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1. Monge-Ampere operators.

Let X be a complex manifold of dimension n . We denote as usual d = d' + d”
the exterior derivative and we set

1
dc - d/ _ d//
2i7r< )
so that dd® = £d’d” . In this context, we have the following integration by parts
formula.

FOrRMULA 1.1. — Let 2 CC X be a smooth open subset of X and f, g forms
of class C? on §Q of pure bidegrees (p,p) and (q,q) withp+q=mn—1. Then

/f/\ddcg—ddcf/\g: FAdg—dfAg.
Q o0

Proof. — By Stokes’ theorem the right hand side is the integral over 2 of
d(f Nd°g—d°fNg)=fAdd°g—dd°f Ng+ (df Nd°g+d°f Ndg) .

As all forms of total degree 2n and bidegree # (n,n) are zero, we get

df Ndog = —(d'fAd"g—d"fAdg)=—df Ndg. O

1
2

Let u be a psh function on X and T a closed positive current of bidimension
(p,p), i.e. of bidegree (n — p,n — p) . Our desire is to define the wedge product
ddu AT even when neither u nor T are smooth. A priori, this product makes
no sense since dd“u and T have measure coefficients in general. Assume that u
is a locally bounded psh function. Then the current w71 is well defined since u

is a locally bounded Borel function and 7" has measure coefficients. According to
Bedford-Taylor [B-T2] one defines

dd°u N'T = dd°(uT)

where dd®( ) is taken in the sense of distribution (or current) theory.

PROPOSITION 1.2. — The wedge product dd“u AT is again a closed positive
current.

Proof. — The result is local. We may assume that X is an open set 2 C C" |
and after shrinking € , that |u| < M on . Let (p-) be a family of regularizing
kernels with Suppp. C B(0,e) and [p. = 1 . The sequence of convolutions
up = u* py/i is decreasing, bounded by M , and converges pointwise to u as
k — +oo . By Lebesgue’s dominated convergence theorem w1 converges weakly
to uT" , thus dd®(u;T") converges weakly to dd®(uT’) . However, since uy, is smooth,
dd®(uT) coincides with the product dduy AT in its usual sense. As T" > 0 and
as dduy, is a positive (1, 1)—form, we have dd“up AT > 0 , hence the weak limit
ddu AT is > 0 (and obviously closed). O



Given locally bounded psh functions uy, ..., u, , one defines inductively
dduy ANddug A ... ANddug AT = dd(urddus ... ANddug NT)
and the result is a closed positive current. In particular, when w is a locally bounded

psh function, there is a well defined positive measure (dd“u)™ . If u is of class C?,
a computation in local coordinates gives

2 |
(dd°w)™ = det (=2 ) o

— -—idzl/\dzl/\.../\idzn/\din.
0z j 0Zy, T
The expression “Monge-Ampere operator” refers generally to the non-linear partial
differential operator u — det(9%u/0z;0zx) .

Now, let ©® be a current of order 0 . If K is a compact subset contained in a
coordinate patch of X , we define the mass of © = > Oy ydz; AdzZ; on K by

||@||K:/ S 6|
K 1.

where |7, ;| is the absolute value of the measure ©; ; . When © > 0 we have
|©7.] < C.O A BP with 3 = dd°|z]?; up to constants, the mass ||O]|x is then
equivalent to the integral [,.© A P . When K CC X is arbitrary, we take a
partition K = |J K; where each K ; is contained in a coordinate patch and write

18llx =) _11®llx, -
Up to constants, the semi-norm ||O||x does not depend on the choice of the
coordinate systems involved.

CHERN-LEVINE-NIRENBERG INEQUALITIES 1.3 ([C-L-N]). — For all com-
pact sets K, L of X with L. C K° , there exists a constant Cx 1 > 0 such that

|dduy A ... A dd®ug AT < Crer, ]| poe ) - - - gl e o) || T ¢ -

Proof. — By induction, it is sufficient to prove the result forq =1 and u; = u .
There is a covering of L by a family of balls B, Nea B C K contained in coordinate
patches of X . Let x € D(B;) be equal to 1 on B . Then

||ddcu/\THm§; < C/EI ddu NT A BPL < C/B xddu NT A BPL .
As T and S are closed, an intégration by parts yields j
lddou AT < C/B. WT Add®x A 7 < C'l[ull oy I T
where C' is equal to C multipliedjby a bound for the coefficients of dd“yABP~L . O

EXERCISE 1.4. — Denote by L'(K) the space of integrable functions with
respect to some smooth positive density on K . For any V psh on X show

(a) [lddV|L < CrL|IVIlLik) -
(b) supVy <
L

(K) -



Now, we prove a rather important continuity theorem due to [B-T2].

THEOREM 1.5. — Let uq,...,uq be locally bounded psh functions and let
u’f,...,u’; be decreasing sequences of psh functions converging pointwise to
Ui,...,Uq . Then

(a) ufddul A... Addul NT — urdd®us A... Add°uqg AT weakly.
(b) dd°uf A...Addui AT — dduy A ... Addug AT weakly.

Proof. — As the sequence (u?’) is non increasing and as u; is locally bounded,
the family (U§)keN is locally uniformly bounded. The result is local, so we can work
on a strongly pseudoconvex open set 2 CC X . Let ¢ be a strongly psh function
of class C™ near Q with ¢» < 0on Q, v =0 and di) # 0 on 0N . After addition of
a constant we can assume that —M < uf < —1 near Q . Let us denote by (u?’s) ,
e €]0,e0] , an increasing family of regularizations converging to uf as € — 0 and
such that —M < u;c’g < —1lonQ.Set A= M/é with § > 0 small and replace u?
by vf = max{ A, u?} , u?’s by vf’e = max.{ A1, ufs} where max, = max * p. is
a regularized max function.

Fig. 1 Construction of vf

Then v} coincides with u} on Q5 = {1 < —6} since Ay < —A§ = —M on Q5 ,
and v;’? is equal to At on the corona Q\ Q5,5 . Without loss of generality, we can

therefore assume that all uf (and similarly all u;“:) coincide with Ay on a fixed
neighborhood of 052 .

Now, we argue by induction on ¢ and observe that (b) is an immediate
consequence of (a). When ¢ = 1, (a) follows directly from the bounded convergence
theorem. We need a lemma.

LEMMA 1.6. — Let fi be a non-increasing sequence of upper semi-continuous
functions converging to f on some separable locally compact space X and ui a
sequence of positive measures converging weakly to p on X . Then every weak
limit v of fipuy satisfies v < fu .



Indeed if (g,) is a decreasing sequence of continuous functions converging to
fr, for some ko , then frun < fropr < gppr for k= ko , thus v < gpppas k — +oo .
The monotone convergence theorem then gives v < fr g as p — 400 and v < fu
as kg — +oo . U

End of proof of theorem 1.5. — Assume that (a) has been proved for ¢ — 1 .

Then
S* =ddus A ... Nddoug NT — S = ddug A ... Addug AT .

By 1.3 the sequence (u}S*) has locally bounded mass, hence is relatively compact
for the weak topology. In order to prove (a), we only have to show that every
weak limit © of u¥S* is equal to u1.S . Let (m,m) be the bidimension of S and
let v be an arbitrary smooth and strongly positive form of bidegree (m,m) . Then
the positive measures S* A v converge weakly to S A~ and lemma 1.6 shows that

OAy<uSAv, hence © < uS . To get the equality, we set § = dd“y > 0 and
show that fQ urS A" < fQ OAL™, ie.

/ulddcuz/\...AddcquT/\ﬁm<11m1nf/u’fddcu’gA...Addcu’;/\T/\ﬁm.
Q Q

Asu; <ub < ulf’sl for every €1 > 0 we get

/ulddCUQA...AddcquT/\ﬂm
Q
< / ulb St ddug A ... A ddCug AT A BT
Q

— / ddul" A ugdd®us A ... A ddug AT A ™
Q

€1

after an integration by parts (there is no boundary term because ulf and ug

vanish on 0). Repeating this argument with wus, ..., u, , we obtain

/ UldchQ VANPIRAY ddcuq ANT A ﬁm
Q
< / T ddcusff’l ANu T A B™
Q

< / u et ddOuy 2 AL A ddCut S AT A B
Q

Now let ¢, — 0,...,e1 — 0 in this order. We have weak convergence at each step
and u]f’el = 0 on the boundary; therefore the last integral converges and we get
the desired inequality

/ulddCUQA...AddcquTAﬁmgfu’fddcu’gA...Addcu’;ATAﬁm. O
Q Q

COROLLARY 1.7. — The product ddu; A ... A dd°uqg AT is symmetric with
respect to Uy, ..., Uq -



Observe that the definition was unsymmetric. The result is true when uy, ..., uq
are smooth and follows in general from theorem 1.5 applied to uf = uy x p; sk - U

THEOREM 1.8. — Let K, L be compact subsets of X such that L C K° .
For any psh functions V,uy,...,u, on X such that uy,...,u, are locally bounded,
there is an inequality

||Vddcu1 AN .../\ddcuq||L < CK,L HV||L1(K)||U1HL°°(K) ...HuqHLoo(K) .

Proof. — First, we may assume that L is contained in a strictly pseudoconvex
open set Q = {¢ < 0} C K (otherwise cover L by small balls contained in K). A
suitable normalization gives —2 < u; < —1 on K ; then we can modify u; on Q\ L
so that u; = Ay on Q \ Qs with a fixed constant A and § > 0 such that L C Q5 .
Let x > 0 be a smooth function equal to — on )5 with compact support in € .
If we take ||V||L1(x) = 1, we see that V is uniformly bounded on Qs by 1.4 (b);
after subtraction of a fixed constant we get V"< 0 on s . As u; = Ay on 2\ Q5 ,
we find for g <n —1:

/ —Vddui N...ANddug N BT
Qs

= / Vdduy A ... Addug A BT A Ay — Aq/ VB Addey
Q Q\Qs

= / X ddV Adduy A ... Addug A BP9 — Aq/ VAT Addey .
Q Q\ Qs
The first integral of the last line is uniformly bounded thanks to 1.3 and 1.4 (a),
and the second one is bounded by [|V'||11(q) < constant. Inequality 1.8 follows if
g<n-—1.If g=n, we can work instead on X x C and consider V,uy,...,u, as
functions on X x C independent of the extra factor C . [

Now, we would like to define dd“u; A ... A dd°uqy AT also in some cases when
U1,...,uq are not bounded below everywhere. Consider first the case ¢ = 1 and
let u be a plurisubharmonic function on X . The polar set of u is by definition

~1
u”H(—00) .

ASSUMPTIONS 1.9. — We make two additional assumptions :
(a) T has non zero bidimension (p,p) (i.e. degree of T' < 2n) .

(b) X is covered by a family of strongly pseudoconvex open sets Q = {1 < 0} ,
Q) cC X , with the following property : there is an open set wp containing
SuppT N Q and an open set w, containing u~'(—oc0) N Q such that Wr Nw, is
compact in §) and u is bounded on wr \ wy, .

Example. — For any T' | hypothesis 1.9 (b) is clearly satisfied if u has a discrete
set P of poles; an interesting example is u = log |F'| where F' = (Fy,..., Fy) are
holomorphic functions having a discrete set of common zeroes. [J



Let us replace u by the everywhere finite function
uss(2) = max{u(z),s} .

We shall let hereafter s tend to —oo . Let 3 = dd“y and let sg be a lower bound for
u on a neighborhood of 9Q2NSupp T . For s < sq , the integral fQ ddus s NT ABP~1
does not depend on s; in fact, Stokes’ theorem shows that

/ (dd°usy — dduzs) AT A (ddyp)P ™" = / dd°[(usr — uzs) T A (dd“P)P~] =0

Q Q

because u-, and u- s both coincide with u near 9Q2NSupp T, hence the current [. . .]
has compact support in €2 . This shows that the mass of ddu.s A T is uniformly
bounded on €2 . Now let x be a function with compact support in 2 equal to 1) on
a neighborhood € of Wy Nw, . As u is bounded on (2 \ Q') N Supp T , we have

/xalalcu%/\T/\(alalclﬂ)p_1 :/
Q

us s TA(dd“P)P~ I Addx < C+ / us T A (dd)P.
Q

The first integral remains bounded as s — —oo . Hence the last integral cannot

decrease to —oo and we see that u7T has bounded mass on €’ . We can therefore
define ddu AT = dd°(uT") as before.

Remark 1.10. — The current u7" has not necessarily a finite mass when T" has
degree 2n (i.e. T is a measure); example : T' = ¢y and u(z) =log|z| in C* . O

Assume now that wug,...,u, are psh functions on X that are bounded on
wr \ wy , where w, is an open set containing all polar sets uj_l(—oo) such that
wr Nw, CC 2 . One can again use induction to define

(1.11) dd°ui Nddug A .. A ddug AT = dd®(urddug ... AN ddug NT) .

THEOREM 1.12. — If u’f,...,u’; are non-increasing sequences converging
pointwise to uq,...,uq , then

ulddul A ... A ddcug ANT — wpddug A ... ANddug NT  weakly,
dduf A ... Addeuf NT — dd®uy A ... Addug AT weakly.

Proof. — Same proof as in theorem 1.5, with the following minor modification :

the max procedure max{u?, At} is applied only on wr\ s and uf is left unchanged
k

k,e
7 and u;

on wr N2 , assuming that 05 D Wy N, ; observe that the functions u
are needed only on wrp .

THEOREM 1.13. — Let P be a compact subset of a strongly pseudoconvex
open set  C X . If' V is a psh function on X and uy,...,uq ,1 <qg<n—1, are
psh functions that are locally bounded on Q \ P , then Vddu; A ... A dd°u, has
finite mass on €2 .

Proof. — Same proof as 1.8, taking P C Qs . [



2. Generalized Lelong numbers.

Assume from now on that X is a Stein manifold, i.e. that X has a strictly psh
exhaustion function. Let ¢ : X — [—00, +00[ be a continuous psh function. The
sets

(2.1) S(r)={z e X; pla) =1} |
(2.1 B(r) = {x € X; plr) <1} ,
(2.17) B(r) = {z € X; p(x) <1}

will be called pseudo-spheres and pseudo-balls associated to ¢ . It may happen
in some cases that B(r) is distinct from the closure of B(r) . For simplicity, we
sometimes denote

1
(2.2) a=dd°yp, (= §ddc(62¢) .

The most simple example we have in mind is ¢(z) = log|z — a| on an open subset
X C C™; in this case B(r) is the euclidean ball of center a and radius e” , and 3
is the usual hermitian metric 5=d’'d”|z|? of C" . When a = 0 , « is the pull back
on C" of the standard Fubini-Study metric on P*~1! .

DEFINITION 2.3. — We say that ¢ is semi-exhaustive if there exists a real
number R such that B(R) CC X . Similarly, ¢ is said to be semi-exhaustive on a
closed subset A C X if there exists R such that AN B(R) CC X .

We are interested especially in the set of poles S(—oc0) = {¢ = —oo} and
in the behaviour of ¢ near S(—oc) . Let T be a closed positive current of
bidimension (p,p) on X . Assume that ¢ is semi-exhaustive on Supp 7’ and that
B(R)NSuppT cC X . Then P = S(—o0) N SuppT is compact and the results of
§1 show that the measure T A (dd°p)?P is well defined.

DEFINITION 2.4. — Forr €] — oo, R[, we set

u@wwwaéUTAwfw%

rT——00

v(T, ) = /S( )T/\ (dd°p)? = lim v(T,p,r) .

The number v(T, ) will be called the (generalized) Lelong number of T with
respect to the weight ¢ .

It is clear that r — v(T, ¢, r) is an increasing function of r . Before giving an
example, we need a formula.

ForMuULA 2.5. — For any convex increasing function x : R — R one has

/ T A (dd°x 0 ) = X' (r — 0 U(T, ,7)
B(r)



where x'(r — 0) denotes the left derivative of x at r .

Proof. — Let x. be the convex function equal to x on [r—e, +oo[ and to a linear
function of slope x/(r—e—0) on | —oo,r—¢] . We get dd®(x-0p) = X' (r—e—0)ddyp
on B(r —¢) and Stokes’ theorem implies

/ T A (dd°x o p)P = / T A (dd°xe o )P
B(r) B(r)

2/‘ T A(ddxe 0 @) =X'(r —e = 0)"U(T, ¢, —¢) .
B(r—e¢)
Similarly, taking X. equal to x on | — 0o, r — ¢] and linear on [r — &, 7] , we obtain
/ A (ddCX © (P)p < / A <dd65€€ © Sp)p = X/<T — &= O)py<T, P T) :
B(r—e) B(r)
The expected formula follows when ¢ tends to 0 . [

We get in particular fB(r) TA(dde*#)P = (2e®")Pu(T, ¢, r) , whence the formula
(2.6) v(T, ,r) = e_2pr/ TABP.
B(r)

Now, assume that X is an open subset of C™ and that ¢(z) = log|z — al| for
some a € X . Formula (2.6) gives

v(T,p,logr) = 7"_25”/

) P
TA(iwmmﬂ .
|z—a|<r 2
The positive measure op = %T/\ (Ld'd"|z|*)P =27P Y Ty 1.i"dz1 ANdZy ... dZ, is
called the trace measure of T' . We get

or (B(a, 7“))

(2.7) v(T, p,logr) = 120 ]

and v(T, ) is the limit of this ratio as r — 0 . This limit is called the Lelong
number of 7' at point a and denoted v(T,a) . This was precisely the original
definition of Lelong (cf. [Le3]). Let us mention an important consequence.

CONSEQUENCE 2.8. — The ratio or (B(a,r))/r?" is an increasing function of
the radius r . In particular, we have

or(B(a,r)) < Cr?
for r < r¢ small enough.
All these results are particularly interesting when T = [A] is the current of
integration over an analytic subset A C X of pure dimension p . Then op (B (a, T))

is the euclidean area of AN B(a,r) , and v(T, ¢, logr) is the ratio of this area to
the area of a ball of radius r in CP .



EXERCISE 2.9. — When A is a smooth submanifold of X , show that

A0 = {5 g

Remark 2.10. — When X = C" | p(2) =log|z —a| and A = X (ie. T = 1),
we obtain in particular fB(a T)(ddc log |z —al|)™ =1 for all r . This implies

(dd°log|z —a|)" = 04 -

This fundamental formula can be viewed as a higher dimensional analogue of the
usual formula Alog |z —a| = 276, in C .

3. The Lelong-Jensen formula.

Assume in this paragraph that ¢ is semi-exhaustive on X and that B(R) CC X .
For every r €] — oo, R| , the measures dd°(¢s,)" are well defined. The map
r — (ddps,)™ is continuous on | — oo, R[ with respect to the weak topology :
right continuity follows immediately from theorem 1.5, while left continuity is
obtained similarly from the equality (ddp.,)" = (dd°max{p — r,0})" . As
(dd°p=,)" = (dd°p)" on X \ B(r) and ¢., = r , (dd°ps,)" = 0 on B(r) ,
the left continuity implies (dd°p.,)" > 1x\p()(dd°@)" . Here 14 denotes the
characteristic function of any subset A C X . According to the definition
introduced in [De2], the collection of Monge-Ampeére measures associated to ¢
is the family of positive measures pu, such that

(3.1) pr = (ddp5,)" — 1x\p(r)(ddp)™ , 1 €] —o00,R].

The measure p, is supported on S(r) and r —— pu, is weakly continuous
on the left by the bounded convergence theorem. Stokes’ formula shows that
fB(S)(ddcg0>r)”—(ddcgp)” = 0 for s > r, hence the total mass i, (S(r)) = p, (B(s))
is equal to the difference between the masses of (dd°p)" and 1x\ p(,)(dd°p)" over
B(s) , i.e.

(3.2) ne(s0) = [ ey

Example 3.3. — When (dd°p)™ = 0 on X \ ¢~ !(—00), formula (3.1) simplifies
into p, = (dd°p-,)™ . This is so for ¢(z) = log|z| . In this case, the invariance
of ¢ under unitary transformations implies that ., is also invariant. As the total
mass of i, is equal to 1 by 2.10 and (3.2), we see that u,. is the invariant measure
of mass 1 on the euclidean sphere of radius e” .

THEOREM 3.4. — Assume that ¢ is smooth near S(r) and that dy # 0 on
S(r) , i.e. r is a non critical value. Then S(r) = 0B(r) is a smooth oriented real
hypersurface and p, is given by the (2n — 1)~volume form (dd“p)" =" A d®ps¢r) -



Proof. — Write max{t,r} = limg_ 4o Xx(t) where y is a non-increasing
sequence of smooth convex functions with xx(t) =r for t <r—1/k, xx(t) =t for
t > r+1/k . Theorem 1.5 shows that (dd®xyop)™ converges weakly to (dd®p-, )™ .
Let h be a smooth function h with compact support near S(r) . Let us apply
Stokes’ theorem with S(r) considered as the boundary of X \ B(r) :

/ h(dd®ps,)” = lm | h(dd®xyo¢)"
X

— lim —dh A (ddxs 0 @)™ AdS(x 0 @)
= lim X, ()" dh A (dd°)" Y A dCy
k——+o00 X

= / —dh A (ddp)" 1 A dp
X\B(r)

= / h(dd®p)" ™t Adp + / h (dd®p)" ™ NdCyp .
S(r) X\B(r)

Near S(r) we thus have an equality of measures

(dd®p=p)" = (dd°0)" " Nd°pr5(r) + Lx\B(r) (dd°p)" . O

LELONG-JENSEN FORMULA 3.5. — Let V be any psh function on X . Then
V is p.—integrable for every r €] — oo, R| and

T

(V') — / V(dd¢p)" = / v(ddV,p,t)dt .
B(r)

— o0

Proof. — Theorem 1.8 shows that V' is integrable with respect to (ddp-,)™ ,
hence V' is u,—integrable. By definition v(dd°V, p,t) = fcp(2)<t dd°V A (dd¢p)™—1
and Fubini’s theorem gives

/ v(ddV, p,t) dt = / / dd°V (2) A (ddp(z))" " dt
plz)<t<r

(3.6) = /B( )(7" —©)dd°V A (ddp)" T .

We first show that formula 3.5 is true when ¢ and V' are smooth. As both members
of the formula are left continuous with respect to r» and as almost all values of ¢
are non critical by Sard’s theorem, we may assume r non critical. Formula 1.1
applied with f = (r —¢)(dd“p)" ! and g = V shows that integral (3.6) is equal to

| vidaertiade - [ vider =)< [ v

S(r) B(r) B(r)

Formula 3.5 is thus proved when ¢ and V are smooth. If V' is smooth and ¢
merely continuous and finite, one can write ¢ = limy; where ¢ is a non-
increasing sequence of smooth plurisubharmonic functions (because X is Stein).



Then dd°V A(ddpy)" ! converges weakly to ddV A(dd°p)™ ! and (3.6) converges,
since 1) (r — ¢) is continuous with compact support on X . The left hand side
of formula 3.5 also converges because the definition of u, implies

MAW—/L:WMWH“iAV«MWWH”4MWHﬂ

and we can apply again weak convergence on a neighborhood of B(r) . If ¢ takes
—oo values, replace ¢ by ¢-_j where & — +oo . Then p,(V) is unchanged,
fB(T) V(dd®ps_j)™ converges to fB(T) V(dd®p)™ and the right hand side of formula
3.5 is replaced by [~ L v(dd°V, p,t) dt . Finally, for V' arbitrary, write V' = lim | V4
with a sequence of smooth functions Vj . Then dd°Vi A (ddp)™ ! converges weakly
to dd°V A (dd®p)™~! by theorem 1.13, thus integral (3.6) converges to the expected
limit, and the same is true for the left hand side of 3.5 by the monotone convergence
theorem. [

For r < rg < R, the Lelong-Jensen formula implies

6D )=+ [ V(o) = [ vddVop. 0t
B(ro)\B(r) T0

COROLLARY 3.8. — Assume that (dd°¢)"” = 0 on X \ S(—o0) . Then
r — p,-(V) is a convex increasing function of r and the lelong number v(dd°V, )

is given by
V(ddV,0) = tim P2V

r——00 r

Proof. — By (3.7) we have

wr (V) = piry (V) + /T v(dd°V, o, t)dt .

T0
As v(dd°V, ¢, t) is increasing and non-negative, it follows that r —— p,.(V) is
convex and increasing. The formula for v(dd°V, ¢) = lim;_, o v(dd°V, ¢, t) is then
obvious. [

Example 3.9. — Take ¢(z) = log|z — a] on an open subset of C" containing
the point a . The Lelong-Jensen formula becomes
1o (V) = V(a) + / V(ddV, o, 1) dt
As i, is the mean value measure on the sphere S(a,e”) , we make the change of
variables r — logr | t — logt and obtain the more familiar formula
" dt
w(V,S(a,r)) =V(a) —i—/ v(dd°V,t) n
0

where v(dd°V,t) = v(dd°V, ¢,logt) is given by (2.7) :

1 1
SV £ — —AV .
v( i t) an—142n=2/(p — 1) /B(a,t) 2



In particular, take V' = log|f| where f is a holomorphic function on X .
The Poincaré-Lelong formula shows that dd®log|f| is equal to the zero divisor
[Z¢] = >_m;[H;] , where H; are the irreducible components of f~!(0) and m; the
multiplicity of f on H; . The trace %A f is then the euclidean area measure
of Z; (with corresponding multiplicities m;). In dimension n = 1 , we have
%A f =72 m;da; . Then we get the usual Jensen formula

T

dt r
p(10g111.5(0.7)) 10 10)] = [ w5 = 3 mlox -
0 J
where v(t) is the number of zeroes a; in the disk D(0,¢) , counted with multi-
plicities m; .

Example 3.10. — Take ¢p(z) = logmax |z;|* . where A\; > 0 . Then B(r) is
the polydisk of radii (e’"/>‘1, cee e’"/>‘") . If some coordinate z; is non zero, say z ,
we can write ¢(z) as A; log |z1| plus some function depending only on the (n — 1)

variables zj/zi‘l/Aj . Hence (dd®p)™ =0 on C™ \ {0} . It will be shown later that

(311) (ddc(p)n = )\1 e )\n (50 .

We now determine the measures 1, . At any point 2z where not all terms |z;| are
equal, the smallest one can be omitted without changing ¢ in a neighborhood of
z . Thus ¢ depends only on (n — 1)—variables and (dd®¢>,)" =0, u, = 0 near z .
It follows that p, is supported by the distinguished boundary |z;| = e"/?i of the
polydisk B(r) . As ¢ is invariant by all rotations z; — el zj , the measure p, is
also invariant and we see that .. is a constant multiple of df; .. .d6,, . By formula
(3.2) and (3.11) we get

fr = A1 A (20) 776, ... dO, .
In particular, the Lelong number v(dd°V, ¢) is given by

, L dby .. .do,
v(dd°V,p) = A1 ... Ay lim Vier/ At e/ Aty T2
r—==20 Jg.e[0,27] (27)

These numbers have been introduced and studied by Kiselman [Ki3]; we shall
denote them v(T,x, A) , where A = (A1,...,\,) .

4. Comparison theorem for Lelong numbers.

We show here that the Lelong numbers (7, ¢) only depend on the asymptotic
behaviour of ¢ near the polar set S(—o0) . In a precise way :

THEOREM 4.1. — Let ¢,¢ : X — [—00,400]| be continuous psh functions.
We assume that ¢, are semi-exhaustive on Suppl" and that
o Y(x)
[ :=limsup ﬁ <400 as x € SuppT and p(x) — —oc0.
oz

Then v(T,v) < [Pv(T,y) , and the equality holds if | = limy/p .



Proof. — Definition 2.4 gives immediately
(T, Ap) = Nu(T, @)
for every scalar A > 0. It is thus sufficient to verify the inequality v (T, v) < v(T, ¢)
under tha hypothesis limsup /¢ < 1 . For all ¢ > 0 , consider the psh function
u. = max(¢ — ¢, ) .
Let R, and Ry be such that B,(R,)NSupp T and By (Ry) N Supp T be relatively
compact in X . Let r < R, be fixed and a < r . For ¢ > 0 large enough, we have
ue = o on p 1([a,r]) and Stokes’ formula gives
v(T, o, 1) =v(T ue,r) 2 v(T, uc) -
The hypothesis limsup /¢ < 1 implies on the other hand that there exists ty < 0
such that u. =1 — c on {u. < to} N Supp T . We infer
v(T,u.) =v(T,v—c)=v(T,Y) ,

hence v(T,1) < v(T,¢) . The equality case is obtained by reversing the roles of ¢
and 1) and observing that lim /vy =1/1 . O

Assume in particular that z¥ = (2¥,...,2%) | k= 1,2, are coordinate systems

o 2
centered at a point z € X and let

1/2
vr(z) = log |zk| = log(|zf|2 T |sz|2) .

We have lim,_,, ¢2(2)/p1(2) =1, hence v(T, p1) = v(T, ¢2) by theorem 4.1 .

COROLLARY 4.2. — The usual Lelong numbers v(T,z) are independent of
the choice of local coordinates. []

This result had been originally proved by [Siu] with a much more delicate proof.
Another interesting consequence is :

COROLLARY 4.3. — On an open subset of C" | the Lelong numbers and

Kiselman numbers are related by

v(T,x) :V(T,x,(l,...,l)) )

Proof. — By definition, the number v(7,z) is associated to the weight
¢(z) = log|z — x| and v(T, z,(1,...,1)) to the weight 1(z) = logmax |z; — z;]| .
It is clear that lim,_,, ¥(z)/¢(z) =1, whence the conclusion. [J

Another consequence of theorem 4.1 is that v (7, x, \) is an increasing function
of each variable \; . Moreover, if Ay < ... < A, , we get the inequalities

Nuv(T,x) <v(T,z,\) < Nv(T, z) .
It can be shown ([Del]) that the stronger inequalities
Mo Xpr(Tox) S v(T,x,N) < Ap—pt1 - - - (T )



hold for every current 7' of bidimension (p,p) . By formula (3.11), this is easily
checked for any p-plane of coordinates T' = [Ce;, @ ... @ Ce; ] . The general case
can be deduced from this special case.

Now, we assume that 7' = [A] is the current of integration over an analytic set
A C X of pure dimension p (cf. P. Lelong[Lel]). The above comparison theorem
will enable us to give a simple proof of P. Thie’s main result [Th] : the Lelong
number v([A],x) can be interpreted as the multiplicity of the analytic set A at
point x .

Let = € A be a given point and Z 4 ,, the ideal of germs of holomorphic functions
at = vanishing on A . Then, one can find local coordinates z = (z1,...,2,) on X
centered at x such that there exist distinguished Weierstrass polynomials P; € 74
in the variable z; , p < j < n , of the type

d;j—k
(4.4) = z T Zaﬂk (21, 25-1)%; , Gk € M(]éj—l’o

where M x , is the maximal ideal of X at z .

Indeed, let us prove this property by induction on codim X =n —p . We fix a
coordinate system (w1, ..., w,) by which we identify the germ (X, z) to (C™,0) .

If n —p > 1, there exists a non zero element f € 74, . Let d be the smallest
integer such that f € M%n’o and let e, € C" be a non zero vector such that
lim; o f(te,)/t? # 0. Complete e, into a basis (€1, ..., &, 1,€,) of C* and denote
by (Z1,...,2n—1,2n) the corresponding coordinates. The Weierstrass preparation
theorem gives a factorization f = gP where P is a distinguished polynomial of
type (4.4) in the variable z, and where g is an invertible holomorphic function at
point x . If n — p =1, the polynomial P,, = P satisfies the requirements.

Ifn—p>2,04,=0x2/TasisaOcn-19=C{Z,...,Z,—1}-module of finite
type, i.e. the prOJectlon pr: (X,z) ~ (C" 0) — (C" 1 0) is a finite morphism of
(A, z) onto a germ (Z,0) C (C™1,0) of dimension p . The induction hypothesis

applied to Iz 9 = Ogn-1 ¢NZ4,, implies the existence of a new basis (eq, ..., e,—1)
of C"~! and polynomials P,1,...,P,_1 € Iz of type (4.4) in the coordinates
(21,...,2n—1) associated to the basis (e1,...,e,_1) . If we choose P, = P , the

expected property is proved in codimension n —p .

For any polynomial Q(w) = w? + a;w? ! + ...+ ag € Clw] , the roots w of Q
satisfy

(4.5) lw| <2 max x|,
<k<d

otherwise Q(w)w™¢ =1+4+a;w 1 +...+aqw™? would have a modulus larger than
1— (21 +...+27% =279  a contradiction. Let us denote z = (2/,2") with
2 =(z1,...,2) and 2" = (zp41,...,2n) . As aj € ME;_, ,, we get

laj (21, 2zi-) = O((|z1] + ...+ [z521)F) if G>p,



and we deduce from (4.4), (4.5) that |z;| = O(Jz1] + ... + |zj—1]) on (4, x) .
Therefore, the germ (A, ) is contained in a cone |2”| < C|Z/| .

We shall use this property in order to compute the Lelong number of [A] at
point x . When z € A tends to x , the functions

p(z) = log|z| = log (|| + [2"[))'/? ,  ¢(2) =log 2| .
are equivalent. As ¢, are semi-exhaustive on A , theorem 4.1 implies
v([A4],z) = v([A], ») = v([A],¥).
Let B’ C CP the ball of center 0 and radius v’ , B” € C" P the ball of center 0

and radius " = Cr’ . The inclusion of germ (A, z) in the cone |2”| < C|z’| shows
that for 7’ small enough the projection

pr: AnN(B' x B") — B’

is proper. The fibers are finite by (4.4). Hence this projection is a ramified covering
with a finite sheet number m .

2 e CnP
B 0 T
} A
\
\
| | \J
| \
I | |
\ | | \
| | |
IR |
S S B’ Z e CP

Fig. 2 Ramified covering from A to A’ C CP.

Let us apply formula (2.6) to ¢ : for every t < r’ we get

v([A],,logt) = t—2p/

{¥<logt}

1 p
— t_2p/ (_pr*ddc|2/|2>
An{|z’|<t} 2

1
:mt_Qp/ (—ddc|z’|2>p =m,
Crn{|z’|<t} 2

[A] A (%ddceM’)p



hence v(T,v¢) = m . Here, we used the fact that pr is actually a covering with
m sheets over the complement of the ramification locus S C B’ , which is of zero
Lebesgue measure. We thus obtain :

THEOREM 4.6 (P. Thie [Th]). — Let A be an analytic set of dimension p in
a complex manifold of dimension p . For every point x € A , there exist local
coordinates

z=(,2"), Z=(z1,--,%), 2" =(2pt1s---)2n)

centered at x and balls B’ C CP , B"” ¢ C" P in of radii v, r" in these coordinates,
such that AN(B’ x B") is contained in the cone |2"| < (r" /r")|Z'| . The multiplicity

of A at x is defined as the number m of sheets of the ramified covering map
AN (B'x B")— B’ . Then v([A],z) =m .

EXERCISE 4.7. — Show that the measures
(dd* logmax\zj\’\j)n ) (ddc logz \zj\’\j)

are equal to c(\)dg with the same coefficient ¢(\) in both cases. When all \; are
even integers, compute explicitly ¢(\) by means of formula (2.6). Extend the result
to arbitrary rational (resp. real) numbers \; > 0 .

5. Siu’s semi-continuity theorem.

Let X,Y be complex manifolds of dimension n,n’ such that X is Stein. Let
¢ : X XY — [—00,400] be a continuous psh function. We assume that ¢ is
semi-exhaustive with respect to Supp T, i.e. that for every compact subset L C Y
there exists R = R(L) < 0 such that

(5.1) {(z,y) € SuppT x L; p(z,y) < R} cC X x Y.
Let T be a closed positive current of bidimension (p,p) on X . For every point
y € Y , the function ¢, (x) := ¢(z,y) is semi-exhaustive on Supp7’; one can

therefore associate to y a generalized Lelong number v(T', ¢,) .

LEMMA 5.2. — (a) The measure T A (dd°p, ~+)? depends continuously on y.
(b) For allm < ry < R(L) and y,yo € L one has

limsup v(T, ¢y, 7m1) < V(T @yy,72) -
Y—yo

(¢c) The map y+— v(T,¢,) is upper semi-continuous.

Proof. — (a) We prove by induction on ¢ that T° A (ddp, >¢)? is weakly
continuous in y . Let A be a smooth form on X . Then

/ hAT A (ddpy 1) = / dd°h AT A oy si(ddSpy -1)9"
b's b's



Taking the difference for two points y, yo , we get

/ h A TA((ddpy, 51)7 = (dd°py, »1)7)
X
= / ddch A T N (Soy’;t - ¢y0,>t>(ddc¢y:>t>q_1)
X

4 [ Prpntdd T AT A (A%, 0) = (A0
X

The last integral tends to 0 thanks to the induction hypothesis, and the previous
one thanks to the Chern-Levine Nirenberg inequalities and the uniform conver-

gence of @y ¢ t0 gy 5t -

(b) As (T, @y, 1) = fB(T) T A (dd°py »t)P when ¢t <7, (b) follows from (a).

(c) Letting 71,79 — —o0 , we get easily limsup, . v(T,¢,) < v(T,¢y,) . U
As a consequence of 5.2 (c¢), we see that the sublevel sets

(5.3) E.={yeY,;v(T,py) 2c}, c>0

are closed. Under mild additional hypotheses, we are going to show that the sets
FE. are in fact analytic subsets of Y .

DEFINITION 5.3. — We say that a function f(z,y) is locally Hélder continu-

ous with respect toy on X x Y if every point of X XY has a neighborhood () on
which

|f(z,91) — f(z,92)| < Mys — yo|?

for all (x,y1) € Q, (z,y2) € Q , for some constants M > 0 , v €]0,1] , and for
suitable coordinates on 'Y .

THEOREM 5.4. — Let T be a closed positive current on X and
p: X XY — [—o0, 400

a continuous psh function. Assume that ¢ is semi-exhaustive on Supp T and that
e?@Y) is locally Hélder continuous with respect toy on X xY . Then the sublevel
sets

Ec={yeY;v(T ¢, > c}

are analytic subsets of Y .
This theorem, proved in [De3], can be rephrased by saying that y — v(T', ¢,)

is upper semi-continuous with respect to the analytic Zariski topology. As a special
case, we get the following important result of [Siu] :

COROLLARY 5.5. — If T is a closed positive current on a manifold X , the
sublevel sets E. = {x € X ; v(T,x) > c} of the usual Lelong numbers are analytic.

Proof. — The result is local, so we may assume that X C C" is an open
subset. Then apply theorem 5.4 with Y = X and ¢(z,y) =log|x —y| . O



If X is an open subset of C" , the sublevel sets for Kiselman’s numbers v(T', x, \)
are also analytic in X . However, this result is not intrinsically significant on a
manifold, because Kiselman’s numbers depend on the choice of coordinates. To give
another application, set u(z) = logmax |z;|* and set ¢(z,y,9) = ur(g(z — y))
where z,y € C" and g € GI(C") . Then v(T, ¢, 4) is the Kiselman number of T
at y when the coordinates have been rotated by g . It is clear that ¢ is psh in
(z,y, g) and semi-exhaustive with respect to = , and that ¥ is Hélder continuous
with exponent v = min{1, A\;} . Thus the sublevel sets

E.={(y,9) € X x GI(C"); v(T, ‘Py,g) > c}

are analytic in X x GI(C™) . Theorem 5.4 can be applied more generally to weight
functions of the type
bV
Y= mjax log (; Famy m)

where [, are holomorphic functions on X x Y and -;; positive real constants;
in this case e¥ is Holder continuous of exponent v = min{\;, 1} .

Now let us prove theorem 5.4. As the result is local on Y | we may assume
without loss of generality that Y is a ball in C™ . After addition of a constant to
¢ , we may also assume that there exists a compact subset K C X such that

{(z,y) € X xY;9(z,y) <0} C K xY.

By theorem 4.1, the Lelong numbers depend only on the asymptotic behaviour of
¢ near the (compact) polar set ¢~ (—oc0) N (SuppT x Y) . We can add a smooth
strictly plurisubharmonic function on X x Y to make ¢ strictly plurisuharmonic.
Then Richberg’s approximation theorem for continuous psh functions shows that
there exists a smooth psh function ¢ such that ¢ < ¢ < ¢+ 1. We may therefore
assume that ¢ is smooth on (X x Y)\ o~ 1(—0c0) .

e First step : construction of a local psh potential.

Our goal is to generalize the usual construction of psh potentials associated to
a closed positive current (cf. P. Lelong[Le2] and H. Skoda[Sk]). We replace here
the usual kernel |z — (|72P arising from the hermitian metric of C" by a kernel
depending on the weight ¢ . Let x € C*°(R,R) be an increasing function such
that x(t) = t for t < —1 and x(¢t) = 0 for t > 0 . We consider the half-plane
H = {z € C; Rez < —1} and associate to T the potential function V on Y x H
defined by

0
(5.6) Vi) == [ uTopt (o

For every t > Re z , Stokes’ formula gives

Wﬂ%ﬁz/ T(2) A (ddS3(x, g, 2))P
p(z,y)<t



with @(z,y, z) := max{p(z,y), Rez} . Fubini’s theorem applied to (5.6) gives

Vi(y,2) = - T(x) A (ddg@(,y,2))" X' (t)dt

z€X,p(z,y)<t
Re z<t<0

_ / _ T@) AX(B,2)) (A3, 2)

For all (n —1,n — 1)—form h of class C°° with compact support in Y x H , we get

(dd°V,h) = (V,dd°h) = /X y HT(x) Ax(@(x,y,2))(dd°e(z,y, z))P A dd°h(y, z).

Observe that the replacement of ddg by the total differentiation dd® = ddy, ,, , does
not modify the integrand, because the terms in dx , dr must have total bidegree
(n,n) . The current T'(z) A x(@(x,y, 2))h(y, z) has compact support in X xY x H.

An integration by parts can thus be performed to obtain

(dd°V, h) = (27r)_p/ T(x) Ndd®(x o p(x,y,2)) A (dd°@(z,y, 2))P.h(y, 2).

XXY xH
On the corona {—1 < ¢(z,y) < 0} we have ¢(z,y,2) = ¢(z,y) , whereas for
o(z,y) < —1 we get o < 1 and yop = ¢ . As ¢ is psh, we see that dd°V (y, z) is
the sum of the positive (1, 1)—form

(y,2) — T(x) A (dds,, (. y,2))PH!
{zeX;p(z,y)<—1}

and of the (1,1)—form independent of z

Yy — T A dd; y(X o (p) A (ddi’ycp)p ;
{z€X;-1<p(z,y)<0} 7
as ¢ is smooth outside ¢~ (—o0) , this last form has locally bounded coefficients.
We obtain therefore the following result.

THEOREM 5.7. — There exists a positive psh function p € C*°(Y") such that
p(y) +V(y,2) ispshonY x H .

To be quite complete, we must observe in addition that V' is continuous on
Y x H because T' A (dd°p, .)P is weakly continuous in the variables (y,z) by
lemma 5.1 (a).

If we let Re z tend to —oo , we see that the function
0

Uo(y) = p(y) + V(y, —00) = p(y) — / V(T py, )X (t)dt

— 0

is locally psh or = —oc0 on Y . Moreover, it is clear that Uy(y) = —oo at every
point y such that v(T,¢,) > 0 . If Y is connected and Uy # —oo , we already
conclude that the density set | J . E. is pluripolar in Y .

e Second step : application of Kiselman’s minimum principle.



KISELMAN’S MINIMUM PRINCIPLE 5.8 ([Kil]). — Let M be a complex man-
ifold, w C R™ a convex open subset and () the “tube domain” 2 = w + tR™ . For
every plurisubharmonic function v((, z) on M x Q that does not depend on Im z |
the function

u(¢) = inf v((,2)

z€Q
is plurisubharmonic or locally = —oo on M .
Proof. — Without loss of generality, we may assume that M is a ball and

that 0 € M x € . The hypothesis implies that v({, z) is convex in z = Re z . Let
7 > 0 be a smooth strictly convex exhaustion function on w with 7(0) = 0 . We
approximate v by the sequence of smooth functions defined on (1 — )M x Q by

Ve =vxpe2ter((1—g) ')

Then u.(¢) = inf,cqv-((,2) is increasing in ¢ and converges to u . We may
therefore assume that v has all properties of v, , i.e. v is smooth, plurisubharmonic
in (¢, z) , strictly convex in z and lim|,|_, o v({, z) = +o0 for every ¢ € M . Then
x — v((,x) has a unique minimum point x = ¢(¢) , solution of the equations
Ov/dzi(x,¢) = 0 . As the matrix (0%v/0z;0zy) is positive definite, the implicit
function theorem shows that g is smooth. Now, if w — (p+wa ,a € C" | |w| < 1
is a complex disk A contained in M , there exists a holomorphic function f on
the unit disk and smooth up to the boundary, whose real part solves the Dirichlet
problem

Re f(e"') = g(¢o + e"a) .
Since v({p + wa, f(w)) is subharmonic in w , we get the mean value inequality

v(Co, f(0)) < i/0 TFU(CO +e?a, f(e?))do = 1 v(¢,g(€))db .

2m 2 A

The last equality holds because Re f = g on A and v((,2) = v((,Rez) by
hypothesis. As u({p) < v({o, f(0)) and u(¢) = v({,9(C)) , we see that u satisfies
the mean value inequality. [

Let a > 0 be arbitrary. The function
Y xH> (y,2) — ply) + V(y, 2) — aRez
is psh and independent of Im z . By 5.8, the Legendre transform
Ualy) = inf [p(y) +V(y,7) - ar]
is locally psh or = —coon Y .
LEMMA 5.9. — Let yg € Y be a given point.

(a) Ifa>v(T,py,) , then U, is bounded below on a neighborhood of y .
(b) Ifa < v(T,py,) , then Uy(yo) = —o0 .



Proof. — By definition of V' (cf. (5.6)) we have

0
(5.10) V(y,r) < —v(T, goy,r)/ X (t)dt = rv(T, gy, r) < rv(T, )

Then clearly U, (yo) = —o0 if a < v(T), ¢y, ) . On the other hand, if (T, ¢,,) < a ,
there exists t9 < 0 such that v(T,¢,,,t0) < a . Fix rg < ty . The semi-
continuity property 5.2 (b) shows that there exists a neighborhood w of yo such
that sup,c,, V(T,py,70) <a.Forally € w , we get

Viy.r) = —C - a/ X (t)dt = —C + a(r — o) ,
and this implies U, (y) > —C —arg . O

THEOREM 5.11. — If'Y is connected and if E. # Y , then E. is a closed
complete pluripolar subset of Y | i.e. there exists a continuous psh function
w:Y — [—o0, +oo[ such that E. = w™!(—o0) .

Proof. — We first observe that the family (U,) is increasing in a , that
U, = —o0 on E, for all a < ¢ and that sup,_,U,(y) > —oo if y € Y \ E, (apply
lemma 5.9). For any integer k > 1 , let wy € C°°(Y') be a psh regularization of
Uc—1/x such that wy = U,y on Y and wg < —2F on E,NY}; . Then lemma
5.10 (a) shows that the family (wy) is uniformly bounded below on every compact
subset of Y \ E. . We can also choose wy uniformly bounded above on every
compact subset of Y because U._1,x < U, . The function

+o0
_ Z 2—k
w = Wi
k=1
satifies our requirements. []

e Third step : estimation of the singularities of the potentials U,,.

LEMMA 5.12. — Let yg € Y be a given point, L a compact neighborhood of
Yo , K C X a compact subset and rg a real number < —1 such that

{(z,y) € X X Lyp(z,y) <ro} C K x L.
Assume that e?(x,y) is locally Hélder continuous in y and that

|f(z,91) — fx,y2)| < Mlys — y2|?

for all (x,y1,y2) € K x L x L . Then, for all € €]0,1[ , there exists a real number
n(e) > 0 such that all y € Y with |y — yo| < n(e) satisfy

Ualy) < p(y) + (1 = £)"(T, 0y) — a) (710g |y — yo| + log

26M)
5 )

Proof. — First, we try to estimate v(7, ¢,,r) when y € L is near yo . Set

w<x) = (1_6)90y0<x)+€r_5/2 if pro(x) <r— 1
Y(z) = max(goy(x), (1 —¢e)py,(z) +er — 5/2) if  r—1<py(z)<r
Y(z) = py(2) if <y (@) <o



and verify that this definition is coherent when |y — yp| is small enough. By
hypothesis
|e<py(w) _ e@yo(w)| < My —yo|.

This inequality implies

Py () < @y, () +log (1 + My — yo|Ye #w )

py() = @y (x) +log(1 — My — yo[Te™ w0 ).

In particular, for ¢, (x) =1, we have (1 — €)py,(x) +er —e/2 =r —¢/2, thus

(93) > r+log(l—Mly —yo|’e™") .

Similarly, for ¢, (x) =r—1, we have (1 —¢)p,,(x) +er—e/2 =r—1+¢/2 , thus
soy(x) <r—1+log(l+ My —yol"e' ™).

The definition of 1 is thus coherent as soon as M|y — yo|7e! ™" < e/2, i.e

2e M
vlog |y — yo| + log <r.

In this case v coincides with ¢, on a neighborhood of {¢) = r} , and with
(1 —¢€)py,(z) +er —e/2

on a neighborhood of the polar set 1 ~1(—oo) . By Stokes’ formula applied to
v(T,,r) , we infer

V(T py,r) = v(T 1) 2 (T 4) = (1= €)Pu(T) py,)-
From (5.10) we get V(y,r) < rv(T, ¢y, ) , hence
Ua(y) < p(y) + V(y.7) —ar < p(y) +r(v(T, ¢y, 7) —a) |
(5.13) Ua(y) < p(y) +7((1 = &)"v(T, @y,) —a)

Suppose ylogly — yo| + log(2eM/e) < 1o , ie |y — yo| < (e/2eM)/7ero/7;
one can then choose r = ylog|y — yo| + log(2eM/¢e) , and by (5.13) this yields
the inequality asserted in theorem 5.12 . [

p
p

e Fourth step : application of Hormander’s L? estimates.

The end of the proof rests upon the following crucial result, known as the
Hormander-Bombieri-Skoda theorem (cf. [H6] , [Bo] and [Sk]).

THEOREM 5.14. — Let u be a psh function on a pseudoconvex open set
Q C C" . For every point zy € ) such that e~ is integrable in a neighborhood

of zg , there exists a holomorphic function F' on Q) such that F(zy) = 1 and
|F(2)|?e 1)
——————d\(z) < 400 .

o T+ [apyrre )

COROLLARY 5.15. — Let u be a psh function on a complex manifold Y. The
set of points in a neighborhood of which e~ " is not integrable is an analytic subset

of Y.



Proof. — The result is local, so we may assume that Y is a ball in C™. Then the
set of non integrability points of e~ is the intersection of all hypersurfaces F~1(0)
defined by the holomorphic functions F' such that [ |F|?e™“d\ < +oo. Indeed F
must vanish at any non integrability point, and on the other hand theorem 5.14
shows that one can choose F'(zp) = 1 at any integrability point zo. [

The main idea in what follows is due to Kiselman [Ki2]. For all real numbers
a,b> 0, we let Z,; be the set of points in a neighborhood of which exp(—U, /b)
is not integrable. Then Z, ; is analytic, and as the family (U,) is increasing in a,
we have Za’,b’ D) Za”,b” if ' < CLH, <Y

Let yo € Y be a given point. If yy ¢ E., then v(T, ¢,,) < c by definition of E..
Choose a such that v(T, ¢, ) < a < c¢. Lemma 5.9 (a) implies that U, is bounded
below in a neighborhood of yg, thus exp(—U,/b) is integrable and yo ¢ Z, ;, for all
b> 0.

On the other hand, if yy € E. and if a < ¢, then lemma 5.12 implies for all
e > 0 that

Ua(y) < (1 = &)(c = a)ylogly — yo| + C(e)
on a neighborhood of yy. Hence exp(—U,/b) is non integrable at yy as soon as
b< (¢c—a)y/2n', where n’ = dimY. We obtain therefore

E.= (] Zaw

a<c
b<(c—a)vy/2n’

This proves that E. is an analytic subset of Y. [J

EXERCISE 5.16. — Combine EIl Mir’s extension theorem and Siu’s theorem in
order to get the following result : let P be a complete pluripolar set in a complex
manifold X and A an analytic subset of X \ P. If A has finite mass near every
point of P, then A is analytic in X.

This result has been first obtained by E. Bishop when P is an analytic subset
of X. The general case is due to Siu.

6. Monge-Ampere capacities and quasi-continuity.

Let © be a bounded open subset of C". We denote by P(2) the set of all
psh functions that are # —oo on each connected component of 2. The following
fundamental definition has been introduced in [B-T2].

DEFINITION 6.1. — For every Borel subset E C Q, we set

c(E,Q) = Sup{/E(ddcu)” ; ue P(Q), 0<u<1}.

The Chern-Levine-Nirenberg inequalities show that ¢(FE, ) < 400 as soon as
E cc Q. If Q C B(z, R), we can choose u(z) = R72|z — z|? and we obtain



therefore
2" nl

T R2n
where A is the Lebesgue measure. From the standard properties of measures
(countable additivity, monotone convergence theorem), we immediately deduce :

o(B,Q) > A(E)

PROPERTIES 6.2. — Let 2 cC C" and E, Eq, FEs,... Borel subsets of ).
Denote ¢(E) = ¢(E, Q) for simplicity.

(a) If By C Es then ¢(Eq) < ¢(E3).

(b) c(Uj}l Ej) < 23;1 c(Ej).
(¢c) IfE; C EyC...thenc(JE;) <limj_yoc(E;). O

A set function ¢ : E +— ¢(F) defined on all Borel subsets E C 2 with values in
[0, +00] is called a capacity, resp. a subadditive capacity, if ¢ satisfies the axioms
(a,c), resp. (a,b,c) and ¢(f)) = 0. The capacity is said to be inner regular if all Borel
subsets satisfy
(d) c(E) = sup c(K).

K compact CE

Similarly, ¢ is said to be outer regular if all Borel subsets E satisfy

F) = inf
(e) C< ) G O;Ieln DEC<G)
Example 6.3. — If (o) is a family of positive Radon measures on €2, then

c¢(FE) = sup uo(F) is a subadditive capacity. In general, ¢ does not satisfy the
additivity property

El, Es diSjOiIlt = C(E1 U EQ) = C(E1> + C(EQ) ;

for a specific example, consider the measures p1 = dg, 2 = dX on R and the sets
Ey = {0}, B> =]0,1] ; then

c{oh) =1, (0, 1])=1, ¢([0,1])=1.
Moreover, the capacity ¢ = sup p, is inner regular because all Radon measures on
a separable locally compact space are inner regular. However, ¢ need not be outer
regular : for instance, take duq(r) = a tp(x/a)dr on R, a > 0, where p > 0 is
a function with support in [—1,1] and [, p(x)dx =1 ; then ¢({0}) = 0 but every
neighborhood of 0 has capacity 1. [

The capacity c(e, Q) defined in 6.1 is called the relative Monge-Ampere capacity
on Q. It is associated to the family of measures p,, = (dd“u)”, u € P(Q),0 < u < 1.
In particular c(e, (2) is inner regular. It is also outer regular, but this fact is non
trivial and will be proved only in § 9.

When c¢ is a capacity and E C ) an arbitrary subset, we define the inner
capacity ¢, (F) and outer capacity ¢*(FE) by
(6.4") e (E) = sup c(K),

K compact CE



(6.4") (E)= _inf ¢(G),

Gopen DFE

A set E C Q is said to be c-capacitable if ¢, (E) = ¢*(F). By definition, ¢ is thus
regular if and only if all Borel subsets are c-capacitable.

Now we compare capacities associated to different open sets €.

THEOREM 6.5. — Let €1 C Q9 cC C™. Then
(a) c(E,Q1) = ¢(F,Qsq) for all Borel subsets E C €.
(b) Let w CC €. There exists a constant A > 0 such that ¢(F,$;) < Ac(E, Q)
for all Borel subsets E C w.

Proof. — Since every psh function u € P(£23) with 0 < v < 1 induces a psh
function in P(€;) with the same property, (a) is clear.

(b) Use a finite covering of w by open balls contained in €; and cut E into
pieces. The proof is then reduced to the case when w CC €2y are concentric balls,
say 3 = B(0,r) and w = B(0,r — ¢). For every u € P(£;) such that 0 < u < 1,

set
ii(z) = max{u(z), A(]z|% — r?) + 2} on 4,
A=)+ 2 on 9\ Q.
Choose ) so large that A((r — )2 —r?) < —2. Then @ € P(s) and % = u on w.
Moreover 0 < u < M for some constant M > 0, thus for £ C w we get

/(ddcu)” = / (dd°u)"™ < M"c(E,Qa).
E E
Therefore ¢(E, Q1) < M"c(E,Q2). O

As a consequence of theorem 6.5, it is in general harmless to shrink the domain
) when one wants to estimate capacities.

THEOREM 6.6. — Let K be a compact subset of ) and w CC €1 a neighbor-
hood of K. There is a constant A > 0 such that for every v € P(2)

1
c(KN{v<-m}, Q) <Al - o

Proof. — For every u € P(Q2), 0 < u < 1, theorem 1.8 implies
/ (ddu)" / |v|(dd°u) CKO_;”'U”Ll(w) O
Kﬁ{v<—m} m
DEFINITION 6.7. — A set P C €2 is said to be pluripolar in § if there exists

v € P(Q) such that P C {v = —o0}.

COROLLARY 6.8. — If P is pluripolar in €), then
c*(P,Q)=0.



Proof. — Write P C {v = —oo} and Q = [, ; with ©; CC . Theorem 6.4

shows that there is an open set G; = Q; N {v < —m;} such that ¢(G;, ) < e277.
Then {v = —oc0} C G =JG; and ¢(G, Q) <e. O

THEOREM 6.9. — Let vy, v € P() be locally bounded psh functions such
that (vg) decreases to v. Then for every compact subset K C € and every § > 0

kmf c(KN{vg >v+6},Q)=0.

Proof. — It is sufficient to show that

sup /K(vk —v)(dd“u)"

ueP(Q),0<u1

tends to 0, because this supremum is larger than d.c(K N {vx > v + J§},Q). By
cutting K into pieces and modifying v, vg, u with the max construction, we may
assume that K C Q = B(0,r) are concentric balls and that all functions v, v, u
are equal to A\(]z|? —72) +2) on the corona Q2 \ w, w = B(0,r —¢). An integration
by parts yields

/Q(Uk —v)(ddu)" = — /Q d(vp —v) Adu A (ddu)™ .

The Cauchy-Schwarz inequality implies that this integral is bounded by

1/2
A(/ (v — ) A d*(v5 — ) A (dd°u)" )
Q
where

A% = / du A du A (ddu)" ™t < / dd®(u?) A (dd®u)™"
Q Q

and this last integral depends only on the constants A, r. Another integration by
parts yields

/Qd(vk —v) Ad(vg — v) A (ddu)" ™ = — /Q(vk — v)dd® (v — v) A (ddu)"?

< /(vk — v)ddv A (dd“u)" .
Q

We have thus replaced one factor dd“u by dd°v in the integral. Repeating the
argument (n — 1) times we get

/Q(vk —v)(dd“u)"™ < C’(/ (v — v)(ddcv)”)

Q

1/2"

and the last integral converges to 0 by the bounded convergence theorem. []

THEOREM 6.10 (Quasi-consinuity of psh functions). — Let Q@ cC C" and
v € P(Q). Then for each € > 0, there is an open subset G of Q) such that ¢(G,Q2) <
and v is continuous on Q2 \ G.



Proof. — Let w CC 2 be arbitrary. We first show that there exists G C w
such that ¢(G,€)) < ¢ and v continuous on w \ G. For m > 0 large enough, the
set Go = w N {v < —m} has capacity < £/2 by theorem 6.6. On w \ Gy we have
v = —m, thus © = max{v, —m} coincides with v there and ¢ is locally bounded
on €. Let (vg) be a sequence of smooth psh functions which decrease to ¢ in a
neighborhood of @. For each ¢ > 1, theorem 6.9 shows that there is an index k(¥)
and an open set

Gk(g) =wn {?Jk(g) >0+ 1/5}

such that c(Gpr), Q) < £27%=1. Then G = GoUJ G(¢) has capacity ¢(G,Q) < ¢
by 6.2 (b) and (vy(e)) converges uniformly to ¥ = v on w\ G. Hence v is continuous
on w \ G. Now, take an increasing sequence w; C wy C ... with [Jw; =  and
G; C w; such that ¢(G;, ) < €277 and v continuous on w; \ G;. The set G = |J G}
satisfies all requirements. [

As an example of application, we prove an interesting inequality for the Monge-
Ampere operator.

PRrROPOSITION 6.11. — Let u, v be locally bounded psh functions on 2. Then
we have an inequality of measures

(dd® max{u,v})" > 1z} (ddu)"™ + 1oy (ddv)".

Proof. — 1t is enough to check that

/K (dd® max{u, v})" > / (dd°u)™

K

for every compact set K C {u > v} ; the other term is then obtained by reversing
the roles of v and v. By shrinking €2, adding and multiplying with constants,
we may assume that 0 < u,v < 1 and that u,v have regularizations u.,v. with
0 <ue, ve <1on Q. Let G C €2 be an open set of small capacity such that u, v
are continuous on 2 \ G. By Dini’s lemma, u.,v. converge uniformly to u,v on
2\ G. Hence for any § > 0, we can find an arbitrarily small neighborhood L of K
such that u. > v. —d on L\ G for € small enough. As (dd“u.)™ converges weakly
to (dd‘u)™ on €2, we get

/(ddcu)" < liminf/(ddcue)"
K L

e—0
< liminf (/ (ddue)™ —I—/ (dducs)™)
e G L\G

e—0

< ¢(G, Q) + lim inf/ (dd® max{ue + 6,v:})".
I\NG

Observe that max{u. + d,v.} coincides with u. + § on a neighborhood of L\ G.
By weak convergence again, we get

/K(ddcu)” < (G, Q) + /L\G(ddc max{u + §,v})".



By taking L very close to K and ¢(G, Q) arbitrarily small, this implies

/K (ddu)" < / (dd° max{u + 5, v})"

K
and the desired conclusion follows by letting ¢ tend to 0. U

7. Extremal functions and negligible sets.

Let (uq) be a family of upper semi-continuous functions on {2 which is locally
bounded from above. Then the upper envelope

U = SuUp Uy (2)
(6%

need not be upper semi-continuous, so we consider its “upper semi-continuous
regularization”
u*(z) = lim sup u > u(z).
e=0 B(ze)
It is easy to check that u* is upper semi-continuous and that u* is the smallest
upper semi-continuous function > wu.

Let B(z;,¢;) be a denumerable basis of the topology of Q. For each j, let (2;%)
be a sequence in B(z;,¢;) such that
supu(zjy) = sup u,
k B(zj.5)
and for each (j,k), let a(j,k,¢) be a sequence of indices a such that u(z;i) =
SUPy Ua(j,k,0) (Zjk)- Set
U = SUp Uq(j,k,0)-
gk, b

Then v < w and v* < v*. On the other hand
sup v > supv(2jx) = SUP Ua(jk,e)(2jk) = supu(zjr) = sup u.
B(zj,¢5) k k.e k B(zj,e5)

As every ball B(z,¢) is a union of balls B(z;,¢;), we easily conclude that v* > u*,

hence v* = u*. Therefore :

CHOQUET’S LEMMA 7.1. — Every family (u,) has a denumerable subfamily
(ua(;j)) whose upper envelope v satisfies v < u < u* = v*.

ProprosiTION 7.2. — If all u, are psh, then u* is psh and equal almost
everywhere to u.

Proof. — By Choquet’s lemma one may assume that (u,) is denumerable.
Then u = supu, is a Borel function. For every (zp,a) € 2 x C", u,, satisfies the
mean value inequality on circles, hence

do

2 27
4o ‘
u(zg) = sup uqn(zp) < sup/ o (20 + ae?) — < / u(zo + ae®) —.
0 27 0 2T



It follows easily that each convolution uxp. also satisfies the mean value inequality,
thus u * p. is smooth and psh. Therefore (u x pc) x p;, is increasing in 7. Letting
e tends to 0, we see that u % p, in increasing in 7. Since u * p. is smooth and
u* pe = u by the mean value inequality, we also have u x p. > u*. By the upper
semi-continuity we get lim._,gu *x p. = u*, in particular v* is psh and coincides
almost everywhere with the L _ limit u. [

A set of the form
(7.3) N={z2€Q; u(z) <u*(2)}

is called negligible. Every pluripolar set P = {v = —oo} is negligible : let
w € P()NC>®(Q) such that w > v and u, = (1 — a)v + aw, a €]0,1]. Then u,
is increasing in o and u = sup,, u,, satisfies

U= —00 on {v=—o0},
u=w on {v > —oo}.
Hence u* = w and {u < u*} = {v = —o0}.

To study further properties of the capacity, we consider the extremal function
associated to a subset E of () :

(7.4) up(z) =sup{v(z);v € P(Q), v<—1on E, v <0on Q}.

Proposition 7.2 implies u}, € P(€2) and —1 < uw} < 0. In the sequel, we need
the fundamental result of Bedford-Taylor [B—T1] on the solution of the Dirichlet
problem for complex Monge-Ampere equations.

THEOREM 7.5. — Let {2 CC C™ be a smooth strongly pseudoconvex domain
and let f € C°(09Q) be a continuous function on the boundary. Then

u(z) = sup{v(2) ; v € P(Q)NC%Q), v < f on 0N}
is continuous on Q and psh on ), and solves the Dirichlet problem

(dd°u)" =0on Q, wu=f on ON.

Sketch of proof. — Let g € C?(Q) be an approximate extension of f such
that |g — f| < € on 09 and let ) < 0 be a smooth strongly psh exhaustion of €.
Then g — ¢ + A1) is psh for A > 0 large enough and g — e+ A = g—¢e < f on
09, hence g — € + Ay < u on €. Similarly, for all v € P(Q) N CY(Q) with v < f
on 0f, the function v — g — e + Ay equals v — g — e < 0 on 0N and is psh for A
large, thus v — g — € + Ay < 0 on Q by the maximum principle. Therefore we get
u < g+e— A ;as e tends to 0, we see that u = f on 92 and that u is continuous
at every point of 9. Since g+ec+ Ay = g+ > f on 01, there exists > 0 such
that u* < g+ e+ Ay on Q\ Qs, where Q5 = {¢p < —d}. For n > 0 small enough,
the regularizations of u* satisfy u* x p,, < g + € + Ay on a neighborhood of 9€)s.
Then we let

y _{max{u**pn—Qe,g—e—i—Alﬂ} on (s
 lg—e+ Ay on Q\ Q.



It is clear that v, is psh and continuous on Q and that v. = g—e < f on 052, hence
ve < uon Q. We obtain therefore u* *pp <u+2eo0n Q5. As u < u* < u*p,, we
see that u* x p, converges uniformly to u on every compact subset of (2. Hence u
is psh and continuous on €.

We shall complete the proof under the following additional assumptions :
[ € C?(09) and u € C?(Q) ; the general case is difficult and rather technical
(cf. [B-T1]). The plurisubharmonicity of u implies det(9*u/0z;0zx) > 0. If we
had a strict inequality at one point zg € €, say zg = 0 for simplicity, the Taylor
expansion of u at zg would give

u(z) =ReP(2) + Y _ cjrzZr + o(|2])

where P is a holomorphic polynomial of degree 2 and (c;i) a positive definite
hermitian matrix. Hence we would have u > Re P + ¢ on a small sphere S(0,7)
with B(0,7) C Q. The function

_ { max{u, Re P + ¢} on B
B Q

u on

0,7)
\ B(0,r)
is then continuous on Q and psh, and satisfies
v=u<f ondf.
By the definition of u, we thus have u > v on Q. This is a contradiction, because

v(0) > Re P(0) = u(0). O

COROLLARY 7.6. — Fix a ball B(zy,r) C Q and let f € P(Q) be locally

bounded. There exists a function fe P(Q) such that f>fonQ, J = 1/f on
Q\ B(0,7) and (dd°f)™ = 0 on B(zg,r). Moreover, for f; < fo we have f; < f.

Proof. — Assume first that f € CO(Q_). By theorem 7.5 applied on B(zg, ),
there exists w psh and continuous on B(zp,r) with v = f on S(zp,r) and
(dd°u)™ = 0 on B(zg, ). Set

_ on B(zp,r)

f—{? on Q\ B(z,7).

By definition of u, we have f =wu > f on B(zp,r). Moreover, f is the decreasing
limit of the psh functions

| max{u, f + %} on B(zp,r)
gk = f"’% near Q\B(ZOJ’)

hence f is psh. Also clearly, for fi < f» we have u; < ug, hence f1 < fo. For
an arbitrary locally bounded function f € P(Q), write f as a decreasing limit of
smooth psh functions fr = f x pi/; and set f= limg oo | fe. Then f has all
required properties. [

Now we prove the following three fundamental results by a simultaneous
induction on n.



PROPOSITION 7.7. — Let u,u; € P(§2) be locally bounded functions such
that u; increases to u almost everywhere. Then the measure (dd®u;)"™ converges
weakly to (dd“u)™ on Q.

PROPOSITION 7.8. — Let €2 be a strongly pseudoconvex smooth open subset
of C". If K C () is compact, then

(a) (dduj )" =0o0n 0\ K.
(b) o(K,Q) = [ (dduf )™ = [(dduj)™.

PROPOSITION 7.9. — If a Borel set N C ) is negligible, then
¢(N,Q) = 0.

The inductive proof is made in three steps.

Step1:7.7in C" = 7.8 in C™.
Step 2:7.8in C" = 7.9in C™.
Step 3 :7.7and 7.9 in C* = 7.7 in C"t!.

In the case n = 1, proposition 7.7 is a well-known fact of distribution theory : u;

converges to u in L (), thus ddu; converges weakly to dd“u. By the inductive

argument, propositions 7.7, 7.8, 7.9 hold in all dimensions.

Proof of step 1. — By Choquet’s lemma, there is a sequence of functions
v; € P(2) such that v; < 0 on Q, v; < —1 on K and v* = uj. If we replace
v; by max{—1,vy,...,v;}, we see that we may assume v; > —1 for all j and v;

increasing. Then fix an arbitrary ball B(zp,r) C Q\ K and consider the increasing
sequence v; given by corollary 7.6. We still have v; < 0 on © and v; < —1 on
K, thus v; < 9; < ug and v = lim9; satisfies v* = 0% = wu}, in particular
limo; = limv; = u}, almost everywhere. Since (dd°0;)™ = 0 on B(z,r), we
conclude by 7.7 that (dd°u},)™ = 0 on B(zg,r) and 7.8 (a) is proved.

To prove 7.8 (b), observe first that —1 < wj, < 0 on Q, hence ¢(K, Q) >
[ (dduf)™ by definition of the capacity. If ¢ < 0 is a smooth strictly psh
exhaustion function of 2, we have Ay < —1 on K for A large enough. We can
clearly assume v; > A on 2 ; otherwise replace v; by max{v;, A}. Now, let
w € P(Q2) be such that 0 < w < 1 and set
w=>01-c)w—1+¢/2, w; =max{w, v;}.
Since —1+¢/2 < w’ < —¢/2 on 2, we have w; = v; as soon as Ay > —¢g/2,
whereas w; = w’ > —1+¢/2 > v; on a neighborhood of K. Hence for 6 > 0 small
enough Stokes’ theorem implies
/ (ddv;)™ :/ (ddw;)"™ > / (ddw;)" = (1—5)”/ (dd“w)™.
Qs Qs K K
By 7.7 (dd®v;)™ converges weakly to (dd‘u},)"™ and we get

limsup/ (ddcvj)"g/_ (ddcu%)”:/(ddcu})”.
Qs

j—>+00 Q(s K



Therefore [ (dd“w)"™ < [, (dd“uj)™ and ¢(K, Q) < [ (dduf)". O

Proof of step 2. — Let N = {v < v*} with v = supv,. By Choquet’s lemma,
we may assume that v, is an increasing sequence of psh functions. The theorem of
quasi-continuity shows that there exists an open set G C €2 such that all functions
v and v* are continuous on 2\ G and ¢(G, Q) < e. Write

NCGUINNQ\G)=GU |J Ks,
6, HEQ

where 6 > 0, A\ < p and
Ksxy ={2€Q5\G; v(z) <A< p<o*(2)}.

As v* is continuous and v lower semi-continuous on Q \ G, we see that Ky, is
compact. We only have to prove that c(Ksx,,§2) = 0. Set K = Ky, for simplicity
and take an open set w CC (). By subtracting a large constant, we may assume
v* < 0 on w.

Multiplying by another constant, we may set A = —1. Then all v, satisfy v, < 0
on w and v, < v < —1 on K. We infer that the extremal function ux on w satisfies
ug = v, uj = v, in particular uj > p > —1 on K. By proposition 6.11 we obtain

(K w) = /K (dd°uyo)" < /K (dd max{ufe, u})" < |ul"e(JE, w)

because —1 < ||t max{u}, pu} < 0. As |u| < 1, we conclude that ¢(K,w) = 0,
hence ¢(K,) =0. O

Proof of step 3. — We have to show that if ) c C**+!,

lim [ x(ddu;)" Tt = / x(ddu)™
J—=Foe Jo Q

for all test functions y € C§°(Q2). That is,

(7.10) lim wi(ddu;)" Ay = / u(ddu)™ Ny

Jj—+oo Jo Q
with v = dd®x. As all (1, 1)-forms  can be written as linear combinations of forms
of the type ia A, a € AMO(C™)*, it is sufficient, after a change of coordinates, to
consider forms of the type v = £x(2)dzn41 A dZpt1, X € C§°(Q2). In this case, for
any locally bounded psh function v on €2, the Fubini theorem yields

/U(ddcv>n/\7:/d>\(zn+1)/ X (e, zn41)(dd v (e, 2n11))"
Q ( Q(zn+1)

where Q(z,411) = {2z € C";(z,2,41) € Q} and f(e, 2,41) denotes the function
z — f(z,2n41) on Q(zp41). Indeed, the result is clearly true if v is smooth.
The general case follows by taking smooth psh functions v; decreasing to wv.
The convergence of both terms in the equality is guaranteed by theorem 1.5 (a),
combined with 1.3 and the bounded convergence theorem for the right hand side.



In order to prove (7.10), we thus have to show
(7.11) lim xuj(ddu;)"™ = / xu(ddu)™
J—+o0 w w
for w C C", x € C§°(w) and u; € P(w) N LS, (w) increasing to u € P(w) almost
everywhere. To prove (7.11), we can clearly assume 0 < x < land 0 < uj; <u <1
on §2. By our inductive hypothesis 7.7, (dd“u;)™ converges weakly to (dd“u)™. As
Uj S UK Us = U* P, WE get

limsup/xuj(ddcuj)" < lim  lim /Xug(ddcuj)”

j—+o00 e—0j—40c0
= lir% Xue (ddu)™ = / xu(ddu)™.
e— w w

To prove the other inequality, let ¢ > 0 and choose an open set G C w such that
c(G,w) < € and u,u; are all continuous on w \ G. Let v = supu;. Then v* = u
because v* and u are psh and coincide almost everywhere. Let #; be a continuous
extension of uj|w\G to w such that 0 < u; < 1. For j > k we have u; > uy, hence

/Xuj(ddcuj)” 2/ XU (ddu;)"

w\G
>/Xﬂk(ddcuj)”—/(ddcuj)”.
w G

The last integral on the right is < ¢(G,w) < e. Taking the limit as j tends to +oo,
we obtain

liminf/xuj(ddcuj)" >/Xﬂk(ddcu)"—e

o0 g
> / Xuk (ddu)™ — 2e.
w

The second term e comes from [, (dd“u)” < ¢(G,w) < €. Now let k — 400 and
e — 0 to get

liminf/xuj(ddcuj)” >/Xv(ddcu)”.

j—too

Moreover, the Borel set N = {v < u = v*} is negligible and the inductive
hypothesis 7.9 implies ¢(N,w) = 0. Therefore

/wxw — v)(ddu)" < / (dd°u)™ =0

N
and the proof is complete. [

THEOREM 7.12. — For each j = 1,...,q, let uf be an increasing sequence

of locally bounded psh functions such that uf converges almost everywhere to
uj € P(). Then

a) dd°uf A ... AdduF — dduq A ... A ddCu, weakly.
1 q q
b) wfddeuk A ... A ddeuF — uiddCus A ... A ddCu weakly.
1 2 q q



Proof. — (a) Without loss of generality, we may assume ¢ = n, otherwise we

complete with additional stationary sequences ué’ 11 = Ugglye - uk = wu, where

Ug41, - - -, Uy are chosen arbitrarily in P(Q2) N C'*°(€2). Now apply proposition 7.7
to up = Alu’f + -+ )\nuffb, Aj > 0, and consider the coefficient of A ...\, in
(ddcuk)”.
(b) Same proof as for (7.11). O
EXERCISE 7.13. — Use formula 7.8 (b) in order to compute the capacity of
K = B(0,7) in a ball Q = B(0, R) ; show that the extremal function ug is
2]

ug(z) = (log §>_1 max{log E,log}%}.

8. Characterization of pluripolar sets.

First we quote a few elementary properties of the extremal functions u7.

PROPERTIES 8.1. —
a) if By C By C S, then uj, > up,.
b) if E CQy C Qy, then U o, 2 Upq,-

ddu%;)™ is supported by OE.

(
(
¢c) ifECQ, then ut, = ug = —1 on E° and (dd“u*.)" = 0 on Q \ E ; hence
( E E
d) w} =0 if and only if there exists v € P(2), v < 0 such that E C {v = —o0o}.
E
(

e) Iif E CC Q and if Q is strongly pseudoconvex with exhaustion ¢ < 0, then
uy = Ay for some A > 0.

Proof. — (a), (b) are obvious from definition (7.4); (e) is true as soon as
Ay < —1 on FE ; the equality (dd°u’;)™ = 0 on Q\ E in (c) is proved exactly in
the same way as 7.8 (a) in step 1.

(d) If EC{v=—o0},ve P(Q),v <0, then for every ¢ > 0 we have ev < ug,
hence up =0 on 2\ {v = —oc0} and u}, = 0.

Conversely, Choquet’s lemma shows that there is an increasing sequence
v; € P(Q), -1 < v; < ug, converging almost everywhere to uj. If uj, = 0,
we can extract a subsequence in such a way that [, [vj|dA < 277. As v; < 0 and
v; < —1 on E, the function v = Zvj ispsh <0and v=—-oc0con E. [

If G cC Q is an open subset, K; C Ky C ... compact subsets of G with
K; C K, and JK; = G, then uj, =—1on K} D Kj q,lim | uj, =—1lonG.
Therefore uf, < lim u}(j < ug < ug and theorems 1.5, 7.8, 8.1 (c) show that

(8.2) c(G,Q) :/_(ddcué)” :/(ddcué)”.

G Q



PROPOSITION 8.3. — Let Q CC C" and K; D K9 D ..., K =) K, compact
subsets of (). Then

(2) (lim Tui,)" =ui.
(b) lime(K;,Q) = (K, Q).
(c) N (K,Q)=c(K,Q).

Proof. — We have lim T uj., < uj by 8.1 (a). On the other hand, let v € P(£)
be such that v < 0on 2 and v < —1 on K. For every € > 0 the open set {v < —1+4¢}
is a neighborhood of K, thus K C {v < —1 + ¢} for j large. We obtain therefore
v—e < uf, and ug = sup{v} < limuj , whence equality (a). Property (b) follows
now from theorems 7.7 and 7.8 (b), and (c) is a consequence of (b) when K are
neighborhoods of K. [J

LEMMA 8.4. — Let Q cC C" and u,v € P(Q) locally bounded psh functions
such that © < v <0 and li%IQ u(z) = 0. Then

/Q (ddv)" < /Q (dd°u)"™.

Moreover [ (dd°u)™ = 0 if and only if u = 0.

Proof. — As max{u+e,v} = u + ¢ near 0f), we get

/(ddcu)” = /(ddc max{u +¢,v})".
Q Q
Let € tend to 0, and observe that the integrand on the right hand side converges
weakly to (ddv)™ by theorem 1.5. The asserted inequality follows.
Now, assume that u(zp) < 0 at some point. Then
v(z) = max{u(z),e?|z|* — ¢}

coincides with w near 92 and with
therefore

2|2|? — € on a neighborhood w of z5. We get

/Q (ddu)™ = /Q (ddv)" > /w (ddv)™ > 0. O

PROPOSITION 8.5. — Let Q CC C" be strongly pseudoconvex. If E CC () is
an arbitrary subset, then

(B, Q) = /Q (ddeu)™.

Proof. — Let 1 < 0 be a strictly psh exhaustion function on (). For every
open set G D E, we have u}, > ug > Ay by 8.1, and lemma 8.4 implies

[ @ty < [ @@y = c(6.9)

Q



thus [, (dd°u};)" < ¢*(E,Q).

Conversely, Choquet’s lemma shows that there exists an increasing sequence
v; € P(Q) with —1 < v; <0, v; > Ay on Q and limv; = up almost everywhere.
If
Gj={z€ Q1 +1/j)vj(z) < -1}

then G; O F, G; is decreasing and (1+1/j)v; < ug,. Thus lim T ug;, = uj almost
everywhere and theorem 7.7 gives

lim [ (dduf )" :/(ddcu’}g)”. O
j—too Jo ! Q

COROLLARY 8.6. — Let €2 CC C™ be strongly pseudoconvex. If E CC €, then
*(E,Q) =0 if and only ifuy, =0. O

Now, we prove an important result due to Josefson [Jo]. A set P in C™ is said
to be locally pluripolar if for each z € P there is an open neighborhood 2 of z and
v € P(Q) such that PNQ C {v =—c0}.

THEOREM 8.7 (Josefson). — If P C C" is locally pluripolar, there exists
v € P(C") with P C {v = —o0}, i.e. P is globally pluripolar in C™.

Proof. — By the definition of locally pluripolar, one can find sets P;, 2; with
P; cc Q; cc C, Uj>1 P; = P, each Q; strongly pseudoconvex. By 8.1 (d) and
8.5, we have c¢*(P}, ;) = 0.

Let By, be the ball of center 0 and radius k in C™ and j(k) a sequence of integers
such that each integer is repeated infinitely many times and ;) C Bg. By the
comparison theorem 6.5 we have c*(Pj), Br4+2) = 0, hence the extremal function
u}j(k) in Bjyo is zero and we can find vy € P(Bjgy2) with —1 < v <0, v, = —1

on Py and ka lu|dX\ < 27F. Now set

v (2) on By
Ok (2) = { max{vg(2),|z]* — (k + 1)} on By \ By
|22 — (k +1)? on C"\ Bjio.

As 7, < 0 on By, and ka |D|dX\ < 27F, the series v = Y ¥, defines a global psh
function on C". Moreover v, = —1 on Pjy) and each Pj; is repeated infinitely
many times, therefore

v=—00 oOn UPj:P.D

COROLLARY 8.8. — Let Q C C" and P C ). Then P is pluripolar in § if
and only if ¢*(P,Q2) = 0.

Proof. — That P is pluripolar implies ¢*(P, ) =
6.8. Conversely, if ¢*(P,Q2) = 0 then ¢*(P Nw' w) =

was proved in corollary

0
0 for all concentric balls



W' CC w cC Q and corollary 8.6 combined with 8.1 (d) shows that P N’ is
pluripolar in w. Josefson’s theorem implies that P is globally pluripolar in C™. [

COROLLARY 8.9. — Negligible sets are pluripolar.

Proof. — By Choquet’s lemma every negligible set is contained in a Borel
negligible set N = {v < v*} with v = sup v;. However, in step 2 of § 7, we showed
that N C G UJ K5, with G open, ¢(G,Q) < € and ¢(Ksx,,2) = 0. By 8.3 (c),
we have ¢*(N, Q) < € for all € > 0. Therefore ¢*(NN,Q) = 0 and N is pluripolar. [

9. Capacitability and outer regularity.

First we introduce some definitions and prove a general capacitability result due
to G. Choquet. All topological spaces occurring here are assumed to be Hausdorff.
DEFINITION 9.1. — Let X be a topological space.
e A F, subset of X is a countable union of closed subsets of X ;
e A F_s subset of X is a countable intersection of F, subsets of X.

e A space X is said to be a K, (resp. K,5) space if it is homeomorphic to some
F, (resp. F,s) subset of a compact space W.

PROPERTIES 9.2. —
(a) Every closed subset F of a K,s space X is a K,5 space.
(b) Every countable disjoint sum [[ X; of K,s spaces is a K5 space.
(c) Every countable product [[ X; of K,s spaces is a K5 space.

Proof. — (a) Write X = ﬂ£>1 Gy and Gy = Um>1 Ky, where Ky, are closed
subsets of a compact space W. If F is the closure of F in W, we have

F=XNF=()GnF, GNF=|J KmnF.

221 m>1

(b) Let X;, j > 1, be K,s spaces and write for each j
Y= ¢=Uw,
21 m2>1

where Kgm is a closed subspace of a compact space W;. Then [[W, can be
embedded in the compact space W = [[(W; L1 {x}) via the obvious map that sends
w e Wj to (%,...,% w,*,...) where w is in the j-th position. Now X =[] X can

be written .
X=(\G, Ge=J XKl

01 m>1;5>1



As K Zm is sent onto a closed set by the embedding [[ W; — W, we conclude that
X is a K5 space.

(c) With the notations of (b), write X = [[ X as
X =G, Gr=G} xG?_ | x ... x G x Wygg X oo x Wy x ..,
>1

1 2 4
Go= |J Kl XKy, X X Kf, x Wegr XX Wy x

ml,...,m521

where each term in the union is closed in W = [[W,. O

DEFINITION 9.3. — A space E is said to be K-analytic if F is a continuous
image of a K5 space X.

THEOREM 9.4. — Let () be a topological space and Fy C E5 C ... K-analytic
subsets of (). Then |J E; and (| E; are K-analytic.

Proof. — Let f; : X; — E; be a continuous map from a K5 space onto Ej.
Set X =[[X, and f =][f; : X — Q. Then X is a K,; space, f is continuous
and f(X) = E;. Now set

X ={x=(z1,73,...) € [ [ X 5 film1) = falwa) =},
[ X =, f(@) = fi(z1) = folz2) = -
Then X is closed in [[ X, so X is a K5 space by 9.2 (a,c) and f(X)=E,;. O

COROLLARY 9.5. — Let  be a separable locally compact space. Then all
Borel subsets of () are K-analytic.

Proof. — Any open or closed open set in () is a countable union of compact
subsets, hence K-analytic. On the other hand, theorem 9.4 shows that

A={ECQ; Eand Q\ E are K — analytic}

is a o-algebra. Since A contains all open sets in E, A must also contain all Borel
subsets. [J

Before going further, we need a simple lemma.

LEMMA 9.6. — Let E be a relatively compact K-analytic subset of a topo-
logical space €). There exists a compact space T, a continuous map g : T — € and
a F,s subset Y C T such that g(Y) = E.

Proof. — There is a compact space W, a F,5 subset X C W and a continuous
map f: X — E onto E. Let

Y =A{(z, f(x);z € X} CX X FE

be the graph of f and T =Y the closure of Y in the compact space X xE.As fis
continuous, Y is closed in X x E, thus Y =T N (X x E). Now, X is a F,5 subset



of X,s0 X x E is a F,5 subset of X x E and Y is a Fy5 subset of T'. Finally E is
the image of Y by the second projection g : T"'— E. U

DEFINITION 9.7. — Let ) be a topological space. A generalized capacity is a
set function ¢ defined on all subsets E C () satisfying the following axioms :

(a) If B C B> C Q, then E(El) < E(EQ).
(c) If K1 D Ky D ... are compact subsets of Q, then ¢([ K;) = lim;_ o ¢(K).

CHOQUET’S CAPACITABILITY THEOREM 9.8. — Let Q2 be a K, space and let
¢ be a generalized capacity on ). Then every K-analytic subset E C () satisfies

¢(F) = sup ¢(K).
K compact CE

Proof. — As 1 is an increasing union of compact sets L;, we have ¢(E) =
lim;_, ;o ¢(E N Lj) by axiom (b); we may therefore assume that E is relatively
compact in 2. Then lemma 9.6 shows that there is a F,s subset Y in a compact
space T and a continuous map g : T — Q such that g(Y) = E. It is immediate to
check that ¢ o g is a generalized capacity on T. Hence we are reduced to proving
the theorem when () is a compact space and E is a F,s5 subset of (). Then write

EZﬂGz, GZ:UKﬁm
>1 m>1
where Ky, is a closed subset of 2. Without loss of generality, we can arrange that
Ky, is increasing in m. Fix A < ¢(E). Then
E=Gin()Gi= | Kimn[)G)
£>2 m>1 £>2
and axiom (b) implies that exists a subset 1 = Ky, N ﬂ@Q Gy of F such that
¢(E7) > A. By induction, there is a decreasing sequence £ D F1 D ... D Fy with
Ey=Kim, N...0 K, 0[] G
£>2s+1

and ¢(Es) > A. Set K = Ksm, = Es C E. Axiom (c) implies
¢(K) = lim ¢(Kim, N...NKgy,) > lim €(Es) > A

s—+o00 §—+0o0
and the theorem is proved. [J
Now, we apply these general results to the outer Monge-Ampere capacity c*

introduced in § 6.

THEOREM 9.9. — Let 2 cC C" be strongly pseudoconvex. Then the outer
capacity c¢*(e, ) is a generalized capacity in the sense of 9.7.



Proof. — Axiom 9.7 (a) is clear, and 9.7 (c) is a consequence of 8.3. To prove
9.7 (b), we only have to show that ¢*(|J E;, Q) < lim;_ 4o ¢*(Ej, Q). It is no loss of
generality to assume that E; CC . Let N; be the negligible set N; = {ug,; < u]*E]}
and Gy an open subset of Q with Gy D |JN; and ¢(Gy, Q2) < e. Consider the open
sets V; = {u, < —1+n}and G; = GoUV; D E;. Then (1 —n)~tuy, <u} <0
and lemma 8.4 implies ’ ’

oGy, <o+ eV @) = e+ [ (ddui,)”
Q

<et(1- n)_”/(ddcuE]_)” et (1) (B, Q),
Q

thanks to proposition 8.5. Further £; C G; and G; C Gy C ... since u]*Ej is
decreasing. Thus G = |JG,; D E = E; and

(G0 = Tim oGy Q) <ot (1-n)™" T o (B, 9).

j—+oo
Letting ,7 — 0 we get the desired inequality
(E,Q) < lim ¢*(E;,Q). 0

J—+

Choquet’s capacitability theorem combined with 8.3 (c¢) implies that every K-
analytic subset E C () satisfies

(9.10) (E,Q) = sup (K, Q) =c(E, Q).

K compact CE

When FE is a Borel set, we thus have ¢*(FE,Q) = ¢(E,Q). These results can be
restated as :

THEOREM 9.11. — Every K-analytic (in particular every Borel) subset of €2
is c-capacitable. Consequently c is outer regular. []

10. Siciak’s extremal function and Alexander’s capacity.

We work here on the whole space C™ rather than on a bounded open subset ).
In this case, the relevant class of psh functions to consider is the set Po(C™) of
psh functions v with logarithmic growth at infinity, i.e. such that

(10.1) v(z) <log, |z| +C

for some real constant C. Let E be a bounded subset of C™. We consider the global
extremal function introduced by Siciak [Sic| :

(10.2) Ugr(z) =sup{v(z) ; v € Pog(C"), v <0 on E}.

THEOREM 10.3. — If U}, is not identically +oo, then Uf, € Piog(C") and U},
satisfies an inequality

log, (|2]/R) < Up(2) < log, 2] + C



for suitable constants C, R > 0. Moreover U}, = 0 on E°,

(dd°U%) = 0 on C"\ F, / (dd°US)" = 1.
E

Proof. — Assume that U}, is not identically +o0o. Then U}, (z9) < 400 for some
point zg € C", say zp = 0 for simplicity. By the upper semi-continuity of Uy, this
implies that all functions v € Pos(C™) such that v < 0 on E are uniformly bounded
above by some constant My on a small ball B(0,70). As suppg,)v = x(logr)
where x is a convex increasing function, (10.1) implies x’ < 1, thus

x(logr) < x(logrg) +logr/rg for r = rg.
Therefore all functions v under consideration satisfy v(z) < log, (|z|/r0) + M.
In particular these functions are uniformly bounded above everywhere and Uy, =
(sup{v})* is psh of logarithmic growth on C". On the other hand, E is contained
in a ball B(0,R) so log, |2|/R < 0 on E and we get Ug(z) > log, |z|/R. The
equality (dd°Uf;)™ = 0 on C™ \ E is verified exactly in the same way as 7.8 (a).
The integral over F is obtained by the following lemma. [
LEMMA 10.4. — Let v € Piog(C™) be such that
logy 2] = C1 <wv(z) <logy 2]+ C2

for some constants. Then [, (dd“v)" = 1.

Proof. — 1t is sufficient to check that

/n(ddcvl)” < /n(ddcvg)”

when vq, v are two such functions. Indeed, we have

/ (ddlog, |z|)" = / (ddlog|z])" =1
n CTL

by Stokes’ theorem and remark 2.10, and we only have to choose vi(z) or
v2(2) = log, |z| and the other function equal to v. To prove the inequality, fix
r,e > 0 and choose C' > 0 large enough so that (1 —e)v; > vy — C on B(0,r). As
the function v = max{(1 — €)v1,v2 — C} is equal to vy — C for |z| = R large, we
get

(1-— 5)”/ (ddvp)" = / (ddu)"™ < / (ddu)" = / (ddvq)"
B(0,r) B(0,r) B(0,R) B(0,R)

and the expected inequality follows as ¢ — 0 and r — +o0. U

THEOREM 10.5. — Let E, Ey, E,,... C B(0,R) C C".
(a) IfEy C Es, then U, > Uy, .
(b) IfEiCEyC...and E=E;, then Uj = lim | U .
(c) IfKiD>K>D...and K =()Kj, then Ui = (lim T U )*.



(d) For every set E, there exists a decreasing sequence of open sets G; O E such
that Uy, = (lim 7 U(*;j)*.

Proof. — (a) is obvious and the proof of (c) is similar to that of 8.3 (a).

(d) By Choquet’s lemma, there is an increasing sequence v; € Piog(C™) with
Up = (limv;)* and v;(z) > log, |2|/R. Set G; = {v; < 1/j} and observe that
Uéj 2 Uj - 1/]

(b) Set v = lim | Uf . Then v € Plog(C") and v = 0 on E, except on the
negligible set N = (J{Ug, < Uf,}. By Josefson’s theorem, there exists w € P(C")
such that N C {w = —oo}. We set

= [ (1= D)0+ max{eyu(e) Soglel =) on Bo.e”)
! (1—%)v(z)—|—%log\z\ —j on Cm"\ B(0,¢l’)
where ¢; is chosen such that e;w < j2 — j on S(0, ejg). Then v; € Pog(C™) and
v; < 0 everywhere on FE for j large. Therefore

1 :
Up2Ug 2v; > (1 — —_)v—l—sjw on B(O,ejg)
J
and letting j — 400 we obtain Uf, > v. The other inequality is clear. [

Now, we show that the extremal function of a compact set can be computed in
terms of polynomials. We denote by Py the space of polynomials of degree < d in
Clz1y .-y 2n).

THEOREM 10.6. — Let K be a compact subset of C™. Then
1
U (2) = sup {E log | P(2)]; d > 1, P € Pay |Pll i) < 1},

Proof. — For any of the polynomials P involved in the above formula, we
clearly have % log |P| € Piog(C™) and this function is < 0 on K. Hence

1
7 log |P| < Uk.

Conversely, fix a point zg € C™ and a real number a < Uk (zg). Then there exists
v € Piog(C") such that v < 0 on K and v(z9) > a. Replacing v by v x ps — ¢
with 0 < ¢ < 1, we may assume that v € P, (C") N C*®(C"), v < 0 on K
and v(zg) > a. Choose a ball B(zg,r) on which v > a, a smooth function x with
compact support in B(zg, r) such that x = 1 on B(zp,7/2) and apply Hérmander’s
L? estimates to the closed (0,1)-form d”y and to the weight
©(z) = 2dv(2) + 2nlog |z — zo| + elog(1 + |2|?).
We find a solution f of d” f = d”x such that

‘/|ﬂ%*WV—%r%u+VPrwA

< / |d//X|28—2dv|Z _ ZO|—2n(1 + |Z|2)2—sd>\ < 016_2da.
B(zo,r)



We thus have f(z9) =0 and F' = x — f is a holomorphic function on C" such that
F(z9) = 1. In addition we get

/ \F\Qe_Qd”(l + |Z|2)_2n_26d)\ < 026_2da

where C1,C> > 0 are constants independent of d. As v(z) < log, |z| + Cs, it
follows that F' € P,;. Moreover, since v > 0 on a neighborhood of K, the mean
value inequality applied to the subharmonic function |F|? gives

sup |F|?> < Cype 2%,
K

The polynomial P = C’Zl/QedaF € Py is such that ||P||[x = 1 and we have
log|P(20)| = da — C5, whence

1
sup {Elog|P(Zo)| ;d>1, P€Py, ||Pllrex) < 1} 2 a.

As a was an arbitrary number < Uk (zp), the proof is complete. [J

Now, we introduce a few concepts related to extremal polynomials. Let B be
the unit ball of C™ and K a compact subset of B. The Chebishev constants M4(K)
are defined by

(10.7) Ma(K) = it {|Pls~giey ; P € Pay [Pl iy = 1}
It is clear that M4(K) < 1 and that M4(K) satisfies

Mata (K) < My(K)My(K).
The Alexander capacity is defined by

_ 1/d
(10.8) T(K) 61lgf1 Mg (K)'.

It is easy to see that we have in fact T(K) = limg_, 1 0o Mgq(K)Y4 : for any integer
0 > 1, write d = qd 4+ r with 0 < r < d and observe that

M;s(K)Y° < qu(K)l/(qd+r) < Mg(K)e/(adtn)
letting § — +oo with d fixed, we get

T(K) < lim inf Ms(K)Y? < limsup Ms(K)Y° < My(K)Y4,
— o0 d——4o00

whence the equality. Now, for an arbitrary subset £ C B, we set

(10.9) T.(F)= sup T(K), T*(E)= inf T,(G).
KCE Gopen DFE
SICIAK’S THEOREM 10.10. — For every set £ C B,

T*(E) = exp(—supUg).
B

Proof. — The main step is to show that the equality holds for compact subsets
K C B, i.e. that

(10.11) T(K) = exp(— Sup Uk).



Indeed, it is clear that supgp Uy = supp Uk and theorem 10.6 gives

1
sup Uk = sup {alOgHPHLw(B) ; d>1, P e Py, ||Pllrer) =1}

1
:Sllp{ - ElogHPHLO"(K) ) d} 1, PEPd, ||P||LOO(B) = 1}

after an obvious rescaling argument P — aP. Taking the exponential, we get
e 1/d
exp(— sup Ug) = inf inf {||P[| 2 ) s P €Pa [ Pllps) =1}

= inf My(K)Y4 =T(K).

d>1

Next, let G be an open subset of B and K; an increasing sequence of compact
sets such that G = |JK; and T.(G) = UIm7T(K;). Then 10.5 (b) implies
Ug =lim | Ul*(j, hence

lim sup Uy, =sup U = sup U
R B

by Dini’s lemma. Taking the limit in (10.11), we get
T.(G) = exp(—sup Ug).
B

Finally, 10.5 (d) shows that there exists a decreasing sequence of open sets G; O E
such that U}, = (lim 7 Uéj)*. We may take G; so small that 7*(E) = lim T, (G;).
Theorem 10.9 follows. [

COROLLARY 10.12. — The set function T™ is a generalized capacity in the
sense of definition 9.7 and we have T*(E) = T, (F) for every K-analytic set E C B.

Proof. — Axioms 9.7 (a,b,c) are immediate consequences of properties 10.5
(a,b,c) respectively. In addition, formulas 10.10 and 10.11 show that T*(K) =
T(K) for every compact set K C B. The last statement is then a consequence of
Choquet’s capacitability theorem. []

To conclude this section, we show that 1/|logT™*| is not very far from being
subadditive. We need a lemma.

LEMMA 10.13. — For every P € P4, one has

10g 1Pl .~ (5) — end < /8 log | P(2)ldo(2) < log [ Pllz~(5)
B

where do is the unit invariant measure on the sphere and c,, a constant such that
cn ~ log(2n) as n — +oo.

Proof. — Without loss of generality, we may assume that || P|| ) = 1. Since
% log |P| € Piog(C™), the logarithmic convexity property already used implies that

1
sup —log|P| > logr forr < 1.
B(o,r) @



The Harnack inequality for the Poisson kernel implies now

1—7r2
sup log|P| < 7/ log |P|do,
B(0,r) (L+7)* Jog

1 2n
/ log |P|do > —|—r2 log r.d.
OB 1—r

The lemma follows with

1 n 1
%log— .

¢, = inf ;

re)o,1[ 1 —r2 r

the infimum is attained approximately for r = 1/(2nlog2n). O

COROLLARY 10.14. — For P; € Pg;, 1 <j < N,

1Py ... Pxllpoem) = e @t Py Pyl o ()

Proof. — Apply lemma 10.13 to each P; and observe that

/log|P1...PN|d0: Z / log | Pj|do. O
OB oB

1<G<N

THEOREM 10.15. — For any set £ = J;5, Ej, one has

1 1
) —
¢ — log T*(E) ; | log T*(Ej)|

Proof. — 1t is sufficient to check the inequality for a finite union K = |J K
of compacts sets K; C B, 1 < j < N. Select P; € Pa; such that

| PjllLee(m) = 1, | Pjl| Lo (k) = Ma, (K;),

and set P = P,...Py, d = di + --- 4+ dn. Then corollary 10.14 shows that
HPJHLOO(B) 2 e_C”d, thus

My(K) < e P|| o (x0).-

If z € K is in Kj, then |P(z)| < |P;(2)| < [|Pjl~(k,) because all other factors
are < 1. Thus
Ma(K) < e max{|| Pyl o (x; }-

T(K) < Ma(K)Y* < e max{My, (K)"/ %%/},
Take d; = [ka;] with arbitrary «; > 0 and let &k — +oo. It follows that
T(K) < e max{T(K;)%/}

where o = ) ;. The inequality asserted in theorem 10.15 is obtained for the
special choice a;; = 1/|logT'(K ;)| > 0 which makes all terms in max{...} equal.



11. Comparison of capacities and El Mir’s theorem.

We first prove a comparison theorem for the capacities c(e,2) and T, due to
Alexander and Taylor [A-T].

THEOREM 11.1. — Let K be a compact subset of the unit ball B C C". Then
(a) T(K) < exp(—c(K, B)™/").
For each r < 1, there is a constant A(r) such that
(b) T(K) > exp(—A(r) c(K,B)™ ') when K C B(0,r).

Remark 11.2. — Both the set functions c¢*(e,2) and T™* are generalized ca-
pacities. Hence, the estimates of the theorem also hold for all K-analytic sets, in
particular all Borel sets.

Remark 11.3. — The inequalities are sharp, at least as far as the exponents on
¢(K, B) are concerned. For if K = B(0,¢), then it is easy to check that T'(K) = ¢
and exercise 7.13 gives ¢(K, B) = (log 1/¢)™". Hence, equality holds in (11.2). On
the other hand, if K is a small polydisc

K={(z1,...,2,) € C"; |21| <0, |25/ <1/n, 1 <j <n}
and § < 1/n, then T(K) < 6, while ¢(K, B) > C(log 1/6)~!. To check the last
inequality, put

1\! 21
u(z) = (log 5) log, — ‘ 5 + (logn)~ ZlogJr (n|z4]).

Then v = 0 and u < n on B, hence

1 n !
c¢(K,B) > / (—ddcu> = n—(logn)_(”_l)(log 1/6)71
B \N n"
because all measures dd®log, (|z;|/r) have total mass 1 in C.

Proof of 11.1 (a). — Set M = supgUj, ; then T(K) = e~ by Siciak’s
theorem. Since uw = U}, /M € P(B) and 0 < u < 1 on B, we get

o(K,B) > M—”/ (ddUL)" = M~
K
by theorem 10.3. This inequality is equivalent to 11.1 (a). O

Proof of 11.1 (b). — Let u}, be the extremal function for K relative to the
ball B = B(0,e) o> B. For any v € Pos(C") such that v < 0 on K, we have
v < Uj, < M +1 on B’ hence the function

v—M—1

N V|



satisfies w < 0 on B’ and w < —1 on K. We infer w < w}, ; by taking the
supremum over all choices of v, we get

Ur—M—-1
* 2 K .
uK M+1
Now, there is a point 2y € B such that Uy (z9) = M, thus
1
*
> — .
uK(ZO) M 4 1
As uj; <0 on B’, the mean value and Harnack inequalities show that
1 C
uie(z0) < Cu [ uiedd = el < guielan) < 57
B 1

The Chern-Levine-Nirenberg inequalities 1.3 and 1.4 (a) imply now

c % \n Cy
c(K, Bl) = /B(dd (59 CSHUKHLl(B’) ||UK||Loo(B/) < M

As K C B(0,r) CC B, theorem 6.5 (b) gives
c(K, B) < Os(r)e(K, B') < A(r)M ™"
and inequality 1.11 (b) follows. [

We now prove El Mir’s theorem [E-M]. This result is an effective version of
Josefson’s theorem : given a psh function in the ball, a subextension can be found
with prescribed singularities of poles and slow growth at infinity.

EL MIR'S THEOREM 11.4. — Let v € P(B) with v < —1, ¢ € |0,1/n| and
r < 1. Then there exists u € Pog(C™) such that u < —|v|" ¢ on B(0, 7).

Proof. — Fort > 1, set Gy = {z € B(0,7);v(z) < —t} and let U} € Piox(C")
be the Siciak extremal function of G;. Since G; is open, we have U} = 0 on G.
We set M(t) = supp U} and

+o0o
u(z) = ! /1 IS (U (2) — M(t))dt.

Theorem 6.6 shows that ¢(Gy, B) < C1/t, therefore
M(t) = —log T*(Gy) > ¢(Gy, B)~Y/™ > Cytt/m
by inequality 1.11 (a). As U} — M(t) < 0 on B, we get U (z) — M(t) < log_ |#|
by logarithmic convexity, thus
u(z) < log, |2|.
For z € B(0,r) we have U} (z) = 0 as soon as G 3 z, i.e. t < —v(z). Hence

lv(2)] lv(2)] L 1
u(z) < —6_1/ t=1EM(t)dt 03/ t=imE R dt = —Cylu(z)|7C.
1

Starting if necessary with a smaller value of € and subtracting a constant to u, we

can actually get .
u < —|v|»"° on B(0,r).



It remains to check that w is not identically —oo. By logarithmic convexity again,
we have
sup U; > M(t) —log?2
B(0,1/2)
and there exists zg € S(0;1/2) such that U} (z9) — M (t) > —log2. The Harnack
inequality shows that

ﬁ /BB (Ut*(z) - M<t))d0(2) > Ul (z9) — M(t) > —log2

and integration with respect to ¢ yields

/ u(2)do(z) > —4/3(3/2)*"log2 > —oc. O
0B
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