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0. Introduction

The main purpose of these notes is to describe analytic techniques which are useful to study questions such
as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. One century after the
ground-breaking work of Riemann on geometric aspects of function theory, the general progress achieved in
differential geometry and global analysis on manifolds resulted into major advances in the theory of algebraic
and analytic varieties of arbitrary dimension. One central unifying concept is the concept of positivity, which
can ve viewed either in algebraic terms (positivity of divisors and algebraic cycles), or in more analytic terms
(plurisubharmonicity, hermitian connections with positive curvature). In this direction, one of the most basic
result is Kodaira’s vanishing theorem for positive vector bundles (1953-54), which is a deep consequence of the
Bochner technique and of the theory of harmonic forms initiated by W.V.D. Hodge during the 1940’s. This method
quickly led Kodaira to the well-known embedding theorem for projective varieties, a far reaching extension of
Riemann’s characterization of abelian varieties. Further refinements of the Bochner technique led ten years later
to the theory of L2 estimates for the Cauchy-Riemann operator, (J.J. Kohn [Koh63, 64], Andreotti-Vesentini
[AV65], [Hör65]). Not only vanishing theorems can be proved of reproved in that manner, but perhaps more
importantly, extremely precise information of a quantitative nature is obtained about solutions of ∂-equations,
their zeroes, poles and growth at infinity.
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What makes the theory extremely flexible is the possibility to formulate existence theorems with a wide
assortment of different L2 norms, namely norms of the form

∫
X |f |2e−2ϕ where ϕ is a plurisubharmonic or strictly

plurisubharmonic function on the given manifold or varietyX . Here, the weight ϕ need not be smooth, and it is on
the contrary extremely important to allow weights which have logarithmic poles of the form ϕ(z) = c log

∑
|gj |2,

where c > 0 and (gj) is a collection of holomorphic functions possessing a common zero zet Z ⊂ X . Following
Nadel [Nad89], one defines the multiplier ideal sheaf I(ϕ) to be the sheaf of germs of holomorphic functions f such
that |f |2e−2ϕ is locally summable. Then I(ϕ) is a coherent algebraic sheaf over X and Hq(X,KX⊗L⊗I(ϕ)) = 0
for all q > 1 if the curvature of L is positive as a current. This important result can be seen as a generalization
of the Kawamata-Viehweg vanishing theorem ([Kaw82], [Vie82]), which is one of the cornerstones of higher
dimensional algebraic geometry, especially in relation with Mori’s minimal model program.

In the dictionary between analytic geometry and algebraic geometry, the ideal I(ϕ) plays a very important
role, since it directly converts an analytic object into an algebraic one, and, simultaneously, takes care of the
singularities in a very efficient way. Another analytic tool used to deal with singularities is the theory of positive
currents introduced by Lelong [Lel57]. Currents can be seen as generalizations of algebraic cycles, and many
classical results of intersection theory still apply to currents. The concept of Lelong number of a current is the
analytic analogue of the concept of multiplicity of a germ of algebraic variety. Intersections of cycles correspond
to wedge products of currents (whenever these products are defined).

Another very important result is the L2 extension theorem by Ohsawa-Takegoshi [OT87, Ohs88] (see also
Manivel [Man93]). The main statement is that every L2 section f of a suitably positive line bundle defined on
a subavariety Y ⊂ X can be extended to a L2 section f̃ defined over the whole of X . The positivity condition
can be understood in terms of the canonical sheaf and normal bundle to the subvariety. The extension theorem
turns out to have an incredible amount of important consequences: among them, let us mention for instance
Siu’s theorem [Siu74] on the analyticity of Lelong numbers, Skoda’s division theorem for ideals of holomorphic
functions, a basic approximation theorem of closed positive (1, 1)-currents by divisors, the subadditivity property
I(ϕ + ψ) ⊂ I(ϕ)I(ψ) of multiplier ideals [DEL00], the restriction formula I(ϕ|Y ) ⊂ I(ϕ)|Y , . . . . A suitable
combination of these results can be used to reprove Fujita’s result [Fuj94] on approximate Zariski decomposition,
as detailed in section 10.

In section 11, we show how subadditivity can be used to derive an “equisingular” approximation theorem
for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost)
plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal
sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in
a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted
by the relevant multiplier ideal sheaves.

Section 12 explains the proof of Siu’s theorem on the invariance of plurigenera, according to a beautiful
approach developped by Mihai Păun [Pau07]. The proofs consists of an iterative process based on the Ohsawa-
Takegoshi theorem, and a very clever limiting argument for currents.

Sections 13 to 15 are devoted to the study of positive cones in Kähler or projective geometry. Recent “algebro-
analytic” characterizations of the Kähler cone ([DP04]) and the pseudo-effective cone of divisors ([BDPP04]) are
explained in detail. This leads to a discussion of the important concepts of volume and mobile intersections,
following S.Boucksom’s PhD work [Bou02]. As a consequence, we show that a projective algebraic manifold has
a pseudo-effective canonical line bundle if and only if it is not uniruled.

Section 16 presents some important ideas of H. Tsuji, later refined by Berndtsson and Păun, concerning the
so-called “super-canonical metrics”, and their interpretation in terms of the invariance of plurigenera and of the
abundance conjecture. As the concluding section, we state Păun’s version of the Shokurov-Hacon-McKernan-Siu
non vanishing theorem and give an account of the very recent approach of the proof of the finiteness of the
canonical ring by Birkar-Păun [BiP09], based on the ideas of Hacon-McKernan and Siu.

I would like to thank the organizers of the Graduate Summer School on Analytic and Algebraic Geometry
held at the Park City Mathematical Institute in July 2008 for their invitation to give a series of lectures, and
thus for the opportunity of publishing these notes.
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1. Preliminary material

1.A. Dolbeault cohomology and sheaf cohomology

Let X be a C-analytic manifold of dimension n. We denote by Λp,qT ⋆X the bundle of differential forms of bidegree
(p, q) on X , i.e., differential forms which can be written as

u =
∑

|I|=p, |J|=q
uI,JdzI ∧ dzJ .

Here (z1, . . . , zn) denote arbitrary local holomorphic coordinates, I = (i1, . . . , ip), J = (j1, . . . , jq) are multiindices
(increasing sequences of integers in the range [1, . . . , n], of lengths |I| = p, |J | = q), and

dzI := dzi1 ∧ . . . ∧ dzip , dzJ := dzj1 ∧ . . . ∧ dzjq .

Let Ep,q be the sheaf of germs of complex valued differential (p, q)-forms with C∞ coefficients. Recall that the
exterior derivative d splits as d = d′ + d′′ where

d′u =
∑

|I|=p, |J|=q,16k6n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ ,

d′′u =
∑

|I|=p, |J|=q,16k6n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ

are of type (p + 1, q), (p, q + 1) respectively. The well-known Dolbeault-Grothendieck lemma asserts that any
d′′-closed form of type (p, q) with q > 0 is locally d′′-exact (this is the analogue for d′′ of the usual Poincaré
lemma for d, see e.g. [Hör66]). In other words, the complex of sheaves (Ep,•, d′′) is exact in degree q > 0; in degree
q = 0, Ker d′′ is the sheaf ΩpX of germs of holomorphic forms of degree p on X .

More generally, if F is a holomorphic vector bundle of rank r over X , there is a natural d′′ operator acting
on the space C∞(X,Λp,qT ⋆X ⊗ F ) of smooth (p, q)-forms with values in F ; if s =

∑
16λ6r sλeλ is a (p, q)-form

expressed in terms of a local holomorphic frame of F , we simply define d′′s :=
∑
d′′sλ ⊗ eλ, observing that

the holomorphic transition matrices involved in changes of holomorphic frames do not affect the computation
of d′′. It is then clear that the Dolbeault-Grothendieck lemma still holds for F -valued forms. For every integer
p = 0, 1, . . . , n, the Dolbeault Cohomology groups Hp,q(X,F ) are defined to be the cohomology groups of the
complex of global (p, q) forms (graded by q):

(1.1) Hp,q(X,F ) = Hq
(
C∞(X,Λp,•T ⋆X ⊗ F )

)
.

Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil isomorphism theorem): let
(L•, d) be a resolution of a sheaf A by acyclic sheaves, i.e. a complex of sheaves (L•, δ) such that there is an
exact sequence of sheaves

0 −→ A
j
−→ L0 δ0

−→ L1 −→ · · · −→ Lq
δq

−→ Lq+1 −→ · · · ,

and Hs(X,Lq) = 0 for all q > 0 and s > 1. Then there is a functorial isomorphism

(1.2) Hq
(
Γ (X,L•)

)
−→ Hq(X,A).

We apply this to the following situation: let E(F )p,q be the sheaf of germs of C∞ sections of Λp,qT ⋆X ⊗ F . Then
(E(F )p,•, d′′) is a resolution of the locally free OX -module ΩpX ⊗O(F ) (Dolbeault-Grothendieck lemma), and the
sheaves E(F )p,q are acyclic as modules over the soft sheaf of rings C∞. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle F on X, there is a canonical
isomorphism

Hp,q(X,F ) ≃ Hq(X,ΩpX ⊗O(F )). �

If X is projective algebraic and F is an algebraic vector bundle, Serre’s GAGA theorem [Ser56] shows that the
algebraic sheaf cohomology group Hq(X,ΩpX ⊗O(F )) computed with algebraic sections over Zariski open sets is
actually isomorphic to the analytic cohomology group. These results are the most basic tools to attack algebraic
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problems via analytic methods. Another important tool is the theory of plurisubharmonic functions and positive
currents originated by K. Oka and P. Lelong in the decades 1940-1960.

1.B. Plurisubharmonic functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka in the study of holomorphic
convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u : Ω −→ [−∞,+∞[ defined on an open subset Ω ⊂ Cn is said to be plurisubharmonic
(psh for short) if

(a) u is upper semicontinuous ;

(b) for every complex line L ⊂ Cn, u↾Ω∩L is subharmonic on Ω ∩ L, that is, for all a ∈ Ω and ξ ∈ Cn with
|ξ| < d(a, ∁Ω), the function u satisfies the mean value inequality

u(a) 6
1

2π

∫ 2π

0

u(a+ eiθ ξ) dθ.

The set of psh functions on Ω is denoted by Psh(Ω).

We list below the most basic properties of psh functions. They all follow easily from the definition.

(1.5) Basic properties.

(a) Every function u ∈ Psh(Ω) is subharmonic, namely it satisfies the mean value inequality on euclidean balls
or spheres:

u(a) 6
1

πnr2n/n!

∫

B(a,r)

u(z) dλ(z)

for every a ∈ Ω and r < d(a, ∁Ω). Either u ≡ −∞ or u ∈ L1
loc on every connected component of Ω.

(b) For any decreasing sequence of psh functions uk ∈ Psh(Ω), the limit u = limuk is psh on Ω.

(c) Let u ∈ Psh(Ω) be such that u 6≡ −∞ on every connected component of Ω. If (ρε) is a family of smoothing
kernels, then u ⋆ ρε is C∞ and psh on

Ωε =
{
x ∈ Ω ; d(x, ∁Ω) > ε

}
,

the family (u ⋆ ρε) is increasing in ε and limε→0 u ⋆ ρε = u.

(d) Let u1, . . . , up ∈ Psh(Ω) and χ : Rp −→ R be a convex function such that χ(t1, . . . , tp) is increasing in each
tj . Then χ(u1, . . . , up) is psh on Ω. In particular u1 + · · ·+ up, max{u1, . . . , up}, log(eu1 + · · ·+ eup) are psh
on Ω. �

(1.6) Lemma. A function u ∈ C2(Ω,R) is psh on Ω if and only if the hermitian form

Hu(a)(ξ) =
∑

16j,k6n

∂2u/∂zj∂zk(a) ξjξk

is semi-positive at every point a ∈ Ω.

Proof. This is an easy consequence of the following standard formula

1

2π

∫ 2π

0

u(a+ eiθ ξ) dθ − u(a) =
2

π

∫ 1

0

dt

t

∫

|ζ|<t
Hu(a+ ζξ)(ξ) dλ(ζ),

where dλ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that plurisubharmonicity is the natural
complex analogue of linear convexity. �

For non smooth functions, a similar characterization of plurisubharmonicity can be obtained by means of a
regularization process.
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(1.7) Theorem. If u ∈ Psh(Ω), u 6≡ −∞ on every connected component of Ω, then for all ξ ∈ Cn

Hu(ξ) =
∑

16j,k6n

∂2u

∂zj∂zk
ξjξk ∈ D′(Ω)

is a positive measure. Conversely, if v ∈ D′(Ω) is such that Hv(ξ) is a positive measure for every ξ ∈ Cn, there
exists a unique function u ∈ Psh(Ω) which is locally integrable on Ω and such that v is the distribution associated
to u. �

In order to get a better geometric insight of this notion, we assume more generally that u is a function on a
complex n-dimensional manifold X . If Φ : X → Y is a holomorphic mapping and if v ∈ C2(Y,R), we have
d′d′′(v ◦ Φ) = Φ⋆d′d′′v, hence

H(v ◦ Φ)(a, ξ) = Hv
(
Φ(a), Φ′(a).ξ

)
.

In particular Hu, viewed as a hermitian form on TX , does not depend on the choice of coordinates (z1, . . . , zn).
Therefore, the notion of psh function makes sense on any complex manifold. More generally, we have

(1.8) Proposition. If Φ : X −→ Y is a holomorphic map and v ∈ Psh(Y ), then v ◦ Φ ∈ Psh(X). �

(1.9) Example. It is a standard fact that log |z| is psh (i.e. subharmonic) on C. Thus log |f | ∈ Psh(X) for every
holomorphic function f ∈ H0(X,OX). More generally

log
(
|f1|

α1 + · · · + |fq|
αq

)
∈ Psh(X)

for every fj ∈ H0(X,OX) and αj > 0 (apply Property 1.5 d with uj = αj log |fj |). We will be especially interested
in the singularities obtained at points of the zero variety f1 = . . . = fq = 0, when the αj are rational numbers. �

(1.10) Definition. A psh function u ∈ Psh(X) will be said to have analytic singularities if u can be written locally
as

u =
α

2
log

(
|f1|

2 + · · · + |fN |2
)

+ v,

where α ∈ R+, v is a locally bounded function and the fj are holomorphic functions. If X is algebraic, we say
that u has algebraic singularities if u can be written as above on sufficiently small Zariski open sets, with α ∈ Q+

and fj algebraic.

We then introduce the ideal J = J (u/α) of germs of holomorphic functions h such that |h| 6 Ceu/α for some
constant C, i.e.

|h| 6 C
(
|f1| + · · · + |fN |

)
.

This is a globally defined ideal sheaf onX , locally equal to the integral closure I of the ideal sheaf I = (f1, . . . , fN ),
thus J is coherent on X . If (g1, . . . , gN ′) are local generators of J , we still have

u =
α

2
log

(
|g1|

2 + · · · + |gN ′ |2
)

+O(1).

If X is projective algebraic and u has analytic singularities with α ∈ Q+, then u automatically has algebraic
singularities. From an algebraic point of view, the singularities of u are in 1:1 correspondence with the “algebraic
data” (J , α). Later on, we will see another important method for associating an ideal sheaf to a psh function.

(1.11) Exercise. Show that the above definition of the integral closure of an ideal I is equivalent to the following
more algebraic definition: I consists of all germs h satisfying an integral equation

hd + a1h
d−1 + . . .+ ad−1h+ ad = 0, ak ∈ Ik.

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization of the blow-up of X along
the (non necessarily reduced) zero variety V (I). �
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1.C. Positive currents

The reader can consult [Fed69] for a more thorough treatment of current theory. Let us first recall a few basic
definitions. A current of degree q on an oriented differentiable manifold M is simply a differential q-form Θ with
distribution coefficients. The space of currents of degree q over M will be denoted by D′q(M). Alternatively, a

current of degree q can be seen as an element Θ in the dual space D′
p(M) :=

(
Dp(M)

)′
of the space Dp(M) of

smooth differential forms of degree p = dimM − q with compact support; the duality pairing is given by

(1.12) 〈Θ,α〉 =

∫

M

Θ ∧ α, α ∈ Dp(M).

A basic example is the current of integration [S] over a compact oriented submanifold S of M :

(1.13) 〈[S], α〉 =

∫

S

α, degα = p = dimR S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows that d[S] = (−1)q−1[∂S], in particular
d[S] = 0 if S has no boundary. Because of this example, the integer p is said to be the dimension of Θ when
Θ ∈ D′

p(M). The current Θ is said to be closed if dΘ = 0.

On a complex manifold X , we have similar notions of bidegree and bidimension; as in the real case, we denote
by

D′p,q(X) = D′
n−p,n−q(X), n = dimX,

the space of currents of bidegree (p, q) and bidimension (n − p, n − q) on X . According to [Lel57], a current Θ
of bidimension (p, p) is said to be (weakly) positive if for every choice of smooth (1, 0)-forms α1, . . . , αp on X the
distribution

(1.14) Θ ∧ iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp is a positive measure.

(1.15) Exercise. If Θ is positive, show that the coefficients ΘI,J of Θ are complex measures, and that, up to
constants, they are dominated by the trace measure

σΘ = Θ ∧
1

p!
βp = 2−p

∑
ΘI,I , β =

i

2
d′d′′|z|2 =

i

2

∑

16j6n

dzj ∧ dzj ,

which is a positive measure.
Hint. Observe that

∑
ΘI,I is invariant by unitary changes of coordinates and that the (p, p)-forms iα1 ∧ α1 ∧

. . . ∧ iαp ∧ αp generate Λp,pT ⋆Cn as a C-vector space. �

A current Θ = i
∑

16j,k6nΘjkdzj ∧ dzk of bidegree (1, 1) is easily seen to be positive if and only if the complex

measure
∑
λjλkΘjk is a positive measure for every n-tuple (λ1, . . . , λn) ∈ Cn.

(1.16) Example. If u is a (not identically −∞) psh function on X , we can associate with u a (closed) positive
current Θ = i∂∂u of bidegree (1, 1). Conversely, every closed positive current of bidegree (1, 1) can be written
under this form on any open subset Ω ⊂ X such that H2

DR(Ω,R) = H1(Ω,O) = 0, e.g. on small coordinate balls
(exercise to the reader). �

It is not difficult to show that a product Θ1 ∧ . . .∧Θq of positive currents of bidegree (1, 1) is positive whenever
the product is well defined (this is certainly the case if all Θj but one at most are smooth; much finer conditions
will be discussed in Section 2).

We now discuss another very important example of closed positive current. In fact, with every closed analytic
set A ⊂ X of pure dimension p is associated a current of integration

(1.17) 〈[A], α〉 =

∫

Areg

α, α ∈ Dp,p(X),

obtained by integrating over the regular points of A. In order to show that (1.17) is a correct definition of a
current on X , one must show that Areg has locally finite area in a neighborhood of Asing. This result, due to
[Lel57] is shown as follows. Suppose that 0 is a singular point of A. By the local parametrization theorem for
analytic sets, there is a linear change of coordinates on Cn such that all projections
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πI : (z1, . . . , zn) 7→ (zi1 , . . . , zip)

define a finite ramified covering of the intersection A ∩∆ with a small polydisk ∆ in Cn onto a small polydisk
∆I in Cp. Let nI be the sheet number. Then the p-dimensional area of A ∩∆ is bounded above by the sum of
the areas of its projections counted with multiplicities, i.e.

Area(A ∩∆) 6
∑

nIVol(∆I).

The fact that [A] is positive is also easy. In fact

iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp = | det(αjk)|
2 iw1 ∧ w1 ∧ . . . ∧ iwp ∧ wp

if αj =
∑
αjkdwk in terms of local coordinates (w1, . . . , wp) on Areg. This shows that all such forms are > 0 in

the canonical orientation defined by iw1 ∧ w1 ∧ . . . ∧ iwp ∧ wp. More importantly, Lelong [Lel57] has shown that
[A] is d-closed in X , even at points of Asing. This last result can be seen today as a consequence of the Skoda-El
Mir extension theorem. For this we need the following definition: a complete pluripolar set is a set E such that
there is an open covering (Ωj) of X and psh functions uj on Ωj with E ∩Ωj = u−1

j (−∞). Any (closed) analytic
set is of course complete pluripolar (take uj as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a closed complete pluripolar set in X,
and let Θ be a closed positive current on X r E such that the coefficients ΘI,J of Θ are measures with locally

finite mass near E. Then the trivial extension Θ̃ obtained by extending the measures ΘI,J by 0 on E is still closed
on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to Θ = [Areg] on X rAsing.

Proof of Theorem 1.18. The statement is local on X , so we may work on a small open set Ω such that E ∩Ω =
v−1(−∞), v ∈ Psh(Ω). Let χ : R → R be a convex increasing function such that χ(t) = 0 for t 6 −1 and
χ(0) = 1. By shrinking Ω and putting vk = χ(k−1v ⋆ ρεk

) with εk → 0 fast, we get a sequence of functions
vk ∈ Psh(Ω)∩C∞(Ω) such that 0 6 vk 6 1, vk = 0 in a neighborhood of E ∩Ω and lim vk(x) = 1 at every point
of Ω r E. Let θ ∈ C∞([0, 1]) be a function such that θ = 0 on [0, 1/3], θ = 1 on [2/3, 1] and 0 6 θ 6 1. Then
θ ◦ vk = 0 near E ∩Ω and θ ◦ vk → 1 on Ω r E. Therefore Θ̃ = limk→+∞(θ ◦ vk)Θ and

d′Θ̃ = lim
k→+∞

Θ ∧ d′(θ ◦ vk)

in the weak topology of currents. It is therefore sufficient to verify that Θ ∧ d′(θ ◦ vk) converges weakly to 0 (note
that d′′Θ̃ is conjugate to d′Θ̃, thus d′′Θ̃ will also vanish).

Assume first that Θ ∈ D′n−1,n−1(X). Then Θ ∧ d′(θ ◦ vk) ∈ D′n,n−1(Ω), and we have to show that

〈Θ ∧ d′(θ ◦ vk), α〉 = 〈Θ, θ′(vk)d
′vk ∧ α〉 −→

k→+∞
0, ∀α ∈ D1,0(Ω).

As γ 7→ 〈Θ, iγ ∧ γ〉 is a non-negative hermitian form on D1,0(Ω), the Cauchy-Schwarz inequality yields

∣∣〈Θ, iβ ∧ γ〉
∣∣2 6 〈Θ, iβ ∧ β〉 〈Θ, iγ ∧ γ〉, ∀β, γ ∈ D1,0(Ω).

Let ψ ∈ D(Ω), 0 6 ψ 6 1, be equal to 1 in a neighborhood of Suppα. We find

∣∣〈Θ, θ′(vk)d′vk ∧ α〉
∣∣2 6 〈Θ,ψid′vk ∧ d

′′vk〉 〈Θ, θ
′(vk)

2iα ∧ α〉.

By hypothesis
∫
ΩrE

Θ∧iα∧α < +∞ and θ′(vk) converges everywhere to 0 on Ω, thus 〈Θ, θ′(vk)2iα∧α〉 converges
to 0 by Lebesgue’s dominated convergence theorem. On the other hand

id′d′′v2
k = 2vk id′d′′vk + 2id′vk ∧ d

′′vk > 2id′vk ∧ d
′′vk,

2〈Θ,ψid′vk ∧ d
′′vk〉 6 〈Θ,ψid′d′′v2

k〉.

As ψ ∈ D(Ω), vk = 0 near E and dΘ = 0 on Ω r E, an integration by parts yields

〈Θ,ψid′d′′v2
k〉 = 〈Θ, v2

kid
′d′′ψ〉 6 C

∫

ΩrE

‖Θ‖ < +∞
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where C is a bound for the coefficients of id′d′′ψ. Thus 〈Θ,ψid′vk ∧ d′′vk〉 is bounded, and the proof is complete
when Θ ∈ D′n−1,n−1.

In the general case Θ ∈ D′p,p, p < n, we simply apply the result already proved to all positive currents
Θ ∧ γ ∈ D′n−1,n−1 where γ = iγ1 ∧ γ1 ∧ . . . ∧ iγn−p−1, ∧ γn−p−1 runs over a basis of forms of Λn−p−1,n−p−1T ⋆Ω
with constant coefficients. Then we get d(Θ̃ ∧ γ) = dΘ̃ ∧ γ = 0 for all such γ, hence dΘ̃ = 0. �

(1.19) Corollary. Let Θ be a closed positive current on X and let E be a complete pluripolar set. Then 1EΘ

and 1XrEΘ are closed positive currents. In fact, Θ̃ = 1XrEΘ is the trivial extension of Θ↾XrE to X, and

1EΘ = Θ − Θ̃. �

As mentioned above, any current Θ = id′d′′u associated with a psh function u is a closed positive (1, 1)-current.
In the special case u = log |f | where f ∈ H0(X,OX) is a non zero holomorphic function, we have the important

(1.20) Lelong-Poincaré equation. Let f ∈ H0(X,OX) be a non zero holomorphic function, Zf =
∑
mjZj, mj ∈ N,

the zero divisor of f and [Zf ] =
∑
mj [Zj] the associated current of integration. Then

i

π
∂∂ log |f | = [Zf ].

Proof (sketch). It is clear that id′d′′ log |f | = 0 in a neighborhood of every point x /∈ Supp(Zf ) =
⋃
Zj , so it is

enough to check the equation in a neighborhood of every point of Supp(Zf ). Let A be the set of singular points
of Supp(Zf ), i.e. the union of the pairwise intersections Zj ∩ Zk and of the singular loci Zj,sing; we thus have
dimA 6 n − 2. In a neighborhood of any point x ∈ Supp(Zf ) r A there are local coordinates (z1, . . . , zn) such
that f(z) = z

mj

1 where mj is the multiplicity of f along the component Zj which contains x and z1 = 0 is an
equation for Zj near x. Hence

i

π
d′d′′ log |f | = mj

i

π
d′d′′ log |z1| = mj[Zj ]

in a neighborhood of x, as desired (the identity comes from the standard formula i
πd

′d′′ log |z| = Dirac measure

δ0 in C). This shows that the equation holds on XrA. Hence the difference i
πd

′d′′ log |f |− [Zf ] is a closed current
of degree 2 with measure coefficients, whose support is contained in A. By Exercise 1.21, this current must be 0,
for A has too small dimension to carry its support (A is stratified by submanifolds of real codimension > 4). �

(1.21) Exercise. Let Θ be a current of degree q on a real manifold M , such that both Θ and dΘ have measure
coefficients (“normal current”). Suppose that SuppΘ is contained in a real submanifold A with codimR A > q.
Show that Θ = 0.
Hint: Let m = dimR M and let (x1, . . . , xm) be a coordinate system in a neighborhood Ω of a point a ∈ A such
that A∩Ω = {x1 = . . . = xk = 0}, k > q. Observe that xjΘ = xjdΘ = 0 for 1 6 j 6 k, thanks to the hypothesis
on supports and on the normality of Θ, hence dxj ∧Θ = d(xjΘ) − xjdΘ = 0, 1 6 j 6 k. Infer from this that all
coefficients in Θ =

∑
|I|=q ΘIdxI vanish. �

We now recall a few basic facts of slicing theory (the reader will profitably consult [Fed69] and [Siu74] for further
developments). Let σ : M → M ′ be a submersion of smooth differentiable manifolds and let Θ be a locally flat
current on M , that is, a current which can be written locally as Θ = U + dV where U , V have L1

loc coefficients.
It is a standard fact (see Federer) that every current Θ such that both Θ and dΘ have measure coefficients is
locally flat; in particular, closed positive currents are locally flat. Then, for almost every x′ ∈M ′, there is a well
defined slice Θx′ , which is the current on the fiber σ−1(x′) defined by

Θx′ = U↾σ−1(x′) + dV↾σ−1(x′).

The restrictions of U , V to the fibers exist for almost all x′ by the Fubini theorem. The slices Θx′ are currents on
the fibers with the same degree as Θ (thus of dimension dimΘ−dim (fibers)). Of course, every slice Θx′ coincides
with the usual restriction of Θ to the fiber if Θ has smooth coefficients. By using a regularization Θε = Θ ⋆ ρε,
it is easy to show that the slices of a closed positive current are again closed and positive: in fact Uε,x′ and Vε,x′

converge to Ux′ and Vx′ in L1
loc(σ

−1(x′)), thus Θε,x′ converges weakly to Θx′ for almost every x′. Now, the basic
slicing formula is
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(1.22)

∫

M

Θ ∧ α ∧ σ⋆β =

∫

x′∈M ′

( ∫

x′′∈σ−1(x′)

Θx′(x′′) ∧ α↾σ−1(x′)(x
′′)

)
β(x′)

for every smooth form α on M and β on M ′, such that α has compact support and degα = dimM − dimM ′ −
degΘ, deg β = dimM ′. This is an easy consequence of the usual Fubini theorem applied to U and V in the
decomposition Θ = U+dV , if we identify locally σ with a projection mapM = M ′×M ′′ →M ′, x = (x′, x′′) 7→ x′,
and use a partitition of unity on the support of α.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory in the context of currents.
A basic observation is that the Poincaré and Dolbeault-Grothendieck lemmas still hold for currents. Namely, if
(D′q , d) and (D′(F )p,q, d′′) denote the complex of sheaves of degree q currents (resp. of (p, q)-currents with values
in a holomorphic vector bundle F ), we still have De Rham and Dolbeault sheaf resolutions

0 → R → D′•, 0 → ΩpX ⊗O(F ) → D′(F )p,•.

Hence we get canonical isomorphisms

Hq
DR(M,R) = Hq

(
(Γ (M,D′•), d)

)
,(1.23)

Hp,q(X,F ) = Hq
(
(Γ (X,D′(F )p,•), d′′)

)
.

In other words, we can attach a cohomology class {Θ} ∈ Hq
DR(M,R) to any closed current Θ of degree q, resp.

a cohomology class {Θ} ∈ Hp,q(X,F ) to any d′′-closed current of bidegree (p, q). Replacing if necessary every
current by a smooth representative in the same cohomology class, we see that there is a well defined cup product
given by the wedge product of differential forms

Hq1(M,R) × . . .×Hqm(M,R) −→ Hq1+...+qm(M,R),

({Θ1}, . . . , {Θ1}) 7−→ {Θ1} ∧ . . . ∧ {Θm}.

In particular, if M is a compact oriented variety and q1 + . . .+ qm = dimM , there is a well defined intersection
number

{Θ1} · {Θ2} · · · · · {Θm} =

∫

M

{Θ1} ∧ . . . ∧ {Θm}.

However, as we will see in the next section, the pointwise product Θ1 ∧ . . . ∧Θm need not exist in general.

2. Lelong numbers and intersection theory

2.A. Multiplication of currents and Monge-Ampère operators

Let X be a n-dimensional complex manifold. We set

dc =
1

2iπ
(d′ − d′′).

It follows in particular that dc is a real operator, i.e. dcu = dcu, and that ddc = i
πd

′d′′. Although not quite
standard, the 1/2iπ normalization is very convenient for many purposes, since we may then forget the factor π
or 2π almost everywhere (e.g. in the Lelong-Poincaré equation (1.20)).

Let u be a psh function and let Θ be a closed positive current on X . Our desire is to define the wedge
product ddcu ∧Θ even when neither u nor Θ are smooth. In general, this product does not make sense because
ddcu and Θ have measure coefficients and measures cannot be multiplied; see Kiselman [Kis84] for interesting
counterexamples. Even in the algebraic setting considered here, multiplication of currents is not always possible:
suppose e.g. that Θ = [D] is the exceptional divisor of a blow-up in a surface; then D · D = −1 cannot be the
cohomology class of a closed positive current [D]2. Assume however that u is a locally bounded psh function.
Then the current uΘ is well defined since u is a locally bounded Borel function and Θ has measure coefficients.
According to Bedford-Taylor [BT82] we define

ddcu ∧Θ = ddc(uΘ)

where ddc( ) is taken in the sense of distribution theory.
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(2.1) Proposition. If u is a locally bounded psh function, the wedge product ddcu ∧ Θ is again a closed positive
current.

Proof. The result is local. Use a convolution uν = u ⋆ ρ1/ν to get a decreasing sequence of smooth psh functions
converging to u. Then write

ddc(uΘ) = lim
ν→+∞

ddc(uνΘ) = ddcuν ∧Θ

as a weak limit of closed positive currents. Observe that uνΘ converges weakly to uΘ by Lebesgue’s monotone
convergence theorem. �

More generally, if u1, . . . , um are locally bounded psh functions, we can define

ddcu1 ∧ . . . ∧ dd
cum ∧Θ = ddc

(
u1dd

cu2 ∧ . . . ∧ dd
cum ∧Θ

)

by induction on m. Chern, Levine and Nirenberg [CLN69] noticed the following useful inequality. Define the mass
of a current Θ on a compact set K to be

||Θ||K =

∫

K

∑

I,J

|ΘI,J |

whenever K is contained in a coordinate patch and Θ =
∑
ΘI,JdzI ∧ dzJ . Up to seminorm equivalence, this

does not depend on the choice of coordinates. If K is not contained in a coordinate patch, we use a partition of
unity to define a suitable seminorm ||Θ||K . If Θ > 0, Exercise 1.15 shows that the mass is controlled by the trace
measure, i.e. ||Θ||K 6 C

∫
K
Θ ∧ βp.

(2.2.4) Chern-Levine-Nirenberg inequality. For all compact subsets K,L of X with L ⊂ K◦, there exists a constant
CK,L > 0 such that

||ddcu1 ∧ . . . ∧ dd
cum ∧Θ||L 6 CK,L ||u1||L∞(K) . . . ||um||L∞(K) ||Θ||K

Proof. By induction, it is sufficient to prove the result for m = 1 and u1 = u. There is a covering of L by a
family of open balls B′

j⊂⊂Bj ⊂ K contained in coordinate patches of X . Let (p, p) be the bidimension of Θ, let

β = i
2d

′d′′|z|2, and let χ ∈ D(Bj) be equal to 1 on B
′
j . Then

||ddcu ∧Θ||
L∩B′

j
6 C

∫

B
′

j

ddcu ∧Θ ∧ βp−1 6 C

∫

Bj

χddcu ∧Θ ∧ βp−1.

As Θ and β are closed, an integration by parts yields

||ddcu ∧Θ||
L∩B′

j
6 C

∫

Bj

uΘ ∧ ddcχ ∧ βp−1 6 C′||u||L∞(K)||Θ||K

where C′ is equal to C multiplied by a bound for the coefficients of the smooth form ddcχ ∧ βp−1. �

Various examples (cf. [Kis84]) show however that products of (1, 1)-currents ddcuj cannot be defined in a
reasonable way for arbitrary psh functions uj . However, functions uj with −∞ poles can be admitted if the polar
sets are sufficiently small.

(2.3) Proposition. Let u be a psh function on X, and let Θ be a closed positive current of bidimension (p, p).
Suppose that u is locally bounded on X rA, where A is an analytic subset of X of dimension < p at each point.
Then ddcu∧Θ can be defined in such a way that ddcu∧Θ = limν→+∞ ddcuν ∧Θ in the weak topology of currents,
for any decreasing sequence (uν)ν>0 of psh functions converging to u.

Proof. When u is locally bounded everywhere, we have limuν Θ = uΘ by the monotone convergence theorem
and the result follows from the continuity of ddc with respect to the weak topology.

First assume that A is discrete. Since our results are local, we may suppose that X is a ball B(0, R) ⊂ Cn and
that A = {0}. For every s 6 0, the function u

>s = max(u, s) is locally bounded on X , so the product Θ ∧ ddcu>s
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is well defined. For |s| large, the function u
>s differs from u only in a small neighborhood of the origin, at which

u may have a −∞ pole. Let γ be a (p−1, p−1)-form with constant coefficients and set s(r) = lim inf |z|→r−0 u(z).
By Stokes’ formula, we see that the integral

(2.4) I(s) :=

∫

B(0,r)

ddcu
>s ∧Θ ∧ γ

does not depend on s when s < s(r), for the difference I(s) − I(s′) of two such integrals involves the ddc of a
current (u

>s − u
>s′) ∧ Θ ∧ γ with compact support in B(0, r). Taking γ = (ddc|z|2)p−1, we see that the current

ddcu ∧Θ has finite mass on B(0, r) r {0} and we can define 〈1{0}(dd
cu ∧ Θ), γ〉 to be the limit of the integrals

(2.4) as r tends to zero and s < s(r). In this case, the weak convergence statement is easily deduced from the
locally bounded case discussed above.

In the case where 0 < dimA < p, we use a slicing technique to reduce the situation to the discrete case.
Set q = p − 1. There are linear coordinates (z1, . . . , zn) centered at any point of A, such that 0 is an isolated
point of A ∩

(
{0} × Cn−q

)
. Then there are small balls B′ = B(0, r′) in Cq, B′′ = B(0, r′′) in Cn−q such that

A ∩ (B′ × ∂B′′) = ∅, and the projection map

π : Cn → Cq, z = (z1, . . . , zn) 7→ z′ = (z1, . . . , zq)

defines a finite proper mapping A ∩ (B′ × B′′) → B′. These properties are preserved if we slightly change the
direction of projection. Take sufficiently many projections πm associated to coordinate systems (zm1 , . . . , z

m
n ),

1 6 m 6 N , in such a way that the family of (q, q)-forms

i dzm1 ∧ dzm1 ∧ . . . ∧ i dzmq ∧ dzmq

defines a basis of the space of (q, q)-forms. Expressing any compactly supported smooth (q, q)-form in such a
basis, we see that we need only define

∫

B′×B′′

ddcu ∧Θ ∧ f(z′, z′′) i dz1 ∧ dz1 ∧ . . . ∧ i dzq ∧ dzq =(2.5)

∫

B′

{∫

B′′

f(z′, •) ddcu(z′, •) ∧Θ(z′, •)
}

i dz1 ∧ dz1 ∧ . . . ∧ i dzq ∧ dzq

where f is a test function with compact support in B′ × B′′, and Θ(z′, •) denotes the slice of Θ on the fiber
{z′} ×B′′ of the projection π : Cn → Cq. Each integral

∫
B′′ in the right hand side of (2.5) makes sense since the

slices ({z′}×B′′)∩A are discrete. Moreover, the double integral
∫
B′

∫
B′′ is convergent. Indeed, observe that u is

bounded on any compact cylinder

Kδ,ε = B
(
(1 − δ)r′

)
×

(
B(r′′) rB

(
(1 − ε)r′′

))

disjoint from A. Take ε≪ δ ≪ 1 so small that

Supp f ⊂ B
(
(1 − δ)r′

)
×B

(
(1 − ε)r′′

)
.

For all z′ ∈ B((1 − δ)r′), the proof of the Chern-Levine-Nirenberg inequality (2.2) with a cut-off function χ(z′′)
equal to 1 on B((1 − ε)r′′) and with support in B((1 − ε/2)r′′) shows that

∫

B((1−ε)r′′)
ddcu(z′, •) ∧Θ(z′, •)

6 Cε||u||L∞(Kδ,ε)

∫

z′′∈B((1−ε/2)r′′)
Θ(z′, z′′) ∧ ddc|z′′|2.

This implies that the double integral is convergent. Now replace u everywhere by uν and observe that
limν→+∞

∫
B′′ is the expected integral for every z′ such that Θ(z′, •) exists (apply the discrete case already

proven). Moreover, the Chern-Levine-Nirenberg inequality yields uniform bounds for all functions uν, hence
Lebesgue’s dominated convergence theorem can be applied to

∫
B′ . We conclude from this that the sequence of

integrals (2.5) converges when uν ↓ u, as expected. �
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(2.6) Remark. In the above proof, the fact that A is an analytic set does not play an essential role. The main
point is just that the slices ({z′} × B′′) ∩ A consist of isolated points for generic choices of coordinates (z′, z′′).
In fact, the proof even works if the slices are totally discontinuous, in particular if they are of zero Hausdorff
measure H1. It follows that Proposition 2.3 still holds whenever A is a closed set such that H2p−1(A) = 0. �

2.B. Lelong numbers

The concept of Lelong number is an analytic analogue of the algebraic notion of multiplicity. It is a very use-
ful technique to extend results of the intersection theory of algebraic cycles to currents. Lelong numbers have
been introduced for the first time by Lelong in [Lel57]. See also [Lel69], [Siu74], [Dem82a, 85a, 87] for further
developments.

Let us first recall a few definitions. Let Θ be a closed positive current of bidimension (p, p) on a coordinate
open set Ω ⊂ Cn of a complex manifold X . The Lelong number of Θ at a point x ∈ Ω is defined to be the limit

ν(Θ, x) = lim
r→0+

ν(Θ, x, r), where ν(Θ, x, r) =
σΘ(B(x, r))

πpr2p/p!

measures the ratio of the area of Θ in the ball B(x, r) to the area of the ball of radius r in Cp. As σΘ =
Θ ∧ 1

p! (πdd
c|z|2)p by 1.15, we also get

(2.7) ν(Θ, x, r) =
1

r2p

∫

B(x,r)

Θ(z) ∧ (ddc|z|2)p.

The main results concerning Lelong numbers are summarized in the following theorems, due respectively to
Lelong, Thie and Siu.

(2.8) Theorem ([Lel57]).

(a) For every positive current Θ, the ratio ν(Θ, x, r) is a nonnegative increasing function of r, in particular the
limit ν(Θ, x) as r → 0+ always exists.

(b) If Θ = ddcu is the bidegree (1, 1)-current associated with a psh function u, then

ν(Θ, x) = sup
{
γ > 0 ; u(z) 6 γ log |z − x| +O(1) at x

}
.

In particular, if u = log |f | with f ∈ H0(X,OX) and Θ = ddcu = [Zf ], we have

ν([Zf ], x) = ordx(f) = max{m ∈ N ; Dαf(x) = 0, |α| < m}.

(2.9) Theorem ([Thi67]). In the case where Θ is a current of integration [A] over an analytic subvariety A, the
Lelong number ν([A], x) coincides with the multiplicity of A at x (defined e.g. as the sheet number in the ramified
covering obtained by taking a generic linear projection of the germ (A, x) onto a p-dimensional linear subspace
through x in any coordinate patch Ω).

(2.10) Theorem ([Siu74]). Let Θ be a closed positive current of bidimension (p, p) on the complex manifold X.

(a) The Lelong number ν(Θ, x) is invariant by holomorphic changes of local coordinates.

(b) For every c > 0, the set Ec(Θ) =
{
x ∈ X ; ν(Θ, x) > c

}
is a closed analytic subset of X of dimension 6 p.

The most important result is 2.10 b), which is a deep application of Hörmander L2 estimates (see Section 5). The
earlier proofs of all other results were rather intricate in spite of their rather simple nature. We reproduce below
a sketch of elementary arguments based on the use of a more general and more flexible notion of Lelong number
introduced in [Dem87]. Let ϕ be a continuous psh function with an isolated −∞ pole at x, e.g. a function of the
form ϕ(z) = log

∑
16j6N |gj(z)|γj , γj > 0, where (g1, . . . , gN) is an ideal of germs of holomorphic functions in Ox

with g−1(0) = {x}. The generalized Lelong number ν(Θ,ϕ) of Θ with respect to the weight ϕ is simply defined
to be the mass of the measure Θ∧ (ddcϕ)p carried by the point x (the measure Θ∧ (ddcϕ)p is always well defined
thanks to Proposition 2.3). This number can also be seen as the limit ν(Θ,ϕ) = limt→−∞ ν(Θ,ϕ, t), where
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(2.11) ν(Θ,ϕ, t) =

∫

ϕ(z)<t

Θ ∧ (ddcϕ)p.

The relation with our earlier definition of Lelong numbers (as well as part a) of Theorem 2.8) comes from the
identity

(2.12) ν(Θ, x, r) = ν(Θ,ϕ, log r), ϕ(z) = log |z − x|,

in particular ν(Θ, x) = ν(Θ, log |• − x|). This equality is in turn a consequence of the following general formula,
applied to χ(t) = e2t and t = log r :

(2.13)

∫

ϕ(z)<t

Θ ∧ (ddcχ ◦ ϕ)p = χ′(t− 0)p
∫

ϕ(z)<t

Θ ∧ (ddcϕ)p,

where χ is an arbitrary convex increasing function. To prove the formula, we use a regularization and thus suppose
that Θ, ϕ and χ are smooth, and that t is a non critical value of ϕ. Then Stokes’ formula shows that the integrals
on the left and right hand side of (2.13) are equal respectively to

∫

ϕ(z)=t

Θ ∧ (ddcχ ◦ ϕ
)p−1

∧ dc(χ ◦ ϕ),

∫

ϕ(z)=t

Θ ∧
(
ddcϕ

)p−1
∧ dcϕ,

and the differential form of bidegree (p − 1, p) appearing in the integrand of the first integral is equal to (χ′ ◦
ϕ)p (ddcϕ)p−1∧dcϕ. The expected formula follows. Part (b) of Theorem 2.8 is a consequence of the Jensen-Lelong
formula, whose proof is left as an exercise to the reader.

(2.14) Jensen-Lelong formula. Let u be any psh function on X. Then u is integrable with respect to the measure
µr = (ddcϕ)n−1 ∧ dcϕ supported by the pseudo-sphere {ϕ(z) = r} and

µr(u) =

∫

{ϕ<r}
u(ddcϕ)n +

∫ r

−∞
ν(ddcu, ϕ, t) dt. �

In our case, we set ϕ(z) = log |z−x|. Then (ddcϕ)n = δx and µr is just the unitary invariant mean value measure
on the sphere S(x, er). For r < r0, Formula 2.14 implies

µr(u) − µr0(u) =

∫ r

r0

ν(ddcu, x, t) ∼ (r − r0)ν(dd
cu, x) as r → −∞.

From this, using the Harnack inequality for subharmonic functions, we get

lim inf
z→x

u(z)

log |z − x|
= lim

r→−∞
µr(u)

r
= ν(ddcu, x).

These equalities imply statement 2.8 b).

Next, we show that the Lelong numbers ν(T, ϕ) only depend on the asymptotic behaviour of ϕ near the polar
set ϕ−1(−∞). In a precise way:

(2.15) Comparison theorem. Let Θ be a closed positive current on X, and let ϕ, ψ : X → [−∞,+∞[ be continuous
psh functions with isolated poles at some point x ∈ X. Assume that

ℓ := lim sup
z→x

ψ(z)

ϕ(z)
< +∞.

Then ν(Θ,ψ) 6 ℓpν(Θ,ϕ), and the equality holds if ℓ = limψ/ϕ.

Proof. (2.12) shows that ν(Θ, λϕ) = λpν(Θ,ϕ) for every positive constant λ. It is thus sufficient to verify the
inequality ν(Θ,ψ) 6 ν(Θ,ϕ) under the hypothesis lim supψ/ϕ < 1. For any c > 0, consider the psh function

uc = max(ψ − c, ϕ).

Fix r ≪ 0. For c > 0 large enough, we have uc = ϕ on a neighborhood of ϕ−1(r) and Stokes’ formula gives
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ν(Θ,ϕ, r) = ν(Θ, uc, r) > ν(Θ, uc).

On the other hand, the hypothesis lim supψ/ϕ < 1 implies that there exists t0 < 0 such that uc = ψ − c on
{uc < t0}. We thus get

ν(Θ, uc) = ν(Θ,ψ − c) = ν(Θ,ψ),

hence ν(Θ,ψ) 6 ν(Θ,ϕ). The equality case is obtained by reversing the roles of ϕ and ψ and observing that
limϕ/ψ = 1/l. �

Part (a) of Theorem 2.10 follows immediately from 2.15 by considering the weights ϕ(z) = log |τ(z) −
τ(x)|, ψ(z) = log |τ ′(z) − τ ′(x)| associated to coordinates systems τ(z) = (z1, . . . , zn), τ

′(z) = (z′1, . . . , z
′
n) in a

neighborhood of x. Another application is a direct simple proof of Thie’s Theorem 2.9 when Θ = [A] is the current
of integration over an analytic set A ⊂ X of pure dimension p. For this, we have to observe that Theorem 2.15
still holds provided that x is an isolated point in Supp(Θ) ∩ ϕ−1(−∞) and Supp(Θ) ∩ ψ−1(−∞) (even though x
is not isolated in ϕ−1(−∞) or ψ−1(−∞)), under the weaker assumption that lim supSupp(Θ)∋z→x ψ(z)/ϕ(z) = ℓ.
The reason for this is that all integrals involve currents supported on Supp(Θ). Now, by a generic choice of local
coordinates z′ = (z1, . . . , zp) and z′′ = (zp+1, . . . , zn) on (X,x), the germ (A, x) is contained in a cone |z′′| 6 C|z′|.
If B′ ⊂ Cp is a ball of center 0 and radius r′ small, and B′′ ⊂ Cn−p is the ball of center 0 and radius r′′ = Cr′,
the projection

pr : A ∩ (B′ ×B′′) −→ B′

is a ramified covering with finite sheet number m. When z ∈ A tends to x = 0, the functions

ϕ(z) = log |z| = log(|z′|2 + |z′′|2)1/2, ψ(z) = log |z′|.

satisfy limz→x ψ(z)/ϕ(z) = 1. Hence Theorem 2.15 implies

ν([A], x) = ν([A], ϕ) = ν([A], ψ).

Now, Formula 2.13 with χ(t) = e2t yields

ν([A], ψ, log t) = t−2p

∫

{ψ<log t}
[A] ∧

(1

2
ddce2ψ

)p

= t−2p

∫

A∩{|z′|<t}

(1

2
pr⋆ ddc|z′|2

)p

= mt−2p

∫

Cp∩{|z′|<t}

(1

2
ddc|z′|2

)p
= m,

hence ν([A], ψ) = m. Here, we have used the fact that pr is an étale covering with m sheets over the complement
of the ramification locus S ⊂ B′, and the fact that S is of zero Lebesgue measure in B′.

(2.16) Proposition. Under the assumptions of Proposition 2.3, we have

ν(ddcu ∧Θ, x) > ν(u, x) ν(Θ, x)

at every point x ∈ X.

Proof. Assume that X = B(0, r) and x = 0. By definition

ν(ddcu ∧Θ, x) = lim
r→0

∫

|z|6r
ddcu ∧Θ ∧ (ddc log |z|)p−1.

Set γ = ν(u, x) and

uν(z) = max
(
u(z), (γ − ε) log |z| − ν

)

with 0 < ε < γ (if γ = 0, there is nothing to prove). Then uν decreases to u and

∫

|z|6r
ddcu ∧Θ ∧ (ddc log |z|)p−1 > lim sup

ν→+∞

∫

|z|6r
ddcuν ∧Θ ∧ (ddc log |z|)p−1
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by the weak convergence of ddcuν ∧ Θ; here (ddc log |z|)p−1 is not smooth on B(0, r), but the integrals remain
unchanged if we replace log |z| by χ(log |z|/r) with a smooth convex function χ such that χ(t) = t for t > −1
and χ(t) = 0 for t 6 −2. Now, we have u(z) 6 γ log |z| + C near 0, so uν(z) coincides with (γ − ε) log |z| − ν on
a small ball B(0, rν) ⊂ B(0, r) and we infer

∫

|z|6r
ddcuν ∧Θ ∧ (ddc log |z|)p−1 > (γ − ε)

∫

|z|6rν

Θ ∧ (ddc log |z|)p

> (γ − ε)ν(Θ, x).

As r ∈ ]0, R[ and ε ∈ ]0, γ[ were arbitrary, the desired inequality follows. �

We will later need an important decomposition formula of [Siu74]. We start with the following lemma.

(2.17) Lemma. If Θ is a closed positive current of bidimension (p, p) and Z is an irreducible analytic set in X,
we set

mZ = inf{x ∈ Z ; ν(Θ, x)}.

(a) There is a countable family of proper analytic subsets (Z ′
j) of Z such that ν(Θ, x) = mZ for all x ∈ Zr

⋃
Z ′
j.

We say that mZ is the generic Lelong number of Θ along Z.

(b) If dimZ = p, then Θ > mZ [Z] and 1ZΘ = mZ [Z].

Proof. (a) By definition of mZ and Ec(Θ), we have ν(Θ, x) > mZ for every x ∈ Z and

ν(Θ, x) = mZ on Z r
⋃

c∈Q, c>mZ

Z ∩ Ec(Θ).

However, for c > mZ , the intersection Z ∩ Ec(Θ) is a proper analytic subset of A.

(b) Left as an exercise to the reader. It is enough to prove that Θ > mZ [Zreg] at regular points of Z, so one
may assume that Z is a p-dimensional linear subspace in Cn. Show that the measure (Θ −mZ [Z]) ∧ (ddc|z|2)p

has nonnegative mass on every ball |z − a| < r with center a ∈ Z. Conclude by using arbitrary affine changes of
coordinates that Θ −mZ [Z] > 0. �

(2.18) Decomposition formula ([Siu74]). Let Θ be a closed positive current of bidimension (p, p). Then Θ can be
written as a convergent series of closed positive currents

Θ =
+∞∑

k=1

λk [Zk] +R,

where [Zk] is a current of integration over an irreducible analytic set of dimension p, and R is a residual current
with the property that dimEc(R) < p for every c > 0. This decomposition is locally and globally unique: the sets
Zk are precisely the p-dimensional components occurring in the upperlevel sets Ec(Θ), and λk = minx∈Zk

ν(Θ, x)
is the generic Lelong number of Θ along Zk.

Proof of uniqueness. If Θ has such a decomposition, the p-dimensional components of Ec(Θ) are (Zj)λj>c, for
ν(Θ, x) =

∑
λjν([Zj ], x)+ν(R, x) is non zero only on

⋃
Zj∪

⋃
Ec(R), and is equal to λj generically on Zj

(
more

precisely, ν(Θ, x) = λj at every regular point of Zj which does not belong to any intersection Zj ∪ Zk, k 6= j or
to

⋃
Ec(R)

)
. In particular Zj and λj are unique.

Proof of existence. Let (Zj)j>1 be the countable collection of p-dimensional components occurring in one of the
sets Ec(Θ), c ∈ Q⋆

+, and let λj > 0 be the generic Lelong number of Θ along Zj . Then Lemma 2.17 shows by
induction on N that RN = Θ−

∑
16j6N λj [Zj] is positive. As RN is a decreasing sequence, there must be a limit

R = limN→+∞RN in the weak topology. Thus we have the asserted decomposition. By construction, R has zero
generic Lelong number along Zj , so dimEc(R) < p for every c > 0. �

It is very important to note that some components of lower dimension can actually occur in Ec(R), but they
cannot be subtracted because R has bidimension (p, p). A typical case is the case of a bidimension (n− 1, n− 1)
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current Θ = ddcu with u = log(|fj |γ1 + . . . |fN |γN ) and fj ∈ H0(X,OX). In general
⋃
Ec(Θ) =

⋂
f−1
j (0) has

dimension < n− 1.

(2.19) Corollary. Let Θj = ddcuj, 1 6 j 6 p, be closed positive (1, 1)-currents on a complex manifold X. Suppose
that there are analytic sets A2 ⊃ . . . ⊃ Ap in X with codimAj > j at every point such that each uj, j > 2, is
locally bounded on X r Aj. Let {Ap,k}k>1 be the irreducible components of Ap of codimension p exactly and let
νj,k = minx∈Ap,k

ν(Θj , x) be the generic Lelong number of Θj along Ap,k. Then Θ1 ∧ . . .∧Θp is well-defined and

Θ1 ∧ . . . ∧Θp >

+∞∑

k=1

ν1,k . . . νp,k [Ap,k].

Proof. By induction on p, Proposition 2.3 shows that Θ1 ∧ . . . ∧Θp is well defined. Moreover, Proposition 2.16
implies

ν(Θ1 ∧ . . . ∧Θp, x) > ν(Θ1, x) . . . ν(Θp, x) > ν1,k . . . νp,k

at every point x ∈ Ap,k. The desired inequality is then a consequence of Siu’s decomposition theorem. �

3. Hermitian vector bundles, connections and curvature

The goal of this section is to recall the most basic definitions of hemitian differential geometry related to the
concepts of connection, curvature and first Chern class of a line bundle.

Let F be a complex vector bundle of rank r over a smooth differentiable manifold M . A connection D on F
is a linear differential operator of order 1

D : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,Λq+1T ⋆M ⊗ F )

such that

(3.1) D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du

for all forms f ∈ C∞(M,ΛpT ⋆M ), u ∈ C∞(X,ΛqT ⋆M ⊗F ). On an open set Ω ⊂M where F admits a trivialization

θ : F|Ω
≃
−→ Ω × Cr, a connection D can be written

Du ≃θ du+ Γ ∧ u

where Γ ∈ C∞(Ω,Λ1T ⋆M ⊗ Hom(Cr,Cr)) is an arbitrary matrix of 1-forms and d acts componentwise (the
coefficents of Γ are called the Christoffel symbols of the connection). It is then easy to check that

D2u ≃θ (dΓ + Γ ∧ Γ ) ∧ u on Ω.

Since D2 is a globally defined operator, there is a global 2-form

(3.2) ΘD ∈ C∞(M,Λ2T ⋆M ⊗ Hom(F, F ))

such that D2u = ΘD ∧ u for every form u with values in F .

Assume now that F is endowed with a C∞ hermitian metric h along the fibers and that the isomorphism
F|Ω ≃ Ω × Cr is given by a C∞ frame (eλ). We then have a canonical sesquilinear pairing

C∞(M,ΛpT ⋆M ⊗ F ) × C∞(M,ΛqT ⋆M ⊗ F ) −→ C∞(M,Λp+qT ⋆M ⊗ C)(3.3)

(u, v) 7−→ {u, v}h

given by

{u, v}h =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉h, u =
∑

uλ ⊗ eλ, v =
∑

vµ ⊗ eµ.

The connection D is said to be hermitian (with respect to h) if it satisfies the additional property
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d{u, v}h = {Du, v}h + (−1)deg u{u,Dv}h.

Assuming that (eλ) is orthonormal, one easily checks that D is hermitian if and only if Γ ⋆ = −Γ . In this case
Θ⋆D = −ΘD, thus

iΘD ∈ C∞(M,Λ2T ⋆M ⊗ Herm(F, F )).

(3.4) Special case. For a bundle F of rank 1, the connection form Γ of a hermitian connection D can be seen as
a 1-form with purely imaginary coefficients Γ = iA (A real). Then we have ΘD = dΓ = idA. In particular iΘF is
a closed 2-form. The first Chern class of F is defined to be the cohomology class

c1(F )R =
{ i

2π
ΘF

}
∈ H2

DR(M,R).

The cohomology class is actually independent of the connection, since any other connection D1 differs by a global
1-form, D1u = Du + B ∧ u, so that ΘD1 = ΘD + dB. It is well-known that c1(F )R is the image in H2(M,R) of
an integral class c1(F ) ∈ H2(M,Z) ; by using the exponential exact sequence

0 → Z → E → E⋆ → 0,

c1(F ) can be defined in Čech cohomology theory as the image by the coboundary map H1(M, E⋆) → H2(M,Z)
of the cocycle {gjk} ∈ H1(M, E⋆) defining F ; see e.g. [GrH78] for details. �

We now concentrate ourselves on the complex analytic case. If M = X is a complex manifold X , every connection
D on a complex C∞ vector bundle F can be splitted in a unique way as a sum of a (1, 0) and of a (0, 1)-connection,
D = D′ +D′′. In a local trivialization θ given by a C∞ frame, one can write

D′u ≃θ d
′u+ Γ ′ ∧ u,(3.5′)

D′′u ≃θ d
′′u+ Γ ′′ ∧ u,(3.5′′)

with Γ = Γ ′ +Γ ′′. The connection is hermitian if and only if Γ ′ = −(Γ ′′)⋆ in any orthonormal frame. Thus there
exists a unique hermitian connection D corresponding to a prescribed (0, 1) part D′′.

Assume now that the bundle F itself has a holomorphic structure, and is equipped with a hermitian metric h.
The unique hermitian connection for whichD′′ is the d′′ operator defined in § 1 is called the Chern connection of F .
In a local holomorphic frame (eλ) of E|Ω, the metric is given by the hermitian matrix H = (hλµ), hλµ = 〈eλ, eµ〉.
We have

{u, v}h =
∑

λ,µ

hλµuλ ∧ vµ = u† ∧Hv,

where u† is the transposed matrix of u, and easy computations yield

d{u, v}h = (du)† ∧Hv + (−1)deguu† ∧ (dH ∧ v +Hdv)

=
(
du+H

−1
d′H ∧ u

)†
∧Hv + (−1)deguu† ∧ (dv +H

−1
d′H ∧ v)

using the fact that dH = d′H+d′H and H
†

= H . Therefore the Chern connection D coincides with the hermitian
connection defined by

(3.6)

{
Du ≃θ du +H

−1
d′H ∧ u,

D′ ≃θ d
′ +H

−1
d′H ∧ • = H

−1
d′(H•), D′′ = d′′.

It is clear from this relations that D′2 = D′′2 = 0. Consequently D2 is given by to D2 = D′D′′ +D′′D′, and the
curvature tensor ΘD is of type (1, 1). Since d′d′′ + d′′d′ = 0, we get

(D′D′′ +D′′D′)u ≃θ H
−1
d′H ∧ d′′u+ d′′(H

−1
d′H ∧ u)

= d′′(H
−1
d′H) ∧ u.

(3.7) Proposition. The Chern curvature tensor ΘF,h := ΘD of (F, h) is such that

iΘF,h ∈ C∞(X,Λ1,1T ⋆X ⊗ Herm(F, F )).
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If θ : F↾Ω → Ω × Cr is a holomorphic trivialization and if H is the hermitian matrix representing the metric
along the fibers of F↾Ω, then

iΘF,h ≃θ i d′′(H
−1
d′H) on Ω. �

Let (z1, . . . , zn) be holomorphic coordinates on X and let (eλ)16λ6r be an orthonormal frame of F . Writing

iΘF,h =
∑

16j,k6n, 16λ,µ6r

cjkλµdzj ∧ dzk ⊗ e⋆λ ⊗ eµ,

we can identify the curvature tensor to a hermitian form

(3.8) Θ̃F,h(ξ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµξjξkvλvµ

on TX⊗F . This leads in a natural way to positivity concepts, following definitions introduced by Kodaira [Kod53],
Nakano [Nak55] and Griffiths [Gri69].

(3.9) Definition. The hermitian vector bundle (F, h) is said to be

(a) positive in the sense of Nakano if Θ̃F,h(τ) > 0 for all non zero tensors τ =
∑
τjλ∂/∂zj ⊗ eλ ∈ TX ⊗ F .

(b) positive in the sense of Griffiths if Θ̃F,h(ξ ⊗ v) > 0 for all non zero decomposable tensors ξ ⊗ v ∈ TX ⊗ F ;

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.

(3.10) Special case of rank 1 bundles. Assume that F is a line bundle. The hermitian matrix H = (h11) associated
to a trivialization θ : F↾Ω ≃ Ω × C is simply a positive function. It is often convenient to denote it as an
exponential, namely e−2ϕ (and also sometimes e−ϕ simply, if we do not want to stress that H is a quadratic
form), with ϕ ∈ C∞(Ω,R). In this case the curvature form ΘF,h can be identified to the (1, 1)-form d′d′′ϕ, and

i

2π
ΘF,h =

i

π
d′d′′ϕ = ddcϕ

is a real (1, 1)-form. Hence F is semi-positive (in either the Nakano or Griffiths sense) if and only if ϕ is psh,
resp. positive if and only if ϕ is strictly psh. In this setting, the Lelong-Poincaré equation can be generalized as
follows: let σ ∈ H0(X,F ) be a non zero holomorphic section. Then

(3.11) ddc log ‖σ‖h = [Zσ] −
i

2π
ΘF,h.

Formula (3.11) is immediate if we write ‖σ‖ = |θ(σ)|e−ϕ and if we apply (1.20) to the holomorphic function
f = θ(σ). As we shall see later, it is very important for the applications to consider also singular hermitian
metrics.

(3.12) Definition. A singular (hermitian) metric h on a line bundle F is a metric which is given in any trivial-

ization θ : F↾Ω
≃
−→ Ω × C by

‖ξ‖h = |θ(ξ)| e−ϕ(x), x ∈ Ω, ξ ∈ Fx

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the metric with respect to the trivialization θ.

If θ′ : F↾Ω′ −→ Ω′ × C is another trivialization, ϕ′ the associated weight and g ∈ O⋆(Ω ∩ Ω′) the transition
function, then θ′(ξ) = g(x) θ(ξ) for ξ ∈ Fx, and so ϕ′ = ϕ + log |g| on Ω ∩ Ω′. The curvature form of F is
then given formally by the closed (1, 1)-current i

2πΘF,h = ddcϕ on Ω ; our assumption ϕ ∈ L1
loc(Ω) guarantees

that ΘF,h exists in the sense of distribution theory. As in the smooth case, i
2πΘF,h is globally defined on X and

independent of the choice of trivializations, and its De Rham cohomology class is the image of the first Chern
class c1(F ) ∈ H2(X,Z) in H2

DR(X,R). Before going further, we discuss two basic examples.

(3.13) Example. Let D =
∑
αjDj be a divisor with coefficients αj ∈ Z and let F = O(D) be the associated

invertible sheaf of meromorphic functions u such that div(u) + D > 0 ; the corresponding line bundle can be
equipped with the singular metric defined by ‖u‖ = |u|. If gj is a generator of the ideal of Dj on an open set
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Ω ⊂ X then θ(u) = u
∏
g
αj

j defines a trivialization of O(D) over Ω, thus our singular metric is associated to the
weight ϕ =

∑
αj log |gj|. By the Lelong-Poincaré equation, we find

i

2π
ΘO(D) = ddcϕ = [D],

where [D] =
∑
αj [Dj] denotes the current of integration over D. �

(3.14) Example. Assume that σ0, σ1, . . . , σN are non zero holomorphic sections of F . Then we can define a natural
(possibly singular) hermitian metric h∗ on F ⋆ by

‖ξ⋆‖2
h∗ =

∑

06j6N

∣∣ξ⋆.σj(x)
∣∣2 for ξ⋆ ∈ F ⋆x .

The dual metric h on F is given by

‖ξ‖2
h =

|θ(ξ)|2

|θ(σ0(x))|2 + |θ(σ1(x))|2 + . . .+ |θ(σN (x))|2

with respect to any trivialization θ. The associated weight function is thus given by

ϕ(x) = log
( ∑

06j6N

|θ(σj(x))|
2
)

1/2.

In this case ϕ is a psh function, thus iΘF,h is a closed positive current. Let us denote by Σ the linear system
defined by σ0, . . . , σN and by BΣ =

⋂
σ−1
j (0) its base locus. We have a meromorphic map

ΦΣ : X rBΣ → PN , x 7→ (σ0(x) : σ1(x) : σ2(x) : . . . : σN (x)).

Then i
2πΘF,h is equal to the pull-back over X rBΣ of the Fubini-Study metric ωFS = i

2π log(|z0|2 + |z1|2 + . . .+
|zN |2) of PN by ΦΣ . �

(3.15) Ample and very ample line bundles. A holomorphic line bundle F over a compact complex manifold X is
said to be

(a) very ample if the map Φ|F | : X → PN associated to the complete linear system |F | = P (H0(X,F )) is a
regular embedding (by this we mean in particular that the base locus is empty, i.e. B|F | = ∅).

(b) ample if some multiple mF , m > 0, is very ample.

Here we use an additive notation for Pic(X) = H1(X,O⋆), hence the symbol mF denotes the line bundle F⊗m.
By Example 3.14, every ample line bundle F has a smooth hermitian metric with positive definite curvature
form; indeed, if the linear system |mF | gives an embedding in projective space, then we get a smooth hermitian
metric on F⊗m, and the m-th root yields a metric h on F such that i

2πΘF,h = 1
mΦ

⋆
|mF |ωFS. Conversely, the

Kodaira embedding theorem [Kod54] tells us that every positive line bundle F is ample (see Exercise 5.14 for a
straightforward analytic proof of the Kodaira embedding theorem).

4. Bochner technique and vanishing theorems

4.A. Laplace-Beltrami operators and Hodge theory

We first recall briefly a few basic facts of Hodge theory. Assume for the moment that M is a differentiable
manifold equipped with a Riemannian metric g =

∑
gijdxi ⊗ dxj and that (F, h) is a hermitian vector bundle

over M . Given a q-form u on M with values in F , we consider the global L2 norm

‖u‖2 =

∫

M

|u(x)|2dVg(x)
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where |u| is the pointwise hermitian norm and dVg is the Riemannian volume form (we omit the dependence on
the metrics in the notation, but we should really put |u(x)|g,h and ‖u‖g,h here). The Laplace-Beltrami operator
associated to the connection D is by definition

∆ = DD⋆ +D⋆D

where
D⋆ : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,Λq−1T ⋆M ⊗ F )

is the (formal) adjoint of D with respect to the L2 inner product. Assume that M is compact. Since

∆ : C∞(M,ΛqT ⋆M ⊗ F ) → C∞(M,ΛqT ⋆M ⊗ F )

is a self-adjoint elliptic operator in each degree, standard results of PDE theory show that there is an orthogonal
decomposition

C∞(M,ΛqT ⋆M ⊗ F ) = Hq(M,F ) ⊕ Im∆

where Hq(M,F ) = Ker∆ is the space of harmonic forms of degree q; Hq(M,F ) is a finite dimensional space.
Assume moreover that the connection D is integrable, i.e. that D2 = 0. It is then easy to check that there is an
orthogonal direct sum

Im∆ = ImD ⊕ ImD⋆,

indeed 〈Du,D⋆v〉 = 〈D2u, v〉 = 0 for all u, v. Hence we get an orthogonal decomposition

C∞(M,ΛqT ⋆M ⊗ F ) = Hq(M,F ) ⊕ ImD ⊕ ImD⋆,

and Ker∆ is precisely equal to Hq(M,F )⊕ImD. Especially, the q-th cohomology group Ker∆/ Im∆ is isomorphic
to Hq(M,F ). All this can be applied for example in the case of the De Rham groups Hq

DR(M,C), taking F to be
the trivial bundle F = M ×C (notice, however, that a nontrivial bundle F usually does not admit any integrable
connection):

(4.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there is an isomorphism

Hq
DR(M,C) ≃ Hq(M,C)

from De Rham cohomology groups onto spaces of harmonic forms. �

A rather important consequence of the Hodge fundamental theorem is a proof of the Poincaré duality theorem.
Assume that the Riemannian manifold (M, g) is oriented. Then there is a (conjugate linear) Hodge star operator

⋆ : ΛqT ⋆M ⊗ C → Λm−qT ⋆M ⊗ C, m = dimR M

defined by u ∧ ⋆v = 〈u, v〉dVg for any two complex valued q-forms u, v. A standard computation shows that ⋆
commutes with ∆, hence ⋆u is harmonic if and only if u is. This implies that the natural pairing

(4.2) Hq
DR(M,C) ×Hm−q

DR (M,C), ({u}, {v}) 7→

∫

M

u ∧ v

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form being {⋆u}.

4.B. Serre duality theorem

Let us now suppose that X is a compact complex manifold equipped with a hermitian metric ω =
∑
ωjkdzj∧dzk.

Let F be a holomorphic vector bundle on X equipped with a hermitian metric, and let D = D′+D′′ be its Chern
curvature form. All that we said above for the Laplace-Beltrami operator ∆ still applies to the complex Laplace
operators

∆′ = D′D′⋆ +D′⋆D′, ∆′′ = D′′D′′⋆ +D′′⋆D′′,

with the great advantage that we always have D′2 = D′′2 = 0. Especially, if X is a compact complex manifold,
there are isomorphisms

(4.3) Hp,q(X,F ) ≃ Hp,q(X,F )



4. Bochner technique and vanishing theorems 21

between Dolbeault cohomology groups Hp,q(X,F ) and spaces Hp,q(X,F ) of ∆′′-harmonic forms of bidegree (p, q)
with values in F . Now, there is a generalized Hodge star operator

⋆ : Λp,qT ⋆X ⊗ F → Λn−p,n−qT ⋆X ⊗ F ⋆, n = dimC X,

such that u∧ ⋆v = 〈u, v〉dVg, for any two F -valued (p, q)-forms, when the wedge product u∧ ⋆v is combined with
the pairing F × F ⋆ → C. This leads to the Serre duality theorem [Ser55]: the bilinear pairing

(4.4) Hp,q(X,F ) ×Hn−p,n−q(X,F ⋆), ({u}, {v}) 7→

∫

X

u ∧ v

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may restate the result in the
form of the duality formula

(4.4′) Hq(X,ΩpX ⊗O(F ))⋆ ≃ Hn−q(X,Ωn−pX ⊗O(F ⋆)).

4.C. Bochner-Kodaira-Nakano identity on Kähler manifolds

We now proceed to explain the basic ideas of the Bochner technique used to prove vanishing theorems. Great
simplifications occur in the computations if the hermitian metric on X is supposed to be Kähler, i.e. if the
associated fundamental (1, 1)-form

ω = i
∑

ωjkdzj ∧ dzk

satisfies dω = 0. It can be easily shown that ω is Kähler if and only if there are holomorphic coordinates
(z1, . . . , zn) centered at any point x0 ∈ X such that the matrix of coefficients (ωjk) is tangent to identity at order
2, i.e.

ωjk(z) = δjk +O(|z|2) at x0.

It follows that all order 1 operators D, D′, D′′ and their adjoints D⋆, D′⋆, D′′⋆ admit at x0 the same expansion
as the analogous operators obtained when all hermitian metrics on X or F are constant. From this, the basic
commutation relations of Kähler geometry can be checked. If A,B are differential operators acting on the algebra
C∞(X,Λ•,•T ⋆X ⊗ F ), their graded commutator (or graded Lie bracket) is defined by

[A,B] = AB − (−1)abBA

where a, b are the degrees of A and B respectively. If C is another endomorphism of degree c, the following purely
formal Jacobi identity holds:

(−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

(4.5) Basic commutation relations. Let (X,ω) be a Kähler manifold and let L be the operators defined by Lu = ω∧u
and Λ = L⋆. Then

[D′′⋆, L] = iD′,

[Λ,D′′] = −iD′⋆,

[D′⋆, L] = −iD′′,

[Λ,D′] = iD′′⋆.

Proof (sketch). The first step is to check the identity [d′′⋆, L] = id′ for constant metrics on X = Cn and
F = X × C, by a brute force calculation. All three other identities follow by taking conjugates or adjoints. The
case of variable metrics follows by looking at Taylor expansions up to order 1. �

(4.6) Bochner-Kodaira-Nakano identity. If (X,ω) is Kähler, the complex Laplace operators ∆′ and ∆′′ acting on
F -valued forms satisfy the identity

∆′′ = ∆′ + [iΘF,h, Λ].

Proof. The last equality in (4.5) yields D′′⋆ = −i[Λ,D′], hence

∆′′ = [D′′, δ′′] = −i[D′′,
[
Λ,D′]

]
.
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By the Jacobi identity we get
[
D′′, [Λ,D′]

]
=

[
Λ, [D′, D′′]] +

[
D′, [D′′, Λ]

]
= [Λ,ΘF,h] + i[D′, D′⋆],

taking into account that [D′, D′′] = D2 = ΘF,h. The formula follows. �

4.D. Vanishing theorems

Assume that X is compact and that u ∈ C∞(X,Λp,qT ⋆X ⊗ F ) is an arbitrary (p, q)-form. An integration by
parts yields

〈∆′u, u〉 = ‖D′u‖2 + ‖D′⋆u‖2 > 0

and similarly for ∆′′, hence we get the basic a priori inequality

(4.7) ‖D′′u‖2 + ‖D′′⋆u‖2 >

∫

X

〈[iΘF,h, Λ]u, u〉dVω.

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48], [Kod53], [Nak55]). When u is
∆′′-harmonic, we get ∫

X

(
〈[iΘF,h, Λ]u, u〉 + 〈Tωu, u〉

)
dV 6 0.

If the hermitian operator [iΘF,h, Λ] acting on Λp,qT ⋆X ⊗ F is positive on each fiber, we infer that u must be zero,
hence

Hp,q(X,F ) = Hp,q(X,F ) = 0

by Hodge theory. The main point is thus to compute the curvature form ΘF,h and find sufficient conditions
under which the operator [iΘF,h, Λ] is positive definite. Elementary (but somewhat tedious) calculations yield the
following formulae: if the curvature of F is written as in (3.8) and u =

∑
uJ,K,λdzI ∧ dzJ ⊗ eλ, |J | = p, |K| = q,

1 6 λ 6 r is a (p, q)-form with values in F , then

〈[iΘF,h, Λ]u, u〉 =
∑

j,k,λ,µ,J,S

cjkλµ uJ,jS,λ uJ,kS,µ(4.8)

+
∑

j,k,λ,µ,R,K

cjkλµ ukR,K,λ ujR,K,µ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ uJ,K,µ,

where the sum is extended to all indices 1 6 j, k 6 n, 1 6 λ, µ 6 r and multiindices |R| = p− 1, |S| = q− 1 (here
the notation uJKλ is extended to non necessarily increasing multiindices by making it alternate with respect to
permutations). It is usually hard to decide the sign of the curvature term (4.8), except in some special cases.

The easiest case is when p = n. Then all terms in the second summation of (4.8) must have j = k and
R = {1, . . . , n} r {j}, therefore the second and third summations are equal. It follows that [iΘF,h, Λ] is positive
on (n, q)-forms under the assumption that F is positive in the sense of Nakano. In this case X is automatically
Kähler since

ω = TrF (iΘF,h) = i
∑

j,k,λ

cjkλλdzj ∧ dzk = iΘdetF,h

is a Kähler metric.

(4.9) Nakano vanishing theorem ([Nak55]). Let X be a compact complex manifold and let F be a Nakano positive
vector bundle on X. Then

Hn,q(X,F ) = Hq(X,KX ⊗ F ) = 0 for every q > 1. �

Another tractable case is the case where F is a line bundle (r = 1). Indeed, at each point x ∈ X , we may then
choose a coordinate system which diagonalizes simultaneously the hermitians forms ω(x) and iΘF,h(x), in such
a way that
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ω(x) = i
∑

16j6n

dzj ∧ dzj , iΘF,h(x) = i
∑

16j6n

γjdzj ∧ dzj

with γ1 6 . . . 6 γn. The curvature eigenvalues γj = γj(x) are then uniquely defined and depend continuously
on x. With our previous notation, we have γj = cjj11 and all other coefficients cjkλµ are zero. For any (p, q)-form
u =

∑
uJKdzJ ∧ dzK ⊗ e1, this gives

〈[iΘF,h, Λ]u, u〉 =
∑

|J|=p, |K|=q

(∑

j∈J
γj +

∑

j∈K
γj −

∑

16j6n

γj

)
|uJK |2

> (γ1 + . . .+ γq − γn−p+1 − . . .− γn)|u|
2.(4.10)

Assume that iΘF,h is positive. It is then natural to make the special choice ω = iΘF,h for the Kähler metric.
Then γj = 1 for j = 1, 2, . . . , n and we obtain 〈[iΘF,h, Λ]u, u〉 = (p+ q − n)|u|2. As a consequence:

(4.11) Akizuki-Kodaira-Nakano vanishing theorem ([AN54]). If F is a positive line bundle on a compact complex
manifold X, then

Hp,q(X,F ) = Hq(X,ΩpX ⊗ F ) = 0 for p+ q > n+ 1. �

More generally, if F is a Griffiths positive (or ample) vector bundle of rank r > 1, Le Potier [LP75] proved that
Hp,q(X,F ) = 0 for p+ q > n+ r. The proof is not a direct consequence of the Bochner technique. A rather easy
proof has been found by M. Schneider [Sch74], using the Leray spectral sequence associated to the projectivized
bundle projection P(F ) → X , using the following more or less standard notation.

(4.12) Notation. If V is a complex vector space (resp. complex vector bundle), we let P (V ) be the projective
space (resp. bundle) of lines of V , and P(V ) = P (V ∗) be the projective space (resp. bundle) of hyperplanes of V .

(4.13) Exercise. It is important for various applications to obtain vanishing theorems which are also valid in the
case of semi-positive line bundles. The easiest case is the following result of Girbau [Gir76]: let (X,ω) be compact
Kähler; assume that F is a line bundle and that iΘF,h > 0 has at least n− k positive eigenvalues at each point,
for some integer k > 0; show that Hp,q(X,F ) = 0 for p+ q > n+ k + 1.
Hint: use the Kähler metric ωε = iΘF,h + εω with ε > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained by Sommese [Som78]: define
F to be k-ample if some multiple mF is such that the canonical map

Φ|mF | : X rB|mF | → PN−1

has at most k-dimensional fibers and dimB|mF | 6 k. If X is projective and F is k-ample, show that Hp,q(X,F ) =
0 for p+ q > n+ k + 1.
Hint: prove the dual result Hp,q(X,F−1) = 0 for p+ q 6 n− k− 1 by induction on k. First show that F 0-ample
⇒ F positive; then use hyperplane sections Y ⊂ X to prove the induction step, thanks to the exact sequences

0 −→ ΩpX ⊗ F−1 ⊗O(−Y ) −→ ΩpX ⊗ F−1 −→
(
ΩpX ⊗ F−1

)
↾Y

−→ 0,

0 −→ Ωp−1
Y ⊗ F−1

↾Y −→
(
ΩpX ⊗ F−1

)
↾Y

−→ ΩpY ⊗ F−1
↾Y −→ 0. �

5. L
2 estimates and existence theorems

5.A. Basic L2 existence theorems

The starting point is the following L2 existence theorem, which is essentially due to Hörmander [Hör65, 66], and
Andreotti-Vesentini [AV65], following fundamental work by Kohn [Koh63, 64]. We will only present the strategy
and the main ideas and tools, referring e.g. to [Dem82b] for a more detailed exposition of the technical situation
considered here.
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(5.1) Theorem. Let (X,ω) be a Kähler manifold. Here X is not necessarily compact, but we assume that the
geodesic distance δω is complete on X. Let F be a hermitian vector bundle of rank r over X, and assume that the
curvature operator A = Ap,qF,h,ω = [iΘF,h, Λω] is positive definite everywhere on Λp,qT ⋆X ⊗ F , q > 1. Then for any

form g ∈ L2(X,Λp,qT ⋆X⊗F ) satisfying D′′g = 0 and
∫
X〈A−1g, g〉 dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ⋆X⊗F )

such that D′′f = g and ∫

X

|f |2 dVω 6

∫

X

〈A−1g, g〉 dVω.

Proof. The assumption that δω is complete implies the existence of cut-off functions ψν with arbitrarily large
compact support such that |dψν | 6 1 (take ψν to be a function of the distance x 7→ δω(x0, x), which is an almost
everywhere differentiable 1-Lipschitz function, and regularize if necessary). From this, it follows that very form
u ∈ L2(X,Λp,qT ⋆X ⊗ F ) such that D′′u ∈ L2 and D′′⋆u ∈ L2 in the sense of distribution theory is a limit of a
sequence of smooth forms uν with compact support, in such a way that uν → u,D′′uν → D′′u andD′′⋆uν → D′′⋆u
in L2 (just take uν to be a regularization of ψνu). As a consequence, the basic a priori inequality (4.7) extends
to arbitrary forms u such that u, D′′u,D′′⋆u ∈ L2 . Now, consider the Hilbert space orthogonal decomposition

L2(X,Λp,qT ⋆X ⊗ F ) = KerD′′ ⊕ (KerD′′)⊥,

observing that KerD′′ is weakly (hence strongly) closed. Let v = v1 + v2 be the decomposition of a smooth form
v ∈ Dp,q(X,F ) with compact support according to this decomposition (v1, v2 do not have compact support in
general !). Since (KerD′′)⊥ ⊂ KerD′′⋆ by duality and g, v1 ∈ KerD′′ by hypothesis, we get D′′⋆v2 = 0 and

|〈g, v〉|2 = |〈g, v1〉|
2 6

∫

X

〈A−1g, g〉 dVω

∫

X

〈Av1, v1〉 dVω

thanks to the Cauchy-Schwarz inequality. The a priori inequality (4.7) applied to u = v1 yields
∫

X

〈Av1, v1〉 dVω 6 ‖D′′v1‖
2 + ‖D′′⋆v1‖

2 = ‖D′′⋆v1‖
2 = ‖D′′⋆v‖2.

Combining both inequalities, we find

|〈g, v〉|2 6
(∫

X

〈A−1g, g〉 dVω
)
‖D′′⋆v‖2

for every smooth (p, q)-form v with compact support. This shows that we have a well defined linear form

w = D′′⋆v 7−→ 〈v, g〉, L2(X,Λp,q−1T ⋆X ⊗ F ) ⊃ D′′⋆(Dp,q(F )) −→ C

on the range of D′′⋆. This linear form is continuous in L2 norm and has norm 6 C with

C =
(∫

X

〈A−1g, g〉 dVω
)1/2

.

By the Hahn-Banach theorem, there is an element f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) with ||f || 6 C, such that 〈v, g〉 =
〈D′′⋆v, f〉 for every v, hence D′′f = g in the sense of distributions. The inequality ||f || 6 C is equivalent to the
last estimate in the theorem. �

The above L2 existence theorem can be applied in the fairly general context of weakly pseudoconvex manifolds.
By this, we mean a complex manifold X such that there exists a smooth psh exhaustion function ψ on X (ψ is said
to be an exhaustion if for every c > 0 the upperlevel set Xc = ψ−1(c) is relatively compact, i.e. ψ(z) tends to +∞
when z is taken outside larger and larger compact subsets of X). In particular, every compact complex manifold
X is weakly pseudoconvex (take ψ = 0), as well as every Stein manifold, e.g. affine algebraic submanifolds of CN

(take ψ(z) = |z|2), open balls X = B(z0, r)
(
take ψ(z) = 1/(r − |z − z0|2)

)
, convex open subsets, etc. Now, a

basic observation is that every weakly pseudoconvex Kähler manifold (X,ω) carries a complete Kähler metric:
let ψ > 0 be a psh exhaustion function and set

ωε = ω + ε id′d′′ψ2 = ω + 2ε(2iψd′d′′ψ + id′ψ ∧ d′′ψ).

Then |dψ|ωε
6 1/ε and |ψ(x) − ψ(y)| 6 ε−1δωε

(x, y). It follows easily from this estimate that the geodesic balls
are relatively compact, hence δωε

is complete for every ε > 0. Therefore, the L2 existence theorem can be applied
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to each Kähler metric ωε, and by passing to the limit it can even be applied to the non necessarily complete
metric ω. An important special case is the following

(5.2) Theorem. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is weakly pseudoconvex. Let F be a
hermitian line bundle and let

γ1(x) 6 . . . 6 γn(x)

be the curvature eigenvalues (i.e. the eigenvalues of iΘF,h with respect to the metric ω) at every point. Assume
that the curvature is positive, i.e. γ1 > 0 everywhere. Then for any form g ∈ L2(X,Λn,qT ⋆X ⊗ F ) satisfying
D′′g = 0 and

∫
X
〈(γ1 + . . .+ γq)

−1|g|2 dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) such that D′′f = g and

∫

X

|f |2 dVω 6

∫

X

(γ1 + . . .+ γq)
−1|g|2 dVω.

Proof. Indeed, for p = n, Formula 4.10 shows that

〈Au, u〉 > (γ1 + . . .+ γq)|u|
2,

hence 〈A−1u, u〉 > (γ1 + . . .+ γq)
−1|u|2. �

An important observation is that the above theorem still applies when the hermitian metric on F is a singular
metric with positive curvature in the sense of currents. In fact, by standard regularization techniques (convolution
of psh functions by smoothing kernels), the metric can be made smooth and the solutions obtained by (5.1) or
(5.2) for the smooth metrics have limits satisfying the desired estimates. Especially, we get the following

(5.3) Corollary. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is weakly pseudoconvex. Let F be a
holomorphic line bundle equipped with a singular metric whose local weights are denoted ϕ ∈ L1

loc, i.e. H = E−ϕ.
Suppose that

iΘF,h = id′d′′ϕ > εω

for some ε > 0. Then for any form g ∈ L2(X,Λn,qT ⋆X⊗F ) satisfying D′′g = 0, there exists f ∈ L2(X,Λp,q−1T ⋆X⊗
F ) such that D′′f = g and ∫

X

|f |2e−ϕ dVω 6
1

qε

∫

X

|g|2e−ϕ dVω . �

Here we denoted somewhat incorrectly the metric by |f |2e−ϕ, as if the weight ϕ was globally defined on X (of
course, this is so only if F is globally trivial). We will use this notation anyway, because it clearly describes the
dependence of the L2 norm on the psh weights.

5.B. Multiplier ideal sheaves and Nadel vanishing theorem

We now introduce the concept of multiplier ideal sheaf, following A. Nadel [Nad89]. The main idea actually goes
back to the fundamental works of Bombieri [Bom70] and H. Skoda [Sko72a].

(5.4) Definition. Let ϕ be a psh function on an open subset Ω ⊂ X ; to ϕ is associated the ideal subsheaf I(ϕ) ⊂ OΩ

of germs of holomorphic functions f ∈ OΩ,x such that |f |2e−2ϕ is integrable with respect to the Lebesgue measure
in some local coordinates near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which e−2ϕ is non integrable. Of course,
such points occur only if ϕ has logarithmic poles. This is made precise as follows.

(5.5) Definition. A psh function ϕ is said to have a logarithmic pole of coefficient γ at a point x ∈ X if the Lelong
number

ν(ϕ, x) := lim inf
z→x

ϕ(z)

log |z − x|

is non zero and if ν(ϕ, x) = γ.
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(5.6) Lemma (Skoda [Sko72a]). Let ϕ be a psh function on an open set Ω and let x ∈ Ω.

(a) If ν(ϕ, x) < 1, then e−2ϕ is integrable in a neighborhood of x, in particular I(ϕ)x = OΩ,x.

(b) If ν(ϕ, x) > n+ s for some integer s > 0, then e−2ϕ > C|z − x|−2n−2s in a neighborhood of x and I(ϕ)x ⊂
m
s+1
Ω,x, where mΩ,x is the maximal ideal of OΩ,x.

(c) The zero variety V (I(ϕ)) of I(ϕ) satisfies

En(ϕ) ⊂ V (I(ϕ)) ⊂ E1(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) > c} is the c-upperlevel set of Lelong numbers of ϕ.

Proof. (a) Set Θ = ddcϕ and γ = ν(Θ, x) = ν(ϕ, x). Let χ be a cut-off function with support in a small ball
B(x, r), equal to 1 in B(x, r/2). As (ddc log |z|)n = δ0, we get

ϕ(z) =

∫

B(x,r)

χ(ζ)ϕ(ζ)(ddc log |ζ − z|)n

=

∫

B(x,r)

ddc(χ(ζ)ϕ(ζ)) ∧ log |ζ − z|(ddc log |ζ − z|)n−1

for z ∈ B(x, r/2). Expanding ddc(χϕ) and observing that dχ = ddcχ = 0 on B(x, r/2), we find

ϕ(z) =

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ log |ζ − z|(ddc log |ζ − z|)n−1 + smooth terms

on B(x, r/2). Fix r so small that
∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − x|)n−1 6 ν(Θ, x, r) < 1.

By continuity, there exists δ, ε > 0 such that

I(z) :=

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1 6 1 − δ

for all z ∈ B(x, ε). Applying Jensen’s convexity inequality to the probability measure

dµz(ζ) = I(z)−1χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1,

we find

−ϕ(z) =

∫

B(x,r)

I(z) log |ζ − z|−1 dµz(ζ) +O(1) =⇒

e−2ϕ(z) 6 C

∫

B(x,r)

|ζ − z|−2I(z) dµz(ζ).

As
dµz(ζ) 6 C1|ζ − z|−(2n−2)Θ(ζ) ∧ (ddc|ζ|2)n−1 = C2|ζ − z|−(2n−2)dσΘ(ζ),

we get

e−2ϕ(z) 6 C3

∫

B(x,r)

|ζ − z|−2(1−δ)−(2n−2)dσΘ(ζ),

and the Fubini theorem implies that e−2ϕ(z) is integrable on a neighborhood of x.

(b) If ν(ϕ, x) = γ, the convexity properties of psh functions, namely, the convexity of log r 7→ sup|z−x|=r ϕ(z)
implies that

ϕ(z) 6 γ log |z − x|/r0 +M,

where M is the supremum on B(x, r0). Hence there exists a constant C > 0 such that e−2ϕ(z) > C|z − x|−2γ in
a neighborhood of x. The desired result follows from the identity

∫

B(0,r0)

∣∣ ∑
aαz

α
∣∣2

|z|2γ
dV (z) = Const

∫ r0

0

( ∑
|aα|

2r2|α|
)
r2n−1−2γ dr,
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which is an easy consequence of Parseval’s formula. In fact, if γ has integral part [γ] = n+s, the integral converges
if and only if aα = 0 for |α| 6 s.

(c) is just a simple formal consequence of (a) and (b). �

(5.7) Proposition ([Nad89]). For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ) is a coherent sheaf of ideals
over Ω. Moreover, if Ω is a bounded Stein open set, the sheaf I(ϕ) is generated by any Hilbert basis of the
L2 space H2(Ω,ϕ) of holomorphic functions f on Ω such that

∫
Ω
|f |2e−2ϕ dλ < +∞.

Proof. Since the result is local, we may assume that Ω is a bounded pseudoconvex open set in Cn. By the
strong noetherian property of coherent sheaves, the family of sheaves generated by finite subsets of H2(Ω,ϕ) has
a maximal element on each compact subset of Ω, hence H2(Ω,ϕ) generates a coherent ideal sheaf J ⊂ OΩ. It is
clear that J ⊂ I(ϕ); in order to prove the equality, we need only check that Jx+I(ϕ)x∩m

s+1
Ω,x = I(ϕ)x for every

integer s, in view of the Krull lemma. Let f ∈ I(ϕ)x be defined in a neighborhood V of x and let θ be a cut-off
function with support in V such that θ = 1 in a neighborhood of x. We solve the equation d′′u = g := d′′(θf) by
means of Hörmander’s L2 estimates 5.3, where F is the trivial line bundle Ω × C equipped with the strictly psh
weight

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x| + |z|2.

We get a solution u such that
∫
Ω |u|2e−2ϕ|z − x|−2(n+s)dλ <∞, thus F = θf − u is holomorphic, F ∈ H2(Ω,ϕ)

and fx − Fx = ux ∈ I(ϕ)x ∩ m
s+1
Ω,x . This proves the coherence. Now, J is generated by any Hilbert basis of

H2(Ω,ϕ), because it is well-known that the space of sections of any coherent sheaf is a Fréchet space, therefore
closed under local L2 convergence. �

The multiplier ideal sheaves satisfy the following basic functoriality property with respect to direct images
of sheaves by modifications.

(5.8) Proposition. Let µ : X ′ → X be a modification of non singular complex manifolds (i.e. a proper generically
1:1 holomorphic map), and let ϕ be a psh function on X. Then

µ⋆
(
O(KX′) ⊗ I(ϕ ◦ µ)

)
= O(KX) ⊗ I(ϕ).

Proof. Let n = dimX = dimX ′ and let S ⊂ X be an analytic set such that µ : X ′ r S′ → X r S is a
biholomorphism. By definition of multiplier ideal sheaves, O(KX)⊗I(ϕ) is just the sheaf of holomorphic n-forms

f on open sets U ⊂ X such that in
2

f ∧ f e−2ϕ ∈ L1
loc(U). Since ϕ is locally bounded from above, we may

even consider forms f which are a priori defined only on U r S, because f will be in L2
loc(U) and therefore will

automatically extend through S. The change of variable formula yields
∫

U

in
2

f ∧ f e−2ϕ =

∫

µ−1(U)

in
2

µ⋆f ∧ µ⋆f e−2ϕ◦µ,

hence f ∈ Γ (U,O(KX) ⊗ I(ϕ)) iff µ⋆f ∈ Γ (µ−1(U),O(KX′) ⊗ I(ϕ ◦ µ)). Proposition 5.8 is proved. �

(5.9) Remark. If ϕ has analytic singularities (according to Definition 1.10), the computation of I(ϕ) can be
reduced to a purely algebraic problem.

The first observation is that I(ϕ) can be computed easily if ϕ has the form ϕ =
∑
αj log |gj | where Dj =

g−1
j (0) are nonsingular irreducible divisors with normal crossings. Then I(ϕ) is the sheaf of functions h on open

sets U ⊂ X such that ∫

U

|h|2
∏

|gj |
−2αjdV < +∞.

Since locally the gj can be taken to be coordinate functions from a local coordinate system (z1, . . . , zn), the
condition is that h is divisible by

∏
g
mj

j where mj − αj > −1 for each j, i.e. mj > ⌊αj⌋ (integer part). Hence

I(ϕ) = O(−⌊D⌋) = O(−
∑

⌊αj⌋Dj)

where ⌊D⌋ denotes the integral part of the Q-divisor D =
∑
αjDj .
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Now, consider the general case of analytic singularities and suppose that ϕ ∼ α
2 log

(
|f1|2 + · · ·+ |fN |2

)
near

the poles. By the remarks after Definition 1.10, we may assume that the (fj) are generators of the integrally
closed ideal sheaf J = J (ϕ/α), defined as the sheaf of holomorphic functions h such that |h| 6 C exp(ϕ/α). In
this case, the computation is made as follows (see also L. Bonavero’s work [Bon93], where similar ideas are used
in connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification µ : X̃ → X of X such that µ⋆J is an invertible sheaf O(−D)
associated with a normal crossing divisor D =

∑
λjDj , where (Dj) are the components of the exceptional divisor

of X̃ (take the blow-up X ′ of X with respect to the ideal J so that the pull-back of J to X ′ becomes an invertible
sheaf O(−D′), then blow up again by Hironaka [Hir64] to make X ′ smooth and D′ have normal crossings). Now,
we have K

X̃
= µ⋆KX +R where R =

∑
ρjDj is the zero divisor of the Jacobian function Jµ of the blow-up map.

By the direct image formula 5.8, we get

I(ϕ) = µ⋆
(
O(K

X̃
− µ⋆KX) ⊗ I(ϕ ◦ µ)

)
= µ⋆

(
O(R) ⊗ I(ϕ ◦ µ)

)
.

Now, (fj ◦ µ) are generators of the ideal O(−D), hence

ϕ ◦ µ ∼ α
∑

λj log |gj|

where gj are local generators of O(−Dj). We are thus reduced to computing multiplier ideal sheaves in the case
where the poles are given by a Q-divisor with normal crossings

∑
αλjDj . We obtain I(ϕ◦µ) = O(−

∑
⌊αλj⌋Dj),

hence

I(ϕ) = µ⋆OX̃

( ∑
(ρj − ⌊αλj⌋)Dj

)
. �

(5.10) Exercise. Compute the multiplier ideal sheaf I(ϕ) associated with ϕ = log(|z1|α1 +. . .+|zp|αp) for arbitrary
real numbers αj > 0.
Hint: using Parseval’s formula and polar coordinates zj = rje

iθj , show that the problem is equivalent to deter-
mining for which p-tuples (β1, . . . , βp) ∈ Np the integral

∫

[0,1]p

r2β1

1 . . . r
2βp
p r1dr1 . . . rpdrp

r2α1
1 + . . .+ r

2αp
p

=

∫

[0,1]p

t
(β1+1)/α1

1 . . . t
(βp+1)/αp
p

t1 + . . .+ tp

dt1
t1

. . .
dtp
tp

is convergent. Conclude from this that I(ϕ) is generated by the monomials zβ1

1 . . . z
βp
p such that

∑
(βp+1)/αp > 1.

(This exercise shows that the analytic definition of I(ϕ) is sometimes also quite convenient for computations). �

Let F be a line bundle over X with a singular metric h of curvature current ΘF,h. If ϕ is the weight representing
the metric in an open set Ω ⊂ X , the ideal sheaf I(ϕ) is independent of the choice of the trivialization and so it
is the restriction to Ω of a global coherent sheaf I(h) on X . We will sometimes still write I(h) = I(ϕ) by abuse
of notation. In this context, we have the following fundamental vanishing theorem, which is probably one of the
most central results of analytic and algebraic geometry (as we will see later, it contains the Kawamata-Viehweg
vanishing theorem as a special case).

(5.11) Nadel vanishing theorem ([Nad89], [Dem93b]). Let (X,ω) be a Kähler weakly pseudoconvex manifold, and
let F be a holomorphic line bundle over X equipped with a singular hermitian metric h of weight ϕ. Assume that
iΘF,h > εω for some continuous positive function ε on X. Then

Hq
(
X,O(KX + F ) ⊗ I(h)

)
= 0 for all q > 1.

Proof. Let Lq be the sheaf of germs of (n, q)-forms u with values in F and with measurable coefficients, such
that both |u|2e−2ϕ and |d′′u|2e−2ϕ are locally integrable. The d′′ operator defines a complex of sheaves (L•, d′′)
which is a resolution of the sheaf O(KX +F )⊗I(ϕ): indeed, the kernel of d′′ in degree 0 consists of all germs of
holomorphic n-forms with values in F which satisfy the integrability condition; hence the coefficient function lies
in I(ϕ); the exactness in degree q > 1 follows from Corollary 5.3 applied on arbitrary small balls. Each sheaf Lq

is a C∞-module, so L• is a resolution by acyclic sheaves. Let ψ be a smooth psh exhaustion function on X . Let
us apply Corollary 5.3 globally on X , with the original metric of F multiplied by the factor e−χ◦ψ , where χ is a



5. L2 estimates and existence theorems 29

convex increasing function of arbitrary fast growth at infinity. This factor can be used to ensure the convergence
of integrals at infinity. By Corollary 5.3, we conclude that Hq

(
Γ (X,L•)

)
= 0 for q > 1. The theorem follows. �

(5.12) Corollary. Let (X,ω), F and ϕ be as in Theorem 5.11 and let x1, . . . , xN be isolated points in the zero
variety V (I(ϕ)). Then there is a surjective map

H0(X,KX + F ) −→−→
⊕

16j6N

O(KX + L)xj
⊗

(
OX/I(ϕ)

)
xj
.

Proof. Consider the long exact sequence of cohomology associated to the short exact sequence 0 → I(ϕ) →
OX → OX/I(ϕ) → 0 twisted by O(KX + F ), and apply Theorem 5.11 to obtain the vanishing of the first H1

group. The asserted surjectivity property follows. �

(5.13) Corollary. Let (X,ω), F and ϕ be as in Theorem 5.11 and suppose that the weight function ϕ is such that
ν(ϕ, x) > n + s at some point x ∈ X which is an isolated point of E1(ϕ). Then H0(X,KX + F ) generates all
s-jets at x.

Proof. The assumption is that ν(ϕ, y) < 1 for y near x, y 6= x. By Skoda’s lemma 5.6 b), we conclude that e−2ϕ

is integrable at all such points y, hence I(ϕ)y = OX,y, whilst I(ϕ)x ⊂ m
s+1
X,x by 5.6 a). Corollary 5.13 is thus a

special case of 5.12. �

The philosophy of these results (which can be seen as generalizations of the Hörmander-Bombieri-Skoda
theorem [Bom70], [Sko72a, 75]) is that the problem of constructing holomorphic sections of KX+F can be solved
by constructing suitable hermitian metrics on F such that the weight ϕ has isolated poles at given points xj .

(5.14) Exercise. Assume that X is compact and that L is a positive line bundle on X . Let {x1, . . . , xN} be a
finite set. Show that there are constants a, b > 0 depending only on L and N such that H0(X,mL) generates
jets of any order s at all points xj for m > as+ b.
Hint: Apply Corollary 5.12 to F = −KX +mL, with a singular metric on L of the form h = h0e

−εψ, where h0

is smooth of positive curvature, ε > 0 small and ψ(z) ∼ log |z − xj | in a neighborhood of xj .
Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira embedding theorem). If L is a line bundle on a compact complex manifold, then L is
ample if and only if L is positive. �

(5.16) Exercise (solution of the Levi problem). Show that the following two properties are equivalent.

(a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

(b) X is Stein, i.e. the global holomorphic functions H0(X,OX) separate points and yield local coordinates at
any point, and X is holomorphically convex (this means that for any discrete sequence zν there is a function
f ∈ H0(X,OX) such that |f(zν)| → ∞). �

(5.17) Remark. As long as forms of bidegree (n, q) are considered, the L2 estimates can be extended to complex
spaces with arbitrary singularities. In fact, if X is a complex space and ϕ is a psh weight function on X , we
may still define a sheaf KX(ϕ) on X , such that the sections on an open set U are the holomorphic n-forms f

on the regular part U ∩Xreg, satisfying the integrability condition in
2

f ∧ f e−2ϕ ∈ L1
loc(U). In this setting, the

functoriality property 5.8 becomes
µ⋆

(
KX′(ϕ ◦ µ)

)
= KX(ϕ)

for arbitrary complex spaces X , X ′ such that µ : X ′ → X is a modification. If X is nonsingular we have
KX(ϕ) = O(KX) ⊗ I(ϕ), however, if X is singular, the symbols KX and I(ϕ) must not be dissociated. The
statement of the Nadel vanishing theorem becomes Hq(X,O(F ) ⊗ KX(ϕ)) = 0 for q > 1, under the same
assumptions (X Kähler and weakly pseudoconvex, curvature > εω). The proof can be obtained by restricting
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everything to Xreg. Although in general Xreg is not weakly pseudoconvex (e.g. in case codimXsing > 2), Xreg

is always Kähler complete (the complement of a proper analytic subset in a Kähler weakly pseudoconvex space
is complete Kähler, see e.g. [Dem82b]). As a consequence, Nadel’s vanishing theorem is essentially insensitive to
the presence of singularities. �

6. Numerically effective and pseudo-effective line bundles

6.A. Pseudo-effective line bundles and metrics with minimal singularities

The concept of pseudo-effectivity is quite general and makes sense on an arbitrary compact complex manifold X
(no projective or Kähler assumption is needed). In this general context, it is better to work with ∂∂-cohomology
classes instead of De Rham cohomology classes: we define

(6.1) Hp,q

∂∂
(X) =

{
d-closed (p, q)-forms}/

{
∂∂-exact (p, q)-forms}.

By means of the Frölicher spectral sequence, it is easily shown that these cohomology groups are finite dimensional
and can be computed either with spaces of smooth forms or with currents. In both cases, the quotient topology of
Hp,q

∂∂
(X) induced by the Fréchet topology of smooth forms or by the weak topology of currents is Hausdorff. Clearly

H•
∂∂

(X) is a bigraded algebra. This algebra can be shown to be isomorphic to the usual De Rham cohomology

algebra H•(X,C) if X is Kähler or more generally if X is in the Fujiki class C of manifolds bimeromorphic to
Kähler manifolds.

(6.2) Definition. Let L we a holomorphic line bundle on a compact complex manifold X. we say that L pseudo-
effective if c1(L) ∈ H1,1

∂∂
(X) is the cohomology class of some closed positive current T , i.e. if L can be equipped

with a singular hermitian metric h with T = i
2πΘL,h > 0 as a current.

The locus where h has singularities turns out to be extremely important. The following definition was introduced
in [DPS00].

(6.3) Definition. Let L be a pseudo-effective line bundle on a compact complex manifold X. Consider two hermitian
metrics h1, h2 on L with curvature iΘL,hj

> 0 in the sense of currents.

(i) We will write h1 4 h2, and say that h1 is less singular than h2, if there exists a constant C > 0 such that
h1 6 Ch2.

(ii) We will write h1 ∼ h2, and say that h1, h2 are equivalent with respect to singularities, if there exists a
constant C > 0 such that C−1h2 6 h1 6 Ch2.

Of course h1 4 h2 if and only if the associated weights in suitable trivializations locally satisfy ϕ2 6 ϕ1 + C.
This implies in particular ν(ϕ1, x) 6 ν(ϕ2, x) at each point. The above definition is motivated by the following
observation.

(6.4) Theorem. For every pseudo-effective line bundle L over a compact complex manifold X, there exists up to
equivalence of singularities a unique class of hermitian metrics h with minimal singularities such that iΘL,h > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric h∞ (whose curvature is of random sign and
signature), and we write singular metrics of L under the form h = h∞e−ψ. The condition iΘL,h > 0 is equivalent
to i

2π∂∂ψ > −u where u = i
2πΘL,h∞ . This condition implies that ψ is plurisubharmonic up to the addition of

the weight ϕ∞ of h∞, and therefore locally bounded from above. Since we are concerned with metrics only up
to equivalence of singularities, it is always possible to adjust ψ by a constant in such a way that supX ψ = 0. We
now set

hmin = h∞e
−ψmin, ψmin(x) = sup

ψ
ψ(x)

where the supremum is extended to all functions ψ such that supX ψ = 0 and i
2π∂∂ψ > −u. By standard

results on plurisubharmonic functions (see Lelong [Lel69]), ψmin still satisfies i
2π∂∂ψmin > −u (i.e. the weight
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ϕ∞ + ψmin of hmin is plurisubharmonic), and hmin is obviously the metric with minimal singularities that we
were looking for. [In principle one should take the upper semicontinuous regularization ψ∗

min of ψmin to really get
a plurisubharmonic weight, but since ψ∗

min also participates to the upper envelope, we obtain here ψmin = ψ∗
min

automatically]. �

(6.5) Remark. In general, the supremum ψ = supj∈I ψj of a locally dominated family of plurisubharmonic
functions ψj is not plurisubharmonic strictly speaking, but its “upper semi-continuous regularization” ψ∗(z) =
lim supζ→z ψ(ζ) is plurisubharmonic and coincides almost everywhere with ψ, with ψ∗ > ψ. However, in the

context of (6.5), ψ∗ still satisfies ψ∗ 6 0 and i
2π∂∂ψ > −u, hence ψ∗ participates to the upper envelope.

As a consequence, we have ψ∗ 6 ψ and thus ψ = ψ∗ is indeed plurisubharmonic. Under a strict positivity
assumption, namely if L is a big line bundle (i.e. the curvature can be taken to be strictly positive in the sense
of currents, see 6.12) and (6.14 f)), then hmin can be shown to possess some regularity properties. The reader
may consult [BmD09] for a rather general (but certainly non trivial) proof that ψmin possesses locally bounded
second derivatives ∂2ψmin/∂zj∂zk outside an analytic set Z ⊂ X ; in other words, iΘL,hmin has locally bounded
coefficients on X r Z.

(6.6) Definition. Let L be a pseudo-effective line bundle. If h is a singular hermitian metric such that iΘL,h > 0
and

H0(X,mL⊗ I(h⊗m)) ≃ H0(X,mL) for all m > 0,

we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing conditions prescribed by the
multiplier ideal sheaves I(h⊗m) do not kill any sections of L and its multiples.

(6.7) Exercise. A special case is when there is an isomorphism pL = A+E where A and E are effective divisors
such that H0(X,mpL) = H0(X,mA) for all m and O(A) is generated by sections. Then A possesses a smooth
hermitian metric hA, and this metric defines a singular hermitian metric h on L with poles 1

pE and curvature
1
pΘA,hA

+ 1
p [E]. Show that this metric h is an analytic Zariski decomposition.

Note: when X projective and there is a decomposition pL = A+E with A nef (see (6.9) below), E effective and
H0(X,mpL) = H0(X,mA) for all m, one says that this is an algebraic Zariski decomposition of L. It can be
shown that Zariski decompositions exist in dimension 2, but in higher dimension one can see that they do not
exist.

(6.8) Theorem. The metric hmin with minimal singularities provides an analytic Zariski decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic decompositions do not exist in
general, especially in dimension 3 and more.)

Proof. Let σ ∈ H0(X,mL) be any section. Then we get a singular metric h on L by putting |ξ|h = |ξ/σ(x)1/m|
for ξ ∈ Lx, and it is clear that |σ|hm = 1 for this metric. Hence σ ∈ H0(X,mL ⊗ I(h⊗m)), and a fortiori
σ ∈ H0(X,mL⊗ I(h⊗mmin)) since hmin is less singular than h. �

6.B. Nef line bundles

Many problems of algebraic geometry (e.g. problems of classification of algebraic surfaces or higher dimensional
varieties) lead in a natural way to the study of line bundles satisfying semipositivity conditions. It turns out that
semipositivity in the sense of curvature (at least, as far as smooth metrics are considered) is not a very satisfactory
notion. A more flexible notion perfectly suitable for algebraic purposes is the notion of numerical effectivity. The
goal of this section is to give a few fundamental algebraic definitions and to discuss their differential geometric
counterparts. We first suppose that X is a projective algebraic manifold, dimX = n.

(6.9) Definition. A holomorphic line bundle L over a projective manifold X is said to be numerically effective,
nef for short, if L · C =

∫
C
c1(L) > 0 for every curve C ⊂ X.
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If L is nef, it can be shown that Lp ·Y =
∫
Y
c1(L)p > 0 for any p-dimensional subvariety Y ⊂ X (see e.g. [Har70]).

In relation to this, let us recall the Nakai-Moishezon ampleness criterion: a line bundle L is ample if and only if
Lp · Y > 0 for every p-dimensional subvariety Y . From this, we easily infer

(6.10) Proposition. Let L be a line bundle on a projective algebraic manifold X, on which an ample line bundle
A and a hermitian metric ω are given. The following properties are equivalent:

(a) L is nef ;

(b) for any integer k > 1, the line bundle kL+A is ample ;

(c) for every ε > 0, there is a smooth metric hε on L such that iΘL,hε
> −εω.

Proof. (a) ⇒ (b). If L is nef and A is ample then clearly kL+ A satisfies the Nakai-Moishezon criterion, hence
kL+A is ample.

(b) ⇒ (c). Condition (c) is independent of the choice of the hermitian metric, so we may select a metric hA on
A with positive curvature and set ω = iΘA,hA

. If kL + A is ample, this bundle has a metric hkL+A of positive
curvature. Then the metric hL = (hkL+A ⊗ h−1

A )1/k has curvature

iΘL,hL
=

1

k

(
iΘ(kL +A) − iΘA

)
> −

1

k
iΘA,hA

;

in this way the negative part can be made smaller than ε ω by taking k large enough.

(c) ⇒ (a). Under hypothesis (c), we get L ·C =
∫
C

i
2πΘL,hε

> − ε
2π

∫
C ω for every curve C and every ε > 0, hence

L · C > 0 and L is nef. �

Let now X be an arbitrary compact complex manifold. Since there need not exist any curve in X , Property
6.10 c) is simply taken as a definition of nefness ([DPS94]):

(6.11) Definition. A line bundle L on a compact complex manifold X is said to be nef if for every ε > 0, there is
a smooth hermitian metric hε on L such that iΘL,hε

> −εω.

In general, it is not possible to extract a smooth limit h0 such that iΘL,h0 > 0. The following simple example is
given in [DPS94] (Example 1.7). Let E be a non trivial extension 0 → O → E → O → 0 over an elliptic curve C
and let X = P(E) (with notation as in (4.12)) be the corresponding ruled surface over C. Then L = OP(E)(1) is
nef but does not admit any smooth metric of nonnegative curvature. This example answers negatively a question
raised by Fujita [Fuj83].

Let us now introduce the important concept of Kodaira-Iitaka dimension of a line bundle.

(6.12) Definition. If L is a line bundle, the Kodaira-Iitaka dimension κ(L) is the supremum of the rank of the
canonical maps

Φm : X rBm −→ P(Vm), x 7−→ Hx = {σ ∈ Vm ; σ(x) = 0}, m > 1

with Vm = H0(X,mL) and Bm =
⋂
σ∈Vm

σ−1(0) = base locus of Vm. In case Vm = {0} for all m > 1, we set
κ(L) = −∞.
A line bundle is said to be big if κ(L) = dimX.

The following lemma is well-known (the proof is a rather elementary consequence of the Schwarz lemma).

(6.13) Serre-Siegel lemma ([Ser54], [Sie55]). Let L be any line bundle on a compact complex manifold. Then we
have

h0(X,mL) 6 O(mκ(L)) for m > 1,

and κ(L) is the smallest constant for which this estimate holds. �



6. Numerically effective and pseudo-effective line bundles 33

6.C. Pseudoeffective line bundles and positive cones

We now discuss the various concepts of positive cones in the space of numerical classes of line bundles, and
establish a simple dictionary relating these concepts to corresponding concepts in the context of differential
geometry.

Let us recall that an integral cohomology class in H2(X,Z) is the first Chern class of a holomorphic (or
algebraic) line bundle if and only if it lies in the Neron-Severi group

NS(X) = Ker
(
H2(X,Z) → H2(X,OX)

)

(this fact is just an elementary consequence of the exponential exact sequence 0 → Z → O → O⋆ → 0). If X is
compact Kähler, as we will suppose from now on in this section, this is the same as saying that the class is of
type (1, 1) with respect to Hodge decomposition.

Let NSR(X) be the real vector space NS(X) ⊗ R ⊂ H2(X,R). We define four convex cones

Amp(X) ⊂ Eff(X) ⊂ NSR(X),

Nef(X) ⊂ Psef(X) ⊂ NSR(X)

which are, respectively, the convex cones generated by Chern classes c1(L) of ample and effective line bundles,
resp. the closure of the convex cones generated by numerically effective and pseudo-effective line bundles; we say
that L is effective if mL has a section for some m > 0, i.e. if O(mL) ≃ O(D) for some effective divisor D.

For each of the ample, effective, nef and pseudo-effective cones, the first Chern class c1(L) of a line bundle
L lies in the cone if and only if L has the corresponding property (for Psef(X) use the fact that the space of
positive currents of mass 1 is weakly compact; the case of all other cones is obvious).

(6.14) Proposition. Let (X,ω) be a compact Kähler manifold. The numerical cones satisfy the following properties.

(a) Amp(X) = Amp(X)◦ ⊂ Nef(X)◦, Nef(X) ⊂ Psef(X).

(b) If moreover X is projective algebraic, we have Amp(X) = Nef(X)◦ (therefore Amp(X) = Nef(X)), and
Eff(X) = Psef(X).

If L is a line bundle on X and h denotes a hermitian metric on L, the following properties are equivalent:

(c) c1(L) ∈ Amp(X) ⇔ ∃ε > 0, ∃h smooth such that iΘL,h > εω.

(d) c1(L) ∈ Nef(X) ⇔ ∀ε > 0, ∃h smooth such that iΘL,h > −εω.

(e) c1(L) ∈ Psef(X) ⇔ ∃h possibly singular such that iΘL,h > 0.

(f) If moreover X is projective algebraic, then
c1(L) ∈ Psef(X)◦ ⇔ κ(L) = dimX

⇔ ∃ε > 0, ∃h possibly singular such that iΘL,h > εω.

Proof. (c) and (d) are already known and (e) is a definition.

a) The ample cone Amp(X) is always open by definition and contained in Nef(X), so the first inclusion is obvious
(Amp(X) is of course empty if X is not projective algebraic). Let us now prove that Nef(X) ⊂ Psef(X). Let
L be a line bundle with c1(L) ∈ Nef(X). Then for every ε > 0, there is a current Tε = i

2πΘL,hε
> −εω. Then

Tε + εω is a closed positive current and the family is uniformly bounded in mass for ε ∈ ]0, 1], since
∫

X

(Tε + εω) ∧ ωn−1 =

∫

X

c1(L) ∧ ωn−1 + ε

∫

X

ωn.

By weak compactness, some subsequence converges to a weak limit T > 0 and T ∈ c1(L) (the cohomology class
{T } of a current is easily shown to depend continuously on T with respect to the weak topology; use e.g. Poincaré
duality to check this).

b) If X is projective, the equality Amp(X) = Nef(X)◦ is a simple consequence of 6.10 b) and of the fact that
ampleness (or positivity) is an open property. It remains to show that Psef(X) ⊂ Eff(X). Let L be a line bundle
with c1(L) ∈ Psef(X) and let hL be a singular hermitian on L such that T = i

2πΘL,hL
> 0. Fix a point x0 ∈ X

such that the Lelong number of T at x0 is zero, and take a sufficiently positive line bundle A (replacing A
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by a multiple if necessary), such that A − KX has a singular metric hA−KX
of curvature > εω and such that

hA−KX
is smooth on X r {x0} and has an isolated logarithmic pole of Lelong number > n at x0. Then apply

Corollary 5.13 to F = mL+A−KX equipped with the metric h⊗mL ⊗ hA−KX
. Since the weight ϕ of this metric

has a Lelong number > n at x0 and a Lelong number equal to the Lelong number of T = i
2πΘL,hL

at nearby
points, lim supx→x0

ν(T, x) = ν(T, x0) = 0, Corollary 5.13 implies that H0(X,KX + F ) = H0(X,mL+A) has a
section which does not vanish at x0. Hence there is an effective divisor Dm such that O(mL+A) = O(Dm) and
c1(L) = 1

m{Dm} −
1
mc1(A) = lim 1

m{Dm} is in Eff(X). �

f) Fix a nonsingular ample divisor A. If c1(L) ∈ Psef(X)◦, there is an integer m > 0 such that c1(L) − 1
mc1(A)

is still effective, hence for m, p large we have mpL− pA = D + F with an effective divisor D and a numerically
trivial line bundle F . This implies O(kmpL) = O(kpA + kD + kF ) ⊃ O(kpA + kF ), hence h0(X, kmpL) >
h0(X, kpA+ kF ) ∼ (kp)nAn/n! by the Riemann-Roch formula. Therefore κ(L) = n.

If κ(L) = n, then h0(X, kL) > ckn for k > k0 and c > 0. The exact cohomology sequence

0 −→ H0(X, kL−A) −→ H0(X, kL) −→ H0(A, kL↾A)

where h0(A, kL↾A) = O(kn−1) shows that kL−A has non zero sections for k large. If D is the divisor of such a
section, then kL ≃ O(A +D). Select a smooth metric hA on A such that i

2πΘA,hA
> ε0ω for some ε0 > 0, and

take the singular metric on O(D) with weight function ϕD =
∑
αj log |gj | described in Example 3.13. Then the

metric with weight ϕL = 1
k (ϕA + ϕD) on L yields

i

2π
ΘL,hL

=
1

k

( i

2π
ΘA,hA

+ [D]
)

> (ε0/k)ω,

as desired.

Finally, the curvature condition iΘL,h > εω in the sense of currents yields by definition c1(L) ∈ Psef(X)◦. �

Before going further, we need a lemma.

(6.15) Lemma. Let X be a compact Kähler n-dimensional manifold, let L be a nef line bundle on X, and let E
be an arbitrary holomorphic vector bundle. Then hq(X,O(E) ⊗O(kL)) = o(kn) as k → +∞, for every q > 1. If
X is projective algebraic, the following more precise bound holds:

hq(X,O(E) ⊗O(kL)) = O(kn−q), ∀q > 0.

Proof. The Kähler case will be proved in Section 12, as a consequence of the holomorphic Morse inequalities. In
the projective algebraic case, we proceed by induction on n = dimX . If n = 1 the result is clear, as well as if
q = 0. Now let A be a nonsingular ample divisor such that E⊗O(A−KX) is Nakano positive. Then the Nakano
vanishing theorem applied to the vector bundle F = E⊗O(kL+A−KX) shows thatHq(X,O(E)⊗O(kL+A)) = 0
for all q > 1. The exact sequence

0 → O(kL) → O(kL+A) → O(kL +A)↾A → 0

twisted by E implies

Hq(X,O(E) ⊗O(kL)) ≃ Hq−1(A,O(E↾A ⊗O(kL +A)↾A),

and we easily conclude by induction since dimA = n− 1. Observe that the argument does not work any more if
X is not algebraic. It seems to be unknown whether the O(kn−q) bound still holds in that case. �

(6.16) Corollary. If L is nef, then L is big (i.e. κ(L) = n) if and only if Ln > 0. Moreover, if L is nef and big,
then for every δ > 0, L has a singular metric h = e−2ϕ such that maxx∈X ν(ϕ, x) 6 δ and iΘL,h > ε ω for some
ε > 0. The metric h can be chosen to be smooth on the complement of a fixed divisor D, with logarithmic poles
along D.

Proof. By Lemma 6.15 and the Riemann-Roch formula, we have h0(X, kL) = χ(X, kL)+o(kn) = knLn/n!+o(kn),
whence the first statement. If L is big, the proof made in (6.14 f) shows that there is a singular metric h1 on L
such that
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i

2π
ΘL,h1 =

1

k

( i

2π
ΘA,hA

+ [D]
)

with a positive line bundle A and an effective divisor D. Now, for every ε > 0, there is a smooth metric hε on L
such that i

2πΘL,hε
> −εω, where ω = i

2πΘA,hA
. The convex combination of metrics h′ε = hkε1 h

1−kε
ε is a singular

metric with poles along D which satisfies

i

2π
ΘL,h′

ε
> ε(ω + [D]) − (1 − kε)εω > kε2ω.

Its Lelong numbers are εν(D,x) and they can be made smaller than δ by choosing ε > 0 small. �

We still need a few elementary facts about the numerical dimension of nef line bundles.

(6.17) Definition. Let L be a nef line bundle on a compact Kähler manifold X. One defines the numerical dimen-
sion of L to be

num(L) = max
{
k = 0, . . . , n ; c1(L)k 6= 0 in H2k(X,R)

}
.

By Corollary 6.16, we have κ(L) = n if and only if num(L) = n. In general, we merely have an inequality.

(6.18) Proposition. If L is a nef line bundle on a compact Kähler manifold, then κ(L) 6 num(L).

Proof. By induction on n = dimX . If num(L) = n or κ(L) = n the result is true, so we may assume r := κ(L) 6
n − 1 and k := num(L) 6 n − 1. Fix m > 0 so that Φ = Φ|mL| has generic rank r. Select a nonsingular ample
divisor A in X such that the restriction of Φ|mL| to A still has rank r (for this, just take A passing through a point
x /∈ B|mL| at which rank(dΦx) = r < n, in such a way that the tangent linear map dΦx↾TA,x

still has rank r). Then
κ(L↾A) > r = κ(L) (we just have an equality because there might exist sections in H0(A,mL↾A) which do not
extend to X). On the other hand, we claim that num(L↾A) = k = num(L). The inequality num(L↾A) > num(L)
is clear. Conversely, if we set ω = i

2πΘA,hA
> 0, the cohomology class c1(L)k can be represented by a closed

positive current of bidegree (k, k)

T = lim
ε→0

( i

2π
ΘL,hε

+ εω
)k

after passing to some subsequence (there is a uniform bound for the mass thanks to the Kähler assumption, taking
wedge products with ωn−k). The current T must be non zero since c1(L)k 6= 0 by definition of k = num(L). Then
{[A]} = {ω} as cohomology classes, and

∫

A

c1(L↾A)k ∧ ωn−1−k =

∫

X

c1(L)k ∧ [A] ∧ ωn−1−k =

∫

X

T ∧ ωn−k > 0.

This implies num(L↾A) > k, as desired. The induction hypothesis with X replaced by A yields

κ(L) 6 κ(L↾A) 6 num(L↾A) 6 num(L). �

(6.19) Remark. It may happen that κ(L) < num(L): take e.g.

L→ X = X1 ×X2

equal to the total tensor product of an ample line bundle L1 on a projective manifold X1 and of a unitary
flat line bundle L2 on an elliptic curve X2 given by a representation π1(X2) → U(1) such that no multiple
kL2 with k 6= 0 is trivial. Then H0(X, kL) = H0(X1, kL1) ⊗H0(X2, kL2) = 0 for k > 0, and thus κ(L) = −∞.
However c1(L) = pr⋆1 c1(L1) has numerical dimension equal to dimX1. The same example shows that the Kodaira
dimension may increase by restriction to a subvariety (if Y = X1 × {point}, then κ(L↾Y ) = dimY ). �

6.D. The Kawamata-Viehweg vanishing theorem
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We now derive an algebraic version of the Nadel vanishing theorem in the context of nef line bundles. This
algebraic vanishing theorem has been obtained independently by Kawamata [Kaw82] and Viehweg [Vie82], who
both reduced it to the Kodaira-Nakano vanishing theorem by cyclic covering constructions. Since then, a number
of other proofs have been given, one based on connections with logarithmic singularities [EV86], another on Hodge
theory for twisted coefficient systems [Kol85], a third one on the Bochner technique [Dem89] (see also [EV92] for
a general survey, and [Eno93] for an extension to the compact Kähler case). Since the result is best expressed
in terms of multiplier ideal sheaves (avoiding then any unnecessary desingularization in the statement), we feel
that the direct approach via Nadel’s vanishing theorem is probably the most natural one.

If D =
∑
αjDj > 0 is an effective Q-divisor, we define the multiplier ideal sheaf I(D) to be equal to I(ϕ)

where ϕ =
∑
αj |gj| is the corresponding psh function defined by generators gj of O(−Dj) ; as we saw in Remark

5.9, the computation of I(D) can be made algebraically by using desingularizations µ : X̃ → X such that µ⋆D

becomes a divisor with normal crossings on X̃.

(6.20) Kawamata-Viehweg vanishing theorem. Let X be a projective algebraic manifold and let F be a line bundle
over X such that some positive multiple mF can be written mF = L+D where L is a nef line bundle and D an
effective divisor. Then

Hq
(
X,O(KX + F ) ⊗ I(m−1D)

)
= 0 for q > n− num(L).

(6.21) Special case. If F is a nef line bundle, then

Hq
(
X,O(KX + F )

)
= 0 for q > n− num(F ).

Proof of Theorem 6.20. First suppose that num(L) = n, i.e. that L is big. By the proof of 6.13 f), there is a
singular hermitian metric h0 on L such that the corresponding weight ϕ0 has algebraic singularities and

iΘL,h0 = 2id′d′′ϕ0 > ε0ω

for some ε0 > 0. On the other hand, since L is nef, there are metrics given by weights ϕε such that i
2πΘL,hε

> −εω
for every ε > 0, ω being a Kähler metric. Let ϕD =

∑
αj log |gj| be the weight of the singular metric on O(D)

described in Example 3.13. We define a singular metric on F by

ϕF =
1

m

(
(1 − δ)ϕL,ε + δϕL,0 + ϕD

)

with ε≪ δ ≪ 1, δ rational. Then ϕF has algebraic singularities, and by taking δ small enough we find I(ϕF ) =
I( 1

mϕD) = I( 1
mD). In fact, I(ϕF ) can be computed by taking integer parts of Q-divisors (as explained in

Remark 5.9), and adding δϕL,0 does not change the integer part of the rational numbers involved when δ is
small. Now

ddcϕF =
1

m

(
(1 − δ)ddcϕL,ε + δddcϕL,0 + ddcϕD

)

>
1

m

(
− (1 − δ)εω + δε0ω + [D] >

δε

m
ω,

if we choose ε 6 δε0. Nadel’s theorem thus implies the desired vanishing result for all q > 1.

Now, if num(L) < n, we use hyperplane sections and argue by induction on n = dimX . Since the sheaf
O(KX)⊗I(m−1D) behaves functorially with respect to modifications (and since the L2 cohomology complex is
“the same” upstairs and downstairs), we may assume after blowing-up that D is a divisor with normal crossings.
By Remark 5.9, the multiplier ideal sheaf I(m−1D) = O(−⌊m−1D⌋) is locally free. By Serre duality, the expected
vanishing is equivalent to

Hq(X,O(−F ) ⊗O(⌊m−1D⌋)) = 0 for q < num(L).

Then select a nonsingular ample divisor A such that A meets all components Dj transversally. Select A positive
enough so that O(A+F −⌊m−1D⌋) is ample. Then Hq(X,O(−A−F )⊗O(⌊m−1D⌋)) = 0 for q < n by Kodaira
vanishing, and the exact sequence 0 → OX(−A) → OX → (iA)⋆OA → 0 twisted by O(−F )⊗O(⌊m−1D⌋) yields
an isomorphism
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Hq(X,O(−F ) ⊗O(⌊m−1D⌋)) ≃ Hq(A,O(−F↾A) ⊗O(⌊m−1D↾A⌋).

The proof of 6.18 showed that num(L↾A) = num(L), hence the induction hypothesis implies that the cohomology
group on A on the right hand side is zero for q < num(L). �

6.E. A uniform global generation property (Y.T. Siu)

Let X be a projective manifold, and (L, h) a pseudo-effective line bundle. The “uniform global generation prop-
erty” of shows in some sense that the tensor product sheaf L ⊗ I(h) has a uniform positivity property, for any
singular hermitian metric h with nonnegative curvature on L.

(6.22) Theorem Y.T. Siu, ([Siu98]). Let X be a projective manifold. There exists an ample line bundle G on X
such that for every pseudo-effective line bundle (L, h), the sheaf O(G+L)⊗I(h) is generated by its global sections.
In fact, G can be chosen as follows: pick any very ample line bundle A, and take G such that G− (KX + nA) is
ample, e.g. G = KX + (n+ 1)A.

Proof. Let ϕ be the weight of the metric h on a small neighborhood of a point z0 ∈ X . Assume that we have a
local section u of O(G + L) ⊗ I(h) on a coordinate open ball B = B(z0, δ), such that

∫

B

|u(z)|2e−2ϕ(z)|z − z0|
−2(n+ε)dV (z) < +∞.

Then Skoda’s division theorem [Sko72b] (see also Corollary 8.21 below) implies u(z) =
∑

(zj − zj,0)vj(z) with
∫

B

|vj(z)|
2e−2ϕ(z)|z − z0|

−2(n−1+ε)dV (z) < +∞,

in particular uz0 ∈ O(G+ L)⊗ I(h) ⊗ mX,z0 . Select a very ample line bundle A on X . We take a basis σ = (σj)
of sections of H0(X,G⊗mX,z0) and multiply the metric h of G by the factor |σ|−2(n+ε). The weight of the above
metric has singularity (n+ ε) log |z − z0|2 at z0, and its curvature is

(6.23) iΘG + (n+ ε)i∂∂ log |σ|2 > iΘG − (n+ ε)ΘA.

Now, let f be a local section in H0(B,O(G+L)⊗I(h)) on B = B(z0, δ), δ small. We solve the global ∂ equation

∂u = ∂(θf) on X

with a cut-off function θ supported near z0 and with the weight associated with our above choice of metric on
G+ L. Thanks to Nadel’s Theorem 5.11, the solution exists if the metric of G+L−KX has positive curvature.
As iΘL,h > 0 in the sense of currents, (6.23) shows that a sufficient condition is G − KX − nA > 0 (provided
that ε is small enough). We then find a smooth solution u such that uz0 ∈ O(G+ L) ⊗ I(h) ⊗ mX,z0 , hence

F := θf − u ∈ H0(X,O(G + L) ⊗ I(h))

is a global section differing from f by a germ in O(G + L) ⊗ I(h) ⊗ mX,z0 . Nakayama’s lemma implies that
H0(X,O(G+ L) ⊗ I(h)) generates the stalks of O(G+ L) ⊗ I(h).

7. Holomorphic Morse inequalities

Let X be a compact Kähler manifold, E a holomorphic vector bundle of rank r and L a line bundle over X . If L
is equipped with a smooth metric h of curvature form ΘL,h, we define the q-index set of L to be the open subset

(7.1) X(q, L) =

{
x ∈ X ; iΘL,h(x) has

q

n− q

negative eigenvalues

positive eigenvalues

}

for 0 6 q 6 n. Hence X admits a partition X = ∆ ∪
⋃
qX(q, L) where ∆ = {x ∈ X ; det(ΘL,h(x)) = 0} is the

degeneracy set. We also introduce
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(7.1′) X(6 q, L) =
⋃

06j6q

X(j, L).

(7.2) Morse inequalities ([Dem85b]). For any hermitian holomorphic line bundle L, h) and any holomorphic vector
bundle E over a compact complex manifold X, the cohomology groups Hq

(
X,E ⊗ O(kL)

)
satisfy the following

asymptotic inequalities as k → +∞ :

(a) Weak Morse inequalities

hq
(
X,E ⊗O(kL)

)
6 r

kn

n!

∫

X(q,L)

(−1)q
( i

2π
ΘL,h

)n
+ o(kn).

(b) Strong Morse inequalities

∑

06j6q

(−1)q−jhj
(
X,E ⊗O(kL)

)
6 r

kn

n!

∫

X(6q,L)

(−1)q
( i

2π
ΘL,h

)n
+ o(kn).

The proof is based on the spectral theory of the complex Laplace operator, using either a localization procedure
or, alternatively, a heat kernel technique. These inequalities are a useful complement to the Riemann-Roch
formula when information is needed about individual cohomology groups, and not just about the Euler-Poincaré
characteristic.

One difficulty in the application of these inequalities is that the curvature integral is in general quite uneasy
to compute, since it is neither a topological nor an algebraic invariant. However, the Morse inequalities can be
reformulated in a more algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations.

(7.3) Theorem. Let L = F − G be a holomorphic line bundle over a compact Kähler manifold X, where F and
G are numerically effective line bundles. Then for every q = 0, 1, . . . , n = dimX, there is an asymptotic strong
Morse inequality

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj + o(kn).

Proof. By adding ε times a Kähler metric ω to the curvature forms of F and G, ε > 0 one can write i
2πΘL =

θF,ε − θG,ε where θF,ε = i
2πΘF + εω and θG,ε = i

2πΘG + εω are positive definite. Let λ1 > . . . > λn > 0 be the

eigenvalues of θG,ε with respect to θF,ε. Then the eigenvalues of i
2πΘL with respect to θF,ε are the real numbers

1 − λj and the set X(6 q, L) is the set {λq+1 < 1} of points x ∈ X such that λq+1(x) < 1. The strong Morse
inequalities yield

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∫

{λq+1<1}
(−1)q

∏

16j6n

(1 − λj)θ
n
F,ε + o(kn).

On the other hand we have (
n

j

)
θn−jF,ε ∧ θjG,ε = σjn(λ) θnF,ε,

where σjn(λ) is the j-th elementary symmetric function in λ1, . . . , λn , hence

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj = lim

ε→0

∫

X

∑

06j6q

(−1)q−jσjn(λ) θnF,ε.

Thus, to prove the Lemma, we only have to check that
∑

06j6n

(−1)q−jσjn(λ) − 1{λq+1<1}(−1)q
∏

16j6n

(1 − λj) > 0

for all λ1 > . . . > λn > 0, where 1{...} denotes the characteristic function of a set. This is easily done by induction

on n (just split apart the parameter λn and write σjn(λ) = σjn−1(λ) + σj−1
n−1(λ)λn). �
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In the case q = 1, we get an especially interesting lower bound (this bound has been observed and used by
S. Trapani [Tra95] in a similar context).

(7.4) Consequence. h0(X, kL) − h1(X, kL) > kn

n! (F
n − nFn−1 ·G) − o(kn).

Therefore some multiple kL has a section as soon as Fn − nFn−1 ·G > 0.

(7.5) Remark. The weaker inequality

h0(X, kL) >
kn

n!
(Fn − nFn−1 ·G) − o(kn)

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor to F and G, we may
assume that F , G are ample. Let m0G be very ample and let k′ be the smallest integer > k/m0. Then h0(X, kL) >
h0(X, kF − k′m0G). We select k′ smooth members Gj , 1 6 j 6 k′ in the linear system |m0G| and use the exact
sequence

0 → H0(X, kF −
∑

Gj) → H0(X, kF ) →
⊕

H0(Gj , kF|Gj
).

Kodaira’s vanishing theorem yields Hq(X, kF ) = 0 and Hq(Gj , kF|Gj
) = 0 for q > 1 and k > k0. By the exact

sequence combined with Riemann-Roch, we get

h0(X, kL) > h0(X, kF −
∑

Gj)

>
kn

n!
Fn −O(kn−1) −

∑( kn−1

(n− 1)!
Fn−1 ·Gj −O(kn−2)

)

>
kn

n!

(
Fn − n

k′m0

k
Fn−1 ·G

)
−O(kn−1)

>
kn

n!

(
Fn − nFn−1 ·G

)
−O(kn−1).

(This simple proof is due to F. Catanese.) �

(7.6) Corollary. Suppose that F and G are nef and that F is big. Some multiple of mF −G has a section as soon
as

m > n
Fn−1 ·G

Fn
.

In the last condition, the factor n is sharp: this is easily seen by taking X = Pn1 and F = O(a, . . . , a) and
G = O(b1, . . . , bn) over Pn1 ; the condition of the Corollary is then m >

∑
bj/a, whereas k(mF −G) has a section

if and only if m > sup bj/a; this shows that we cannot replace n by n(1 − ε). �

8. The Ohsawa-Takegoshi L
2 extension theorem

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y be a complex analytic submani-
fold of a complex manifold X ; given a holomorphic function f on Y satisfying suitable L2 conditions on Y , find a
holomorphic extension F of f to X , together with a good L2 estimate for F on X . The first satisfactory solution
has been obtained in the fundamental papers [OT87, Ohs88]. We follow here a more geometric approach due to
Manivel [Man93], which provides a generalized extension theorem in the general framework of vector bundles. As
in Ohsawa-Takegoshi’s fundamental paper, the main idea is to use a modified Bochner-Kodaira-Nakano inequal-
ity. Such inequalities were originally introduced in the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier
[DX84].

8.A. The basic a priori inequality

The main a priori inequality we are going to use is a simplified (and slightly extended) version of the original
Ohsawa-Takegoshi a priori inequality, along the lines proposed by Ohsawa [Ohs95].



40 J.-P. Demailly, PCMI 2008, Analytic approach of the minimal model program and of the abundance conjectures

(8.1) Lemma (Ohsawa [Ohs95]). Let E be a hermitian vector bundle on a complex manifold X equipped with
a Kähler metric ω. Let η, λ > 0 be smooth functions on X. Then for every form u ∈ D(X,Λp,qT ⋆X ⊗ E) with
compact support we have

‖(η
1
2 + λ

1
2 )D′′⋆u‖2 + ‖η

1
2D′′u‖2 + ‖λ

1
2D′u‖2 + 2‖λ−

1
2 d′η ∧ u‖2

> 〈〈[η iΘE − i d′d′′η − iλ−1d′η ∧ d′′η, Λ]u, u〉〉.

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D′ηD′⋆ +D′⋆ηD′ = η[D′, D′⋆] + [D′, η]D′⋆ + [D′⋆, η]D′

= η∆′ + (d′η)D′⋆ − (d′η)∗D′,

D′′ηD′′⋆ +D′′⋆ηD′′ = η[D′′, D′′⋆] + [D′′, η]D′′⋆ + [D′′⋆, η]D′′

= η∆′′ + (d′′η)D′′⋆ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators η•, (d′η) ∧ •, (d′′η) ∧ •. By
subtracting the above equalities and taking into account the Bochner-Kodaira-Nakano identity∆′′−∆′ = [iΘE , Λ],
we get

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′

= η[iΘE , Λ] + (d′′η)D′′⋆ − (d′′η)⋆D′′ + (d′η)⋆D′ − (d′η)D′⋆.(8.2)

Moreover, the Jacobi identity yields

[D′′, [d′η, Λ]] − [d′η, [Λ,D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ,D′′] = −iD′⋆ by the basic commutation relations 4.5. A straightforward computation shows that
[D′′, d′η] = −(d′d′′η) and [d′η, Λ] = i(d′′η)⋆. Therefore we get

i[D′′, (d′′η)⋆] + i[d′η,D′⋆] − [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η, Λ] = [D′′, (d′′η)⋆] + [D′⋆, d′η] = D′′(d′′η)⋆ + (d′′η)⋆D′′ +D′⋆(d′η) + (d′η)D′⋆.

After adding this to (8.2), we find

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′ + [i d′d′′η, Λ]

= η[iΘE , Λ] + (d′′η)D′′⋆ +D′′(d′′η)⋆ + (d′η)⋆D′ +D′⋆(d′η).

We apply this identity to a form u ∈ D(X,Λp,qT ⋆X ⊗ E) and take the inner bracket with u. Then

〈〈(D′′ηD′′⋆)u, u〉〉 = 〈〈ηD′′⋆u,D′′⋆u〉〉 = ‖η
1
2D′′⋆u‖2,

and likewise for the other similar terms. The above equalities imply

‖η
1
2D′′⋆u‖2 + ‖η

1
2D′′u‖2 − ‖η

1
2D′u‖2 − ‖η

1
2D′⋆u‖2 =

〈〈[η iΘE − i d′d′′η, Λ]u, u〉〉+ 2 Re 〈〈D′′⋆u, (d′′η)⋆u〉〉 + 2 Re 〈〈D′u, d′η ∧ u〉〉.

By neglecting the negative terms −‖η
1
2D′u‖2 − ‖η

1
2D′⋆u‖2 and adding the squares

‖λ
1
2D′′⋆u‖2 + 2 Re 〈〈D′′⋆u, (d′′η)⋆u〉〉 + ‖λ−

1
2 (d′′η)⋆u‖2 > 0,

‖λ
1
2D′u‖2 + 2 Re 〈〈D′u, d′η ∧ u〉〉 + ‖λ−

1
2 d′η ∧ u‖2 > 0

we get

‖(η
1
2 + λ

1
2 )D′′⋆u‖2 + ‖η

1
2D′′u‖2 + ‖λ

1
2D′u‖2 + ‖λ−

1
2 d′η ∧ u‖2 + ‖λ−

1
2 (d′′η)⋆u‖2

> 〈〈[η iΘE − i d′d′′η, Λ]u, u〉〉.

Finally, we use the identities



8. The Ohsawa-Takegoshi L2 extension theorem 41

(d′η)⋆(d′η) − (d′′η)(d′′η)⋆ = i[d′′η, Λ](d′η) + i(d′′η)[d′η, Λ] = [id′′η ∧ d′η, Λ],

‖λ−
1
2 d′η ∧ u‖2 − ‖λ−

1
2 (d′′η)⋆u‖2 = −〈〈[iλ−1d′η ∧ d′′η, Λ]u, u〉〉,

The inequality asserted in Lemma 8.1 follows by adding the second identity to our last inequality. �

In the special case of (n, q)-forms, the forms D′u and d′η ∧ u are of bidegree (n + 1, q), hence the estimate
takes the simpler form

(8.3) ‖(η
1
2 + λ

1
2 )D′′⋆u‖2 + ‖η

1
2D′′u‖2 > 〈〈[η iΘE − i d′d′′η − iλ−1 d′η ∧ d′′η, Λ]u, u〉〉.

8.B. Abstract L2 existence theorem for solutions of ∂-equations

Using standard arguments from functional analysis – actually just basic properties of Hilbert spaces along the
lines already explained in section 5 – the a priori inequality (8.3) implies a very strong L2 existence theorem for
solutions of ∂-equations.

(8.4) Proposition. Let X be a complete Kähler manifold equipped with a (non necessarily complete) Kähler metric
ω, and let E be a hermitian vector bundle over X. Assume that there are smooth and bounded functions η, λ > 0
on X such that the (hermitian) curvature operator B = Bn,qE,ω,η = [η iΘE − i d′d′′η− iλ−1d′η ∧ d′′η, Λω] is positive

definite everywhere on Λn,qT ⋆X ⊗ E, for some q > 1. Then for every form g ∈ L2(X,Λn,qT ⋆X ⊗ E) such that
D′′g = 0 and

∫
X〈B−1g, g〉 dVω < +∞, there exists f ∈ L2(X,Λn,q−1T ⋆X ⊗ E) such that D′′f = g and

∫

X

(η + λ)−1|f |2 dVω 6 2

∫

X

〈B−1g, g〉 dVω.

Proof. The proof is almost identical to the proof of standard L2 estimates for ∂ (see Theorem 5.1), except that
we use (8.3) instead of (4.7). Assume first that ω is complete. With the same notation as in 7.4, we get for every
v = v1 + v2 ∈ (KerD′′) ⊕ (KerD′′)⊥ the inequalities

|〈g, v〉|2 = |〈g, v1〉|
2 6

∫

X

〈B−1g, g〉 dVω

∫

X

〈Bv1, v1〉 dVω ,

and ∫

X

〈Bv1, v1〉 dVω 6 ‖(η
1
2 + λ

1
2 )D′′⋆v1‖

2 + ‖η
1
2D′′v1‖

2 = ‖(η
1
2 + λ

1
2 )D′′⋆v‖2

provided that v ∈ DomD′′⋆. Combining both, we find

|〈g, v〉|2 6
( ∫

X

〈B−1g, g〉 dVω
)
‖(η

1
2 + λ

1
2 )D′′⋆v‖2.

This shows the existence of an element w ∈ L2(X,Λn,qT ⋆X ⊗ E) such that

‖w‖2 6

∫

X

〈B−1g, g〉 dVω and

〈〈v, g〉〉 = 〈〈(η
1
2 + λ

1
2 )D′′⋆v, w〉〉 ∀g ∈ DomD′′ ∩ DomD′′⋆.

As (η1/2 +λ
1
2 )2 6 2(η+λ), it follows that f = (η1/2 +λ

1
2 )w satisfies D′′f = g as well as the desired L2 estimate.

If ω is not complete, we set ωε = ω + εω̂ with some complete Kähler metric ω̂. The final conclusion is then
obtained by passing to the limit and using a monotonicity argument (the integrals are monotonic with respect
to ε). �

(8.5) Remark. We will also need a variant of the L2-estimate, so as to obtain approximate solutions with
weaker requirements on the data : given δ > 0 and g ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′g = 0 and∫
X〈(B + δI)−1g, g〉 dVω < +∞, there exists an approximate solution f ∈ L2(X,Λn,q−1T ⋆X ⊗ E) and a correcting

term h ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′f + δ1/2h = g and
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∫

X

(η + λ)−1|f |2 dVω +

∫

X

|h|2 dVω 6 2

∫

X

〈(B + δI)−1g, g〉 dVω.

The proof is almost unchanged, we rely instead on the estimates

|〈g, v1〉|
2 6

∫

X

〈(B + δI)−1g, g〉 dVω

∫

X

〈(B + δI)v1, v1〉 dVω ,

and ∫

X

〈(B + δI)v1, v1〉 dVω 6 ‖(η
1
2 + λ

1
2 )D′′⋆v‖2 + δ‖v‖2. �

8.C. The L2 extension theorem

According to a concept already widely used in section 5, a (non necessarily compact) complex manifold will be
said to be weakly pseudoconvex if it possesses a smooth weakly plurisubharmonic exhaustion function.

(8.6) Theorem. Let X be a weakly pseudoconvex complex n-dimensional manifold possessing a Kähler metric ω,
and let L (resp. E) be a hermitian holomorphic line bundle (resp. a hermitian holomorphic vector bundle of rank
r over X), and s a global holomorphic section of E. Assume that s is generically transverse to the zero section,
and let

Y =
{
x ∈ X ; s(x) = 0, Λrds(x) 6= 0

}
, p = dimY = n− r.

Moreover, assume that the (1, 1)-form iΘL+r i d′d′′ log |s|2 is semi-positive and that there is a continuous function
α > 1 such that the following two inequalities hold everywhere on X :

(a) iΘL + r i d′d′′ log |s|2 > α−1 {iΘEs, s}

|s|2
,

(b) |s| 6 e−α.

Then for every smooth D′′-closed (0, q)-form f over Y with values in the line bundle ΛnT ⋆X ⊗L (restricted to Y ),
such that

∫
Y
|f |2|Λr(ds)|−2dVω < +∞, there exists a D′′-closed (0, q)-form F over X with values in ΛnT ⋆X ⊗ L,

such that F is smooth over X r {s = Λr(ds) = 0}, satisfies F↾Y = f and

∫

X

|F |2

|s|2r(− log |s|)2
dVX,ω 6 Cr

∫

Y

|f |2

|Λr(ds)|2
dVY,ω ,

where Cr is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points where s vanishes) induces a vector
bundle isomorphism ds : TX/TY → E along Y , hence a non vanishing section Λr(ds), taking values in

Λr(TX/TY )⋆ ⊗ detE ⊂ ΛrT ⋆X ⊗ detE.

The norm |Λr(ds)| is computed here with respect to the metrics on ΛrT ⋆X and detE induced by the Kähler metric
ω and by the given metric on E. Also notice that if hypothesis (a) is satisfied for some α, one can always achieve
b) by multiplying the metric of E with a sufficiently small weight e−χ◦ψ (with ψ a psh exhaustion on X and χ a
convex increasing function; property (a) remains valid after we multiply the metric of L by e−(r+α−1

0 )χ◦ψ , where
α0 = infx∈X α(x).

Proof. Let us first assume that the singularity set Σ = {s = 0} ∩ {Λr(ds) = 0} is empty, so that Y is closed and
nonsingular. We claim that there exists a smooth section

F∞ ∈ C∞(X,Λn,qT ⋆X ⊗ L) = C∞(X,Λ0,qT ⋆X ⊗ ΛnT ⋆X ⊗ L)

such that

(a) F∞ coincides with f in restriction to Y ,

(b) |F∞| = |f | at every point of Y ,

(c) D′′F∞ = 0 at every point of Y .
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For this, consider coordinates patches Uj ⊂ X biholomorphic to polydiscs such that

Uj ∩ Y = {z ∈ Uj ; z1 = . . . = zr = 0}

in the corresponding coordinates. We can certainly find a section f̃ ∈ C∞(X,Λn,qT ⋆X ⊗ L) which achieves (a)
and (b), since the restriction map (Λ0,qT ∗

X)↾Y → Λ0,qT ∗
Y can be viewed as an orthogonal projection onto a

C∞-subbundle of (Λ0,qT ∗
X)↾Y . It is enough to extend this subbundle from Uj ∩ Y to Uj (e.g. by extending each

component of a frame), and then to extend f globally via local smooth extensions and a partition of unity. For
any such extension f̃ we have

(D′′f̃)↾Y = (D′′f̃↾Y ) = D′′f = 0.

It follows that we can divide D′′f̃ =
∑

16λ6r gj,λ(z)∧dzλ on Uj ∩Y , with suitable smooth (0, q)-forms gj,λ which
we also extend arbitrarily from Uj ∩ Y to Uj . Then

F∞ := f̃ −
∑

j

θj(z)
∑

16λ6r

zλgj,λ(z)

coincides with f̃ on Y and satisfies (c). Since we do not know about F∞ except in an infinitesimal neighborhood
of Y , we will consider a truncation Fε of F∞ with support in a small tubular neighborhood |s| < ε of Y , and
solve the equation D′′uε = D′′Fε with the constraint that uε should be 0 on Y . As codimY = r, this will be the
case if we can guarantee that |uε|2|s|−2r is locally integrable near Y . For this, we will apply Proposition 8.4 with
a suitable choice of the functions η and λ, and an additional weight |s|−2r in the metric of L.

Let us consider the smooth strictly convex function χ0 : ]−∞, 0] → ]−∞, 0] defined by χ0(t) = t− log(1− t)
for t 6 0, which is such that χ0(t) 6 t, 1 6 χ′

0 6 2 and χ′′
0 (t) = 1/(1 − t)2. We set

σε = log(|s|2 + ε2), ηε = ε− χ0(σε).

As |s| 6 e−α 6 e−1, we have σε 6 0 for ε small, and

ηε > ε− σε > ε− log(e−2α + ε2).

Given a relatively compact subset Xc = {ψ < c}⊂⊂X , we thus have ηε > 2α for ε < ε(c) small enough. Simple
calculations yield

i d′σε =
i{D′s, s}

|s|2 + ε2
,

i d′d′′σε =
i{D′s,D′s}

|s|2 + ε2
−

i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
−

{iΘEs, s}

|s|2 + ε2

>
ε2

|s|2
i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
−

{iΘEs, s}

|s|2 + ε2

>
ε2

|s|2
id′σε ∧ d

′′σε −
{iΘEs, s}

|s|2 + ε2
,

thanks to Lagrange’s inequality i{D′s, s} ∧ {s,D′s} 6 |s|2i{D′s,D′s}. On the other hand, we have d′ηε =
−χ′

0(σε)dσε with 1 6 χ′
0(σε) 6 2, hence

−id′d′′ηε = χ′
0(σε)id

′d′′σε + χ′′
0(σε)id

′σε ∧ d
′′σε

>
( 1

χ′
0(σε)

ε2

|s|2
+

χ′′
0 (σε)

χ′
0(σε)

2

)
id′ηε ∧ d

′′ηε − χ′
0(σε)

{iΘEs, s}

|s|2 + ε2
.

We consider the original metric of L multiplied by the weight |s|−2r. In this way, we get a curvature form

iΘL + r id′d′′ log |s|2 >
1

2
χ′

0(σε)α
−1 {iΘEs, s}

|s|2 + ε2

by hypothesis (a), thanks to the semipositivity of the left hand side and the fact that 1
2χ

′
0(σε)

1
|s|2+ε2 6 1

|s|2 . As

ηε > 2α on Xc for ε small, we infer

ηε(iΘL + id′d′′ log |s|2) − id′d′′ηε −
χ′′

0(σε)

χ′
0(σε)

2
id′ηε ∧ d

′′ηε >
ε2

χ′
0(σε)|s|

2
id′ηε ∧ d

′′ηε
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on Xc. Hence, if λε = χ′
0(σε)

2/χ′′
0(σε), we obtain

Bε :=
[
ηε(iΘL + id′d′′ log |s|2) − id′d′′ηε − λ−1

ε id′ηε ∧ d
′′ηε , Λ

]

>
[ ε2

χ′
0(σε)|s|

2
id′ηε ∧ d

′′ηε , Λ
]

=
ε2

χ′
0(σε)|s|

2
(d′′ηε)(d

′′ηε)
⋆

as an operator on (n, q)-forms (see the proof of Lemma 8.1).

Let θ : R → [0, 1] be a smooth cut-off function such that θ(t) = 1 on ] − ∞, 1/2], Supp θ ⊂ ] − ∞, 1[ and
|θ′| 6 3. For ε > 0 small, we consider the (n, q)-form Fε = θ(ε−2|s|2)F∞ and its D′′-derivative

gε = D′′Fε = (1 + ε−2|s|2)θ′(ε−2|s|2)d′′σε ∧ F∞ + θ(ε−2|s|2)D′′F∞

[as is easily seen from the equality 1 + ε−2|s|2 = ε−2eσε ]. We observe that gε has its support contained in the
tubular neighborhood |s| < ε ; moreover, as ε → 0, the second term in the right hand side converges uniformly
to 0 on every compact set; it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d′′σε and d′′ηε, and can be controlled in terms of Bε. In fact, for any
(n, q)-form u and any (n, q + 1)-form v we have

|〈d′′ηε ∧ u, v〉|
2 = |〈u, (d′′ηε)

⋆v〉|2 6 |u|2|(d′′ηε)
⋆v|2 = |u|2〈(d′′ηε)(d

′′ηε)
⋆v, v〉

6
χ′

0(σε)|s|
2

ε2
|u|2〈Bεv, v〉.

This implies

〈B−1
ε (d′′ηε ∧ u), (d

′′ηε ∧ u)〉 6
χ′

0(σε)|s|
2

ε2
|u|2.

The main term in gε can be written

g(1)
ε := (1 + ε−2|s|2)θ′(ε−2|s|2)χ′

0(σε)
−1d′′ηε ∧ F∞.

On Supp g
(1)
ε ⊂ {|s| < ε}, since χ′

0(σε) > 1, we thus find

〈B−1
ε g(1)

ε , g(1)
ε 〉 6 (1 + ε−2|s|2)2 θ′(ε−2|s|2)2|F∞|2.

Instead of working on X itself, we will work rather on the relatively compact subset XcrYc, where Yc = Y ∩Xc =
Y ∩ {ψ < c}. We know that Xc r Yc is again complete Kähler by a standard Lemma (see [Dem82b], Th. 1.5). In
this way, we avoid the singularity of the weight |s|−2r along Y . We find

∫

XcrYc

〈B−1
ε g(1)

ε , g(1)
ε 〉 |s|−2rdVω 6

∫

XcrYc

|F∞|2(1 + ε−2|s|2)2θ′(ε−2|s|2)2|s|−2rdVω.

Now, we let ε→ 0 and view s as “transverse local coordinates” around Y . As F∞ coincides with f on Y , it is not
hard to see that the right hand side converges to cr

∫
Yc

|f |2|Λr(ds)|−2dVY,ω where cr is the “universal” constant

cr =

∫

z∈Cr , |z|61

(1 + |z|2)2θ′(|z|2)2
ir

2

Λr(dz) ∧ Λr(dz)

|z|2r
< +∞

depending only on r. The second term
g(2)
ε = θ(ε−2|s|2)d′′F∞

in gε satisfies Supp(g
(2)
ε ) ⊂ {|s| < ε} and |g

(2)
ε | = O(|s|) (just look at the Taylor expansion of d′′F∞ near Y ).

From this we easily conclude that
∫

XcrYc

〈B−1
ε g(2)

ε , g(2)
ε 〉 |s|−2rdVX,ω = O(ε2),

provided that Bε remains locally uniformly bounded below near Y (this is the case for instance if we have strict
inequalities in the curvature assumption (a)). If this holds true, we apply Proposition 8.4 on Xc r Yc with the
additional weight factor |s|−2r. Otherwise, we use the modified estimate stated in Remark 8.5 in order to solve
the approximate equation D′′u+ δ1/2h = gε with δ > 0 small. This yields sections u = uc,ε,δ, h = hc,ε,δ such that
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∫

XcrYc

(ηε + λε)
−1|uc,ε,δ|

2|s|−2r dVω +

∫

XcrYc

|hc,ε,δ|
2|s|−2r dVω

6 2

∫

XcrYc

〈(Bε + δI)−1gε, gε〉|s|
−2r dVω,

and the right hand side is under control in all cases. The extra error term δ1/2h can be removed at the end by
letting δ tend to 0. Since there is essentially no additional difficulty involved in this process, we will assume for
simplicity of exposition that we do have the required lower bound for Bε and the estimates of g

(1)
ε and g

(2)
ε as

above. For δ = 0, the above estimate provides a solution uc,ε of the equation D′′uc,ε = gε = D′′Fε on Xc r Yc,
such that ∫

XcrYc

(ηε + λε)
−1|uc,ε|

2|s|−2rdVX,ω 6 2

∫

XcrYc

〈B−1
ε gε, gε〉 |s|

−2rdVX,ω

6 2 cr

∫

Yc

|f |2

|Λr(ds)|2
dVY,ω +O(ε).

Here we have
σε = log(|s|2 + ε2) 6 log(e−2α + ε2) 6 −2α+O(ε2) 6 −2 +O(ε2),

ηε = ε− χ0(σε) 6 (1 +O(ε))σ2
ε ,

λε =
χ′

0(σε)
2

χ′′
0 (σε)

= (1 − σε)
2 + (1 − σε) 6 (3 +O(ε))σ2

ε ,

ηε + λε 6 (4 +O(ε))σ2
ε 6 (4 +O(ε))

(
− log(|s|2 + ε2)

)2
.

As Fε is uniformly bounded with support in {|s| < ε}, we conclude from an obvious volume estimate that

∫

Xc

|Fε|2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω 6

Const

(log ε)2
.

Therefore, thanks to the usual inequality |t+ u|2 6 (1 + k)|t|2 + (1 + k−1)|u|2 applied to the sum Fc,ε = f̃ε− uc,ε
with k = | log ε|, we obtain from our previous estimates

∫

XcrYc

|Fc,ε|2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω 6 8 cr

∫

Yc

|f |2

|Λr(ds)|2
dVY,ω +O(| log ε|−1).

In addition to this, we have d′′Fc,ε = 0 by construction, and this equation can be seen to extend from Xc r Yc
to Xc by the L2 estimate ([Dem82b], Lemma 6.9).

If q = 0, then uc,ε must also be smooth, and the non integrability of the weight |s|−2r along Y shows that
uc,ε vanishes on Y , therefore

Fc,ε↾Y = Fε↾Y = F∞↾Y = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first as ε → 0, and then as
c→ +∞. The initial assumption that Σ = {s = Λr(ds) = 0} is empty can be easily removed in two steps: i) the
result is true if X is Stein, since we can always find a complex hypersurface Z in X such that Σ ⊂ Y ∩ Z ( Y ,
and then apply the extension theorem on the Stein manifold X r Z, in combination with L2 extension; ii) the
whole procedure still works when Σ is nowhere dense in Y (and possibly nonempty). Indeed local L2 extensions

f̃j still exist by step i) applied on small coordinate balls Uj ; we then set F∞ =
∑
θj f̃j and observe that

|D′′F∞|2|s|−2r is locally integrable, thanks to the estimate
∫
Uj

|f̃j|
2|s|−2r(log |s|)−2dV < +∞ and the fact that

|
∑
d′′θj ∧ f̃j | = O(|s|δ) for suitable δ > 0 [as follows from Hilbert’s Nullstensatz applied to f̃j − f̃k at singular

points of Y ].

When q > 1, the arguments needed to get a smooth solution involve more delicate considerations, and we
will skip the details, which are extremely technical and not very enlightening.

(8.7) Remarks.

(a) When q = 0, the estimates provided by Theorem 8.6 are independent of the Kähler metric ω. In fact, if f
and F are holomorphic sections of ΛnT ⋆X ⊗ L over Y (resp. X), viewed as (n, 0)-forms with values in L, we can
“divide” f by Λr(ds) ∈ Λr(TX/TY )⋆ ⊗ detE to get a section f/Λr(ds) of ΛpT ⋆Y ⊗ L ⊗ (detE)−1 over Y . We
then find
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|F |2dVX,ω = in
2

{F, F},

|f |2

|Λr(ds)|2
dVY,ω = ip

2

{f/Λr(ds), f/Λr(ds)},

where {•, •} is the canonical bilinear pairing described in (3.3).

(b) The hermitian structure on E is not really used in depth. In fact, one only needs E to be equipped with
a Finsler metric, that is, a smooth complex homogeneous function of degree 2 on E [or equivalently, a smooth
hermitian metric on the tautological bundle OP (E)(−1) of lines of E over the projectivized bundle P (E), see
(4.12)]. The section s of E induces a section [s] of P (E) over X r s−1(0) and a corresponding section s̃ of
the pull-back line bundle [s]⋆OP (E)(−1). A trivial check shows that Theorem 8.6 as well as its proof extend to
the case of a Finsler metric on E, if we replace everywhere {iΘEs, s} by {iΘ([s]⋆OP (E)(−1))s̃, s̃ } (especially in
hypothesis 8.6 b)). A minor issue is that |Λr(ds)| is (a priori) no longer defined, since no obvious hermitian norm
exists on detE. A posteriori, we have the following ad hoc definition of a metric on (detE)⋆ which makes the
L2 estimates work as before: for x ∈ X and ξ ∈ ΛrE⋆x, we set

|ξ|2x =
1

cr

∫

z∈Ex

(1 + |z|2)2θ′(|z|2)2
ir

2

ξ ∧ ξ

|z|2r

where |z| is the Finsler norm on Ex [the constant cr is there to make the result agree with the hermitian case; it
is not hard to see that this metric does not depend on the choice of θ ]. �

We now present a few interesting corollaries. The first one is a surjectivity theorem for restriction morphisms in
Dolbeault cohomology.

(8.8) Corollary. Let X be a projective algebraic manifold and E a holomorphic vector bundle of rank r
over X, s a holomorphic section of E which is everywhere transverse to the zero section, Y = s−1(0), and
let L be a holomorphic line bundle such that F = L1/r ⊗ E⋆ is Griffiths positive (we just mean formally that
1
r iΘL ⊗ IdE −iΘE >Grif 0). Then the restriction morphism

H0,q(X,ΛnT ⋆X ⊗ L) → H0,q(Y,ΛnT ⋆X ⊗ L)

is surjective for every q > 0.

Proof. A short computation gives

i d′d′′ log |s|2 = i d′
({s,D′s}

|s|2

)

= i
({D′s,D′s}

|s|2
−

{D′s, s} ∧ {s,D′s}

|s|4
+

{s,ΘEs}

|s|2

)
> −

{iΘEs, s}

|s|2

thanks to Lagrange’s inequality and the fact that ΘE is antisymmetric. Hence, if δ is a small positive constant
such that

−iΘE +
1

r
iΘL ⊗ IdE >Grif δ ω ⊗ IdE > 0,

we find
iΘL + r i d′d′′ log |s|2 > rδ ω.

The compactness of X implies iΘE 6 Cω⊗ IdE for some C > 0. Theorem 8.6 can thus be applied with α = rδ/C
and Corollary 8.8 follows. By remark 8.7 b), the above surjectivity property even holds if L1/r⊗E⋆ is just assumed
to be ample (in the sense that the associated line bundle π⋆L1/r⊗OP (E)(1) is positive on the projectivized bundle
π : P (E) → X of lines of E). �

Another interesting corollary is the following special case, dealing with bounded pseudoconvex domains
Ω⊂⊂Cn. Even this simple version retains highly interesting information on the behavior of holomorphic and
plurisubharmonic functions.

(8.9) Corollary. Let Ω ⊂ Cn be a bounded pseudoconvex domain, and let Y ⊂ X be a nonsingular complex
submanifold defined by a section s of some hermitian vector bundle E with bounded curvature tensor on Ω.
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Assume that s is everywhere transverse to the zero section and that |s| 6 e−1 on Ω. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function ϕ on Ω, every holomorphic
function f on Y with

∫
Y
|f |2|Λr(ds)|−2e−ϕdVY < +∞, there exists an extension F of f to Ω such that

∫

Ω

|F |2

|s|2r(− log |s|)2
e−ϕdVΩ 6 C

∫

Y

|f |2

|Λr(ds)|2
e−ϕdVY .

Proof. We apply essentially the same idea as for the previous corollary, in the special case when L = Ω × C is
the trivial bundle equipped with a weight function e−ϕ−A|z|2. The choice of a sufficiently large constant A > 0
guarantees that the curvature assumption 8.6 a) is satisfied (A just depends on the presupposed bound for the
curvature tensor of E). �

(8.10) Remark. The special case when Y = {z0} is a point is especially interesting. In that case, we just take
s(z) = (e diamΩ)−1(z − z0), viewed as a section of the rank r = n trivial vector bundle Ω × Cn with |s| 6 e−1.
We take α = 1 and replace |s|2n(− log |s|)2 in the denominator by |s|2(n−ε), using the inequality

− log |s| =
1

ε
log |s|−ε 6

1

ε
|s|−ε, ∀ε > 0.

For any given value f0, we then find a holomorphic function f such that f(z0) = f0 and

∫

Ω

|f(z)|2

|z − z0|2(n−ε)
e−ϕ(z)dVΩ 6

Cn
ε2(diamΩ)2(n−ε)

|f0|
2e−ϕ(z0).

8.D. Skoda’s division theorem for ideals of holomorphic functions

Following a strategy inpired by T. Ohsawa [Ohs02, Ohs04], we give here a version of Skoda’s division theorem for
ideals of holomorphic functions, by reducing it to an extension problem. Our approach uses Manivel’s version of
the extension theorem presented above, and leads to results very close to those of Skoda [Sko80], albeit somewhat
weaker.

Let (X,ω) be a Kähler manifold, dimX = n, and let g : E → Q a holomorphic morphism of hermitian vector
bundles over X . Assume for a moment that g is everywhere surjective. Given a holomorphic line bundle L→ X ,
we are interested in conditions insuring that the induced morphism g : H0(X,KX⊗E⊗L) → H0(X,KX⊗Q⊗L)
is also surjective (as is observed frequently in algebraic geometry, it will be easier to twist by an adjoint line
bundle KX ⊗ L than by L alone). For that purpose, it is natural to consider the subbundle S = Ker g ⊂ E and
the exact sequence

(8.11) 0 −→ S
j
−→ E

g
−→ Q −→ 0

where j : S → E is the inclusion, as well as the dual exact sequence

(8.11′) 0 −→ Q∗ g∗

−→ E∗ j∗

−→ S∗ −→ 0,

which we will twist by suitable line bundles. The main idea of [Ohs02, Ohs04] is that finding a lifting of a section
by g is essentially equivalent to extending the related section on Y = P (Q∗) = P(Q) to X = P (E∗) = P(E), using
the obvious embedding Y ⊂ X of the projectivized bundles. In fact, if rS = rE − rQ are the respective ranks of
our vector bundles, we have the classical formula

(8.12) KX = KP(E) = π∗(KX ⊗ detE) ⊗OP(E)(−rS)

where π : P(E) → X is the canonical projection. Therefore, since E coincides with the direct image sheaf
π∗OP(E)(1), a section of H0(X,KX ⊗ E ⊗ L) can also be seen as a section of

(8.13) H0(X ,KX ⊗OX (rS + 1) ⊗ π∗(L⊗ detE−1)).
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Now, since OX (1)↾ cY = OY(1) = OP(Q)(1), the lifting problem is equivalent to extending to X a section of the
line bundle (KX ⊗L)↾Y where L = OX (rS + 1) ⊗ π∗(L⊗ detE−1). As a submanifold, Y is the zero locus of the
bundle morphism

OP(E)(−1) →֒ π∗E∗ → π∗(E∗/Q∗) = π∗S∗,

hence it is the (transverse) zero locus of a naturally defined section

(8.14) s ∈ H0(X , E) where E := π∗S∗ ⊗OP(E)(1).

Let us assume that E is endowed with a smooth hermitian metric h such that ΘE,h is Griffiths semi-positive. We
equip Q with the quotient metric and S, OP(E)(1), detE, E (...) with the induced metrics. A sufficient curvature
condition needed to apply the Ohsawa-Takegoshi-Manivel extension theorem is

iΘL + rS id′d′′ log |s|2 > ε
{iΘEs, s}

|s|2

for ε > 0 small enough (i.e. in some range ε ∈ [0, ε0], ε0 6 1). Since id′d′′ log |s|2 > −iΘO(P(E)(1) − {iΘπ∗S∗s,s}
|s|2 ,

we obtain the sufficient condition

(8.15) π∗iΘL⊗detE−1 + (1 − ε)iΘOP(E)(1) − (rS + ε)
{iΘπ∗S∗s, s}

|s|2
> 0, ε ∈ [0, ε0].

The assumption that E is Griffiths semi-positive implies iΘdetE > 0, iΘOP(E)(1) > 0 and also

(8.16)
{iΘπ∗S∗s, s}

|s|2
6 iΘdetQ.

In fact this is equivalent to proving that S ⊗ detQ is Griffiths semi-positive, but we have in fact S ⊗ detQ =
S ⊗ detS−1 ⊗ detE = ΛrS−1S∗ ⊗ detE, which is a quotient of ΛrS−1E∗ ⊗ detE = ΛrE−rS+1E > 0. This shows
that (8.15) is implied by the simpler condition

(8.17) iΘL > iΘdetE + (rS + ε0)iΘdetQ,

in particular L = detE ⊗ (detQ)k, k > rS , satisfies the curvature condition. We derive from there:

(8.18) Theorem. Assume that (X,ω) is a Kähler manifold possessing a complete Kähler metric ω̂, and let
g : E → Q be a surjective morphism of holomorphic vector bundles, where (E, hE) is a Griffiths semi-positive
hermitian bundle. Consider a hermitian holomorphic line bundle (L, hL) such that

iΘL − (rS + ε)iΘdetQ − iΘdetE > 0, rS = rE − rQ, ε > 0.

Then for every L2 holomorphic section f ∈ H0(X,KX ⊗ Q ⊗ L) there exists a L2 holomorphic section
h ∈ H0(X,KX ⊗ E ⊗ L) such that f = g · h and ‖h‖2 6 Cn,rE ,ε‖f‖

2.

Proof. We apply Theorem 8.6 with respect to the data (X ,Y, E ,L) and α = ε−1, r = rS . Since |s| 6 1, we
have to multiply s by δ = exp(−1/ε) to enforce hypothesis 8.6 b). This affects the final estimate only as far as
the term log |s| is concerned, since both |s|2r and |Λr(ds)|2 = 1 are multiplied by δ2r. Finally, we apply Fubini’s
theorem to reduce integrals over X or Y to integrals over X , observing that all fibers of X = P(E) → X are
isometric and therefore produce the same fiber integral. Theorem 8.18 follows. By exercising a little more care
in the estimates, one sees that the constant Cn,rE ,ε is actually bounded by Cn,rE

ε−2, where the ε−2 comes from
the term (− log |s|)2, after s has been multiplied by exp(−1/ε). �

Skoda’s original method is slightly more accurate. It shows that one can take Cn,rE ,ε = ε−1, and, more
importantly, replaces the curvature hypothesis by the weaker one

(8.19) iΘL − (k + ε)iΘdetQ − iΘdetE > 0, k = min(rS , n), rS = rE − rQ, n = dimX, ε > 0,

which does not seem so easy to obtain with the present method. It is however possible to get estimates also when
Q is endowed with a metric given a priori, that can be distinct from the quotient metric of E by g. Then the
map g⋆(gg⋆)−1 : Q −→ E is the lifting of Q orthogonal to S = Ker g. The quotient metric |•|′ on Q is therefore
defined in terms of the original metric |•| by
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|v|′2 = |g⋆(gg⋆)−1v|2 = 〈(gg⋆)−1v, v〉 = det(gg⋆)−1 〈g̃g⋆v, v〉

where g̃g⋆ ∈ End(Q) denotes the endomorphism of Q whose matrix is the transposed comatrix of gg⋆. For every
w ∈ detQ, we find

|w|′2 = det(gg⋆)−1 |w|2.

If Q′ denotes the bundle Q with the quotient metric, we get

iΘdetQ′ = iΘdetQ + id′d′′ log det(gg⋆).

In order that the hypotheses of Theorem 8.18 be satisfied, we are led to define a new metric |•|′ on L by

|u|′2 = |u|2
(
det(gg⋆)

)−m−ε
. Then

iΘL′ = iΘL + (m+ ε) id′d′′ log det(gg⋆) > (m+ ε) iΘdetQ′ .

Theorem 8.18 applied to (E,Q′, L′) can now be reformulated:

(8.20) Theorem. Let X be a weakly pseudoconvex manifold equipped with a Kähler metric ω, let E → Q be a
generically surjective morphism of hermitian vector bundles with E Griffiths semi-positive, and let L → X be a
hermitian holomorphic line bundle. Assume that

iΘL − (rS + ε)iΘdetQ − iΘdetE > 0, rS = rE − rQ, ε > 0.

Then for every holomorphic section f of KX ⊗Q⊗ L such that

I =

∫

X

〈g̃g⋆f, f〉 (det gg⋆)−rS−1−ε dV < +∞,

there exists a holomorphic section of KX ⊗ E ⊗ L such that f = g · h and
∫

X

|h|2 (det gg⋆)−rS−ε dV 6 Cn,rE ,ε I.

In case Q is of rank 1, the estimate reduces to
∫

X

|h|2 |g|−2rS−2ε dV 6 Cn,rE ,ε

∫

X

|f |2 |g|−2(rS+1)−2ε dV.

Proof. if Z ⊂ X is the analytic locus where g : E → Q is not surjective and Xc = {ψ < c} is an exhaustion of X
by weakly pseudoconvex relatively compact open subsets, we exploit here the fact that XcrZ carries a complete
metric (see [Dem82b]). It is easy to see that the L2 conditions forces a section defined a priori only on X rZ to
extend to X . �

The special case where E = O⊕p
Ω and Q = OΩ are trivial bundles over a weakly pseudocovex open set Ω ⊂ Cn

is already a quite substantial theorem, which goes back to [Sko72b]. In this case, we take L to be the hermitian
line bundle (OΩ , e

−ϕ) associated with an arbitrary plurisubharmonic function ϕ on Ω.

(8.21) Corollary (Skoda’s division theorem). Let f, g1, . . . , gp be holomorphic functions on a weakly pseudoconvex
open set Ω ⊂ Cn such that

∫
Ω
|f |2|g|−2(p+1)−2εe−ϕdV < +∞ for some plurisubharmonic function ϕ. Then there

exist holomorphic functions hj, 1 6 j 6 p, such that f =
∑
gjhj on Ω, and

∫

X

|h|2 |g|−2(p−1)−2εe−ϕ dV 6 Cn,p,ε

∫

X

|f |2 |g|−2p−2εe−ϕ dV.

9. Approximation of closed positive (1,1)-currents by divisors
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9.A. Local approximation theorem through Bergman kernels

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that every psh function on a
pseudoconvex open set Ω ⊂ Cn can be approximated very accurately by functions of the form c log |f |, where
c > 0 and f is a holomorphic function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93b] and Demailly-Kollár [DK01]. Recall that the Lelong number of a function ϕ ∈ Psh(Ω)
at a point x0 is defined to be

(9.1) ν(ϕ, x0) = lim inf
z→x0

ϕ(z)

log |z − x0|
= lim
r→0+

supB(x0,r) ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing order

ordx0(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

(9.2) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex open set Ω ⊂ Cn. For every
m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic functions f on Ω such that

∫
Ω
|f |2e−2mϕdλ < +∞ and

let ϕm = 1
2m log

∑
|σℓ|2 where (σℓ) is an orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0

independent of m such that

(a) ϕ(z) −
C1

m
6 ϕm(z) 6 sup

|ζ−z|<r
ϕ(ζ) +

1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ϕm converges to ϕ pointwise and in L1
loc topology on Ω

when m→ +∞ and

(b) ν(ϕ, z) −
n

m
6 ν(ϕm, z) 6 ν(ϕ, z) for every z ∈ Ω.

Proof. (a) Note that
∑

|σℓ(z)|2 is the square of the norm of the evaluation linear form evz : f 7→ f(z) on
HΩ(mϕ), since σℓ(z) = evz(σℓ) is the ℓ-th coordinate of evz in the orthonormal basis (σℓ). In other words, we
have ∑

|σℓ(z)|
2 = sup

f∈B(1)

|f(z)|2

where B(1) is the unit ball of HΩ(mϕ) (The sum is called the Bergman kernel associated with HΩ(mϕ).) As ϕ
is locally bounded from above, the L2 topology is actually stronger than the topology of uniform convergence
on compact subsets of Ω. It follows that the series

∑
|σℓ|

2 converges uniformly on Ω and that its sum is real
analytic. Moreover, by what we just explained, we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|.

For z0 ∈ Ω and r < d(z0, ∂Ω), the mean value inequality applied to the psh function |f |2 implies

|f(z0)|
2 6

1

πnr2n/n!

∫

|z−z−0|<r
|f(z)|2dλ(z)

6
1

πnr2n/n!
exp

(
2m sup

|z−z0|<r
ϕ(z)

) ∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z0) 6 sup
|z−z0|<r

ϕ(z) +
1

2m
log

1

πnr2n/n!

and the second inequality in (a) is proved – as we see, this is an easy consequence of the mean value inequality.
Conversely, the Ohsawa-Takegoshi extension theorem (Corollary 8.9) applied to the 0-dimensional subvariety
{z0} ⊂ Ω shows that for any a ∈ C there is a holomorphic function f on Ω such that f(z0) = a and

∫

Ω

|f |2e−2mϕdλ 6 C3|a|
2e−2mϕ(z0),
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where C3 only depends on n and diamΩ. We fix a such that the right hand side is 1. Then ‖f‖ 6 1 and so we
get

ϕm(z0) >
1

m
log |f(z0)| =

1

m
log |a| = ϕ(z) −

logC3

2m
.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that limm→+∞ sup|ζ−z|<1/m ϕ(ζ) = ϕ(z)

by the upper semicontinuity of ϕ, and therefore limϕm(z) = ϕ(z), since lim 1
m log(C2m

n) = 0.

(b) The above estimates imply

sup
|z−z0|<r

ϕ(z) −
C1

m
6 sup

|z−z0|<r
ϕm(z) 6 sup

|z−z0|<2r

ϕ(z) +
1

m
log

C2

rn
.

After dividing by log r < 0 when r → 0, we infer

sup|z−z0|<2r ϕ(z) + 1
m log C2

rn

log r
6

sup|z−z0|<r ϕm(z)

log r
6

sup|z−z0|<r ϕ(z) − C1

m

log r
,

and from this and definition (9.1), it follows immediately that

ν(ϕ, x) −
n

m
6 ν(ϕm, z) 6 ν(ϕ, z). �

Theorem 9.2 implies in a straightforward manner the deep result of [Siu74] on the analyticity of the Lelong
number upperlevel sets.

(9.3) Corollary [Siu74]). Let ϕ be a plurisubharmonic function on a complex manifold X. Then, for every c > 0,
the Lelong number upperlevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) > c

}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh function ϕ on a pseudoconvex
open set Ω ⊂ Cn. The inequalities obtained in 9.2 b) imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0 for all multi-indices α such

that |α| < mc. Thus Ec(ϕ) is analytic as a (countable) intersection of analytic sets. �

(9.4) Remark. It can be easily shown that the Lelong numbers of any closed positive (p, p)-current coincide (at
least locally) with the Lelong numbers of a suitable plurisubharmonic potential ϕ (see Skoda [Sko72a]). Hence
Siu’s theorem also holds true for the Lelong number upperlevel sets Ec(T ) of any closed positive (p, p)-current T .

9.B. Global approximation of closed (1,1)-currents on a compact complex manifold

We take here X to be an arbitrary compact complex manifold (no Kähler assumption is needed). Now, let T
be a closed (1, 1)-current on X . We assume that T is almost positive, i.e. that there exists a (1, 1)-form γ with
continuous coefficients such that T > γ ; the case of positive currents (γ = 0) is of course the most important.

(9.5) Lemma. There exists a smooth closed (1, 1)-form α representing the same ∂∂-cohomology class as T and an
almost psh function ϕ on X such that T = α + i

π∂∂ϕ. (We say that a function ϕ is almost psh if its complex

Hessian is bounded below by a (1, 1)-form with locally bounded coefficients, that is, if i∂∂ϕ is almost positive).

Proof. Select an open covering (Uj) of X by coordinate balls such that T = i
π∂∂ϕj over Uj, and construct a global

function ϕ =
∑
θjϕj by means of a partition of unity (θj) subordinate to Uj . Now, we observe that ϕ − ϕk is
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smooth on Uk because all differences ϕj−ϕk are smooth in the intersections Uj∩Uk and ϕ−ϕk =
∑
θj(ϕj−ϕk)).

Therefore α := T − i
π∂∂ϕ is smoth. �

By replacing T with T − α and γ with γ − α, we can assume without loss of generality that {T } = 0, i.e.
that T = i

π∂∂ϕ with an almost psh function ϕ on X such that i
π∂∂ϕ > γ.

Our goal is to approximate T in the weak topology by currents Tm = i
π∂∂ϕm such their potentials ϕm have

analytic singularities in the sense of Definition 1.10, more precisely, defined on a neighborhood Vx0 of any point
x0 ∈ X in the form ϕm(z) = cm log

∑
j |σj,m|2 +O(1), where cm > 0 and the σj,m are holomorphic functions on

Vx0 .

We select a finite covering (Wν) of X with open coordinate charts. Given δ > 0, we take in each Wν a
maximal family of points with (coordinate) distance to the boundary > 3δ and mutual distance > δ/2. In this
way, we get for δ > 0 small a finite covering of X by open balls U ′

j of radius δ (actually every point is even
at distance 6 δ/2 of one of the centers, otherwise the family of points would not be maximal), such that the
concentric ball Uj of radius 2δ is relatively compact in the corresponding chart Wν . Let τj : Uj −→ B(aj , 2δ) be
the isomorphism given by the coordinates of Wν . Let ε(δ) be a modulus of continuity for γ on the sets Uj , such
that limδ→0 ε(δ) = 0 and γx − γx′ 6 1

2ε(δ)ωx for all x, x′ ∈ Uj . We denote by γj the (1, 1)-form with constant

coefficients on B(aj , 2δ) such that τ⋆j γj coincides with γ − ε(δ)ω at τ−1
j (aj). Then we have

(9.6) 0 6 γ − τ⋆j γj 6 2ε(δ)ω on U ′
j

for δ > 0 small. We set ϕj = ϕ ◦ τ−1
j on B(aj , 2δ) and let qj be the homogeneous quadratic function in z − aj

such that i
π∂∂qj = γj on B(aj , 2δ). Finally, we set

(9.7) ψj(z) = ϕj(z) − qj(z) on B(aj , 2δ).

Then ψj is plurisubharmonic, since

i

π
∂∂(ψj ◦ τj) = T − τ⋆j γj > γ − τ⋆j γj > 0.

We let U ′
j⊂⊂U

′′
j ⊂⊂Uj be concentric balls of radii δ, 1.5 δ, 2δ respectively. On each open set Uj the function

ψj := ϕ− qj ◦ τj defined in (9.7) is plurisubharmonic, so Theorem (9.2) applied with Ω = Uj produces functions

(9.8) ψj,m =
1

2m
log

∑

ℓ

|σj,ℓ|
2, (σj,ℓ) = basis of HUj

(mψj).

These functions approximate ψj as m tends to +∞ and satisfy the inequalities

(9.9) ψj(x) −
C1

m
6 ψj,m(x) 6 sup

|ζ−x|<r
ψj(ζ) +

1

m
log

C2

rn
.

The functions ψj,m+qj◦τj on Uj then have to be glued together by a partition of unity technique. For this, we rely
on the following “discrepancy” lemma, estimating the variation of the approximating functions on overlapping
balls.

(9.10) Lemma. There are constants Cj,k independent of m and δ such that the almost psh functions wj,m =
2m(ψj,m + qj ◦ τj), i.e.

wj,m(x) = 2mqj ◦ τj(x) + log
∑

ℓ

∣∣σj,ℓ(x)
∣∣2, x ∈ U ′′

j ,

satisfy

|wj,m − wk,m| 6 Cj,k
(
log δ−1 +mε(δ)δ2

)
on U ′′

j ∩ U ′′
k .

Proof. The details will be left as an exercise to the reader. The main idea is the following: for any holomorphic
function fj ∈ HUj

(mψj), a ∂ equation ∂u = ∂(θfj) can be solved on Uk, where θ is a cut-off function with
support in U ′′

j ∩ U ′′
k , on a ball of radius < δ/4, equal to 1 on the ball of radius δ/8 centered at a given point

x0 ∈ U ′′
j ∩U ′′

k . We apply the L2 estimate with respect to the weight (n+ 1) log |x− x0|2 + 2mψk, where the first
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term is picked up so as to force the solution u to vanish at x0, in such a way that Fk = u − θfj is holomorphic
and Fk(x0) = fj(x0). The discrepancy between the weights on U ′′

j and U ′′
k is

ψj(x) − ψk(x) = −
(
qj ◦ τj(x) − qk ◦ τk(x)

)

and the ∂∂ of this difference is O(ε(δ)), so it is easy to correct the discrepancy up to a O(ε(δ)δ2) term by
multiplying our functions by an invertible holomorphic function Gjk. In this way, we get a uniform L2 control
on the L2 norm of the solution fk = GjkFk = Gjk(u− θfj) of the form

∫

Uk

|fk|
2e−2mψk 6 Cj,kδ

−2n−4emO(ε(δ)δ2)

∫

Uj

|fj |
2e−2mψj .

The required estimate follows, using the fact that

e2mψj,m(x) =
∑

ℓ

|σj,ℓ(x)|
2 = sup

f∈HUj
(mψj), ‖f‖61

|f(x)|2 on Uj ,

and the analogous equality on Uk. �

Now, the actual glueing of our almost psh functions is performed using the following elementary partition of
unity calculation.

(9.11) Lemma. Let U ′
j⊂⊂U

′′
j be locally finite open coverings of a complex manifold X by relatively compact open

sets, and let θj be smooth nonnegative functions with support in U ′′
j , such that θj 6 1 on U ′′

j and θj = 1 on U ′
j.

Let Aj > 0 be such that

i(θj∂∂θj − ∂θj ∧ ∂θj) > −Ajω on U ′′
j r U ′

j

for some positive (1, 1)-form ω. Finally, let wj be almost psh functions on Uj with the property that i∂∂wj > γ
for some real (1, 1)-form γ on M , and let Cj be constants such that

wj(x) 6 Cj + sup
k 6=j, U ′

k
∋x
wk(x) on U ′′

j r U ′
j .

Then the function w = log
( ∑

θ2j e
wj

)
is almost psh and satisfies

i∂∂w > γ − 2
(∑

j

1U ′′
j

rU ′
j
Aje

Cj

)
ω.

Proof. If we set αj = θj∂wj + 2∂θj, a straightforward computation shows that

∂w =

∑
(θ2j∂wj + 2θj∂θj)e

wj

∑
θ2j e

wj
=

∑
θje

wjαj∑
θ2j e

wj
,

∂∂w =

∑(
αj ∧ αj+θ2j∂∂wj+2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj
−

∑
j,k θje

wjθke
wkαj∧αk

( ∑
θ2je

wj

)2

=

∑
j<k

∣∣θjαk−θkαj
∣∣2ewjewk

( ∑
θ2je

wj

)2 +

∑
θ2j e

wj∂∂wj∑
θ2j e

wj
+

∑(
2θj∂∂θj−2∂θj∧∂θj

)
ewj

∑
θ2j e

wj

by using the Legendre identity. The first term in the last line is nonnegative and the second one is > γ. In the
third term, if x is in the support of θj∂∂θj − ∂θj ∧ ∂θj , then x ∈ U ′′

j r U ′
j and so wj(x) 6 Cj + wk(x) for some

k 6= j with U ′
k ∋ x and θk(x) = 1. This gives

i

∑(
2θj∂∂θj − 2∂θj ∧ ∂θj

)
ewj

∑
θ2j e

wj
> −2

∑

j

1U ′′
j

rU ′
j
eCjAjω.

The expected lower bound follows. �
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We apply Lemma (9.11) to functions w̃j,m which are just slight modifications of the functions wj,m =
2m(ψj,m + qj ◦ τj) occurring in (9.10) :

w̃j,m(x) = wj,m(x) + 2m
(C1

m
+ C3ε(δ)(δ

2/2 − |τj(x)|
2)

)

= 2m
(
ψj,m(x) + qj ◦ τj(x) +

C1

m
+ C3ε(δ)(δ

2/2 − |τj(x)|
2)

)

where x 7→ z = τj(x) is a local coordinate identifying Uj to B(0, 2δ), C1 is the constant occurring in (9.9) and
C3 is a sufficiently large constant. It is easy to see that we can take Aj = C4δ

−2 in Lemma (9.11). We have

w̃j,m > wj,m + 2C1 +m
C3

2
ε(δ)δ2 on B(xj , δ/2) ⊂ U ′

j ,

since |τj(x)| 6 δ/2 on B(xj , δ/2), while

w̃j,m 6 wj,m + 2C1 −mC3ε(δ)δ
2 on U ′′

j r U ′
j .

For m > m0(δ) = (log δ−1/(ε(δ)δ2), Lemma (9.10) implies |wj,m − wk,m| 6 C5mε(δ)δ
2 on U ′′

j ∩ U ′′
k . Hence, for

C3 large enough, we get

w̃j,m(x) 6 sup
k 6=j, B(xk,δ/2)∋x

wk,m(x) 6 sup
k 6=j, U ′

k
∋x
wk,m(x) on U ′′

j r U ′
j ,

and we can take Cj = 0 in the hypotheses of Lemma (9.11). The associated function w = log
( ∑

θ2j e
w̃j,m

)
is

given by

w = log
∑

j

θ2j exp
(
2m

(
ψj,m + qj ◦ τj +

C1

m
+ C3ε(δ)(δ

2/2 − |τj |
2)

))
.

If we define ϕm = 1
2mw, we get

ϕm(x) :=
1

2m
w(x) > ψj,m(x) + qj ◦ τj(x) +

C1

m
+
C3

4
ε(δ)δ2 > ϕ(x)

in view of (9.9), by picking an index j such that x ∈ B(xj , δ/2). In the opposite direction, the maximum number
N of overlapping balls Uj does not depend on δ, and we thus get

w 6 logN + 2m
(

max
j

{
ψj,m(x) + qj ◦ τj(x)

}
+
C1

m
+
C3

2
ε(δ)δ2

)
.

By definition of ψj we have sup|ζ−x|<r ψj(ζ) 6 sup|ζ−x|<r ϕ(ζ)− qj ◦ τj(x)+C5r thanks to the uniform Lipschitz
continuity of qj ◦ τj , thus by (9.9) again we find

ϕm(x) 6
logN

2m
+ sup

|ζ−x|<r
ϕ(ζ) +

C1

m
+

1

m
log

C2

rn
+
C3

2
ε(δ)δ2 + C5r

By taking for instance r = 1/m and δ = δm → 0, we see that ϕm converges to ϕ. On the other hand (9.6) implies
i
π∂∂qj ◦ τj(x) = τ⋆j γj > γ − 2ε(δ)ω, thus

i

π
∂∂w̃j,m > 2m

(
γ − C6ε(δ)ω

)
.

Lemma (9.11) then produces the lower bound

i

π
∂∂w > 2m

(
γ − C6ε(δ)ω

)
− C7δ

−2ω,

whence
i

π
∂∂ϕm > γ − C8ε(δ)ω

for m > m0(δ) = (log δ−1)/(ε(δ)δ2). We can fix δ = δm to be the smallest value of δ > 0 such that m0(δ) 6 m,
then δm → 0 and we have obtained a sequence of quasi psh functions ϕm satisfying the following properties.
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(9.12) Theorem. Let ϕ be an almost psh function on a compact complex manifold X such that i
π∂∂ϕ > γ for

some continuous (1, 1)-form γ. Then there is a sequence of almost psh functions ϕm such that ϕm has the same
singularities as a logarithm of a sum of squares of holomorphic functions and a decreasing sequence εm > 0
converging to 0 such that

(i) ϕ(x) < ϕm(x) 6 sup
|ζ−x|<r

ϕ(ζ) + C
( | log r|

m
+ r + εm

)

with respect to coordinate open sets covering X. In particular, ϕm converges to ϕ pointwise and in L1(X)
and

(ii) ν(ϕ, x) −
n

m
6 ν(ϕm, x) 6 ν(ϕ, x) for every x ∈ X ;

(iii)
i

π
∂∂ϕm > γ − εmω.

In particular, we can apply this to an arbitrary positive or almost positive closed (1, 1)-current T = α+ i
π∂∂ϕ.

(9.13) Corollary. Let T be an almost positive closed (1, 1)-current on a compact complex manifold X such that
T > γ for some continuous (1, 1)-form γ. Then there is a sequence of currents Tm whose local potentials have
the same singularities as 1/m times a logarithm of a sum of squares of holomorphic functions and a decreasing
sequence εm > 0 converging to 0 such that

(i) Tm converges weakly to T ,

(ii) ν(T, x) −
n

m
6 ν(Tm, x) 6 ν(T, x) for every x ∈ X ;

(iii) Tm > γ − εmω.

We say that our currents Tm are approximations of T possessing logarithmic poles.

By using blow-ups of X , the structure of the currents Tm can be better understood. In fact, consider the coherent

ideals Jm generated locally by the holomorphic functions (σ
(k)
j,m) on Uk in the local approximations

ϕk,m =
1

2m
log

∑

j

|σ
(k)
j,m|2 +O(1)

of the potential ϕ of T on Uk. These ideals are in fact globally defined, because the local ideals J
(k)
m = (σ

(k)
j,m)

are integrally closed, and they coincide on the intersections Uk ∩Uℓ as they have the same order of vanishing by
the proof of Lemma (13,10). By Hironaka [Hir64], we can find a composition of blow-ups with smooth centers

µm : X̃m → X such that µ∗
mJm is an invertible ideal sheaf associated with a normal crossing divisor Dm. Now,

we can write

µ∗
mϕk,m = ϕk,m ◦ µm =

1

m
log |sDm

| + ϕ̃k,m

where sDm
is the canonical section of O(−Dm) and ϕ̃k,m is a smooth potential. This implies

(9.14) µ∗
mTm =

1

m
[Dm] + βm

where [Dm] is the current of integration over Dm and βm is a smooth closed (1, 1)-form which satisfies the lower
bound βm > µ∗

m(γ− εmω). (Recall that the pull-back of a closed (1, 1)-current by a holomorphic map f is always
well-defined, by taking a local plurisubharmonic potential ϕ such that T = i∂∂ϕ and writing f∗T = i∂∂(ϕ ◦ f)).
In the remainder of this section, we derive from this a rather important geometric consequence, first appeared
in [DP04]). We need two related definitions.

(9.15) Definition. A Kähler current on a compact complex space X is a closed positive current T of bidegree (1, 1)
which satisfies T > εω for some ε > 0 and some smooth positive hermitian form ω on X.

(9.16) Definition. A compact complex manifold is said to be in the Fujiki class C) if it is bimeromorphic to a Kähler
manifold (or equivalently, using Hironaka’s desingularization theorem, if it admits a proper Kähler modification).

(9.17) Theorem. A compact complex manifold X is bimeromorphic to a Kähler manifold (i.e. X ∈ C) if and only
if it admits a Kähler current.
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Proof. If X is bimeromorphic to a Kähler manifold Y , Hironaka’s desingularization theorem implies that there
exists a blow-up Ỹ of Y (obtained by a sequence of blow-ups with smooth centers) such that the bimeromorphic

map from Y to X can be resolved into a modification µ : Ỹ → X . Then Ỹ is Kähler and the push-forward
T = µ∗ω̃ of a Kähler form ω̃ on Ỹ provides a Kähler current on X . In fact, if ω is a smooth hermitian form on X ,
there is a constant C such that µ∗ω 6 Cω̃ (by compactness of Ỹ ), hence

T = µ∗ω̃ > µ∗(C
−1µ∗ω) = C−1ω.

Conversely, assume that X admits a Kähler current T > εω. By Theorem 9.13 (iii), there exists a Kähler current

T̃ = Tm > ε
2ω (with m≫ 1 so large that εm 6 ε/2) in the same ∂∂-cohomology class as T , possessing logarithmic

poles. Observation (9.14) implies the existence of a composition of blow-ups µ : X̃ → X such that

µ∗T̃ = [D̃] + β̃ on X̃,

where D̃ is a Q-divisor with normal crossings and β̃ a smooth closed (1, 1)-form such that β̃ > ε
2µ

∗ω. In particular

β̃ is positive outside the exceptional locus of µ. This is not enough yet to produce a Kähler form on X̃ , but we
are not very far. Suppose that X̃ is obtained as a tower of blow-ups

X̃ = XN → XN−1 → · · · → X1 → X0 = X,

where Xj+1 is the blow-up of Xj along a smooth center Yj ⊂ Xj. Denote by Ej+1 ⊂ Xj+1 the exceptional divisor,
and let µj : Xj+1 → Xj be the blow-up map. Now, we use the following simple

(9.18) Lemma. For every Kähler current Tj on Xj, there exists εj+1 > 0 and a smooth form uj+1 in the ∂∂-
cohomology class of [Ej+1] such that

Tj+1 = µ⋆jTj − εj+1uj+1

is a Kähler current on Xj+1.

Proof. The line bundle O(−Ej+1)|Ej+1 is equal to OP (Nj)(1) where Nj is the normal bundle to Yj in Xj . Pick an
arbitrary smooth hermitian metric on Nj , use this metric to get an induced Fubini-Study metric on OP (Nj)(1),
and finally extend this metric as a smooth hermitian metric on the line bundle O(−Ej+1). Such a metric has
positive curvature along tangent vectors of Xj+1 which are tangent to the fibers of Ej+1 = P (Nj) → Yj . Assume
furthermore that Tj > δjωj for some hermitian form ωj on Xj and a suitable 0 < δj ≪ 1. Then

µ⋆jTj − εj+1uj+1 > δjµ
⋆
jωj − εj+1uj+1

where µ∗
jωj is semi-positive on Xj+1, positive definite on Xj+1 r Ej+1, and also positive definite on tangent

vectors of TXj+1|Ej+1
which are not tangent to the fibers of Ej+1 → Yj . The statement is then easily proved

by taking εj+1 ≪ δj and by using an elementary compactness argument on the unit sphere bundle of TXj+1

associated with any given hermitian metric. �

End of proof of Theorem 9.17. If ũj is the pull-back of uj to the final blow-up X̃, we conclude inductively that

µ⋆T̃ −
∑
εj ũj is a Kähler current. Therefore the smooth form

ω̃ := β̃ −
∑

εjũj = µ⋆T̃ −
∑

εj ũj − [D̃]

is Kähler and we see that X̃ is a Kähler manifold. �

(9.19) Remark. A special case of Theorem (9.16) is the following characterization of Moishezon varieties (i.e.
manifolds which are bimeromorphic to projective algebraic varieties or, equivalently, whose algebraic dimension
is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kähler current T such that the De
Rham cohomology class {T } is rational, i.e. {T } ∈ H2(X,Q).

In fact, in the above proof, we get an integral current T if we take the push forward T = µ∗ω̃ of an integral ample
class {ω̃} on Y , where µ : Y → X is a projective model of Y . Conversely, if {T } is rational, we can take the ε′js
to be rational in Lemma 3.5. This produces at the end a Kähler metric ω̃ with rational De Rham cohomology
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class on X̃. Therefore X̃ is projective by the Kodaira embedding theorem. This result was already observed in
[JS93] (see also [Bon93, Bon98] for a more general perspective based on a singular version of holomorphic Morse
inequalities).

9.C. Global approximation by divisors

We now translate our previous approximation theorems into a more algebro-geometric setting. Namely, we assume
that T is a closed positive (1, 1)-current which belongs to the first Chern class c1(L) of a holomorphic line bundle L,
and we assume here X to be algebraic (i.e. projective or at the very least Moishezon).

Our goal is to show that T can be approximated by divisors which have roughly the same Lelong numbers
as T . The existence of weak approximations by divisors has already been proved in [Lel72] for currents defined on
a pseudoconvex open set Ω ⊂ Cn with H2(Ω,R) = 0, and in [Dem92, 93b] in the situation considered here (cf.
also [Dem82b], although the argument given there is somewhat incorrect). We take the opportunity to present
here a slightly simpler derivation.

Let X be a projective manifold and L a line bundle over X . A singular hermitian metric h on L is a metric
such that the weight function ϕ of h is L1

loc in any local trivialization (such that L|U ≃ U×C and ‖ξ‖h = |ξ|e−ϕ(x),
ξ ∈ Lx ≃ C). The curvature of L can then be computed in the sense of distributions

T =
i

2π
ΘL,h =

i

π
∂∂ϕ,

and L is said to be pseudo-effective if L admits a singular hermitian metric h such that the curvature current
T = i

2πΘL,h is semi-positive [The weight functions ϕ of L are thus plurisubharmonic]. In what follows, we
sometimes use an additive notation for Pic(X), i.e. kL is meant for the line bundle L⊗k.

We will also make use of the concept of complex singularity exponent, following e.g. [Var82, 83], [ArGV85]
and [DK01]. A quasi-plurisubharmonic (quasi-psh) function is by definition a function ϕ which is locally equal
to the sum of a psh function and of a smooth function, or equivalently, a locally integrable function ϕ such that
i∂∂ϕ is locally bounded below by −Cω where ω is a hermitian metric and C a constant.

(9.20) Definition. If K is a compact subset of X and ϕ is a quasi-psh function defined near K, we define

(a) the complex singularity exponent cK(ϕ) to be the supremum of all positive numbers c such that e−2cϕ is
integrable in a neighborhood of every point z0 ∈ K, with respect to the Lebesgue measure in holomorphic
coordinates centered at z0. In particular cK(ϕ) = infz0∈K(ϕ).

(b) The concept is easily extended to hermitian metrics h = e−2ϕ by putting cK(h) = cK(ϕ), to holomorphic
functions f by cK(f) = cK(log |f |), to coherent ideals J = (g1, . . . , gN ) by cK(J ) = cK(ϕ) where ϕ =
1
2 log

∑
|gj |2. Also for an effective R-divisor D, we put cK(D) = cK(log |σD|) where σD is the canonical

section.

The main technical result of this section can be stated as follows, in the case of big line bundles (cf. Proposition
(6.14 f)).

(9.21) Theorem. Let L be a line bundle on a compact complex manifold X possessing a singular hermitian metric
h with ΘL,h > εω for some ε > 0 and some smooth positive definite hermitian (1, 1)-form ω on X. For every real
number m > 0, consider the space Hm = H0(X,L⊗m⊗I(hm)) of holomorphic sections σ of L⊗m on X such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω < +∞,

where dVω = 1
m!ω

m is the hermitian volume form. Then for m≫ 1, Hm is a non zero finite dimensional Hilbert
space and we consider the closed positive (1, 1)-current

Tm =
i

π
∂∂

( 1

2m
log

∑

k

|gm,k|
2
)

=
i

π
∂∂

( 1

2m
log

∑

k

|gm,k|
2
h

)
+ΘL,h

where (gm,k)16k6N(m) is an orthonormal basis of Hm. Then :
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(i) For every trivialization L|U ≃ U × C on a cordinate open set U of X and every compact set K ⊂ U , there
are constants C1, C2 > 0 independent of m and ϕ such that

ϕ(z) −
C1

m
6 ψm(z) :=

1

2m
log

∑

k

|gm,k(z)|
2 6 sup

|x−z|<r
ϕ(x) +

1

m
log

C2

rn

for every z ∈ K and r 6 1
2d(K, ∂U). In particular, ψm converges to ϕ pointwise and in L1

loc topology on Ω
when m→ +∞, hence Tm converges weakly to T = ΘL,h.

(ii) The Lelong numbers ν(T, z) = ν(ϕ, z) and ν(Tm, z) = ν(ψm, z) are related by

ν(T, z)−
n

m
6 ν(Tm, z) 6 ν(T, z) for every z ∈ X.

(iii) For every compact set K ⊂ X, the complex singularity exponents of the metrics given locally by h = e−2ϕ

and hm = e−2ψm satisfy

cK(h)−1 −
1

m
6 cK(hm)−1 6 cK(h)−1.

Proof. The major part of the proof is a variation of the arguments already explained in section 9.A.

(i) We note that
∑

|gm,k(z)|
2 is the square of the norm of the evaluation linear form σ 7→ σ(z) on Hm, hence

ψm(z) = sup
σ∈B(1)

1

m
log |σ(z)|

where B(1) is the unit ball of Hm. For r 6 1
2d(K, ∂Ω), the mean value inequality applied to the plurisubharmonic

function |σ|2 implies

|σ(z)|2 6
1

πnr2n/n!

∫

|x−z|<r
|σ(x)|2dλ(x)

6
1

πnr2n/n!
exp

(
2m sup

|x−z|<r
ϕ(x)

) ∫

Ω

|σ|2e−2mϕdλ.

If we take the supremum over all σ ∈ B(1) we get

ψm(z) 6 sup
|x−z|<r

ϕ(x) +
1

2m
log

1

πnr2n/n!

and the right hand inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi extension theorem [OhT87],
[Ohs88] applied to the 0-dimensional subvariety {z} ⊂ U shows that for any a ∈ C there is a holomorphic function
f on U such that f(z) = a and ∫

U

|f |2e−2mϕdλ 6 C3|a|
2e−2mϕ(z),

where C3 only depends on n and diamU . Now, provided a remains in a compact set K ⊂ U , we can use a
cut-off function θ with support in U and equal to 1 in a neighborhood of a, and solve the ∂-equation ∂g = ∂(θf)
in the L2 space associated with the weight 2mϕ + 2(n + 1)| log |z − a|, that is, the singular hermitian metric
h(z)m|z − a|−2(n+1) on L⊗m. For this, we apply the standard Andreotti-Vesentini-Hörmander L2 estimates (see
e.g. [Dem82b] for the required version). This is possible for m > m0 thanks to the hypothesis that ΘL,h > εω > 0,
even if X is non Kähler (X is in any event a Moishezon variety from our assumptions). The bound m0 depends
only on ε and the geometry of a finite covering of X by compact sets Kj ⊂ Uj , where Uj are coordinate balls
(say); it is independent of the point a and even of the metric h. It follows that g(a) = 0 and therefore σ = θf − g
is a holomorphic section of L⊗m such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω 6 C4

∫

U

|f |2e−2mϕdVω 6 C5|a|
2e−2mϕ(z),

in particular σ ∈ Hm = H0(X,L⊗m⊗I(hm)). We fix a such that the right hand side is 1. This gives the inequality

ψm(z) >
1

m
log |a| = ϕ(z) −

logC5

2m
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which is the left hand part of statement (i).

(ii) The first inequality in (i) implies ν(ψm, z) 6 ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ψm(x) 6 sup
|x−z|<2r

ϕ(x) +
1

m
log

C2

rn
.

Divide by log r < 0 and take the limit as r tends to 0. The quotient by log r of the supremum of a psh function
over B(x, r) tends to the Lelong number at x. Thus we obtain

ν(ψm, x) > ν(ϕ, x) −
n

m
.

(iii) Again, the first inequality (in (i) immediately yields hm 6 C6h, hence cK(hm) > cK(h). For the converse
inequality, since we have c∪Kj

(h) = minj cKj
(h), we can assume without loss of generality that K is contained

in a trivializing open patch U of L. Let us take c < cK(ψm). Then, by definition, if V ⊂ X is a sufficiently small
open neighborhood of K, the Hölder inequality for the conjugate exponents p = 1 + mc−1 and q = 1 + m−1c
implies, thanks to equality 1

p = c
mq ,

∫

V

e−2(m/p)ϕdVω =

∫

V

( ∑

16k6N(m)

|gm,k|
2e−2mϕ

)1/p( ∑

16k6N(m)

|gm,k|
2
)−c/mq

dVω

6




∫

X

∑

16k6N(m)

|gm,k|
2e−2mϕdVω




1/p 


∫

V

( ∑

16k6N(m)

|gm,k|
2
)−c/m

dVω




1/q

= N(m)1/p




∫

V

( ∑

16k6N(m)

|gm,k|
2
)−c/m

dVω




1/q

< +∞.

From this we infer cK(h) > m/p, i.e., cK(h)−1 6 p/m = 1/m + c−1. As c < cK(ψm) was arbitrary, we get
cK(h)−1 6 1/m+ cK(hm)−1 and the inequalities of (iii) are proved. �

(9.22) Remark. The proof would also work, with a few modifications, when X is a Stein manifold and L is an
arbitrary holomorphic line bundle.

(9.23) Corollary. Let L→ X be a holomorphic line bundle and T = i
2πΘL,h the curvature current of some singular

hermitian metric h on L.

(i) If L is big and ΘL,h > εω > 0, there exists a sequence of holomorphic sections hs ∈ H0(X, qsL) with
lim qs = +∞ such that the Q-divisors Ds = 1

qs
div(hs) satisfy T = limDs in the weak topology and

supx∈X |ν(Ds, x) − ν(T, x)| → 0 as s→ +∞.

(ii) If L is just pseudo-effective and ΘL,h > 0, for any ample line bundle A, there exists a sequence of non
zero sections hs ∈ H0(X, psA+ qsL) with ps, qs > 0, lim qs = +∞ and lim ps/qs = 0, such that the divisors
Ds = 1

qs
div(hs) satisfy T = limDs in the weak topology and supx∈X |ν(Ds, x) − ν(T, x)| → 0 as s→ +∞.

Proof. Part (ii) is a rather straightforward consequence of part (i) applied to mL+A and Tm = 1
mΘmL+A,hmhA

=
T + 1

mΘA,hA
→ T when m tends to infinity. Therefore, it suffices to prove (i).

(i) By Theorem (9.20), we can find sections g1, . . . , gN ∈ H0(X,mL) (omitting the index m for simplicity of
notation), such that

Tm =
i

π
∂∂

( 1

2m
log

∑

16j6N

|gj |
2
h

)
+ΘL,h =

i

π
∂∂

( 1

2m
log

∑

16j6N

|gj |
2
)

converges weakly to T and satisfies ν(T, x) − n/m 6 ν(Tm, x) 6 ν(T, x). In fact, since the number N of sections
grows at most as O(mn), we can replace

∑
16j6N |gj |2 by max16j6N |gj |2, as the difference of the potentials tends

uniformly to 0 with the help of the renormalizing constant 1
2m . Hence, we can use instead the approximating

currents
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T̃m =
i

π
∂∂um, um =

1

m
log max

16j6N
|gj |.

Now, as L is big, by the proof of (6.7f) we can write k0L = A + D where A is an ample divisor and D is an
effective divisor, for some k0 > 0. By enlarging k0, we can even assume that A is very ample. Let σD be the
canonical section of D and let h1, . . . , hN be sections of H0(X,A). We get a section of H0(X, (mℓ + k0)L) by
considering

uℓ,m = (gℓ1h1 + . . .+ gℓNhN )σD

By enlarging N if necessary and putting e.g. gj = gN for j > N , we can assume that the sections hj generate all
1-jets of sections of A at every point (actually, one can always achieve this with n+1 sections only, so this is not
really a big demand). Then, for almost every N -tuple (h1, . . . , hN ), Lemma 9.24 below and the weak continuity
of ∂∂ imply that

∆ℓ,m =
1

ℓm

i

π
∂∂ log |uℓ,m| =

1

ℓm
div(uℓ,m)

converges weakly to T̃m = i
π∂∂um as ℓ tends to +∞, and that

ν(Tm, x) 6 ν
( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

µ+ 1

ℓm
,

where µ = maxx∈X ordx(σD). This, together with the first step, implies the proposition for some subsequence
Ds = ∆ℓ(s),s, ℓ(s) ≫ s≫ 1. We even obtain the more explicit inequality

ν(T, x) −
n

m
6 ν

( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

µ+ 1

ℓm
. �

(9.24) Lemma. Let Ω be an open subset in Cn and let g1, . . . , gN ∈ H0(Ω,OΩ) be non zero functions. Let
S ⊂ H0(Ω,OΩ) be a finite dimensional subspace whose elements generate all 1-jets at any point of Ω. Finally,
set u = log maxj |gj | and

uℓ = gℓ1h1 + . . .+ gℓNhN , hj ∈ S r {0}.

Then for all (h1, . . . , hN ) in (Sr{0})N except a set of measure 0, the sequence 1
ℓ log |uℓ| converges to u in L1

loc(Ω)
and

ν(u, x) 6 ν
(1

ℓ
log |uℓ|

)
6 ν(u, x) +

1

ℓ
, ∀x ∈ X, ∀ℓ > 1.

Proof. The sequence 1
ℓ log |uℓ| is locally uniformly bounded above and we have

lim
ℓ→+∞

1

ℓ
log

∣∣uℓ(z)
∣∣ = u(z)

at every point z where all absolute values |gj(z)| are distinct and all hj(z) are nonzero. This is a set of full measure
in Ω because the sets {|gj|2 = |gl|2, j 6= l} and {hj = 0} are real analytic and thus of zero measure (without
loss of generality, we may assume that Ω is connected and that the gj ’s are not pairwise proportional). The
well-known uniform integrability properties of plurisubharmonic functions then show that 1

ℓ log |uℓ| converges to
u in L1

loc(Ω). It is easy to see that ν(u, x) is the minimum of the vanishing orders ordx(gj), hence

ν(log |uℓ|, x) = ordx(uℓ) > ℓ ν(u, x).

In the opposite direction, consider the set Eℓ of all (N + 1)-tuples

(x, h1, . . . , hN ) ∈ Ω × SN

for which ν(log |uℓ|, x) > ℓ ν(u, x)+2. Then Eℓ is a constructible set in Ω×SN : it has a locally finite stratification
by analytic sets, since

Eℓ =
⋃

s>0

( ⋃

j, |α|=s

{
x ; Dαgj(x) 6= 0

}
× SN

)
∩

⋂

|β|6ℓs+1

{
(x, (hj)) ; Dβuℓ(x) = 0

}
.



9. Approximation of closed positive (1,1)-currents by divisors 61

The fiber Eℓ ∩ ({x} × SN ) over a point x ∈ Ω where ν(u, x) = min ordx(gj) = s is the vector space of N -tuples
(hj) ∈ SN satisfying the equations Dβ

( ∑
gℓjhj(x)

)
= 0, |β| 6 ℓs+ 1. However, if ordx(gj) = s, the linear map

(0, . . . , 0, hj, 0, . . . , 0) 7−→
(
Dβ(gℓjhj(x))

)
|β|6ℓs+1

has rank n + 1, because it factorizes into an injective map J1
xhj 7→ Jℓs+1

x (gℓjhj). It follows that the fiber Eℓ ∩

({x} × SN ) has codimension at least n+ 1. Therefore

dim Eℓ 6 dim(Ω × SN ) − (n+ 1) = dimSN − 1

and the projection of Eℓ on SN has measure zero by Sard’s theorem. By definition of Eℓ, any choice of
(h1, . . . , hN ) ∈ SN r

⋃
ℓ>1 pr(Eℓ) produces functions uℓ such that ν(log |uℓ|, x) 6 ℓ ν(u, x) + 1 on Ω. �

(9.25) Exercise. When L is ample and h is a smooth metric with T = i
2πΘL,h > 0, show that the approximating

divisors can be taken smooth (and thus irreducible if X is connected).
Hint. In the above proof of Corollary (9.23), the sections gj have no common zeroes and one can take σD = 1.
Moreover, a smooth divisor ∆ in an ample linear system is always connected, otherwise two disjoint parts ∆′, ∆′′

would be big and nef and ∆′ ·∆′′ = 0 would contradict the Hovanskii-Teissier inequality when X is connected.

(9.26) Corollary. On a projective manifold X, effective Q-divisors are dense in the weak topology in the cone
P 1,1

NS (X) of closed positive (1, 1)-currents T whose cohomology class {T } belongs to the Neron-Severi space
NSR(X).

Proof. We may add ε times a Kähler metric ω so as to get T + εω > 0, and then perturb by a small combination∑
δjαj of classes αj in a Z-basis of NS(X) so that Θ = T + εω +

∑
δjαj > ε

2ω and {Θ} ∈ H2(X,Q). Then Θ
can be approximated by Q-divisors by Corollary (9.23), and the conclusion follows. �

(9.27) Comments. We can rephrase the above results by saying that the cone of closed positive currents P 1,1
NS (X)

is a completion of the cone of effective Q-divisors. A considerable advantage of using currents is that the cone
of currents is locally compact in the weak topology, namely the section of the cone consisting of currents T of
mass

∫
X T ∧ ωn−1 = 1 is compact. This provides a very strong tool for the study of the asymptotic behaviour of

linear systems, as required for instance in the Minimal Model Program of Kawamata-Mori-Shokurov. One should
be aware, however, that the cone of currents is really huge and contains objects which are very far from being
algebraic in any reasonable sense. This occurs very frequently in the realm of complex dynamics. For instance, if
Pm(z, c) denotes the m-th iterate of the quadratic polynomial z 7→ z2 + c, then Pm(z, c) defines a polynomial of
degree 2m on C2, and the sequence of Q-divisors Dm = 1

m
i
π∂∂ log |Pm(z, c)| which have mass 1 on C2 ⊂ P2

C can
be shown to converge to a closed positive current T of mass 1 on P2

C. The support of this current T is extremely
complicated : its slices c = c0 are the Julia sets Jc of the quadratic polynomial z 7→ z2 + c, and the slice z = 0 is
the famous Mandelbrot set M . Therefore, in general, limits of divisors in asymptotic linear systems may exhibit
a fractal behavior.

9.D. Singularity exponents and log canonical thresholds

The goal of this section to relate “log canonical thresholds” with the α invariant introduced by G. Tian [Tia87]
for the study of the existence of Kähler-Einstein metrics. The approximation technique of closed positive (1, 1)-
currents introduced above can be used to show that the α invariant actually coincides with the log canonical
threshold (see also [DK01], [JK01], [BGK05], [Dem08]).

Usually, in these applications, only the case of the anticanonical line bundle L = −KX is considered. Here we
will consider more generally the case of an arbitrary line bundle L (or Q-line bundle L) on a complex manifold
X , with some additional restrictions which will be stated later. We introduce a generalized version of Tian’s
invariant α, as defined in [Tia87] (see also [Siu88]).

(9.28) Definition. Assume that X is a compact manifold and that L is a pseudo-effective line bundle, i.e. L admits
a singular hermitian metric h0 with ΘL,h0 > 0. If K is a compact subset of X, we put
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αK(L) = inf
{h,ΘL,h>0}

cK(h)

where h runs over all singular hermitian metrics on L such that ΘL,h > 0.

In algebraic geometry, it is more usual to look instead at linear systems defined by a family of linearly independent
sections σ0, σ1, . . . σN ∈ H0(X,L⊗m). We denote by Σ the vector subspace generated by these sections and by

|Σ| := P (Σ) ⊂ |mL| := P (H0(X,L⊗m))

the corresponding linear system. Such an (N + 1)-tuple of sections σ = (σj)06j6N defines a singular hermitian
metric h on L by putting in any trivialization

|ξ|2h =
|ξ|2

( ∑
j |σj(z)|

2
)1/m

=
|ξ|2

|σ(z)|2/m
, ξ ∈ Lz,

hence h(z) = |σ(z)|−2/m with ϕ(z) = 1
m log |σ(z)| = 1

2m log
∑
j |σj(z)|

2 as the associated weight function. There-

fore, we are interested in the number cK(|σ|−2/m). In the case of a single section σ0 (corresponding to a one-point
linear system), this is the same as the log canonical threshold lctK(X, 1

mD) = cK( 1
mD) of the associated divisor

D, in the notation of Section 1 of [CS08]. We will also use the formal notation cK( 1
m |Σ|) in the case of a higher

dimensional linear system |Σ| ⊂ |mL|. The main result of this section is

(9.29) Theorem. Let L be a big line bundle on a compact complex manifold X. Then for every compact set K in
X we have

αK(L) = inf
{h,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|

cK

( 1

m
D

)
.

Proof. Observe that the inequality

inf
m∈Z>0

inf
D∈|mL|

cK

( 1

m
D

)
> inf

{h,ΘL,h>0}
cK(h)

is trivial, since any divisor D ∈ |mL| gives rise to a singular hermitian metric h.

The converse inequality will follow from the approximation techniques discussed above. Given a big line bundle
L on X , there exists a modification µ : X̃ → X of X such that X̃ is projective and µ∗L = O(A+E) where A is
an ample divisor and E an effective divisor with rational coefficients. By pushing forward by µ a smooth metric
hA with positive curvature on A, we get a singular hermitian metric h1 on L such that ΘL,h1 > µ∗ΘA,hA

> εω
on X . Then for any δ > 0 and any singular hermitian metric h on L with ΘL,h > 0, the interpolated metric
hδ = hδ1h

1−δ satisfies ΘL,hδ
> δεω. Since h1 is bounded away from 0, it follows that cK(h) > (1 − δ)cK(hδ) by

monotonicity. By theorem (9.21, iii) applied to hδ, we infer

cK(hδ) = lim
m→+∞

cK(hδ,m),

and we also have

cK(hδ,m) > cK

( 1

m
Dδ,m

)

for any divisor Dδ,m associated with a section σ ∈ H0(X,L⊗m ⊗ I(hmδ )), since the metric hδ,m is given by
hδ,m = (

∑
k |gm,k|

2)−1/m for an orthornormal basis of such sections. This clearly implies

cK(h) > lim inf
δ→0

lim inf
m→+∞

cK

( 1

m
Dδ,m

)
> inf

m∈Z>0

inf
D∈|mL|

cK

( 1

m
D

)
. �

In the applications, it is frequent to have a finite or compact group G of automorphisms of X and to look
at G-invariant objects, namely G-equivariant metrics on G-equivariant line bundles L ; in the case of a reductive
algebraic group G we simply consider a compact real form GR instead of G itself.

One then gets an α invariant αK,G(L) by looking only at G-equivariant metrics in Definition (9.28). All
contructions made are then G-equivariant, especially Hm ⊂ |mL| is a G-invariant linear system. For every G-
invariant compact set K in X , we thus infer
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(9.30) αK,G(L) := inf
{h G-equiv., ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
|Σ|⊂|mL|, ΣG=Σ

cK

( 1

m
|Σ|

)
.

When G is a finite group, one can pick form large enough aG-invariant divisorDδ,m associated with aG-invariant
section σ, possibly after multiplying m by the order of G. One then gets the slightly simpler equality

(9.31) αK,G(L) := inf
{h G-equiv., ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|G

cK

( 1

m
D

)
.

In a similar manner, one can work on an orbifold X rather than on a non singular variety. The L2 techniques
work in this setting with almost no change (L2 estimates are essentially insensitive to singularities, since one can
just use an orbifold metric on the open set of regular points).

The main interest of Tian’s invariant αX,G (and of the related concept of log canonical threshold) is that
it provides a neat criterion for the existence of Kähler-Einstein metrics for Fano manifolds (see [Tia87], [Siu88],
[Nad89], [DK01]).

(9.32) Theorem. Let X be a Fano manifold, i.e. a projective manifold with −KX ample. Assume that X admits a
compact group of automorphisms G such that αX,G(KX) > n/(n+ 1). Then X possesses a G-invariant Kähler-
Einstein metric.

We will not give here the details of the proof, which rely on very delicate Ck-estimates (successively for k =
0, 1, 2, . . .) for the Monge-Ampère operator. In fine, the required estimates can be shown to depend only on the
boundedness of the integral

∫
X
e−2γϕ for a suitable constant γ ∈ ] n

n+1 , 1], where ϕ is the potential of the Kähler
metric ω ∈ c1(X) (also viewed as the weight of a hermitian metric on KX). Now, one can restrict the estimate to
G-invariant weights ϕ, and this translates into the sufficient condition (9.32). The approach explained in [DK01]
simplifies the analysis developped in earlier works by proving first a general semi-continuity theorem which implies
the desired a priori bound under the assumption of Theorem 9.32. The semi-continuity theorem states as

(9.33) Theorem ([DK01]). Let K be a compact set in a complex manifold X. Then the map ϕ 7→ cK(ϕ)−1 is
upper semi-continuous with respect to the weak ( = L1

loc) topology on the space of plurisubharmonic functions.
Moreover, if γ < cK(ϕ), then

∫
K |e−2γψ − e−2γϕ| converges to 0 when ψ converges to ϕ in the weak topology.

Sketch of proof. We will content ourselves by explaining the main points. It is convenient to observe (by a quite
easy integration argument suggested to us by J. McNeal) that cK(ϕ) can be calculated by estimating the Lebesgue
volume µU ({ϕ < log r} of tubular neighborhoods as r → 0 :

(9.34) cK(ϕ) = sup
{
c > 0 ; r−2cµU ({ϕ < log r}) is bounded as r → 0, for some U ⊃ K

}
.

The first step is the following important monotonicity result, which is a straightforward consequence of the L2

extension theorem.

(9.35) Proposition. Let ϕ be a quasi-psh function on a complex manifold X, and let Y ⊂ X be a complex
submanifold such that ϕ|Y 6≡ −∞ on every connected component of Y . Then, if K is a compact subset of Y , we
have

cK(ϕ|Y ) 6 cK(ϕ).

(Here, of course, cK(ϕ) is computed on X, i.e., by means of neighborhoods of K in X).

We need only proving monotonicity for cz0(ϕ|Y ) when z0 is a point of Y . This is done by just extending the
holomorphic function f(z) = 1 on B(z0, r) ∩ Y with respect to the weight e−2γϕ whenever γ < cz0(ϕ|Y ).

(9.36) Proposition. Let X, Y be complex manifolds of respective dimensions n, m, let I ⊂ OX , J ⊂ OY be
coherent ideals, and let K ⊂ X, L ⊂ Y be compact sets. Put I ⊕ J := pr⋆1 I + pr⋆2 J ⊂ OX×Y . Then

cK×L(I ⊕ J ) = cK(I) + cL(J ).

Proof. It is enough to show that c(x,y)(I ⊕ J ) = cx(I) + cy(J ) at every point (x, y) ∈ X × Y . Without loss of
generality, we may assume that X ⊂ Cn, Y ⊂ Cm are open sets and (x, y) = (0, 0). Let g = (g1, . . . , gp), resp.
h = (h1, . . . , hq), be systems of generators of I (resp. J ) on a neighborhood of 0. Set
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ϕ = log
∑

|gj |, ψ = log
∑

|hk|.

Then I ⊕ J is generated by the p+ q-tuple of functions

g ⊕ h = (g1(x), . . . gp(x), h1(y), . . . , hq(y))

and the corresponding psh function Φ(x, y) = log
( ∑

|gj(x)|+
∑

|hk(y)|
)

has the same behavior along the poles
as Φ′(x, y) = max(ϕ(x), ψ(y)) (up to a term O(1) 6 log 2). Now, for sufficiently small neighborhoods U , V of 0,
we have

µU×V
({

max(ϕ(x), ψ(y)) < log r
})

= µU
(
{ϕ < log r} × µV ({ψ < log r}

)
,

and one can derive from this that

C1r
2(c+c′) 6 µU×V

({
max(ϕ(x), ψ(y)) < log r

})
6 C2r

2(c+c′) | log r|n−1+m−1

with c = c0(ϕ) = c0(I) and c′ = c0(ψ) = c0(J ). We infer

c(0,0)(I ⊕ J ) = c+ c′ = c0(I) + c0(J ). �

(9.37) Proposition. Let f , g be holomorphic on a complex manifold X. Then, for every x ∈ X,

cx(f + g) ≤ cx(f) + cx(g).

More generally, if I and J are coherent ideals, then

cx(I + J ) ≤ cx(I) + cx(J ).

Proof. Let ∆ be the diagonal in X×X . Then I+J can be seen as the restriction of I⊕J to ∆. Hence Prop. 9.35
and 9.36 combined imply

cx(I + J ) = c(x,x)((I ⊕ J )|∆) 6 c(x,x)(I ⊕ J ) = cx(I) + cx(J ).

Since (f + g) ⊂ (f) + (g), we get

cx(f + g) 6 cx((f) + (g)) 6 cx(f) + cx(g). �

Now we can explain in rough terms the strategy of proof of Theorem 9.33. We start by approximating psh
singularities with analytic singularities, using theorem 9.21. By the argument of Corollary 9.23, we can even
reduce ourselves to the case of invertible ideals (f) near z0 = 0, and look at what happens when we have a
uniformly convergent sequence fν → f . In this case, we use the Taylor expansion of f at 0 to write f = pN + sN
where pN is a polynomial of degree N and sN(z) = O(|z|N+1). Clearly c0(sN ) 6 n/(N+1), and from this we infer
|c0(f)−c0(PN )| 6 n/(N+1) by 9.37. Similarly, we get the uniform estimate |c0(fν)−c0(Pν,N )| 6 n/(N+1) for all
indices ν. This means that the proof of the semi-continuity theorem is reduced to handling the situation of a finite
dimensional space of polynomials. This case is well-known – one can apply Hironaka’s desingularization theorem,
in a relative version involving the coefficients of our polynomials as parameters. The conclusion is obtained by
putting together carefully all required uniform estimates (which involve a lot of L2 estimates). �

10. Subadditivity of multiplier ideals and Fujita’s approximate

Zariski decomposition theorem

We first notice the following basic restriction formula for multiplier ideals, which is just a rephrasing of the
Ohsawa-Takegoshi extension theorem.
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(10.1) Restriction formula. Let ϕ be a plurisubharmonic function on a complex manifold X, and let Y ⊂ X be a
submanifold. Then

I(ϕ|Y ) ⊂ I(ϕ)|Y .

Thus, in some sense, the singularities of ϕ can only get worse if we restrict to a submanifold (if the restriction of
ϕ to some connected component of Y is identically −∞, we agree that the corresponding multiplier ideal sheaf is
zero). The proof is straightforward and just amounts to extending locally a germ of function f on Y near a point
y0 ∈ Y to a function f̃ on a small Stein neighborhood of y0 in X , which is possible by the Ohsawa-Takegoshi
extension theorem. As a direct consequence, we get:

(10.2) Subadditivity Theorem.

(i) Let X1, X2 be complex manifolds, πi : X1×X2 → Xi, i = 1, 2 the projections, and let ϕi be a plurisubharmonic
function on Xi. Then

I(ϕ1 ◦ π1 + ϕ2 ◦ π2) = π⋆1I(ϕ1) · π
⋆
2I(ϕ2).

(ii) Let X be a complex manifold and let ϕ, ψ be plurisubharmonic functions on X. Then

I(ϕ+ ψ) ⊂ I(ϕ) · I(ψ)

Proof. (i) Let us fix two relatively compact Stein open subsets U1 ⊂ X1, U2 ⊂ X2. Then H2(U1 × U2, ϕ1 ◦ π1 +
ϕ2◦π2, π

⋆
1dV1⊗π⋆2dV2) is the Hilbert tensor product of H2(U1, ϕ1, dV1) and H2(U2, ϕ2, dV2), and admits (f ′

k⊠f ′′
l )

as a Hilbert basis, where (f ′
k) and (f ′′

l ) are respective Hilbert bases. Since I(ϕ1 ◦π1 +ϕ2 ◦π2)|U1×U2
is generated

as an OU1×U2 module by the (f ′
k ⊠ f ′′

l ) (Proposition 5.7), we conclude that (i) holds true.

(ii) We apply (i) to X1 = X2 = X and the restriction formula to Y = diagonal of X ×X . Then

I(ϕ+ ψ) = I
(
(ϕ ◦ π1 + ψ ◦ π2)|Y

)
⊂ I

(
ϕ ◦ π1 + ψ ◦ π2

)
|Y

=
(
π⋆1I(ϕ) ⊗ π⋆2I(ψ)

)
|Y

= I(ϕ) · I(ψ).

(10.3) Proposition. Let f : X → Y be an arbirary holomorphic map, and let ϕ be a plurisubharmonic function
on Y . Then I(ϕ ◦ f) ⊂ f⋆I(ϕ).

Proof. Let
Γf = {(x, f(x) ; x ∈ X} ⊂ X × Y

be the graph of f , and let πX : X × Y → X , πY : X × Y → Y be the natural projections. Then we can view
ϕ ◦ f as the restriction of ϕ ◦ πY to Γf , as πX is a biholomorphism from Γf to X . Hence the restriction formula
implies

I(ϕ ◦ f) = I
(
(ϕ ◦ πY )|Γf

)
⊂ I(ϕ ◦ πY )|Γf

=
(
π⋆Y I(ϕ)

)
|Γf

= f⋆I(ϕ). �

As an application of subadditivity, we now reprove a result of Fujita [Fuj93], relating the growth of sections of
multiples of a line bundle to the Chern numbers of its “largest nef part”. Fujita’s original proof is by contradiction,
using the Hodge index theorem and intersection inequalities. The present method arose in the course of joint
work with R. Lazarsfeld [Laz99].

Let X be a projective n-dimensional algebraic variety and L a line bundle over X . We define the volume of
L to be

Vol(L) = lim sup
k→+∞

n!

kn
h0(X, kL) ∈ [0,+∞[.

In view of Definition 6.12 and of the Serre-Siegel Lemma 6.13, the line bundle is big if and only if Vol(L) > 0. If
L is ample, we have hq(X, kL) = 0 for q > 1 and k ≫ 1 by the Kodaira-Serre vanishing theorem, hence

h0(X, kL) ∼ χ(X, kL) ∼
Ln

n!
kn
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by the Riemann-Roch formula. Thus Vol(L) = Ln ( = c1(L)n) if L is ample. This is still true if L is nef (numerically
effective), i.e. if L · C > 0 for every effective curve C. In fact, one can show that hq(X, kL) = O(kn−q) in that
case. The following well-known proposition characterizes big line bundles.

(10.4) Proposition. The line bundle L is big if and only if there is a multiple m0L such that m0L = E+A, where
E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition km0L = kE + kA gives rise to an injection H0(X, kA) →֒
H0(X, km0L), thus Vol(L) > m−n

0 Vol(A) > 0. Conversely, assume that L is big, and take A to be a very ample
nonsingular divisor in X . The exact sequence

0 −→ OX(kL−A) −→ OX(kL) −→ OA(kL|A) −→ 0

gives rise to a cohomology exact sequence

0 → H0(X, kL−A) −→ H0(X, kL) −→ H0(A, kL|A),

and h0(A, kL|A) = O(kn−1) since dimA = n−1. Now, the assumption that L is big implies that h0(X, kL) > ckn

for infinitely many k, hence H0(X,m0L − A) 6= 0 for some large integer m0. If E is the divisor of a section in
H0(X,m0L−A), we find m0L−A = E, as required. �

(10.5) Lemma. Let G be an arbitrary line bundle. For every ε > 0, there exists a positive integer m and a sequence
ℓν ↑ +∞ such that

h0
(
X, ℓν(mL−G)

)
>
ℓmν m

n

n!

(
Vol(L) − ε

)
,

in other words, Vol(mL−G) > mn(Vol(L) − ε) for m large enough.

Proof. Clearly, Vol(mL − G) > Vol(mL − (G + E)) for every effective divisor E. We can take E so large that
G+E is very ample, and we are thus reduced to the case where G is very ample by replacing G with G+E. By
definition of Vol(L), there exists a sequence kν ↑ +∞ such that

h0(X, kνL) >
knν
n!

(
Vol(L) −

ε

2

)
.

We take m≫ 1 (to be precisely chosen later), and ℓν =
[
kν

m

]
, so that kν = ℓνm+ rν , 0 6 rν < m. Then

ℓν(mL−G) = kνL− (rνL+ ℓνG).

Fix a constant a ∈ N such that aG − L is an effective divisor. Then rνL 6 maG (with respect to the cone of
effective divisors), hence

h0
(
X, ℓν(mL−G)

)
> h0

(
X, kνL− (ℓν + am)G

)
.

We select a smooth divisor D in the very ample linear system |G|. By looking at global sections associated with
the exact sequences of sheaves

0 → O(−(j + 1)D) ⊗O(kνL) → O(−jD) ⊗O(kνL) → OD(kνL− jD) → 0,

0 6 j < s, we infer inductively that

h0(X, kνL− sD) > h0(X, kνL) −
∑

06j<s

h0
(
D,OD(kνL− jD)

)

> h0(X, kνL) − s h0
(
D, kνL|D)

>
knν
n!

(
Vol(L) −

ε

2

)
− sCkn−1

ν

where C depends only on L and G. Hence, by putting s = ℓν + am, we get

h0
(
X, ℓν(mL−G)

)
>
knν
n!

(
Vol(L) −

ε

2

)
− C(ℓν + am)kn−1

ν

>
ℓnνm

n

n!

(
Vol(L) −

ε

2

)
− C(ℓν + am)(ℓν + 1)n−1mn−1
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and the desired conclusion follows by taking ℓν ≫ m≫ 1. �

We are now ready to prove Fujita’s decomposition theorem, as reproved in [DEL00].

(10.6) Theorem (Fujita). Let L be a big line bundle. Then for every ε > 0, there exists a modification µ : X̃ → X
and a decomposition µ⋆L = E + A, where E is an effective Q-divisor and A an ample Q-divisor, such that
An > Vol(L) − ε.

(10.7) Remark. Of course, if µ⋆L = E +A with E effective and A nef, we get an injection

H0(X̃, kA) →֒ H0(X̃, kE + kA) = H0(X̃, kµ⋆L) = H0(X, kL)

for every integer k which is a multiple of the denominator of E, hence An 6 Vol(L).

(10.8) Remark. Once Theorem 10.6 is proved, the same kind of argument easily shows that

Vol(L) = lim
k→+∞

n!

kn
h0(X, kL),

because the formula is true for every ample line bundle A.

Proof of Theorem 10.6. It is enough to prove the theorem with A being a big and nef divisor. In fact, Proposition
10.4 then shows that we can write A = E′ + A′ where E′ is an effective Q-divisor and A′ an ample Q-divisor,
hence

E +A = E + εE′ + (1 − ε)A+ εA′

where A′′ = (1−ε)A+εA′ is ample and the intersection number A′′n approaches An as closely as we want. Let G
be as in Theorem (6.22) (Siu’s theorem on uniform global generation). Lemma 10.5 implies that Vol(mL−G) >
mn(Vol(L) − ε) for m large. By Theorem (6.8) on the existence of analytic Zariski decomposition, there exists a
hermitian metric hm of weight ϕm on mL−G such that

H0
(
X, ℓ(mL−G)

)
= H0

(
X, ℓ(mL−G) ⊗ I(ℓϕm)

)

for every ℓ > 0. We take a smooth modification µ : X̃ → X such that

µ⋆I(ϕm) = O
X̃

(−E)

is an invertible ideal sheaf in O
X̃

. This is possible by taking the blow-up of X with respect to the ideal I(ϕm) and
by resolving singularities (Hironaka [Hir64]). Theorem 6.22 applied to L′ = mL−G implies that O(mL)⊗I(ϕm)
is generated by its global sections, hence its pull-back O(mµ⋆L− E) is also generated. This implies

mµ⋆L = E +A

where E is an effective divisor and A is a nef (semi-ample) divisor in X̃. We find

H0(X̃, ℓA) = H0
(
X̃, ℓ(mµ⋆L− E)

)

⊃ H0
(
X̃, µ⋆

(
O(ℓmL) ⊗ I(ϕm)ℓ

))

⊃ H0
(
X̃, µ⋆

(
O(ℓmL) ⊗ I(ℓϕm)

))
,

thanks to the subadditivity property of multiplier ideals. Moreover, the direct image µ⋆µ
⋆I(ℓϕm) coincides with

the integral closure of I(ℓϕm), hence with I(ℓϕm), because a multiplier ideal sheaf is always integrally closed.
From this we infer

H0(X̃, ℓA) ⊃ H0
(
X,O(ℓmL) ⊗ I(ℓϕm)

)

⊃ H0
(
X,O(ℓ(mL−G)) ⊗ I(ℓϕm)

)

= H0
(
X,O(ℓ(mL−G))

)
.

By Lemma 10.5, we find



68 J.-P. Demailly, PCMI 2008, Analytic approach of the minimal model program and of the abundance conjectures

h0(X̃, ℓA) >
ℓn

n!
mn

(
Vol(L) − ε

)

for infinitely many ℓ, therefore Vol(A) = An > mn(Vol(L)− ε). Theorem 10.6 is proved, up to a minor change of
notation E 7→ 1

mE, A 7→ 1
mA. �

We conclude by using Fujita’s theorem to establish a geometric interpretation of the volume Vol(L). Suppose
as above that X is a smooth projective variety of dimension n, and that L is a big line bundle on X . Given a
large integer k ≫ 0, denote by Bk ⊂ X the base-locus of the linear system |kL|. The moving self-intersection
number (kL)[n] of |kL| is defined by choosing n general divisors D1, . . . , Dn ∈ |kL| and putting

(kL)[n] = #
(
D1 ∩ . . . ∩Dn ∩ (X −Bk)

)
.

In other words, we simply count the number of intersection points away from the base locus of n general divisors
in the linear system |kL|. This notion arises for example in Matsusaka’s proof of his “big theorem”. We show that
the volume Vol(L) of L measures the rate of growth with respect to k of these moving self-intersection numbers:

(10.9) Proposition. One has

Vol(L) = lim sup
k→∞

(kL)[n]

kn
.

Proof. We start by interpreting (kL)[n] geometrically. Let µk : Xk −→ X be a modification of |kL| such that
µ⋆k|kL| = |Vk| + Fk, where

Pk := µ⋆k(kL) − Fk

is generated by sections, and H0(X,OX(kL)) = Vk = H0(Xk,OXk
(Pk)), so that Bk = µk(Fk). Then evidently

(kL)[n] counts the number of intersection points of n general divisors in Pk, and consequently

(kL)[n] = (Pk)
n.

Since then Pk is big (and nef) for k ≫ 0, we have Vol(Pk) = (Pk)
n. Also, Vol(kL) > Vol(Pk) since Pk embeds in

µ⋆k(kL). Hence

Vol(kL) > (kL)[n] ∀k ≫ 0.

On the other hand, an easy argument in the spirit of Lemma (10.5) shows that Vol(kL) = kn · Vol(L) (cf. also
[ELN96], Lemma 3.4), and so we conclude that

(10.10) Vol(L) >
(kL)[n]

kn
.

for every k ≫ 0.

For the reverse inequality we use Fujita’s theorem. Fix ε > 0, and consider the decomposition µ⋆L = A+ E
on µ : X̃ −→ X constructed in Fujita’s theorem. Let k be any positive integer such that kA is integral and
globally generated. By taking a common resolution we can assume that Xk dominates X̃ , and hence we can write

µ⋆kkL ∼ Ak + Ek

with Ak globally generated and

(Ak)
n > kn · (Vol(L) − ε).

But then Ak embeds in Pk and both O(Ak) and O(Pk) are globally generated, consequently

(Ak)
n 6 (Pk)

n = (kL)[n].

Therefore

(10.11)
(kL)[n]

kn
> Vol(L) − ε.

But (10.11) holds for any sufficiently large and divisible k, and in view of (10.10) the Proposition follows. �
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11. Hard Lefschetz theorem with multiplier ideal sheaves

11.A. Main statement

The goal of this section is to prove the following surjectivity theorem, which can be seen as an extension of the
hard Lefschetz theorem. We closely follow the exposition of [DPS00].

(11.1) Theorem. Let (L, h) be a pseudo-effective line bundle on a compact Kähler manifold (X,ω), of dimension n,
let ΘL,h > 0 be its curvature current and I(h) the associated multiplier ideal sheaf. Then, the wedge multiplication
operator ωq ∧ • induces a surjective morphism

Φqω,h : H0(X,Ωn−qX ⊗ L⊗ I(h)) −→ Hq(X,ΩnX ⊗ L⊗ I(h)).

The special case when L is nef is due to Takegoshi [Take97]. An even more special case is when L is semi-positive,
i.e. possesses a smooth metric with semi-positive curvature. In that case the multiple ideal sheaf I(h) coincides
with OX and we get the following consequence already observed by Mourougane [Mou99].

(11.2) Corollary. Let (L, h) be a semi-positive line bundle on a compact Kähler manifold (X,ω) of dimension n.
Then, the wedge multiplication operator ωq ∧ • induces a surjective morphism

Φqω : H0(X,Ωn−qX ⊗ L) −→ Hq(X,ΩnX ⊗ L).

It should be observed that although all objects involved in Theorem (11.1) are algebraic when X is a projective
manifold, there are no known algebraic proof of the statement; it is not even clear how to define algebraically
I(h) for the case when h = hmin is a metric with minimal singularity. However, even in the special circumstance
when L is nef, the multiplier ideal sheaf is crucially needed (see section 11.E for a counterexample).

The proof of Theorem (11.1) is based on the Bochner formula, combined with a use of harmonic forms with
values in the hermitian line bundle (L, h). The method can be applied only after h has been made smooth at
least in the complement of an analytic set. However, we have to accept singularities even in the regularized
metrics because only a very small incompressible loss of positivity is acceptable in the Bochner estimate (by
the results of [Dem92], singularities can only be removed at the expense of a fixed loss of positivity). Also, we
need the multiplier ideal sheaves to be preserved by the smoothing process. This is possible thanks to a suitable
“equisingular” regularization process.

11.B. Equisingular approximations of quasi plurisubharmonic functions

Let ϕ be a quasi-psh function. We say that ϕ has logarithmic poles if ϕ is locally bounded outside an analytic
set A and has singularities of the form

ϕ(z) = c log
∑

k

|gk|
2 +O(1)

with c > 0 and gk holomorphic, on a neighborhood of every point of A. Our goal is to show the following

(11.3) Theorem. Let T = α+ i∂∂ϕ be a closed (1, 1)-current on a compact hermitian manifold (X,ω), where α is
a smooth closed (1, 1)-form and ϕ a quasi-psh function. Let γ be a continuous real (1, 1)-form such that T > γ.
Then one can write ϕ = limν→+∞ ϕν where

(a) ϕν is smooth in the complement X r Zν of an analytic set Zν ⊂ X ;

(b) (ϕν) is a decreasing sequence, and Zν ⊂ Zν+1 for all ν ;

(c)
∫
X(e−2ϕ − e−2ϕν )dVω is finite for every ν and converges to 0 as ν → +∞ ;

(d) I(ϕν ) = I(ϕ) for all ν (“equisingularity”) ;

(e) Tν = α+ i∂∂ϕν satisfies Tν > γ − ενω, where limν→+∞ εν = 0.
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(11.4) Remark. It would be interesting to know whether the ϕν can be taken to have logarithmic poles along Zν .
Unfortunately, the proof given below destroys this property in the last step. Getting it to hold true seems to be
more or less equivalent to proving the semi-continuity property

lim
ε→0+

I((1 + ε)ϕ) = I(ϕ).

Actually, this can be checked in dimensions 1 and 2, but is unknown in higher dimensions (and probably quite
hard to establish).

Proof of Theorem 11.3 . Clearly, by replacing T with T − α and γ with γ − α, we may assume that α = 0 and
T = i∂∂ϕ > γ. We divide the proof in four steps.

Step 1. Approximation by quasi-psh functions with logarithmic poles.

By [Dem92], there is a decreasing sequence (ψν) of quasi-psh functions with logarithmic poles such that ϕ = limψν
and i∂∂ψν > γ − ενω. We need a little bit more information on those functions, hence we first recall the main
techniques used for the construction of (ψν). For ε > 0 given, fix a covering of X by open balls Bj = {|z(j)| < rj}

with coordinates z(j) = (z
(j)
1 , . . . , z

(j)
n ), such that

(11.5) 0 6 γ + cj i∂∂|z
(j)|2 6 εω on Bj ,

for some real number cj . This is possible by selecting coordinates in which γ is diagonalized at the center of the
ball, and by taking the radii rj > 0 small enough (thanks to the fact that γ is continuous). We may assume that
these coordinates come from a finite sample of coordinates patches covering X , on which we perform suitable
linear coordinate changes (by invertible matrices lying in some compact subset of the complex linear group). By
taking additional balls, we may also assume that X =

⋃
B′′
j where

B′′
j⊂⊂B

′
j⊂⊂Bj

are concentric balls B′
j = {|z(j)| < r′j = rj/2}, B′′

j = {|z(j)| < r′′j = rj/4}. We define

(11.6) ψε,ν,j =
1

2ν
log

∑

k∈N

|fν,j,k|
2 − cj |z

(j)|2 on Bj ,

where (fν,j,k)k∈N is an orthonormal basis of the Hilbert space Hν,j of holomorphic functions on Bj with finite L2

norm

‖u‖2 =

∫

Bj

|u|2e−2ν(ϕ+cj|z(j)|2)dλ(z(j)).

(The dependence of ψε,ν,j on ε is through the choice of the open covering (Bj)). Observe that the choice of cj in
(11.5) guarantees that ϕ+ cj |z(j)|2 is plurisubharmonic on Bj , and notice also that

(11.7)
∑

k∈N

|fν,j,k(z)|
2 = sup

f∈Hν,j, ‖f‖61

|f(z)|2

is the square of the norm of the continuous linear form Hν,j → C, f 7→ f(z). We claim that there exist constants
Ci, i = 1, 2, . . . depending only on X and γ (thus independent of ε and ν), such that the following uniform
estimates hold:

i∂∂ψε,ν,j > −cj i∂∂|z
(j)|2 > γ − εω on B′

j (B′
j⊂⊂Bj),(11.8)

ϕ(z) 6 ψε,ν,j(z) 6 sup
|ζ−z|6r

ϕ(ζ) +
n

ν
log

C1

r
+ C2r

2 ∀z ∈ B′
j , r < rj − r′j ,(11.9)

|ψε,ν,j − ψε,ν,k| 6
C3

ν
+ C4ε

(
min(rj , rk)

)2
on B′

j ∩B
′
k.(11.10)

Actually, the Hessian estimate (11.8) is obvious from (11.5) and (11.6). As in the proof of ([Dem92], Prop. 3.1),
(11.9) results from the Ohsawa-Takegoshi L2 extension theorem (left hand inequality) and from the mean value
inequality (right hand inequality). Finally, as in ([Dem92], Lemma 3.6 and Lemma 4.6), (11.10) is a consequence
of Hörmander’s L2 estimates. We briefly sketch the idea. Assume that the balls Bj are small enough, so that
the coordinates z(j) are still defined on a neighborhood of all balls Bk which intersect Bj (these coordinates can



11. Hard Lefschetz theorem with multiplier ideal sheaves 71

be taken to be linear transforms of coordinates belonging to a fixed finite set of coordinate patches covering X ,
selected once for all). Fix a point z0 ∈ B′

j ∩B
′
k. By (11.6) and (11.7), we have

ψε,ν,j(z0) =
1

ν
log |f(z0)| − cj|z

(j)|2

for some holomorphic function f on Bj with ‖f‖ = 1. We consider the weight function

Φ(z) = 2ν(ϕ(z) + ck|z
(k)|2) + 2n log |z(k) − z

(k)
0 |,

on both Bj and Bk. The trouble is that a priori we have to deal with different weights, hence a comparison of
weights is needed. By the Taylor formula applied at z0, we get

∣∣∣ck|z(k) − z
(k)
0 |2 − cj |z

(j) − z
(j)
0 |2

∣∣∣ 6 Cε
(
min(rj , rk)

)2
on Bj ∩Bk

[the only nonzero term of degree 2 has type (1, 1) and its Hessian satisfies

−εω 6 i∂∂(ck|z
(k)|2 − cj|z

(j)|2) 6 εω

by (11.5); we may suppose rj ≪ ε so that the terms of order 3 and more are negligible]. By writing |z(j)|2 =

|z(j) − z
(j)
0 |2 + |z

(j)
0 |2 + 2 Re〈z(j) − z

(j)
0 , z

(j)
0 〉, we obtain

ck|z
(k)|2 − cj |z

(j)|2 = 2ck Re〈z(k) − z
(k)
0 , z

(k)
0 〉 − 2cj Re〈z(j) − z

(j)
0 , z

(j)
0 〉

+ ck|z
(k)
0 |2 − cj |z

(j)
0 |2 ± Cε(min(rj , rk))

2.

We use a cut-off function θ equal to 1 in a neighborhood of z0 and with support in Bj ∩ Bk; as z0 ∈ B′
j ∩ B

′
k,

the function θ can be taken to have its derivatives uniformly bounded when z0 varies. We solve the equation
∂u = ∂(θfeνg) on Bk, where g is the holomorphic function

g(z) = ck〈z
(k) − z

(k)
0 , z

(k)
0 〉 − cj〈z

(j) − z
(j)
0 , z

(j)
0 〉.

Thanks to Hörmander’s L2 estimates [Hör66], the L2 solution for the weight Φ yields a holomorphic function
f ′ = θfeνg − u on Bk such that f ′(z0) = f(z0) and

∫

Bk

|f ′|2e−2ν(ϕ+ck|z(k)|2)dλ(z(k)) 6 C′
∫

Bj∩Bk

|f |2|eνg|2e−2ν(ϕ+ck|z(k)|2)dλ(z(k)) 6

C′ exp
(
2ν

(
ck|z

(k)
0 |2 − cj |z

(j)
0 |2 + Cε(min(rj , rk))

2
))∫

Bj

|f |2e−2ν(ϕ+cj|z(j)|2)dλ(z(j)).

Let us take the supremum of 1
ν log |f(z0)| = 1

ν log |f ′(z0)| over all f with ‖f‖ 6 1. By the definition of ψε,ν,k
((11.6) and (11.7)) and the bound on ‖f ′‖, we find

ψε,ν,k(z0) 6 ψν,j(z0) +
logC′

2ν
+ Cε(min(rj , rk))

2,

whence (11.10) by symmetry. Assume that ν is so large that C3/ν < C4ε(infj rj)
2. We “glue” all functions ψε,ν,j

into a function ψε,ν globally defined on X , and for this we set

ψε,ν(z) = sup
j, B′

j
∋z

(
ψε,ν,j(z) + 12C4ε(r

′2
j − |z(j)|2)

)
on X.

Every point of X belongs to some ball B′′
k , and for such a point we get

12C4ε(r
′2
k − |z(k)|2) > 12C4ε(r

′2
k − r′′2k ) > 2C4r

2
k >

C3

ν
+ C4ε(min(rj , rk))

2.

This, together with (11.10), implies that in ψε,ν(z) the supremum is never reached for indices j such that
z ∈ ∂B′

j , hence ψε,ν is well defined and continuous, and by standard properties of upper envelopes of (quasi)-
plurisubharmonic functions we get

(11.11) i∂∂ψε,ν > γ − C5εω
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for ν > ν0(ε) large enough. By inequality (11.9) applied with r = e−
√
ν , we see that limν→+∞ ψε,ν(z) = ϕ(z). At

this point, the difficulty is to show that ψε,ν is decreasing with ν – this may not be formally true, but we will see
at Step 3 that this is essentially true. Another difficulty is that we must simultaneously let ε go to 0, forcing us
to change the covering as we want the error to get smaller and smaller in (11.11).

Step 2. A comparison of integrals.

We claim that

(11.12) I :=

∫

X

(
e−2ϕ − e−2max(ϕ, ℓ

ℓ−1ψν,ε)+a
)
dVω < +∞

for every ℓ ∈ ]1, ν] and a ∈ R. In fact

I 6

∫

{ϕ< ℓ
ℓ−1ψε,ν+a}

e−2ϕdVω =

∫

{ϕ< ℓ
ℓ−1ψε,ν}+a

e2(ℓ−1)ϕ−2ℓϕdVω

6 e2(ℓ−1)a

∫

X

e2ℓ(ψε,ν−ϕ)dVω 6 C
(∫

X

e2ν(ψε,ν−ϕ)dVω

) ℓ
ν

by Hölder’s inequality. In order to show that these integrals are finite, it is enough, by the definition and properties
of the functions ψε,ν and ψε,ν,j , to prove that

∫

B′
j

e2νψε,ν,j−2νϕdλ =

∫

B′
j

( +∞∑

k=0

|fν,j,k|
2
)
e−2νϕdλ < +∞.

By the strong Noetherian property of coherent ideal sheaves (see e.g. [GR84]), we know that the sequence of
ideal sheaves generated by the holomorphic functions (fν,j,k(z)fν,j,k(w))k6k0 on Bj × Bj is locally stationary
as k0 increases, hence independant of k0 on B′

j × B′
j⊂⊂Bj × Bj for k0 large enough. As the sum of the series∑

k fν,j,k(z)fν,j,k(w) is bounded by

(∑

k

|fν,j,k(z)|
2
∑

k

|fν,j,k(w)|2
)1/2

and thus uniformly covergent on every compact subset of Bj × Bj , and as the space of sections of a coherent
ideal sheaf is closed under the topology of uniform convergence on compact subsets, we infer from the Noetherian
property that the holomorphic function

∑+∞
k=0 fν,j,k(z)fν,j,k(w) is a section of the coherent ideal sheaf generated

by (fν,j,k(z)fν,j,k(w))k6k0 over B′
j × B′

j , for k0 large enough. Hence, by restricting to the conjugate diagonal
w = z, we get

+∞∑

k=0

|fν,j,k(z)|
2 6 C

k0∑

k=0

|fν,j,k(z)|
2 on B′

j .

This implies
∫

B′
j

( +∞∑

k=0

|fν,j,k|
2
)
e−2ϕdλ 6 C

∫

B′
j

( k0∑

k=0

|fν,j,k|
2
)
e−2ϕdλ = C(k0 + 1).

Property (11.12) is proved.

Step 3. Subadditivity of the approximating sequence ψε,ν .

We want to compare ψε,ν1+ν2 and ψε,ν1 , ψε,ν2 for every pair of indices ν1, ν2, first when the functions are
associated with the same covering X =

⋃
Bj . Consider a function f ∈ Hν1+ν2,j with

∫

Bj

|f(z)|2e−2(ν1+ν2)ϕj(z)dλ(z) 6 1, ϕj(z) = ϕ(z) + cj |z
(j)|2.

We may view f as a function f̂(z, z) defined on the diagonal ∆ of Bj × Bj . Consider the Hilbert space of
holomorphic functions u on Bj ×Bj such that

∫

Bj×Bj

|u(z, w)|2e−2ν1ϕj(z)−2ν2ϕj(w)dλ(z)dλ(w) < +∞.
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By the Ohsawa-Takegoshi L2 extension theorem [OT87], there exists a function f̃(z, w) on Bj × Bj such that

f̃(z, z) = f(z) and ∫

Bj×Bj

|f̃(z, w)|2e−2ν1ϕj(z)−2ν2ϕj(w)dλ(z)dλ(w)

6 C7

∫

Bj

|f(z)|2e−2(ν1+ν2)ϕj(z)dλ(z) = C7,

where the constant C7 only depends on the dimension n (it is actually independent of the radius rj if say
0 < rj 6 1). As the Hilbert space under consideration on Bj ×Bj is the completed tensor product Hν1,j ⊗̂Hν2,j ,
we infer that

f̃(z, w) =
∑

k1,k2

ck1,k2fν1,j,k1(z)fν2,j,k2(w)

with
∑

k1,k2
|ck1,k2 |

2 6 C7. By restricting to the diagonal, we obtain

|f(z)|2 = |f̃(z, z)|2 6
∑

k1,k2

|ck1,k2 |
2
∑

k1

|fν1,j,k1(z)|
2
∑

k2

|fν2,j,k2(z)|
2.

From (11.5) and (11.6), we get

ψε,ν1+ν2,j 6
logC7

ν1 + ν2
+

ν1
ν1 + ν2

ψε,ν1,j +
ν2

ν1 + ν2
ψε,ν2,j,

in particular

ψε,2ν ,j 6 ψε,2ν−1,j +
C8

2ν
,

and we see that ψε,2ν +C82
−ν is a decreasing sequence. By Step 2 and Lebesgue’s monotone convergence theorem,

we infer that for every ε, δ > 0 and a 6 a0 ≪ 0 fixed, the integral

Iε,δ,ν =

∫

X

(
e−2ϕ − e−2max(ϕ,(1+δ)(ψ2ν ,ε+a))

)
dVω

converges to 0 as ν tends to +∞ (take ℓ = 1
δ + 1 and 2ν > ℓ and a0 such that δ supX ϕ + a0 6 0; we do not

have monotonicity strictly speaking but need only replace a by a + C82
−ν to get it, thereby slightly enlarging

the integral).

Step 4. Selection of a suitable upper envelope.

For the simplicity of notation, we assume here that supX ϕ = 0 (possibly after subtracting a constant), hence we
can take a0 = 0 in the above. We may even further assume that all our functions ψε,ν are nonpositive. By Step 3,
for each δ = ε = 2−k, we can select an index ν = p(k) such that

(11.13) I2−k,2−k,p(k) =

∫

X

(
e−2ϕ − e

−2max(ϕ,(1+2−k)ψ
2−k,2p(k) )

)
dVω 6 2−k

By construction, we have an estimate i∂∂ψ2−k,2p(k) > γ − C52
−kω, and the functions ψ2−k,2p(k) are quasi-psh

with logarithmic poles. Our estimates (especially (11.9)) imply that limk→+∞ ψ2−k,2p(k)(z) = ϕ(z) as soon as

2−p(k) log
(
1/ infj rj(k)

)
→ 0 (notice that the rj ’s now depend on ε = 2−k). We set

(11.14) ϕν(z) = sup
k>ν

(1 + 2−k)ψ2−k,2p(k)(z).

By construction (ϕν) is a decreasing sequence and satisfies the estimates

ϕν > max
(
ϕ, (1 + 2−ν)ψ2−ν ,2p(ν)

)
, i∂∂ϕν > γ − C52

−νω.

Inequality (11.13) implies that
∫

X

(e−2ϕ − e−2ϕν )dVω 6
+∞∑

k=ν

2−k = 21−ν.
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Finally, if Zν is the set of poles of ψ2−ν ,2p(ν) , then Zν ⊂ Zν+1 and ϕν is continuous on X r Zν . The reason is

that in a neighborhood of every point z0 ∈ X r Zν , the term (1 + 2−k)ψ2−k,2p(k) contributes to ϕν only when it
is larger than (1+2−ν)ψ2−ν ,2p(ν) . Hence, by the almost-monotonicity, the relevant terms of the sup in (11.14) are

squeezed between (1+2−ν)ψ2−ν ,2p(ν) and (1+2−k)(ψ2−ν ,2p(ν) +C82
−ν), and therefore there is uniform convergence

in a neighborhood of z0. Finally, condition (c) implies that
∫

U

|f |2(e−2ϕ − e−2ϕν )dVω < +∞

for every germ of holomorphic function f ∈ O(U) at a point x ∈ X . Therefore both integrals
∫
U |f |2e−2ϕdVω and∫

U
|f |2e−2ϕνdVω are simultaneously convergent or divergent, i.e. I(ϕ) = I(ϕν). Theorem 11.3 is proved, except

that ϕν is possibly just continuous instead of being smooth. This can be arranged by Richberg’s regularization
theorem [Ri68], at the expense of an arbitrary small loss in the Hessian form. �

(11.15) Remark. By a very slight variation of the proof, we can strengthen condition (c) and obtain that for
every t > 0 ∫

X

(e−2tϕ − e−2tϕν )dVω

is finite for ν large enough and converges to 0 as ν → +∞. This implies that the sequence of multiplier ideals
I(tϕν) is a stationary decreasing sequence, with I(tϕν) = I(tϕ) for ν large.

11.C. A Bochner type inequality

Let (L, h) be a smooth hermitian line bundle on a (non necessarily compact) Kähler manifold (Y, ω). We denote
by | | = | |ω,h the pointwise hermitian norm on Λp,qT ⋆Y ⊗ L associated with ω and h, and by ‖ ‖ = ‖ ‖ω,h the
global L2 norm

‖u‖2 =

∫

Y

|u|2dVω where dVω =
ωn

n!

We consider the ∂ operator acting on (p, q)-forms with values in L, its adjoint ∂
⋆

h with respect to h and the

complex Laplace-Beltrami operator ∆′′
h = ∂∂

⋆

h + ∂
⋆

h∂. Let v be a smooth (n − q, 0)-form with compact support
in Y . Then u = ωq ∧ v satisfies

(11.16) ‖∂u‖2 + ‖∂
⋆

hu‖
2 = ‖∂v‖2 +

∫

Y

∑

I,J

( ∑

j∈J
λj

)
|uIJ |

2

where λ1 6 . . . 6 λn are the curvature eigenvalues of ΘL,h expressed in an orthonormal frame (∂/∂z1, . . . , ∂/∂zn)
(at some fixed point x0 ∈ Y ), in such a way that

ωx0 = i
∑

16j6n

dzj ∧ dzj , (ΘL,h)x0 = i∂∂ϕx0 = i
∑

16j6n

λjdzj ∧ dzj .

The proof of (11.16) proceeds by checking that

(11.17) (∂
⋆

ϕ ∂ + ∂ ∂
⋆

ϕ)(v ∧ ωq) − (∂
⋆

ϕ ∂v) ∧ ω
q = q i∂∂ϕ ∧ ωq−1 ∧ v,

taking the inner product with u = ωq ∧v and integrating by parts in the left hand side. In order to check (11.16),

we use the identity ∂
⋆

ϕ = eϕ∂
⋆
(e−ϕ•) = ∂

⋆
+ ∇0,1ϕ • . Let us work in a local trivialization of L such that

ϕ(x0) = 0 and ∇ϕ(x0) = 0. At x0 we then find

(∂
⋆

ϕ ∂ + ∂ ∂
⋆

ϕ)(ωq ∧ v) − ωq ∧ (∂
⋆

ϕ ∂v) =
[
(∂
⋆
∂ + ∂ ∂

⋆
)(ωq ∧ v) − ωq ∧ (∂

⋆
∂v)

]
+ ∂(∇0,1ϕ (ωq ∧ v)).

However, the term [ . . . ] corresponds to the case of a trivial vector bundle and it is well known in that case that
[∆′′, ωq ∧ •] = 0, hence [ . . . ] = 0. On the other hand

∇0,1ϕ (ωq ∧ v) = q(∇0,1ϕ ω) ∧ ωq−1 ∧ v = −q i∂ϕ ∧ ωq−1 ∧ v,
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and so

(∂
⋆

ϕ ∂ + ∂ ∂
⋆

ϕ)(ωq ∧ v) − ωq ∧ (∂
⋆

ϕ ∂v) = q i∂∂ϕ ∧ ωq−1 ∧ v.

Our formula is thus proved when v is smooth and compactly supported. In general, we have:

(11.18) Proposition. Let (Y, ω) be a complete Kähler manifold and (L, h) a smooth hermitian line bundle such
that the curvature possesses a uniform lower bound ΘL,h > −Cω. For every measurable (n − q, 0)-form v with

L2 coefficients and values in L such that u = ωq ∧ v has differentials ∂u, ∂
⋆
u also in L2, we have

‖∂u‖2 + ‖∂
⋆

hu‖
2 = ‖∂v‖2 +

∫

Y

∑

I,J

( ∑

j∈J
λj

)
|uIJ |

2

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y, ω) is assumed to be complete, there exists a sequence of smooth forms vν with compact support
in Y (obtained by truncating v and taking the convolution with a regularizing kernel) such that vν → v in L2

and such that uν = ωq ∧ vν satisfies uν → u, ∂uν → ∂u, ∂
⋆
uν → ∂

⋆
u in L2. By the curvature assumption, the

final integral in the right hand side of (11.16) must be under control (i.e. the integrand becomes nonnegative if we
add a term C‖u‖2 on both sides, C ≫ 0). We thus get the equality by passing to the limit and using Lebesgue’s
monotone convergence theorem. �

11.D. Proof of Theorem (11.1)

To fix the ideas, we first indicate the proof in the much simpler case when (L, h) is hermitian semi-positive, and
then treat the general case.

(11.19) Special case. (L, h) is (smooth) hermitian semi-positive.

Let {β} ∈ Hq(X,ΩnX ⊗ L) be an arbitrary cohomology class. By standard L2 Hodge theory, {β} can be
represented by a smooth harmonic (0, q)-form β with values in ΩnX ⊗L. We can also view β as a (n, q)-form with
values in L. The pointwise Lefschetz isomorphism produces a unique (n − q, 0)-form α such that β = ωq ∧ α.
Proposition 11.18 then yields

‖∂α‖2 +

∫

Y

∑

I,J

( ∑

j∈J
λj

)
|αIJ |

2 = ‖∂β‖2 + ‖∂
⋆

hβ‖
2 = 0,

and the curvature eigenvalues λj are nonnegative by our assumption. Hence ∂α = 0 and {α} ∈ H0(X,Ωn−qX ⊗L)
is mapped to {β} by Φqω,h = ωq ∧ • .

(11.20) General case.

There are several difficulties. The first difficulty is that the metric h is no longer smooth and we cannot
directly represent cohomology classes by harmonic forms. We circumvent this problem by smoothing the metric
on an (analytic) Zariski open subset and by avoiding the remaining poles on the complement. However, some
careful estimates have to be made in order to take the error terms into account.

Fix ε = εν and let hε = hεν
be an approximation of h, such that hε is smooth on X r Zε (Zε being an

analytic subset of X), ΘL,hε
> −εω, hε 6 h and I(hε) = I(h). This is possible by Theorem 11.3. Now, we can

find a family

ωε,δ = ω + δ(i∂∂ψε + ω), δ > 0

of complete Kähler metrics on XrZε, where ψε is a quasi-psh function on X with ψε = −∞ on Zε, ψε on XrZε
and i∂∂ψε+ω > 0 (see e.g. [Dem82b], Théorème 1.5). By construction, ωε,δ > ω and limδ→0 ωε,δ = ω. We look at
the L2 Dolbeault complex K•

ε,δ of (n, •)-forms on X rZε, where the L2 norms are induced by ωε,δ on differential
forms and by hε on elements in L. Specifically

Kq
ε,δ =

{
u:X r Zε→Λn,qT ⋆X ⊗ L;

∫

XrZε

(|u|2Λn,qωε,δ⊗hε
+ |∂u|2Λn,q+1ωε,δ⊗hε

)dVωε,δ
<∞

}
.
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Let Kqε,δ be the corresponding sheaf of germs of locally L2 sections on X (the local L2 condition should hold on

X , not only on X r Zε !). Then, for all ε > 0 and δ > 0, (Kqε,δ, ∂) is a resolution of the sheaf ΩnX ⊗ L⊗ I(hε) =

ΩnX ⊗ L ⊗ I(h). This is because L2 estimates hold locally on small Stein open sets, and the L2 condition on
X r Zε forces holomorphic sections to extend across Zε ([Dem82b], Lemme 6.9).

Let {β} ∈ Hq(X,ΩnX ⊗ L ⊗ I(h)) be a cohomology class represented by a smooth form with values in
ΩnX ⊗L⊗I(h) (one can use a Čech cocycle and convert it to an element in the C∞ Dolbeault complex by means
of a partition of unity, thanks to the usual De Rham-Weil isomorphism). Then

‖β‖2
ε,δ 6 ‖β‖2 =

∫

X

|β|2Λn,qω⊗hdVω < +∞.

The reason is that |β|2Λn,qω⊗hdVω decreases as ω increases. This is just an easy calculation, shown by comparing
two metrics ω, ω′ which are expressed in diagonal form in suitable coordinates; the norm |β|2Λn,qω⊗h turns out
to decrease faster than the volume dVω increases; see e.g. [Dem82b], Lemme 3.2; a special case is q = 0, then

|β|2Λn,qω⊗hdVω = in
2

β ∧ β with the identification L ⊗ L ≃ C given by the metric h, hence the integrand is even
independent of ω in that case.

By the proof of the De Rham-Weil isomorphism, the map α 7→ {α} from the cocycle space Zq(K•
ε,δ) equipped

with its L2 topology, into Hq(X,ΩnX ⊗ L ⊗ I(h)) equipped with its finite vector space topology, is continuous.
Also, Banach’s open mapping theorem implies that the coboundary space Bq(K•

ε,δ) is closed in Zq(K•
ε,δ). This is

true for all δ > 0 (the limit case δ = 0 yields the strongest L2 topology in bidegree (n, q)). Now, β is a ∂-closed
form in the Hilbert space defined by ωε,δ on XrZε, so there is a ωε,δ-harmonic form uε,δ in the same cohomology
class as β, such that

‖uε,δ‖ε,δ 6 ‖β‖ε,δ.

(11.21) Remark. The existence of a harmonic representative holds true only for δ > 0, because we need to have
a complete Kähler metric on X r Zε. The trick of employing ωε,δ instead of a fixed metric ω, however, is not
needed when Zε is (or can be taken to be) empty. This is the case if (L, h) is such that I(h) = OX and L is
nef. Indeed, in that case, from the very definition of nefness, it is easy to prove that we can take the ϕν ’s to be
everywhere smooth in Theorem 11.3. However, we will see in § 11.E that multiplier ideal sheaves are needed even
in case L is nef, when I(h) 6= OX .

Let vε,δ be the unique (n− q, 0)-form such that uε,δ = vε,δ ∧ ω
q
ε,δ (vε,δ exists by the pointwise Lefschetz isomor-

phism). Then
‖vε,δ‖ε,δ = ‖uε,δ‖ε,δ 6 ‖β‖ε,δ 6 ‖β‖.

As
∑
j∈J λj > −qε by the assumption on ΘL,hε

, the Bochner formula yields

‖∂vε,δ‖
2
ε,δ 6 qε‖uε,δ‖

2
ε,δ 6 qε‖β‖2.

These uniform bounds imply that there are subsequences uε,δν
and vε,δν

with δν → 0, possessing weak-L2 limits
uε = limν→+∞ uε,δν

and vε = limν→+∞ vε,δν
. The limit uε = limν→+∞ uε,δν

is with respect to L2(ω) = L2(ωε,0).
To check this, notice that in bidegree (n− q, 0), the space L2(ω) has the weakest topology of all spaces L2(ωε,δ);
indeed, an easy calculation as in ([Dem82b], Lemme 3.2) yields

|f |2Λn−q,0ω⊗hdVω 6 |f |2Λn−q,0ωε,δ⊗hdVωε,δ
if f is of type (n− q, 0).

On the other hand, the limit vε = limν→+∞ vε,δν
takes place in all spaces L2(ωε,δ), δ > 0, since the topology gets

stronger and stronger as δ ↓ 0 [ possibly not in L2(ω), though, because in bidegree (n, q) the topology of L2(ω)
might be strictly stronger than that of all spaces L2(ωε,δ) ]. The above estimates yield

‖vε‖
2
ε,0 =

∫

X

|vε|
2
Λn−q,0ω⊗hε

dVω 6 ‖β‖2,

‖∂vε‖
2
ε,0 6 qε‖β‖2

ε,0,

uε = ωq ∧ vε ≡ β in Hq(X,ΩnX ⊗ L⊗ I(hε)).

Again, by arguing in a given Hilbert space L2(hε0), we find L2 convergent subsequences uε → u, vε → v as ε→ 0,
and in this way get ∂v = 0 and
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‖v‖2 6 ‖β‖2,

u = ωq ∧ v ≡ β in Hq(X,ΩnX ⊗ L⊗ I(h)).

Theorem 11.1 is proved. Notice that the equisingularity property I(hε) = I(h) is crucial in the above proof,
otherwise we could not infer that u ≡ β from the fact that uε ≡ β. This is true only because all cohomology
classes {uε} lie in the same fixed cohomology group Hq(X,ΩnX ⊗ L ⊗ I(h)), whose topology is induced by the
topology of L2(ω) on ∂-closed forms (e.g. through the De Rham-Weil isomorphism). �

11.E. A counterexample

In view of Corollary 11.2, one might wonder whether the morphism Φqω would not still be surjective when L is a
nef vector bundle. We will show that this is unfortunately not so, even in the case of algebraic surfaces.

Let B be an elliptic curve and let V be the rank 2 vector bundle over B which is defined as the (unique) non
split extension

0 → OB → V → OB → 0.

In particular, the bundle V is numerically flat, i.e. c1(V ) = 0, c2(V ) = 0. We consider the ruled surface X = P(V ).
On that surface there is a unique section C = P(OB) ⊂ X with C2 = 0 and

OX(C) = OP(V )(1)

is a nef line bundle. It is easy to see that

h0(X,OP(V )(m)) = h0(B,SmV ) = 1

for all m ∈ N (otherwise we would have mC = aC +M where aC is the fixed part of the linear system |mC| and
M 6= 0 the moving part, thus M2 > 0 and C ·M > 0, contradiction). We claim that

h0(X,Ω1
X(kC)) = 2

for all k > 2. This follows by tensoring the exact sequence

0 → Ω1
X|C → Ω1

X → π∗Ω1
C ≃ OC → 0

by OX(kC) and observing that

Ω1
X|C = KX = OX(−2C).

From this, we get

0 → H0(X,OX((k − 2)C)) → H0(X,Ω1
XO(kC)) → H0(X,OX(kC))

where h0(X,OX((k − 2)C)) = h0(X,OX(kC)) = 1 for all k > 2. Moreover, the last arrow is surjective because
we can multiply a section of H0(X,OX(kC)) by a nonzero section in H0(X,π∗Ω1

B) to get a preimage. Our claim
follows. We now consider the diagram

H0(X,Ω1
X(2C))

∧ω
−−−→ H1(X,KX(2C))

≃
y

yϕ

H0(X,Ω1
X(3C))

∧ω
−−−→
ψ

H1(X,KX(3C)).

Since KX(2C) ≃ OX and KX(3C) ≃ OX(C), the cohomology sequence of

0 → KX(2C) → KX(3C) → KX(3C)|C ≃ OC → 0

immediately implies ϕ = 0 (notice that h1(X,KX(2C)) = h1(X,KX(3C)) = 1, since h1(B,OB) = h1(B, V ) = 1),
and h2(X,KX(2C)) = h2(B,OB) = 0). Therefore the diagram implies ψ = 0, and we get:

(11.22) Proposition. L = OP(V )(3) is a counterample to (11.2) in the nef case. �
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By Corollary (11.2), we infer that OX(3) cannot be hermitian semi-positive and we thus again obtain – by a
quite different method – the result of [DPS94], example 1.7.

(11.23) Corollary. Let B be an elliptic curve, V the vector bundle given by the unique non-split extension

0 → OB → V → OB → 0.

Let X = P(V ). Then L = OX(1) is nef but not hermitian semi-positive (nor does any multiple, e.g. the anti-
canonical line bundle −KX = OX(−2) is nef but not semi-positive).

12. Invariance of plurigenera of projective varieties

The goal of this section is to give a proof of the following fundamental result on the invariance of plurigenera,
which has been proved by Y.T. Siu [Siu98] in the case of varieties of general type (in which case the proof has
been translated in a purely algebraic form by Y. Kawamata [Kaw99]), and by [Siu00] in general. Let us recall
that X is said to be of general type if κ(KX) = n = dimX .

(12.1) Theorem (Siu). Let X → S be a proper holomorphic map defining a family of smooth projective of varieties
of general type on an irreducible base S. Then the plurigenus pm(Xt) = h0(Xt,mKXt

) of fibers is independent
of t for all m > 0.

The proof somehow involves taking “limits” of divisors as m→ +∞, and therefore transcendental methods are a
strong contender in this circle of ideas, because currents provide a natural compactification of the space of divisors.
Quite recently, M. Pǎun obtained a very short and elegant proof of (12.1) based merely on the Ohwawa-Takegoshi
extension theorem, and we are going to sketch his arguments below (see also M. Pǎun [Pau07], B. Claudon [Cla07]
and S. Takayama [Taka07]). In fact, following Păun, one can prove more general results valid for cohomology
with twisted coefficients. Remarkably enough, no algebraic proof of these results are known at this point, in the
case of varieties of nonnegative Kodaira dimension which are not of general type.

Notice that by connecting any two points of S by a chain of analytic disks, it is enough to consider the case
where S = ∆ is a disk.

(12.2) Theorem (further generalized version of Păun’s theorem). Let π : X → ∆ be a projective family over
the unit disk, and let (Lj, hj)06j6m−1 be (singular) hermitian line bundles with semi-positive curvature currents
iΘLj ,hj

> 0 on X . Assume that

(i) the restriction of hj to the central fiber X0 is well defined (i.e. not identically +∞).

(ii) the multiplier ideal sheaf I(hj|X0
) is trivial for 1 6 j 6 m− 1.

Then any section σ of O(mKX +
∑
Lj)|X0

⊗ I(h0|X0
) over the central fiber X0 extends to X .

The invariance of plurigenera is just the case when all line bundles Lj and their metrics hj are trivial. Since the
dimension t 7→ h0(Xt,mKXt

) is always upper semicontinuous and since (12.2) implies the lower semicontinuity,
we conclude that the dimension is constant along analytic disks (hence along any irreducible base S, by joining
any two points through a chain of analytic disks).

In order to prove (12.2), we first state the technical version of the Ohsawa-Takegoshi L2 extension theorem
needed for the proof, which is a special case of the Ohsawa-Takegoshi Theorem – the reader is invited to check
that the statement indeed follows from (8.6).

(12.3) Lemma. Let π : X → ∆ be as before and let (L, h) be a (singular) hermitian line bundle with semi-
positive curvature current iΘL,h > 0 on X . Let ω be a global Kähler metric on X , and dVX , dVX0 the respective
induced volume elements on X0 and X . Assume that hX0 is well defined. Then any holomorphic section u of
O(KX + L) ⊗ I(h|X0

) extends into a section ũ over X satisfying an L2 estimate

∫

X
‖ũ‖2

ω⊗hdVX 6 C0

∫

X0

‖u‖2
ω⊗hdVX0 ,
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where C0 > 0 is some universal constant (independent of X , L, . . . ).

Proof of (12.2). We write hj = e−ϕj in terms of local plurisubharmonic weights. Fix an auxiliary line bundle
A (which will later be taken to be sufficiently ample), and define inductively a sequence of line bundles Fp by
putting F0 = A and

Fp = Fp−1 +KX + Lr if p = mq + r, 0 6 r 6 m− 1.

By construction we have Fp+m = Fp +mKX +
∑
j Lj and

F0 = A, F1 = A+KX + L1, . . . , Fp = A+ pKX + L1 + . . .+ Lp, 1 6 p 6 m− 1.

The game is to construct inductively families of sections, say (ũ
(p)
j )j=1...Np

, of Fp over X , together with ad hoc

L2 estimates, in such a way that

(a) for p = 0, . . . ,m− 1, Fp is generated by its sections (ũ
(p)
j )j=1...Np

;

(b) we have the m-periodicity relations Np+m = Np and ũ
(p)
j is an extension of u

(p)
j := σqu

(r)
j over X for

p = mq + r, where u
(r)
j := ũ

(r)
j|X0

, 0 6 r 6 m− 1.

Property (a) can certainly be achieved by taking A ample enough so that F0, . . . , Fm−1 are generated by

their sections, and by choosing the ũ
(p)
j appropriately for p = 0, . . . ,m−1. Now, by induction, we equip Fp−1 with

the tautological metric |ξ|2/
∑

|ũ
(p−1)
j (x)|2, and Fp−KX = Fp−1 +Lr with that metric multiplied by hr = e−ϕr ;

it is clear that these metrics have semi-positive curvature currents (the metric on Fp itself if obtained by using
a smooth Kähler metric ω on X ). In this setting, we apply the Ohsawa-Takegoshi theorem to the line bundle

Fp−1 +Lr to extend u
(p)
j into a section ũ

(p)
j over X . By construction the pointwise norm of that section in Fp|X0

in a local trivialization of the bundles involved is the ratio

|u
(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕr ,

up to some fixed smooth positive factor depending only on the metric induced by ω on KX . However, by the
induction relations, we have

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕr =





∑
j |u

(r)
j |2

∑
ℓ |u

(r−1)
ℓ |2

e−ϕr for p = mq + r, 0 < r 6 m− 1,

∑
j |u

(0)
j |2

∑
ℓ |u

(m−1)
ℓ |2

|σ|2e−ϕ0 for p ≡ 0 modm.

Since the sections (u
(r)
j ) generate their line bundle, the ratios involved are positive functions without zeroes

and poles, hence smooth and bounded [possibly after shrinking the base disc ∆, as is permitted]. On the other
hand, assumption (ii) and the fact that σ has coefficients in the multiplier ideal sheaf I(h0|X0

) tell us that e−ϕr ,
1 6 r < m and |σ|2e−ϕ0 are locally integrable on X0. It follows that there is a constant C1 > 0 such that

∫

X0

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕrdVω 6 C1

for all p > 1 [of course, the integral certainly involves finitely many trivializations of the bundles involved, whereas

the integrand expression is just local in each chart]. Inductively, the L2 extension theorem produces sections ũ
(p)
j

of Fp over X such that
∫

X

∑
j |ũ

(p)
j |2

∑
ℓ |ũ

(p−1)
ℓ |2

e−ϕrdVω 6 C2 = C0C1.

The next idea is to extract the limits of p-th roots of these sections to get a singular hermitian metric on
mKX +

∑
Lj . As the functions e−ϕr are locally bounded below (ϕr being psh), the Hölder inequality implies

that
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∫

X

(∑

j

|ũ
(p)
j |2

)1/p

dVω 6 C3.

The mean value inequality for plurisubharmonic functions shows a fortiori that the sequence of psh functions
1
p log

∑
j |ũ

(p)
j |2 is locally uniformly bounded from above. These functions should be thought of as weights on the

Q-line bundles

1

p
(A+ q(mKX +

∑
Lj) + L1 + . . .+ Lr) converging to KX +

1

m

∑
Lj as p→ +∞,

and thus they are potentials of currents in a bounded subset of the Kähler cone. Moreover, the sections ũ
(p)
j

extend σqurj on X0, and so we have in particular

lim
p→+∞

1

p
log

∑

j

|u
(p)
j |2 = lim

p→+∞
1

p
log

(
|σ|2q

∑

j

|u
(0)
j |2

)
=

1

m
log |σ|2 6≡ −∞ on X0.

Therefore, by well known facts of potential theory, the sequence 1
p log

∑
j |u

(p)
j |2 must have some subsequence

which converges in L1
loc topology to the potential ψ of a current in the first Chern class of KX + 1

m

∑
Lj , in the

form of an upper regularized limit

ψ(z) = lim sup
ζ→z

lim
ν→+∞

1

pν
log

∑

j

|ũ
(pν)
j (ζ)|2,

which is such that ψ(z) > 1
m log |σ|2 on X0. Hence mKX +

∑
Lj possesses a hermitian metric H = e−mψ, and

we have by construction ‖σ‖H 6 1 and ΘH > 0. In order to conclude, we equip the bundle

G = (m− 1)KX +
∑

Lj

with the metric γ = H1−1/m
∏
h

1/m
j , and mKX +

∑
Lj = KX + G with the metric ω ⊗ γ. Clearly γ has a

semi-positive curvature current on X and in a local trivialization we have

‖σ‖2
ω⊗γ 6 C|σ|2 exp

(
− (m− 1)ψ +

1

m

∑
ϕj

)
6 C

(
|σ|2

∏
e−ϕj

)1/m

on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that ‖σ‖2
ω⊗γ is also locally integrable

on X0 by the Hölder inequality. A new (and final) application of the L2 extension theorem to the hermitian line
bundle (G, γ) implies that σ can be extended to X . Theorem (12.2) is proved. �

13. Positive cones in the (1,1) cohomology groups of compact Kähler manifolds

13.A. Nef, pseudo-effective and big cohomology classes

We introduce again the important concepts of positivity for cohomology classes of type (1, 1) – the only novelty
is that X is an arbitrary compact Kähler manifold and that we do not assume that our classes are integral or
rational.

(13.1) Definition. Let (X,ω) be a compact Kähler manifold.

(i) The Kähler cone is the set K ⊂ H1,1(X,R) of cohomology classes {ω} of Kähler forms. This is an open
convex cone.

(ii) The closure K of the Kähler cone consists of classes {α} ∈ H1,1(X,R) such that for every ε > 0 the sum
{α + εω} is Kähler, or equivalently, for every ε > 0, there exists a smooth function ϕε on X such that
α+ i∂∂ϕε > −εω. We say that K is the cone of nef (1, 1)-classes.

(iii) The pseudo-effective cone is the set E ⊂ H1,1(X,R) of cohomology classes {T } of closed positive currents of
type (1, 1). This is a closed convex cone.
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(iv) The interior E◦ of E consists of classes which still contain a closed positive current after one subtracts ε{ω}
for ε > 0 small, in other words, they are classes of closed (1, 1)-currents T such that T > εω. Such a current
will be called a Kähler current, and we say that {T } ∈ H1,1(X,R) is a big (1, 1)-class.

K

E

K = Kähler cone in H1,1(X,R) [open cone]

K = nef cone in H1,1(X,R) [closure of K]

E = pseudo-effective cone in H1,1(X,R) [closed cone]

E◦ = big cone in H1,1(X,R) [interior of E ]

The openness of K is clear by definition, and the closedness of E follows from the fact that bounded sets
of currents are weakly compact (as follows from the similar weak compacteness property for bounded sets of
positive measures). It is then clear that K ⊂ E .

In spite of the fact that cohomology groups can be defined either in terms of forms or currents, it turns out
that the cones K and E are in general different. To see this, it is enough to observe that a Kähler class {α} satisfies∫
Y
αp > 0 for every p-dimensional analytic set. On the other hand, if X is the surface obtained by blowing-up

P2 in one point, then the exceptional divisopr E ≃ P1 has a cohomology class {α} such that
∫
E
α = E2 = −1,

hence {α} /∈ K, although {α} = {[E]} ∈ E .

In case X is projective, it is interesting to consider also the algebraic analogues of our “transcendental cones”
K and E , which consist of suitable integral divisor classes. Since the cohomology classes of such divisors live in
H2(X,Z), we are led to introduce the Neron-Severi lattice and the associated Neron-Severi space

NS(X) := H1,1(X,R) ∩
(
H2(X,Z)/{torsion}

)
,

NSR(X) := NS(X) ⊗Z R.

All classes of real divisors D =
∑
cjDj , cj ∈ R, lie by definition in NSR(X). Notice that the integral lattice

H2(X,Z)/{torsion} need not hit at all the subspace H1,1(X,R) ⊂ H2(X,R) in the Hodge decomposition, hence
in general the Picard number

ρ(X) = rankZ NS(X) = dimR NSR(X)

satisfies ρ(X) 6 h1,1 = dimR H
1,1(X,R), but the equality can be strict (actually, it is well known that a generic

complex torus X = Cn/Λ satisfies ρ(X) = 0 and h1,1 = n2). In order to deal with the case of algebraic varieties
we introduce

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).
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KNS

ENS

NSR(X)

A very important fact is that the “Neron-Severi part” of any of the open or closed transcendental cones K,
E , K, E◦ is algebraic, i.e. can be characterized in simple algebraic terms. In fact, the results of section 6.C can
be reformulated as follows.

(13.2) Theorem. Let X be a projective manifold. Then

(i) KNS is the open cone generated by classes of ample (or very ample) divisors A (Recall that a divisor A is
said to be very ample if the linear system H0(X,O(A)) provides an embedding of X in projective space).

(ii) The interior E◦
NS is the cone generated by classes of big divisors, namely divisors D such that h0(X,O(kD)) >

c kdimX for k large.

(iii) ENS is the closure of the cone generated by classes of effective divisors, i.e. divisors D =
∑
cjDj, cj ∈ R+.

(iv) The closed cone KNS consists of the closure of the cone generated by nef divisors D (or nef line bundles L),
namely effective integral divisors D such that D · C > 0 for every curve C.

Recall that (i) is just Kodaira’s embedding theorem, and that the proof of (ii) follows from the existence theorem
provided by L2 estimates, since we are in a case where the curvature is positive definite as a current. Properties
(iii) and (iv) are obtained by passing to the closure of the open cones. The terminology “nef”, “big”, “pseudo-
effective” used for the full transcendental cones thus appears to be a natural extrapolation of the algebraic
situation.

13.B. Positive classes in intermediate (p, p) bidegrees

We describe here similar concepts for cohomology classes of type (p, p), although we will not be able to say much
about these. Recall that we have a Serre duality pairing

(13.3) Hp,q(X,C) ×Hn−p,n−q(X,C) −→ C, (α, β) 7−→

∫

X

α ∧ β ∈ C.

In particular, if we restrict to real classes, this yields a duality pairing

(13.4) Hp,p(X,R) ×Hn−p,n−p(X,R) −→ R, (α, β) 7−→

∫

X

α ∧ β ∈ R.

Now, one can define Hp,p
SP (X,R) to be the closure of the cone of classes of d-closed strongly positive smooth

(p, p)-forms (a (p, p)-form in Λp,pT ∗
X is by definition strongly positive if it is in the convex cone generated by

decomposable (p, p) forms iu1 ∧ u1 ∧ . . . ∧ iup ∧ up where the uj are (1, 0)-forms). Clearly, H1,1
SP (X,R) = K and

the cup product defines a multilinear map
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(13.5) K × . . .×K −→ Hp,p
SP (X,R)

on the p-fold product of the Kähler cone and its closure. We also haveHp,p
SP (X,R) ⊂ Hp,p

>0 (X,R) where Hp,p
>0 (X,R)

is the cone of classes of d-closed weakly positive currents of type (p, p), and the Serre duality pairing induces a
positive intersection product

(13.6) Hp,p
SP (X,R) ×Hn−p,n−p

>0 (X,R) −→ R+, (α, T ) 7−→

∫

X

α ∧ T ∈ R+

(notice that if α is strongly positive and T > 0, then α ∧ T is a positive measure).

If C is a convex cone in a finite dimensional vector space E, we denote by C∨ the dual cone, i.e. the set of
linear forms u ∈ E⋆ which take nonnegative values on all elements of C. By the Hahn-Banach theorem, we always
have C∨∨ = C. A basic problem would be to investigate whether Hp,p

SP (X,R) and Hn−p,n−p
>0 (X,R) are always dual

cones, and another even harder question, which somehow encompasses the Hodge conjecture, would be to relate
these cones to the cones generated by cohomology classes of effective analytic cycles. We are essentially unable to
address these extremely difficult questions, except in the special cases p = 1 or p = n− 1 which are much better
understood and are the main target of the next two sections.

14. Numerical characterization of the Kähler cone

We describe here the main results obtained in [DP04]. The upshot is that the Kähler cone depends only on the
intersection product of the cohomology ring, the Hodge structure and the homology classes of analytic cycles.
More precisely, we have :

(14.1) Theorem. Let X be a compact Kähler manifold. Let P be the set of real (1, 1) cohomology classes {α}
which are numerically positive on analytic cycles, i.e. such that

∫
Y
αp > 0 for every irreducible analytic set Y

in X, p = dimY . Then the Kähler cone K of X is one of the connected components of P.

(14.2) Special case. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a generalization of the well-known Nakai-
Moishezon criterion. Recall that the Nakai-Moishezon criterion provides a necessary and sufficient criterion for a
line bundle to be ample: a line bundle L→ X on a projective algebraic manifold X is ample if and only if

Lp · Y =

∫

Y

c1(L)p > 0,

for every algebraic subset Y ⊂ X, p = dim Y .

It turns out that the numerical conditions
∫
Y α

p > 0 also characterize arbitrary transcendental Kähler classes
when X is projective : this is precisely the meaning of the special case 14.2.

(14.3) Example. The following example shows that the cone P need not be connected (and also that the compo-
nents of P need not be convex, either). Let us consider for instance a complex torus X = Cn/Λ. It is well-known
that a generic torus X does not possess any analytic subset except finite subsets and X itself. In that case, the
numerical positivity is expressed by the single condition

∫
X α

n > 0. However, on a torus, (1, 1)-classes are in
one-to-one correspondence with constant hermitian forms α on Cn. Thus, for X generic, P is the set of hermitian
forms on Cn such that det(α) > 0, and Theorem 14.1 just expresses the elementary result of linear algebra saying
that the set K of positive definite forms is one of the connected components of the open set P = {det(α) > 0}
of hermitian forms of positive determinant (the other components, of course, are the sets of forms of signature
(p, q), p+ q = n, q even. They are not convex when p > 0 and q > 0).

Sketch of proof of Theorems 14.1 and 14.2. By definition (13.1) (iv), a Kähler current is a closed positive current
T of type (1, 1) such that T > εω for some smooth Kähler metric ω and ε > 0 small enough. The crucial steps
of the proof of Theorem 14.1 are contained in the following statements.

(14.4) Proposition (Păun [Pau98a, 98b]). Let X be a compact complex manifold (or more generally a compact
complex space). Then
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(a) The cohomology class of a closed positive (1, 1)-current {T } is nef if and only if the restriction {T }|Z is nef
for every irreducible component Z in any of the Lelong sublevel sets Ec(T ).

(b) The cohomology class of a Kähler current {T } is a Kähler class (i.e. the class of a smooth Kähler form) if
and only if the restriction {T }|Z is a Kähler class for every irreducible component Z in any of the Lelong
sublevel sets Ec(T ).

The proof of Proposition 14.4 is not extremely hard if we take for granted the fact that Kähler currents can
be approximated by Kähler currents with logarithmic poles, a fact which was first proved in section 9.B (see
also [Dem92]). Thus in (b), we may assume that T = α + i∂∂ϕ is a current with analytic singularities, where
ϕ is a quasi-psh function with logarithmic poles on some analytic set Z, and ϕ smooth on X r Z. Now, we
proceed by an induction on dimension (to do this, we have to consider analytic spaces rather than with complex
manifolds, but it turns out that this makes no difference for the proof). Hence, by the induction hypothesis, there
exists a smooth potential ψ on Z such that α|Z + i∂∂ψ > 0 along Z. It is well known that one can then find

a potential ψ̃ on X such that α + i∂∂ψ̃ > 0 in a neighborhood V of Z (but possibly non positive elsewhere).
Essentially, it is enough to take an arbitrary extension of ψ to X and to add a large multiple of the square of
the distance to Z, at least near smooth points; otherwise, we stratify Z by its successive singularity loci, and
proceed again by induction on the dimension of these loci. Finally, we use a a standard gluing procedure : the
current T = α+ i maxε(ϕ, ψ̃−C), C ≫ 1, will be equal to α+ i∂∂ϕ > 0 on X rV , and to a smooth Kähler form
on V . �

The next (and more substantial step) consists of the following result which is reminiscent of the Grauert-
Riemenschneider conjecture ([Siu84], [Dem85]).

(14.5) Theorem ([DP04]). Let X be a compact Kähler manifold and let {α} be a nef class (i.e. {α} ∈ K). Assume
that

∫
X
αn > 0. Then {α} contains a Kähler current T , in other words {α} ∈ E◦.

Step 1. The basic argument is to prove that for every irreducible analytic set Y ⊂ X of codimension p, the class
{α}p contains a closed positive (p, p)-current Θ such that Θ > δ[Y ] for some δ > 0. For this, we use in an essentail
way the Calabi-Yau theorem [Yau78] on solutions of Monge-Ampère equations, which yields the following result
as a special case:

(14.6) Lemma ([Yau78]). Let (X,ω) be a compact Kähler manifold and n = dimX. Then for any smooth volume
form f > 0 such that

∫
X f =

∫
X ω

n, there exist a Kähler metric ω̃ = ω + i∂∂ϕ in the same Kähler class as ω,
such that ω̃n = f . �

We exploit this by observing that α+ εω is a Kähler class. Hence we can solve the Monge-Ampère equation

(14.6a) (α+ εω + i∂∂ϕε)
n = Cεω

n
ε

where (ωε) is the family of Kähler metrics on X produced by Lemma 3.4 (iii), such that their volume is concen-
trated in an ε-tubular neighborhood of Y .

Cε =

∫
X
αnε∫

X ω
n
ε

=

∫
X

(α+ εω)n∫
X ω

n
> C0 =

∫
X
αn∫

X ω
n
> 0.

Let us denote by
λ1(z) 6 . . . 6 λn(z)

the eigenvalues of αε(z) with respect to ωε(z), at every point z ∈ X (these functions are continuous with respect
to z, and of course depend also on ε). The equation (14.6a) is equivalent to the fact that

(14.6b) λ1(z) . . . λn(z) = Cε

is constant, and the most important observation for us is that the constant Cε is bounded away from 0, thanks
to our assumption

∫
X
αn > 0.

Fix a regular point x0 ∈ Y and a small neighborhood U (meeting only the irreducible component of x0 in
Y ). By Lemma 3.4, we have a uniform lower bound

(14.6c)

∫

U∩Vε

ωpε ∧ ω
n−p > δp(U) > 0.
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Now, by looking at the p smallest (resp. (n− p) largest) eigenvalues λj of αε with respect to ωε, we find

αpε > λ1 . . . λp ω
p
ε ,(14.6d)

αn−pε ∧ ωpε >
1

n!
λp+1 . . . λn ω

n
ε ,(14.6e)

The last inequality (14.6e) implies
∫

X

λp+1 . . . λn ω
n
ε 6 n!

∫

X

αn−pε ∧ ωpε = n!

∫

X

(α+ εω)n−p ∧ ωp 6 M

for some constant M > 0 (we assume ε 6 1, say). In particular, for every δ > 0, the subset Eδ ⊂ X of points z
such that λp+1(z) . . . λn(z) > M/δ satisfies

∫
Eδ
ωnε 6 δ, hence

(14.6f)

∫

Eδ

ωpε ∧ ω
n−p 6 2n−p

∫

Eδ

ωnε 6 2n−pδ.

The combination of (14.6 c) and (14.6 f) yields
∫

(U∩Vε)rEδ

ωpε ∧ ω
n−p > δp(U) − 2n−pδ.

On the other hand (14.6 b) and (14.6 d) imply

αpε >
Cε

λp+1 . . . λn
ωpε >

Cε
M/δ

ωpε on (U ∩ Vε) r Eδ.

From this we infer

(14.6 g)

∫

U∩Vε

αpε ∧ ω
n−p >

Cε
M/δ

∫

(U∩Vε)rEδ

ωpε ∧ ω
n−p >

Cε
M/δ

(δp(U) − 2n−pδ) > 0

provided that δ is taken small enough, e.g. δ = 2−(n−p+1)δp(U). The family of (p, p)-forms αpε is uniformly
bounded in mass since ∫

X

αpε ∧ ω
n−p =

∫

X

(α+ εω)p ∧ ωn−p 6 Const.

Inequality (14.6 g) implies that any weak limit Θ of (αpε) carries a positive mass on U ∩ Y . By Skoda’s extension
theorem [Sko82], 1YΘ is a closed positive current with support in Y , hence 1YΘ =

∑
cj [Yj ] is a combination

of the various components Yj of Y with coefficients cj > 0. Our construction shows that Θ belongs to the
cohomology class {α}p. Step 1 of Theorem 14.5 is proved.

Step 2. The second and final step consists in using a “diagonal trick”: for this, we apply Step 1 to

X̃ = X ×X, Ỹ = diagonal∆ ⊂ X̃, α̃ = pr∗1 α+ pr∗2 α.

It is then clear that α̃ is nef on X̃ and that
∫

X̃

(α̃)2n =

(
2n

n

)(∫

X

αn
)2

> 0.

It follows by Step 1 that the class {α̃}n contains a Kähler current Θ of bidegree (n, n) such that Θ > δ[∆] for
some δ > 0. Therefore the push-forward

T := (pr1)∗(Θ ∧ pr∗2 ω)

is a positive (1, 1)-current such that
T > δ(pr1)∗([∆] ∧ pr∗2 ω) = δω.

It follows that T is a Kähler current. On the other hand, T is numerically equivalent to (pr1)∗(α̃
n ∧pr∗2 ω), which

is the form given in coordinates by

x 7→

∫

y∈X

(
α(x) + α(y)

)n
∧ ω(y) = Cα(x)
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where C = n
∫
X
α(y)n−1∧ω(y). Hence T ≡ Cα, which implies that {α} contains a Kähler current. Theorem 14.5

is proved. �

End of Proof of Theorems 14.1 and 14.2. Clearly the open cone K is contained in P , hence in order to show that
K is one of the connected components of P , we need only show that K is closed in P , i.e. that K ∩ P ⊂ K. Pick
a class {α} ∈ K ∩ P . In particular {α} is nef and satisfies

∫
X
αn > 0. By Theorem 14.5 we conclude that {α}

contains a Kähler current T . However, an induction on dimension using the assumption
∫
Y
αp for all analytic

subsets Y (we also use resolution of singularities for Y at this step) shows that the restriction {α}|Y is the class
of a Kähler current on Y . We conclude that {α} is a Kähler class by 14.4 (b), therefore {α} ∈ K, as desired. �

The projective case 14.2 is a consequence of the following variant of Theorem 14.1.

(14.7) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α} on X is Kähler if and only
if there exists a Kähler metric ω on X such that

∫
Y
αk ∧ ωp−k > 0 for all irreducible analytic sets Y and all

k = 1, 2, . . . , p = dimY .

Proof. The assumption clearly implies that
∫

Y

(α+ tω)p > 0

for all t ∈ R+, hence the half-line α+ (R+)ω is entirely contained in the cone P of numerically positive classes.
Since α+t0ω is Kähler for t0 large, we conclude that the half-line in entirely contained in the connected component
K, and therefore α ∈ K. �

In the projective case, we can take ω = c1(H) for a given very ample divisor H , and the condition
∫
Y
αk ∧

ωp−k > 0 is equivalent to ∫

Y ∩H1∩...∩Hp−k

αk > 0

for a suitable complete intersection Y ∩H1 ∩ . . .∩Hp−k, Hj ∈ |H |. This shows that algebraic cycles are sufficient
to test the Kähler property, and the special case 14.2 follows. On the other hand, we can pass to the limit in 14.7
by replacing α by α+ εω, and in this way we get also a characterization of nef classes.

(14.8) Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α} on X is nef if and only
if there exists a Kähler metric ω on X such that

∫
Y
αk ∧ ωp−k > 0 for all irreducible analytic sets Y and all

k = 1, 2, . . . , p = dimY .

By a formal convexity argument, one can derive from 14.7 or 14.8 the following interesting consequence about
the dual of the cone K.

(14.9) Theorem. Let X be a compact Kähler manifold.

(a) A (1, 1) cohomology class {α} on X is nef if and only for every irreducible analytic set Y in X, p = dimX
and every Kähler metric ω on X we have

∫
Y
α∧ωp−1 > 0. (Actually this numerical condition is needed only

for Kähler classes {ω} which belong to a 2-dimensional space R{α} + R{ω0}, where {ω0} is a given Kähler
class).

(b) The dual of the nef cone K is the closed convex cone in Hn−1,n−1(X,R) generated by cohomology classes of
currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X,R), where Y runs over the collection of irreducible analytic
subsets of X and {ω} over the set of Kähler classes of X. This dual cone coincides with Hn−1,n−1

>0 (X,R).

Proof. (a) Clearly a nef class {α} satisfies the given numerical condition. The proof of the converse is more tricky.
First, observe that for every integer p > 1, there exists a polynomial identity of the form

(14.10) (y − δx)p − (1 − δ)pxp = (y − x)

∫ 1

0

Ap(t, δ)
(
(1 − t)x+ ty

)p−1
dt

where Ap(t, δ) =
∑

06m6p am(t)δm ∈ Q[t, δ] is a polynomial of degree 6 p − 1 in t (moreover, the polynomial
Ap is unique under this limitation for the degree). To see this, we observe that (y − δx)p − (1 − δ)pxp vanishes
identically for x = y, so it is divisible by y − x. By homogeneity in (x, y), we have an expansion of the form
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(y − δx)p − (1 − δ)pxp = (y − x)
∑

06ℓ6p−1, 06m6p

bℓ,mx
ℓyp−1−ℓδm

in the ring Z[x, y, δ]. Formula (14.10) is then equivalent to

(14.10′) bℓ,m =

∫ 1

0

am(t)

(
p− 1

ℓ

)
(1 − t)ℓtp−1−ℓ dt.

Since (U, V ) 7→
∫ 1

0 U(t)V (t)dt is a non degenerate linear pairing on the space of polynomials of degree 6 p − 1

and since (
(
p−1
ℓ

)
(1− t)ℓtp−1−ℓ)06ℓ6p−1 is a basis of this space, (14.10′) can be achieved for a unique choice of the

polynomials am(t). A straightforward calculation shows that Ap(t, 0) = p identically. We can therefore choose
δ0 ∈ [0, 1[ so small that Ap(t, δ) > 0 for all t ∈ [0, 1], δ ∈ [0, δ0] and p = 1, 2, . . . , n.

Now, fix a Kähler metric ω such that ω′ = α + ω yields a Kähler class {ω′} (just take a large multiple
ω = kω0, k ≫ 1, of the given Kähler metric ω0 to initialize the process). A substitution x = ω and y = ω′ in our
polynomial identity yields

(α + (1 − δ)ω)p − (1 − δ)pωp =

∫ 1

0

Ap(t, δ)α ∧
(
(1 − t)ω + tω′)p−1

dt.

For every irreducible analytic subset Y ⊂ X of dimension p we find

∫

Y

(α+ (1 − δ)ω)p − (1 − δ)p
∫

Y

ωp =

∫ 1

0

Ap(t, δ)dt
( ∫

Y

α ∧
(
(1 − t)ω + tω′)p−1

)
.

However, (1− t)ω+ tω′ is a Kähler class (contained in R{α}+R{ω0}) and therefore
∫
Y
α∧

(
(1− t)ω+ tω′)p−1

> 0
by the numerical condition. This implies

∫
Y

(α + (1 − δ)ω)p > 0 for all δ ∈ [0, δ0]. We have produced a segment
entirely contained in P such that one extremity {α+ ω} is in K, so the other extremity {α+ (1 − δ0)ω} is also
in K. By repeating the argument inductively after replacing ω with (1 − δ0)ω, we see that {α+ (1 − δ0)

νω} ∈ K
for every integer ν > 0. From this we infer that {α} is nef, as desired.

(b) Part (a) can be reformulated by saying that the dual cone K
∨

is the closure of the convex cone generated by
(n − 1, n − 1) cohomology classes of the form [Y ] ∧ ωp−1. Since these classes are contained in Hn−1,n−1

>0 (X,R)

which is also contained in K
∨

by (13.6), we infer that

(14.11) �K
∨

= Hn−1,n−1
>0 (X,R) = Cone({[Y ] ∧ ωp−1}).

Our main Theorem 14.1 also has an important application to the deformation theory of compact Kähler
manifolds.

(14.12) Theorem. Let π : X → S be a deformation of compact Kähler manifolds over an irreducible base S. Then
there exists a countable union S′ =

⋃
Sν of analytic subsets Sν ( S, such that the Kähler cones Kt ⊂ H1,1(Xt,C)

of the fibers Xt = π−1(t) are invariant over S r S′ under parallel transport with respect to the (1, 1)-projection
∇1,1 of the Gauss-Manin connection ∇ in the decomposition of

∇ =




∇2,0 ∗ 0
∗ ∇1,1 ∗
0 ∗ ∇0,2




on the Hodge bundle H2 = H2,0 ⊕H1,1 ⊕H0,2.

We moreover conjecture that for an arbitrary deformation X → S of compact complex manifolds, the Kähler
property is open with respect to the countable Zariski topology on the base S of the deformation.

Let us recall the general fact that all fibers Xt of a deformation over a connected base S are diffeomorphic,
since X → S is a locally trivial differentiable bundle. This implies that the cohomology bundle

S ∋ t 7→ Hk(Xt,C)
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is locally constant over the base S. The corresponding (flat) connection of this bundle is called the Gauss-Manin
connection, and will be denoted here by ∇. As is well known, the Hodge filtration

F p(Hk(Xt,C)) =
⊕

r+s=k,r>p

Hr,s(Xt,C)

defines a holomorphic subbundle of Hk(Xt,C) (with respect to its locally constant structure). On the other hand,
the Dolbeault groups are given by

Hp,q(Xt,C) = F p(Hk(Xt,C)) ∩ F k−p(Hk(Xt,C)), k = p+ q,

and they form real analytic subbundles of Hk(Xt,C). We are interested especially in the decomposition

H2(Xt,C) = H2,0(Xt,C) ⊕H1,1(Xt,C) ⊕H0,2(Xt,C)

and the induced decomposition of the Gauss-Manin connection acting on H2

∇ =




∇2,0 ∗ ∗
∗ ∇1,1 ∗
∗ ∗ ∇0,2


 .

Here the stars indicate suitable bundle morphisms – actually with the lower left and upper right stars being zero
by Griffiths’ transversality property, but we do not really care here. The notation ∇p,q stands for the induced
(real analytic, not necessarily flat) connection on the subbundle t 7→ Hp,q(Xt,C).

Sketch of Proof of Theorem 14.12. The result is local on the base, hence we may assume that S is contractible.
Then the family is differentiably trivial, the Hodge bundle t 7→ H2(Xt,C) is the trivial bundle and t 7→ H2(Xt,Z)
is a trivial lattice. We use the existence of a relative cycle space Cp(X/S) ⊂ Cp(X ) which consists of all cycles
contained in the fibres of π : X → S. It is equipped with a canonical holomorphic projection

πp : Cp(X/S) → S.

We then define the Sν ’s to be the images in S of those connected components of Cp(X/S) which do not project
onto S. By the fact that the projection is proper on each component, we infer that Sν is an analytic subset of S.
The definition of the Sν ’s imply that the cohomology classes induced by the analytic cycles {[Z]}, Z ⊂ Xt, remain
exactly the same for all t ∈ S r S′. This result implies in its turn that the conditions defining the numerically
positive cones Pt remain the same, except for the fact that the spaces H1,1(Xt,R) ⊂ H2(Xt,R) vary along with
the Hodge decomposition. At this point, a standard calculation implies that the Pt are invariant by parallel
transport under ∇1,1. This is done as follows.

Since S is irreducible and S′ is a countable union of analytic sets, it follows that S r S′ is arcwise connected
by piecewise smooth analytic arcs. Let

γ : [0, 1] → S r S′, u 7→ t = γ(u)

be such a smooth arc, and let α(u) ∈ H1,1(Xγ(u),R) be a family of real (1, 1)-cohomology classes which are
constant by parallel transport under ∇1,1. This is equivalent to assuming that

∇(α(u)) ∈ H2,0(Xγ(u),C) ⊕H0,2(Xγ(u),C)

for all u. Suppose that α(0) is a numerically positive class in Xγ(0). We then have

α(0)p · {[Z]} =

∫

Z

α(0)p > 0

for all p-dimensional analytic cycles Z in Xγ(0). Let us denote by

ζZ(t) ∈ H2q(Xt,Z), q = dimXt − p,

the family of cohomology classes equal to {[Z]} at t = γ(0), such that ∇ζZ(t) = 0 (i.e. constant with respect to
the Gauss-Manin connection). By the above discussion, ζZ(t) is of type (q, q) for all t ∈ S, and when Z ⊂ Xγ(0)

varies, ζZ(t) generates all classes of analytic cycles in Xt if t ∈ S r S′. Since ζZ is ∇-parallel and ∇α(u) has no
component of type (1, 1), we find
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d

du
(α(u)p · ζZ(γ(u)) = pα(u)p−1 · ∇α(u) · ζZ(γ(u)) = 0.

We infer from this that α(u) is a numerically positive class for all u ∈ [0, 1]. This argument shows that the set
Pt of numerically positive classes in H1,1(Xt,R) is invariant by parallel transport under ∇1,1 over S r S′.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE theory, every Kähler class in Xt0

can be deformed to a nearby Kähler class in nearby fibres Xt. This implies that the connected component of Pt
which corresponds to the Kähler cone Kt must remain the same. The theorem is proved. �

As a by-product of our techniques, especially the regularization theorem for currents, we also get the following
result for which we refer to [DP04].

(14.13) Theorem. A compact complex manifold carries a Kähler current if and only if it is bimeromorphic to a
Kähler manifold (or equivalently, dominated by a Kähler manifold).

This class of manifolds is called the Fujiki class C. If we compare this result with the solution of the Grauert-
Riemenschneider conjecture, it is tempting to make the following conjecture which would somehow encompass
both results.

(14.14) Conjecture. Let X be a compact complex manifold of dimension n. Assume that X possesses a nef
cohomology class {α} of type (1, 1) such that

∫
X
αn > 0. Then X is in the Fujiki class C. [Also, {α} would

contain a Kähler current, as it follows from Theorem 14.5 if Conjecture 14.14 is proved ].

We want to mention here that most of the above results were already known in the cases of complex surfaces
(i.e. in dimension 2), thanks to the work of N. Buchdahl [Buc99, 00] and A. Lamari [Lam99a, 99b].

Shortly after the original [DP04] manuscript appeared in April 2001, Daniel Huybrechts [Huy01] informed us
Theorem 14.1 can be used to calculate the Kähler cone of a very general hyperkähler manifold: the Kähler cone is
then equal to a suitable connected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkähler manifold, S.Boucksom [Bou02] later showed that a (1, 1) class {α} is
Kähler if and only if it lies in the positive part of the Beauville-Bogomolov quadratic cone and moreover

∫
C α > 0

for all rational curves C ⊂ X (see also [Huy99]).

15. Structure of the pseudo-effective cone and mobile intersection theory

15.A. Classes of mobile curves and of mobile (n− 1, n− 1)-currents

We introduce various positive cones in Hn−1,n−1(X,R), some of which exhibit certain “mobility” properties,
in the sense that they can be more or less freely deformed. Ampleness is clearly such a property, since a very
ample divisor A can be moved in its linear system |A| so as to cover the whole ambient variety. By extension, a
Kähler class {ω} ∈ H1,1(X,R) is also considered to be mobile, as illustrated alternatively by the fact that the
Monge-Ampère volume form (ω + i∂∂ϕ)n of a Kähler metric in the same cohomology class can be taken to be
equal to an arbitrary volume form f > 0 with

∫
X
f =

∫
X
ωn (thanks to Yau’s theorem [Yau78]).

(15.1) Definition. Let X be a smooth projective variety.

(i) One defines NE(X) to be the convex cone generated by cohomology classes of all effective curves in
Hn−1,n−1(X,R)

(ii) We say that C is a mobile curve if C = Ct0 is a member of an analytic family (Ct)t∈S such that
⋃
t∈S Ct = X

and, as such, is a reduced irreducible 1-cycle. We define the mobile cone ME(X), to be the convex cone
generated by all mobile curves.

(iii) If X is projective, we say that an effective 1-cycle C is a strongly mobile if we have

C = µ⋆(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modification. We let MEs(X) be the

convex cone generated by all strongly mobile effective 1-cycles (notice that by taking Ãj general enough these
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classes can be represented by reduced irreducible curves; also, by Hironaka, one could just restrict oneself to
compositions of blow-ups with smooth centers).

Clearly, we have

MEs(X) ⊂ ME(X) ⊂ NE(X).

The cone NE(X) is contained in the analogue of the Neron-Severi group for (n− 1, n− 1)-classes, namely

NSn−1
R (X) := (Hn−1,n−1(X,R) ∩H2n−2(X,Z)/tors) ⊗Z R

(sometimes also denoted N1(X) in the litterature). We wish to introduce similar concepts for cones of non
necessarily integral classes, on arbitrary compact Kähler manifolds. The relevant definition is as follows.

(15.2) Definition. Let X be a compact Kähler manifold.

(i) We define N = Hn−1,n−1
>0 (X,R) to be the (closed) convex cone in Hn−1,n−1(X,R) generated by classes of

positive currents T of type (n− 1, n− 1), i.e., of bidimension (1, 1).

(ii) We define the cone Ms ⊂ Hn−1,n−1(X,R) of strongly mobile classes to be the closure of the convex cone
generated by classes of currents of the form

µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification, and the ω̃j are Kähler forms on X̃.

(iii) We define the cone M ⊂ Hn−1,n−1(X,R) of mobile classes to be the closure of the convex cone generated by
classes of currents of the form

µ⋆([Ỹt0 ] ∧ ω̃1 ∧ . . . ∧ ω̃p−1)

where µ : X̃ → X is an arbitrary modification, the ω̃j are Kähler forms on X̃ and (Ỹt)t∈S is an analytic

family of effective p-dimensional analytic cycles covering X̃ such that Ỹt0 is reduced and irreducible, with p
running over all {1, 2, . . . , n}.

Clearly, we have

Ms ⊂ M ⊂ N .

For X projective, it is also immediately clear from the definitions that

(15.3)





NE(X) ⊂ NNS := N ∩ NSn−1
R (X),

ME(X) ⊂ MNS := M∩ NSn−1
R (X),

MEs(X) ⊂ Ms
NS := Ms ∩ NSn−1

R (X).

The upshot of these definitions lie in the following easy observation.

(15.4) Proposition. Let X be a compact Kähler manifold. The Serre duality pairing

H1,1(X,R) ×Hn−1,n−1(X,R) −→ R, (α, β) 7−→

∫

X

α ∧ β

takes nonnegative values

(a) for all pairs (α, β) ∈ K ×N ;

(b) for all pairs (α, β) ∈ E ×M.

Proof. (a) is obvious. In order to prove (b), we may assume that β = µ⋆([Yt0 ] ∧ ω̃1 ∧ . . . ∧ ω̃p−1) for some

modification µ : X̃ → X , where {α} = {T } is the class of a positive (1, 1)-current on X and ω̃j are Kähler forms

on X̃ . Then for t ∈ S generic
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∫

X

α ∧ β =

∫

X

T ∧ µ⋆([Ỹt] ∧ ω̃1 ∧ . . . ∧ ω̃p−1)

=

∫

X

µ∗T ∧ [Ỹt] ∧ ω̃1 ∧ . . . ∧ ω̃p−1

=

∫

Ỹt

(µ∗T )
↾Ỹt

∧ ω̃1 ∧ . . . ∧ ω̃p−1 > 0(15.5)

provided that we show that the final integral is well defined and that the formal calulations involved in (15.5)
are correct. Here, we have used the fact that a closed positive (1, 1)-current T always has a pull-back µ⋆T ,
which follows from the observation that if T = α + i∂∂ϕ with α smooth and ϕ quasi-psh, we may always set
µ⋆T = µ∗α+ i∂∂(ϕ ◦µ), with ϕ ◦µ quasi-psh and not identically −∞ on X̃ . Similarly, we see that the restriction
(µ∗T )

↾Ỹt
is a well defined positive (1, 1)-current for t generic, by putting

(µ∗T )
↾Ỹt

= (µ∗α)
↾Ỹt

+ i∂∂
(
(ϕ ◦ µ)

↾Ỹt

)

and choosing t such that Ỹt is not contained in the pluripolar set of −∞ poles of ϕ ◦ µ (this is possible thanks

to the assumption that Ỹt covers X̃ ; locally near any given point we can modify α so that α = 0 on a small
neighborhood V , and then ϕ is psh on V ). Finally, in order to justify the formal calculations we can use a
regularization argument for T , writing T = limTk with Tk = α + i∂∂ϕk and a decreasing sequence of smooth
almost plurisubharmonic potentials ϕk ↓ ϕ such that the Levi forms have a uniform lower bound i∂∂ϕk > −Cω
(such a sequence exists by [Dem92]). Then (µ∗Tk)↾Ỹt

→ (µ∗T )
↾Ỹt

in the weak topology of currents. �

Proposition 15.4 leads to the natural question whether the cones (K,N ) and (E ,M) are dual under Serre
duality, The second part of the question is addressed in the next section. The results proved in § 18 yield a
complete answer to the first part – even in the general Kähler setting.

(15.6) Theorem. Let X be a compact Kähler manifold. Then

(i) K and N are dual cones.

(ii) If X is projective algebraic, then KNS = Nef(X) and NNS = NE(X) and these cones are dual.

Proof. (i) is a weaker version of (14.9 b).

(ii) The equality KNS = Nef(X) has already been discussed and is a consequence of the Kodaira embedding
theorem. Now, we know that

NE(X) ⊂ NNS ⊂ K
∨

NS = Nef(X)∨,

where the second inclusion is a consequence of (15.4 a). However, it is already well-known that NE(X) and
NE(X) are dual cones (see [Har70]), hence the inclusions are equalities (we could also obtain a self-contained
proof by reconsidering the arguments used for (14.9 a) when α and ω0 are rational classes; one sees by the
density of the rationals that the numerical condition for α is needed only for elements of the form [Y ] ∧ ωp−1

with ω ∈ Q{α} + Q{ω0} a rational class, so [Y ] ∧ ωp−1 is then a Q-effective curve). �

15.B. Zariski decomposition and mobile intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective cone. In analogy with the
algebraic context such a class α is called “big”, and it can then be represented by a Kähler current T , i.e. a closed
positive (1, 1)-current T such that T > δω for some smooth hermitian metric ω and a constant δ ≪ 1. We first
need a variant of the regularization theorem proved in section 9.B.

(15.7) Regularization theorem for currents. Let X be a compact complex manifold equipped with a hermitian
metric ω. Let T = α+ i∂∂ϕ be a closed (1, 1)-current on X, where α is smooth and ϕ is a quasi-plurisubharmonic
function. Assume that T > γ for some real (1, 1)-form γ on X with real coefficients. Then there exists a sequence
Tm = α+ i∂∂ϕm of closed (1, 1)-currents such that
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(i) ϕm (and thus Tm) is smooth on the complement X r Zm of an analytic set Zm, and the Zm’s form an
increasing sequence

Z0 ⊂ Z1 ⊂ . . . ⊂ Zm ⊂ . . . ⊂ X.

(ii) There is a uniform estimate Tm > γ − δmω with lim ↓ δm = 0 as m tends to +∞.

(iii) The sequence (ϕm) is non increasing, and we have lim ↓ ϕm = ϕ. As a consequence, Tm converges weakly
to T as m tends to +∞.

(iv) Near Zm, the potential ϕm has logarithmic poles, namely, for every x0 ∈ Zm, there is a neighborhood U of
x0 such that ϕm(z) = λm log

∑
ℓ |gm,ℓ|

2 +O(1) for suitable holomorphic functions (gm,ℓ) on U and λm > 0.

Moreover, there is a (global) proper modification µm : X̃m → X of X, obtained as a sequence of blow-ups

with smooth centers, such that ϕm ◦ µm can be written locally on X̃m as

ϕm ◦ µm(w) = λm
( ∑

nℓ log |g̃ℓ|
2 + f(w)

)

where (g̃ℓ = 0) are local generators of suitable (global) divisors Dℓ on X̃m such that
∑
Dℓ has normal

crossings, nℓ are positive integers, and the f ’s are smooth functions on X̃m.

Sketch of proof. We essentially repeat the proofs of Theorems (9.2) and (9.12) with additional considerations.
One fact that does not follow readily from these proofs is the monotonicity of the sequence ϕm (which we will
not really need anyway). For this, we can take m = 2ν and use the subadditivity technique already explained in
Step 3 of the proof of Theorem (11.3 b). The map µm is obtained by blowing-up the (global) ideals Jm defined
by the holomorphic functions (gj,m) in the local approximations ϕm ∼ 1

2m log
∑

j |gj,m|
2. By Hironaka [Hir64],

we can achieve that µ∗
mJm is an invertible ideal sheaf associated with a normal crossing divisor. �

(15.8) Corollary. If T is a Kähler current, then one can write T = limTm for a sequence of Kähler currents Tm
which have logarithmic poles with coefficients in 1

mZ, i.e. there are modifications µm : Xm → X such that

µ⋆mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed part”) and βm is a closed semi-

positive form (the “mobile part”).

Proof. We apply Theorem (15.7) with γ = εω and m so large that δm 6 ε/2. Then Tm has analytic singularities
and Tm > ε

2ω, so we get a composition of blow-ups µm : Xm → X such

µ∗
mTm = [Em] + βm,

where Em is an effective Q-divisor and βm > ε
2µ

∗
mω. In particular, βm is strictly positive outside the exceptional

divisors, by playing with the multiplicities of the components of the exceptional divisors in Em, we could even
achieve that βm is a Kähler class on Xm. Notice also that by construction, µm is obtained by blowing-up the
multiplier ideal sheaves I(mT ) = I(mϕ) associated to a potential ϕ of T . �

The more familiar algebraic analogue would be to take α = c1(L) with a big line bundle L and to blow-up
the base locus of |mL|, m≫ 1, to get a Q-divisor decomposition

µ⋆mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|, and we say that Em+Dm is
an approximate Zariski decomposition of L. We will also use this terminology for Kähler currents with logarithmic
poles.
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KNS

ENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ⋆mα = [Em] + βm

(15.9) Definition. We define the volume, or mobile self-intersection of a big class α ∈ E◦ to be

Vol(α) = sup
T∈α

∫

X̃

βn > 0

where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles, and µ⋆T = [E] + β with

respect to some modification µ : X̃ → X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DEL00], if L is a big line bundle, we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞
n!

mn
h0(X,mL),

and in these terms, we get the following statement.

(15.10) Proposition. Let L be a big line bundle on the projective manifold X. Let ǫ > 0. Then there exists a
modification µ : Xǫ → X and a decomposition µ∗(L) = E + β with E an effective Q-divisor and β a big and nef
Q-divisor such that

Vol(L) − ε 6 Vol(β) 6 Vol(L).

It is very useful to observe that the supremum in Definition 15.9 is actually achieved by a collection of currents
whose singularities satisfy a filtering property. Namely, if T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler
currents with logarithmic poles in the class of α, then

(15.11) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could define as well

(15.11′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1,m2) is the lowest common multiple of the denominators occuring in T1, T2. Now, take a
simultaneous log-resolution µm : Xm → X for which the singularities of T1 and T2 are resolved as Q-divisors E1

and E2. Then clearly the associated divisor in the decomposition µ⋆mT = [E] + β is given by E = min(E1, E2).
By doing so, the volume

∫
Xm

βn gets increased, as we shall see in the proof of Theorem 15.12 below.

(15.12) Theorem (Boucksom [Bou02]). Let X be a compact Kähler manifold. We denote here by Hk,k
>0 (X) the

cone of cohomology classes of type (k, k) which have non-negative intersection with all closed semi-positive smooth
forms of bidegree (n− k, n− k).

(i) For each integer k = 1, 2, . . . , n, there exists a canonical “mobile intersection product”

E × · · · × E → Hk,k
>0 (X), (α1, . . . , αk) 7→ 〈α1 · α2 · · ·αk−1 · αk〉
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such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii) The product is increasing, homogeneous of degree 1 and superadditive in each argument, i.e.

〈α1 · · · (α
′
j + α′′

j ) · · ·αk〉 > 〈α1 · · ·α
′
j · · ·αk〉 + 〈α1 · · ·α

′′
j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef classes.

(iii) The mobile intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2 · · ·αn〉 > (〈αn1 〉)
1/n . . . (〈αnn〉)

1/n (with 〈αnj 〉 = Vol(αj) ).

(iv) For k = 1, the above “product” reduces to a (non linear) projection operator

E → E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there is a “divisorial Zariski
decomposition”

α = {N(α)} + 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative divisorial part” of α. The
map α 7→ N(α) is homogeneous and subadditive, and N(α) = 0 if and only if α ∈ E1.

(v) The components of N(α) always consist of divisors whose cohomology classes are linearly independent, es-
pecially N(α) has at most ρ = rankZ NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some simplifications arising from the
fact that X is supposed to be Kähler from the start.

(i) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth closed (n− k, n− k) semi-positive form u

on X . We select Kähler currents Tj ∈ αj with logarithmic poles, and a simultaneous log-resolution µ : X̃ → X
such that

µ⋆Tj = [Ej ] + βj .

We consider the direct image current µ⋆(β1 ∧ . . . ∧ βk) (which is a closed positive current of bidegree (k, k) on
X) and the corresponding integrals ∫

X̃

β1 ∧ . . . ∧ βk ∧ µ
⋆u > 0.

If we change the representative Tj with another current T ′
j, we may always take a simultaneous log-resolution

such that µ⋆T ′
j = [E′

j ] + β′
j , and by using (15.11′) we can always assume that E′

j 6 Ej . Then Dj = Ej −E′
j is an

effective divisor and we find [Ej ] + βj ≡ [E′
j ] + β′

j , hence β′
j ≡ βj + [Dj]. A substitution in the integral implies

∫

X̃

β′
1 ∧ β2 ∧ . . . ∧ βk ∧ µ

⋆u

=

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u+

∫

X̃

[D1] ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u

>

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u.

Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we find

∫

X̃

β′
1 ∧ β

′
2 ∧ . . . ∧ β

′
k ∧ µ

⋆u >

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ
⋆u.

We claim that the closed positive currents µ⋆(β1 ∧ . . . ∧ βk) are uniformly bounded in mass. In fact, if ω is a
Kähler metric in X , there exists a constant Cj > 0 such that Cj{ω}−αj is a Kähler class. Hence Cjω− Tj ≡ γj
for some Kähler form γj on X . By pulling back with µ, we find Cjµ

⋆ω − ([Ej ] + βj) ≡ µ⋆γj , hence

βj ≡ Cjµ
⋆ω − ([Ej ] + µ⋆γj).

By performing again a substitution in the integrals, we find
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∫

X̃

β1 ∧ . . . ∧ βk ∧ µ
⋆u 6 C1 . . . Ck

∫

X̃

µ⋆ωk ∧ µ⋆u = C1 . . . Ck

∫

X

ωk ∧ u

and this is true especially for u = ωn−k. We can now arrange that for each of the integrals associated with a
countable dense family of forms u, the supremum is achieved by a sequence of currents (µm)⋆(β1,m ∧ . . . ∧ βk,m)
obtained as direct images by a suitable sequence of modifications µm : X̃m → X . By extracting a subsequence,
we can achieve that this sequence is weakly convergent and we set

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals obtained when we
evaluate against a smooth closed semi-positive form u). By evaluating against a basis of positive classes {u} ∈
Hn−k,n−k(X), we infer by Serre duality that the class of 〈α1 ·α2 · · ·αk〉 is uniquely defined (although, in general,
the representing current is not unique).

(ii) It is indeed clear from the definition that the mobile intersection product is homogeneous, increasing and
superadditive in each argument, at least when the αj ’s are in E◦. However, we can extend the product to the
closed cone E by monotonicity, by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate against closed semi-positive
forms u). By weak compactness, the mobile intersection product can always be represented by a closed positive
current of bidegree (k, k).

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact that they hold true for nef classes,
so we just have to apply them to the classes βj,m on X̃m and pass to the limit.

(iv) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)⋆Tm} = lim
m→+∞

(µm)⋆[Em] + {(µm)⋆βm}

and 〈α〉 = limm→+∞{(µm)⋆βm} by definition. However, the images Fm = (µm)⋆Fm are effective Q-divisors in
X , and the filtering property implies that Fm is a decreasing sequence. It must therefore converge to a (uniquely
defined) limit F = limFm := N(α) which is an effective R-divisor, and we get the asserted decomposition in the
limit.

Since N(α) = α−〈α〉 we easily see that N(α) is subadditive and that N(α) = 0 if α is the class of a smooth
semi-positive form. When α is no longer a big class, we define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α + (δ + ε)ω) 6 N(α + δω)). The divisorial Zariski decomposition follows
except maybe for the fact that N(α) might be a convergent countable sum of divisors. However, this will be ruled
out when (v) is proved. As N(•) is subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed
convex conne, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to [Bou02], E1 consists of those
pseudo-effective classes which are “nef in codimension 1”).

(v) Let α ∈ E◦, and assume that N(α) contains linearly dependent components Fj . Then already all currents
T ∈ α should be such that µ⋆T = [E] + β where F = µ⋆E contains those linearly dependent components. Write
F =

∑
λjFj , λj > 0 and assume that ∑

j∈J
cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must be negative (and some other
positive). Then E is numerically equivalent to

E′ ≡ E + tµ⋆
(∑

λjFj

)
,
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and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a zero coefficient on one of the
components µ⋆Fj0 . By replacing E with min(E,E′) via (15.11′), we eliminate the component µ⋆Fj0 . This is a
contradiction since N(α) was supposed to contain Fj0 . �

(15.13) Definition. For a class α ∈ H1,1(X,R), we define the numerical dimension num(α) to be num(α) = −∞
if α is not pseudo-effective, and

num(α) = max{p ∈ N ; 〈αp〉 6= 0}, num(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of [DP04], a class is big (α ∈ E◦) if and only if num(α) = n. Classes of numerical dimension 0 can
be described much more precisely, again following Boucksom [Bou02].

(15.14) Theorem. Let X be a compact Kähler manifold. Then the subset D0 of irreducible divisors D in X such
that num(D) = 0 is countable, and these divisors are rigid as well as their multiples. If α ∈ E is a pseudo-effective
class of numerical dimension 0, then α is numerically equivalent to an effective R-divisor D =

∑
j∈J λjDj, for

some finite subset (Dj)j∈J ⊂ D0 such that the cohomology classes {Dj} are linearly independent and some λj > 0.
If such a linear combination is of numerical dimension 0, then so is any other linear combination of the same
divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical dimension 0 if and only if
〈α〉 = 0, in other words if α = N(α). Thus α ≡

∑
λjDj as described in 15.14, and since λj〈Dj〉 6 〈α〉, the divisors

Dj must themselves have numerical dimension 0. There is at most one such divisor D in any given cohomology

class in NS(X)∩E ⊂ H2(X,Z), otherwise two such divisors D ≡ D′ would yield a blow-up µ : X̃ → X resolving
the intersection, and by taking min(µ⋆D,µ⋆D′) via (15.11′), we would find µ⋆D ≡ E + β, β 6= 0, so that {D}
would not be of numerical dimension 0. This implies that there are at most countably many divisors of numerical
dimension 0, and that these divisors are rigid as well as their multiples. �

(15.15) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical dimension to be num(L) =
num(c1(L)). Using the cananical maps Φ|mL| and pulling-back the Fubini-Study metric it is immediate to see
that num(L) > κ(L) (which generalizes the analogue inequality already seen for nef line bundles, see (6.18)).

The above general concept of numerical dimension leads to a very natural formulation of the abundance conjecture
for Kähler varieties.

(15.16) Generalized abundance conjecture. Let X be an arbitrary compact Kähler manifold X.

(a) The Kodaira dimension of X should be equal to its numerical dimension : κ(KX) = num(KX).

(b) More generally, let ∆ be a Q-divisor which is klt (Kawamata log terminal, i.e. such that cX(∆) > 1). Then
κ(KX +∆) = num(KX +∆).

This appears to be a fairly strong statement. In fact, already in the case ∆ = 0, it is not difficult to show that
the generalized abundance conjecture would contain the Cn,m conjectures.

(15.17) Remark. It is obvious that abundance holds in the case num(KX) = −∞ (if L is not pseudo-effective,
no multiple of L can have sections), or in the case num(KX) = n which implies KX big (the latter property
follows e.g. from the solution of the Grauert-Riemenschneider conjecture in the form proven in [Dem85], see also
[DP04]).

In the remaining cases, the most tractable situation is the case when num(KX) = 0. In fact Theorem 15.14
then gives KX ≡

∑
λjDj for some effective divisor with numerically independent components, num(Dj) = 0. It

follows that the λj are rational and therefore

(∗) KX ∼
∑

λjDj + F where λj ∈ Q+, num(Dj) = 0 and F ∈ Pic0(X).

If we assume additionally that q(X) = h0,1(X) is zero, then mKX is linearly equivalent to an integral divisor
for some multiple m, and it follows immediately that κ(X) = 0. The case of a general projective manifold with
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num(KX) = 0 and positive irregularity q(X) > 0 has been solved by Campana-Peternell [CP04], Corollary 3.7.
It would be interesting to understand the Kähler case as well.

15.C. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski decompositions are almost
orthogonal.

(15.18) Theorem. Let X be a projective manifold, and let α = {T } ∈ E◦
NS be a big class represented by a Kähler

current T . Consider an approximate Zariski decomposition

µ⋆mTm = [Em] + [Dm]

Then
(Dn−1

m ·Em)2 6 20 (Cω)n
(
Vol(α) −Dn

m

)

where ω = c1(H) is a Kähler form and C > 0 is a constant such that ±α is dominated by Cω (i.e., Cω ± α is
nef ).

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) > Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ⋆α−Dm = µ⋆m(α+ Cω) − (Dm + Cµ⋆mω).

(15.19) Lemma. For all nef R-divisors A, B we have

Vol(A−B) > An − nAn−1 · B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the holomorphic Morse inequalities
7.4 (see [Dem01]); one can also argue by an elementary estimate of to H0(X,mA−B1−. . .−Bm) via the Riemann-
Roch formula (assuming A and B very ample, B1, . . . , Bm ∈ |B| generic). If A and B are Q-Cartier, we conclude
by the homogeneity of the volume. The general case of R-divisors follows by approximation using the upper
semi-continuity of the volume [Bou02, 3.1.26]. �

(15.20) Remark. We hope that Lemma 15.19 also holds true on an arbitrary Kähler manifold for arbitrary nef
(non necessarily integral) classes. This would follow from a generalization of holomorphic Morse inequalities to
non integral classes. However the proof of such a result seems technically much more involved than in the case
of integral classes.

(15.21) Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler manifold X̃ such that each

difference β′
j − βj is pseudo-effective. Then the n-th intersection products satisfy

β1 · · ·βn 6 β′
1 · · ·β

′
n.

Proof. We can proceed step by step and replace just one βj by β′j ≡ βj + Tj where Tj is a closed positive
(1, 1)-current and the other classes β′

k = βk, k 6= j are limits of Kähler forms. The inequality is then obvious. �

End of proof of Theorem 15.18. In order to exploit the lower bound of the volume, we write
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tEm +Dm = A−B, A = Dm + tµ⋆m(α+ Cω), B = t(Dm + Cµ⋆mω).

By our choice of the constant C, both A and B are nef. Lemma 15.19 and the binomial formula imply

Vol(tEm+Dm) > An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ⋆m(α + Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k
m · µ⋆m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ⋆mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k
m · µ⋆m(α+ Cω)k · (Dm + Cµ⋆mω).

Now, we use the obvious inequalities

Dm 6 µ⋆m(Cω), µ⋆m(α+ Cω) 6 2µ⋆m(Cω), Dm + Cµ⋆mω 6 2µ⋆m(Cω)

in which all members are nef (and where the inequality 6 means that the difference of classes is pseudo-effective).
We use Lemma 15.21 to bound the last summation in the estimate of the volume, and in this way we get

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded by 4(n − 1)(1 + 1/5n)n−2 <
4ne1/5 < 5n. This implies

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (Dn−1

m ·Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2

(Cω)n
6 Vol(Em +Dm) −Dn

m 6 Vol(α) −Dn
m

(and we have indeed t 6 1
10n by Lemma 15.21), whence Theorem 15.18. Of course, the constant 20 is certainly

not optimal. �

(15.22) Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) + 〈α〉 is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α with α + δc1(H), one sees that it is sufficient to consider the case where α is big. Then
the orthogonality estimate implies

(µm)⋆(D
n−1
m ) · (µm)⋆Em = Dn−1

m · (µm)⋆(µm)⋆Em 6 Dn−1
m · Em 6 C(Vol(α) −Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)⋆(D
n−1
m ), N(α) = lim(µm)⋆Em and limDn

m = Vol(α), we get the desired conclusion in
the limit. �

15.D. Dual of the pseudo-effective cone

The following statement was first proved in [BDPP04].

(15.23) Theorem. If X is projective, the cones ENS = Eff(X) and MEs(X) are dual.

In other words, a line bundle L is pseudo-effective if (and only if) L ·C > 0 for all mobile curves, i.e., L ·C > 0 for
every very generic curve C (not contained in a countable union of algebraic subvarieties). In fact, by definition of
MEs(X), it is enough to consider only those curves C which are images of generic complete intersection of very

ample divisors on some variety X̃, under a modification µ : X̃ → X. By a standard blowing-up argument, it also
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follows that a line bundle L on a normal Moishezon variety is pseudo-effective if and only if L · C > 0 for every
mobile curve C.

Proof. By (15.4 b) we have in any case
ENS ⊂ (MEs(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS which is in the interior of MEs(X)∨.

E

ENS

M∨

(MNS)∨

NSR(X) H1,1(X,R)

MNS

α− εω

α
α+ δω

ω

Γ

N1(X)

Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for every δ > 0, and since
α ∈ ((MEs(X))∨)◦ we still have α− εω ∈ (MEs(X))∨ for ε > 0 small. Therefore

(15.24) α · Γ > εω · Γ

for every strongly mobile curve Γ , and therefore for every Γ ∈ MEs(X). We are going to contradict (15.24). Since
α+ δω is big, we have an approximate Zariski decomposition

µ⋆δ(α+ δω) = Eδ +Dδ.

We pick Γ = (µδ)⋆(D
n−1
δ ) ∈ MEs(X). By the Hovanskii-Teissier concavity inequality

ω · Γ > (ωn)1/n(Dn
δ )(n−1)/n.

On the other hand
α · Γ = α · (µδ)⋆(D

n−1
δ )

= µ⋆δα ·Dn−1
δ 6 µ⋆δ(α + δω) ·Dn−1

δ

= (Eδ +Dδ) ·D
n−1
δ = Dn

δ +Dn−1
δ ·Eδ.

By the orthogonality estimate, we find

α · Γ

ω · Γ
6
Dn
δ +

(
20(Cω)n(Vol(α+ δω) −Dn

δ )
)1/2

(ωn)1/n(Dn
δ )(n−1)/n

6 C′(Dn
δ )1/n + C′′ (Vol(α+ δω) −Dn

δ )1/2

(Dn
δ )(n−1)/n

.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also take Dδ to approximate Vol(α + δω) in such a way that (Vol(α + δω) − Dn
δ )1/2 tends to 0 much

faster than Dn
δ . Notice that Dn

δ > δnωn, so in fact it is enough to take

Vol(α+ δω) −Dn
δ 6 δ2n,
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which gives (α · Γ )/(ω · Γ ) 6 (C′ + C′′)δ. This contradicts (15.24) for δ small. �

(15.25) Conjecture. The Kähler analogue should be :
For an arbitrary compact Kähler manifold X, the cones E and M are dual.

K

KNS

E

ENS

NSR(X) H1,1(X,R)

MNS

M

N

NNS

NSn−1
R (X)Hn−1,n−1(X,R)

duality

If holomorphic Morse inequalities were known also in the Kähler case, we would infer by the same proof that
“α not pseudo-effective” implies the existence of a blow-up µ : X̃ → X and a Kähler metric ω̃ on X̃ such that
α ·µ⋆(ω̃)n−1 < 0. In the special case when α = KX is not pseudo-effective, we would expect the Kähler manifold
X to be covered by rational curves. The main trouble is that characteristic p techniques are no longer available.
On the other hand it is tempting to approach the question via techniques of symplectic geometry :

(15.26) Question. Let (M,ω) be a compact real symplectic manifold. Fix an almost complex structure J compatible
with ω, and for this structure, assume that c1(M) · ωn−1 > 0. Does it follow that M is covered by rational J-
pseudoholomorphic curves ?

The relation between the various cones of mobile curves and currents in (15.1) and (15.2) is now a rather direct
consequence of Theorem 15.23. In fact, using ideas hinted in [DPS96], we can say a little bit more. Given an
irreducible curve C ⊂ X , we consider its normal “bundle” NC = Hom(I/I2,OC), where I is the ideal sheaf of
C. If C is a general member of a covering family (Ct), then NC is nef. Now [DPS96] says that the dual cone of
the pseudo-effective cone of X contains the closed cone spanned by curves with nef normal bundle, which in turn
contains the cone of mobile curves. In this way we get :

(15.27) Theorem. Let X be a projective manifold. Then the following cones coincide.

(i) the cone MNS = M∩ NSn−1
R (X) ;

(ii) the cone Ms
NS = Ms ∩ NSn−1

R (X) ;

(iii) the closed cone MEs(X) of strongly mobile curves ;

(iv) the closed cone ME(X) of mobile curves ;

(v) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

MEs(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)∨

and
MEs(X) ⊂ Ms

NS(X) ⊂ MNS ⊂ (ENS)∨

by 15.4 (iii). Now Theorem 15.23 implies (MNS)
∨ = MEs(X), and 15.27 follows. �
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(15.28) Corollary. Let X be a projective manifold and L a line bundle on X.

(i) L is pseudo-effective if and only if L · C > 0 for all curves C with nef normal sheaf NC .

(ii) If L is big, then L · C > 0 for all curves C with nef normal sheaf NC .

Corollary 15.28 (i) strenghtens results from [PSS99]. It is however not yet clear whether MNS is equal to the closed
cone of curves with ample normal bundle (although we certainly expect this to be true). The most important
special case of Theorem 15.23 is

(15.29) Theorem. If X is a projective manifold, then KX is pseudo-effective (i.e. KX ∈ ENS), if and only if X is
not uniruled (i.e. not covered by rational curves).

Proof. If X is covered by rational curves Ct, then it is well-known that the normal bundle NCt
is nef for a general

member Ct, thus

KX · Ct = KCt
· Ct −NCt

· Ct 6 −2,

and KX cannot be pseudo-effective. Conversely, if KX /∈ ENS, Theorem 15.23 shows that there is a mobile curve
Ct such that KX ·Ct < 0. The standard “bend-and-break” lemma of Mori theory then produces a covering family
Γt of rational curves with KX · Γt < 0, so X is uniruled. �

Notice that the generalized abundance conjecture 15.16 would then yield the stronger result :

(15.30) Conjecture. Let X be a projective manifold. If X is not uniruled, then KX is a Q-effective divisor and
κ(X) = num(KX) > 0.

16. Super-canonical metrics and abundance

16.A. Construction of super-canonical metrics

Let X be a compact complex manifold and (L, hL,γ) a holomorphic line bundle over X equipped with a singular
hermitian metric hL,γ = e−γhL with satisfies

∫
e−γ < +∞ locally on X , where hL is a smooth metric on L. In

fact, we can more generally consider the case where (L, hL,γ) is a “hermitian R-line bundle”; by this we mean
that we have chosen a smooth real d-closed (1, 1) form αL on X (whose ddc cohomology class is equal to c1(L)),
and a specific current TL,γ representing it, namely TL,γ = αL + ddcγ, such that γ is a locally integrable function
satisfying

∫
e−γ < +∞. An important special case is obtained by considering a klt (Kawamata log terminal)

effective divisor ∆. In this situation ∆ =
∑
cj∆j with cj ∈ R, and if gj is a local generator of the ideal sheaf

O(−∆j) identifying it to the trivial invertible sheaf gjO, we take γ =
∑
cj log |gj |

2, TL,γ =
∑
cj [∆j ] (current of

integration on ∆) and αL given by any smooth representative of the same ddc-cohomology class; the klt condition
precisely means that

(16.1)

∫

V

e−γ =

∫

V

∏
|gj|

−2cj < +∞

on a small neighborhood V of any point in the support |∆| =
⋃
∆j (condition (16.1) implies cj < 1 for every

j, and this in turn is sufficient to imply ∆ klt if ∆ is a normal crossing divisor; the line bundle L is then the
real line bundle O(∆), which makes sens as a genuine line bundle only if cj ∈ Z). For each klt pair (X,∆) such
that KX + ∆ is pseudo-effective, H. Tsuji [Tsu07a, Tsu07b] has introduced a “super-canonical metric” which
generalizes the metric introduced by Narasimhan and Simha [NS68] for projective algebraic varieties with ample
canonical divisor. We take the opportunity to present here a simpler, more direct and more general approach.

We assume from now on that KX+L is pseudo-effective, i.e. that the class c1(KX)+{αL} is pseudo-effective,
and under this condition, we are going to define a “super-canonical metric” on KX+L. Select an arbitrary smooth
hermitian metric ω on X . We then find induced hermitian metrics hKX

on KX and hKX+L = hKX
hL on KX +L,

whose curvature is the smooth real (1, 1)-form
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α = ΘKX+L,hKX+L
= ΘKX ,ω + αL.

A singular hermitian metric onKX+L is a metric of the form hKX+L,ϕ = e−ϕhKX+L where ϕ is locally integrable,
and by the pseudo-effectivity assumption, we can find quasi-psh functions ϕ such that α+ddcϕ > 0. The metrics
on L and KX + L can now be “subtracted” to give rise to a metric

hL,γh
−1
KX+L,ϕ = eϕ−γhLh

−1
KX+L = eϕ−γh−1

KX
= eϕ−γdVω

on K−1
X = ΛnTX , since h−1

KX
= dVω is just the hermitian (n, n) volume form on X . Therefore the integral∫

X
hL,γh

−1
KX+L,ϕ has an intrinsic meaning, and it makes sense to require that

(16.2)

∫

X

hL,γh
−1
KX+L,ϕ =

∫

X

eϕ−γdVω 6 1

in view of the fact that ϕ is locally bounded from above and of the assumption
∫
e−γ < +∞. Observe that

condition (16.2) can always be achieved by subtracting a constant to ϕ. Now, we can generalize Tsuji’s super-
canonical metrics on klt pairs (cf. [Tsu07b]) as follows.

(16.3) Definition. Let X be a compact complex manifold and let (L, hL) be a hermitian R-line bundle on X
associated with a smooth real closed (1, 1) form αL. Assume that KX + L is pseudo-effective and that L is
equipped with a singular hermitian metric hL,γ = e−γhL such that

∫
e−γ < +∞ locally on X. Take a hermitian

metric ω on X and define α = ΘKX+L,hKX+L
= ΘKX ,ω + αL. Then we define the super-canonical metric hcan of

KX + L to be
hKX+L,can = inf

ϕ
hKX+L,ϕ i.e. hKX+L,can = e−ϕcanhKX+L, where

ϕcan(x) = sup
ϕ
ϕ(x) for all ϕ with α+ ddcϕ > 0,

∫

X

eϕ−γdVω 6 1.

In particular, this gives a definition of the super-canonical metric on KX + ∆ for every klt pair (X,∆) such
that KX +∆ is pseudo-effective, and as an even more special case, a super-canonical metric on KX when KX is
pseudo-effective.

In the sequel, we assume that γ has analytic singularities, otherwise not much can be said. The mean value in-
equality then immediately shows that the quasi-psh functions ϕ involved in definition (16.3) are globally uniformly
bounded outside of the poles of γ, and therefore everywhere on X , hence the envelopes ϕcan = supϕ ϕ are indeed
well defined and bounded above. As a consequence, we get a “super-canonical” current Tcan = α+ ddcϕcan > 0
and hKX+L,can satisfies

(16.4)

∫

X

hL,γh
−1
KX+L,can =

∫

X

eϕcan−γdVω < +∞.

It is easy to see that in Definition (16.3) the supremum is a maximum and that ϕcan = (ϕcan)∗ everywhere, so
that taking the upper semicontinuous regularization is not needed. In fact if x0 ∈ X is given and we write

(ϕcan)∗(x0) = lim sup
x→x0

ϕcan(x) = lim
ν→+∞

ϕcan(xν) = lim
ν→+∞

ϕν(xν)

with suitable sequences xν → x0 and (ϕν) such that
∫
X e

ϕν−γdVω 6 1, the well-known weak compactness
properties of quasi-psh functions in L1 topology imply the existence of a subsequence of (ϕν) converging in L1

and almost everywhere to a quasi-psh limit ϕ. Since
∫
X e

ϕν−γdVω 6 1 holds true for every ν, Fatou’s lemma
implies that we have

∫
X e

ϕ−γdVω 6 1 in the limit. By taking a subsequence, we can assume that ϕν → ϕ in
L1(X). Then for every ε > 0 the mean value −

∫
B(xν ,ε)

ϕν satisfies

−

∫

B(x0,ε)

ϕ = lim
ν→+∞

−

∫

B(xν ,ε)

ϕν > lim
ν→+∞

ϕν(xν) = (ϕcan)∗(x0),

hence we get ϕ(x0) = limε→0 −
∫
B(x0,ε)

ϕ > (ϕcan)∗(x0) > ϕcan(x0), and therefore the sup is a maximum and

ϕcan = ϕ∗
can. By elaborating on this argument, one can infer certain regularity properties of the envelope.

(16.5) Theorem ([BmD09]). Let X be a compact complex manifold and (L, hL) a holomorphic R-line bundle
such that KX + L is big. Assume that L is equipped with a singular hermitian metric hL,γ = e−γhL with
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analytic singularities such that
∫
e−γ < +∞ (klt condition). Denote by Z0 the set of poles of a singular metric

h0 = e−ψ0hKX+L with analytic singularities on KX + L and by Zγ the poles of γ (assumed analytic). Then the
associated super-canonical metric hcan is continuous on X r (Z0 ∪ Zγ).

In fact, using the regularization techniques of [Dem94a], it is shown in [BmD09] that hcan possesses some com-
putable logarithmic modulus of continuity. In order to shorten the exposition, we will only give a proof of the
continuity in the algebraic case, using approximation by pluri-canonical sections.

(16.6) Algebraic version of the super-canonical metric. Since the klt condition is open and KX + L is assumed
to be big, we can always perturb L a little bit, and after blowing-up X , assume that X is projective and that
(L, hL,γ) is obtained as a sum of Q-divisors

L = G+∆

where ∆ is klt and G is equipped with a smooth metric hG (from which hL,γ is inferred, with ∆ as its poles, so
that ΘL,hL,γ

= ΘG,LG
+ [∆]). Clearly this situation is “dense” in what we have been considering before, just as

Q is dense in R. In this case, it is possible to give a more algebraic definition of the super-canonical metric ϕcan,
following the original idea of Narasimhan-Simha [NS68] (see also H. Tsuji [Tsu07a]) – the case considered by
these authors is the special situation where G = 0, hG = 1 (and moreover ∆ = 0 and KX ample, for [NS68]). In
fact, if m is a large integer which is a multiple of the denominators involved in G and ∆, we can consider sections

σ ∈ H0(X,m(KX +G+∆)).

We view them rather as sections of m(KX+G) with poles along the support |∆| of our divisor. Then (σ∧σ)1/mhG
is a volume form with integrable poles along |∆| (this is the klt condition for ∆). Therefore one can normalize σ
by requiring that ∫

X

(σ ∧ σ)1/mhG = 1.

Each of these sections defines a singular hermitian metric on KX + L = KX + G + ∆, and we can take the
regularized upper envelope

(16.7) ϕalg
can =

(
sup
m,σ

1

m
log |σ|2hm

KX+L

)∗

of the weights associated with a smooth metric hKX+L. It is clear that ϕalg
can 6 ϕcan since the supremum is taken

on the smaller set of weights ϕ = 1
m log |σ|2hm

KX+L
, and the equalities

eϕ−γdVω = |σ|
2/m
hm

KX+L
e−γdVω = (σ ∧ σ)1/me−γhL = (σ ∧ σ)1/mhL,γ = (σ ∧ σ)1/mhG

imply
∫
X e

ϕ−γdVω 6 1. We claim that the inequality ϕalg
can 6 ϕcan is an equality. The proof is an immediate

consequence of the following statement based in turn on the Ohsawa-Takegoshi theorem and the approximation
technique of [Dem92].

(16.8) Proposition. With L = G + ∆, ω, α = ΘKX+L,hKX+L
, γ as above and KX + L assumed to be big, fix a

singular hermitian metric e−ϕhKX+L of curvature α+ ddcϕ > 0, such that
∫
X e

ϕ−γdVω 6 1. Then ϕ is equal to
a regularized limit

ϕ =

(
lim sup
m→+∞

1

m
log |σm|2hm

KX+L

)∗

for a suitable sequence σm ∈ H0(X,m(KX +G+∆)) with
∫
X(σm ∧ σm)1/mhG 6 1.

Proof. By our assumption, there exists a quasi-psh function ψ0 with analytic singularity set Z0 such that

α+ ddcψ0 > ε0ω > 0

and we can assume
∫
C
eψ0−γdVω < 1 (the strict inequality will be useful later). For m > p > 1, this defines a

singular metric exp(−(m − p)ϕ − pψ0)h
m
KX+L on m(KX + L) with curvature > pε0ω, and therefore a singular

metric
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hL′ = exp(−(m− p)ϕ− pψ0)h
m
KX+Lh

−1
KX

on L′ = (m−1)KX+mL, whose curvature ΘL′,hL′ > (pε0−C0)ω is arbitrary large if p is large enough. Let us fix
a finite covering of X by coordinate balls. Pick a point x0 and one of the coordinate balls B containing x0. By the
Ohsawa-Takegoshi extension theorem applied on the ball B, we can find a section σB of KX + L′ = m(KX +L)
which has norm 1 at x0 with respect to the metric hKX+L′ and

∫
B
|σB|2hKX+L′

dVω 6 C1 for some uniform

constant C1 depending on the finite covering, but independent of m, p, x0 . Now, we use a cut-off function
θ(x) with θ(x) = 1 near x0 to truncate σB and solve a ∂-equation for (n, 1)-forms with values in L to get a
global section σ on X with |σ(x0)|hKX+L′ = 1. For this we need to multiply our metric by a truncated factor

exp(−2nθ(x) log |x − x0|) so as to get solutions of ∂ vanishing at x0. However, this perturbs the curvature by
bounded terms and we can absorb them again by taking p larger. In this way we obtain

(16.9)

∫

X

|σ|2hKX +L′
dVω =

∫

X

|σ|2hm
KX+L

e−(m−p)ϕ−pψ0dVω 6 C2.

Taking p > 1, the Hölder inequality for congugate exponents m, m
m−1 implies

∫

X

(σ ∧ σ)
1
mhG =

∫

X

|σ|
2/m
hm

KX+L
e−γdVω

=

∫

X

(
|σ|2hm

KX+L
e−(m−p)ϕ−pψ0

) 1
m

(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

)
dVω

6 C
1
m

2

( ∫

X

(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

) m
m−1

dVω

)m−1
m

6 C
1
m

2

( ∫

X

(
eϕ−γ

)m−p
m−1

(
e

p
p−1 (ψ0−γ)

) p−1
m−1

dVω

)m−1
m

6 C
1
m

2

( ∫

X

e
p

p−1 (ψ0−γ)dVω

) p−1
m

using the hypothesis
∫
X e

ϕ−γdVω 6 1 and another application of Hölder’s inequality. Since klt is an open condition

and limp→+∞
∫
X
e

p
p−1 (ψ0−γ)dVω =

∫
X
eψ0−γdVω < 1, we can take p large enough to ensure that

∫

X

e
p

p−1 (ψ0−γ)dVω 6 C3 < 1.

Therefore, we see that ∫

X

(σ ∧ σ)
1
m hG 6 C

1
m

2 C
p−1
m

3 6 1

for p large enough. On the other hand

|σ(x0)|
2
hKX+L′

= |σ(x0)|
2
hm

KX+L
e−(m−p)ϕ(x0)−pψ0(x0) = 1,

thus

(16.10)
1

m
log |σ(x0)|

2
hm

KX+L
=

(
1 −

p

m

)
ϕ(x0) +

p

m
ψ0(x0)

and, as a consequence
1

m
log |σ(x0)|

2
hm

KX+L
−→ ϕ(x0)

whenever m → +∞, p
m → 0, as long as ψ0(x0) > −∞. In the above argument, we can in fact interpolate in

finitely many points x1, x2, . . . , xq provided that p > C4q. Therefore if we take a suitable dense subset {xq} and
a “diagonal” sequence associated with sections σm ∈ H0(X,m(KX + L)) with m ≫ p = pm ≫ q = qm → +∞,
we infer that

(16.11)

(
lim sup
m→+∞

1

m
log |σm(x)|2hm

KX+L

)∗
> lim sup

xq→x
ϕ(xq) = ϕ(x)
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(the latter equality occurring if {xq} is suitably chosen with respect to ϕ). In the other direction, (16.9) implies
a mean value estimate

1

πnr2n/n!

∫

B(x,r)

|σ(z)|2hm
KX+L

dz 6
C5

r2n
sup
B(x,r)

e(m−p)ϕ+pψ0

on every coordinate ball B(x, r) ⊂ X . The function |σm|2hm
KX+L

is plurisubharmonic after we correct the non

necessarily positively curved smooth metric hKX+L by a factor of the form exp(C6|z−x|2), hence the mean value
inequality shows that

1

m
log |σm(x)|2hm

KX +L
6

1

m
log

C5

r2n
+ C6r

2 + sup
B(x,r)

(
1 −

pm
m

)
ϕ+

pm
m
ψ0.

By taking in particular r = 1/m and letting m→ +∞, pm/m→ 0, we see that the opposite of inequality (16.9)
also holds. �

(16.12) Remark. We can rephrase our results in slightly different terms. In fact, let us put

ϕalg
m = sup

σ

1

m
log |σ|2hm

KX+L
, σ ∈ H0(X,m(KX +G+∆)),

with normalized sections σ such that
∫
X(σ ∧ σ)1/mhG = 1. Then ϕalg

m is quasi-psh (the supremum is taken over
a compact set in a finite dimensional vector space) and by passing to the regularized supremum over all σ and
all ϕ in (16.10) we get

ϕcan > ϕalg
m >

(
1 −

p

m

)
ϕcan(x) +

p

m
ψ0(x).

As ϕcan is bounded from above, we find in particular

0 6 ϕcan − ϕalg
m 6

C

m
(|ψ0(x)| + 1).

This implies that (ϕalg
m ) converges uniformly to ϕcan on every compact subset of X ⊂ Z0, and in this way we infer

again (in a purely qualitative manner) that ϕcan is continuous on X r Z0. Moreover, we also see that in (16.7)
the upper semicontinuous regularization is not needed on X r Z0 ; in case KX + L is ample, it is not needed
at all and we have uniform convergence of (ϕalg

m ) towards ϕcan on the whole of X . Obtaining such a uniform
convergence when KX + L is just big looks like a more delicate question, related e.g. to abundance of KX + L
on those subvarieties Y where the restriction (KX + L)|Y would be e.g. nef but not big.

(16.13) Generalization. In the general case where L is a R-line bundle and KX + L is merely pseudo-effective, a
similar algebraic approximation can be obtained. We take instead sections

σ ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA)

where (A, hA) is a positive line bundle, ΘA,hA
> ε0ω, and replace the definition of ϕalg

can by

ϕalg
can =

(
lim sup
m→+∞

sup
σ

1

m
log |σ|2hmKX +⌊mG⌋+pmA

)∗
,(16.14)

∫

X

(σ ∧ σ)
2
mh

1
m

⌊mG⌋+pmA
6 1,(16.15)

where m≫ pm ≫ 1 and h
1/m
⌊mG⌋ is chosen to converge uniformly to hG.

We then find again ϕcan = ϕalg
can, with an almost identical proof – though we no longer have a sup in the

envelope, but just a lim sup. The analogue of Proposition (16.8) also holds true in this context, with an appropriate
sequence of sections σm ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA).

(16.16) Remark. It would be nice to have a better understanding of the super-canonical metrics. In case X is a
curve, this should be easier. In fact X then has a hermitian metric ω with constant curvature, which we normalize
by requiring that

∫
X
ω = 1, and we can also suppose

∫
X
e−γω = 1. The class λ = c1(KX + L) > 0 is a number
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and we take α = λω. Our envelope is ϕcan = supϕ where λω+ddcϕ > 0 and
∫
X
eϕ−γω 6 1. If λ = 0 then ϕ must

be constant and clearly ϕcan = 0. Otherwise, if G(z, a) denotes the Green function such that
∫
X G(z, a)ω(z) = 0

and ddcG(z, a) = δa − ω(z), we find

ϕcan(z) > sup
a∈X

(
λG(z, a) − log

∫

z∈X
eλG(z,a)−γ(z)ω(z)

)

by taking already the envelope over ϕ(z) = λG(z, a)−Const. It is natural to ask whether this is always an equality,
i.e. whether the extremal functions are always given by one of the Green functions, especially when γ = 0.

16.B. Invariance of plurigenera and positivity of curvature of super-canonical metrics

The concept of super-canonical metric can be used to give a very interesting result on the positivity of relative
pluricanonical divisors, which itself can be seen to imply the invariance of plurigenera. The main idea is due to
H. Tsuji [Tsu07a], and some important details were fixed by Berndtsson and Păun [BnP09], using techniques
inspired from their results on positivity of direct images [Bnd06], [BnP08].

(16.17) Theorem. Let π : X → S be a deformation of projective algebraic manifolds over some irreducible complex
space S (π being assumed locally projective over S). Let L → X be a holomorphic line bundle equipped with a
hermitian metric hL,γ of weight γ such that iΘL,hL,γ

> 0 (i.e. γ is plurisubharmonic), and
∫
Xt
e−γ < +∞, i.e.

we assume the metric to be klt over all fibers Xt = π−1(t). Then the metric defined on KX + L as the fiberwise
super-canonical metric has semi-positive curvature over X . In particular, t 7→ h0(Xt,m(KXt

+L↾Xt
)) is constant

for all m > 0.

Once the metric is known to have a plurisuharmonic weight on the total space of X , the Ohsawa-Takegoshi
theorem can be used exactly as at the end of the proof of lemma (12.3). Therefore the final statement is just an
easy consequence. The cases when L = OX is trivial or when L↾Xt

= O(∆t) for a family of klt Q-divisors are
especially interesting.

Proof. (Sketch) By our assumptions, there exists (at least locally over S) a relatively ample line bundle A
over X . We have to show that the weight of the global super-canonical metric is plurisubharmonic, and for this,
it is enough to look at analytic disks ∆→ S. We may thus as well assume that S = ∆ is the unit disk. Consider
the super-canonical metric hcan,0 over the fiber X0. The approximation argument seen above (see (16.9) and
remark (16.13)) show that hcan,0 has a weight ϕcan,0 which is a regularized upper limit

ϕalg
can,0 =

(
lim sup
m→+∞

1

m
log |σm|2

)∗

defined by sections σm ∈ H0(X0,m(KX0 + L↾X0) + pmA↾X0) such that
∫

X0

|σ|2e−(m−pm)ϕcan,0−pmψ0dVω 6 C2.

with the suitable weights. Now, by section 12, these sections extend to sections σ̃m defined on the whole family X ,
satisfying a similar L2 estimate (possibly with a slightly larger constant C′

2 under control). If we set

Φ =

(
lim sup
m→+∞

1

m
log |σ̃m|2

)∗
,

then Φ is plurisubharmonic by construction, and ϕcan > Φ by the defining property of the super-canonical metric.
Finally, we also have ϕcan,0 = Φ↾X0 from the approximation technique. It follows easily that ϕcan satisfies the
mean value inequality with respect to any disk centered on the central fiber X0. Since we can consider arbitrary
analytic disks ∆→ S, the plurisubharmonicity of ϕcan follows. �
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16.C. Tsuji’s strategy for studying abundance

H. Tsuji [Tsu07c] has recently proposed the following interesting prospective approach of the abundance conjec-
ture.

(16.18) Conjecture/question. Let (X,∆) be a klt pair such that KX + ∆ is pseudoeffective and has numerical
dimension num(KX +∆) > 0. Then for every point x ∈ X there exists a closed positive current Tx ∈ c1(KX +∆)
such that the Lelong number at x satisfies ν(Tx, x) > 0.

It would be quite tempting to try to produce such currents e.g. by a suitable modification of the construction of
super-canonical metrics, trying to enforce singularities of the metric at any prescribed point x ∈ X . A related
procedure would be to enforce enough vanishing of sections of A+m(KX+∆) at point x, where A is a sufficiently
ample line bundle. The number of these sections grows as cmp where p = num(KX+∆). Hence, by an easy linear
algebra argument, one can prescribe a vanishing order s ∼ c′mp/n of such a section σ, whence a Lelong number ∼
c′m

p
n
−1 for the corresponding rescaled current of integration T = 1

m [Zσ] on the zero divisor. Unfortunately, this
tends to 0 as m → +∞ whenever p < n. Therefore, one should use a more clever argument which takes into
account the fact that, most probably, all directions do not behave in an “isotropic way”, and vanishing should
be prescribed only in certain directions.

Assuming that (16.17) holds true, a simple semi-continuity argument would imply that there exists a small
number c > 0 such that the analytic set Zx = Ec(Tx) contains x, and one would expect conjecturally that these
sets can be reorganized as the generic fibers of a reduction map f : X > Y , together with a klt divisor ∆′

on Y such that (in first approximation, and maybe only after replacing X , Y by suitable blow-ups), one has
KX + ∆ = f∗(KY + ∆′ + Rf ) + β where Rf is a suitable orbifold divisor (in the sense of Campana [Cam04])
and β a suitable pseudo-effective class. The expectation is that dim Y = p = num(KX +∆) and that (Y,∆′) is
of general type, i.e. num(KY +∆′) = p.

17. Siu’s analytic approach and Păun’s non vanishing theorem

We describe here briefly some recent developments without giving much detail about proofs. Recall that given
a pair (X,∆) where X is a normal projective variety and ∆ an effective R-divisor, the transform of (X,∆) by a

birational morphism µ : X̃ → X of normal varieties is the unique pair (X̃, ∆̃) such that K
X̃

+∆̃ = µ∗(KX+∆)+E

where E is an effective µ-exceptional divisor (we assume here that KX +∆ and K
X̃

+ ∆̃ are R-Cartier divisors).

In [BCHM06], Birkar, Cascini, Hacon and McKernan proved old-standing conjectures concerning the existence
of minimal models and finiteness of the canonical ring for arbitrary projective varieties. The latter result was also
announced independently by Siu in [Siu06]. The main results can be summarized in the following statement.

(17.1) Theorem. Let (X,∆) be a klt pair where ∆ is big.

(i) If KX + ∆ is pseudo-effective, (X,∆) has a log-minimal model, i.e. there is a birational transformation

(X̃, ∆̃) with X̃ Q-factorial, such that K
X̃

+ ∆̃ is nef and satisfies additionally strict inequalities for the
discrepancies of µ-exceptional divisors.

(ii) If KX +∆ is not pseudo-effective, then (X,∆) has a Mori fiber space, i.e. there exists a birational transfor-

mation (X̃, ∆̃) and a morphism ϕ : X̃ → Y such that −(K
X̃

+ ∆̃) is ϕ-ample.

(iii) If moreover ∆ is a Q-divisor, the log-canonical ring
⊕

m>0H
0(X,m(KX +∆)) is finitely generated.

The proof, for which we can only refer to [BCHM06], is an extremely subtle induction on dimension involving
finiteness of flips (a certain class of birational transforms improving positivity of KX +∆ step by step), and a
generalization of Shokurov’s non vanishing theorem [Sho85]. The original proof of this non vanishing result was
itself based on an induction on dimension, using the existence of minimal models in dimension n−1. Independently,
Y.T. Siu [Siu06] announced an analytic proof of the finiteness of canonical rings

⊕
m>0H

0(X,mKX), along
with an analytic variant of Shokurov’s non vanishing theorem; in his approach, multiplier ideals and Skoda’s
division theorem are used in crucial ways. Let us mention a basic statement in this direction which illustrates
the connection with Skoda’s result, and is interesting for two reasons : i) it does not require any strict positivity
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assumption, ii) it shows that it is enough to have a sufficiently good approximation of the minimal singularity
metric hmin by sections of sufficiently large linear systems |pKX |.

(17.2) Proposition. Let X be a projective n-dimensional manifold with KX pseudo-effective. Let hmin = e−ϕmin be
the metric with minimal singuarity on KX (e.g. the super-canonical metric considered in § 16), and let c0 > 0 be
the log canonical threshold of ϕmin, i.e. hc0−δmin = e−(c0−δ)ϕmin ∈ L1 for δ > 0 small. Assume that there exists an
integer p > 0 so that the linear system |pKX | provides a weight ψp = 1

p log
∑

|σj |2 whose singularity approximates
ϕmin sufficiently well, namely

ψp >
(
1 +

1 + c0 − δ

pn

)
ϕmin +O(1) for some δ > 0.

Then
⊕

m>0H
0(X,mKX) is finitely generated, and a set of generators is actually provided by a basis of sections

of
⊕

06m6np+1H
0(X,mKX).

Proof. A simple argument based on the curve selection lemma (see e.g. [Dem01], Lemma 11.16) shows that one
can extract a system g = (g1, . . . gn) of at most n sections from (σj) in such a way that the singularities are
unchanged, i.e. C1 log |σ| 6 log |g| 6 C2 log |σ|. We apply Skoda’s division (8.20) with E = O⊕n

X , Q = O(pKX)
and L = O((m − p− 1)KX) [so that KX ⊗Q⊗ L = OX(mKX)], and with the metric induced by hmin on KX .
By definition of a metric with minimal singularities, every section f in H0(X,mKX) = H0(X,KX ⊗Q ⊗ L) is
such that |f |2 6 Cemϕmin. The weight of the metric on Q⊗ L is (m− 1)ϕmin. Accordingly, we find

|f |2|g|−2n−2ε
hmin

e−(m−1)ϕmin 6 C exp
(
mϕmin − p(n+ ε)(ψp − ϕmin) − (m− 1)ϕmin

)
6 C′ exp

(
− (c0 − δ/2)ϕmin

)

for ε > 0 small, thus the left hand side is in L1. Skoda’s theorem implies that we can write f = g · h =
∑
gjhj

with hj ∈ H0(X,KX ⊗ L) = H0(X, (m − p)KX). The argument holds as soon as the curvature condition
m−p−1 > (n−1+ ε)p is satisfied, i.e. m > np+2. Therefore all multiples m > np+2 are generated by sections
of lower degree m− p, and the result follows. �

Recently, Păun [Pau08] has been able to provide a very strong Shokurov-type analytic non vanishing state-
ment, and in the vein of Siu’s approach [Siu06], he gave a very detailed independent proof which does not require
any intricate induction on dimension (i.e. not involving the existence of minimal models).

(17.3) Theorem (Păun [Pau08]). Let X be a projective manifold, and let αL ∈ NSR(X) be a cohomology class in
the real Neron-Severi space of X, such that :

(a) The adjoint class c1(KX) + αL is pseudoeffective, i.e. there exist a closed positive current

ΘKX+L ∈ c1(KX) + αL;

(b) The class αL contains a Kähler current ΘL (so that αL is big), such that the respective potentials ϕL of ΘL
and ϕKX+L of ΘKX+L satisfy

e(1+ε)(ϕKX+L−ϕL) ∈ L1
loc

where ε is a positive real number.

Then the adjoint class c1(KX) + αL contains an effective R-divisor.

The proof is a clever application of the Kawamata-Viehweg-Nadel vanishing theorem, combined with a pertur-
bation trick of Shokurov [Sho85] and with diophantine approximation to reduce the situation to the case of
Q-divisors. Shokurov’s trick allows to single out components of the divisors involved, so as to be able to take
restrictions and apply induction on dimension. One should notice that the poles of ϕL may help in achieving
condition (17.3 b), so one obtains a stronger condition by requiring (b′) exp((1 + ε)ϕKX+L) ∈ L1

loc for ε > 0
small, namely that c1(KX) + αL is klt. The resulting weaker statement then makes sense in a pure algebraic
setting. In [BrP09], Birkar and Păun announced a relative version of (17.3), and they have shown that this can
be used to reprove a relative version of Theorem (17.1). A similar purely algebraic approach has been described
by C. Hacon in his recent Oberwolfach notes [Hac08].



Bibliography 109

Bibliography

[AN54] Y. Akizuki and S. Nakano. – Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Jap. Acad., 30 (1954),
266–272.

[AS95] U. Angehrn and Y.T. Siu. – Effective freeness and point separation for adjoint bundles, Invent. Math., 122 (1995),
291-308.

[Aub78] T. Aubin. – Equations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris Ser. A
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[DP04] J.-P. Demailly, M. Pǎun. – Numerical characterization of the Kähler cone of a compact Kähler manifold, arXiv:
math.AG/0105176, Annals of Math, 159 (2004), 1247–1274.

[DPS94] J.-P. Demailly, Th. Peternell, M. Schneider. – Compact complex manifolds with numerically effective
tangent bundles, J. Algebraic Geometry, 3 (1994), 295–345.

[DPS00] J.-P. Demailly, Th. Peternell, M. Schneider. – Pseudo-effective line bundles on compact Kähler mani-
folds, June 2000, Algebraic Geometry e-prints math.AG/0006205.

[DSk79] J.-P. Demailly, H. Skoda. – Relations entre les notions de positivité de P.A. Griffiths et de S. Nakano, Séminaire
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Theorem, personal communication, manuscript Köln University, May 2001, 3 p, to appear in Invent. Math.

[JK01] J.M. Johnson, J. Kollár. – Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces,
Ann. Inst. Fourier, 51 (2001), 69–79.

[Kaw82] Y. Kawamata. – A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., 261 (1982), 43–46.

[Kaw84] Y. Kawamata. – The cone of curves of algebraic varieties, Ann. of Math., 119 (1984), 603–633.

[Kaw85] Y. Kawamata. – Pluricanonical systems of minimal algebraic varieties, Invent. Math., 79 (1985), 567–588.

[Kaw97] Y. Kawamata. – On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann., 308 (1997), 491–505.

[Kaw98] Y. Kawamata. – On the extension problem of pluricanonical forms, Preprint Univ. of Tokyo at Komaba, September
1998.

[Kaw99] Y. Kawamata. – Deformation of canonical singularities, J. Amer. Math. Soc., 12 (1999), 85–92.

[Kis78] C.O. Kiselman. – The partial Legendre transformation for plurisubharmonic functions, Invent. Math., 49 (1978),
137–148.
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Ann. Scient. Ec. Norm. Sup. 4e Série, 5 (1972), 545–579.
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