all other coefficients ¢y, are zero. For any (p, ¢)-form
u=>Y usgdzj NdZx ® e, this gives

([{Orn, AJu,uy = Y (Z%‘ +Y -y, %‘)|UJK|2

|J|=p, |K|=q j€J JEK 1<j<n
(4.10) > (11 AUy = Tt — e — )l

Assume that i@p), is positive. It is then natural to make the special choice w = i@p, for the K&hler metric.
Then v; =1 for j =1,2,...,n and we obtain ([i©p, AJu,u) = (p + ¢ — n)|ul?. As a consequence:

(4.11) Akizuki-Kodaira-Nakano vanishing theorem ([AN54]). If F is a positive line bundle on a compact complex
manifold X, then
HP(X,F)=HY (X, 25 ®F)=0 for p+qg=n+1. O

More generally, if F' is a Griffiths positive (or ample) vector bundle of rank r > 1, Le Potier [LP75] proved that
HP(X,F) =0 for p+q > n+r. The proof is not a direct consequence of the Bochner technique. A rather easy
proof has been found by M. Schneider [Sch74], using the Leray spectral sequence associated to the projectivized
bundle projection P(F') — X, using the following more or less standard notation.

(4.12) Notation. If V' is a complex vector space (resp. complex vector bundle), we let P(V) be the projective
space (resp. bundle) of lines of V, and P(V) = P(V*) be the projective space (resp. bundle) of hyperplanes of V.

(4.13) Exercise. It is important for various applications to obtain vanishing theorems which are also valid in the
case of semi-positive line bundles. The easiest case is the following result of Girbau [Gir76]: let (X,w) be compact
Kéhler; assume that F' is a line bundle and that i@p > 0 has at least n — k positive eigenvalues at each point,
for some integer k > 0; show that H»4(X,F)=0forp+q¢>n+k+1.

Hint: use the Kahler metric w. = i@p ), + ew with € > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained by Sommese [Som78]: define
F to be k-ample if some multiple mF' is such that the canonical map

¢|mF| HD. GAN B\mF\ — PNt

has at most k-dimensional fibers and dim By, | < k. If X is projective and F' is k-ample, show that H?9(X, F') =

Oforp+qg>n+k+1.

Hint: prove the dual result H?4(X, F~1) = 0 for p+¢ < n—k — 1 by induction on k. First show that F 0-ample

= F' positive; then use hyperplane sections Y C X to prove the induction step, thanks to the exact sequences
0 —ROF'@0(-Y) — K F ' — (R eF ), —0

0 — X' OFy — (ReF!), — X eF; —0 O

5. L? estimates and existence theorems

5.A. Basic L2 existence theorems

The starting point is the following L? existence theorem, which is essentially due to Hormander [Hor65, 66], and
Andreotti-Vesentini [AV65], following fundamental work by Kohn [Koh63, 64]. We will only present the strategy
and the main ideas and tools, referring e.g. to [Dem82b] for a more detailed exposition of the technical situation
considered here.
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(5.1) Theorem. Let (X,w) be a Kdhler manifold. Here X is not necessarily compact, but we assume that the
geodesic distance 6, is complete on X . Let F' be a hermitian vector bundle of rank r over X, and assume that the
curvature operator A = A’;,J,qh’w = [i@pn, Au] is positive definite everywhere on APIT% @ F, ¢ > 1. Then for any
form g € L*(X, AP9T%QF) satisfying D"g = 0 and [, (A~'g, g) dV,, < +oo, there exists f € L*(X, AP 'TXQF)
such that D" f = g and

/ FRaV, < / (A", g) V.
X X

Proof. The assumption that J, is complete implies the existence of cut-off functions ¢, with arbitrarily large
compact support such that |di, | < 1 (take 9, to be a function of the distance x +— §,,(xo, x), which is an almost
everywhere differentiable 1-Lipschitz function, and regularize if necessary). From this, it follows that very form
u € L?(X, AP9T% ® F) such that D"u € L? and D"*u € L? in the sense of distribution theory is a limit of a
sequence of smooth forms u, with compact support, in such a way that v, — u, D"u,, — D" and D"*u, — D"*u
in L? (just take u, to be a regularization of 1, u). As a consequence, the basic a priori inequality (4.7) extends
to arbitrary forms u such that u, D"”u, D"*u € L? . Now, consider the Hilbert space orthogonal decomposition

L*(X, AP1T% @ F) = Ker D” @ (Ker D")*,

observing that Ker D" is weakly (hence strongly) closed. Let v = v1 4+ v2 be the decomposition of a smooth form
v € DP(X, F) with compact support according to this decomposition (v1, v2 do not have compact support in
general !). Since (Ker D)+ C Ker D"* by duality and g,v; € Ker D" by hypothesis, we get D"*vy = 0 and

(0P = oo < [ (7 g.g)ave [ (av o) ars,
X X
thanks to the Cauchy-Schwarz inequality. The a priori inequality (4.7) applied to u = vy yields
/ (Avi,v1) dVy < [ D701 + [ D" 01| = [ D"*w1||* = || D"*]|*.
X
Combining both inequalities, we find

o)< ([ (47 g.ghavs) [l
X

for every smooth (p, q)-form v with compact support. This shows that we have a well defined linear form
w=D"v+— (v,g), L*X, A" 'T% ® F) > D"*(D"*(F)) — C

on the range of D"*. This linear form is continuous in L? norm and has norm < C with

C= (/}((Ailg,g> de)l/Q.

By the Hahn-Banach theorem, there is an element f € L?(X, A9~ 1T% ® F) with ||f|| < C, such that (v,g) =
(D"™w, f) for every v, hence D" f = ¢ in the sense of distributions. The inequality ||f|| < C' is equivalent to the
last estimate in the theorem. O

The above L? existence theorem can be applied in the fairly general context of weakly pseudoconver manifolds.
By this, we mean a complex manifold X such that there exists a smooth psh exhaustion function ¢ on X (¢ is said
to be an exhaustion if for every ¢ > 0 the upperlevel set X, = ¢ ~(c) is relatively compact, i.e. 1(z) tends to +oo
when z is taken outside larger and larger compact subsets of X). In particular, every compact complex manifold
X is weakly pseudoconvex (take 1) = 0), as well as every Stein manifold, e.g. affine algebraic submanifolds of CV
(take 1(z) = |z|?), open balls X = B(z0,7) (take ¥(z) = 1/(r — |z — 2|%)), convex open subsets, etc. Now, a
basic observation is that every weakly pseudoconvex Kéhler manifold (X,w) carries a complete Kéhler metric:
let ¢» > 0 be a psh exhaustion function and set

we = w +eid'd"P? = w + 2e(2ipd' d"p + id' b A d").

Then |di],. < 1/e and |[p(x) —¥(y)| < e 16, (x,y). It follows easily from this estimate that the geodesic balls
are relatively compact, hence 4, is complete for every ¢ > 0. Therefore, the L? existence theorem can be applied



5. L? estimates and existence theorems 25

to each Kéhler metric w., and by passing to the limit it can even be applied to the non necessarily complete
metric w. An important special case is the following

(5.2) Theorem. Let (X,w) be a Kahler manifold, dim X = n. Assume that X is weakly pseudoconvez. Let F be a
hermitian line bundle and let

7(2) < ... < (@)
be the curvature eigenvalues (i.e. the eigenvalues of iO@pp with respect to the metric w) at every point. Assume

that the curvature is positive, i.e. 1 > 0 everywhere. Then for any form g € L*(X,A™T% ® F) satisfying
D"g=0 and [ (71 +...+7g) g|?dVi, < +o0, there exists f € L*(X, AP~ 'T% @ F) such that D" f = g and

/ F2dv. </m+...+vq>*1|g|2de.
X X

Proof. Indeed, for p = n, Formula 4.10 shows that
(Auyu) = (41 + -+ 79 ul?,

hence (A7 u,u) = (y1 + ... +7g) " Hul% O

An important observation is that the above theorem still applies when the hermitian metric on F' is a singular
metric with positive curvature in the sense of currents. In fact, by standard regularization techniques (convolution
of psh functions by smoothing kernels), the metric can be made smooth and the solutions obtained by (5.1) or
(5.2) for the smooth metrics have limits satisfying the desired estimates. Especially, we get the following

(5.3) Corollary. Let (X,w) be a Kihler manifold, dim X = n. Assume that X is weakly pseudoconvex. Let F be a
holomorphic line bundle equipped with a singular metric whose local weights are denoted ¢ € L, i.e. H = E~%.
Suppose that

iOp, =id'd"p > ew
for some € > 0. Then for any form g € L*(X, A™9T% @ F) satisfying D" g = 0, there exists f € L*(X, AP 1T% ®
F) such that D" f = g and

1
/ |f|?e~?dV, < —/ lg|?e=% dV,,. O
X qac Jx

Here we denoted somewhat incorrectly the metric by |f|?e~%, as if the weight ¢ was globally defined on X (of
course, this is so only if F' is globally trivial). We will use this notation anyway, because it clearly describes the
dependence of the L? norm on the psh weights.

5.B. Multiplier ideal sheaves and Nadel vanishing theorem

We now introduce the concept of multiplier ideal sheaf, following A. Nadel [Nad89]. The main idea actually goes
back to the fundamental works of Bombieri [Bom70] and H. Skoda [Sko72a).

(5.4) Definition. Let ¢ be a psh function on an open subset 2 C X ; to ¢ is associated the ideal subsheaf I(¢) C Og
of germs of holomorphic functions f € Og . such that | f|>e=2% is integrable with respect to the Lebesgue measure
in some local coordinates near x.

The zero variety V(Z(y)) is thus the set of points in a neighborhood of which e~2% is non integrable. Of course,
such points occur only if ¢ has logarithmic poles. This is made precise as follows.

(5.5) Definition. A psh function ¢ is said to have a logarithmic pole of coefficient v at a point x € X if the Lelong
number

v(p,x) := liminf vl
z—z log|z — x|

is non zero and if v(p,x) = 7.
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(5.6) Lemma (Skoda [SkoT72al). Let ¢ be a psh function on an open set 2 and let x € (2.
(a) If v(p,x) < 1, then e=2% is integrable in a neighborhood of x, in particular Z(¢)y = Og 4.

(b) If v(p,x) = n+ s for some integer s > 0, then e=2% > C|z — z|~2"=2% in a neighborhood of v and I(p), C

m_‘?;';, where mg 4 is the mazimal ideal of Og ;.

(¢) The zero variety V(Z(p)) of I(p) satisfies

En(p) CV(Z(p)) C Ei(p)

where E.(¢) = {x € X ; v(p,x) = ¢} is the c-upperlevel set of Lelong numbers of .

Proof. (a) Set ©® = dd°p and v = v(O,2) = v(p,x). Let x be a cut-off function with support in a small ball
B(xz,r), equal to 1 in B(x,r/2). As (dd°log |z|)"™ = dg, we get

o= [ XOp gl =)
= [ A OAORE) Mg sl og c <l
for z € B(z,r/2). Expanding dd®(x) and observing that dy = dd°x = 0 on B(x,r/2), we find
#0)= [ X(OO(E) Nog|C —=1(dd log]¢ =1~ + smootl terms

on B(xz,r/2). Fix r so small that

[, X A @ og[C — )" < v(@,2r) <1
By continuity, there exists d,e > 0 such that

1= [ MO8 A @ loglc a1yt <15

for all z € B(x,¢). Applying Jensen’s convexity inequality to the probability measure

dp=(C) = I(2)~'x(Q)O(C) A (dd° log|¢ — =),

we find

() = / L IE) gl e (@) +0) =

B(x,r
) < O / €= 2 duy ().
B(z,r)
As
dpi-(¢) < C1|¢ — 2|7 "720(C) A (dd°|¢*)" ™ = Cal¢ — 2|7 D doe (C),

we get

672(’9('2) < 03 /( ) |< . Z|72(175)7(27172)d0_8(C)7
B(xz,r

and the Fubini theorem implies that e~2¥(?) is integrable on a neighborhood of z.

(b) If v(p,x) = 7, the convexity properties of psh functions, namely, the convexity of logr +— sup|,_, -, ¥(2)
implies that
o(z) < ylogl|z — x| /ro + M,

where M is the supremum on B(z,rg). Hence there exists a constant C' > 0 such that e=2#(*) > C|z — /=27 in
a neighborhood of z. The desired result follows from the identity

al? 0
/ 7’ 2 aO;Z ’ dV(z) = Const/ (Z |aa|27’2‘°‘|)r2"71727 dr,
B |12[* 0
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which is an easy consequence of Parseval’s formula. In fact, if v has integral part [y] = n+ s, the integral converges
if and only if a, = 0 for |a < s.

(¢) is just a simple formal consequence of (a) and (b). O

(5.7) Proposition ([Nad89]). For any psh function ¢ on 2 C X, the sheaf Z(p) is a coherent sheaf of ideals
over 2. Moreover, if §2 is a bounded Stein open set, the sheaf I(p) is generated by any Hilbert basis of the
L? space H?(82,¢) of holomorphic functions f on 2 such that Jo |f]?e=2¢ d)\ < +00.

Proof. Since the result is local, we may assume that {2 is a bounded pseudoconvex open set in C™. By the
strong noetherian property of coherent sheaves, the family of sheaves generated by finite subsets of H2(12, ) has
a maximal element on each compact subset of £2, hence H? ({2, p) generates a coherent ideal sheaf J C Ogq. It is
clear that 7 C Z(y); in order to prove the equality, we need only check that J, +Z(¢), Nm% ! = (), for every
integer s, in view of the Krull lemma. Let f € Z(p), be defined in a neighborhood V of x and let 6 be a cut-off
function with support in V' such that § = 1 in a neighborhood of x. We solve the equation d"u = g := d”(6f) by
means of Hérmander’s L? estimates 5.3, where F is the trivial line bundle 2 x C equipped with the strictly psh
weight
P(2) = p(2) + (n + s)log |2 — x| + |z,

We get a solution u such that [, [u|?e=2%|z — 2| 72("T*)d\ < oo, thus F' = 0f — u is holomorphic, ' € H*(12, )
and f, — Fp = uy € Z(9)z N mfo"’; This proves the coherence. Now, J is generated by any Hilbert basis of
H2(£2, ), because it is well-known that the space of sections of any coherent sheaf is a Fréchet space, therefore
closed under local L? convergence. O

The multiplier ideal sheaves satisfy the following basic functoriality property with respect to direct images
of sheaves by modifications.

(5.8) Proposition. Let i : X' — X be a modification of non singular complex manifolds (i.e. a proper generically
1:1 holomorphic map), and let ¢ be a psh function on X. Then

1x(O(Ex1) @ I(p o p)) = O(Kx) @ Z(g).

Proof. Let n = dimX = dim X’ and let S C X be an analytic set such that g : X' NS — X N Sis a
biholomorphism. By definition of multiplier ideal sheaves, O(Kx)®Z(¢p) is just the sheaf of holomorphic n-forms

f on open sets U C X such that i”Zf A fe ¥ € LL _(U). Since ¢ is locally bounded from above, we may

loc
even consider forms f which are a priori defined only on U \ S, because f will be in L2 (U) and therefore will

loc
automatically extend through S. The change of variable formula yields
[reagere = [ ptupapegeen
U p=1(U)

hence f € I'(U,O(Kx) @ Z(¢)) iff p*f € I'(u=*(U),O(Kx+) @ Z(¢ o p)). Proposition 5.8 is proved. O

(5.9) Remark. If ¢ has analytic singularities (according to Definition 1.10), the computation of Z(y¢) can be
reduced to a purely algebraic problem.

The first observation is that Z(¢) can be computed easily if ¢ has the form ¢ = Y «;log|g;| where D; =
g;l(O) are nonsingular irreducible divisors with normal crossings. Then Z(¢) is the sheaf of functions h on open

sets U C X such that
/ B ] ] lgs1 2% dV < 4.
U

Since locally the g; can be taken to be coordinate functions from a local coordinate system (z1,...,2y), the
condition is that h is divisible by []g;" where m; — a;; > —1 for each j, i.e. m; > |a;| (integer part). Hence

I(p) = O(=|D]) = O(= Y _|a;|D;)
where | D| denotes the integral part of the Q-divisor D =" «;D;.
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Now, consider the general case of analytic singularities and suppose that ¢ ~ $log (| f1]* + - - + [fn|?) near
the poles. By the remarks after Definition 1.10, we may assume that the (f;) are generators of the integrally
closed ideal sheaf J = J(¢/«), defined as the sheaf of holomorphic functions h such that |h| < Cexp(p/a). In
this case, the computation is made as follows (see also L. Bonavero’s work [Bon93], where similar ideas are used
in connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification u : X — X of X such that p*J is an invertible sheaf O(—D)
associated with a normal crossing divisor D = > A\;D;, where (D;) are the components of the exceptional divisor
of X (take the blow-up X’ of X with respect to the ideal J so that the pull-back of 7 to X’ becomes an invertible
sheaf O(—D'"), then blow up again by Hironaka [Hir64] to make X’ smooth and D’ have normal crossings). Now,
we have K = p*Kx + R where R = >~ pjDj is the zero divisor of the Jacobian function J, of the blow-up map.
By the direct image formula 5.8, we get

Z(p) = e (O(K g — " Kx) @ Z(p o p)) = px (O(R) @ L(p 0 ).

Now, (fj o ) are generators of the ideal O(—D), hence

popun~ad Aloglgl

where g; are local generators of O(—D;). We are thus reduced to computing multiplier ideal sheaves in the case
where the poles are given by a Q-divisor with normal crossings > aA;D;. We obtain Z(popu) = O(—Y_|aX;|D;),
hence

I((p) = ,U*O)’Z(Z(pj — I_Oé)\JJ)D]) O

(5.10) Exercise. Compute the multiplier ideal sheaf Z(y) associated with ¢ = log(|z1|** +...4|zp|*?) for arbitrary
real numbers a; > 0.

Hint: using Parseval’s formula and polar coordinates z; = r;€l% | show that the problem is equivalent to deter-
mining for which p-tuples (01, ..., 0p) € NP the integral

/ T%Bl . T}%BP ridry .. .rpdr, / tgﬁﬁ_l)/al .. .t,(fp-’_l)/% dty dtp
[071]13 [071]13 tl + ...+tp tl tp

2a 2a
A T

is convergent. Conclude from this that Z(y) is generated by the monomials ;" . .. 25 ” such that > (8,+1)/a, > 1.
(This exercise shows that the analytic definition of Z(() is sometimes also quite convenient for computations). O

Let F be a line bundle over X with a singular metric h of curvature current Op . If ¢ is the weight representing
the metric in an open set {2 C X, the ideal sheaf Z(i) is independent of the choice of the trivialization and so it
is the restriction to {2 of a global coherent sheaf Z(h) on X. We will sometimes still write Z(h) = Z(y) by abuse
of notation. In this context, we have the following fundamental vanishing theorem, which is probably one of the
most central results of analytic and algebraic geometry (as we will see later, it contains the Kawamata-Viehweg
vanishing theorem as a special case).

(5.11) Nadel vanishing theorem ([Nad89], [Dem93b]). Let (X,w) be a Kdhler weakly pseudoconvex manifold, and
let F' be a holomorphic line bundle over X equipped with a singular hermitian metric h of weight . Assume that
iOF,, = ew for some continuous positive function € on X. Then

HY(X,0(Kx +F)®Z(h)) =0 for all g > 1.

Proof. Let L7 be the sheaf of germs of (n, g)-forms u with values in F' and with measurable coefficients, such
that both |u|?e=2¢ and |d"u|?e~2% are locally integrable. The d” operator defines a complex of sheaves (L£*,d")
which is a resolution of the sheaf O(Kx + F) ® Z(ip): indeed, the kernel of d” in degree 0 consists of all germs of
holomorphic n-forms with values in F' which satisfy the integrability condition; hence the coefficient function lies
in Z(p); the exactness in degree ¢ > 1 follows from Corollary 5.3 applied on arbitrary small balls. Each sheaf £¢
is a C*°-module, so L® is a resolution by acyclic sheaves. Let ¥ be a smooth psh exhaustion function on X. Let
us apply Corollary 5.3 globally on X, with the original metric of F multiplied by the factor e X°¥, where ¥ is a
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convex increasing function of arbitrary fast growth at infinity. This factor can be used to ensure the convergence
of integrals at infinity. By Corollary 5.3, we conclude that H? (F (X, £')) = 0 for ¢ > 1. The theorem follows. [

(5.12) Corollary. Let (X,w), F and ¢ be as in Theorem 5.11 and let x1,...,xn be isolated points in the zero
variety V(Z(p)). Then there is a surjective map

H(X,Kx +F) — @ O(Kx + L), ® (Ox/Z(¢))
1<GSN

Tj

Proof. Consider the long exact sequence of cohomology associated to the short exact sequence 0 — Z(p) —
Ox — Ox/I(p) — 0 twisted by O(Kx + F), and apply Theorem 5.11 to obtain the vanishing of the first H*!
group. The asserted surjectivity property follows. (I

(5.13) Corollary. Let (X,w), F' and ¢ be as in Theorem 5.11 and suppose that the weight function o is such that
v(p,x) = n+ s at some point x € X which is an isolated point of E1(p). Then H°(X,Kx + F) generates all
s-jets at x.

Proof. The assumption is that v(p,y) < 1 for y near x, y # z. By Skoda’s lemma 5.6 b), we conclude that e=2¢
is integrable at all such points y, hence Z(p), = Ox ,, whilst Z(¢), C m?'; by 5.6 a). Corollary 5.13 is thus a
special case of 5.12. O

The philosophy of these results (which can be seen as generalizations of the Hormander-Bombieri-Skoda
theorem [Bom?70], [Sko72a, 75]) is that the problem of constructing holomorphic sections of Kx + F' can be solved
by constructing suitable hermitian metrics on F' such that the weight ¢ has isolated poles at given points x;.

(5.14) Exercise. Assume that X is compact and that L is a positive line bundle on X. Let {z1,...,zn5} be a
finite set. Show that there are constants a,b > 0 depending only on L and N such that H°(X,mL) generates
jets of any order s at all points z; for m > as +b.

Hint: Apply Corollary 5.12 to F = —Kx + mL, with a singular metric on L of the form h = hge %, where hg
is smooth of positive curvature, ¢ > 0 small and ¢(z) ~ log|z — z;| in a neighborhood of x;.

Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira embedding theorem). If L is a line bundle on a compact complex manifold, then L is
ample if and only if L is positive. O

(5.16) Exercise (solution of the Levi problem). Show that the following two properties are equivalent.
(a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

(b) X is Stein, i.e. the global holomorphic functions H%(X, Ox) separate points and yield local coordinates at
any point, and X is holomorphically convex (this means that for any discrete sequence z,, there is a function
f € H°(X, Ox) such that |f(z,)] — 00). O

(5.17) Remark. As long as forms of bidegree (n, q) are considered, the L? estimates can be extended to complex
spaces with arbitrary singularities. In fact, if X is a complex space and ¢ is a psh weight function on X, we
may still define a sheaf Kx(¢) on X, such that the sections on an open set U are the holomorphic n-forms f
on the regular part U N X,q, satisfying the integrability condition i"2f Afe 2% e Llloc(U). In this setting, the
functoriality property 5.8 becomes

px(Kx (pop) = Kx (o)

for arbitrary complex spaces X, X’ such that p : X’ — X is a modification. If X is nonsingular we have
Kx(p) = O(Kx) ® Z(y), however, if X is singular, the symbols Kx and Z(y) must not be dissociated. The
statement of the Nadel vanishing theorem becomes H?(X,O(F) ® Kx(¢)) = 0 for ¢ > 1, under the same
assumptions (X Kéhler and weakly pseudoconvex, curvature > ew). The proof can be obtained by restricting
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everything to Xyes. Although in general X,ey is not weakly pseudoconvex (e.g. in case codim Xging > 2), Xyeg
is always Kéahler complete (the complement of a proper analytic subset in a Kéhler weakly pseudoconvex space
is complete Kéhler, see e.g. [Dem82b]). As a consequence, Nadel’s vanishing theorem is essentially insensitive to
the presence of singularities. O

6. Numerically effective and pseudo-effective line bundles

6.A. Pseudo-effective line bundles and metrics with minimal singularities

The concept of pseudo-effectivity is quite general and makes sense on an arbitrary compact complex manifold X
(no projective or Kéhler assumption is needed). In this general context, it is better to work with d9-cohomology
classes instead of De Rham cohomology classes: we define

(6.1) Hg’gq(X) = {d-closed (p, q)-forms}/{9-exact (p, q)-forms}.

By means of the Frolicher spectral sequence, it is easily shown that these cohomology groups are finite dimensional
and can be computed either with spaces of smooth forms or with currents. In both cases, the quotient topology of
H?2(X) induced by the Fréchet topology of smooth forms or by the weak topology of currents is Hausdorff. Clearly
H 65(X ) is a bigraded algebra. This algebra can be shown to be isomorphic to the usual De Rham cohomology
algebra H*(X,C) if X is Kéhler or more generally if X is in the Fujiki class C of manifolds bimeromorphic to
Kahler manifolds.

(6.2) Definition. Let L we a holomorphic line bundle on a compact complex manifold X . we say that L pseudo-
effective if c1(L) € H;g(X) 1s the cohomology class of some closed positive current T', i.e. if L can be equipped

with a singular hermitian metric h with T = ﬁ@L,h >0 as a current.

The locus where h has singularities turns out to be extremely important. The following definition was introduced
in [DPS00].

(6.3) Definition. Let L be a pseudo-effective line bundle on a compact complex manifold X . Consider two hermitian
metrics hi, ho on L with curvature i@L,hj > 0 in the sense of currents.

(i) We will write hy < ha, and say that hy is less singular than he, if there exists a constant C' > 0 such that
hi1 < Chs.

(il) We will write hy ~ ha, and say that hi, ha are equivalent with respect to singularities, if there exists a
constant C' > 0 such that C~1hy < hy < Chs.

Of course hy; < ho if and only if the associated weights in suitable trivializations locally satisfy ¢o < @1 + C.
This implies in particular v(¢1,2) < v(p2, ) at each point. The above definition is motivated by the following
observation.

(6.4) Theorem. For every pseudo-effective line bundle L over a compact complex manifold X, there exists up to
equivalence of singularities a unique class of hermitian metrics h with minimal singularities such that i©p 5 > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric hoo (Whose curvature is of random sign and
signature), and we write singular metrics of L under the form h = heoe~¥. The condition i@ r.n = 0 is equivalent
to %851/} > —u where u = ﬁ@Lth- This condition implies that v is plurisubharmonic up to the addition of
the weight ¢ of heo, and therefore locally bounded from above. Since we are concerned with metrics only up
to equivalence of singularities, it is always possible to adjust ¥ by a constant in such a way that supy ¢ = 0. We
now set

Pmin = hooe_wmi“a wmin('r) - Sipw(w)

where the supremum is extended to all functions 3 such that supy ¥ = 0 and %851/} > —u. By standard

results on plurisubharmonic functions (see Lelong [Lel69]), thmin still satisfies %agwmin > —u (i.e. the weight
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Yoo + Ymin Of Amin is plurisubharmonic), and Ami, is obviously the metric with minimal singularities that we
were looking for. [In principle one should take the upper semicontinuous regularization ¢* ;= of ¥min to really get
a plurisubharmonic weight, but since 97, also participates to the upper envelope, we obtain here ¥min = ¥,

automatically]. O

(6.5) Remark. In general, the supremum 1) = sup;c;¢; of a locally dominated family of plurisubharmonic
functions 1); is not plurisubharmonic strictly speaking, but its “upper semi-continuous regularization” *(z) =
limsup,_, , ¥ (¢) is plurisubharmonic and coincides almost everywhere with ¢, with * > . However, in the

context of (6.5), ¢* still satisfies ¢* < 0 and ﬁa&p > —u, hence ™ participates to the upper envelope.
As a consequence, we have ¥* < v and thus ¥ = 9" is indeed plurisubharmonic. Under a strict positivity
assumption, namely if L is a big line bundle (i.e. the curvature can be taken to be strictly positive in the sense
of currents, see 6.12) and (6.14f)), then Ay, can be shown to possess some regularity properties. The reader
may consult [BmDO09] for a rather general (but certainly non trivial) proof that 1, possesses locally bounded
second derivatives 0%min /0z;0%y, outside an analytic set Z C X ; in other words, i0r, p,,, has locally bounded

coefficients on X \ Z.

min

(6.6) Definition. Let L be a pseudo-effective line bundle. If h is a singular hermitian metric such that i > 0
and
HY(X,mL®Z(h®™)) ~ H(X,mL)  for all m >0,

we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing conditions prescribed by the
multiplier ideal sheaves Z(h®™) do not kill any sections of L and its multiples.

(6.7) Exercise. A special case is when there is an isomorphism pL = A + E where A and E are effective divisors
such that H%(X,mpL) = H°(X,mA) for all m and O(A) is generated by sections. Then A possesses a smooth

hermitian metric h4, and this metric defines a singular hermitian metric h on L with poles %E and curvature

%@A,h At %[E] Show that this metric h is an analytic Zariski decomposition.

Note: when X projective and there is a decomposition pL = A 4+ E with A nef (see (6.9) below), E effective and
H°(X,mpL) = H°(X,mA) for all m, one says that this is an algebraic Zariski decomposition of L. It can be
shown that Zariski decompositions exist in dimension 2, but in higher dimension one can see that they do not
exist.

(6.8) Theorem. The metric huyin with minimal singularities provides an analytic Zariski decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic decompositions do not exist in
general, especially in dimension 3 and more.)

Proof. Let o € H°(X,mL) be any section. Then we get a singular metric h on L by putting |£|, = |&/a(x)"/™|

for ¢ € L,, and it is clear that |o|sm = 1 for this metric. Hence 0 € H°(X,mL ® Z(h®™)), and a fortiori
o€ H'(X,mL ® Z(h2)) since Amiy is less singular than h. O

min

6.B. Nef line bundles

Many problems of algebraic geometry (e.g. problems of classification of algebraic surfaces or higher dimensional
varieties) lead in a natural way to the study of line bundles satisfying semipositivity conditions. It turns out that
semipositivity in the sense of curvature (at least, as far as smooth metrics are considered) is not a very satisfactory
notion. A more flexible notion perfectly suitable for algebraic purposes is the notion of numerical effectivity. The
goal of this section is to give a few fundamental algebraic definitions and to discuss their differential geometric
counterparts. We first suppose that X is a projective algebraic manifold, dim X = n.

(6.9) Definition. A holomorphic line bundle L over a projective manifold X is said to be numerically effective,
nef for short, if L -C = fc c1(L) = 0 for every curve C C X.
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If L is nef, it can be shown that LP-Y = [,, ¢1(L)? > 0 for any p-dimensional subvariety Y C X (see e.g. [Har70]).
In relation to this, let us recall the Nakai-Moishezon ampleness criterion: a line bundle L is ample if and only if
LP .Y > 0 for every p-dimensional subvariety Y. From this, we easily infer

(6.10) Proposition. Let L be a line bundle on a projective algebraic manifold X, on which an ample line bundle
A and a hermitian metric w are given. The following properties are equivalent:

(a) L is nef;

(b) for any integer k > 1, the line bundle kL + A is ample;

(

c) for every e > 0, there is a smooth metric he on L such that 1O p, > —cw.

Proof. (a) = (b). If L is nef and A is ample then clearly kL + A satisfies the Nakai-Moishezon criterion, hence
kL + A is ample.

(b) = (c). Condition (c) is independent of the choice of the hermitian metric, so we may select a metric h4 on
A with positive curvature and set w = 1G4 p,. If kL + A is ample, this bundle has a metric hyz1 4 of positive
curvature. Then the metric hy, = (hkr+a ® h;il)l/’c has curvature

1 1
i@L,hL = E(IQ(kL + A) — i@A) > —Ei@AJLA ;

in this way the negative part can be made smaller than €w by taking k large enough.

(¢) = (a). Under hypothesis (c), we get L-C = [, 5-Orn. > —5= [, w for every curve C and every € > 0, hence
L-C >0 and L is nef. O

Let now X be an arbitrary compact complex manifold. Since there need not exist any curve in X, Property
6.10 ¢) is simply taken as a definition of nefness ([DPS94]):

(6.11) Definition. A line bundle L on a compact complex manifold X is said to be nef if for every e > 0, there is
a smooth hermitian metric he on L such that iOp j_ > —ew.

In general, it is not possible to extract a smooth limit hy such that i@, p, = 0. The following simple example is
given in [DPS94] (Example 1.7). Let E be a non trivial extension 0 — O — E — O — 0 over an elliptic curve C
and let X = P(E) (with notation as in (4.12)) be the corresponding ruled surface over C. Then L = Op(g)(1) is
nef but does not admit any smooth metric of nonnegative curvature. This example answers negatively a question
raised by Fujita [Fuj83].

Let us now introduce the important concept of Kodaira-Iitaka dimension of a line bundle.

(6.12) Definition. If L is a line bundle, the Kodaira-Iitaka dimension k(L) is the supremum of the rank of the
canonical maps
Dy X\ By, —P(Vy), zr— H,={0€V,;0(x)=0}, m>1

with Vi, = HY(X,mL) and By, = ey, 0 '(0) = base locus of Vi, In case Vi, = {0} for all m > 1, we set
k(L) = —o0.
A line bundle is said to be big if k(L) = dim X.

The following lemma is well-known (the proof is a rather elementary consequence of the Schwarz lemma).

(6.13) Serre-Siegel lemma ([Ser54], [Sieb5]). Let L be any line bundle on a compact complex manifold. Then we
have
RO(X,mL) < O(m"H)) form =1,

and k(L) is the smallest constant for which this estimate holds. O
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6.C. Pseudoeffective line bundles and positive cones

We now discuss the various concepts of positive cones in the space of numerical classes of line bundles, and
establish a simple dictionary relating these concepts to corresponding concepts in the context of differential
geometry.

Let us recall that an integral cohomology class in H?(X,Z) is the first Chern class of a holomorphic (or
algebraic) line bundle if and only if it lies in the Neron-Severi group

NS(X) = Ker (H*(X,Z) — H*(X,Ox))

(this fact is just an elementary consequence of the exponential exact sequence 0 - Z — O — O* — 0). If X is
compact Kahler, as we will suppose from now on in this section, this is the same as saying that the class is of
type (1,1) with respect to Hodge decomposition.

Let NSg(X) be the real vector space NS(X) ® R C H?(X,R). We define four convex cones

Amp(X) C Eff(X) € NSg(X),
Nef(X) C Psef(X) C NSg(X)

which are, respectively, the convexr cones generated by Chern classes ¢1(L) of ample and effective line bundles,
resp. the closure of the convex cones generated by numerically effective and pseudo-effective line bundles; we say
that L is effective if mL has a section for some m > 0, i.e. if O(mL) ~ O(D) for some effective divisor D.

For each of the ample, effective, nef and pseudo-effective cones, the first Chern class ¢ (L) of a line bundle
L lies in the cone if and only if L has the corresponding property (for Psef(X) use the fact that the space of
positive currents of mass 1 is weakly compact; the case of all other cones is obvious).

(6.14) Proposition. Let (X,w) be a compact Kdhler manifold. The numerical cones satisfy the following properties.
(a) Amp(X) = Amp(X)° C Nef(X)°, Nef(X) C Psef(X).

(b) If moreover X is projective algebraic, we have Amp(X) = Nef(X)° (therefore Amp(X) = Nef(X)), and
Eff(X) = Psef(X).

If L is a line bundle on X and h denotes a hermitian metric on L, the following properties are equivalent:
(¢) c1(L) € Amp(X) < e > 0, 3h smooth such that 1O j > ew.

(d) c1(L) € Nef(X) < Ve > 0, 3h smooth such that 1O, > —cw.

(e) c1(L) € Psef(X) < 3h possibly singular such that 1O > 0.

(f)

o

f) If moreover X is projective algebraic, then
c1(L) € Psef(X)° < k(L) = dim X

& Je > 0, 3h possibly singular such that iOp, j, > ew.

Proof. (c) and (d) are already known and (e) is a definition.

a) The ample cone Amp(X) is always open by definition and contained in Nef(X), so the first inclusion is obvious
(Amp(X) is of course empty if X is not projective algebraic). Let us now prove that Nef(X) C Psef(X). Let
L be a line bundle with ¢;(L) € Nef(X). Then for every e > 0, there is a current 7. = -6, > —ew. Then
T. + cw is a closed positive current and the family is uniformly bounded in mass for € € |0, 1], since

/(T€+€w)/\w”_1:/ cl(L)/\w"_1+5/ w".
X X b

By weak compactness, some subsequence converges to a weak limit 7' > 0 and T € ¢;(L) (the cohomology class
{T'} of a current is easily shown to depend continuously on T with respect to the weak topology; use e.g. Poincaré
duality to check this).

b) If X is projective, the equality Amp(X) = Nef(X)° is a simple consequence of 6.10 b) and of the fact that
ampleness (or positivity) is an open property. It remains to show that Psef(X) C Eff(X). Let L be a line bundle
with ¢; (L) € Psef(X) and let hz be a singular hermitian on L such that T = 5-6p, > 0. Fix a point zg € X
such that the Lelong number of T at z( is zero, and take a sufficiently positive line bundle A (replacing A
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by a multiple if necessary), such that A — Kx has a singular metric hy_k, of curvature > cw and such that
ha—ky is smooth on X N\ {zg} and has an isolated logarithmic pole of Lelong number > n at xg. Then apply
Corollary 5.13 to FF = mL + A — Kx equipped with the metric h%m ® ha_K, . Since the weight ¢ of this metric
has a Lelong number > n at zp and a Lelong number equal to the Lelong number of T' = ﬁ@L,h . at nearby
points, limsup,_,, v(T,z) = v(T,zo) = 0, Corollary 5.13 implies that H*(X, Kx + F) = H°(X,mL + A) has a
section which does not vanish at . Hence there is an effective divisor D,, such that O(mL + A) = O(D,,) and
ci(L) = X{D,,} — %cl(A) = lim %{Dm} is in Eff(X). O

T m

f) Fix a nonsingular ample divisor A. If ¢; (L) € Psef(X)°, there is an integer m > 0 such that ¢1(L) — Lc1(A)
is still effective, hence for m, p large we have mpL — pA = D + F with an effective divisor D and a numerically
trivial line bundle F. This implies O(kmpL) = O(kpA + kD + kF) D O(kpA + kF'), hence h°(X, kmpL) >
hO(X,kpA + kF) ~ (kp)"A™/n! by the Riemann-Roch formula. Therefore (L) = n.

If k(L) = n, then h®(X, kL) > ck™ for k > ko and ¢ > 0. The exact cohomology sequence

0— HYX,kL — A) — H°(X,kL) — H°(A,kL4)

where h%(A,kL;4) = O(k™~!) shows that kL — A has non zero sections for k large. If D is the divisor of such a
section, then kL ~ O(A + D). Select a smooth metric hg on A such that i@Ath > egow for some g9 > 0, and
take the singular metric on O(D) with weight function ¢p = " «jlog|g;| described in Example 3.13. Then the
metric with weight ¢, = %(@A + ¢p) on L yields

1 1/1
Lo, =~ (—@ D ) > (e0/k) w,
5O = 7(5-Oana +[D]) > (co/k)w
as desired.
Finally, the curvature condition i@y, ;, > ew in the sense of currents yields by definition ¢1 (L) € Psef(X)°. O

Before going further, we need a lemma.

(6.15) Lemma. Let X be a compact Kdhler n-dimensional manifold, let L be a nef line bundle on X, and let E
be an arbitrary holomorphic vector bundle. Then h?(X,O(FE) @ O(kL)) = o(k™) as k — +oo, for every ¢ > 1. If
X is projective algebraic, the following more precise bound holds:

h(X,0(E)® O(kL)) = O(k"™7),  Vq>0.

Proof. The Kéhler case will be proved in Section 12, as a consequence of the holomorphic Morse inequalities. In
the projective algebraic case, we proceed by induction on n = dim X. If n = 1 the result is clear, as well as if
q = 0. Now let A be a nonsingular ample divisor such that £ ® O(A — Kx) is Nakano positive. Then the Nakano
vanishing theorem applied to the vector bundle F' = EQO(kL+A— K x) shows that H4(X, O(E)O(kL+A)) =0
for all ¢ > 1. The exact sequence

0— O(kL) — O(kL+ A) — O(kL + A)ja — 0

twisted by E implies
HY(X,0(E) © O(kL)) ~ HT™'(4, 0(Eja ® O(KL + A) 1),

and we easily conclude by induction since dim A = n — 1. Observe that the argument does not work any more if
X is not algebraic. It seems to be unknown whether the O(k™~7) bound still holds in that case. g

(6.16) Corollary. If L is nef, then L is big (i.e. k(L) = n) if and only if L™ > 0. Moreover, if L is nef and big,
then for every 6 >0, L has a singular metric h = e=2% such that max,ex v(p,x) <& and O ), > cw for some
e > 0. The metric h can be chosen to be smooth on the complement of a fixed divisor D, with logarithmic poles
along D.

Proof. By Lemma 6.15 and the Riemann-Roch formula, we have h®(X, kL) = x(X, kL)+o(k™) = k" L" /nl+o(k™),
whence the first statement. If L is big, the proof made in (6.14 f) shows that there is a singular metric hy on L
such that
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i 171
Lo - (4
or L Tk \or
with a positive line bundle A and an effective divisor D. Now, for every £ > 0, there is a smooth metric h. on L

such that %@L,hg > —ew, where w = %QA,hA- The convex combination of metrics h. = h’fsh;’ke is a singular
metric with poles along D which satisfies

Oans+ (D))

QL@LWE > e(w+[D]) — (1 — ke)ew > ke*w.
T

Its Lelong numbers are ev(D, z) and they can be made smaller than § by choosing & > 0 small. O

We still need a few elementary facts about the numerical dimension of nef line bundles.

(6.17) Definition. Let L be a nef line bundle on a compact Kahler manifold X. One defines the numerical dimen-
sion of L to be
num(L) = max{k: =0,...,n;c (L) #0in H%(X,R)}.

By Corollary 6.16, we have x(L) = n if and only if num(L) = n. In general, we merely have an inequality.

(6.18) Proposition. If L is a nef line bundle on a compact Kdihler manifold, then k(L) < num(L).

Proof. By induction on n = dim X. If num(L) = n or k(L) = n the result is true, so we may assume r := k(L) <
n —1 and k := num(L) < n — 1. Fix m > 0 so that ® = @,,1| has generic rank r. Select a nonsingular ample
divisor A in X such that the restriction of @,,, | to A still has rank r (for this, just take A passing through a point
x ¢ By, at which rank(d®,) = r < n, in such a way that the tangent linear map d®,r, , still has rank r). Then
k(Lia) = r = k(L) (we just have an equality because there might exist sections in H°(A,mL4) which do not
extend to X). On the other hand, we claim that num(L;4) = k = num(L). The inequality num(L;4) > num(L)
is clear. Conversely, if we set w = %@A,h . > 0, the cohomology class ¢1(L)* can be represented by a closed
positive current of bidegree (k, k)
i k
7=l (570 +)

after passing to some subsequence (there is a uniform bound for the mass thanks to the Kéhler assumption, taking
wedge products with w™~*). The current 7' must be non zero since c¢1(L)* # 0 by definition of k¥ = num(L). Then
{[A]} = {w} as cohomology classes, and

/ cr(Lia)f AwnR = / ci(D)P AN[A] AW IR = / TAW"F>0.
A X X

This implies num(La) > k, as desired. The induction hypothesis with X replaced by A yields

k(L) < k(Lja) < num(L;4) < num(L). O

(6.19) Remark. It may happen that «(L) < num(L): take e.g.
L—-X= X1 X X2

equal to the total tensor product of an ample line bundle L; on a projective manifold X; and of a unitary
flat line bundle Lo on an elliptic curve Xo given by a representation m1(X2) — U(1) such that no multiple
kLo with k # 0 is trivial. Then H°(X, kL) = H°(X1,kL1) ® HY(Xs,kLs) = 0 for k > 0, and thus x(L) = —oc.
However c¢1 (L) = pr} ¢1(L1) has numerical dimension equal to dim X;. The same example shows that the Kodaira
dimension may increase by restriction to a subvariety (if Y = X; x {point}, then x(L}y) = dimY"). O

6.D. The Kawamata-Viehweg vanishing theorem
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We now derive an algebraic version of the Nadel vanishing theorem in the context of nef line bundles. This
algebraic vanishing theorem has been obtained independently by Kawamata [Kaw82] and Viehweg [Vie82], who
both reduced it to the Kodaira-Nakano vanishing theorem by cyclic covering constructions. Since then, a number
of other proofs have been given, one based on connections with logarithmic singularities [EV86], another on Hodge
theory for twisted coefficient systems [Kol85], a third one on the Bochner technique [Dem89] (see also [EV92] for
a general survey, and [Eno93] for an extension to the compact Kéhler case). Since the result is best expressed
in terms of multiplier ideal sheaves (avoiding then any unnecessary desingularization in the statement), we feel
that the direct approach via Nadel’s vanishing theorem is probably the most natural one.

If D=3 «a;D; > 0 is an effective Q-divisor, we define the multiplier ideal sheaf Z(D) to be equal to Z(p)
where ¢ = 3 a;j|g,| is the corresponding psh function defined by generators g; of O(—D,) ; as we saw in Remark

5.9, the computation of Z(D) can be made algebraically by using desingularizations p : X — X such that p*D
becomes a divisor with normal crossings on X.

(6.20) Kawamata-Viehweg vanishing theorem. Let X be a projective algebraic manifold and let F be a line bundle
over X such that some positive multiple mF can be written mF = L+ D where L is a nef line bundle and D an
effective divisor. Then

HY(X,0(Kx+F)®ZI(m™'D)) =0 for q¢>n—num(L).

(6.21) Special case. If F' is a nef line bundle, then

HY(X,O0(Kx +F)) =0 for ¢>n—num(F).

Proof of Theorem 6.20. First suppose that num(L) = n, i.e. that L is big. By the proof of 6.13 f), there is a
singular hermitian metric hg on L such that the corresponding weight ¢y has algebraic singularities and

i@L,ho = 2id/d”gao 2 Eow

for some g9 > 0. On the other hand, since L is nef, there are metrics given by weights (. such that ﬁ@L,hE > —ew
for every € > 0, w being a Kéahler metric. Let op = Y ajlog|g;| be the weight of the singular metric on O(D)
described in Example 3.13. We define a singular metric on F' by

1
or=— (1= 68)pr.e+8pr0+¢D)

with £ < § < 1, § rational. Then ¢p has algebraic singularities, and by taking ¢ small enough we find Z(pp) =
I(%(pD) = I(%D). In fact, Z(¢r) can be computed by taking integer parts of Q-divisors (as explained in
Remark 5.9), and adding d¢r o does not change the integer part of the rational numbers involved when ¢ is
small. Now

ddCQDF = ((1 — 5)ddcg0L75 + 5ddchL70 + ddcch)

5
> = (= (1-d)ew + dzow + [D] > —w,
m m

if we choose € < dgg. Nadel’s theorem thus implies the desired vanishing result for all ¢ > 1.

Now, if num(L) < n, we use hyperplane sections and argue by induction on n = dim X. Since the sheaf
O(K x) ® Z(m~1D) behaves functorially with respect to modifications (and since the L? cohomology complex is
“the same” upstairs and downstairs), we may assume after blowing-up that D is a divisor with normal crossings.
By Remark 5.9, the multiplier ideal sheaf Z(m~1D) = O(—|m~1D]) is locally free. By Serre duality, the expected
vanishing is equivalent to

HYX,0(-F)®@0(lm~'D])) =0 for ¢ < num(L).

Then select a nonsingular ample divisor A such that A meets all components D; transversally. Select A positive
enough so that O(A+ F — [m~1D]) is ample. Then HY(X,O(—A— F)® O(|m~'D])) = 0 for ¢ < n by Kodaira
vanishing, and the exact sequence 0 — Ox (—A) — Ox — (i4)«Oa — 0 twisted by O(—F) @ O(|m~1D]) yields
an isomorphism
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HY(X,0(~F) & O(|m™' D)) ~ H(A, O(~F}4) ® O(|m~" Dy ).

The proof of 6.18 showed that num(L;4) = num(L), hence the induction hypothesis implies that the cohomology
group on A on the right hand side is zero for ¢ < num(L). O

6.E. A uniform global generation property (Y.T. Siu)

Let X be a projective manifold, and (L, h) a pseudo-effective line bundle. The “uniform global generation prop-
erty” of shows in some sense that the tensor product sheaf L ® Z(h) has a uniform positivity property, for any
singular hermitian metric h with nonnegative curvature on L.

(6.22) Theorem Y.T. Siu, ([Siu98]). Let X be a projective manifold. There exists an ample line bundle G on X
such that for every pseudo-effective line bundle (L, h), the sheaf O(G+L)®Z(h) is generated by its global sections.
In fact, G can be chosen as follows: pick any very ample line bundle A, and take G such that G — (Kx +nA) is
ample, e.g. G = Kx + (n+ 1)A.

Proof. Let ¢ be the weight of the metric h on a small neighborhood of a point zy € X. Assume that we have a
local section u of O(G + L) ® Z(h) on a coordinate open ball B = B(z, ¢), such that

/ [u(z)[2e29(3) |z — 2| 2"V (2) < +o0.
B
Then Skoda’s division theorem [Sko72b] (see also Corollary 8.21 below) implies u(z) = > (z; — 2;,0)vj(2) with
/ [ (2)[Pe 72722 = 20| 2TV (2) < oo,
B

in particular u,, € O(G+ L) ® Z(h) @ mx ,,. Select a very ample line bundle A on X. We take a basis 0 = (0;)
of sections of H*(X,G®my .,) and multiply the metric h of G by the factor |o|~2("*4). The weight of the above
metric has singularity (n +¢)log |z — 20|? at 2o, and its curvature is

(6.23) iOg + (n +¢)iddlog o> > iOg — (n +¢)O4.
Now, let f be a local section in H(B,O(G + L)®Z(h)) on B = B(zp,6), § small. We solve the global d equation
Ou = 0(0f) on X

with a cut-off function 6 supported near zy and with the weight associated with our above choice of metric on
G + L. Thanks to Nadel’s Theorem 5.11, the solution exists if the metric of G + L — Kx has positive curvature.
As i@, > 0 in the sense of currents, (6.23) shows that a sufficient condition is G — Kx —nA > 0 (provided
that € is small enough). We then find a smooth solution w such that u,, € O(G + L) ® Z(h) ® mx ,, hence

F:=0f —uec H(X,0(G+ L)®ZI(h))

is a global section differing from f by a germ in O(G + L) ® Z(h) ® mx ,,. Nakayama’s lemma implies that
H°(X,0(G + L) ® Z(h)) generates the stalks of O(G + L) @ Z(h).

7. Holomorphic Morse inequalities

Let X be a compact Kédhler manifold, E a holomorphic vector bundle of rank » and L a line bundle over X. If L
is equipped with a smooth metric h of curvature form @y, j,, we define the g-index set of L to be the open subset

t1 i 1
(7.1) X(q,L) = {:L' € X ; iO p(x) has q  negatve eigenva ues}

n — q positive eigenvalues

for 0 < ¢ < n. Hence X admits a partition X = AU, X (g, L) where A = {z € X ; det(O n(x)) = 0} is the
degeneracy set. We also introduce
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(7.1') X(<q¢L)= |J X@.L).

0<y<q

(7.2) Morse inequalities ([Dem85b]). For any hermitian holomorphic line bundle L, h) and any holomorphic vector
bundle E over a compact complex manifold X, the cohomology groups HY (X7 E® (’)(kzL)) satisfy the following
asymptotic inequalities as k — +oo :

(a) Weak Morse inequalities

km i n
q _ _1)4( — n
hi(X,E® O(kL)) <r - L)( 1) (%@L,h) + o(k™).

(b) Strong Morse inequalities

Z (-1)9 W (X,E® O(kL)) < 7’% /X(< L)(1)‘1(%@Lyh)" + o(k"™).

0<y<q

The proof is based on the spectral theory of the complex Laplace operator, using either a localization procedure
or, alternatively, a heat kernel technique. These inequalities are a useful complement to the Riemann-Roch
formula when information is needed about individual cohomology groups, and not just about the Euler-Poincaré
characteristic.

One difficulty in the application of these inequalities is that the curvature integral is in general quite uneasy
to compute, since it is neither a topological nor an algebraic invariant. However, the Morse inequalities can be
reformulated in a more algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations.

(7.3) Theorem. Let L = F — G be a holomorphic line bundle over a compact Kahler manifold X, where F and
G are numerically effective line bundles. Then for every ¢ = 0,1,...,n = dim X, there is an asymptotic strong
Morse inequality

> (-1)TIRI(X, kL) < % > (-nr (?)F"‘j~Gj+o(k”).

0<y<q " 0<5i<q

Proof. By adding € times a Kéahler metric w to the curvature forms of F' and G, € > 0 one can write %@L =
Opc — 0ge where 0. = 5-OF + ew and g = 5-Og + cw are positive definite. Let Ay > ... > A, > 0 be the
eigenvalues of 0 . with respect to 0p . Then the eigenvalues of 5-0, with respect to 6 are the real numbers
1 — X; and the set X(< ¢, L) is the set {A\j41 < 1} of points z € X such that Ag41(z) < 1. The strong Morse
inequalities yield

kn n n
> e <t [ e [T - A0k + o)
0<j<q Qo<1 1gcn

On the other hand we have

n\ i ; < n
<j>9F,€j /\GJG,E - O—gl(A) F.e»

where o7 ()\) is the j-th elementary symmetric function in Ay,..., A, , hence
> (_1)‘1‘J(.)F"—J-Gﬂ :Hm/ > (=) ah(N) 0.
- ] e—0 Jx ?
0<j<q 0<i<q

Thus, to prove the Lemma, we only have to check that

Yo D) — 1, (D7 [T (1=x) =0

0<j<n 1<j<n

forall Ay > ... > A\, > 0, where 1 denotes the characteristic function of a set. This is easily done by induction
on n (just split apart the parameter A, and write o7 () = o7 | (A) + 071 (A) An). O



8. The Ohsawa-Takegoshi L? extension theorem 39

In the case ¢ = 1, we get an especially interesting lower bound (this bound has been observed and used by
S. Trapani [Tra95] in a similar context).

(7.4) Consequence. h°(X, kL) — h'(X,kL) > %T;(F” —nF" 1. G) — o(k™).
Therefore some multiple kL has a section as soon as F* —nF" 1 .G > 0.

(7.5) Remark. The weaker inequality

k’n
0 n n—1 n
h(X,kL)}H(F —nF"-G) —o(k")
is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor to F' and G, we may
assume that F', G are ample. Let moG be very ample and let &’ be the smallest integer > k/mg. Then h°(X, kL) >
hY(X,kF — k'moG). We select k' smooth members G, 1 < j < k' in the linear system |moG| and use the exact
sequence

0— HO(X, kEF — ZG]') — HO(X, kF) - @HO(GjakﬂGj)-

Kodaira’s vanishing theorem yields H?(X,kF') = 0 and HY(G,kF|g,) = 0 for ¢ > 1 and k > ko. By the exact
sequence combined with Riemann-Roch, we get

hO(X,kL) > hO(X,kF = > G;)

> i—TF" —o ) =30 ( BT peig, (k"))

(n—1)!
> 1:1—7: (F" LU G) —O(k™ )
> i—? (F" B A G) —O(k" Y.
(This simple proof is due to F. Catanese.) O

(7.6) Corollary. Suppose that F' and G are nef and that F is big. Some multiple of mF — G has a section as soon
as

In the last condition, the factor n is sharp: this is easily seen by taking X = P} and F = O(a,...,a) and
G = O(b1,...,b,) over PT; the condition of the Corollary is then m > 3" b;/a, whereas k(mF — G) has a section
if and only if m > supb;/a; this shows that we cannot replace n by n(1 —¢). O

8. The Ohsawa-Takegoshi L? extension theorem

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y be a complex analytic submani-
fold of a complex manifold X ; given a holomorphic function f on Y satisfying suitable L? conditions on Y, find a
holomorphic extension F of f to X, together with a good L? estimate for F' on X. The first satisfactory solution
has been obtained in the fundamental papers [OT87, Ohs88]. We follow here a more geometric approach due to
Manivel [Man93], which provides a generalized extension theorem in the general framework of vector bundles. As
in Ohsawa-Takegoshi’s fundamental paper, the main idea is to use a modified Bochner-Kodaira-Nakano inequal-
ity. Such inequalities were originally introduced in the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier
[DX84].

8.A. The basic a priori inequality

The main a priori inequality we are going to use is a simplified (and slightly extended) version of the original
Ohsawa-Takegoshi a priori inequality, along the lines proposed by Ohsawa [Ohs95].
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(8.1) Lemma (Ohsawa [Ohs95]). Let E be a hermitian vector bundle on a complex manifold X equipped with
a Kdhler metric w. Let n, X\ > 0 be smooth functions on X. Then for every form v € D(X, AP1T% ® E) with
compact support we have

1% + A2)D"ul® + |2 D"ul|* + [ A2 D'ul|* + 2[| A~ 2d'n A ul”
> ([ni@g —id'd"n —ix"td'n Ad'n, Au,u).

Proof. Let us consider the “twisted” Laplace-Beltrami operators
D/nDI* + DI*nDI — n[DI,DI*] + [DI,T]]DI* + [D/*,T]]D/
— nA/ + (d/n)D/* _ (d/,r])*D/7
D//nD//* + D//*nD// — n[DN, D//*] + [DN, U]D//* + [D//*, U]D//
— UA// + (d//n)D//* _ (d”n)*DN,

where 7, (d'n), (d'n) are abbreviated notations for the multiplication operators ne, (d'n) A e, (d'n) A e. By
subtracting the above equalities and taking into account the Bochner-Kodaira-Nakano identity A”— A’ = [iOg, 4],
we get

D//nD//* + DN*UDN _ D/nD/* _ D/*UD/
(8.2) =nli®p, Al + (d"n) D" — (d"n)*D" + (d'n)* D’ — (d'n) D"

Moreover, the Jacobi identity yields
(D", [d"n, A]] — [d'n, [A, D"]] + [A, [D", d'n]] =0,

whilst [A, D”] = —iD"™* by the basic commutation relations 4.5. A straightforward computation shows that
[D”,d'n] = —(d'd"n) and [d'n, A] = i(d"n)*. Therefore we get

i[D", (d"n)*] +ild'n, D™] — [A, (d'd"n)] = 0,
that is,
[i d/(i//f'77 A] — [D//, (d//n)*] + [D/*, d/n] — D//(d//n)* Jr (d//n)*D// + D/* (d/n) Jr (d/n)D/*.
After adding this to (8.2), we find
D”T]D”* + DI/*nDI/ _ D/T]D/* _ D/*nDI + [i dld”n, A]
— n[i@E,A] + (d”n)D”* + Dll(dlln)* + (d/n)*D/ + D/*(dlﬁ).
We apply this identity to a form v € D(X, AP9T% ® E) and take the inner bracket with «. Then
D'nD"™* u,u) = D"*u,D"*u _ %D//*u 2,
((D"n n n
and likewise for the other similar terms. The above equalities imply
%D”*u2+ %D"uQ— %D/u27 %D/*u2:
Ui n Ui Ui
{[ni@g —id'd"n, Aju,u) + 2Re ({D"*u, (d"n)*u) +2Re (D'u,d'n A u)).

By neglecting the negative terms —||n2 D'ul|? — ||n2 D"*u||> and adding the squares

3

[AFD"ul|? +2Re {(D"*u, (d"n)*u)) + | X7% (d"n)"u]* > 0
IAZD"ul|®> + 2Re (D'u,d'n Aw) + A" 2dp Aul? >0
we get
(> + AZ)D" | + [In> D"ul|* + [|A2 D"l + [|\"2d'n Aul|® + A% (d"n)*ul|?
> ([ni@p — id'd"n, Alu, ).

Finally, we use the identities
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(d'n)*(d'n) = (d"n)(d"n)* =1i[d"n, A](d'n) +i(d"n)ld'n, A] = [id"n A d'n, A],
1 _1 N S
I3 Aull? = I3 (@) 2 = — (A" dn A d"n, Alu, u),
The inequality asserted in Lemma 8.1 follows by adding the second identity to our last inequality. (I

In the special case of (n,g)-forms, the forms D’u and d'n A u are of bidegree (n + 1, ¢q), hence the estimate
takes the simpler form

(8.3) (0% +A2)D"™*u||® + |[nED"u|® > ([(ni@p — id'd"n — Nt d'n A d"n, Alu,u).

8.B. Abstract L? existence theorem for solutions of J-equations

Using standard arguments from functional analysis — actually just basic properties of Hilbert spaces along the
lines already explained in section 5 — the a priori inequality (8.3) implies a very strong L? existence theorem for
solutions of J-equations.

(8.4) Proposition. Let X be a complete Kdhler manifold equipped with a (non necessarily complete) Kahler metric
w, and let E be a hermitian vector bundle over X . Assume that there are smooth and bounded functions n, A\ > 0

on X such that the (hermitian) curvature operator B = Bg’fw7 = iO@g —id'd"'n—ix"td'n ANd'"n, A, is positive

definite everywhere on A™IT% @ E, for some q > 1. Then for every form g € L*(X,A™9T% @ E) such that
D"g =0 and [ (B~ 'g,g)dV, < +oo, there exists f € L*(X,A™1"'T% @ E) such that D" f = g and

/ (n+ NPV, <2 / (B~"g,q)dV..
X X

Proof. The proof is almost identical to the proof of standard L? estimates for 0 (see Theorem 5.1), except that
we use (8.3) instead of (4.7). Assume first that w is complete. With the same notation as in 7.4, we get for every
v=wv; +vy € (Ker D") @ (Ker D”)* the inequalities

(g, )2 = [{go o) 2 < /X (B~'g,g) dV, /X (Bor,v1) Ve,

and
[ Boro) v <t DD 4 gt D = ot + AD D"
X

provided that v € Dom D"*. Combining both, we find
(900 < ([ (B gu0) W)t + A1) D"
X
This shows the existence of an element w € L?(X, A™9T% ® E) such that

lwl? < / (Bg.9)dV,  and
X
(v, 9) = <<(77% + A%)D”*v,w» Vg € Dom D" N Dom D"*.

As (012 422)2 < 2(n+ N), it follows that f = (n*/2 + A2 )w satisfies D" f = g as well as the desired L? estimate.
If w is not complete, we set w. = w + €0 with some complete Kahler metric @. The final conclusion is then
obtained by passing to the limit and using a monotonicity argument (the integrals are monotonic with respect
to €). O

(8.5) Remark. We will also need a variant of the L*-estimate, so as to obtain approximate solutions with
weaker requirements on the data: given § > 0 and g € L?*(X,A™T% ® E) such that D”g = 0 and
Jx((B+6I)"tg,g) dV,, < 400, there exists an approximate solution f € L?*(X,A™47'T% ® E) and a correcting
term h € L?(X, A™T% ® E) such that D" f + §'/2h = g and
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/(77+/\)_1|f|2de+/ |h|? dV, <2/ (B+461)"g,g) dV..
X X X

The proof is almost unchanged, we rely instead on the estimates

Kmvmg<[QU?+MY*%mth£«B+5me0d%,

and
t/«B+5Umwﬁm@<HW%+A%D”MP+ﬂWW. O
X

8.C. The L? extension theorem

According to a concept already widely used in section 5, a (non necessarily compact) complex manifold will be
said to be weakly pseudoconvex if it possesses a smooth weakly plurisubharmonic exhaustion function.

(8.6) Theorem. Let X be a weakly pseudoconvex complex n-dimensional manifold possessing a Kdhler metric w,
and let L (resp. E) be a hermitian holomorphic line bundle (resp. a hermitian holomorphic vector bundle of rank
r over X), and s a global holomorphic section of E. Assume that s is generically transverse to the zero section,
and let

Y ={zeX; s(x)=0,A4"ds(z) # 0}, p=dimY =n—r.
Moreover, assume that the (1,1)-form i@y +rid'd" log|s|? is semi-positive and that there is a continuous function
a =1 such that the following two inequalities hold everywhere on X :

0471 {i@ESa S}

(a) i@ +rid'd’log|s|* > PEE
s

(b) |s| <e™®

Then for every smooth D" -closed (0, q)-form f over Y with values in the line bundle A"T% @ L (restricted to Y),
such that [y | fI?|A"(ds)|~2dV,, < +oc, there exists a D" -closed (0,q)-form F over X with values in A"T% ® L,
such that F is smooth over X \ {s = A"(ds) = 0}, satisfies Fjy = f and

N P
dVX,w g Cr dVYuJ7
/ 5] (— log |s])? y [A7(ds)[?

where C. is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points where s vanishes) induces a vector
bundle isomorphism ds : Tx /Ty — E along Y, hence a non vanishing section A"(ds), taking values in

A" (Tx/Ty) @det E C A"Tx @ det E.

The norm |A"(ds)| is computed here with respect to the metrics on A"T% and det E induced by the Kahler metric
w and by the given metric on E. Also notice that if hypothesis (a) is satisfied for some «, one can always achieve
b) by multiplying the metric of E with a sufficiently small weight e ~X°% (with ¢ a psh exhaustion on X and x a
convex increasing function; property (a) remains valid after we multiply the metric of L by e —(r+aq’ X% where
ap = inf e x a(x).
Proof. Let us first assume that the singularity set X' = {s = 0} N {A"(ds) = 0} is empty, so that Y is closed and
nonsingular. We claim that there exists a smooth section

Fp € O®(X,A™T% @ L) = O°(X, AT} @ A"T% @ L)
such that
(a) F coincides with f in restriction to Y,
(b) |Fs| = | f| at every point of Y,
(¢) D"Fs =0 at every point of Y.
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For this, consider coordinates patches U; C X biholomorphic to polydiscs such that
UjﬂY:{ZGUj; 21:...:Z,~:O}

in the corresponding coordinates. We can certainly find a section f € C®(X, A™9T% ® L) which achieves (a)
and (b), since the restriction map (A%9T%);y — A%ITY can be viewed as an orthogonal projection onto a
C*>-subbundle of (A%9T%)y. It is enough to extend this subbundle from U; NY to U; (e.g. by extending each
component of a frame), and then to extend f globally via local smooth extensions and a partition of unity. For
any such extension f we have _ _
(D" fliy = (D" fiy) =D"f =0.

It follows that we can divide D”f: 21@\@ gia(2) NdZx on U;NY, with suitable smooth (0, ¢)-forms g; » which
we also extend arbitrarily from U; N'Y to U;. Then

Foo:=f— Zej(z) > Zagin(2)

1<ALr

coincides with ]?OII Y and satisfies (c). Since we do not know about Fi, except in an infinitesimal neighborhood
of Y, we will consider a truncation F. of F,, with support in a small tubular neighborhood |s| < € of Y, and
solve the equation D"u, = D" F, with the constraint that u. should be 0 on Y. As codimY = r, this will be the
case if we can guarantee that |uc|?|s|=2" is locally integrable near Y. For this, we will apply Proposition 8.4 with
a suitable choice of the functions 7 and A, and an additional weight |s|=2" in the metric of L.

Let us consider the smooth strictly convex function xo : | — 00, 0] — | — 00, 0] defined by xo(¢) =t —log(1 —1t)
for t < 0, which is such that xo(t) < ¢, 1 < xf < 2 and xg(t) = 1/(1 — t)%. We set

0. = log(|s|* + €?), ne =& — xo(oe).
As |s| < e < e7!, we have 0. < 0 for & small, and
Ne =e—0.>¢e—log(e ™ +&2).

Given a relatively compact subset X, = {¢ < ¢}CCX, we thus have 1. > 2« for € < €(¢) small enough. Simple
calculations yield

. {D's, s}
ido. = 7|s|2 gy
d . — YD's,D's}  {D's,s} A{s,D's} {iOgs,s}
R (= R PR
S ii{D’s,s} Ns,D's}  {iOgs, s}
TlsP (s +e2)? |s[? + €2
2 .
> Spido.ndo, - SoER)

thanks to Lagrange’s inequality i{D’s,s} A {s, D's} < |s|?i{{D’s,D’'s}. On the other hand, we have d'n. =
—x5(oe)doe with 1 < x((oc) < 2, hence
—id'd"n. = xy(02)id'd"oc + xg (02)id o Nd" o,
S ( 1 &2 X¢(0¢) {i@Es,s}.
g o+

Xo(oe) [sI*  xo(oe)?

)id/na A d//na - X6 (Ua)
We consider the original metric of L multiplied by the weight |s|=2". In this way, we get a curvature form

_,1{i®@ps, s}

1
0, +rid'd" log |s|* > §X6(Ua)0‘ S+ 22

< 5. As

[s]

by hypothesis (a), thanks to the semipositivity of the left hand side and the fact that %x{)(og)
Ne = 2a on X, for € small, we infer

_1
[ +e2

" 2
Xo (UE) id/na /\d//ng 2 € id/ng A d”T/a

0, +id'd" log |s|?) — id'd"n. —
(e Blsl) e = oy TACAIEE
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on X.. Hence, if Ac = x{(02)?/x{(0:), we obtain

B, = [n.(i01 +id'd" log |s|*) —id'd"n. — A\Z'id'n- Ad"n. , A]
52 < g/ ! A 52
E[mldﬁs/\dnm }:

d// d// *
X6(05)|S|2( 77€>( 776)

as an operator on (n, ¢)-forms (see the proof of Lemma 8.1).

Let 6 : R — [0,1] be a smooth cut-off function such that 6(¢) = 1 on | — 00,1/2], Suppd C | — oo, 1[ and
|6'| < 3. For € > 0 small, we consider the (n, q)-form F. = 0(¢7?|s|?)Fx and its D”-derivative

ge = D"F. = (147250 (c7%|s]?)d" 0. A Fao + 0(c72%|5]*) D" Fy

[as is easily seen from the equality 1+ &e~2|s|? = £72¢¢]. We observe that g. has its support contained in the
tubular neighborhood |s| < ¢; moreover, as ¢ — 0, the second term in the right hand side converges uniformly
to 0 on every compact set; it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d”o. and d"7., and can be controlled in terms of B.. In fact, for any
(n, q)-form u and any (n,q + 1)-form v we have

[{d"ne A, 0) |2 = [(u, (d"ne) 0)[* < Jul*(d"ne) ol = Jul*((d"ne) (d" 1) "0, v)

/ 2
< 7XO(UE)|S| |u|2<B€v,v>.

This implies

X6(08)|S|2 |u|2

(B (d"me Aw), (d"n- A)) < =55

The main term in g. can be written

g = (14750 (7 2|s|P)xh(02) "2 e A Fo.
On Suppggl) C {|s] < e}, since x((oe) = 1, we thus find

(B'g), gy < (14721510 (72 |s]%)? | Foc |

Instead of working on X itself, we will work rather on the relatively compact subset X.\Y,, where Y. =Y NX, =
Y Nn{y < c¢}. We know that X. \ Y, is again complete Kéhler by a standard Lemma (see [Dem82b], Th. 1.5). In
this way, we avoid the singularity of the weight |s| 2" along Y. We find

[ B s v < [ R P s |
XN\Y, XeNYe
Now, we let ¢ — 0 and view s as “transverse local coordinates” around Y. As F, coincides with f on Y, it is not

hard to see that the right hand side converges to ¢, [, |f[*|A"(ds)|"?dVy,, where ¢, is the “universal” constant

i’ A7 (dz) A A7 (dz
Cr :/ (1+|Z|2)29/(|Z|2)21 ( 2)2/\ ( Z) < 400
2€C7, |2|<1 |2[?"

depending only on r. The second term
g§2) _ 9(572|S|2)d”Foo

in g. satisfies Supp(gg)) C {|s| < €} and |g§2)| = O(]s]) (just look at the Taylor expansion of d”F,, near Y).
From this we easily conclude that

/ (B9 g 5|2V, = O(),
X.N\Y.

provided that B. remains locally uniformly bounded below near Y (this is the case for instance if we have strict
inequalities in the curvature assumption (a)). If this holds true, we apply Proposition 8.4 on X, \ Y, with the
additional weight factor |s|=2". Otherwise, we use the modified estimate stated in Remark 8.5 in order to solve
the approximate equation D" u + o12p = ge with 6 > 0 small. This yields sections u = uc¢,5, h = h¢e,5 such that
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/ (778 +AE)_1|UC»875|2|5|_2T de +/ |hc,8,6|2|5|_2T de
XexYe NY,

<2/ (B +61) g, go)|s| 2" dVL,
XcNY.

and the right hand side is under control in all cases. The extra error term §'/2h can be removed at the end by
letting § tend to 0. Since there is essentially no additional difficulty involved in this process, we will assume for
L2 - : . 1) )
simplicity of exposition that we do have the required lower bound for B, and the estimates of g¢ ' and g™’ as
above. For § = 0, the above estimate provides a solution u.. of the equation D"u.. = g. = D"F, on X, \ Y,
such that

/ (ne + )‘6)71|U078|2|5|72rdVX7w < 2/ (Bglgaa!]a> |5|72TdVX,w
X.N\Y, XeNYe

|f|?
< — V., +O(e).
S2er /YC | A7 (ds)|? e ©

Here we have
0. = log(|s|? + %) <log(e™®* + &%) < —2a+ O(?) < -2+ O(?),

ne =€ — xo0(0:) < (14 0(e))o?,

_ X6(Ua)2

: X/OI(UE)

N+ Ae < (44 0(£))0? < (4+0(e)) (— log(|s[? +¢2))>.

As F; is uniformly bounded with support in {|s| < €}, we conclude from an obvious volume estimate that

=(1-0)’ + (1 -0:) < (3+0(e))o?,

/ |F|? V. Const
x. (IsP + %) (—log(ls? +2))27 " = (log )’

Therefore, thanks to the usual inequality |t 4 u[2 < (1+k)|t]2 4+ (14 k~1)|ul? applied to the sum F, . = fo — e
with & = |loge|, we obtain from our previous estimates

/ |Foee|?

Xy, (s]? +€%)7(—log(|s]* +€2))
In addition to this, we have d"F, . = 0 by construction, and this equation can be seen to extend from X, \ Y.
to X, by the L? estimate ([Dem82b], Lemma 6.9).

If ¢ = 0, then u.. must also be smooth, and the non integrability of the weight |s| 72" along Y shows that
U¢,e vanishes on Y, therefore

dVy., + O(]loge| ™).

M&wggg/__ﬁﬁ_
2 v, [47(ds)P?

Feery =Fay = Fiy = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first as € — 0, and then as
¢ — +o00. The initial assumption that X' = {s = A"(ds) = 0} is empty can be easily removed in two steps: i) the
result is true if X is Stein, since we can always find a complex hypersurface Z in X such that ¥ c Y NZ CY,
and then apply the extension theorem on the Stein manifold X \ Z, in combination with L? extension; ii) the
whole procedure still works when X is nowhere dense in Y (and possibly nonempty). Indeed local L? extensions
fj still exist by step i) applied on small coordinate balls U;; we then set Fpo = Zé’jfj and observe that
| D" Fyo|?|s| 72" is locally integrable, thanks to the estimate ij |£;12]s| 72" (log |s|) "2dV < 400 and the fact that

|S°d"0; A fi| = O(|s|°) for suitable § > 0 [as follows from Hilbert’s Nullstensatz applied to f; — fr at singular
points of Y.

When ¢ > 1, the arguments needed to get a smooth solution involve more delicate considerations, and we
will skip the details, which are extremely technical and not very enlightening.

(8.7) Remarks.

(a) When ¢ = 0, the estimates provided by Theorem 8.6 are independent of the Kahler metric w. In fact, if f
and F' are holomorphic sections of A"T% ® L over Y (resp. X), viewed as (n,0)-forms with values in L, we can
“divide” f by A"(ds) € A™(TX/TY)* ® det E to get a section f/A"(ds) of APTy @ L ® (det E)~! over Y. We
then find
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2
|F|?dVx,, =i" {F, F},

L — iPZ T s T S
|Ar(ds)|2dVYvW {f/A (d )7f/A (d )}7

where {e, o} is the canonical bilinear pairing described in (3.3).

(b) The hermitian structure on E is not really used in depth. In fact, one only needs E to be equipped with
a Finsler metric, that is, a smooth complex homogeneous function of degree 2 on E [or equivalently, a smooth
hermitian metric on the tautological bundle Opgy(—1) of lines of E over the projectivized bundle P(E), see
(4.12)]. The section s of E induces a section [s] of P(E) over X \ s (0) and a corresponding section 5 of
the pull-back line bundle [s]*Op(g)(—1). A trivial check shows that Theorem 8.6 as well as its proof extend to
the case of a Finsler metric on E, if we replace everywhere {i@gs, s} by {iO([s]*Op(g)(—1)),5} (especially in
hypothesis 8.6 b)). A minor issue is that |A"(ds)| is (a priori) no longer defined, since no obvious hermitian norm
exists on det E. A posteriori, we have the following ad hoc definition of a metric on (det E)* which makes the
L? estimates work as before: for # € X and £ € A"E}, we set

1
€2 = / R

i"ENE
- =

|Z|27‘

where |z| is the Finsler norm on E, [the constant ¢, is there to make the result agree with the hermitian case; it
is not hard to see that this metric does not depend on the choice of 6]. (]

We now present a few interesting corollaries. The first one is a surjectivity theorem for restriction morphisms in
Dolbeault cohomology.

(8.8) Corollary. Let X be a projective algebraic manifold and E a holomorphic vector bundle of rank r
over X, s a holomorphic section of E which is everywhere transverse to the zero section, Y = s~(0), and
let L be a holomorphic line bundle such that F = LY" ® E* is Griffiths positive (we just mean formally that
%i@L ® Idg —1@g >cuir 0). Then the restriction morphism

HY(X, A"T% ® L) — H*(Y,A"T% ® L)

1s surjective for every q = 0.

Proof. A short computation gives
DI
id'd" log|s|? = 1d’(7{5’|3|25})
({D/S,D/s} _ {D's,s} A{s,D's} N {s,@Es}) S  {i9gs, s}

|[? |s[* |s|? |s|?

thanks to Lagrange’s inequality and the fact that @ is antisymmetric. Hence, if ¢ is a small positive constant
such that

1
—iOp + -10; ® Idg 2 0w ® Idg > 0,
T

we find
07 +ridd log|s|® > réw.

The compactness of X implies i@p < Cw®Idg for some C > 0. Theorem 8.6 can thus be applied with « = r§/C
and Corollary 8.8 follows. By remark 8.7 b), the above surjectivity property even holds if LY/"®E* is just assumed
to be ample (in the sense that the associated line bundle 7* LY/" @ O p(p)(1) is positive on the projectivized bundle
7m: P(E) — X of lines of E). O

Another interesting corollary is the following special case, dealing with bounded pseudoconvex domains
2CCC". Even this simple version retains highly interesting information on the behavior of holomorphic and
plurisubharmonic functions.

(8.9) Corollary. Let 2 C C" be a bounded pseudoconver domain, and let Y C X be a nonsingular complex
submanifold defined by a section s of some hermitian vector bundle E with bounded curvature tensor on 2.
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Assume that s is everywhere transverse to the zero section and that |s| < e~! on 2. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function ¢ on 2, every holomorphic
function f on'Y with [, |f|*|A"(ds)|"2e~¥dVy < +oo, there exists an extension F of f to £2 such that

|F|? - .
d < e ¥d
/||2r—1og|| VosC ) Ta@ses ™"

Proof. We apply essentially the same idea as for the previous corollary, in the special case when L = 2 x C is
the trivial bundle equipped with a weight function e=#=AlzI” The choice of a sufficiently large constant A > 0
guarantees that the curvature assumption 8.6 a) is satisfied (A just depends on the presupposed bound for the
curvature tensor of E). O

(8.10) Remark. The special case when Y = {z;} is a point is especially interesting. In that case, we just take
s(z) = (ediam £2)71 (2 — 29), viewed as a section of the rank r = n trivial vector bundle 2 x C" with |s| < e™!
We take o = 1 and replace |s|?"(—log|s|)? in the denominator by |s|2("~%) using the inequality

1 1
—log|s| = glog|s|_‘E < E|s|_5, Ve > 0.

For any given value fj, we then find a holomorphic function f such that f(z9) = fo and

2
|f(Z)| e—z,a(z)dvn Ch

WA=l 2¢=¢(20)
a |z = 20"~ S (diam )20 o1

8.D. Skoda’s division theorem for ideals of holomorphic functions

Following a strategy inpired by T. Ohsawa [Ohs02, Ohs04], we give here a version of Skoda’s division theorem for
ideals of holomorphic functions, by reducing it to an extension problem. Our approach uses Manivel’s version of
the extension theorem presented above, and leads to results very close to those of Skoda [Sko80], albeit somewhat
weaker.

Let (X,w) be a Kahler manifold, dim X = n, and let g : E — @Q a holomorphic morphism of hermitian vector
bundles over X. Assume for a moment that g is everywhere surjective. Given a holomorphic line bundle L — X,
we are interested in conditions insuring that the induced morphism g : H(X, Kx@ EQL) — HY(X, Kx®Q®L)
is also surjective (as is observed frequently in algebraic geometry, it will be easier to twist by an adjoint line
bundle Kx ® L than by L alone). For that purpose, it is natural to consider the subbundle S = Kerg C F and
the exact sequence

(8.11) 0—S E 2.0—0
where j : S — FE is the inclusion, as well as the dual exact sequence
(8.11) 0—Q pr s o,

which we will twist by suitable line bundles. The main idea of [Ohs02, Ohs04] is that finding a lifting of a section
by g is essentially equivalent to extending the related section on Y = P(Q*) = P(Q) to X = P(E*) = P(F), using
the obvious embedding J C X of the projectivized bundles. In fact, if rs = rg — rg are the respective ranks of
our vector bundles, we have the classical formula

(8.12) Kx = Kpp) = 7" (Kx @ det £) ® Op(gy(—75)

where 7 : P(E) — X is the canonical projection. Therefore, since E coincides with the direct image sheaf
T.Op(g)(1), a section of H°(X,Kx ® E® L) can also be seen as a section of

(8.13) HY (X, Ky ® Ox(rs +1) @ 7" (L @ det E71)).
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Now, since Ox (1)} oy = Oy(1) = Op(g)(1), the lifting problem is equivalent to extending to X a section of the
line bundle (Kx ® £);y where £ = Ox(rg+ 1) ® 7*(L @ det E~!). As a submanifold, ) is the zero locus of the
bundle morphism

Op(p)(—1) = 7 E* — n"(E*/Q") = 7°57,
hence it is the (transverse) zero locus of a naturally defined section
(8.14) s€ H'(X,€)  where &:=7"S*® Opg)(1).

Let us assume that E is endowed with a smooth hermitian metric i such that @ j, is Griffiths semi-positive. We
equip @ with the quotient metric and S, Op(p)(1), det E, £ (...) with the induced metrics. A sufficient curvature
condition needed to apply the Ohsawa-Takegoshi-Manivel extension theorem is

i0
0, + rsid'd’ log|s|? > 5%
s
for € > 0 small enough (i.e. in some range € € [0,&¢], g9 < 1). Since id’d” log|s|* > —iOppr)(1) — %,

we obtain the sufficient condition

{iOn-s-5, 5}

(8.15) 7T*i@L®detE*1 +(1- E)i@oP(E)(l) —(rs+¢) |S|2

>0, e € [0, 0]

The assumption that E' is Griffiths semi-positive implies i@det g 2> 0, 100, (1) = 0 and also

(8.16) L <l

In fact this is equivalent to proving that S ® det @ is Griffiths semi-positive, but we have in fact S ® detQ =
S®detST! ®@det E = A™s~1S* @ det E, which is a quotient of A" 1E* ® det E = A™~"s+t1E > 0. This shows
that (8.15) is implied by the simpler condition

(8.17) 1O, > 1O4et E + (7’5 + €O)i@detQ,
in particular L = det E ® (det Q)k, k > rg, satisfies the curvature condition. We derive from there:

(8.18) Theorem. Assume that (X,w) is a Kdhler manifold possessing a complete Kdhler metric &, and let
g: E— Q be a surjective morphism of holomorphic vector bundles, where (E,hg) is a Griffiths semi-positive
hermitian bundle. Consider a hermitian holomorphic line bundle (L, hr) such that

i@L*(TSqLE)i@dethi@detE >0, rs =rg—rg, €>0.

Then for every L? holomorphic section f € HY(X,Kx ® Q ® L) there exists a L? holomorphic section
he H(X,Kx ® E® L) such that f = g-h and ||h]|*> < Chrp.cll fII*

Proof. We apply Theorem 8.6 with respect to the data (X,),&,L£) and a = ¢!, r = rg. Since |s| < 1, we
have to multiply s by 6 = exp(—1/¢) to enforce hypothesis 8.6 b). This affects the final estimate only as far as
the term log |s| is concerned, since both |s|?" and |A"(ds)|*> = 1 are multiplied by §?". Finally, we apply Fubini’s
theorem to reduce integrals over X' or Y to integrals over X, observing that all fibers of X = P(F) — X are
isometric and therefore produce the same fiber integral. Theorem 8.18 follows. By exercising a little more care

in the estimates, one sees that the constant C,, .., - is actually bounded by C,, .72, where the e~2 comes from

the term (—log|s|)?, after s has been multiplied by exp(—1/e). O
Skoda’s original method is slightly more accurate. It shows that one can take C, ,, . = €', and, more

importantly, replaces the curvature hypothesis by the weaker one

(8.19) i1 — (k4 ¢€)iOdet @ — 1Odet 5 = 0, k =min(rg,n), rs=rg—rg, n=dimX, >0,

which does not seem so easy to obtain with the present method. It is however possible to get estimates also when
Q@ is endowed with a metric given a priori, that can be distinct from the quotient metric of £ by g. Then the
map ¢g*(gg*)~! : Q — E is the lifting of Q orthogonal to S = Ker g. The quotient metric |o|’ on Q is therefore
defined in terms of the original metric |o| by
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v = |g*(99™) " v]? = ((99") ‘v, v) = det(gg*) " (gg*v,v)

where @; € End(Q) denotes the endomorphism of ) whose matrix is the transposed comatrix of gg*. For every
w € det @, we find
| = det(gg™) ™" [w]?.

If Q' denotes the bundle @ with the quotient metric, we get
1Odet ' = 1Odet ¢ + 1d'd" log det(gg™).

In order that the hypotheses of Theorem 8.18 be satisfied, we are led to define a new metric |o|" on L by
[u|? = |u|? (det(gg*)) ™™ °. Then

10 =101 + (m+¢)id'd" logdet(gg*) = (m + €) iOgdet ¢ -
Theorem 8.18 applied to (E,Q’, L') can now be reformulated:

(8.20) Theorem. Let X be a weakly pseudoconvex manifold equipped with a Kdhler metric w, let E — Q be a
generically surjective morphism of hermitian vector bundles with E Griffiths semi-positive, and let L — X be a
hermitian holomorphic line bundle. Assume that

i@L*(TSqLE)i@dethi@detE >0, rs =rg—rg, €>0.

Then for every holomorphic section f of Kx ® Q ® L such that
I= /X@;f, f) (det gg*)~"s 7172 dV < 400,
there exists a holomorphic section of Kx ® E® L such that f = g-h and
/X |h|? (det gg*) "7 dV < Cryppp,e 1.

In case Q is of rank 1, the estimate reduces to

/X 1 g2~ AV < Gy e /X 2920402 gy

Proof. if Z C X is the analytic locus where g : E — @ is not surjective and X, = {¢ < ¢} is an exhaustion of X
by weakly pseudoconvex relatively compact open subsets, we exploit here the fact that X, \ Z carries a complete
metric (see [Dem82b]). It is easy to see that the L? conditions forces a section defined a priori only on X \ Z to
extend to X. O

The special case where E = ng and @ = Og, are trivial bundles over a weakly pseudocovex open set 2 C C™
is already a quite substantial theorem, which goes back to [Sko72b]. In this case, we take L to be the hermitian
line bundle (Og,, e~ %) associated with an arbitrary plurisubharmonic function ¢ on (2.

(8.21) Corollary (Skoda’s division theorem). Let f, g1, ..., gp be holomorphic functions on a weakly pseudoconvex
open set 2 C C™ such that fn |f|?]g| 2PtV =22e=9qV < 400 for some plurisubharmonic function p. Then there
exist holomorphic functions hj, 1 < j < p, such that f =5 g;h; on 2, and

/ I 1g]2®= D=2 4V < Cp e / £ 191 2P 2% av.
X X

9. Approximation of closed positive (1,1)-currents by divisors
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9.A. Local approximation theorem through Bergman kernels

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that every psh function on a
pseudoconvex open set 2 C C" can be approximated very accurately by functions of the form clog|f|, where
¢ > 0 and f is a holomorphic function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93b] and Demailly-Kolldr [DKO01]. Recall that the Lelong number of a function ¢ € Psh({2)
at a point xg is defined to be

SD(Z) . SUPB(zg,r) P

9.1 — liminf — 2%
(9.1) v(p, zo) = limin gl — 7ol A " Togr

In particular, if ¢ = log|f| with f € O(£2), then v(p,xo) is equal to the vanishing order
ordg, (f) = sup{k € N; D f(z9) = 0, V]| < k}.

(9.2) Theorem. Let ¢ be a plurisubharmonic function on a bounded pseudoconvex open set £2 C C"™. For every
m > 0, let Ho(my) be the Hilbert space of holomorphic functions f on §2 such that fQ |fI2e=2m¥d\ < +o00 and
let om = 5=log Y- |o¢|* where (o¢) is an orthonormal basis of Ho(me). Then there are constants C1,Ca > 0
independent of m such that

C, 1
a) o(z) — — < pm(z) < sup ¢(¢) + —log
@) ¢ = Som() < s o0+

for every z € 2 and r < d(z,002). In particular, o, converges to ¢ pointwise and in L
when m — +o00 and

Tn
1
loc

topology on (2

(b) v(p,z)— % S v(om,2) < v(p,z) for every z € £2.

Proof. (a) Note that > |oy(2)|? is the square of the norm of the evaluation linear form ev, : f — f(2) on
Ha(me), since o¢(z) = ev.(oy) is the ¢-th coordinate of ev, in the orthonormal basis (oy). In other words, we

have
doloe@)P = sup [f(2)
feB(1)
where B(1) is the unit ball of Hpo(me) (The sum is called the Bergman kernel associated with Hp(mep).) As ¢
is locally bounded from above, the L? topology is actually stronger than the topology of uniform convergence
on compact subsets of £2. It follows that the series > |o¢|? converges uniformly on {2 and that its sum is real
analytic. Moreover, by what we just explained, we have

1
om(z) = sup —log|f(z)|.
feB(1) M

For zp € £2 and r < d(zp, 0f2), the mean value inequality applied to the psh function |f|? implies
1

wr2n [n)

F(e0)? < [ CIC

exp (2m sup @(z))/9|f|26_2m“’d)\.

= ng2n
T /n| |z—zo|<T

If we take the supremum over all f € B(1) we get

1

log wnr2n n)

1
om(20) < sup  p(z) + o

|z—zo|<T

and the second inequality in (a) is proved — as we see, this is an easy consequence of the mean value inequality.
Conversely, the Ohsawa-Takegoshi extension theorem (Corollary 8.9) applied to the 0-dimensional subvariety
{z0} C 2 shows that for any a € C there is a holomorphic function f on {2 such that f(z¢) = @ and

/ |f|26—2mlpd)\ < C3|a|26—2m<p(zo),
2
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where C5 only depends on n and diam {2. We fix a such that the right hand side is 1. Then || f|| < 1 and so we

get
1 1 log C5
m(20) = —1 = —logla| = p(z) — B3
om(z0) > — log|f (z0)] = = logla] = (=) ~ <5
The inequalities given in (a) are thus proved. Taking 7 = 1/m, we find that lim,— 100 SUP|c_,|<1/m P(C) = ¢(2)
by the upper semicontinuity of ¢, and therefore lim ¢, (z) = ¢(z), since lim % log(Cam™) = 0.

(b) The above estimates imply

C 1 C
sup p(z) — — < sup pm(2) < sup  p(z) + — log —.
|z—zo|<T m |z—zo|<T |z—zo|<2r m r
After dividing by logr < 0 when r — 0, we infer
SUP|;— 2| <2r SD(Z) + % 10g % < SUP|z—z|<r @m(z) < SUP|z—z|<r SD(Z) - %
logr = logr = logr ’
and from this and definition (9.1), it follows immediately that
n
Z/(QD,SC) - E < l/(sﬁm,Z) < V(QD,Z)- U

Theorem 9.2 implies in a straightforward manner the deep result of [Siu74] on the analyticity of the Lelong
number upperlevel sets.

(9.3) Corollary [Siu74]). Let ¢ be a plurisubharmonic function on a complex manifold X. Then, for every ¢ > 0,
the Lelong number upperlevel set
Ec(p) = {7 € X; v(p,2) = ¢}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh function ¢ on a pseudoconvex
open set {2 C C™. The inequalities obtained in 9.2 b) imply that

Ec(‘P): ﬂ chn/m(‘pm)'

m>=mo

Now, it is clear that E.(p.,) is the analytic set defined by the equations oéa) (z) = 0 for all multi-indices a such

that || < me. Thus E.(y) is analytic as a (countable) intersection of analytic sets. O

(9.4) Remark. It can be easily shown that the Lelong numbers of any closed positive (p, p)-current coincide (at
least locally) with the Lelong numbers of a suitable plurisubharmonic potential ¢ (see Skoda [Sko72a]). Hence
Siu’s theorem also holds true for the Lelong number upperlevel sets E.(T') of any closed positive (p, p)-current T'.

9.B. Global approximation of closed (1,1)-currents on a compact complex manifold

We take here X to be an arbitrary compact complex manifold (no Kéhler assumption is needed). Now, let T'
be a closed (1, 1)-current on X. We assume that T is almost positive, i.e. that there exists a (1,1)-form v with
continuous coefficients such that T' > v ; the case of positive currents (v = 0) is of course the most important.

(9.5) Lemma. There exists a smooth closed (1, 1)-f(_)7“n_1 o representing the same 90-cohomology class as T and an
almost psh function ¢ on X such that T = o + =00p. (We say that a function ¢ is almost psh if its complex
Hessian is bounded below by a (1,1)-form with locally bounded coefficients, that is, if 100y is almost positive).

Proof. Select an open covering (U;) of X by coordinate balls such that T' = %8590]- over Uj, and construct a global
function ¢ = 30,4, by means of a partition of unity (6;) subordinate to U;. Now, we observe that ¢ — ¢y, is
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smooth on Uy, because all differences ¢; — ¢y are smooth in the intersections U; NUy and ¢ — gy, = >20i(pj—vk))-
Therefore o := T — =90y is smoth. O

By replacing T with 7' — @ and v with v — a, we can assume without loss of generality that {T'} = 0, i.e.
that T'= ~00p with an almost psh function ¢ on X such that >90¢ > 7.

Our goal is to approximate T in the weak topology by currents T, = %85% such their potentials ¢,, have
analytic singularities in the sense of Definition 1.10, more precisely, defined on a neighborhood V,, of any point
zo € X in the form ¢, (2) = ¢ log 3 [0j,m|* + O(1), where ¢, > 0 and the 0, are holomorphic functions on
Vo -

We select a finite covering (W,) of X with open coordinate charts. Given § > 0, we take in each W, a
maximal family of points with (coordinate) distance to the boundary > 3§ and mutual distance > §/2. In this
way, we get for § > 0 small a finite covering of X by open balls U J’ of radius 0 (actually every point is even
at distance < §/2 of one of the centers, otherwise the family of points would not be maximal), such that the
concentric ball U; of radius 24 is relatively compact in the corresponding chart W,,. Let 7; : U; — B(a;, 26) be
the isomorphism given by the coordinates of W,. Let £(4) be a modulus of continuity for v on the sets Uj, such
that lims_oe(6) = 0 and v, — Vo < 2e(8) w, for all z,2” € U;. We denote by «; the (1,1)-form with constant
coefficients on B(a;,2d) such that 77+, coincides with v —e(d) w at le(aj). Then we have

(9.6) 0<y—7/7 <2(6)w on Uj

for 6 > 0 small. We set ¢; = ¢ o Tj_l on B(aj,20) and let g; be the homogeneous quadratic function in z — a;
such that %83% =, on B(a;,26). Finally, we set

(9.7) ¥j(2) = ¢j(2) — qj(z) on Blay,26).

Then 1); is plurisubharmonic, since

U= *

;aa(zpj orj)) =T —71iv;=2v—17v = 0.
We let UJ'-CCU]’-' CCU; be concentric balls of radii §, 1.5, 26 respectively. On each open set U; the function
¥ = ¢ — gj o 7j defined in (9.7) is plurisubharmonic, so Theorem (9.2) applied with 2 = U, produces functions

1 .
(9.8) Yjm = I logz loje®>,  (0j¢) = basis of Hu, (may).
¢

These functions approximate 1; as m tends to +oo and satisfy the inequalities

Cl 1 CZ
— = <im(@) < sup 1(C) + —log —.
m J |C—z|<r J m rn

(9.9) ¥;(x)

The functions 1;,, +¢;07; on U; then have to be glued together by a partition of unity technique. For this, we rely
on the following “discrepancy” lemma, estimating the variation of the approximating functions on overlapping
balls.

(9.10) Lemma. There are constants C; independent of m and & such that the almost psh functions w;j., =

2m(Yjm + qj o 7j), i.e.
2

wjm(x) =2mag;orj(x)+ logz ’aﬂ(x) , el
¢
satisfy
[Wj.m — Wiym| < Cjr(log 6™ +me(6)6%)  on U NUY.

Proof. The details will be left as an exercise to the reader. The main idea is the following: for any holomorphic
function f; € Hy,(m;), a 0 equation Ou = E(ij) can be solved on Uy, where 6 is a cut-off function with
support in U7 N U/, on a ball of radius < 6/4, equal to 1 on the ball of radius §/8 centered at a given point
xo € U} NU;/. We apply the L? estimate with respect to the weight (n + 1) log |z — xg|? + 2ma)y, where the first
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term is picked up so as to force the solution u to vanish at zo, in such a way that Fj, = u — 6 f; is holomorphic
and Fy(zo) = fj(zo). The discrepancy between the weights on U} and U}/ is

Vi) — Yi(x) = —(g5 0 7j(x) — @1, 0 Te())

and the 09 of this difference is O(£(6)), so it is easy to correct the discrepancy up to a O(g(6)6%) term by
multiplying our functions by an invertible holomorphic function Gji. In this way, we get a uniform L? control
on the L? norm of the solution fy = G, Fy = G (u — 0f;) of the form

¥ J

The required estimate follows, using the fact that

e?mham(®) = Z |Uj,€(95)|2 = sup If(x)]*> on Uj,
P feRU; (my;), I fII<1

and the analogous equality on Uy. (I

Now, the actual glueing of our almost psh functions is performed using the following elementary partition of
unity calculation.

. emma. Let U.CCU! be locally finite open coverings of a complex manifo y relatively compact open
9.11) L LtUJ' Uj”bl Il it ) l ifold X b lativel t
sets, and let 0; be smooth nonnegative functions with support in U, such that 0; <1 on U and 0; =1 on U.
Let A; > 0 be such that

1(9]8593 — GHJ /\59]‘) > —Ajw on U]/I ~ U]/

for some positive (1,1)-form w. Finally, let w; be almost psh functions on U; with the property that i@gwj >y
for some real (1,1)-form v on M, and let C; be constants such that

wi(x) <Cj+ sup  wi(r) on Uj\NUj.
k#3j, U, 2z

Then the function w = log (Z H?e“’f) 1s almost psh and satisfies

100w > v — 2(2 lUju\Uj(AjeCj)w.
J

Proof. If we set aj = 0;0w; + 200, a straightforward computation shows that
Z(ch’)w] + 29j69j)€wj _ Z ojewj()éj
> 03ews Yo 0zewi
Z(aj 74\ @—i—@?@gwj +29j659j—289j/\59j)6wj Zj,k Qjewﬂ' 0 e"r aj Ny
2 w; - Iy 2
> bze ( > 9]2-6 J)
Zj<k}9j04k*9k04j|2€wj€wk ZG?@“’J@EU@» >-(260;000;—200,700;)e"i
2 + 2 ,w; + 2 ,w;
(Zg?ewj) > 05evs > 05evs

ow =

HOw =

by using the Legendre identity. The first term in the last line is nonnegative and the second one is > . In the
third term, if z is in the support of 6;000; — 90; A 90;, then x € U} \ U} and so w;(z) < Cj + wi(z) for some
k # j with U}, > = and 0, (z) = 1. This gives

ZZ (29j839] - 289] /\39]-)61”7'
Zé’?ewz‘

> -2 Z 1y et Ajw.
J J
J

The expected lower bound follows. (I
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We apply Lemma (9.11) to functions w,,, which are just slight modifications of the functions wj,, =
2m(¢;.m + qj o 7;) occurring in (9.10) :

Bym(2) = w3 (2) + 2m (T 4+ Coe(0)(8/2~ 17y ()P))
= 2m(W5m(w) + 45 0 75(@) + T 4+ Coz(5)(0/2 ~ 1y ()P))

where  — 2z = 7;(x) is a local coordinate identifying U; to B(0,2§), C is the constant occurring in (9.9) and
Cs is a sufficiently large constant. It is easy to see that we can take A; = C40~2 in Lemma (9.11). We have

~ C
Wjm = Wjm +2C1 + m§5(6)62 on B(z;,6/2) C Uj,
since |7;(z)| < 6/2 on B(z;,0/2), while
Wjm < wjm + 201 —mCse(8)6>  on UY N\ UL
For m > mg(0) = (logd~"'/(¢(0)5%), Lemma (9.10) implies |wj m — wk.m| < Csme(6)6* on U}’ N Uy Hence, for
Cs large enough, we get

Wjm(z) < sup Wem(T) < sup  wim(r) on U]’/ ~ UJ/»,
k4, Bor8/2)5a k4, Upoa

and we can take C; = 0 in the hypotheses of Lemma (9.11). The associated function w = log (ZG?@JN’L) is
given by
C
w = logz 9?- exp (2m(1/)j7m +gqjoTi+ El + C3e(0)(6%/2 — |Tj|2>)).
J

If we define ¢, = ﬁw, we get

1 ¢, G
(@) 1= 5w(@) 2 Yy (a) + 05 075(2) + 2+ Le(0)67 > pla)
in view of (9.9), by picking an index j such that € B(z;,d/2). In the opposite direction, the maximum number
N of overlapping balls U; does not depend on §, and we thus get

¢, C
w < log N + 2m(max{¢j7m(z) +gjoTi(z)} + =14 ?35(5)52).
J m
By definition of 1; we have sup|¢_, <, ¥;j() < supj¢_, <, ¢(¢) — gj o 7;(x) + Cs7 thanks to the uniform Lipschitz

continuity of g; o 7;, thus by (9.9) again we find

C 1 C C
+ sup @(¢) + — + —log = + =2£(8)8% 4 Csr
m o m T 2

log N
(Pm(x) <
2m [¢—z|<r

By taking for instance r = 1/m and § = d,, — 0, we see that ¢,, converges to ¢. On the other hand (9.6) implies
700q; o 7j(x) = 7/v; = v — 2¢(d)w, thus

185@”” > 2m(y — Cse(d)w).
™
Lemma (9.11) then produces the lower bound
%8311} > 2m(’y — 065(5)w) — 70 2w,

whence .
~00pm > 7 = Cse(0)w

for m > mo(8) = (logd71)/(e(6)6%). We can fix § = &, to be the smallest value of § > 0 such that mg(5§) < m,
then é,, — 0 and we have obtained a sequence of quasi psh functions ¢,, satisfying the following properties.
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(9.12) Theorem. Let ¢ be an almost psh function on a compact complex manifold X such that %85(,0 > vy for
some continuous (1,1)-form ~. Then there is a sequence of almost psh functions ¢, such that @, has the same
singularities as a logarithm of a sum of squares of holomorphic functions and a decreasing sequence €., > 0
converging to 0 such that

. logr
() o@) <gn@ < sup w0 +0(L24rse,)
[¢—z|<r m
with respect to coordinate open sets covering X. In particular, ¢, converges to ¢ pointwise and in Ll(X)

and
(i) v(p,2) — — < vlpm,x) < vlp,x) for cveryx € X ;
m

In particular, we can apply this to an arbitrary positive or almost positive closed (1,1)-current 7' = o + %8590.

(9.13) Corollary. Let T be an almost positive closed (1,1)-current on a compact complex manifold X such that
T > ~ for some continuous (1,1)-form ~. Then there is a sequence of currents Ty, whose local potentials have
the same singularities as 1/m times a logarithm of a sum of squares of holomorphic functions and a decreasing
sequence €., > 0 converging to 0 such that

(i) T, converges weakly to T,

(ii) v(T,z) — - < v(Tm,x) < v(T,z) for every x € X;
m

(i) T = 7 — Emw.

We say that our currents T, are approzimations of T possessing logarithmic poles.

By using blow-ups of X, the structure of the currents 7}, can be better understood. In fact, consider the coherent
ideals 7, generated locally by the holomorphic functions ( ( ) ) on Uy in the local approximations

Phm = —logDo(’“ >+ 0(1)

of the potential ¢ of T on Uy. These ideals are in fact globally defined, because the local ideals j,%’“’ = (aj(kgl)
are integrally closed, and they coincide on the intersections Uy N Uy as they have the same order of vanishing by
the proof of Lemma (13,10). By Hironaka [Hir64], we can find a composition of blow-ups with smooth centers
JT )~(m — X such that py, J is an invertible ideal sheaf associated with a normal crossing divisor D,,. Now,
we can write

* 1 ~
Hm$hm = Pl © fm = — log 18D, | + Pk

where sp,, is the canonical section of O(—D,,) and @, is a smooth potential. This implies

e L
(9-14) MLm= m[Dm] + Bm

where [D,,] is the current of integration over D, and f3,, is a smooth closed (1, 1)-form which satisfies the lower
bound S, = pk, (v —emw). (Recall that the pull-back of a closed (1, 1)-current by a holomorphic map f is always
well-defined, by taking a local plurisubharmonic potential ¢ such that T' = i0dy and writing f*T = i0d(¢ o f)).
In the remainder of this section, we derive from this a rather important geometric consequence, first appeared
in [DP04]). We need two related definitions.

(9.15) Definition. A Kdhler current on a compact complex space X is a closed positive current T of bidegree (1,1)
which satisfies T > ew for some ¢ > 0 and some smooth positive hermitian form w on X.

(9.16) Definition. A compact complex manifold is said to be in the Fujiki class C) if it is bimeromorphic to a Kahler
manifold (or equivalently, using Hironaka’s desingularization theorem, if it admits a proper Kdhler modification).

(9.17) Theorem. A compact complex manifold X is bimeromorphic to a Kdhler manifold (i.e. X € C) if and only
if it admits a Kdhler current.
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Proof. 1f X is bimeromorphic to a Kahler manifold Y, Hironaka’s desingularization theorem implies that there
exists a blow-up Y of Y (obtained by a sequence of blow-ups with smooth centers) such that the bimeromorphic
map from Y to X can be resolved into a modification u : Y — X. Then Y is Kéhler and the push-forward
T = p.w of a Kéhler form w on Y provides a Kahler current on X. In fact, if w is a smooth hermitian form on X,
there is a constant C' such that p*w < C@ (by compactness of V'), hence

T = pio > pe (C7p*w) = C7lw
Conversely, assume that X admits a Kahler current T' > ew. By Theorem 9.13 (iii), there exists a Kéhler current

T=T,>: w (with m > 1 so large that &, < £/2) in the same d9-cohomology class as T, possessing logarithmic
poles. Observatmn (9.14) implies the existence of a composition of blow-ups p : X — X such that

wT=[D]+8 onX,
where D is a Q-divisor with normal crossings and ﬁ a smooth closed (1, 1)-form such that ﬁ 5 fufw. In particular
6 is positive outside the exceptional locus of u. This is not enough yet to produce a Kihler form on X but we
are not very far. Suppose that X is obtained as a tower of blow-ups

X=Xy—Xy.1— — X1 — X=X,

where X1 is the blow-up of X; along a smooth center Y; C X;. Denote by F; 1 C X;;1 the exceptional divisor,
and let p; : X417 — X; be the blow-up map. Now, we use the followmg simple

(9.18) Lemma. For every Kdhler current T; on X, there exists €j11 > 0 and a smooth form w;y1 in the 00-
cohomology class of [Ej41] such that
Tjr = pjT5 — €j41u541

is a Kdhler current on X;i1.

Proof. The line bundle O(—Ej11)|Ej11 is equal to Op(y,)(1) where N; is the normal bundle to Y; in X;. Pick an
arbitrary smooth hermitian metric on N;, use this metric to get an induced Fubini-Study metric on Op N].)(l),
and finally extend this metric as a smooth hermitian metric on the line bundle O(—E;+1). Such a metric has
positive curvature along tangent vectors of X1 which are tangent to the fibers of E;; = P(N;) — Y. Assume
furthermore that T; > d;w; for some hermitian form w; on X; and a suitable 0 < §; < 1. Then

* *
15Ty = ej1ujn 2 0jH5W5 — Ej41Uj41

where pfw; is semi-positive on X1, positive definite on X;41 \ Ej11, and also positive definite on tangent
vectors of T'x which are not tangent to the fibers of E;;; — Y;. The statement is then easily proved

j+1lEj+1
by taking €;41 < d; and by using an elementary compactness argument on the unit sphere bundle of T, ,
associated with any given hermitian metric. O

End of proof of Theorem 9.17. If w; is the pull-back of u; to the final blow-up X, we conclude inductively that
p*T — 3" eju; is a Kéhler current. Therefore the smooth form

— ZE]‘ﬂj = /L*T — Zajﬂj —
is Kihler and we see that X is a Kihler manifold. O

(9.19) Remark. A special case of Theorem (9.16) is the following characterization of Moishezon varieties (i.e.
manifolds which are bimeromorphic to projective algebraic varieties or, equivalently, whose algebraic dimension
is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kdhler current T such that the De
Rham cohomology class {T} is rational, i.e. {T} € H*(X,Q).

In fact, in the above proof, we get an integral current T' if we take the push forward T' = u.w of an integral ample
class {w} on Y, where p : Y — X is a projective model of Y. Conversely, if {T'} is rational, we can take the ¢’
to be rational in Lemma 3.5. This produces at the end a Kéhler metric w with rational De Rham cohomology
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class on X. Therefore X is projective by the Kodaira embedding theorem. This result was already observed in
[JS93] (see also [Bon93, Bon98] for a more general perspective based on a singular version of holomorphic Morse
inequalities).

9.C. Global approximation by divisors

We now translate our previous approximation theorems into a more algebro-geometric setting. Namely, we assume
that T is a closed positive (1, 1)-current which belongs to the first Chern class ¢1 (L) of a holomorphic line bundle L,
and we assume here X to be algebraic (i.e. projective or at the very least Moishezon).

Our goal is to show that T" can be approximated by divisors which have roughly the same Lelong numbers
as T'. The existence of weak approximations by divisors has already been proved in [Lel72] for currents defined on
a pseudoconvex open set 2 C C" with H?(2,R) = 0, and in [Dem92, 93b] in the situation considered here (cf.
also [Dem82b], although the argument given there is somewhat incorrect). We take the opportunity to present
here a slightly simpler derivation.

Let X be a projective manifold and L a line bundle over X. A singular hermitian metric A on L is a metric
such that the weight function ¢ of h is L in any local trivialization (such that Ly ~ U xC and [|¢][, = [£|e=#®),

loc
¢ € L, ~ C). The curvature of L can then be computed in the sense of distributions

T = L@L’h = 18390,
21 s

and L is said to be pseudo-effective if L admits a singular hermitian metric h such that the curvature current

T = 5-Or is semi-positive [The weight functions ¢ of L are thus plurisubharmonic]. In what follows, we
sometimes use an additive notation for Pic(X), i.e. kL is meant for the line bundle L&*.

We will also make use of the concept of complex singularity exponent, following e.g. [Var82, 83], [ArGV8&5]
and [DKO01]. A quasi-plurisubharmonic (quasi-psh) function is by definition a function ¢ which is locally equal
to the sum of a psh function and of a smooth function, or equivalently, a locally integrable function ¢ such that
100y is locally bounded below by —Cw where w is a hermitian metric and C a constant.

(9.20) Definition. If K is a compact subset of X and ¢ is a quasi-psh function defined near K, we define

(a) the complex singularity exponent cx (¢) to be the supremum of all positive numbers ¢ such that e~ is
integrable in a neighborhood of every point zog € K, with respect to the Lebesgue measure in holomorphic
coordinates centered at zg. In particular cx () = inf, ek (¢).

(b) The concept is easily extended to hermitian metrics h = e~2? by putting cx(h) = cx(p), to holomorphic
functions f by cx(f) = cx(log|f|), to coherent ideals T = (g1,-..,9n) by cx(T) = ck(p) where ¢ =
1log > |g;I?. Also for an effective R-divisor D, we put cx(D) = ck(log|op|) where op is the canonical
section.

The main technical result of this section can be stated as follows, in the case of big line bundles (cf. Proposition
(6.141)).

(9.21) Theorem. Let L be a line bundle on a compact complex manifold X possessing a singular hermitian metric
h with O, > ew for some € > 0 and some smooth positive definite hermitian (1,1)-form w on X. For every real
number m > 0, consider the space H,, = H*(X,L®™QZI(h™)) of holomorphic sections o of L™ on X such that

/ lo|2mdVL, :/ lo|2e™2mPdV,, < +o0,
X X

where dV,, = %wm is the hermitian volume form. Then for m > 1, H,, is a non zero finite dimensional Hilbert
space and we consider the closed positive (1,1)-current

T, = %ag(ﬁlog; |gm,k|2) = %85(%1%; |gm7k|i) +6OLn

where (Gm.k)1<k<N(m) 95 an orthonormal basis of H,,. Then :



58 J.-P. Demailly, PCMI 2008, Analytic approach of the minimal model program and of the abundance conjectures

(i) For every trivialization Ly ~ U x C on a cordinate open set U of X and every compact set K C U, there
are constants Cp,Cy > 0 independent of m and ¢ such that

1 1 Cs
_ 2 < _ m 2 < — it}
©(2) — < Y (2) 5 log gk |gm.i(2)] sup ¢(x) + — log o

|z—z|<r

1
loc

for every z € K and r < %d(K, oU). In particular, 1., converges to ¢ pointwise and in Ly _ topology on {2

when m — +o0, hence T, converges weakly toT' = Op, .
(ii) The Lelong numbers v(T, z) = v(p, z) and v(Tym,2) = v(¥m, 2) are related by
n

v(T, z) — P Sv(Tm,z) <v(T,z) for every z € X.

(iii) For every compact set K C X, the complex singularity exponents of the metrics given locally by h = e=2¢
and hy, = e~ 2Ym satisfy

1
— < eg(hm) ™t <er(h)™
m

cx(h)™! —
Proof. The major part of the proof is a variation of the arguments already explained in section 9.A.
(1) We note that Y [gm k(2)|? is the square of the norm of the evaluation linear form o +— o(z) on H,y,, hence

1
Um(z) = sup —loglo(z)]
ceB(1) M

where B(1) is the unit ball of H,,. For 7 < 1d(K, d12), the mean value inequality applied to the plurisubharmonic

function |o|? implies

1
< — 2d\
g [, @R

1
exp (2m sup @(x))/ lo|2e 2P d\.
2

X
2
T n/nl |le—z|<r

o (2)]?

If we take the supremum over all o € B(1) we get

1

1
Ym(2) < sup @(z) + 5— 10gm

|le—z|<r 2m
and the right hand inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi extension theorem [OhT87],
[Ohs88] applied to the 0-dimensional subvariety {z} C U shows that for any a € C there is a holomorphic function
f on U such that f(z) =a and

/ |f|26—2mzpd>\ < Cg|a|26—2mzp(z),
U

where C3 only depends on n and diamU. Now, provided a remains in a compact set K C U, we can use a
cut-off function # with support in U and equal to 1 in a neighborhood of a, and solve the d-equation dg = d(0f)
in the L? space associated with the weight 2m¢p + 2(n + 1)|log|z — al, that is, the singular hermitian metric
h(z)™|z — a|=2("+1) on L®™. For this, we apply the standard Andreotti-Vesentini-Hérmander L? estimates (see
e.g. [Dem82b] for the required version). This is possible for m > mg thanks to the hypothesis that O, j > ew > 0,
even if X is non Kéhler (X is in any event a Moishezon variety from our assumptions). The bound mg depends
only on € and the geometry of a finite covering of X by compact sets K; C U;, where U; are coordinate balls
(say); it is independent of the point a and even of the metric h. It follows that g(a) = 0 and therefore 0 = 6f — g
is a holomorphic section of L®™ such that

/ o[ dV, :/ o[22 dV, < 04/ |[f[?e™>m2dV,, < Cslal?e” ¢,
X X U

in particular o € H,, = H°(X, L®"®Z(h™)). We fix a such that the right hand side is 1. This gives the inequality

log Cs

1
Un(2) > —loglal = p(2) — o
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which is the left hand part of statement (i).

(ii) The first inequality in (i) implies v(¢m, 2) < v(p, 2). In the opposite direction, we find

1
sup Y, (r) < sup sa(w)JrElog

|le—z|<r |le—z|<2r rn

Divide by logr < 0 and take the limit as r tends to 0. The quotient by logr of the supremum of a psh function
over B(z,r) tends to the Lelong number at . Thus we obtain

V(’l/)mvx) = V(QD,SC) - %

(iii) Again, the first inequality (in (i) immediately yields h,, < Cgh, hence ck(h.,,) > ci(h). For the converse
inequality, since we have cyg,(h) = min; cx; (h), we can assume without loss of generality that K is contained
in a trivializing open patch U of L. Let us take ¢ < ¢k (1., ). Then, by definition, if V' C X is a sufficiently small
open neighborhood of K, the Hélder inequality for the conjugate exponents p = 1 +mc~ ! and ¢ = 1 + m~ !¢

implies, thanks to equality % ==

mgq’
—2(m/p) 5 —omp) /P 2\ /™
€ P (Pde - ( Z |gm,k| € Lp) ( Z |gm,k| ) de
v V' 1<k<N (m) 1<k<N(m)
1/p 1/q
—c/m
< / Z |gm,k|2672mdew / ( Z |gm,k|2) de
X 1<k<N(m) Vo 1<k<N (m)
1/q
—c/m
=N | (5 daa?) | <o
Vo 1<k<N (m)

From this we infer cx(h) > m/p, ie., cx(h)™' < p/m = 1/m + ¢ 1. As ¢ < ck (1) was arbitrary, we get
ex(h)™t <1/m+ ck(hy) ™! and the inequalities of (iii) are proved. O

(9.22) Remark. The proof would also work, with a few modifications, when X is a Stein manifold and L is an
arbitrary holomorphic line bundle.

(9.23) Corollary. Let L — X be a holomorphic line bundle and T = %@Lﬁ the curvature current of some singular
hermitian metric h on L.

(i) If L is big and Op ), > ew > 0, there exists a sequence of holomorphic sections hs € H°(X,qsL) with
lim gs = 400 such that the Q-divisors Ds = qis div(hs) satisfy T = lm D, in the weak topology and
sup,ex [V(Ds,x) —v(T,z)] — 0 as s — +o0.

(ii) If L is just pseudo-effective and Orp > 0, for any ample line bundle A, there exists a sequence of non
zero sections hy € H(X,psA + qsL) with ps,qs > 0, limgs = +o00 and limp,/qs = 0, such that the divisors
D, = qis div(hs) satisfy T = lim D in the weak topology and sup,cx |v(Ds,z) — v(T,x)| — 0 as s — +o0o.

Proof. Part (ii) is a rather straightforward consequence of part (i) applied to mL+ A and Ty, = %@mLﬁ-A,hmhA =

T+ 104, — T when m tends to infinity. Therefore, it suffices to prove (i).

(i) By Theorem (9.20), we can find sections gi,...,gnv € H°(X,mL) (omitting the index m for simplicity of
notation), such that

T = %ag(ﬁlog > 1gsl2) +Orn = %33(ﬁ1"g > lail)

1N 1N

converges weakly to T and satisfies v(T,z) — n/m < v(Tm,z) < v(T,x). In fact, since the number N of sections
grows at most as O(m"), we can replace ) ;< n |95 |2 by maxi<;<n |gj|?, as the difference of the potentials tends
uniformly to 0 with the help of the renormalizing constant ﬁ Hence, we can use instead the approximating
currents
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i,.= 1
T = — =—1
m ﬁ@@um, Um = — Og1I<IEEiXN lg;]-
Now, as L is big, by the proof of (6.7f) we can write kgL = A + D where A is an ample divisor and D is an
effective divisor, for some kg > 0. By enlarging ko, we can even assume that A is very ample. Let op be the
canonical section of D and let hi,...,hy be sections of H?(X, A). We get a section of H°(X, (mf + ko)L) by
considering

Wom = (gih1 + ...+ gvhn)op

By enlarging N if necessary and putting e.g. g; = gy for j > N, we can assume that the sections h; generate all
1-jets of sections of A at every point (actually, one can always achieve this with n 4 1 sections only, so this is not
really a big demand). Then, for almost every N-tuple (hq,...,hy), Lemma 9.24 below and the weak continuity
of 90 imply that

1
Ap o = ——8810g [te,m| = i div(ue,m)

converges weakly to T, = %85um as { tends to +oo, and that

1 1
(T, x) < V(%A&m,l‘) <v(T,z)+ u{;

m

where p = max,ex ord;(op). This, together with the first step, implies the proposition for some subsequence
Dy = Ay),s, £(s) > s> 1. We even obtain the more explicit inequality

I/(T,ZL') - % < V(ﬁAé,m;z) < Z/(T,SC) +

w1
e

O

(9.24) Lemma. Let 2 be an open subset in C" and let g1,...,g8 € H°(82,0q) be non zero functions. Let
S C H°(2,00) be a finite dimensional subspace whose elements generate all 1-jets at any point of §2. Finally,
set u = logmax; |g;| and

w:gfhl—i-...—l—gfvh]v, hj € S~ {0}.
Then for all (hy, ..., hy) in (S\{0})N except a set of measure 0, the sequence ¢ log [ug| converges to w in L, (£2)
and

1 1
y(u,x)gu(zlogmd) <u(u,x)+z, VeeX, V=1

Proof. The sequence % log |ug| is locally uniformly bounded above and we have

ZLHJP 7 log lug(2)] = u(z)

at every point z where all absolute values |g;(z)| are distinct and all h;(z) are nonzero. This is a set of full measure
in 2 because the sets {|g;|* = |gi|?, j # I} and {h; = 0} are real analytic and thus of zero measure (without
loss of generality, we may assume that (2 is connected and that the g;’s are not pairwise proportional). The
well-known uniform integrability properties of plurisubharmonic functions then show that % log |ug| converges to
win L (£2). It is easy to see that v(u,z) is the minimum of the vanishing orders ord,(g;), hence

v(log|ue|,x) = ord;(ue) = v (u,x).
In the opposite direction, consider the set & of all (N + 1)-tuples
(z,h1,...,hy) € 2 x SN

for which v(log |us|, z) = £ v(u, z)+2. Then & is a constructible set in £2 x S™: it has a locally finite stratification
by analytic sets, since

g=U( U {z: 0% #0}x5¥) 0 () {(@ (hy); DPura) = 0}.

520  j, |a|=s |B|<ls+1
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The fiber & N ({z} x SY) over a point x € 2 where v(u,x) = minord,(g;) = s is the vector space of N-tuples
(h;) € SN satisfying the equations D?( Y géh;(x)) = 0, |8] < €s + 1. However, if ord,(g;) = s, the linear map

(0,...,0,h;,0,...,0) — (Dﬁ(gfhj(:c)))lmgs+1

has rank n + 1, because it factorizes into an injective map Jlh; — J£5+1(g§h]—). It follows that the fiber & N
({z} x S™) has codimension at least n + 1. Therefore

dim & < dim(2 x SN) — (n+1) =dim SN — 1

and the projection of & on SV has measure zero by Sard’s theorem. By definition of &, any choice of
(hi,...,hn) € SN N Ues1 pr(&e) produces functions ue such that v(log uel,x) < fv(u,z) + 1 on £2. O

(9.25) Exercise. When L is ample and % is a smooth metric with 7' = 5~6p,j, > 0, show that the approximating
divisors can be taken smooth (and thus irreducible if X is connected).

Hint. In the above proof of Corollary (9.23), the sections g; have no common zeroes and one can take op = 1.
Moreover, a smooth divisor A in an ample linear system is always connected, otherwise two disjoint parts A’, A”
would be big and nef and A’ - A” = 0 would contradict the Hovanskii-Teissier inequality when X is connected.

(9.26) Corollary. On a projective manifold X, effective Q-divisors are dense in the weak topology in the cone
Plésl( ) of closed positive (1,1)-currents T whose cohomology class {T} belongs to the Neron-Severi space
NSg(X

v

Proof. We may add ¢ times a Kéhler metric w so as to get T+ ew > 0, and then perturb by a small combination
> d;a; of classes a; in a Z-basis of NS(X) so that © =T + ew + 26 o; > twand {@} € H*(X,Q). Then ©
can be approximated by Q-divisors by Corollary (9.23), and the conclusion follows. (I

(9.27) Comments. We can rephrase the above results by saying that the cone of closed positive currents Pﬁlsl (X)
is a completion of the cone of effective Q-divisors. A considerable advantage of using currents is that the cone
of currents is locally compact in the weak topology, namely the section of the cone consisting of currents T of
mass | xT'A w™ ! =1 is compact. This provides a very strong tool for the study of the asymptotic behaviour of
linear systems, as required for instance in the Minimal Model Program of Kawamata-Mori-Shokurov. One should
be aware, however, that the cone of currents is really huge and contains objects which are very far from being
algebraic in any reasonable sense. This occurs very frequently in the realm of complex dynamics. For instance, if
P,,(z,¢) denotes the m-th iterate of the quadratic polynomial z — 22 + ¢, then P,,(z,c) defines a polynomial of
degree 2™ on C?, and the sequence of Q-divisors D,,, = %%85 log | Py (2, ¢)| which have mass 1 on C? C P can
be shown to converge to a closed positive current 7" of mass 1 on IP’(%. The support of this current 7" is extremely
complicated : its slices ¢ = cg are the Julia sets J.. of the quadratic polynomial z +— 22 + ¢, and the slice z = 0 is
the famous Mandelbrot set M. Therefore, in general, limits of divisors in asymptotic linear systems may exhibit
a fractal behavior.

9.D. Singularity exponents and log canonical thresholds

The goal of this section to relate “log canonical thresholds” with the « invariant introduced by G. Tian [Tia87]
for the study of the existence of Kéahler-Einstein metrics. The approximation technique of closed positive (1, 1)-
currents introduced above can be used to show that the a invariant actually coincides with the log canonical
threshold (see also [DKO01], [JKO01], [BGKO05], [Dem08]).

Usually, in these applications, only the case of the anticanonical line bundle L = — K x is considered. Here we
will consider more generally the case of an arbitrary line bundle L (or Q-line bundle L) on a complex manifold
X, with some additional restrictions which will be stated later. We introduce a generalized version of Tian’s
invariant «, as defined in [Tia87] (see also [Siu88]).

(9.28) Definition. Assume that X is a compact manifold and that L is a pseudo-effective line bundle, i.e. L admits
a singular hermitian metric hy with O p, > 0. If K is a compact subset of X, we put
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L) = inf h
ak(L) W@lgh}o}cf(( )

where h runs over all singular hermitian metrics on L such that O 5 > 0.

In algebraic geometry, it is more usual to look instead at linear systems defined by a family of linearly independent
sections g, 01,...0n € H(X, L®™). We denote by X the vector subspace generated by these sections and by

|X|:= P(¥) C |mL|:= P(H*(X, L®™))

the corresponding linear system. Such an (N + 1)-tuple of sections ¢ = (0;)ogj<n defines a singular hermitian
metric h on L by putting in any trivialization

|§|2 _ |§|2
(3, los(2)12) ™ lo )PP

|§|%7, = €L,

hence h(z) = |o(2)| 7™ with ¢(2) = = log|o(2)| = 5= log 3" |0;(2)|? as the associated weight function. There-
fore, we are interested in the number cg (|o|~2/™). In the case of a single section o (corresponding to a one-point
linear system), this is the same as the log canonical threshold lctx (X, £ D) = ¢k (-= D) of the associated divisor
D, in the notation of Section 1 of [CS08]. We will also use the formal notation ¢ (;-|X) in the case of a higher
dimensional linear system |X| C |mL|. The main result of this section is

(9.29) Theorem. Let L be a big line bundle on a compact complex manifold X. Then for every compact set K in
X we have 1
ag(L) = inf  cg(h)= inf inf CK(—D).

= 1
{h,01,r>0} meEZso DE|mL| m

Proof. Observe that the inequality

1
inf inf cK(—D

)> inf  cx(h)
meEZso DE|mL| m {h,O0L >0}

is trivial, since any divisor D € |mL| gives rise to a singular hermitian metric h.

The converse inequality will follow from the approximation techniques discussed above. Given a big line bundle
L on X, there exists a modification p : X — X of X such that X is projective and u*L = O(A + E) where A is
an ample divisor and E an effective divisor with rational coefficients. By pushing forward by p a smooth metric
ha with positive curvature on A, we get a singular hermitian metric ~; on L such that O p, > 1.0 p, = cw
on X. Then for any § > 0 and any singular hermitian metric h on L with @ > 0, the interpolated metric
hs = h{h'~? satisfies O hs = dcw. Since hy is bounded away from 0, it follows that cx(h) > (1 — 0)ck (hs) by
monotonicity. By theorem (9.21, iii) applied to hs, we infer

cx(hs) = ml_igloo cx (hs,m),

and we also have 1
CK(hS,m) 2 CK (_D&m)
m

for any divisor Ds,, associated with a section o € H°(X,L®™ @ Z(h}")), since the metric hs, is given by
hsm = (34 |gm.k|?) /™ for an orthornormal basis of such sections. This clearly implies

1 1
¢k (h) = liminf liminf cK(—D(;,m) > inf inf CK(—D). O
6—0 m—-+4oo m me€ZLso DE|mL)| m

In the applications, it is frequent to have a finite or compact group G of automorphisms of X and to look
at G-invariant objects, namely G-equivariant metrics on G-equivariant line bundles L ; in the case of a reductive
algebraic group G' we simply consider a compact real form GF instead of G itself.

One then gets an « invariant ax ¢(L) by looking only at G-equivariant metrics in Definition (9.28). All
contructions made are then G-equivariant, especially H,, C |mL| is a G-invariant linear system. For every G-
invariant compact set K in X, we thus infer
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1
9.30 ak.a(L) = inf cx(h) = inf inf e (=12).
( ) K’G( ) {h G-equiv.,Op >0} K( ) meZso |X|C|mL|, XC=% K m| |
When G is a finite group, one can pick for m large enough a G-invariant divisor Ds ,,, associated with a G-invariant
section o, possibly after multiplying m by the order of G. One then gets the slightly simpler equality

1
(9.31) axc(L) = inf cx(h)= inf  inf  ex (—D).
{h G-equiv.,Or >0} me€Zso DeE|mL|C m

In a similar manner, one can work on an orbifold X rather than on a non singular variety. The L? techniques
work in this setting with almost no change (L? estimates are essentially insensitive to singularities, since one can
just use an orbifold metric on the open set of regular points).

The main interest of Tian’s invariant ax ¢ (and of the related concept of log canonical threshold) is that

it provides a neat criterion for the existence of Kéhler-Einstein metrics for Fano manifolds (see [Tia87], [Siu88],
[Nads9], [DKO1)).

(9.32) Theorem. Let X be a Fano manifold, i.e. a projective manifold with —Kx ample. Assume that X admits a
compact group of automorphisms G such that ax ¢(Kx) > n/(n+1). Then X possesses a G-invariant Kdhler-
FEinstein metric.

We will not give here the details of the proof, which rely on very delicate C*-estimates (successively for k =
0,1,2,...) for the Monge-Ampeére operator. In fine, the required estimates can be shown to depend only on the
boundedness of the integral f X e~27% for a suitable constant v € ]HLH, 1], where ¢ is the potential of the Kéhler
metric w € ¢1(X) (also viewed as the weight of a hermitian metric on Kx). Now, one can restrict the estimate to
G-invariant weights ¢, and this translates into the sufficient condition (9.32). The approach explained in [DKO01]
simplifies the analysis developped in earlier works by proving first a general semi-continuity theorem which implies

the desired a priori bound under the assumption of Theorem 9.32. The semi-continuity theorem states as

(9.33) Theorem ([DKO1]). Let K be a compact set in a complex manifold X. Then the map ¢ — cx(p)~" is
upper semi-continuous with respect to the weak ( = Llloc) topology on the space of plurisubharmonic functions.

Moreover, if v < ck(p), then [, |e=*7¥ — e=27¢| converges to 0 when ¢ converges to ¢ in the weak topology.

Sketch of proof. We will content ourselves by explaining the main points. It is convenient to observe (by a quite
easy integration argument suggested to us by J. McNeal) that cx (¢) can be calculated by estimating the Lebesgue
volume py ({p < logr} of tubular neighborhoods as r — 0 :

(9.34) ck(p) =sup{c>0; r*uy({¢ <logr}) is bounded as r — 0, for some U D K }.

The first step is the following important monotonicity result, which is a straightforward consequence of the L2
extension theorem.

(9.35) Proposition. Let ¢ be a quasi-psh function on a complex manifold X, and let Y C X be a complex
submanifold such that oy # —o0o on every connected component of Y. Then, if K is a compact subset of Y, we
have

ck(py) < ek ().
(Here, of course, ck(p) is computed on X, i.e., by means of neighborhoods of K in X).

We need only proving monotonicity for c.,(¢|y) when 2o is a point of Y. This is done by just extending the
holomorphic function f(z) =1 on B(zo,7) NY with respect to the weight =% whenever v < ¢z, (¢)y).

(9.36) Proposition. Let X, Y be complex manifolds of respective dimensions n, m, let T C Ox, J C Oy be
coherent ideals, and let K C X, L CY be compact sets. Put T ® J :=pri L +pr5J C Oxxy. Then

CKXL(I@j) = CK(I) +CL(j).

Proof. It is enough to show that c(, ,)(Z ® J) = c.(T) + ¢y (J) at every point (z,y) € X x Y. Without loss of
generality, we may assume that X C C", Y C C™ are open sets and (z,y) = (0,0). Let g = (g1, ... , gp), resp.
h = (hi1, ..., hq), be systems of generators of Z (resp. J) on a neighborhood of 0. Set
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p=log> lg;l, ¢ =1log>_ |h|.

Then Z & J is generated by the p 4+ g-tuple of functions

gD h=(g1(x), ... gp(®), h1(y), - -, he(y))

and the corresponding psh function &(xz,y) = log (Y |g;(x)| + X |hx(y)|) has the same behavior along the poles
as &' (z,y) = max(p(x),¥(y)) (up to a term O(1) < log2). Now, for sufficiently small neighborhoods U, V' of 0,
we have

poxv ({ max(e(x),¥(y)) <logr}) = pu ({e <logr} x pv({ <logr}),
and one can derive from this that
Cyr2lete) < MUxV({ max(p(x), ¥ (y)) < log r}) < Cyr2lete) |log r|n—1Hm=1
with ¢ = ¢o(p) = ¢o(Z) and ¢ = ¢o(v)) = co(J). We infer

c00)(ZT®T)=c+c =co(Z) + co(T). O

(9.37) Proposition. Let f, g be holomorphic on a complex manifold X. Then, for every x € X,

co(f+9) < calf) + calg).

More generally, if T and J are coherent ideals, then

c(T+T) <ce(T)+ ca(T).

Proof. Let A be the diagonal in X x X. Then Z+ 7 can be seen as the restriction of Z® J to A. Hence Prop. 9.35
and 9.36 combined imply

cz(T+T) =) (T®T)a) € Clan)(TDT) = ca(T) + ca(T).
Since (f +g) C (f) + (g), we get

cx(f+9) <ca((f) +(9) < cal(f) + calg). O

Now we can explain in rough terms the strategy of proof of Theorem 9.33. We start by approximating psh
singularities with analytic singularities, using theorem 9.21. By the argument of Corollary 9.23, we can even
reduce ourselves to the case of invertible ideals (f) near zp = 0, and look at what happens when we have a
uniformly convergent sequence f, — f. In this case, we use the Taylor expansion of f at 0 to write f = py + sy
where py is a polynomial of degree N and sy (2) = O(|z|V*1). Clearly co(sny) < n/(N+1), and from this we infer
leo(f)—co(Pn)| < n/(N+1) by 9.37. Similarly, we get the uniform estimate |co(f,) —co(P,.n)| < n/(N+1) for all
indices v. This means that the proof of the semi-continuity theorem is reduced to handling the situation of a finite
dimensional space of polynomials. This case is well-known — one can apply Hironaka’s desingularization theorem,
in a relative version involving the coefficients of our polynomials as parameters. The conclusion is obtained by
putting together carefully all required uniform estimates (which involve a lot of L? estimates). O

10. Subadditivity of multiplier ideals and Fujita’s approximate
Zariski decomposition theorem

We first notice the following basic restriction formula for multiplier ideals, which is just a rephrasing of the
Ohsawa-Takegoshi extension theorem.
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(10.1) Restriction formula. Let ¢ be a plurisubharmonic function on a complex manifold X, and let Y C X be a
submanifold. Then
I(ey) CZ(@)y-

Thus, in some sense, the singularities of ¢ can only get worse if we restrict to a submanifold (if the restriction of
© to some connected component of Y is identically —oco, we agree that the corresponding multiplier ideal sheaf is
zero). The proof is straightforward and just amounts to extending locally a germ of function f on Y near a point
Yo € Y to a function f on a small Stein neighborhood of yy in X, which is possible by the Ohsawa-Takegoshi
extension theorem. As a direct consequence, we get:

(10.2) Subadditivity Theorem.
(i) Let X3, X3 be complex manifolds, m; : X1 x Xo — X;, i = 1,2 the projections, and let p; be a plurisubharmonic
function on X;. Then
Z(prom + g2 0me) =T L(p1) - m3L(p2).

(ii) Let X be a complex manifold and let @, 1 be plurisubharmonic functions on X. Then

(e +9) C L) - I(¥)

Proof. (i) Let us fix two relatively compact Stein open subsets U; C X1, Uy C Xo. Then H?(U;y x Us, 1 0 71 +
o0, mydVy ®m5dVa) is the Hilbert tensor product of H? (U, 1, dVi) and H2(Us, @2, dVa), and admits (fe®f
as a Hilbert basis, where (f7) and (f;") are respective Hilbert bases. Since Z(p1 071 4 2 0 m2) |y, xv, is generated
as an Oy, xu, module by the (f; K f/') (Proposition 5.7), we conclude that (i) holds true.

(ii) We apply (i) to X; = X2 = X and the restriction formula to ¥ = diagonal of X x X. Then
(e + ) :I((gpom —|—1po71'2)|y) CI((pom +1po7r2)|y
= (T @ mI(w)) = T(e) - T(0).

(10.3) Proposition. Let f : X — Y be an arbirary holomorphic map, and let ¢ be a plurisubharmonic function
onY. Then Z(po f) C f*I(p).

Proof. Let
Iy ={(z,f(z);2€ X} CX XY

be the graph of f, and let 7x : X XY — X, my : X XY — Y be the natural projections. Then we can view
@ o f as the restriction of p oy to I'y, as mx is a biholomorphism from Iy to X. Hence the restriction formula
implies

I(po f) =ZI((pomy)r,) CL(pomy)r, = (W?I(s&))m = f*I(p). O

As an application of subadditivity, we now reprove a result of Fujita [Fuj93], relating the growth of sections of
multiples of a line bundle to the Chern numbers of its “largest nef part”. Fujita’s original proof is by contradiction,
using the Hodge index theorem and intersection inequalities. The present method arose in the course of joint
work with R. Lazarsfeld [Laz99].

Let X be a projective n-dimensional algebraic variety and L a line bundle over X. We define the volume of
L to be |

Vol(L) = limsup —h°(X, kL) € [0, +oc].
k—+4o00 km
In view of Definition 6.12 and of the Serre-Siegel Lemma 6.13, the line bundle is big if and only if Vol(L) > 0. If
L is ample, we have h?(X, kL) =0 for ¢ > 1 and k > 1 by the Kodaira-Serre vanishing theorem, hence

n

L
hO(X, kL) ~ x(X, kL) ~ —k"
n.
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by the Riemann-Roch formula. Thus Vol(L) = L™ ( = ¢;(L)™) if L is ample. This is still true if L is nef (numerically
effective), i.e. if L - C' > 0 for every effective curve C. In fact, one can show that h?(X,kL) = O(k™9) in that
case. The following well-known proposition characterizes big line bundles.

(10.4) Proposition. The line bundle L is big if and only if there is a multiple moL such that moL = E+ A, where
E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition kmoL = kE + kA gives rise to an injection H(X, kA) —
H°(X,kmoL), thus Vol(L) = mg" Vol(A) > 0. Conversely, assume that L is big, and take A to be a very ample
nonsingular divisor in X. The exact sequence

0 — Ox (kL —A) — Ox (kL) — Oa(kLj4) — 0
gives rise to a cohomology exact sequence
0— I{O()(7 kL —A) — HO(X, kL) — HO(A, kL),

and h?(A, kL 4) = O(k"~!) since dim A = n— 1. Now, the assumption that L is big implies that h°(X, kL) > ck™
for infinitely many &, hence H(X,moL — A) # 0 for some large integer mg. If E is the divisor of a section in
H°(X,moL — A), we find mgL — A = E, as required. (I

(10.5) Lemma. Let G be an arbitrary line bundle. For every e > 0, there exists a positive integer m and a sequence

£, T +oo such that

rmn
n!

in other words, Vol(mL — G) = m™(Vol(L) — €) for m large enough.

R (X, 6, (mL — G)) > (Vol(L) —¢),

Proof. Clearly, Vol(mL — G) > Vol(mL — (G + E)) for every effective divisor E. We can take E so large that
G + E is very ample, and we are thus reduced to the case where G is very ample by replacing G with G + E. By
definition of Vol(L), there exists a sequence k, T 400 such that

k7 €
0 > v - ).
KX kL) > = (Vol(L) 2)
We take m > 1 (to be precisely chosen later), and ¢, = [%}, so that k, =, m +r,, 0 <7, <m. Then
L,(mL—-G)=k,L— (r,L+¢,G).

Fix a constant a € N such that aG — L is an effective divisor. Then r,L < maG (with respect to the cone of

effective divisors), hence
h (X, 0, (mL — G)) = h° (X, k,L — (€, + am)G).

We select a smooth divisor D in the very ample linear system |G|. By looking at global sections associated with
the exact sequences of sheaves
0—=0(=(+1)D)® Ok, L) — O(=jD) ® O(k, L) — Op(ky,L — jD) — 0,
0 < j < s, we infer inductively that
hO(X,kyL — sD) > h°(X,k,L) = > h*(D,0p(k,L — jD))
0<j<s

> h(X, kL) — sh®(D, k,Lp)
k) € 1

> v _ ) = n

> (Vol(L) 2) 5Ok

n!

where C' depends only on L and G. Hence, by putting s = ¢, + am, we get

hO(X, 6, (mL — G)) > % (VO1(L) - %) — C(ly + am)k™!

mn
2 14

L (Vol(L) = 2) = Oty + am) (¢, + 1)L
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and the desired conclusion follows by taking ¢, > m > 1. (]

We are now ready to prove Fujita’s decomposition theorem, as reproved in [DEL0O].

(10.6) Theorem (Fujita). Let L be a big line bundle. Then for every e > 0, there exists a modification p : XX
and a decomposition uw*L = E + A, where E is an effective Q-divisor and A an ample Q-divisor, such that
A™ > Vol(L) —e.

(10.7) Remark. Of course, if u*L = E + A with E effective and A nef, we get an injection
H(X,kA) — HY(X,kE + kA) = H*(X, kp*L) = H°(X, kL)

for every integer k which is a multiple of the denominator of E, hence A™ < Vol(L).

(10.8) Remark. Once Theorem 10.6 is proved, the same kind of argument easily shows that
Vol(L) = lim “RO(X, kL)
o = lim —
k——+oco kK™ ’ ’

because the formula is true for every ample line bundle A.

Proof of Theorem 10.6. 1t is enough to prove the theorem with A being a big and nef divisor. In fact, Proposition
10.4 then shows that we can write A = E’ + A’ where E’ is an effective Q-divisor and A’ an ample Q-divisor,
hence

E4+A=E+cE +(1—-¢c)A+cA

where A” = (1—¢)A+eA’ is ample and the intersection number A" approaches A™ as closely as we want. Let G
be as in Theorem (6.22) (Siu’s theorem on uniform global generation). Lemma 10.5 implies that Vol(mL — G) >
m"™(Vol(L) — ) for m large. By Theorem (6.8) on the existence of analytic Zariski decomposition, there exists a
hermitian metric h,, of weight ¢,, on mL — G such that

H(X,¢(mL — @) = H*(X,t(mL — G) @ Z(Lpm,))
for every ¢ > 0. We take a smooth modification p : X — X such that
WI(pm)=O0x(—FE)

is an invertible ideal sheaf in O 5~ This is possible by taking the blow-up of X with respect to the ideal Z(¢;,) and
by resolving singularities (Hironaka [Hir64]). Theorem 6.22 applied to L’ = mL — G implies that O(mL) @ Z(¢m )
is generated by its global sections, hence its pull-back O(m p*L — E) is also generated. This implies

muL=E+A
where E is an effective divisor and A is a nef (semi-ample) divisor in X. We find

H°(X,(A) = H* (X, é(m p* L — E))
S HO(X, * (O(¢mL) @ I(p)"))
> HO(X, p* (O(tmL) @ Z(Lpn))),
thanks to the subadditivity property of multiplier ideals. Moreover, the direct image p,u*Z(€p,y,) coincides with

the integral closure of Z(fp,,), hence with Z(¢y,,), because a multiplier ideal sheaf is always integrally closed.
From this we infer

HO(X,0A) > HY(X,0(fmL) ® T(£p,,))
O H(X,0((mL — Q) @ Z(bpn,))
= H"(X,0((mL - G))).
By Lemma 10.5, we find
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mn

RO(X,CA) > %m"(Vol(L) —¢)

for infinitely many ¢, therefore Vol(A4) = A™ > m™(Vol(L) — €). Theorem 10.6 is proved, up to a minor change of
notation F — L E, A LA O

We conclude by using Fujita’s theorem to establish a geometric interpretation of the volume Vol(L). Suppose
as above that X is a smooth projective variety of dimension n, and that L is a big line bundle on X. Given a
large integer k£ > 0, denote by By, C X the base-locus of the linear system |kL|. The moving self-intersection
number (kL)!™ of |kL| is defined by choosing n general divisors D, ..., D,, € |kL| and putting

(kL) = #(D1 N...nD,N(X —Bk)).

In other words, we simply count the number of intersection points away from the base locus of n general divisors
in the linear system |kL|. This notion arises for example in Matsusaka’s proof of his “big theorem”. We show that
the volume Vol(L) of L measures the rate of growth with respect to k of these moving self-intersection numbers:

(10.9) Proposition. One has
kL)
Vol(L) = limsup (kL) .

k—o0 kn

Proof. We start by interpreting (kL)™ geometrically. Let u : Xx — X be a modification of |kL| such that
wilkL| = |Vi| + F, where

Pk = MZ(]{IL) — Fk
is generated by sections, and H(X,Ox (kL)) =V}, = H°(Xy, Ox, (Px)), so that By = pug(F)). Then evidently
(k:L)[”] counts the number of intersection points of n general divisors in Py, and consequently

(kL)P = (P)™.

Since then Py is big (and nef) for k& > 0, we have Vol(Py) = (Px)". Also, Vol(kL) > Vol(FP;) since Pj; embeds in
wi(kL). Hence

Vol(kL) > (kL)™ vk > o0.

On the other hand, an easy argument in the spirit of Lemma (10.5) shows that Vol(kL) = k™ - Vol(L) (cf. also
[ELN96], Lemma 3.4), and so we conclude that

(kL)

(10.10) Vol(L) > =2

for every k> 0.

For the reverse inequality we use Fujita’s theorem. Fix ¢ > 0, and consider the decomposition p*L = A+ E
on u: X — X constructed in Fujita’s theorem. Let k be any positive integer such that kA is integral and
globally generated. By taking a common resolution we can assume that X dominates X, and hence we can write

,LL;;kL ~ A + Ep

with Ay globally generated and
(Ap)™ = k™ - (Vol(L) — ¢).

But then Ay embeds in P, and both O(Ax) and O(Py) are globally generated, consequently
(A)" < (P)" = (RL)I.
Therefore

EL)M
kn
But (10.11) holds for any sufficiently large and divisible k, and in view of (10.10) the Proposition follows. O

—~

(10.11) > Vol(L) —e.
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11. Hard Lefschetz theorem with multiplier ideal sheaves

11.A. Main statement

The goal of this section is to prove the following surjectivity theorem, which can be seen as an extension of the
hard Lefschetz theorem. We closely follow the exposition of [DPS00].

(11.1) Theorem. Let (L, h) be a pseudo-effective line bundle on a compact Kiahler manifold (X,w), of dimension n,
let ©p 5 = 0 be its curvature current and Z(h) the associated multiplier ideal sheaf. Then, the wedge multiplication
operator w9 A e induces a surjective morphism

o! ,  HY (X, Q7@ Lo I(h) — HI(X, 2% @ LOI(h)).

The special case when L is nef is due to Takegoshi [Take97]. An even more special case is when L is semi-positive,
i.e. possesses a smooth metric with semi-positive curvature. In that case the multiple ideal sheaf Z(h) coincides
with Ox and we get the following consequence already observed by Mourougane [Mou99].

(11.2) Corollary. Let (L,h) be a semi-positive line bundle on a compact Kihler manifold (X,w) of dimension n.
Then, the wedge multiplication operator w? A e induces a surjective morphism

oL HY (X, 0V '@ L) — HI(X, 2% ® L).

It should be observed that although all objects involved in Theorem (11.1) are algebraic when X is a projective
manifold, there are no known algebraic proof of the statement; it is not even clear how to define algebraically
Z(h) for the case when h = Ay, is & metric with minimal singularity. However, even in the special circumstance
when L is nef, the multiplier ideal sheaf is crucially needed (see section 11.E for a counterexample).

The proof of Theorem (11.1) is based on the Bochner formula, combined with a use of harmonic forms with
values in the hermitian line bundle (L, k). The method can be applied only after h has been made smooth at
least in the complement of an analytic set. However, we have to accept singularities even in the regularized
metrics because only a very small incompressible loss of positivity is acceptable in the Bochner estimate (by
the results of [Dem92], singularities can only be removed at the expense of a fixed loss of positivity). Also, we
need the multiplier ideal sheaves to be preserved by the smoothing process. This is possible thanks to a suitable
“equisingular” regularization process.

11.B. Equisingular approximations of quasi plurisubharmonic functions

Let ¢ be a quasi-psh function. We say that ¢ has logarithmic poles if ¢ is locally bounded outside an analytic
set A and has singularities of the form

p(2) = clog Y lgul* +O(1)
k

with ¢ > 0 and g holomorphic, on a neighborhood of every point of A. Our goal is to show the following

(11.3) Theorem. Let T' = a+i0dy be a closed (1,1)-current on a compact hermitian manifold (X,w), where o is
a smooth closed (1,1)-form and ¢ a quasi-psh function. Let v be a continuous real (1,1)-form such that T > 7.
Then one can write ¢ = lim, | @, where

a) @, is smooth in the complement X \ Z, of an analytic set Z, C X ;

b) (cpl,) is a decreasing sequence, and Z,, C Z,41 for all v;

(
(
(c) f ( —e=29v)dV,, is finite for every v and converges to 0 as v — +00;
(d) Z(py) =Z(p) for all v (“equismgularity”);

(

e) T, =a+ z@&pu satisfies T, — gyw, where lim, ;o0 €, = 0.
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(11.4) Remark. It would be interesting to know whether the ¢, can be taken to have logarithmic poles along Z,.
Unfortunately, the proof given below destroys this property in the last step. Getting it to hold true seems to be
more or less equivalent to proving the semi-continuity property

lim Z((1+¢€)p) =Z(yp).

8—>O+

Actually, this can be checked in dimensions 1 and 2, but is unknown in higher dimensions (and probably quite
hard to establish).

Proof of Theorem 11.5 . Clearly, by replacing 7" with 7" — o and ~y with v — o, we may assume that o = 0 and
T =i00p > ~y. We divide the proof in four steps.

Step 1. Approximation by quasi-psh functions with logarithmic poles.

By [Dem92], there is a decreasing sequence (v, ) of quasi-psh functions with logarithmic poles such that ¢ = lim v,
and i851/},, > v — eyw. We need a little bit more information on those functions, hence we first recall the main
techniques used for the construction of (1,). For ¢ > 0 given, fix a covering of X by open balls B; = {|21)| < r;}

with coordinates z(9) = (z§j), . zflj)), such that
(11.5) 0<y+¢idd 29 < ew on Bj,

for some real number c;. This is possible by selecting coordinates in which + is diagonalized at the center of the
ball, and by taking the radii r; > 0 small enough (thanks to the fact that ~y is continuous). We may assume that
these coordinates come from a finite sample of coordinates patches covering X, on which we perform suitable
linear coordinate changes (by invertible matrices lying in some compact subset of the complex linear group). By
taking additional balls, we may also assume that X = J B} where

1 /
B/ccB,ccB;

are concentric balls B} = {|2W)| < v} =r;/2}, BY = {|z9]| <+ =r;/4}. We define

1 ,
(11.6) Vewi = 5 log > [ fusnl® —cilzP on B,
keN

where (f,j.x)ken is an orthonormal basis of the Hilbert space H,, ; of holomorphic functions on B; with finite L?
norm
lul? = / |u[2e= 2 (e Feil =D 1) gy ().
i
The dependence of 9., ; on ¢ is through the choice of the open covering (B,)). Observe that the choice of ¢; in
p W 8 p & (7 j
(11.5) guarantees that ¢ + c;|2()|? is plurisubharmonic on B;, and notice also that

(11.7) Slfvik)P = sup  |f(2)]

keN FeHy 5 IFlIST

is the square of the norm of the continuous linear form H, ; — C, f — f(z). We claim that there exist constants
C;, i = 1,2,... depending only on X and v (thus independent of & and v), such that the following uniform
estimates hold:

(11.8) 100z > —c;i00|z9 P >y —ew  on B} (BcCBy),
C
(11.9) 0(2) < ep,i(z) < sup (¢) + %1og71 + Cyr? Vze B, r<rj—rl,
I¢—2|<r
Cs . 2 1 I
(11.10) Ve — Ve k] < —+ Cye(min(rj, ry)) on BjN B

Actually, the Hessian estimate (11.8) is obvious from (11.5) and (11.6). As in the proof of ([Dem92], Prop. 3.1),
(11.9) results from the Ohsawa-Takegoshi L? extension theorem (left hand inequality) and from the mean value
inequality (right hand inequality). Finally, as in ([Dem92], Lemma 3.6 and Lemma 4.6), (11.10) is a consequence
of Hormander’s L? estimates. We briefly sketch the idea. Assume that the balls B; are small enough, so that
the coordinates z() are still defined on a neighborhood of all balls By, which intersect B; (these coordinates can
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be taken to be linear transforms of coordinates belonging to a fixed finite set of coordinate patches covering X,
selected once for all). Fix a point zo € B; N By. By (11.6) and (11.7), we have

1 .
Vewj(z0) = ~log | f(z0)] = ¢
for some holomorphic function f on B; with ||f|| = 1. We consider the weight function
B(2) = 20(p(2) + ez ®2) + 2nlog |2 — 2],

on both B; and By. The trouble is that a priori we have to deal with different weights, hence a comparison of
weights is needed. By the Taylor formula applied at zy, we get

cxlz® — 2:((Jk)|2 —¢j|2D) — zéj)|2‘ < Cs(min(rj,rk))2 on B; N By,
[the only nonzero term of degree 2 has type (1,1) and its Hessian satisfies
—ew < i09(cp 2P 2 — ¢j|20)|?) < ew
by (11.5); we may suppose r; < ¢ so that the terms of order 3 and more are negligible]. By writing |2()|? =
|2(9) — ,z(gj)|2 + |,z(gj)|2 + 2Re(z00) — zéj),zéj)>, we obtain
er]2®)? = ¢j|2D]? = 2¢, Re(z®) — zék), zék)> —2¢; Re(z) — z(()j), zéj)>
+ ck|zék)|2 - cj|zéj)|2 + C’E(min(rj,rk))Q.

We use a cut-off function 6 equal to 1 in a neighborhood of zp and with support in B; N By; as zp € B; N By,
the function ¢ can be taken to have its derivatives uniformly bounded when zo varies. We solve the equation
Ou = 9(0fe"9) on By, where g is the holomorphic function

9(2) = ep (2 — 20 2By o o0 0 L0y,

3

Thanks to Hérmander’s L? estimates [Hor66], the L? solution for the weight @ yields a holomorphic function
f'=0fe”9 —u on By such that f'(z0) = f(z0) and

[ e ey <o [ it e ha o) <
k

B;NBy

c’ exp(2y(ck|zék)|2 — ;|2 + Ca(min(rj,rk))Q))/ | f|2e= 2 (eteslz 1) gy (20)),
Bj

Let us take the supremum of L log|f(20)| = < log|f’(z0)| over all f with ||f|| < 1. By the definition of ., x
((11.6) and (11.7)) and the bound on || f’||, we find

log C’

Ve vk (20) < Yo j(20) + + Ce(min(r;, m4))?,

whence (11.10) by symmetry. Assume that v is so large that Cs/v < Cye(inf; r;)?. We “glue” all functions . ,, ;
into a function ., globally defined on X, and for this we set

Ge(2) = sup (Yewy(2) +12Cae(2 ~ 292))  on X,
7, B;Bz

Every point of X belongs to some ball By, and for such a point we get
C
12C4e(r — [z W 2) > 12 Cue(riZ — 1}2) > 2C4r7 > =2 4 Cue(min(r;, 1))
v

This, together with (11.10), implies that in 1. ,(z) the supremum is never reached for indices j such that
z € OB, hence 9, is well defined and continuous, and by standard properties of upper envelopes of (quasi)-
plurisubharmonic functions we get

(11.11) i00e,, > v — Crew
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for v > vy (e) large enough. By inequality (11.9) applied with r = e=V¥, we see that lim,_ o 1., (2) = @(2). At
this point, the difficulty is to show that 1., is decreasing with v — this may not be formally true, but we will see
at Step 3 that this is essentially true. Another difficulty is that we must simultaneously let £ go to 0, forcing us
to change the covering as we want the error to get smaller and smaller in (11.11).

Step 2. A comparison of integrals.
We claim that

(11.12) I:= / (e72¢ — e72max(e 1 v a) gy < foo
X

for every ¢ € |1,v] and a € R. In fact

I< / e 24V, = / 2ot gy
{o< i1 te,p+a} {o<gigver}ta
Y
< e?(éfl)a/ 62€(¢a,u*w)de < C(/ ezu(wa,fap)de) v
X X

by Holder’s inequality. In order to show that these integrals are finite, it is enough, by the definition and properties
of the functions 1., and 1., j, to prove that

J

By the strong Noetherian property of coherent ideal sheaves (see e.g. [GR84]), we know that the sequence of

ideal sheaves generated by the holomorphic functions (fy jx(2)fv.j,5(@))k<k, on Bj x B; is locally stationary
as ko increases, hence independant of kg on B; X B; CCBj x Bj for kg large enough. As the sum of the series

>k frk(2) fujk (@) is bounded by

+oo
2o TN = / (Z |fu,j,k|2)€_2’”’”d)\ < +oo.
Bj k=0

’
J

(S lhssP S hsnm?)
g k

and thus uniformly covergent on every compact subset of B; x B;, and as the space of sections of a coherent
ideal sheaf is closed under the topology of uniform convergence on compact subsets, we infer from the Noetherian
property that the holomorphic function Z::a fu.jk(2) fuj (W) is a section of the coherent ideal sheaf generated

by (fu,jk(2) fr,jk(W))k<k, over Bj x BY, for ko large enough. Hence, by restricting to the conjugate diagonal
w =7%, we get

+00 ko
Y k@ <O |fuju(=)l? on Bj.
k=0 k=0

This implies

+oo ko
/B; (X tanl?)eoar < C/B;. (3 faal? )20 = Clho + 1)

Property (11.12) is proved.

Step 3. Subadditivity of the approrimating sequence . .

We want to compare e, 4, and ..., Ve, for every pair of indices vy, v, first when the functions are
associated with the same covering X = |J B;. Consider a function f € H,, 4, ; with

/ [f(2)Pe7?Fe@dN () <1, gi(2) = @(z) + 52D
B;

We may view f as a function f (z,z) defined on the diagonal A of B; x B;. Consider the Hilbert space of
holomorphic functions v on B; x Bj such that

/ lu(z, w)|?e= 2193 () =220 (W) g\ (2)dA\(w) < +oo.
B]‘ XBj
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By the Ohsawa-Takegoshi L? extension theorem [OT87], there exists a function f(z,w) on B;j x B; such that
f(z,2) = f(z) and
[z, ) P20 (2052309 3 (2) A\ (w)
BjxBj
<Cy / |f(2)Pe 2012020 dx(2) = Cr,
B;

where the constant C7 only depends on the dimension n (it is actually independent of the radius r; if say
0 < r; < 1). As the Hilbert space under consideration on B; x B; is the completed tensor product H,, ; Q Hos i
we infer that

f(z,w) = Z Ck1,szl/1,j,k1 (Z)fl/z,j,lw (w)

k1,k2

with 37, o [er k,|* < C7. By restricting to the diagonal, we obtain

@ =172 <Y lempal® D ik B L owgina (2)
ka

kl,kz kfl
From (11.5) and (11.6), we get

10g 07 %1

1)
Q/Ja,m 2] + 71#6,1/2 NE

e vitre,j X
' ’ v1tuve vt v+

in particular

Cs

2_1, )

and we see that ¢ ov +Cs27" is a decreasing sequence. By Step 2 and Lebesgue’s monotone convergence theorem,
we infer that for every €, > 0 and a < a¢p < 0 fixed, the integral

Ve2vj < Yeov-1,5+

Ly = / (efzso _ 6*2maX(%(lths)(isz,aJra)))de
X

converges to 0 as v tends to +oo (take £ = % + 1 and 2¥ > ¢ and ag such that dsupy ¢ + ap < 0; we do not
have monotonicity strictly speaking but need only replace a by a + Cg2™" to get it, thereby slightly enlarging
the integral).

Step 4. Selection of a suitable upper envelope.

For the simplicity of notation, we assume here that supy ¢ = 0 (possibly after subtracting a constant), hence we
can take ap = 0 in the above. We may even further assume that all our functions v, , are nonpositive. By Step 3,
for each § = ¢ = 2% we can select an index v = p(k) such that

(11.13) Iy o p(k) :/ (67290 _ e—QmaX(‘Pa(1+27k)w2—kY2p(k)))de <9k
X

By construction, we have an estimate i@&prh?mm > v — 52 %w, and the functions Yo—r gp(k) are quasi-psh
with logarithmic poles. Our estimates (especially (11.9)) imply that limg_, 1o - 20t (2) = (2) as soon as
277 log (1/inf; r;(k)) — 0 (notice that the r;’s now depend on & = 27%). We set

(11.14) pu(2) = sup(1 + 2Ry arii (2).

By construction (¢, ) is a decreasing sequence and satisfies the estimates
¥, = max ((p, (1+ 2_”)1&27”72;3(,/)), i00¢, >~y — Cs2 " w.

Inequality (11.13) implies that

+oo
/ (e72¢ —e™29)dV, < Z 9=k = 9l-v,
X k=v
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Finally, if Z, is the set of poles of wrvﬁgpw, then Z, C Z,41 and ¢, is continuous on X \ Z,. The reason is
that in a neighborhood of every point zp € X \ Z,, the term (1 + 27’“)1/127;61213(;6) contributes to ¢, only when it
is larger than (1+427")15-v 900 . Hence, by the almost-monotonicity, the relevant terms of the sup in (11.14) are
squeezed between (1+27")1by—. op(y and (1 +2—’€)(1p27,,12p<y) +Cs27"), and therefore there is uniform convergence
in a neighborhood of zy. Finally, condition (¢) implies that

/ |f|?(e72% — e™2%¥)dV,, < 400
U

for every germ of holomorphic function f € O(U) at a point 2 € X. Therefore both integrals [, | f|*e~2?dV,, and
Jo |f[Pe72%vdV,, are simultaneously convergent or divergent, i.e. Z() = Z(y,). Theorem 11.3 is proved, except
that ¢, is possibly just continuous instead of being smooth. This can be arranged by Richberg’s regularization
theorem [Ri68], at the expense of an arbitrary small loss in the Hessian form. O

(11.15) Remark. By a very slight variation of the proof, we can strengthen condition (c) and obtain that for
every t > 0

/ (e—2t<p _ e—2t<p,,)de
X

is finite for v large enough and converges to 0 as v — +o0o. This implies that the sequence of multiplier ideals
ZI(ty,) is a stationary decreasing sequence, with Z(tp,) = Z(tp) for v large.

11.C. A Bochner type inequality

Let (L, h) be a smooth hermitian line bundle on a (non necessarily compact) Kahler manifold (Y, w). We denote
by | | =1 |w,n the pointwise hermitian norm on A”97Ty ® L associated with w and h, and by || || = || |lw,» the

|
global L? norm

ull> = [ |ul?dV, where dV,, = w_
Y n!

We consider the 9 operator acting on (p, q)-forms with values in L, its adjoint 5; with respect to h and the
complex Laplace-Beltrami operator A} = %Z + 525. Let v be a smooth (n — ¢,0)-form with compact support
in Y. Then u = w? A v satisfies

(11.16) [ul? + 1Bl = 1Bl + [ 57 (30 A uss
Y17 jes

where A1 < ... <\, are the curvature eigenvalues of @, j, expressed in an orthonormal frame (0/9z1,...,0/0z,)
(at some fixed point 29 € Y), in such a way that

Wgy =1 Z de /\dfj, (@L,h)zo = i@&pmo =1 Z )\dej A\ dEj.

1<j<n 1<<n
The proof of (11.16) proceeds by checking that
11.17 0.90+00.)(vAwl) — (0. dv Aw? = qiddp Awi™t Aw,
@ @ @

taking the inner product with © = w? Av and integrating by parts in the left hand side. In order to check (11.16),
we use the identity 5; = ¢80 (%) = 0 + V%' 1o . Let us work in a local trivialization of L such that
w(xo) =0 and Vo(zg) = 0. At o we then find

0,9 +90,,)(w? Av) —w? A (D, dv) =
(@ 0+00)(w! Av) —wi A @ Tv)] + (Ve I (W Av)).

However, the term [...] corresponds to the case of a trivial vector bundle and it is well known in that case that
[A”,w? A o] =0, hence [...] =0. On the other hand

Voo 1 (Wi Av) =gV Jw)AwI™ P Av = —qidp Aw? ' Aw,
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and so
(azp a + aacp)(wq A ’U) — w1 A (azp (91)) = qlaagﬁ A Wq71 A .

Our formula is thus proved when v is smooth and compactly supported. In general, we have:

(11.18) Proposition. Let (Y,w) be a complete Kdhler manifold and (L,h) a smooth hermitian line bundle such
that the curvature possesses a uniform lower bound ©Op p > —Cw. For every measurable (n — q,0)-form v with

L? coefficients and values in L such that v = w? A v has differentials Ou, 9 u also in L2, we have

[Bull® + [1Bhul® = [B0l)? + /Y > (0N luns
I1,J

jeJ

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y,w) is assumed to be complete, there exists a sequence of smooth forms v,, with compact support
in Y (obtained by truncating v and taking the convolution with a regularizing kernel) such that v, — v in L?
and such that u, = w9 A v, satisfies u, — u, Ou, — Ou, 3*u,, — 0"win L2. By the curvature assumption, the
final integral in the right hand side of (11.16) must be under control (i.e. the integrand becomes nonnegative if we
add a term C|ju]|? on both sides, C' > 0). We thus get the equality by passing to the limit and using Lebesgue’s
monotone convergence theorem. ([

11.D. Proof of Theorem (11.1)

To fix the ideas, we first indicate the proof in the much simpler case when (L, h) is hermitian semi-positive, and
then treat the general case.

(11.19) Special case. (L, h) is (smooth) hermitian semi-positive.

Let {3} € HY(X, 2% ® L) be an arbitrary cohomology class. By standard L? Hodge theory, {3} can be
represented by a smooth harmonic (0, ¢)-form 3 with values in 2% ® L. We can also view § as a (n, ¢)-form with
values in L. The pointwise Lefschetz isomorphism produces a unique (n — ¢,0)-form « such that 8 = w? A «.
Proposition 11.18 then yields

el + [ 3 (320 lews = 1381 + 13,817 =0,
I,J

jeJ

and the curvature eigenvalues \; are nonnegative by our assumption. Hence da = 0 and {a} € H(X, 2% ‘® L)
is mapped to {} by & |, =wi Ae.

(11.20) General case.

There are several difficulties. The first difficulty is that the metric h is no longer smooth and we cannot
directly represent cohomology classes by harmonic forms. We circumvent this problem by smoothing the metric
on an (analytic) Zariski open subset and by avoiding the remaining poles on the complement. However, some
careful estimates have to be made in order to take the error terms into account.

Fix e = ¢, and let h, = h., be an approximation of h, such that h. is smooth on X \ Z. (Z. being an
analytic subset of X), Op . > —ew, he < h and Z(h.) = Z(h). This is possible by Theorem 11.3. Now, we can
find a family

We,s = w + 0(i00Y. + w), 0>0

of complete Kdihler metrics on X \ Z., where 9. is a quasi-psh function on X with ¥ = —co on Z, ¥ on X \ Z,
and i001. +w > 0 (see e.g. [Dem82b], Théoreme 1.5). By construction, we,s > w and lims_,o we 5 = w. We look at
the L2 Dolbeault complex KE', 5 of (n, e)-forms on X \ Z., where the L? norms are induced by we,s on differential
forms and by h. on elements in L. Specifically

K= {u:X N Ze— AT @ L;/ (lulfm e, sn. + 10U Gnarry, on )V, s < oo}.

X\Z.:
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Let ngy s be the corresponding sheaf of germs of locally L? sections on X (the local L? condition should hold on
X, not only on X \ Z.!). Then, for all ¢ > 0 and § > 0, (ICg(;,g) is a resolution of the sheaf 2% ® L ® Z(he) =
2% @ L ® Z(h). This is because L? estimates hold locally on small Stein open sets, and the L? condition on
X \ Z. forces holomorphic sections to extend across Z. ([Dem82b], Lemme 6.9).

Let {8} € HI(X, 2% ® L ® I(h)) be a cohomology class represented by a smooth form with values in

2% @ LR®Z(h) (one can use a Cech cocycle and convert it to an element in the C* Dolbeault complex by means
of a partition of unity, thanks to the usual De Rham-Weil isomorphism). Then

181125 < 16]12 = /X 1B sondVi < 40,

The reason is that |3 |in,qw®thw decreases as w increases. This is just an easy calculation, shown by comparing
two metrics w, w’ which are expressed in diagonal form in suitable coordinates; the norm |3 |31n,qw®h turns out
to decrease faster than the volume dV,, increases; see e.g. [Dem82b], Lemme 3.2; a special case is ¢ = 0, then
|ﬁ|§1n,qw®thw = i"zﬁ A 3 with the identification L ® L ~ C given by the metric h, hence the integrand is even
independent of w in that case.

By the proof of the De Rham-Weil isomorphism, the map a + {a} from the cocycle space Z(K? 5) equipped
with its L? topology, into HY(X, 2% ® L ® Z(h)) equipped with its finite vector space topology, is continuous.
Also, Banach’s open mapping theorem implies that the coboundary space B%IC; s5) is closed in Z q(lC; s5)- This is
true for all § > 0 (the limit case § = 0 yields the strongest L? topology in bidegree (n,q)). Now, 3 is a 0-closed
form in the Hilbert space defined by w. s on X \ Z,, so there is a w, s-harmonic form u. s in the same cohomology
class as 3, such that

l[ue.slle.s < [1B]l.s-

(11.21) Remark. The existence of a harmonic representative holds true only for 6 > 0, because we need to have
a complete Kahler metric on X \ Z.. The trick of employing w. s instead of a fixed metric w, however, is not
needed when Z. is (or can be taken to be) empty. This is the case if (L, h) is such that Z(h) = Ox and L is
nef. Indeed, in that case, from the very definition of nefness, it is easy to prove that we can take the ¢,’s to be
everywhere smooth in Theorem 11.3. However, we will see in § 11.E that multiplier ideal sheaves are needed even
in case L is nef, when Z(h) # Ox.

Let ve,s be the unique (n — ¢, 0)-form such that us 5 = ve 5 A wgﬁa (ve,s exists by the pointwise Lefschetz isomor-
phism). Then
ve,slle,s = llueslle,s < IBlles <8I

As jes Aj 2 —¢e by the assumption on @, p,_, the Bochner formula yields
19ve,6112 5 < gellue,sll2 5 < a2l BI1*.

These uniform bounds imply that there are subsequences u. s, and v. 5, with §, — 0, possessing weak-L? limits
Ue = limy— 4 oo Ue 5, and v = lim, 4 o0 Ve g, . The limit ue = lim, 4o ue 5, is with respect to L?(w) = L?*(we ).
To check this, notice that in bidegree (n — ¢, 0), the space L?*(w) has the weakest topology of all spaces L?(we s);
indeed, an easy calculation as in ([Dem82b], Lemme 3.2) yields

[ An-a00endVe < | An-a0w. sondVis  if fis of type (n — ¢,0).

On the other hand, the limit v. = lim, o v 5, takes place in all spaces L?(w. s), § > 0, since the topology gets
stronger and stronger as § | 0 [possibly not in L?(w), though, because in bidegree (n,q) the topology of L?(w)
might be strictly stronger than that of all spaces L?(we 5)]. The above estimates yield

loe]20 = /X [0 P, Ve < 1812,

19ve 12,0 < gel1B11Z o,
ue =wiAv. =0 in HY(X, 2% @ L ® Z(he)).

Again, by arguing in a given Hilbert space L?(he,), we find L? convergent subsequences u. — u, v. — v as € — 0,
and in this way get Ov = 0 and
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lvll* < 11811%,
u=wiANv=p in HY(X, 2% @ LRZ(h)).

Theorem 11.1 is proved. Notice that the equisingularity property Z(h.) = Z(h) is crucial in the above proof,
otherwise we could not infer that u = ( from the fact that u. = (. This is true only because all cohomology
classes {u.} lie in the same fixed cohomology group H?(X, 2% ® L ® Z(h)), whose topology is induced by the
topology of L?(w) on d-closed forms (e.g. through the De Rham-Weil isomorphism). O

11.E. A counterexample

In view of Corollary 11.2, one might wonder whether the morphism @¢ would not still be surjective when L is a
nef vector bundle. We will show that this is unfortunately not so, even in the case of algebraic surfaces.

Let B be an elliptic curve and let V' be the rank 2 vector bundle over B which is defined as the (unique) non
split extension
0—-0p—->V —-0—0.

In particular, the bundle V' is numerically flat, i.e. ¢1 (V) = 0, ca(V') = 0. We consider the ruled surface X = P(V).
On that surface there is a unique section C' = P(Op) C X with C? =0 and

O0x(C) = Opv)(1)
is a nef line bundle. It is easy to see that
hO(X7 OIP(V) (m)) = hO(BvsmV) =1

for all m € N (otherwise we would have mC = aC' + M where aC is the fixed part of the linear system |mC| and
M # 0 the moving part, thus M? > 0 and C - M > 0, contradiction). We claim that

RY(X, 2% (kC)) = 2
for all k£ > 2. This follows by tensoring the exact sequence
Oﬂﬂk‘cﬂﬂ}(ﬂﬂ*ﬂézocﬂo

by Ox (kC) and observing that
10 = Kx = Ox(-20).

From this, we get
0 — H°(X,0x((k—2)0)) — H*(X, 2% O(kC)) — H°(X,0x (kC))

where h?(X, Ox((k — 2)C)) = h°(X,Ox (kC)) = 1 for all k > 2. Moreover, the last arrow is surjective because
we can multiply a section of H°(X, Ox (kC)) by a nonzero section in H%(X, 7*2%) to get a preimage. Our claim
follows. We now consider the diagram

HOX, 0L 20) DY HY(X, Kx(20))

-| I

HOX, 2L (30)) DY HY(X,Kx(30)).

Since Kx(20) ~ Ox and Kx(3C) ~ Ox(C), the cohomology sequence of
0— Kx(QC) — Kx(SC) — Kx(30)|c ~ OC — 0

immediately implies ¢ = 0 (notice that h'(X, Kx(2C)) = h*(X, Kx(3C)) = 1, since h! (B, 0p) = h}(B,V) = 1),
and h?(X, Kx(2C)) = h*(B,Op) = 0). Therefore the diagram implies ¢ = 0, and we get:

(11.22) Proposition. L = Op(v(3) is a counterample to (11.2) in the nef case. O
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By Corollary (11.2), we infer that Ox(3) cannot be hermitian semi-positive and we thus again obtain — by a
quite different method — the result of [DPS94], example 1.7.

(11.23) Corollary. Let B be an elliptic curve, V the vector bundle given by the unique non-split extension
0—-0p—->V —-0—0.

Let X = P(V). Then L = Ox (1) is nef but not hermitian semi-positive (nor does any multiple, e.g. the anti-
canonical line bundle —Kx = Ox(—2) is nef but not semi-positive).

12. Invariance of plurigenera of projective varieties

The goal of this section is to give a proof of the following fundamental result on the invariance of plurigenera,
which has been proved by Y.T. Siu [Siu98] in the case of varieties of general type (in which case the proof has
been translated in a purely algebraic form by Y. Kawamata [Kaw99]), and by [Siu00] in general. Let us recall
that X is said to be of general type if K(Kx) =n = dim X.

(12.1) Theorem (Siu). Let X — S be a proper holomorphic map defining a family of smooth projective of varieties
of general type on an irreducible base S. Then the plurigenus p,(X:) = h%(Xy,mKx,) of fibers is independent
of t for allm > 0.

The proof somehow involves taking “limits” of divisors as m — +o00, and therefore transcendental methods are a
strong contender in this circle of ideas, because currents provide a natural compactification of the space of divisors.
Quite recently, M. Paun obtained a very short and elegant proof of (12.1) based merely on the Ohwawa-Takegoshi
extension theorem, and we are going to sketch his arguments below (see also M. Paun [Pau07], B. Claudon [Cla07]
and S. Takayama [Taka07]). In fact, following Paun, one can prove more general results valid for cohomology
with twisted coefficients. Remarkably enough, no algebraic proof of these results are known at this point, in the
case of varieties of nonnegative Kodaira dimension which are not of general type.

Notice that by connecting any two points of S by a chain of analytic disks, it is enough to consider the case
where S = A is a disk.

(12.2) Theorem (further generalized version of Paun’s theorem). Let m : X — A be a projective family over
the unit disk, and let (L;, hj)o<j<m—1 be (singular) hermitian line bundles with semi-positive curvature currents
i@LH” >0 on X. Assume that

(i) the restriction of h; to the central fiber Xg is well defined (i.e. not identically +00).
(ii) the multiplier ideal sheaf I(hjx,) is trivial for 1 <j < m — 1.
Then any section o of O(mKx + > Lj)|x, ® Z(ho|x,) over the central fiber Xo extends to X.

The invariance of plurigenera is just the case when all line bundles L; and their metrics h; are trivial. Since the
dimension t — h%(X;, mKx,) is always upper semicontinuous and since (12.2) implies the lower semicontinuity,
we conclude that the dimension is constant along analytic disks (hence along any irreducible base S, by joining
any two points through a chain of analytic disks).

In order to prove (12.2), we first state the technical version of the Ohsawa-Takegoshi L? extension theorem
needed for the proof, which is a special case of the Ohsawa-Takegoshi Theorem — the reader is invited to check
that the statement indeed follows from (8.6).

(12.3) Lemma. Let m : X — A be as before and let (L,h) be a (singular) hermitian line bundle with semi-
positive curvature current 160, = 0 on X. Let w be a global Kihler metric on X, and dVx, dVx, the respective
induced volume elements on Xy and X. Assume that hx, is well defined. Then any holomorphic section u of
O(Kx + L)@ Z(hx,) extends into a section U over X satisfying an L* estimate

[ VR eave <G [ fulonavi,
X Xo
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where Cy = 0 is some universal constant (independent of X, L, ...).

Proof of (12.2). We write h; = e~ %/ in terms of local plurisubharmonic weights. Fix an auxiliary line bundle
A (which will later be taken to be sufficiently ample), and define inductively a sequence of line bundles F), by
putting Fy = A and

F,=F, 1+ Kx+L, ifp=mqg+r, 0<r<m-—1.

By construction we have Fy,4,, = F, + mKx + Zj L; and

FQZA, F1:A+K/y+L1,...,Fp:A—f—pr—f—Ll—i-...—f—Lp, 1<p<m—1

The game is to construct inductively families of sections, say ( alr )) i=1..N,> of F, over X, together with ad hoc
L? estimates, in such a way that

(a) forp=0,...,m— 1, F, is generated by its sections (ug ))j 1L.N,

(b) we have the m-periodicity relations Npi, = N, and u(p) is an extension of ug-p) = Jqu( ") over X for
p=mgq-+r, Whereu() ~(|T;(,O<T\m—1.
Property (a) can certainly be achieved by taking A ample enough so that Fy, ..., F,,—1 are generated by

~(p)

their sections, and by choosing the u;™ appropriately for p =0, ..., m—1. Now, by induction, we equip Fj_1 with

the tautological metric |£[2/ |~§p y (z)|2, and Fp, — Kx = F,_1+ L, with that metric multiplied by h, = e™%" ;
it is clear that these metrics have semi-positive curvature currents (the metric on F), itself if obtained by using
a smooth Kéhler metric w on X'). In this setting, we apply the Ohsawa-Takegoshi theorem to the line bundle

F,_1+ L, to extend ugp ) into a section 7”) over X. By construction the pointwise norm of that section in Fj, x,
in a local trivialization of the bundles involved is the ratio

| (P)|2
>, [

up to some fixed smooth positive factor depending only on the metric induced by w on Kx. However, by the
induction relations, we have

—pr
)

5 g
(P)2 -1
L ISR D L N
ol R 2yl P
-1
e lug" VPR
Since the sections (ugr)) generate their line bundle, the ratios involved are positive functions without zeroes
and poles, hence smooth and bounded [possibly after shrinking the base disc A, as is permitted]. On the other

hand, assumption (ii) and the fact that o has coefficients in the multiplier ideal sheaf Z(hq)x,) tell us that e=%r,
1<r<mand |0|26"P° are locally integrable on Xj. It follows that there is a constant C; > 0 such that

Z | (P)|2
Xo Y0 lugP VP2

e ¥r forp=mg+r,0<r<m-—1,

lo|?e=?°  for p = 0modm.

e 7rdV, < Cy

for all p > 1 [of course, the integral certainly involves finitely many trivializations of the bundles involved, whereas

the integrand expression is just local in each chart]. Inductively, the L? extension theorem produces sections u(p )

of F, over X such that
5, [
xR
The next idea is to extract the limits of p-th roots of these sections to get a singular hermitian metric on

mKx + > L;. As the functions e~%" are locally bounded below (¢, being psh), the Holder inequality implies
that

e ?rdV, <Oy = CoCh.
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[ () o <.
X

The mean value inequality for plurisubharmonic functions shows a fortiori that the sequence of psh functions

% log ), |17§p ) |2 is locally uniformly bounded from above. These functions should be thought of as weights on the
Q-line bundles

1 1
2(A K L)+Li+...+L, ngto Kn+—3S L, ,
p( +q(mKy +Z i)+ L1+ ...+ L) converging to Ky + mz j o asp— 400

and thus they are potentials of currents in a bounded subset of the Kéhler cone. Moreover, the sections ﬂgp )

extend o?u} on Xy, and so we have in particular

lim -~ 1 D2 = Jp 11 203 a2 1 2 — Xo.
pnll ogZ|u |© = HJP og (o] Z|u %) oglo|* £ —oo on X

Therefore, by well known facts of potential theory, the sequence 11) logz |u(p )|2 must have some subsequence

which converges in L10C topology to the potential ¥ of a current in the first Chern class of Ky + % >>L;, in the
form of an upper regularized limit

1
¥(z) =limsup lim — 1ogz |ﬂ§p”)(é) 2
Pv J

oz 1/—>+oo

which is such that ¢(z) > L log|o|? on Xo. Hence mKx + Y L; possesses a hermitian metric H = e~™%, and
we have by construction ||o||g < 1 and Oy > 0. In order to conclude, we equip the bundle

G:(m—l)Kx—f—ZLJ

with the metric v = Hl’l/mnh;/m, and mKx + Y. L; = Kx + G with the metric w ® 7. Clearly v has a
semi-positive curvature current on X and in a local trivialization we have

R I S S BT (1 (e X

on Xo. Since |o[?¢7#° and e™¥", r > 0 are all locally integrable, we see that ||o||2g, is also locally integrable
on Xg by the Holder inequality. A new (and final) application of the L? extension theorem to the hermitian line
bundle (G, ) implies that o can be extended to X'. Theorem (12.2) is proved. O

13. Positive cones in the (1,1) cohomology groups of compact Ké&hler manifolds

13.A. Nef, pseudo-effective and big cohomology classes

We introduce again the important concepts of positivity for cohomology classes of type (1,1) — the only novelty
is that X is an arbitrary compact Ké&hler manifold and that we do not assume that our classes are integral or
rational.

(13.1) Definition. Let (X,w) be a compact Kdhler manifold.

(i) The Kdhler cone is the set K C HYY(X,R) of cohomology classes {w} of Kdihler forms. This is an open
convex cone.

(ii) The closure K of the Kihler cone consists of classes {a} € H"'(X,R) such that for every ¢ > 0 the sum
{a + {—:iu} is Kdahler, or equivalently, for every e > 0, there exists a smooth function . on X such that
a+1i00p. = —ew. We say that K is the cone of nef (1,1)-classes.

(iii) The pseudo-effective cone is the set € C HYY(X,R) of cohomology classes {T'} of closed positive currents of
type (1,1). This is a closed convex cone.
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(iv) The interior £° of € consists of classes which still contain a closed positive current after one subtracts e{w}
for e > 0 small, in other words, they are classes of closed (1,1)-currents T such that T > ew. Such a current
will be called a Kéhler current, and we say that {T} € H»*(X,R) is a big (1, 1)-class.

K = Kihler cone in H!'(X,R) [open cone]
K = nef cone in H%!(X,R) [closure of K]
& = pseudo-effective cone in H1(X,R) [closed cone]

£° = big cone in HL1 (X, R) [interior of £]

The openness of K is clear by definition, and the closedness of £ follows from the fact that bounded sets
of currents are weakly compact (as follows from the similar weak compacteness property for bounded sets of
positive measures). It is then clear that K C €.

In spite of the fact that cohomology groups can be defined either in terms of forms or currents, it turns out
that the cones K and € are in general different. To see this, it is enough to observe that a Kiihler class {a} satisfies
fY aP > 0 for every p-dimensional analytic set. On the other hand, if X is the surface obtained by blowing-up
P? in one point, then the exceptional divisopr E ~ P! has a cohomology class {a} such that [, o = E* = —1,

hence {a} ¢ K, although {a} = {[F]} € €.

In case X is projective, it is interesting to consider also the algebraic analogues of our “transcendental cones”
K and &, which consist of suitable integral divisor classes. Since the cohomology classes of such divisors live in
H?*(X,7Z), we are led to introduce the Neron-Severi lattice and the associated Neron-Severi space

NS(X) := H"'(X,R) N (H*(X, Z)/{torsion}),
NSg(X) := NS(X) @z R.

All classes of real divisors D = Y ¢;Dj, ¢; € R, lie by definition in NSg(X). Notice that the integral lattice
H?(X,7Z)/{torsion} need not hit at all the subspace H!(X,R) C H?(X,R) in the Hodge decomposition, hence
in general the Picard number

p(X) = ranky NS(X) = dimg NSg(X)

satisfies p(X) < h'! = dimg HV1(X, R), but the equality can be strict (actually, it is well known that a generic
complex torus X = C"/A satisfies p(X) = 0 and h''! = n?). In order to deal with the case of algebraic varieties
we introduce

Kns = KN NSR(X), Ens = €N NSR(X).
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_A very important fact is that the “Neron-Severi part” of any of the open or closed transcendental cones K,
E, I, £° is algebraic, i.e. can be characterized in simple algebraic terms. In fact, the results of section 6.C can
be reformulated as follows.

(13.2) Theorem. Let X be a projective manifold. Then

(i) Kns is the open cone generated by classes of ample (or very ample) divisors A (Recall that a divisor A is
said to be very ample if the linear system H°(X, O(A)) provides an embedding of X in projective space).

(ii) The interior Exg is the cone generated by classes of big divisors, namely divisors D such that h°(X, O(kD)) >
c kU™ X for k large.

(ili) Ens is the closure of the cone generated by classes of effective divisors, i.e. divisors D =Y ¢;D;, ¢; € Ry.

(iv) The closed cone Kng consists of the closure of the cone generated by nef divisors D (or nef line bundles L),
namely effective integral divisors D such that D - C > 0 for every curve C.

Recall that (i) is just Kodaira’s embedding theorem, and that the proof of (ii) follows from the existence theorem
provided by L? estimates, since we are in a case where the curvature is positive definite as a current. Properties
(iii) and (iv) are obtained by passing to the closure of the open cones. The terminology “nef”, “big”, “pseudo-
effective” used for the full transcendental cones thus appears to be a natural extrapolation of the algebraic
situation.

13.B. Positive classes in intermediate (p,p) bidegrees

We describe here similar concepts for cohomology classes of type (p, p), although we will not be able to say much
about these. Recall that we have a Serre duality pairing

(13.3) HPY(X,C) x H* P"9(X,C) — C, (o, B) —> /X aApeC.
In particular, if we restrict to real classes, this yields a duality pairing
(13.4) HPP(X,R) x H" P"P(X R) — R, (o, B) — / aApeR.
X
Now, one can define HEY(X,R) to be the closure of the cone of classes of d-closed strongly positive smooth
(p, p)-forms (a (p,p)-form in APPT% is by definition strongly positive if it is in the convex cone generated by

decomposable (p,p) forms ius ATy A ... Alduy AT, where the u; are (1,0)-forms). Clearly, Hslp1 (X,R) = K and
the cup product defines a multilinear map
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(13.5) Kx...xK— HYP(X,R)

on the p-fold product of the Kahler cone and its closure. We also have Hgp (X, R) C HE{(X,R) where HZ{ (X, R)
is the cone of classes of d-closed weakly positive currents of type (p,p), and the Serre duality pairing induces a
positive intersection product

(13.6) HEZ(X,R) x HIsP " P(X,R) — Ry,  (a,T) — / AT €R,
X

(notice that if « is strongly positive and T' > 0, then a A T is a positive measure).

If C is a convex cone in a finite dimensional vector space E, we denote by C¥ the dual cone, i.e. the set of
linear forms u € E* which take nonnegative values on all elements of C. By the Hahn-Banach theorem, we always
have C"" = C. A basic problem would be to investigate whether H5 (X, R) and HEP"P(X,R) are always dual
cones, and another even harder question, which somehow encompasses the Hodge conjecture, would be to relate
these cones to the cones generated by cohomology classes of effective analytic cycles. We are essentially unable to
address these extremely difficult questions, except in the special cases p =1 or p = n — 1 which are much better

understood and are the main target of the next two sections.

14. Numerical characterization of the Kahler cone

We describe here the main results obtained in [DP04]. The upshot is that the Kahler cone depends only on the
intersection product of the cohomology ring, the Hodge structure and the homology classes of analytic cycles.
More precisely, we have:

(14.1) Theorem. Let X be a compact Kdihler manifold. Let P be the set of real (1,1) cohomology classes {a}
which are numerically positive on analytic cycles, i.e. such that fY aP > 0 for every irreducible analytic set'Y
in X, p=dimY. Then the Kihler cone K of X is one of the connected components of P.

(14.2) Special case. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a generalization of the well-known Nakai-
Moishezon criterion. Recall that the Nakai-Moishezon criterion provides a necessary and sufficient criterion for a
line bundle to be ample: a line bundle L — X on a projective algebraic manifold X is ample if and only if

LP-Y:/ e (L)? >0,
Y

for every algebraic subset Y C X, p=dimY.

It turns out that the numerical conditions fy aP > 0 also characterize arbitrary transcendental Kéhler classes
when X is projective: this is precisely the meaning of the special case 14.2.

(14.3) Example. The following example shows that the cone P need not be connected (and also that the compo-
nents of P need not be convex, either). Let us consider for instance a complex torus X = C"/A. It is well-known
that a generic torus X does not possess any analytic subset except finite subsets and X itself. In that case, the
numerical positivity is expressed by the single condition f @ > 0. However, on a torus, (1,1)-classes are in
one-to-one correspondence with constant hermitian forms « on C™. Thus, for X generic, P is the set of hermitian
forms on C™ such that det(a) > 0, and Theorem 14.1 just expresses the elementary result of linear algebra saying
that the set IC of positive definite forms is one of the connected components of the open set P = {det(«) > 0}
of hermitian forms of positive determinant (the other components, of course, are the sets of forms of signature
(p,q), p+ g = n, q even. They are not convex when p > 0 and ¢ > 0).

Sketch of proof of Theorems 14.1 and 14.2. By definition (13.1) (iv), a Kdhler current is a closed positive current
T of type (1,1) such that T > ew for some smooth Kéhler metric w and € > 0 small enough. The crucial steps
of the proof of Theorem 14.1 are contained in the following statements.

(14.4) Proposition (P&un [Pau98a, 98b)). Let X be a compact complex manifold (or more generally a compact
complex space). Then
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(a) The cohomology class of a closed positive (1,1)-current {T'} is nef if and only if the restriction {T'} |5 is nef
for every irreducible component Z in any of the Lelong sublevel sets E.(T).

(b) The cohomology class of a Kdhler current {T'} is a Kdhler class (i.e. the class of a smooth Kahler form) if
and only if the restriction {T'}|; is a Kdhler class for every irreducible component Z in any of the Lelong
sublevel sets E.(T).

The proof of Proposition 14.4 is not extremely hard if we take for granted the fact that Kahler currents can
be approximated by Kéahler currents with logarithmic poles, a fact which was first proved in section 9.B (see
also [Dem92]). Thus in (b), we may assume that 7 = a + i00¢p is a current with analytic singularities, where
@ is a quasi-psh function with logarithmic poles on some analytic set Z, and ¢ smooth on X \ Z. Now, we
proceed by an induction on dimension (to do this, we have to consider analytic spaces rather than with complex
manifolds, but it turns out that this makes no difference for the proof). Hence, by the induction hypothesis, there
exists a smooth potential 1 on Z such that o)z + i00y > 0 along Z. It is well known that one can then find
a potential 1; on X such that o + 1651; > 0 in a neighborhood V of Z (but possibly non positive elsewhere).
Essentially, it is enough to take an arbitrary extension of ¢ to X and to add a large multiple of the square of
the distance to Z, at least near smooth points; otherwise, we stratify Z by its successive singularity loci, and
proceed again by induction on the dimension of these loci. Finally, we use a a standard gluing procedure : the
current 7' = o +imax.(¢,¢ — C), C > 1, will be equal to a +i99p > 0 on X \ V, and to a smooth Kihler form
onV. (I

The next (and more substantial step) consists of the following result which is reminiscent of the Grauert-
Riemenschneider conjecture ([Siu84], [Dem85]).

(14.5) Theorem ([DP04]). Let X be a compact Kdhler manifold and let {a} be a nef class (i.e. {a} € K). Assume
that [ a™ > 0. Then {a} contains a Kdhler current T', in other words {a} € £°.

Step 1. The basic argument is to prove that for every irreducible analytic set Y C X of codimension p, the class
{a}? contains a closed positive (p, p)-current © such that © > §[Y] for some ¢ > 0. For this, we use in an essentail
way the Calabi-Yau theorem [Yau78] on solutions of Monge-Ampere equations, which yields the following result
as a special case:

(14.6) Lemma ([Yau78]). Let (X,w) be a compact Kdhler manifold and n = dim X. Then for any smooth volume
form f > 0 such that fX f= fx w™, there exist a Kdhler metric © = w + 100y in the same Kdhler class as w,
such that @™ = f. O

We exploit this by observing that « + ew is a Kéhler class. Hence we can solve the Monge-Ampeére equation
(14.6a) (a4 ew +i00p. )" = Cow?

where (w;) is the family of Kéhler metrics on X produced by Lemma 3.4 (iii), such that their volume is concen-
trated in an e-tubular neighborhood of Y.

> 0.

C. = fXa? = fX(a+€w)n > Cy = ‘[Xan
Jxwr Jxwn Jxwn
Let us denote by
M(z) < ... < \(2)
the eigenvalues of . (z) with respect to we(z), at every point z € X (these functions are continuous with respect
to z, and of course depend also on €). The equation (14.6a) is equivalent to the fact that
(14.6Db) M(z). . (z) =C:

is constant, and the most important observation for us is that the constant C. is bounded away from 0, thanks
to our assumption [ o™ > 0.

Fix a regular point 2y € Y and a small neighborhood U (meeting only the irreducible component of zg in
Y). By Lemma 3.4, we have a uniform lower bound

(14.6¢) / wEAWTP 2 6,(U) > 0.
unv.
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Now, by looking at the p smallest (resp. (n — p) largest) eigenvalues \; of a. with respect to we, we find
(14.6d) ol = A A p Wl
1
(14.6¢) al P AWE > ﬁ/\“l AWl

The last inequality (14.6e) implies

//\p+1...)\nwg§n!/ oz?fp/\wfzn!/(oe+€w)"7p/\wp<M
b's b's b's

for some constant M > 0 (we assume ¢ < 1, say). In particular, for every § > 0, the subset E5 C X of points z
such that Apy1(2)... An(z) > M/6 satisfies [, wl' <4, hence

(14.6f) / wf AW ™P L 2n7p/ w? < 2™7PS.
Es

Es
The combination of (14.6c) and (14.6f) yields
/ WP AWPTP 2 6,(U) — 2" 7P4.
(Uﬂvg)\Eg

On the other hand (14.6b) and (14.6 d) imply

C C
bl A
From this we infer
(14.6¢g) / ol ANw"TP > Ce WP AW"TP > Ce (0,(U) =2"7P§) >0
Unv. M/6 Jwuav.)< s M/

provided that § is taken small enough, e.g. § = 2’(”*p+1)5p(U). The family of (p,p)-forms o is uniformly
bounded in mass since

/ ol NP = / (o + ew)? Aw™ P < Const.
X X

Inequality (14.6 ¢) implies that any weak limit © of (af) carries a positive mass on U NY. By Skoda’s extension
theorem [Sko82], 1y O is a closed positive current with support in Y, hence 1y© = 3 ¢;[Y;] is a combination
of the various components Y; of Y with coefficients ¢; > 0. Our construction shows that © belongs to the
cohomology class {a}P. Step 1 of Theorem 14.5 is proved.

Step 2. The second and final step consists in using a “diagonal trick”: for this, we apply Step 1 to
)~(:X><X, ?:diagonalACf(, Q& = prj o+ pra .

It is then clear that @ is nef on X and that

/} @) = (2:) ( /X o)’ >0,

It follows by Step 1 that the class {&}" contains a K&hler current © of bidegree (n,n) such that © > §[4] for
some d > 0. Therefore the push-forward
T := (pr1)«(@ Apryw)

is a positive (1, 1)-current such that
T > 6(pry)«([A] A priw) = dw.

It follows that T is a Kéhler current. On the other hand, T is numerically equivalent to (pry).(&™ Aprsw), which
is the form given in coordinates by

T — /GX (a(z) + a(y))n ANw(y) = Ca(x)
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where C =n [, a(y)" ' Aw(y). Hence T = Co, which implies that {a} contains a Kéhler current. Theorem 14.5
is proved. (I

End of Proof of Theorems 14.1 and 14.2. Clearly the open cone K is contained in P, hence in order to show that
K is one of the connected components of P, we need only show that K is closed in P, i.e. that NP C K. Pick
a class {a} € KN P. In particular {a} is nef and satisfies [, ™ > 0. By Theorem 14.5 we conclude that {a}
contains a Kahler current 7. However, an induction on dimension using the assumption fY aP for all analytic
subsets Y (we also use resolution of singularities for Y at this step) shows that the restriction {a}y is the class
of a Kéhler current on Y. We conclude that {a} is a Kéhler class by 14.4 (b), therefore {a} € K, as desired. O

The projective case 14.2 is a consequence of the following variant of Theorem 14.1.

(14.7) Corollary. Let X be a compact Kdhler manifold. A (1,1) cohomology class {a} on X is Kahler if and only
if there exists a Kdhler metric w on X such that fY a® AwP™F > 0 for all irreducible analytic sets Y and all
k=1,2,...,p=dimY.

Proof. The assumption clearly implies that
/ (a +tw)? >0
Y
for all t € Ry, hence the half-line @ + (R4 )w is entirely contained in the cone P of numerically positive classes.
Since a+tow is Kahler for tg large, we conclude that the half-line in entirely contained in the connected component

K, and therefore o € K. O

In the projective case, we can take w = ¢;(H) for a given very ample divisor H, and the condition fY ak A

/ a® >0
YNHiN...NH,_y

for a suitable complete intersection YN Hy N...N Hyp_k, H; € |H|. This shows that algebraic cycles are sufficient
to test the Kéahler property, and the special case 14.2 follows. On the other hand, we can pass to the limit in 14.7
by replacing a by a + ew, and in this way we get also a characterization of nef classes.

wP™F > 0 is equivalent to

(14.8) Corollary. Let X be a compact Kdihler manifold. A (1,1) cohomology class {a} on X is nef if and only
if there exists a Kdhler metric w on X such that fY o A wP™F > 0 for all irreducible analytic sets Y and all
k=1,2,...,p=dimY.

By a formal convexity argument, one can derive from 14.7 or 14.8 the following interesting consequence about
the dual of the cone K.

(14.9) Theorem. Let X be a compact Kdhler manifold.

(a) A (1,1) cohomology class {a} on X is nef if and only for every irreducible analytic set Y in X, p = dim X
and every Kahler metric w on X we have fY aAwP~! > 0. (Actually this numerical condition is needed only
for Kahler classes {w} which belong to a 2-dimensional space R{a} + R{wo}, where {wo} is a given Kdihler
class).

(b) The dual of the nef cone K is the closed convex cone in H*~“"~1(X,R) generated by cohomology classes of
currents of the form [Y] AwP~! in H"=1"=1(X R), where Y runs over the collection of irreducible analytic
subsets of X and {w} over the set of Kahler classes of X. This dual cone coincides with H;O_L"_l(X, R).

Proof. (a) Clearly a nef class {a} satisfies the given numerical condition. The proof of the converse is more tricky.
First, observe that for every integer p > 1, there exists a polynomial identity of the form

(14.10) (y — 6x)P — (1 — 8)PaP = (y — x)/o Ap(t, 5)((1 -t + ty)Pfl dt

where A,(,6) = > gcnep am(t)d™ € Qlt, 4] is a polynomial of degree < p — 1 in ¢ (moreover, the polynomial
A, is unique under this limitation for the degree). To see this, we observe that (y — dx)? — (1 — 6)Pz? vanishes
identically for « = y, so it is divisible by y — x. By homogeneity in (z,y), we have an expansion of the form
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(y — 6z)P — (1 = 6)PaP = (y — x) Z b maty? 1= t6m

0<e<p—1,0<m<p

in the ring Z[z,y, §]. Formula (14.10) is then equivalent to
1 p—1
(14.10") bo.m = / am(t)( ' )(1 — )Pt
0

Since ( fo t)dt is a non degenerate linear pairing on the space of polynomials of degree < p — 1
and since ((pe 1) (1- t)etp 1 “)o<e<p—1 is a basis of this space, (14.10") can be achieved for a unique choice of the
polynomials a,,(t). A straightforward calculation shows that A,(¢,0) = p identically. We can therefore choose
do € [0,1] so small that A,(¢,0) >0 for all t € [0,1], 6 € [0,d0] and p=1,2,...,n

Now, fix a Kéhler metric w such that ' = a + w yields a Kéhler class {w'} (just take a large multiple
w = kwg, k> 1, of the given Kéhler metric wy to initialize the process). A substitution 2 = w and y = w’ in our
polynomial identity yields

(a+ (1 —-90)w)? — (1 —-9)Pu? = /01 Ap(t,8)a A (1 —tw + tw/)pildt.

For every irreducible analytic subset Y C X of dimension p we find

/Y(a+(1—5) (1-9¢ /wp—/ tédt /Y ((1—t)w+tw’)p_1).

However, (1 —t)w+tw’ is a Kéhler class (contained in R{a} + R{wo}) and therefore [, a A ((1—t)w —i—tw’)p_l >0
by the numerical condition. This implies [, (a + (1 — §)w)? > 0 for all § € [0, dp]. We have produced a segment
entirely contained in P such that one extremity {« + w} is in K, so the other extremity {a + (1 — dp)w} is also
in IC. By repeating the argument inductively after replacing w with (1 — dp)w, we see that {a + (1 — do)"w} € K
for every integer v > 0. From this we infer that {a} is nef, as desired.

(b) Part (a) can be reformulated by saying that the dual cone K is the closure of the convex cone generated by
(n — 1,n — 1) cohomology classes of the form [Y] A wP~!. Since these classes are contained in H;O_l’"_l(X7 R)

which is also contained in K~ by (13.6), we infer that

(14.11) K" =HZ"" X, R) = Cone({[Y] A wP~1}). O

Our main Theorem 14.1 also has an important application to the deformation theory of compact Kéahler
manifolds.

(14.12) Theorem. Let w : X — S be a deformation of compact Kahler manifolds over an irreducible base S. Then
there exists a countable union S’ = J S, of analytic subsets S, C S, such that the Kdihler cones Ky C H»*(X;, C)
of the fibers X; = 7w 1(t) are invariant over S . S’ under parallel transport with respect to the (1, 1)-projection
VI of the Gauss-Manin connection V in the decomposition of

AVEE - 0
V= Y
0 * v0,2

on the Hodge bundle H? = H?>° @ HY! @ H2.

We moreover conjecture that for an arbitrary deformation X — S of compact complex manifolds, the Kahler
property is open with respect to the countable Zariski topology on the base S of the deformation.

Let us recall the general fact that all fibers X; of a deformation over a connected base S are diffeomorphic,
since X — S is a locally trivial differentiable bundle. This implies that the cohomology bundle

S>t— H¥X;,QC)
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is locally constant over the base S. The corresponding (flat) connection of this bundle is called the Gauss-Manin
connection, and will be denoted here by V. As is well known, the Hodge filtration

FP(H*(X,,C))= € H"(X:,C)

r+s=k,r>p

defines a holomorphic subbundle of H*(X;, C) (with respect to its locally constant structure). On the other hand,
the Dolbeault groups are given by

HP(X,,C) = FP(H"(X,,C)) N FF=P(H*(X,,C)),  k=p+a,
and they form real analytic subbundles of H*(X;,C). We are interested especially in the decomposition
H?*(X;,C) = H*°(X;,C) ® H"'(X,,C) ® H**(X¢,C)

and the induced decomposition of the Gauss-Manin connection acting on H?

AV *
VvV = * Vl’l *
* v0,2

Here the stars indicate suitable bundle morphisms — actually with the lower left and upper right stars being zero
by Griffiths’ transversality property, but we do not really care here. The notation V¢ stands for the induced
(real analytic, not necessarily flat) connection on the subbundle ¢t — H?9(X;, C).

Sketch of Proof of Theorem 14.12. The result is local on the base, hence we may assume that S is contractible.
Then the family is differentiably trivial, the Hodge bundle t — H?(X;, C) is the trivial bundle and t — H?(X;,Z)
is a trivial lattice. We use the existence of a relative cycle space C?(X/S) C CP(X) which consists of all cycles
contained in the fibres of 7 : X — S. It is equipped with a canonical holomorphic projection

mp : CP(X/S) — S.

We then define the S,’s to be the images in S of those connected components of C?(X'/S) which do not project
onto S. By the fact that the projection is proper on each component, we infer that S, is an analytic subset of S.
The definition of the S,’s imply that the cohomology classes induced by the analytic cycles {[Z]}, Z C X}, remain
exactly the same for all £ € S~ S’. This result implies in its turn that the conditions defining the numerically
positive cones P; remain the same, except for the fact that the spaces H'!(X;,R) C H?(X;,R) vary along with
the Hodge decomposition. At this point, a standard calculation implies that the P; are invariant by parallel
transport under V!, This is done as follows.

Since S is irreducible and S’ is a countable union of analytic sets, it follows that S\ .S’ is arcwise connected
by piecewise smooth analytic arcs. Let

v:10,1] = S\ 9, ur—t="v(u)

be such a smooth arc, and let a(u) € H"(X, (), R) be a family of real (1,1)-cohomology classes which are
constant by parallel transport under V!, This is equivalent to assuming that

V(a(u)) € H**(Xy(u),C) & H**(X(u),C)

for all u. Suppose that «(0) is a numerically positive class in X (). We then have

a0 {2} = [ a0y >0
z
for all p-dimensional analytic cycles Z in X, ). Let us denote by
CZ(t) €H2q(XtaZ)a q:dlth*pa

the family of cohomology classes equal to {[Z]} at ¢ = ~(0), such that V{z(¢) = 0 (i.e. constant with respect to
the Gauss-Manin connection). By the above discussion, (z(t) is of type (g, q) for all t € S, and when Z C X
varies, (z(t) generates all classes of analytic cycles in X, if t € S\ S’ Since (7 is V-parallel and Va(u) has no
component of type (1,1), we find
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d

du

We infer from this that a(u) is a numerically positive class for all « € [0,1]. This argument shows that the set
P; of numerically positive classes in H%!(X;, R) is invariant by parallel transport under V1 over S\ S’.

(a(u)” - (z(y(w) = pa(u)’ ™" - Va(u) - (z(y(u)) = 0.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE theory, every Kéhler class in Xy,
can be deformed to a nearby Kahler class in nearby fibres X;. This implies that the connected component of P
which corresponds to the Kéhler cone K; must remain the same. The theorem is proved. (]

As a by-product of our techniques, especially the regularization theorem for currents, we also get the following
result for which we refer to [DP04].

(14.13) Theorem. A compact complex manifold carries a Kahler current if and only if it is bimeromorphic to a
Kahler manifold (or equivalently, dominated by a Kdhler manifold).

This class of manifolds is called the Fujiki class C. If we compare this result with the solution of the Grauert-
Riemenschneider conjecture, it is tempting to make the following conjecture which would somehow encompass
both results.

(14.14) Conjecture. Let X be a compact complex manifold of dimension n. Assume that X possesses a nef
cohomology class {a} of type (1,1) such that [ o™ > 0. Then X is in the Fujiki class C. [Also, {a} would
contain a Kdhler current, as it follows from Theorem 14.5 if Conjecture 14.14 is proved)].

We want to mention here that most of the above results were already known in the cases of complex surfaces
(i.e. in dimension 2), thanks to the work of N. Buchdahl [Buc99, 00] and A. Lamari [Lam99a, 99b].

Shortly after the original [DP04] manuscript appeared in April 2001, Daniel Huybrechts [Huy01] informed us
Theorem 14.1 can be used to calculate the Kahler cone of a very general hyperkéhler manifold: the Kéhler cone is
then equal to a suitable connected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperk&hler manifold, S.Boucksom [Bou02] later showed that a (1, 1) class {a} is
Kihler if and only if it lies in the positive part of the Beauville-Bogomolov quadratic cone and moreover |, ca>0
for all rational curves C C X (see also [Huy99]).

15. Structure of the pseudo-effective cone and mobile intersection theory

15.A. Classes of mobile curves and of mobile (n — 1,n — 1)-currents

We introduce various positive cones in H"~1"~1(X,R), some of which exhibit certain “mobility” properties,
in the sense that they can be more or less freely deformed. Ampleness is clearly such a property, since a very
ample divisor A can be moved in its linear system |A| so as to cover the whole ambient variety. By extension, a
Kihler class {w} € HY'(X,R) is also considered to be mobile, as illustrated alternatively by the fact that the
Monge-Ampere volume form (w + i99¢)™ of a Kéhler metric in the same cohomology class can be taken to be
equal to an arbitrary volume form f > 0 with [, f = [, w" (thanks to Yau’s theorem [Yau78]).

(15.1) Definition. Let X be a smooth projective variety.

(i) One defines NE(X) to be the conver cone generated by cohomology classes of all effective curves in
Hn_l’n_l(X,R)

(ii) We say that C is a mobile curve if C' = Cy, is a member of an analytic family (Cy)ies such that | J,c g Cr = X
and, as such, is a reduced irreducible 1-cycle. We define the mobile cone ME(X), to be the convex cone
generated by all mobile curves.

(iii) If X s projective, we say that an effective 1-cycle C is a strongly mobile if we have
C = N*(gl n... ﬁ/z[nfl)

for suitable very ample divisors /Tj on )~(, where @ : X > Xisa modification. We let ME®*(X) be the
convez cone generated by all strongly mobile effective 1-cycles (notice that by taking A; general enough these
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classes can be represented by reduced irreducible curves; also, by Hironaka, one could just restrict oneself to
compositions of blow-ups with smooth centers).

Clearly, we have
ME’(X) c ME(X) c NE(X).

The cone NE(X) is contained in the analogue of the Neron-Severi group for (n — 1,n — 1)-classes, namely
NSEHX) = (H" """ 1(X,R) N H* (X, Z) /tors) @z R

(sometimes also denoted Ny(X) in the litterature). We wish to introduce similar concepts for cones of non
necessarily integral classes, on arbitrary compact Kéahler manifolds. The relevant definition is as follows.

(15.2) Definition. Let X be a compact Kihler manifold.

(i) We define N = H;al’"_l(X, R) to be the (closed) convex cone in H"~"~1(X R) generated by classes of
positive currents T of type (n — 1,n — 1), i.e., of bidimension (1,1).

(ii) We define the cone M* C H" 1"=1(X R) of strongly mobile classes to be the closure of the convex cone
generated by classes of currents of the form

,U,*(U.~)1 AL, /\&n_l)

where | : X — X is an arbitrary modification, and the W; are Kdhler forms on X.

(iii) We define the cone M C H"~1n=1(X R) of mobile classes to be the closure of the convex cone generated by
classes of currents of the form

(Ve ] AGLA .. AGp_1)

where p : X — X is an arbitrary modification, the w; are Kdihler forms on X and (Y})tes s an analytic
family of effective p-dimensional analytic cycles covering X such that Yto is reduced and irreducible, with p
running over all {1,2,...,n}.

Clearly, we have

MICMCN.
For X projective, it is also immediately clear from the definitions that
NE(X) C Mys := N N NS5~ (X),
(15.3) ME(X) € Mg := M NNSE™H(X),
ME®*(X) C Mig = M*NNSE™!(X).
The upshot of these definitions lie in the following easy observation.

(15.4) Proposition. Let X be a compact Kahler manifold. The Serre duality pairing
HU R X B IR R (@) [ ang
X

takes nonnegative values

(a) for all pairs (o, B) € K x N;

(b) for all pairs (o, B) € € x M.

Proof. (a) is obvious. In order to prove (b), we may assume that 8 = pu.([Yi,] A@&1 A ... A&p_1) for some

modification p: X — X, where {a} = {T'} is the class of a positive (1,1)-current on X and w; are K&hler forms
on X. Then for t € S generic
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/a/\ﬁ:/T/\u*([f/t]/\ful/\.../\@p_l)
X X
:/M*TA[ﬁ]Aal/\...Aap_l
X
(15.5) :/( *T)~/\c~u1/\.../\c~up_120
Yi

provided that we show that the final integral is well defined and that the formal calulations involved in (15.5)
are correct. Here, we have used the fact that a closed positive (1,1)-current T always has a pull-back p*T,
which follows from the observation that if T = a + i0dy with a smooth and ¢ quasi-psh, we may always set
wT = p*a+i00(po p), with ¢ o i quasi-psh and not identically —oo on X . Similarly, we see that the restriction
(u*T) ¥ is a well defined positive (1, 1)-current for ¢ generic, by putting

(1T 5, = (W) 5 +i00((p o p) 5

and choosing ¢ such that Yt is not contained in the pluripolar set of —oco poles of ¢ o p (this is possible thanks
to the assumption that Yt covers X locally near any given point we can modify a so that & = 0 on a small
neighborhood V', and then ¢ is psh on V). Finally, in order to justify the formal calculations we can use a
regularization argument for 7', writing 7' = lim T}, with Ty = a + 109y}, and a decreasing sequence of smooth
almost plurisubharmonic potentials ¢, | ¢ such that the Levi forms have a uniform lower bound 99y, > —Cw
(such a sequence exists by [Dem92]). Then ('U*Tk)r;’t — (u*T) 7, in the weak topology of currents. O

Proposition 15.4 leads to the natural question whether the cones (IC,N') and (£, M) are dual under Serre
duality, The second part of the question is addressed in the next section. The results proved in §18 yield a
complete answer to the first part — even in the general Kéahler setting.

(15.6) Theorem. Let X be a compact Kihler manifold. Then
(i) K and N are dual cones.
(ii) If X is projective algebraic, then Kns = Nef(X) and Nxs = NE(X) and these cones are dual.

Proof. (i) is a weaker version of (14.9 b).

(ii) The equality Kns = Nef(X) has already been discussed and is a consequence of the Kodaira embedding
theorem. Now, we know that

NE(X) C Nxs C Kyg = Nef(X)Y,

where the second inclusion is a consequence of (15.4 a). However, it is already well-known that NE(X) and
NE(X) are dual cones (see [Har70]), hence the inclusions are equalities (we could also obtain a self-contained
proof by reconsidering the arguments used for (14.9 a) when « and wp are rational classes; one sees by the
density of the rationals that the numerical condition for « is needed only for elements of the form [Y] A wP™!
with w € Q{a} + Q{wo} a rational class, so [Y] A wP~! is then a Q-effective curve). O

15.B. Zariski decomposition and mobile intersections

Let X be compact Kéhler and let a € £° be in the interior of the pseudo—effective cone. In analogy with the
algebraic context such a class « is called “big”, and it can then be represented by a Kdhler current T, i.e. a closed
positive (1,1)-current T such that T > dw for some smooth hermitian metric w and a constant § < 1. We first
need a variant of the regularization theorem proved in section 9.B.

(15.7) Regularization theorem for currents. Let X be a compact complex manifold equipped with a hermitian
metric w. Let T = a+i00y be a closed (1,1)-current on X, where a is smooth and ¢ is a quasi-plurisubharmonic
function. Assume that T > v for some real (1,1)-form v on X with real coefficients. Then there exists a sequence
T = o+ i00¢.y, of closed (1,1)-currents such that
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(i) om (and thus T,,) is smooth on the complement X \ Z,, of an analytic set Z,, and the Zy,’s form an
mcreasing sequence

o CZ1C...CZypC...CX.

(i1) There is a uniform estimate Ty, = v — 0w with im | §,, = 0 as m tends to +oo.

(iii) The sequence (¢m) is non increasing, and we have im | ¢, = ¢. As a consequence, Ty, converges weakly
toT as m tends to 4+o0.

(iv) Near Z,,, the potential @, has logarithmic poles, namely, for every xg € Z,, there is a neighborhood U of
zo such that ©m(2) = Am10og >, [gm.e|* + O(1) for suitable holomorphic functions (gm.¢) on U and A > 0.
Moreover, there is a (global) proper modification piy, : )~(m — X of X, obtained as a sequence of blow-ups
with smooth centers, such that @, o py, can be written locally on )?m as

Pm © Hm(w) = A (Y nelog [Gel* + f(w))

where (¢ = 0) are local generators of suitable (global) divisors Dy on X, such that Y Dy has normal
crossings, ng are positive integers, and the f’s are smooth functions on X,,.

Sketch of proof. We essentially repeat the proofs of Theorems (9.2) and (9.12) with additional considerations.
One fact that does not follow readily from these proofs is the monotonicity of the sequence ¢,, (which we will
not really need anyway). For this, we can take m = 2" and use the subadditivity technique already explained in
Step 3 of the proof of Theorem (11.3b). The map p,, is obtained by blowing-up the (global) ideals 7, defined
by the holomorphic functions (g;,) in the local approximations ¢, ~ ﬁ log > y |9;,m|*. By Hironaka [Hir64],
we can achieve that p), 7., is an invertible ideal sheaf associated with a normal crossing divisor. O

(15.8) Corollary. If T is a Kdhler current, then one can write T = limT,, for a sequence of Kdhler currents T,
which have logarithmic poles with coefficients in #Z, i.e. there are modifications phm, @ Xm — X such that

M:nTm = [Em] =+ 6m

where E,, is an effective Q-divisor on X, with coefficients in %Z (the “fixed part”) and By, is a closed semi-
positive form (the “mobile part”).

Proof. We apply Theorem (15.7) with v = ew and m so large that d,, < £/2. Then T,,, has analytic singularities
and T, > Sw, so we get a composition of blow-ups i, : X;,, — X such

where E, is an effective Q-divisor and 3,, > Su;,w. In particular, 3y, is strictly positive outside the exceptional
divisors, by playing with the multiplicities of the components of the exceptional divisors in F,,, we could even
achieve that (,, is a Kéhler class on X,,. Notice also that by construction, p,, is obtained by blowing-up the
multiplier ideal sheaves Z(mT) = Z(my) associated to a potential ¢ of T'. O

The more familiar algebraic analogue would be to take o = ¢1(L) with a big line bundle L and to blow-up
the base locus of [mL|, m > 1, to get a Q-divisor decomposition

o L ~ Eyy + Dy, E,, effective, D,, free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|, and we say that F,, + D,, is
an approximate Zariski decomposition of L. We will also use this terminology for Kahler currents with logarithmic
poles.
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NSk (Xm) /_\

Kns

%

o = M:na = [Em] + Bm

[Em]

(15.9) Definition. We define the volume, or mobile self-intersection of a big class oo € E° to be
Vol(a) = sup /~ 8" >0
TeaJX
where the supremum is taken over all Kdhler currents T € « with logarithmic poles, and p*T = [E] 4+ § with

respect to some modification p : X - X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DELOO], if L is a big line bundle, we have
n!
Vol(ei1 (L)) = lim DI = lim —A%X,mL
oler(L)) = lm Dp = lm —Zh'(X,mL),
and in these terms, we get the following statement.
(15.10) Proposition. Let L be a big line bundle on the projective manifold X. Let € > 0. Then there exists a
modification p : X — X and a decomposition p*(L) = E + 8 with E an effective Q-divisor and 8 a big and nef

Q-divisor such that
Vol(L) — e < Vol(8) < Vol(L).

It is very useful to observe that the supremum in Definition 15.9 is actually achieved by a collection of currents
whose singularities satisfy a filtering property. Namely, if 71 = a + i00p; and Ty = « + i00ps are two Kéahler
currents with logarithmic poles in the class of «, then

(15.11) T = a+1i00yp, © = max(p1, 2)

is again a Kahler current with weaker singularities than 77 and 7. One could define as well
= 1
(15.117) T'=a+1i00p,  ¢=5— log(e*™#" + 2"¥2),
m

where m = lem(mq, mg) is the lowest common multiple of the denominators occuring in 77, T2. Now, take a
simultaneous log-resolution i, : X,, — X for which the singularities of 77 and T, are resolved as Q-divisors F;
and Es. Then clearly the associated divisor in the decomposition p*, T = [E] + (3 is given by F = min(E, E»).
By doing so, the volume f X, O™ gets increased, as we shall see in the proof of Theorem 15.12 below.

(15.12) Theorem (Boucksom [Bou02]). Let X be a compact Kihler manifold. We denote here by H;g(X) the
cone of cohomology classes of type (k, k) which have non-negative intersection with all closed semi-positive smooth
forms of bidegree (n — k,n — k).

(i) For each integer k =1,2,...,n, there exists a canonical “mobile intersection product”

5XX5—>H§’(;€(X), (al,...,ak)n—>(al-ag---ak_l-ak>
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such that Vol(a)) = (™) whenever « is a big class.
(ii) The product is increasing, homogeneous of degree 1 and superadditive in each argument, i.e.

1t coincides with the ordinary intersection product when the o € K are nef classes.

(iii) The mobile intersection product satisfies the Teissier-Hovanskii inequalities

(a1 az-an) = ((af)™ o (lag)™ (with (a}) = Vol(ay)).

n

(iv) For k =1, the above “product” reduces to a (non linear) projection operator
E— &, a— (a)

onto a certain convex subcone & of £ such that K c & C E. Moreover, there is a “dwisorial Zariski
decomposition”

a={N(a)}+(a)

where N(«) is a uniquely defined effective divisor which is called the “negative divisorial part” of «. The
map o — N(«) is homogeneous and subadditive, and N(«) = 0 if and only if o € &;.

(v) The components of N(«a) always consist of divisors whose cohomology classes are linearly independent, es-
pecially N(«) has at most p = rankz NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some simplifications arising from the
fact that X is supposed to be Kahler from the start.

(i) First assume that all classes o are big, i.e. a; € £°. Fix a smooth closed (n — k,n — k) semi-positive form u

on X. We select Kahler currents T € «; with logarithmic poles, and a simultaneous log-resolution p : X — X
such that
Wy = [Ej] + B;.

We consider the direct image current p (81 A ... A Bg) (which is a closed positive current of bidegree (k, k) on
X) and the corresponding integrals

/~Bl/\.../\ﬁk/\,u*u>0.
X

If we change the representative 7} with another current T]{ , we may always take a simultaneous log-resolution
such that p*7} = [E7] + 3}, and by using (15.11’) we can always assume that E} < Ej. Then D; = E; — E} is an
effective divisor and we find [E;] + 3; = [E}] + 3}, hence 8; = ; + [D;]. A substitution in the integral implies

/~ﬁg/\ﬁ2/\...AﬁkAmu
X

:/~ﬁ1/\ﬁ2/\.../\ﬁk/\u*u+/[Dl]/\ﬁg/\.../\ﬁk/\,u*u
X

X
>/~B1/\ﬁ2/\.../\ﬁk/\u*u,
X

Similarly, we can replace successively all forms (3; by the 65-, and by doing so, we find

/~5§A55A...A5;Au*u>/~51A52A...Aﬂkmﬁu.
X X

We claim that the closed positive currents uy (61 A ... A Bg) are uniformly bounded in mass. In fact, if w is a
Ké&hler metric in X, there exists a constant C; > 0 such that C;{w} — a; is a Kéhler class. Hence Cjw —Tj = ;
for some Kéhler form v; on X. By pulling back with p, we find Cjp*w — ([E;] + 5;) = p*;, hence

B = Cijp*w — ([Ej] + p1*v;)-

By performing again a substitution in the integrals, we find
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/~ﬁl/\.../\ﬁk/\,u*u<Cl...Ck/~,u*wk/\,u*u:Cl...Ck/ WA
X X X

and this is true especially for u = w™ *. We can now arrange that for each of the integrals associated with a
countable dense family of forms u, the supremum is achieved by a sequence of currents (fim )«(B1,m A ... A Brm)
obtained as direct images by a suitable sequence of modifications ., : X,, — X. By extracting a subsequence,
we can achieve that this sequence is weakly convergent and we set

<041 Qg 'ak> = lim T {(Mm)*(ﬂl,m A 62,m JANAN 6k,m)}

m——+0o0

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals obtained when we
evaluate against a smooth closed semi-positive form u). By evaluating against a basis of positive classes {u} €
Hn"=Fn=k(X), we infer by Serre duality that the class of (o - as - - - ay) is uniquely defined (although, in general,
the representing current is not unique).

(i) Tt is indeed clear from the definition that the mobile intersection product is homogeneous, increasing and
superadditive in each argument, at least when the a;’s are in £°. However, we can extend the product to the
closed cone £ by monotonicity, by setting

(ay-ag---ag) =lim [{(a; + 6w) - (ag + 6w) - - - (o + dw))
510

for arbitrary classes a; € £ (again, monotonicity occurs only where we evaluate against closed semi-positive
forms u). By weak compactness, the mobile intersection product can always be represented by a closed positive
current of bidegree (k, k).

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact that they hold true for nef classes,
so we just have to apply them to the classes 3}, on X,, and pass to the limit.

(iv) When k = 1 and « € £°, we have

a= lm {(m):Tn} = HUm ()« En] + {(tm)<Bm}

m——+0oo m——+o0
and (@) = limy—400{ (ttm)+Bm } by definition. However, the images Fy, = (um )«Fm are effective Q-divisors in
X, and the filtering property implies that F,, is a decreasing sequence. It must therefore converge to a (uniquely
defined) limit F' = lim F,,, := N(«) which is an effective R-divisor, and we get the asserted decomposition in the
limit.
Since N(a) = a— () we easily see that N(«) is subadditive and that N(«) = 0 if « is the class of a smooth
semi-positive form. When « is no longer a big class, we define

() =lim | (o +dw),  N(a)=lm T N(a+ow)

(the subadditivity of N implies N(a + (0 + £)w) < N(a + éw)). The divisorial Zariski decomposition follows
except maybe for the fact that N(«) might be a convergent countable sum of divisors. However, this will be ruled
out when (v) is proved. As N (s) is subadditive and homogeneous, the set & = {a € £ ; N(«a) = 0} is a closed
convex conne, and we find that o +— (o) is a projection of £ onto & (according to [Bou02], £; consists of those
pseudo-effective classes which are “nef in codimension 17).

(v) Let a € £°, and assume that N(a) contains linearly dependent components Fj. Then already all currents
T € a should be such that p*T = [E] + 8 where F' = pu, E contains those linearly dependent components. Write
F =3"X\jFj, \; > 0 and assume that

Z Cij =0

jeJ

for a certain non trivial linear combination. Then some of the coefficients ¢; must be negative (and some other
positive). Then E is numerically equivalent to

E' = E—l—t,u*(Z)\ij),
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and by choosing ¢ > 0 appropriate, we obtain an effective divisor E’ which has a zero coefficient on one of the
components p*Fj . By replacing E with min(E, E’) via (15.11’), we eliminate the component p*Fj,. This is a
contradiction since N («) was supposed to contain Fj,. O

(15.13) Definition. For a class a € HV1(X,R), we define the numerical dimension num(a) to be num(a) = —oo
if a is not pseudo-effective, and

num(a) = max{p € N; (oF) # 0}, num(a) € {0,1,...,n}
if a is pseudo-effective.

By the results of [DP04], a class is big (o € £°) if and only if num(a) = n. Classes of numerical dimension 0 can
be described much more precisely, again following Boucksom [Bou02].

(15.14) Theorem. Let X be a compact Kdhler manifold. Then the subset Dy of irreducible divisors D in X such
that num(D) = 0 is countable, and these divisors are rigid as well as their multiples. If o« € £ is a pseudo-effective
class of numerical dimension 0, then a is numerically equivalent to an effective R-divisor D = ZjeJ A;jDj, for
some finite subset (D;)jcq C Dy such that the cohomology classes {D;} are linearly independent and some \; > 0.
If such a linear combination is of numerical dimension 0, then so is any other linear combination of the same
divisors.

Proof. 1t is immediate from the definition that a pseudo-effective class is of numerical dimension 0 if and only if
(a) = 0, in other words if &« = N (). Thus o = )~ \; D; as described in 15.14, and since A;(D;) < («), the divisors
D; must themselves have numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X)NE C H?(X,Z), otherwise two such divisors D = D’ would yield a blow-up  : X — X resolving
the intersection, and by taking min(u*D, p*D’) via (15.11"), we would find p*D = E + 3, 8 # 0, so that {D}
would not be of numerical dimension 0. This implies that there are at most countably many divisors of numerical
dimension 0, and that these divisors are rigid as well as their multiples. (I

(15.15) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical dimension to be num(L) =
num(cy (L)). Using the cananical maps @,z and pulling-back the Fubini-Study metric it is immediate to see
that num(L) > k(L) (which generalizes the analogue inequality already seen for nef line bundles, see (6.18)).

The above general concept of numerical dimension leads to a very natural formulation of the abundance conjecture
for Kéhler varieties.

(15.16) Generalized abundance conjecture. Let X be an arbitrary compact Kdihler manifold X .
(a) The Kodaira dimension of X should be equal to its numerical dimension : k(Kx) = num(Kx).

(b) More generally, let A be a Q-divisor which is kit (Kawamata log terminal, i.e. such that cx(A) > 1). Then
k(Kx + A) = num(Kx + A).

This appears to be a fairly strong statement. In fact, already in the case A = 0, it is not difficult to show that
the generalized abundance conjecture would contain the C, ,, conjectures.

(15.17) Remark. It is obvious that abundance holds in the case num(Kx) = —oo (if L is not pseudo-effective,
no multiple of L can have sections), or in the case num(Kx) = n which implies Kx big (the latter property
follows e.g. from the solution of the Grauert-Riemenschneider conjecture in the form proven in [Dem85], see also
[DP04]).

In the remaining cases, the most tractable situation is the case when num(Kx) = 0. In fact Theorem 15.14
then gives Kx =Y A\; D, for some effective divisor with numerically independent components, num(D,) = 0. It
follows that the A; are rational and therefore

(%) Kx ~ Z)\ij +F where \; € Q*, num(D;) = 0 and F € Pic’(X).

If we assume additionally that ¢(X) = h%'(X) is zero, then mKx is linearly equivalent to an integral divisor
for some multiple m, and it follows immediately that x(X) = 0. The case of a general projective manifold with
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num(Kx) = 0 and positive irregularity ¢(X) > 0 has been solved by Campana-Peternell [CP04], Corollary 3.7.
It would be interesting to understand the Kahler case as well.

15.C. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski decompositions are almost
orthogonal.

(15.18) Theorem. Let X be a projective manifold, and let o = {T'} € ERg be a big class represented by a Kdhler
current T'. Consider an approximate Zariski decomposition

Then
(Dpt - Bp)? < 20 (Cw)™(Vol(a) — D7)

where w = ¢1(H) is a Kdhler form and C > 0 is a constant such that ta is dominated by Cw (i.e., Cw £ « is

nef).

Proof. For every t € [0, 1], we have
Vol(a) = Vol(E,, + Dy,) = Vol(tEy, + Dy,).
Now, by our choice of C, we can write E,, as a difference of two nef divisors

E,=pa— Dy =py(a+ Cw)— (Dpy + Cppw).

(15.19) Lemma. For all nef R-divisors A, B we have
Vol(A - B) > A" —nA""'. B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the holomorphic Morse inequalities
7.4 (see [Dem01]); one can also argue by an elementary estimate of to H*(X, mA— By —...— B,,) via the Riemann-
Roch formula (assuming A and B very ample, By, ..., By, € |B| generic). If A and B are Q-Cartier, we conclude
by the homogeneity of the volume. The general case of R-divisors follows by approximation using the upper
semi-continuity of the volume [Bou02, 3.1.26]. O

(15.20) Remark. We hope that Lemma 15.19 also holds true on an arbitrary Kahler manifold for arbitrary nef
(non necessarily integral) classes. This would follow from a generalization of holomorphic Morse inequalities to
non integral classes. However the proof of such a result seems technically much more involved than in the case
of integral classes.

(15.21) Lemma. Let (34,...,05, and B1,...,0,, be nef classes on a compact Kdihler manifold X such that each
difference B; — f; is pseudo-effective. Then the n-th intersection products satisfy

Bre B < By By

Proof. We can proceed step by step and replace just one §; by 8’5 = 5; + T; where T} is a closed positive
(1,1)-current and the other classes 3), = Ok, k # j are limits of Kéhler forms. The inequality is then obvious. 0O

End of proof of Theorem 15.18. In order to exploit the lower bound of the volume, we write
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tEw + Dy, = A— B, A=Dp, +tur(a+Cw), B=t(Dy+Cusw).
By our choice of the constant C, both A and B are nef. Lemma 15.19 and the binomial formula imply
Vol(tEp+Dy,) = A" —nA™ ' . B

=D 4+nt D™k (o + Cw) + Ztk (Z) DRk (a4 Cw)F
k=2
—nt D™ (D, + Cul,w)

n—1
—1
—nt? Yt (n K >D;2” (@ + Cw) - (D + Cpityw).
k=1

Now, we use the obvious inequalities
Din < 1(Cw),  piy(a+ Cw) < 2415(Cw), Do+ Cpityw < 2415, (Co)
in which all members are nef (and where the inequality < means that the difference of classes is pseudo-effective).

We use Lemma 15.21 to bound the last summation in the estimate of the volume, and in this way we get

n—1

n—1
Vol(tEy, + Dy) = Dy, + ntDpy ' - By — nt? 28R < L ) (Cw)™.
k=1

We will always take ¢ smaller than 1/10n so that the last summation is bounded by 4(n — 1)(1 + 1/5n)" "2 <
4ne'/5 < 5n. This implies

Vol(tEy, + Dy,) = D, +nt D1 - B,y — 5n2t? (Cw)™.

Now, the choice t = 13—(D ! - Ep)((Cw)™) ™! gives by substituting

m

1 (Dpt - En)?

20 (Cw)m
(and we have indeed ¢ < 10#" by Lemma 15.21), whence Theorem 15.18. Of course, the constant 20 is certainly
not optimal. ([l

< Vol(Ep, + Dy) — D7, < Vol(a) — D”

m

(15.22) Corollary. If o € Exsg, then the divisorial Zariski decomposition o = N(a) + {«) is such that
(@™ 1) N(a) =0.

Proof. By replacing o with a + dc1(H), one sees that it is sufficient to consider the case where « is big. Then
the orthogonality estimate implies

(um)*(Dfn_l) () By = DZz_l ()" (pm )« B, < lefl - By < C(Vol(a) — D::z)l/Q-

Since (™71 = lim(pm )« (DY), N(a) = lim(pm )« Em and lim D7, = Vol(a), we get the desired conclusion in
the limit. O

15.D. Dual of the pseudo-effective cone

The following statement was first proved in [BDPP04].

(15.23) Theorem. If X is projective, the cones Exg = Eff(X) and ME®*(X) are dual.

In other words, a line bundle L is pseudo-effective if (and only if) L-C > 0 for all mobile curves, i.e., L-C > 0 for
every very generic curve C' (not contained in a countable union of algebraic subvarieties). In fact, by definition of
ME?®(X), it is enough to consider only those curves C' which are images of generic complete intersection of very
ample divisors on some variety X , under a modification p : X — X. By a standard blowing-up argument, it also
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follows that a line bundle L on a normal Moishezon variety is pseudo-effective if and only if L - C > 0 for every
mobile curve C.

Proof. By (15.4 b) we have in any case
Ens C (ME®(X))Y.

If the inclusion is strict, there is an element oo € dEng on the boundary of Eng which is in the interior of ME® (X)V.

Let w = ¢;(H) be an ample class. Since a € 9€ns, the class a + dw is big for every § > 0, and since
a € (ME®(X))V)° we still have o — ew € (ME®*(X))¥ for € > 0 small. Therefore

(15.24) a-I'zew I

for every strongly mobile curve I', and therefore for every I' € ME®*(X ). We are going to contradict (15.24). Since
«a + dw is big, we have an approximate Zariski decomposition

wi(a+ dw) = Es + Ds.
We pick I" = (us)« (D} ') € ME®*(X). By the Hovanskii-Teissier concavity inequality
w-I'> (wn)l/n(Dgz)(n—l)/n

On the other hand
a-I'=a-(us)(DF 1)
— pha- DI < (o + w) - Dp!
= (Es + Ds)- Dy~" = D} + D} ' - Ej.
By the orthogonality estimate, we find

o I _ D+ (20(Cw)" (Vol(a + bw) — D))

w-I = (w)/n(Dy)mn=1/n

Vol(a + dw) — DF)1/?
D)1/

< Cl(Dg)l/n + C/I(
However, since a € 0€ng, the class o cannot be big so
lim D§ = Vol(a) = 0.
6—0

We can also take Ds to approximate Vol(a + dw) in such a way that (Vol(a + dw) — DF)/? tends to 0 much
faster than Dj. Notice that D§ > 0"w", so in fact it is enough to take

Vol(a + dw) — D§ < 62",
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which gives (a-I')/(w - I') < (C" 4+ C")é. This contradicts (15.24) for § small. O

(15.25) Conjecture. The Kéhler analogue should be :
For an arbitrary compact Kahler manifold X, the cones € and M are dual.

NSgr(X) HY(X,R) H*=bn=1(X R) NSE(X)

If holomorphic Morse inequalities were known also in the Kéhler case, we would infer by the same proof that

“a not pseudo-effective” implies the existence of a blow-up u : X — X and a Kihler metric @ on X such that

a1 (@)"~t < 0. In the special case when a = K x is not pseudo-effective, we would expect the Kéhler manifold

X to be covered by rational curves. The main trouble is that characteristic p techniques are no longer available.
On the other hand it is tempting to approach the question via techniques of symplectic geometry :

(15.26) Question. Let (M, w) be a compact real symplectic manifold. Fiz an almost complex structure J compatible
with w, and for this structure, assume that c1(M)-w"~t > 0. Does it follow that M is covered by rational J-
pseudoholomorphic curves ?

The relation between the various cones of mobile curves and currents in (15.1) and (15.2) is now a rather direct
consequence of Theorem 15.23. In fact, using ideas hinted in [DPS96], we can say a little bit more. Given an
irreducible curve C' C X, we consider its normal “bundle” N = Hom(Z/Z?, O¢), where T is the ideal sheaf of
C. If C is a general member of a covering family (C}), then N¢ is nef. Now [DPS96] says that the dual cone of
the pseudo-effective cone of X contains the closed cone spanned by curves with nef normal bundle, which in turn
contains the cone of mobile curves. In this way we get :

(15.27) Theorem. Let X be a projective manifold. Then the following cones coincide.
(i) the cone Mns = MNNSEH(X);

(ii) the cone Mg = M* NNSE~1(X);

(iii) the closed cone ME®*(X) of strongly mobile curves;

(iv) the closed cone ME(X) of mobile curves;

(

v) the closed cone MEyet(X) of curves with nef normal bundle.

Proof. We have already seen that
ME?*(X) C ME(X) C MEet(X) C (Ens)”

and
ME®*(X) € M5s(X) C Mns C (Exs)”

by 15.4 (iii). Now Theorem 15.23 implies (Mng)” = ME*(X), and 15.27 follows. O
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(15.28) Corollary. Let X be a projective manifold and L o line bundle on X.
(i) L is pseudo-effective if and only if L - C > 0 for all curves C with nef normal sheaf N¢.
(i1) If L is big, then L-C > 0 for all curves C with nef normal sheaf N¢.

Corollary 15.28 (i) strenghtens results from [PSS99]. It is however not yet clear whether Mg is equal to the closed
cone of curves with ample normal bundle (although we certainly expect this to be true). The most important
special case of Theorem 15.23 is

(15.29) Theorem. If X is a projective manifold, then Kx is pseudo-effective (i.e. Kx € Ens), if and only if X is
not uniruled (i.e. not covered by rational curves).

Proof. If X is covered by rational curves CY, then it is well-known that the normal bundle N¢, is nef for a general
member Cj, thus
Kx-Ci=Kcg,-Ct— Ng, - Cy < =2,

and Kx cannot be pseudo-effective. Conversely, if Kx ¢ Ens, Theorem 15.23 shows that there is a mobile curve
C; such that Kx -Cy < 0. The standard “bend-and-break” lemma of Mori theory then produces a covering family
I of rational curves with Kx - I; < 0, so X is uniruled. O

Notice that the generalized abundance conjecture 15.16 would then yield the stronger result :

(15.30) Conjecture. Let X be a projective manifold. If X is not uniruled, then Kx is a Q-effective divisor and
K(X) =num(Kx) > 0.

16. Super-canonical metrics and abundance

16.A. Construction of super-canonical metrics

Let X be a compact complex manifold and (L, hy, ) a holomorphic line bundle over X equipped with a singular
hermitian metric hy , = e~ 7hy with satisfies fe‘"’ < 400 locally on X, where hy, is a smooth metric on L. In
fact, we can more generally consider the case where (L, hr ) is a “hermitian R-line bundle”; by this we mean
that we have chosen a smooth real d-closed (1, 1) form ay, on X (whose dd® cohomology class is equal to ¢1 (L)),
and a specific current 17, ., representing it, namely 77, 4 = af, + dd®y, such that v is a locally integrable function
satisfying [e™7 < +oco. An important special case is obtained by considering a klt (Kawamata log terminal)
effective divisor A. In this situation A = Y ¢;A; with ¢; € R, and if g; is a local generator of the ideal sheaf
O(—4;) identifying it to the trivial invertible sheaf g;O, we take v =>" c;log|g;|?, TL~ = >_ ¢;[4,] (current of
integration on A) and «, given by any smooth representative of the same dd°-cohomology class; the klt condition
precisely means that

16.1 /677:/ 41729 < 100
(16.1) , VH| il

on a small neighborhood V' of any point in the support |A| = |J A, (condition (16.1) implies ¢; < 1 for every
j, and this in turn is sufficient to imply A kIt if A is a normal crossing divisor; the line bundle L is then the
real line bundle O(A), which makes sens as a genuine line bundle only if ¢; € Z). For each klt pair (X, A) such
that Kx + A is pseudo-effective, H. Tsuji [Tsu07a, Tsu07b] has introduced a “super-canonical metric” which
generalizes the metric introduced by Narasimhan and Simha [NS68] for projective algebraic varieties with ample
canonical divisor. We take the opportunity to present here a simpler, more direct and more general approach.

We assume from now on that Kx + L is pseudo-effective, i.e. that the class ¢1 (K x )+ {ay} is pseudo-effective,
and under this condition, we are going to define a “super-canonical metric” on Kx + L. Select an arbitrary smooth
hermitian metric w on X. We then find induced hermitian metrics hx, on Kx and hg 41 = hghr on Kx + L,
whose curvature is the smooth real (1,1)-form
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o= @KX+L7}LKX+L = @KX7W +ar.

A singular hermitian metric on Kx+L is a metric of the form hx 41, = e"Yhg 41 Where @ is locally integrable,
and by the pseudo-effectivity assumption, we can find quasi-psh functions ¢ such that a4+ dd®p > 0. The metrics
on L and Kx + L can now be “subtracted” to give rise to a metric

hinhis e =€ Thihil = e?Thil = e?77dV,
on Kyx' = A"Tx, since h;(; = dV,, is just the hermitian (n,n) volume form on X. Therefore the integral
f <h L_’,Yh;(; YL has an intrinsic meaning, and it makes sense to require that
(16.2) /Xhmh;(;w:/xe*@ﬂde <1

in view of the fact that ¢ is locally bounded from above and of the assumption [e™7 < +oco. Observe that
condition (16.2) can always be achieved by subtracting a constant to ¢. Now, we can generalize Tsuji’s super-
canonical metrics on klt pairs (cf. [Tsu07b]) as follows.

(16.3) Definition. Let X be a compact complex manifold and let (L,hr) be a hermitian R-line bundle on X
associated with a smooth real closed (1,1) form ay. Assume that Kx + L is pseudo-effective and that L is
equipped with a singular hermitian metric hy , = e~ "hr such that fe"y < 400 locally on X. Take a hermitian
metric w on X and define a = @KX+L7hKX+L = Ok yw + ar. Then we define the super-canonical metric hean of
Kx + L to be

hKXJrLﬁcan = H;f hKXJ’,L’(P i.e. hKXJrLﬁcan = eikpca“hKXJrL, where

Gean(T) =sup p(z) for all ¢ with o+ dd°p > 0, / e~ 7dV, < 1.
(] X

In particular, this gives a definition of the super-canonical metric on Kx + A for every klt pair (X, A) such
that Kx + A is pseudo-effective, and as an even more special case, a super-canonical metric on Kx when Kx is
pseudo-effective.

In the sequel, we assume that v has analytic singularities, otherwise not much can be said. The mean value in-
equality then immediately shows that the quasi-psh functions ¢ involved in definition (16.3) are globally uniformly
bounded outside of the poles of 7, and therefore everywhere on X, hence the envelopes @can = sup,, ¢ are indeed
well defined and bounded above. As a consequence, we get a “super-canonical” current Tea, = @ + dd°pean > 0
and hg 41 can Satisfies

(16.4) / hi Al oL can :/ e?en 1V, < +00.
X X

It is easy to see that in Definition (16.3) the supremum is a maximum and that @can = (@ean)™ everywhere, so
that taking the upper semicontinuous regularization is not needed. In fact if ¢y € X is given and we write
(@ean)(x0) = imsup pean(z) = lm @ean(z,) = lim ¢, (z,)
T—xTo v——400 v——400
with suitable sequences z, — x¢ and (¢,) such that f X e 7dV,, < 1, the well-known weak compactness
properties of quasi-psh functions in L' topology imply the existence of a subsequence of (,) converging in L!
and almost everywhere to a quasi-psh limit ¢. Since f  €¥*77dV,, < 1 holds true for every v, Fatou’s lemma

implies that we have f y €¥77dV, < 1 in the limit. By taking a subsequence, we can assume that ¢, — ¢ in
L'(X). Then for every £ > 0 the mean value JEB(z o) Pv satisfies

][ p = lim py = lim (pu(xl/) = ((Pcan)*(xo)a
B(Z(),E)

vt B o) v

hence we get () = lim._q fB(zme) © = (Pean)*(0) = Pean(T0), and therefore the sup is a maximum and
Yean = Pran- By elaborating on this argument, one can infer certain regularity properties of the envelope.

(16.5) Theorem ([BmDO09]). Let X be a compact complex manifold and (L,hr) a holomorphic R-line bundle
such that Kx + L is big. Assume that L is equipped with a singular hermitian metric hy , = e Vhy with
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analytic singularities such that [ e~7 < +oo (kit condition). Denote by Zy the set of poles of a singular metric
ho = e Y hy 11 with analytic singularities on Kx + L and by Z., the poles of v (assumed analytic). Then the
associated super-canonical metric hean is continuous on X \ (Zo U Z,).

In fact, using the regularization techniques of [Dem94a], it is shown in [BmDO09] that hca, possesses some com-
putable logarithmic modulus of continuity. In order to shorten the exposition, we will only give a proof of the
continuity in the algebraic case, using approximation by pluri-canonical sections.

(16.6) Algebraic version of the super-canonical metric. Since the klt condition is open and Kx + L is assumed
to be big, we can always perturb L a little bit, and after blowing-up X, assume that X is projective and that
(L, hy,) is obtained as a sum of Q-divisors

L=G+ A

where A is klt and G is equipped with a smooth metric hg (from which Ay, is inferred, with A as its poles, so
that O, , = Og,Ls + [4]). Clearly this situation is “dense” in what we have been considering before, just as
Q is dense in R. In this case, it is possible to give a more algebraic definition of the super-canonical metric @can,
following the original idea of Narasimhan-Simha [NS68] (see also H. Tsuji [Tsu07a]) — the case considered by
these authors is the special situation where G = 0, hg = 1 (and moreover A = 0 and Kx ample, for [NS68]). In
fact, if m is a large integer which is a multiple of the denominators involved in G and A, we can consider sections

o€ H'(X,m(Kx + G + A)).

We view them rather as sections of m (K x +G) with poles along the support |A| of our divisor. Then (0 A7)/ ™h¢g
is a volume form with integrable poles along |A| (this is the klt condition for A). Therefore one can normalize o
by requiring that

/ (0 AT he = 1.
X

Each of these sections defines a singular hermitian metric on Kx + L = Kx + G+ A, and we can take the
regularized upper envelope

a. 1 *
(16.7) oth = (sup L 1oglolt )

Kx+L

alg

of the weights associated with a smooth metric hx, 4. It is clear that 22

on the smaller set of weights ¢ = Llog|o|?,  , and the equalities
Kx+L

< (QPcan since the supremum is taken

PNV, = |0|ig+L677de = (0 AT e Th, = (0 AT) ™ hiy = (0 AT e

imply [ y €¥77dV, < 1. We claim that the inequality e < pean is an equality. The proof is an immediate
consequence of the following statement based in turn on the Ohsawa-Takegoshi theorem and the approximation

technique of [Dem92].

(16.8) Proposition. With L = G + A, w, @ = Ok 4L hw, 41, 7 05 above and Kx + L assumed to be big, fix a
singular hermitian metric e Yhy 41 of curvature o + dd°p > 0, such that fx e?~7dV, < 1. Then ¢ is equal to
a reqularized limit

: 1 2 :
0= (hmsup p” log |om|jim +L)

m——+00 Kx

for a suitable sequence o, € HO(X, m(Kx + G + A)) with [y (0w AGp)™he < 1.
Proof. By our assumption, there exists a quasi-psh function 1y with analytic singularity set Zy such that

o+ dd°y > eow > 0

and we can assume |, c e¥0=7dV,, < 1 (the strict inequality will be useful later). For m > p > 1, this defines a
singular metric exp(—(m — p)p — pYo)h, . on m(Kx + L) with curvature > peow, and therefore a singular
metric
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hi = exp(—(m — p)p — po)hit L hik

on L' = (m—1)Kx +mL, whose curvature O+ ,,, > (peg — Cp)w is arbitrary large if p is large enough. Let us fix
a finite covering of X by coordinate balls. Pick a point g and one of the coordinate balls B containing xy. By the
Ohsawa-Takegoshi extension theorem applied on the ball B, we can find a section op of Kx + L' = m(Kx + L)
which has norm 1 at zy with respect to the metric hx, 1/ and fB |0-B|}27’KX+L’de < Cy for some uniform

constant € depending on the finite covering, but independent of m, p, xo . Now, we use a cut-off function
O(z) with f(x) = 1 near xy to truncate op and solve a d-equation for (n,1)-forms with values in L to get a

global section o on X with |o(z0)[n, ,,, = 1. For this we need to multiply our metric by a truncated factor

exp(—2n6(x) log |x — x0]) so as to get solutions of J vanishing at zo. However, this perturbs the curvature by
bounded terms and we can absorb them again by taking p larger. In this way we obtain

(16.9) /X |0’|%KX+L/de = /X |U|]217£X+Le_(m—P)<P—Pwode < 0.
Taking p > 1, the Holder inequality for congugate exponents m, —5 implies

_ # . 2/m —
/X(U/\J) th/X|J|h$,X+Le v,

1
=/ (|a|,2lm e—(m—p)w—pwo) ™ (6(1—%)¢+%w0_v)de
X

m—1
—m__

<C§</x (e(l_%)‘/"*‘%wo—v) mlde) m

<oy < / (e77) 7 (ertatio=) ™ de)
X

<02#(/ eﬁ(d’U’Y)de)T
X

using the hypothesis f  €#77dV,, < 1 and another application of Holder’s inequality. Since klt is an open condition
and lim, 4o [ er TNy, = Jx €°77dV,, < 1, we can take p large enough to ensure that

m—1

/ er TN ay < Oy < 1.
X

Therefore, we see that

o), = lol@o)lRy e (mPPtmoImvoleo) — g,
thus
1 p p
(16.10) —loglo(zo)fiy = (1= 2 )e(w0) + S (o)

and, as a consequence

1
—1 2
—log|o(ao)lfy. ., — w(w0)

+L
whenever m — +o0o, £ — 0, as long as ¢g(xo9) > —oc. In the above argument, we can in fact interpolate in
finitely many points x1, x2, ... ,zq provided that p > Cuq. Therefore if we take a suitable dense subset {z,} and

a “diagonal” sequence associated with sections o, € H*(X, m(Kx + L)) with m > p = p,, > q¢ = ¢ — +00,
we infer that

. 1 .
(16.11) <hm sup log |Jm(x)|i}?x+L) > limsup p(zq) = p(x)

m——+oo Tq—T
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(the latter equality occurring if {z,} is suitably chosen with respect to ¢). In the other direction, (16.9) implies

a mean value estimate 1

C
—nonla 2 =5 (m—p)p+pio
Ty /BW) o, 42 < g sup e

B(z,r)
on every coordinate ball B(z,r) C X. The function |am|,2f£ . is plurisubharmonic after we correct the non
x+

necessarily positively curved smooth metric hy 1, by a factor of the form exp(Cg|z — z|?), hence the mean value
inequality shows that

1 > 1, G 2 Pm Pm

m B lom @i, S o8 S & Cor™ + sup, e
By taking in particular » = 1/m and letting m — +00, p,/m — 0, we see that the opposite of inequality (16.9)
also holds. 0

(16.12) Remark. We can rephrase our results in slightly different terms. In fact, let us put
1
alg __ 2 0
o3 fsgp - 10g|0|h}1<lx+L7 o€ H'(X,m(Kx +G+ A)),

with normalized sections o such that [, (o A7)/™hg = 1. Then ¢2¢ is quasi-psh (the supremum is taken over
a compact set in a finite dimensional vector space) and by passing to the regularized supremum over all o and
all ¢ in (16.10) we get

p '4
Pcan = 90?711% = (1 - E)‘pcan(x) + EQ/JO(UU)

AS pcan is bounded from above, we find in particular

a C
0< Pcan — @nig < E(W}O(z” + 1)

This implies that (p*8) converges uniformly to ¢c., on every compact subset of X C Zp, and in this way we infer
again (in a purely qualitative manner) that ean is continuous on X \ Zy. Moreover, we also see that in (16.7)
the upper semicontinuous regularization is not needed on X \ Zjy; in case Kx + L is ample, it is not needed
at all and we have uniform convergence of (&) towards @can on the whole of X. Obtaining such a uniform
convergence when Kx + L is just big looks like a more delicate question, related e.g. to abundance of Kx + L
on those subvarieties Y~ where the restriction (Kx 4 L)y would be e.g. nef but not big.

(16.13) Generalization. In the general case where L is a R-line bundle and Kx + L is merely pseudo-effective, a
similar algebraic approximation can be obtained. We take instead sections

o€ HY(X,mKx + |mG| + [mA| + pmA)

where (A, ha) is a positive line bundle, ©4 5, > eow, and replace the definition of & by

1
(16.14) ale — (hmsup sup — log |o|?
m

%
can ;
m—4oo o mKX+LmGJ+pmA>

(16.15) /X(o Aa)mh@GHpmA <1,

where m > p,, > 1 and ht/n né, | is chosen to converge uniformly to hg.

We then find again pcan = @28, with an almost identical proof — though we no longer have a sup in the
envelope, but just a lim sup. The analogue of Proposition (16.8) also holds true in this context, with an appropriate
sequence of sections o, € H'(X, mKx + |[mG| + |mA]| + pnA).

(16.16) Remark. It would be nice to have a better understanding of the super-canonical metrics. In case X is a
curve, this should be easier. In fact X then has a hermitian metric w with constant curvature, which we normalize
by requiring that fX w = 1, and we can also suppose fX e 7w = 1. The class A = ¢;(Kx + L) > 0 is a number
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and we take a = Aw. Our envelope is @can = sup ¢ where \w 4+ dd°p > 0 and fx e? Tw < 1. If A =0 then ¢ must
be constant and clearly @ean = 0. Otherwise, if G(z,a) denotes the Green function such that [, G(z,a)w(z) =0
and dd°G(z,a) = 64 — w(z), we find

Pean(2) = sup (AG(z,a) - 10g/ eAG(Z’“”(Z)w(Z))

acX zeX

by taking already the envelope over p(z) = AG(z, a)—Const. It is natural to ask whether this is always an equality,
i.e. whether the extremal functions are always given by one of the Green functions, especially when v = 0.

16.B. Invariance of plurigenera and positivity of curvature of super-canonical metrics

The concept of super-canonical metric can be used to give a very interesting result on the positivity of relative
pluricanonical divisors, which itself can be seen to imply the invariance of plurigenera. The main idea is due to
H. Tsuji [Tsu07a], and some important details were fixed by Berndtsson and Paun [BnP09], using techniques
inspired from their results on positivity of direct images [Bnd06], [BuP08].

(16.17) Theorem. Let m : X — S be a deformation of projective algebraic manifolds over some irreducible complex
space S (m being assumed locally projective over S). Let L — X be a holomorphic line bundle equipped with a
hermitian metric he -, of weight v such that iO¢ . > 0 (i.e. 7 is plurisubharmonic), and the*'Y < 400, i.€.
we assume the metric to be kit over all fibers X; = n=1(t). Then the metric defined on Kx + L as the fiberwise
super-canonical metric has semi-positive curvature over X. In particular, t — h°(X;, m(Kx, +Lx,)) is constant
for all m > 0.

Once the metric is known to have a plurisuharmonic weight on the total space of X, the Ohsawa-Takegoshi
theorem can be used exactly as at the end of the proof of lemma (12.3). Therefore the final statement is just an
easy consequence. The cases when £ = Oy is trivial or when £;x, = O(A4;) for a family of klt Q-divisors are
especially interesting.

Proof.  (Sketch) By our assumptions, there exists (at least locally over S) a relatively ample line bundle A
over X'. We have to show that the weight of the global super-canonical metric is plurisubharmonic, and for this,
it is enough to look at analytic disks A — S. We may thus as well assume that S = A is the unit disk. Consider
the super-canonical metric hean,o over the fiber X(y. The approximation argument seen above (see (16.9) and
remark (16.13)) show that hcano has a weight @can o which is a regularized upper limit

. 1 *
@2;%170 = (hm sup — log |am|2)

m——+o0

defined by sections o, € H%(Xo,m(Kx, + Lix,) + PmAjx,) such that
/ |U|26—(m—pm)wcan,o—pmwode < Cs.
Xo

with the suitable weights. Now, by section 12, these sections extend to sections o, defined on the whole family X,
satisfying a similar L? estimate (possibly with a slightly larger constant C% under control). If we set

1 B *

¢ = (Hmsup — log |am|2) ,
m—4oo MM

then @ is plurisubharmonic by construction, and ¢c., > @ by the defining property of the super-canonical metric.

Finally, we also have @can,0 = P1x, from the approximation technique. It follows easily that ¢c.n satisfies the

mean value inequality with respect to any disk centered on the central fiber X,. Since we can consider arbitrary

analytic disks A — S, the plurisubharmonicity of ., follows. (I
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16.C. Tsuji’s strategy for studying abundance

H. Tsuji [Tsu07c] has recently proposed the following interesting prospective approach of the abundance conjec-
ture.

(16.18) Conjecture/question. Let (X, A) be a kit pair such that Kx + A is pseudoeffective and has numerical
dimension num(Kx + A) > 0. Then for every point x € X there exists a closed positive current T, € c1(Kx + A)
such that the Lelong number at x satisfies v(Ty,z) > 0.

It would be quite tempting to try to produce such currents e.g. by a suitable modification of the construction of
super-canonical metrics, trying to enforce singularities of the metric at any prescribed point x € X. A related
procedure would be to enforce enough vanishing of sections of A+m(Kx + A) at point ;, where A is a sufficiently
ample line bundle. The number of these sections grows as em? where p = num (K x + A). Hence, by an easy linear
algebra argument, one can prescribe a vanishing order s ~ ¢/m?/™ of such a section o, whence a Lelong number ~
¢m= 1 for the corresponding rescaled current of integration 7' = % [Z] on the zero divisor. Unfortunately, this
tends to 0 as m — 400 whenever p < n. Therefore, one should use a more clever argument which takes into
account the fact that, most probably, all directions do not behave in an “isotropic way”, and vanishing should
be prescribed only in certain directions.

Assuming that (16.17) holds true, a simple semi-continuity argument would imply that there exists a small
number ¢ > 0 such that the analytic set Z, = E.(T},) contains z, and one would expect conjecturally that these
sets can be reorganized as the generic fibers of a reduction map f : X ---= Y, together with a klt divisor A’
on Y such that (in first approximation, and maybe only after replacing X, Y by suitable blow-ups), one has
Kx + A= f*(Ky + A’ + Ry) + 3 where Ry is a suitable orbifold divisor (in the sense of Campana [Cam04])
and (3 a suitable pseudo-effective class. The expectation is that dimY = p = num(Kx + A) and that (Y, 4’) is
of general type, i.e. num(Ky + A’) =

17. Siu’s analytic approach and Paun’s non vanishing theorem

We describe here briefly some recent developments without giving much detail about proofs. Recall that given
a pair (X, A) where X is a normal projective variety and A an effective R-divisor, the transform of (X, A) by a
birational morphism x : X — X of normal varieties is the unique pair (X, A) such that K +A=p (Kx+A)+E
where E is an effective yi-exceptional divisor (we assume here that Kx + A and K5 + A are R-Cartier divisors).

In [BCHMOG], Birkar, Cascini, Hacon and McKernan proved old-standing conjectures concerning the existence
of minimal models and finiteness of the canonical ring for arbitrary projective varieties. The latter result was also
announced independently by Siu in [Siu06]. The main results can be summarized in the following statement.

(17.1) Theorem. Let (X, A) be a kit pair where A is big.

(i) If Kx + A is pseudo-effective, (X, A) has a log-minimal model, i.e. there is a birational transformation
(X, Q) with X Q-factorial, such that Ks + A is nef and satisfies additionally strict inequalities for the
discrepancies of p-exceptional divisors.

(i) If Kx + A is not pseudo-effective, then (X, A) has a Mori fiber space, i.e. there exists a birational transfor-
mation (X A) and a morphism ¢ : X —Y such that — —(Kg+ A) s p-ample.

(iii) If moreover A is a Q-divisor, the log-canonical ring ®m20 HY(X,m(Kx + A)) is finitely generated.

The proof, for which we can only refer to [BCHMO6], is an extremely subtle induction on dimension involving
finiteness of flips (a certain class of birational transforms improving positivity of Kx + A step by step), and a
generalization of Shokurov’s non vanishing theorem [Sho85]. The original proof of this non vanishing result was
itself based on an induction on dimension, using the existence of minimal models in dimension n—1. Independently,
Y.T. Siu [Siu06] announced an analytic proof of the finiteness of canonical rings ,,~, H 9(X,mKy), along
with an analytic variant of Shokurov’s non vanishing theorem; in his approach, multiplier ideals and Skoda’s
division theorem are used in crucial ways. Let us mention a basic statement in this direction which illustrates
the connection with Skoda’s result, and is interesting for two reasons : i) it does not require any strict positivity
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assumption, ii) it shows that it is enough to have a sufficiently good approximation of the minimal singularity
metric hmin by sections of sufficiently large linear systems |[pKx]|.

(17.2) Proposition. Let X be a projective n-dimensional manifold with Kx pseudo-effective. Let hpyi, = €~ #™in be
the metric with minimal singuarity on Kx (e.g. the super-canonical metric considered in §16), and let co > 0 be
the log canonical threshold of Ymin, €. hfr‘;i;‘s = e (c0=0¢min ¢ L1 for § > 0 small. Assume that there exists an
integer p > 0 so that the linear system |pK x| provides a weight v, = % log 3" |o|* whose singularity approzimates
Ymin sufficiently well, namely

14+¢c—96

)(pmin +0(1) for some § > 0.
pn

Pp = (1 +
Then @m>0H(X, mKx) is finitely generated, and a set of generators is actually provided by a basis of sections
of ®O<m<np+1HO(X, me).

Proof. A simple argument based on the curve selection lemma (see e.g. [Dem01], Lemma 11.16) shows that one
can extract a system g = (g1,...¢n) of at most n sections from (o;) in such a way that the singularities are
unchanged, i.e. Cylog|o| < log|g| < Colog|o|. We apply Skoda’s division (8.20) with E = OF", @ = O(pKx)
and L =0((m—p—1)Kx) [so that Kx ® Q ® L = Ox(mKx)], and with the metric induced by hpin on Kx.
By definition of a metric with minimal singularities, every section f in H*(X,mKyx) = H'(X,Kx ® Q® L) is
such that |f|? < Ce™#min. The weight of the metric on Q ® L is (m — 1)¢min. Accordingly, we find

|f|2|g|}:j’?n*25€—(m—1)90min g CeXP (mwmin - p(n + 5)("/@ - @min) - (m - 1)Sﬁmin) < Cl exp ( - (CO - 5/2)Sﬁmm)
for € > 0 small, thus the left hand side is in L'. Skoda’s theorem implies that we can write f = g-h =3 g;h;
with h; € HY(X,Kx @ L) = H°(X,(m — p)Kx). The argument holds as soon as the curvature condition
m—p—12> (n—14¢)p is satisfied, i.e. m > np+ 2. Therefore all multiples m > np+ 2 are generated by sections
of lower degree m — p, and the result follows. O

Recently, Paun [Pau08] has been able to provide a very strong Shokurov-type analytic non vanishing state-
ment, and in the vein of Siu’s approach [Siu06], he gave a very detailed independent proof which does not require
any intricate induction on dimension (i.e. not involving the existence of minimal models).

(17.3) Theorem (Paun [Pau08]). Let X be a projective manifold, and let oy, € NSgr(X) be a cohomology class in
the real Neron-Severi space of X, such that :

(a) The adjoint class c1(Kx) + ay, is pseudoeffective, i.e. there exist a closed positive current
Oky+r € a1(Kx)+ ar;

(b) The class ay, contains a Kahler current ©p, (so that «y, is big), such that the respective potentials v, of O,

and 9 +1 of Or +1 satisfy
e(I+e)prx+1—¥L) ¢ Llloc

where € is a positive real number.

Then the adjoint class c1(Kx) + ay, contains an effective R-divisor.

The proof is a clever application of the Kawamata-Viehweg-Nadel vanishing theorem, combined with a pertur-
bation trick of Shokurov [Sho85] and with diophantine approximation to reduce the situation to the case of
Q-divisors. Shokurov’s trick allows to single out components of the divisors involved, so as to be able to take
restrictions and apply induction on dimension. One should notice that the poles of ¢ may help in achieving
condition (17.3 b), so one obtains a stronger condition by requiring (b’) exp((1 + €)pxry+1) € Ll for e > 0
small, namely that ¢;(Kx) + ay is klt. The resulting weaker statement then makes sense in a pure algebraic
setting. In [BrP09], Birkar and P&un announced a relative version of (17.3), and they have shown that this can
be used to reprove a relative version of Theorem (17.1). A similar purely algebraic approach has been described
by C. Hacon in his recent Oberwolfach notes [Hac08].
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