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Abstract. The goal of these notes is to give a short introduction to several works
by Sébastien Boucksom, Mihai Paun, Thomas Peternell and myself on the geometry
of positive cones of projective or Kähler manifolds. Mori theory has shown that the
structure of projective algebraic manifolds is – up to a large extent – governed by the
geometry of its cones of divisors or curves. In the case of divisors, two cones are of
primary importance: the cone of ample divisors and the cone of effective divisors (and
the closure of these cones as well). We introduce here the analogous transcendental
cones for arbitrary compact Kähler manifolds, and show that these cones depend only
on analytic cycles and on the Hodge structure of the base manifold. Also, we obtain
new very precise duality statements connecting the cones of curves and divisors via
Serre duality. As a consequence, we are able to prove one of the basic conjectures in the
classification of projective algebraic varieties – a subject which Guido Fano contributed
to in many ways : a projective algebraic manifold X is uniruled (i.e. covered by rational
curves) if and only if its canonical class c1(KX) does not lie in the closure of the cone
spanned by effective divisors.

§1. Nef and pseudo-effective cones

LetX be a compact complex manifold and n = dimC X . We are especially interested
in closed positive currents of type (1, 1)

T = i
∑

16j,k6n

Tjk(z)dzj ∧ dzk, dT = 0.

Recall that a current is a differential form with distribution coefficients, and that a
current is said to be positive if the distribution

∑
λjλkTjk is a positive measure for

all complex numbers λj . The coefficients Tjk are then complex measures. Important
examples of closed positive (1, 1)-currents are currents of integration over divisors :

D =
∑

cjDj , [D] =
∑

cj [Dj ]

where the current [Dj ] is defined by duality as

〈[Dj ], u〉 =

∫

Dj

u|Dj
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for every (n− 1, n− 1) test form u on X . Another important example is the Hessian
form T = i∂∂ϕ of a plurisubharmonic function on an open set Ω ⊂ X . A Kähler metric
on X is a positive definite hermitian (1, 1)-form

ω(z) = i
∑

16j,k6n

ωjk(z)dzj ∧ dzk such that dω = 0,

with smooth coefficients. To every closed real (1, 1)-form (or current) α is associated
its cohomology class

{α} ∈ H1,1
R

(X) ⊂ H2(X,R).

This assertion hides a nontrivial fact, namely the fact that all cohomology groups
involved (De Rham, Dolbeault, . . .) can be defined either in terms of smooth forms
or in terms of currents. In fact, if we consider the associated complexes of sheaves,
forms and currents both provide acyclic resolutions of the same sheaf (locally constant
functions, resp. holomorphic sections).

The manifold X is said to be Kähler if it possesses at least one Kähler metric ω.
It is well known that every projective manifold X ⊂ PN

C
is Kähler (the restriction

of the Fubini-Study metric ωFS to X is a Kähler metric with integral cohomology
class {ωFS} ∈ H2(X,Z)). Conversely, the Kodaira embedding theorem [Kod54] states
that every compact Kähler manifold X possessing a Kähler metric ω with an integral
cohomology class {ω} ∈ H2(X,Z) can be embedded in projective space as a projective
algebraic subvariety.

1.1. Definition. Let X be a compact Kähler manifold.

(i) The Kähler cone is the set K ⊂ H1,1
R

(X) of cohomology classes {ω} of Kähler
forms. This is an open convex cone.

(ii) The pseudo-effective cone is the set E ⊂ H1,1
R

(X) of cohomology classes {T} of
closed positive currents of type (1, 1). This is a closed convex cone.

K

E K = nef cone in H1,1
R

(X)

E = pseudo-effective cone in H1,1
R

(X)

The openness of K is clear by definition, and the closedness of E follows from the
fact that bounded sets of currents are weakly compact (as follows from the similar
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weak compacteness property for bounded sets of positive measures). It is then clear
that K ⊂ E.

In spite of the fact that cohomology groups can be defined either in terms of forms
or currents, it turns out that the cones K and E are in general different. To see this, it
is enough to observe that a Kähler class {α} satisfies

∫
Y
αp > 0 for every p-dimensional

analytic set. On the other hand, if X is the surface obtained by blowing-up P2 in one
point, then the exceptional divisopr E ≃ P1 has a cohomology class {α} such that∫

E
α = E2 = −1, hence {α} /∈ K, although {α} = {[E]} ∈ E.

In case X is projective, it is interesting to consider also the algebraic analogues of
our “transcendental cones” K and E, which consist of suitable integral divisor classes.
Since the cohomology classes of such divisors live in H2(X,Z), we are led to introduce
the Neron-Severi lattice and the associated Neron-Severi space

NS(X) := H1,1
R

(X) ∩
(
H2(X,Z)/{torsion}

)
,

NSR(X) := NS(X) ⊗Z R.

All classes of real divisors D =
∑
cjDj , cj ∈ R, lie by definition in NSR(X). No-

tice that the integral lattice H2(X,Z)/{torsion} need not hit at all the subspace
H1,1

R
(X) ⊂ H2(X,R) in the Hodge decomposition, hence in general the Picard number

ρ(X) = rankZ NS(X) = dimR NSR(X)

satisfies ρ(X) 6 h1,1 = dimR H
1,1
R

(X), but the equality can be strict (actually, it is
well known that a generic complex torus X = Cn/Λ satisfies ρ(X) = 0 and h1,1 = n2).
In order to deal with the case of algebraic varieties we introduce

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).

KNS

ENS

NSR(X)

A very important fact is that the “Neron-Severi part” of any of the open or closed
transcendental cones K, E,K, E◦ is algebraic, i.e. can be characterized in simple alge-
braic terms.
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1.2. Theorem. Let X be a projective manifold. Then

(i) ENS is the closure of the cone generated by classes of effective divisors, i.e. divisors
D =

∑
cjDj, cj ∈ R+.

(ii) KNS is the open cone generated by classes of ample (or very ample) divisors A
(Recall that a divisor A is said to be very ample if the linear system H0(X,O(A))
provides an embedding of X in projective space).

(iii) The interior E◦
NS is the cone generated by classes of big divisors, namely divisors

D such that h0(X,O(kD)) > c kdim X for k large.

(iv) The closed cone KNS consists of the closure of the cone generated by nef divisors
D (or nef line bundles L), namely effective integral divisors D such that D ·C > 0
for every curve C.

Sketch of proof. These results were already observed (maybe in a slightly different
terminology) in [Dem90]. If we denote by Kalg the open cone generated by ample
divisors, resp. by Ealg the closure of the cone generated by effective divisors, it is
obvious that

Kalg ⊂ KNS, Ealg ⊂ ENS.

As was to be expected, the interesting part lies in the converse inclusions. The inclusion
KNS ⊂ Kalg is more or less equivalent to the Kodaira embedding theorem : if a rational
class {α} is in K, then some multiple of {α} is the first Chern class of a hermitian line
bundle L whose curvature form is Kähler. Therefore L is ample and {α} ∈ Kalg ;
property (ii) follows.

Similarly, if we take a rational class {α} ∈ E◦
NS, then it is still in E by subtracting a

small multiple εω of a Kähler class, hence some multiple of {α} is the first Chern class
of a hermitian line bundle (L, h) with curvature form

T = Θh(L) := −
i

2π
i∂∂ logh > εω.

The standard theory of L2 estimates for the ∂-operator ([AV65], [Dem82]) then shows
that large multiples kL admit a large number of sections, hence kL can be represented
by a big divisor. This implies (iii) and also that E◦

NS ⊂ Ealg. Therefore ENS ⊂ Ealg by
passing to the closure ; (i) follows. The statement (iv) about nef divisors follows e.g.
from [Kle66], [Har70], since every nef divisor is a limit of a sequence of ample rational
divisors.

As a natural extrapolation of the algebraic situation, we say that K is the cone of
nef (1, 1)-cohomology classes (even though these classes are not necessarily integral).
Property 1.2 (i) also explains the terminology used for the pseudo-effective cone.

§2. Numerical characterization of the Kähler cone

We describe here the main results obtained in [DP03]. The upshot is that the
Kähler cone depends only on the intersection product of the cohomology ring, the
Hodge structure and the homology classes of analytic cycles. More precisely, we have :
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2.1. Theorem. Let X be a compact Kähler manifold. Let P be the set of real (1, 1)
cohomology classes {α} which are numerically positive on analytic cycles, i.e. such that∫

Y
αp > 0 for every irreducible analytic set Y in X, p = dimY . Then the Kähler cone

K of X is one of the connected components of P.

2.2. Special case. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a general-
ization of the well-known Nakai-Moishezon criterion. Recall that the Nakai-Moishezon
criterion provides a necessary and sufficient criterion for a line bundle to be ample: a
line bundle L→ X on a projective algebraic manifold X is ample if and only if

Lp · Y =

∫

Y

c1(L)p > 0,

for every algebraic subset Y ⊂ X, p = dimY .

It turns out that the numerical conditions
∫

Y
αp > 0 also characterize arbitrary

transcendental Kähler classes when X is projective : this is precisely the meaning of
the special case 2.2.

2.3. Example. The following example shows that the cone P need not be connected
(and also that the components of P need not be convex, either). Let us consider for
instance a complex torus X = Cn/Λ. It is well-known that a generic torus X does
not possess any analytic subset except finite subsets and X itself. In that case, the
numerical positivity is expressed by the single condition

∫
X
αn > 0. However, on a

torus, (1, 1)-classes are in one-to-one correspondence with constant hermitian forms α
on Cn. Thus, for X generic, P is the set of hermitian forms on Cn such that det(α) > 0,
and Theorem 2.1 just expresses the elementary result of linear algebra saying that the
set K of positive definite forms is one of the connected components of the open set
P = {det(α) > 0} of hermitian forms of positive determinant (the other components,
of course, are the sets of forms of signature (p, q), p + q = n, q even. They are not
convex when p > 0 and q > 0).

Sketch of proof of Theorems 2.1 and 2.2. By definition a Kähler current is a closed
positive current T of type (1, 1) such that T > εω for some smooth Kähler metric ω
and ε > 0 small enough. The singularities of a closed positive current T are measured
by its Lelong numbers

ν(T, x) = lim inf
z→x

ϕ(z)

log |z − x|
,

where T = i
π∂∂ϕ near x. A fundamental theorem of Siu [Siu74] states that the Lelong

sublevel sets Ec(T ) := {x ∈ X ; ν(T, x) > c} are analytic sets for every c > 0. The
crucial steps of the proof of Theorem 2.1 are contained in the following statements.

2.4. Proposition (Paun [Pau98a, 98b]). Let X be a compact complex manifold (or
more generally a compact complex space). Then

(i) The cohomology class of a closed positive (1, 1)-current {T} is nef if and only if
the restriction {T}|Z is nef for every irreducible component Z in any of the Lelong
sublevel sets Ec(T ).
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(ii) The cohomology class of a Kähler current {T} is a Kähler class (i.e. the class of
a smooth Kähler form) if and only if the restriction {T}|Z is a Kähler class for
every irreducible component Z in any of the Lelong sublevel sets Ec(T ).

The proof of Proposition 2.4 is not extremely hard if we take for granted the fact
that Kähler currents can be approximated by Kähler currents with logarithmic poles,
a fact which was proved in [Dem92] (see also Theorem 5.1 below). The main point
then consists in an induction on dimension and a standard gluing procedure : if T =
α+ i

π
∂∂ϕ where ϕ is smooth on XrZ and has −∞ poles along Z, then we can remove

the poles of ϕ by replacing ϕ with max(ϕ, ψ − C), provided ψ is smooth and defined
near Z and C is a large constant.

The next (and more substantial step) consists of the following result which is rem-
iniscent of the Grauert-Riemenschneider conjecture ([Siu84], [Dem85]).

2.5. Theorem ([DP03]). Let X be a compact Kähler manifold and let {α} be a nef
class (i.e. {α} ∈ K). Assume that

∫
X
αn > 0. Then {α} contains a Kähler current T ,

in other words {α} ∈ E◦.

Proof. The basic argument is to prove that for every irreducible analytic set Y ⊂ X
of codimension p, the class {α}p contains a closed positive (p, p)-current Θ such that
Θ > δ[Y ] for some δ > 0. We check this by observing that α + εω is a Kähler class,
hence by the Calabi-Yau theorem [Yau78] the Monge-Ampère equation

(α+ εω + i∂∂ϕε)
n = fε

can be solved with an arbitrary right-hand side fε > 0 such that

∫

X

fε = Cε =

∫

X

(α+ εω)n.

However, by our assumption that
∫

X
αn > 0, the constant Cε is bounded away from 0.

We use this fact in order to concentrate a fixed amount of volume of the volume form
fε in an ε-tubular neighborhood of Y . We then show that the sequence of (p, p)-forms
(α+ εω + i∂∂ϕε)

p converges weakly to the desired current Θ (this part relies heavily
on the theory of currents). The second and final part uses a “diagonal trick”: apply
the result just proved to

X̃ = X ×X, Ỹ = diagonal ⊂ X̃, α̃ = pr∗1 α+ pr∗2 α.

It is then clear that α̃ is nef on X̃ and that
∫

X̃
(α̃)2n > 0. It follows by the above

that the class {α̃}n contains a Kähler current Θ such that Θ > δ[Ỹ ] for some δ > 0.
Therefore the push-forward

T := (pr1)∗(Θ ∧ pr∗2 ω)

is numerically equivalent to a multiple of α and dominates δω, and we see that T is a
Kähler current.

End of Proof of Theorems 2.1 and 2.2. Clearly the open cone K is contained in P,
hence in order to show that K is one of the connected components of P, we need only
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show that K is closed in P, i.e. that K∩P ⊂ K. Pick a class {α} ∈ K∩P. In particular
{α} is nef and satisfies

∫
X
αn > 0. By Theorem 2.5 we conclude that {α} contains a

Kähler current T . However, an induction on dimension using the assumption
∫

Y
αp for

all analytic subsets Y (we also use resolution of singularities for Y at this step) shows
that the restriction {α}|Y is the class of a Kähler current on Y . We conclude that {α}
is a Kähler class by 2.4 (ii), therefore {α} ∈ K, as desired.

The projective case 2.2 is a consequence of the following variant of Theorem 2.1.

2.6. Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is Kähler if and only if there exists a Kähler metric ω on X such that∫

Y
αk ∧ ωp−k > 0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

Proof. The assumption clearly implies that

∫

Y

(α+ tω)p > 0

for all t ∈ R+, hence the half-line α + (R+)ω is entirely contained in the cone P of
numerically positive classes. Since α+ t0ω is Kähler for t0 large, we conclude that the
half-line in entirely contained in the connected component K, and therefore α ∈ K.

In the projective case, we can take ω = c1(H) for a given very ample divisor H,
and the condition

∫
Y
αk ∧ ωp−k > 0 is equivalent to

∫

Y ∩H1∩...∩Hp−k

αk > 0

for a suitable complete intersection Y ∩H1 ∩ . . . ∩Hp−k, Hj ∈ |H|. This shows that
algebraic cycles are sufficient to test the Kähler property, and the special case 2.2
follows. On the other hand, we can pass to the limit in 2.6 by replacing α by α+ εω,
and in this way we get also a characterization of nef classes.

2.7. Corollary. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α}
on X is nef if and only if there exists a Kähler metric ω on X such that

∫
Y
αk∧ωp−k > 0

for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

By a formal convexity argument, one can derive from 2.6 or 2.7 the following in-
teresting consequence about the dual of the cone K. We will not give the proof here,
because it is just a simple tricky argument which does not require any new analysis.

2.8. Theorem. Let X be a compact Kähler manifold. A (1, 1) cohomology class {α}
on X is nef if and only for every irreducible analytic set Y in X, p = dimX and every
Kähler metric ω on X we have

∫
Y
α ∧ ωp−1 > 0. In other words, the dual of the nef

cone K is the closed convex cone in Hn−1,n−1
R

(X) generated by cohomology classes of
currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X,R), where Y runs over the collection
of irreducible analytic subsets of X and {ω} over the set of Kähler classes of X.

Our main Theorem 2.1 has an important application to the deformation theory of
compact Kähler manifolds.
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2.9. Theorem. Let π : X → S be a deformation of compact Kähler manifolds over an
irreducible base S. Then there exists a countable union S′ =

⋃
Sν of analytic subsets

Sν ( S, such that the Kähler cones Kt ⊂ H1,1(Xt,C) of the fibers Xt = π−1(t) are
invariant over S r S′ under parallel transport with respect to the (1, 1)-projection ∇1,1

of the Gauss-Manin connection ∇ in the decomposition of

∇ =




∇2,0 ∗ 0
∗ ∇1,1 ∗
0 ∗ ∇0,2




on the Hodge bundle H2 = H2,0 ⊕H1,1 ⊕H0,2.

We moreover conjecture that for an arbitrary deformation X → S of compact com-
plex manifolds, the Kähler property is open with respect to the countable Zariski
topology on the base S of the deformation.

Sketch of Proof of Theorem 2.9. The result is local on the base, hence we may assume
that S is contractible. Then the family is differentiably trivial, the Hodge bundle
t 7→ H2(Xt,C) is the trivial bundle and t 7→ H2(Xt,Z) is a trivial lattice. We use
the existence of a relative cycle space Cp(X/S) ⊂ Cp(X) which consists of all cycles
contained in the fibres of π : X → S. It is equipped with a canonical holomorphic
projection

πp : Cp(X/S) → S.

We then define the Sν ’s to be the images in S of those connected components of
Cp(X/S) which do not project onto S. By the fact that the projection is proper on
each component, we infer that Sν is an analytic subset of S. The definition of the
Sν ’s imply that the cohomology classes induced by the analytic cycles {[Z]}, Z ⊂ Xt,
remain exactly the same for all t ∈ S r S′. This result implies in its turn that the
conditions defining the numerically positive cones Pt remain the same, except for the
fact that the spaces H1,1

R
(Xt) ⊂ H2(Xt,R) vary along with the Hodge decomposition.

At this point, a standard calculation implies that the Pt are invariant by parallel
transport under ∇1,1. Moreover, the connected component Kt ⊂ Pt cannot jump from
one component to the other thanks to Kodaira-Spencer theory [KS60] : every Kähler
class in Xt0 can be deformed to a nearby Kähler class in nearby fibres Xt (a result
which relies on perturbations of elliptic PDE’s).

As a by-product of our techniques, especially the regularization theorem for cur-
rents, we also get the following result for which we refer to [DP03].

2.10. Theorem. A compact complex manifold carries a Kähler current if and only
if it is bimeromorphic to a Kähler manifold (or equivalently, dominated by a Kähler
manifold).

This class of manifolds is called the Fujiki class C. If we compare this result with
the solution of the Grauert-Riemenschneider conjecture, it is tempting to make the
following conjecture which would somehow encompass both results.

2.11 Conjecture. Let X be a compact complex manifold of dimension n. Assume that
X possesses a nef cohomology class {α} of type (1, 1) such that

∫
X
αn > 0. Then X
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is in the Fujiki class C. [Also, {α} would contain a Kähler current, as it follows from
Theorem 2.5 if Conjecture 2.11 is proved].

We want to mention here that most of the above results were already known in
the cases of complex surfaces (i.e. in dimension 2), thanks to the work of N. Buchdahl
[Buc99, 00] and A. Lamari [Lam99a, 99b].

Shortly after the original [DP03] manuscript appeared in April 2001, Daniel Huy-
brechts [Huy01] informed us Theorem 2.1 can be used to calculate the Kähler cone of
a very general hyperkähler manifold: the Kähler cone is then equal to a suitable con-
nected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkähler manifold, S.Boucksom [Bou02] later
showed that a (1, 1) class {α} is Kähler if and only if it lies in the positive part of
the Beauville-Bogomolov quadratic cone and moreover

∫
C
α > 0 for all rational curves

C ⊂ X (see also [Huy99]).

§3. Cones of curves

In a dual way, we consider in Hn−1,n−1
R

(X) the cone N generated by classes of
positive currents T of type (n− 1, n− 1) (i.e., of bidimension (1, 1)). In the projective
case, we also consider the intersection

By extension, we will say that K is the cone of nef (1, 1)-cohomology classes (even
though they are not necessarily integral). We now turn ourselves to cones in cohomo-
logy of bidegree (n− 1, n− 1).

3.1. Definition. Let X be a compact Kähler manifold.

(i) We define N to be the (closed) convex cone in Hn−1,n−1
R

(X) generated by classes
of positive currents T of type (n− 1, n− 1) (i.e., of bidimension (1, 1)).

(ii) We define the cone M ⊂ Hn−1,n−1
R

(X) of movable classes to be the closure of the
convex cone generated by classes of currents of the form

µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification (one could just restrict oneself to

compositions of blow-ups with smooth centers), and the ω̃j are Kähler forms on X̃.
Clearly M ⊂ N.

(iii) Correspondingly, we introduce the intersections

NNS = N ∩N1(X), MNS = M ∩N1(X),

in the space of integral bidimension (1, 1)-classes

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/tors) ⊗Z R.

(iv) If X is projective, we define NE(X) to be the convex cone generated by all effective
curves. Clearly NE(X) ⊂ NNS.
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(v) If X is projective, we say that C is a strongly movable curve if

C = µ⋆(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modification.
We let SME(X) to be the convex cone generated by all strongly movable (effective)
curves. Clearly SME(X) ⊂ MNS.

(vi) We say that C is a movable curve if C = Ct0 is a member of an analytic family
(Ct)t∈S such that

⋃
t∈S Ct = X and, as such, is a reduced irreducible 1-cycle. We

let ME(X) to be the convex cone generated by all movable (effective) curves.

The upshot of this definition lies in the following easy observation.

3.2. Proposition. Let X be a compact Kähler manifold. Consider the Poincaré
duality pairing

H1,1
R

(X) ×Hn−1,n−1
R

(X) −→ R, (α, β) 7−→

∫

X

α ∧ β.

Then the duality pairing takes nonnegative values

(i) for all pairs (α, β) ∈ K × N;

(ii) for all pairs (α, β) ∈ E × M.

(iii) for all pairs (α, β) where α ∈ E and β = [Ct] ∈ ME(X) is the class of a movable
curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that β = µ⋆(ω̃1∧ . . .∧ω̃n−1)

for some modification µ : X̃ → X , where α = {T} is the class of a positive (1, 1)-current

on X and ω̃j are Kähler forms on X̃ . Then

∫

X

α ∧ β =

∫

X

T ∧ µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1) =

∫

X

µ∗T ∧ ω̃1 ∧ . . . ∧ ω̃n−1 > 0.

Here, we have used the fact that a closed positive (1, 1)-current T always has a pull-back
µ⋆T , which follows from the fact that if T = i∂∂ϕ locally for some plurisubharmonic
function in X , we can set µ⋆T = i∂∂(ϕ ◦ µ). For (iii), we suppose α = {T} and
β = {[Ct]}. Then we take an open covering (Uj) on X such that T = i∂∂ϕj with
suitable plurisubharmonic functions ϕj on Uj . If we select a smooth partition of unity∑
θj = 1 subordinate to (Uj), we then get

∫

X

α ∧ β =

∫

Ct

T|Ct
=

∑

j

∫

Ct∩Uj

θji∂∂ϕj|Ct
> 0.

For this to make sense, it should be noticed that T|Ct
is a well defined closed positive

(1, 1)-current (i.e. measure) on Ct for almost every t ∈ S, in the sense of Lebesgue
measure. This is true only because (Ct) covers X , thus ϕj|Ct

is not identically −∞ for
almost every t ∈ S. The equality in the last formula is then shown by a regularization
argument for T , writing T = limTk with Tk = α + i∂∂ψk and a decreasing sequence
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of smooth almost plurisubharmonic potentials ψk ↓ ψ such that the Levi forms have
a uniform lower bound i∂∂ψk > −Cω (such a sequence exists by [Dem92]). Then,
writing α = i∂∂vj for some smooth potential vj on Uj , we have T = i∂∂ϕj on Uj with
ϕj = vj+ψ, and this is the decreasing limit of the smooth approximations ϕj,k = vj+ψk

on Uj . Hence Tk|Ct
→ T|Ct

for the weak topology of measures on Ct.

If C is a convex cone in a finite dimensional vector space E, we denote by C∨ the
dual cone, i.e. the set of linear forms u ∈ E⋆ which take nonnegative values on all
elements of C. By the Hahn-Banach theorem, we always have C∨∨ = C.

Proposition 3.2 leads to the natural question whether the cones (cK,N) and (E,M)
are dual under Poincaré duality. This question is addressed in the next section. Before
doing so, we observe that the algebraic and transcendental cones of (n − 1, n − 1)
cohomology classes are related by the following equalities (similar to what we already
noticed for (1, 1)-classes, see Theorem 1.2).

3.3. Theorem. Let X be a projective manifold. Then

(i) NE(X) = NNS.

(ii) SME(X) = ME(X) = MNS.

Proof. (i) It is a standard result of algebraic geometry (see e.g. [Har70]), that the cone
of effective cone NE(X) is dual to the cone KNS of nef divisors, hence

NNS ⊃ NE(X) = K
∨.

On the other hand, (3.3) (i) implies that NNS ⊂ K∨, so we must have equality and (i)
follows.

Similarly, (ii) requires a duality statement which will be established only in the next
sections, so we postpone the proof.

§4. Main results and conjectures

It is very well-known that the cone KNS of nef divisors is dual to the cone NNS of
effective curves if X is projective. The transcendental case is Theorem 2.8 which we
can restate as follows.

4.1. Theorem (Demailly-Paun, 2001). If X is Kähler, then the cones K ⊂ H1,1
R

(X)

and N ⊂ Hn−1,n−1
R

(X) are dual by Poincaré duality, and N is the closed convex cone
generated by classes [Y ] ∧ ωp−1 where Y ⊂ X ranges over p-dimensional analytic
subsets, p = 1, 2, . . . , n, and ω ranges over Kähler forms.

Proof. Indeed, Prop. 3.4 shows that the dual cone K∨ contains N which itself contains
the cone N′ of all classes of the form {[Y ]∧ωp−1}. The main result of [DP03] conversely
shows that the dual of (N′)∨ is equal to K, so we must have

K
∨ = N′ = N.

The other important duality result is the following characterization of pseudo-
effective classes, proved in [BDPP03] (the “only if” part already follows from 3.4 (iii)).
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4.2. Theorem. If X is projective, then a class α ∈ NSR(X) is pseudo-effective if (and
only if ) it is in the dual cone of the cone SME(X) of strongly movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L · C > 0 for
all movable curves, i.e., L · C > 0 for every very generic curve C (not contained
in a countable union of algebraic subvarieties). In fact, by definition of SME(X),
it is enough to consider only those curves C which are images of generic complete
intersection of very ample divisors on some variety X̃, under a modification µ : X̃ → X .

By a standard blowing-up argument, it also follows that a line bundle L on a normal
Moishezon variety is pseudo-effective if and only if L ·C ≥ 0 for every movable curve C.

The Kähler analogue should be :

4.3. Conjecture. For an arbitrary compact Kähler manifold X, the cones E and M

are dual.

K

KNS

E

ENS

NSR(X) H1,1
R

(X)

MNS

M

N

NNS

N1(X)Hn−1,n−1
R

(X)

duality

The relation between the various cones of movable curves and currents in (3.5) is
now a rather direct consequence of Theorem 4.2. In fact, using ideas hinted in [DPS96],
we can say a little bit more. Given an irreducible curve C ⊂ X , we consider its normal
“bundle” NC = Hom(I/I2,OC), where I is the ideal sheaf of C. If C is a general
member of a covering family (Ct), then NC is nef. Now [DPS96] says that the dual
cone of the pseudo-effective cone of X contains the closed cone spanned by curves with
nef normal bundle, which in turn contains the cone of movable curves. In this way we
get :

4.4. Theorem. Let X be a projective manifold. Then the following cones coincide.

(i) the cone MNS = M ∩N1(X) ;

(ii) the closed cone SME(X) of strongly movable curves ;

(iii) the closed cone ME(X) of movable curves ;
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(iv) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

SME(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)
∨

and

SME(X) ⊂ ME(X) ⊂ MNS ⊂ (ENS)
∨

by 3.4 (iii). Now Theorem 4.2 implies (MNS)
∨ = SME(X), and 4.4 follows.

4.5. Corollary. Let X be a projective manifold and L a line bundle on X.

(i) L is pseudo-effective if and only if L ·C ≥ 0 for all curves C with nef normal sheaf
NC .

(ii) If L is big, then L · C > 0 for all curves C with nef normal sheaf NC .

4.5 (i) strenghtens results from [PSS99]. It is however not yet clear whether MNS =
M ∩N1(X) is equal to the closed cone of curves with ample normal bundle (although
we certainly expect this to be true).

The most important special case of Theorem 4.2 is

4.6. Theorem. If X is a projective manifold and is not uniruled, then KX is pseudo-
effective, i.e. KX ∈ ENS.

Proof. If KX /∈ ENS, Theorem 3.2 shows that there is a moving curve Ct such that
KX · Ct < 0. The “bend-and-break” lemma then implies that there is family Γt of
rational curves with KX · Γt < 0, so X is uniruled.

A stronger result is expected to be true, namely :

4.7. Conjecture (special case of the “abundance conjecture”). If KX is pseudo-
effective, then κ(X) > 0.

§5 Zariski decomposition and movable intersections

Let X be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective
cone. In analogy with the algebraic context such a class α is called “big”, and it can
then be represented by a Kähler current T , i.e. a closed positive (1, 1)-current T such
that T > δω for some smooth hermitian metric ω and a constant δ ≪ 1.

5.1. Theorem (Demailly [Dem92], [Bou02, 3.1.24]. If T is a Kähler current, then one
can write T = limTm for a sequence of Kähler currents Tm which have logarithmic
poles with coefficients in 1

mZ, i.e. there are modifications µm : Xm → X such that

µ⋆
mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed part”)

and βm is a closed semi-positive form (the “movable part”).



14 On the geometry of positive cones of projective and Kähler varieties

Proof. Since this result has already been studied extensively, we just recall the main
idea. Locally we can write T = i∂∂ϕ for some strictly plurisubharmonic potential ϕ.
By a Bergman kernel trick and the Ohsawa-Takegoshi L2 extension theorem, we get
local approximations

ϕ = limϕm, ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|2

where (gℓ,m) is a Hilbert basis of the set of holomorphic functions which are L2 with
respect to the weight e−2mϕ. This Hilbert basis is also a family of local generators of
the globally defined multiplier ideal sheaf I(mT ) = I(mϕ). Then µm : Xm → X is
obtained by blowing-up this ideal sheaf, so that

µ⋆
mI(mT ) = O(−mEm).

We should notice that by approximating T − 1
mω instead of T , we can replace βm

by βm + 1
mµ

⋆ω which is a big class on Xm ; by playing with the multiplicities of the
components of the exceptional divisor, we could even achieve that βm is a Kähler class
on Xm, but this will not be needed here.

The more familiar algebraic analogue would be to take α = c1(L) with a big line
bundle L and to blow-up the base locus of |mL|, m≫ 1, to get a Q-divisor decompo-
sition

µ⋆
mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|,
and we say that Em +Dm is an approximate Zariski decomposition of L. We will also
use this terminology for Kähler currents with logarithmic poles.

KNS

ENS

NSR(Xm)

α̃

[Em]
βm

α̃ = µ⋆
mα = [Em] + βm

5.2. Definition. We define the volume, or movable self-intersection of a big class
α ∈ E◦ to be

Vol(α) = sup
T∈α

∫

X̃

βn > 0
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where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles,
and µ⋆T = [E] + β with respect to some modification µ : X̃ → X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DEL00], if L is a big line bundle,
we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!

mn
h0(X,mL),

and in these terms, we get the following statement.

5.3. Proposition. Let L be a big line bundle on the projective manifold X. Let ǫ > 0.
Then there exists a modification µ : Xǫ → X and a decomposition µ∗(L) = E + β with
E an effective Q-divisor and β a big and nef Q-divisor such that

Vol(L) − ε 6 Vol(β) 6 Vol(L).

It is very useful to observe that the supremum in Definition 5.2 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
T1 = α+ i∂∂ϕ1 and T2 = α+ i∂∂ϕ2 are two Kähler currents with logarithmic poles in
the class of α, then

(5.4) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could define
as well

(5.4′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1, m2) is the lowest common multiple of the denominators occuring
in T1, T2. Now, take a simultaneous log-resolution µm : Xm → X for which the
singularities of T1 and T2 are resolved as Q-divisors E1 and E2. Then clearly the
associated divisor in the decomposition µ⋆

mT = [E] + β is given by E = min(E1, E2).
By doing so, the volume

∫
Xm

βn gets increased, as we shall see in the proof of Theorem
5.5 below.

5.5. Theorem (Boucksom [Bou02]). Let X be a compact Kähler manifold. We denote

here by Hk,k
>0 (X) the cone of cohomology classes of type (k, k) which have non-negative

intersection with all closed semi-positive smooth forms of bidegree (n− k, n− k).

(i) For each integer k = 1, 2, . . . , n, there exists a canonical “movable intersection
product”

E × · · · × E → Hk,k
>0 (X), (α1, . . . , αk) 7→ 〈α1 · α2 · · ·αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii) The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

〈α1 · · · (α
′
j + α′′

j ) · · ·αk〉 > 〈α1 · · ·α
′
j · · ·αk〉 + 〈α1 · · ·α

′′
j · · ·αk〉.
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It coincides with the ordinary intersection product when the αj ∈ K are nef classes.

(iii) The movable intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2 · · ·αn〉 > (〈αn
1 〉)

1/n . . . (〈αn
n〉)

1/n (with 〈αn
j 〉 = Vol(αj) ).

(iv) For k = 1, the above “product” reduces to a (non linear) projection operator

E → E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there is
a “divisorial Zariski decomposition”

α = {N(α)} + 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative
divisorial part” of α. The map α 7→ N(α) is homogeneous and subadditive, and
N(α) = 0 if and only if α ∈ E1.

(v) The components of N(α) always consist of divisors whose cohomology classes are
linearly independent, especially N(α) has at most ρ = rankZ NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some simpli-
fications arising from the fact that X is supposed to be Kähler from the start.

(i) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth closed (n−k, n−k)
semi-positive form u on X . We select Kähler currents Tj ∈ αj with logarithmic poles,

and a simultaneous log-resolution µ : X̃ → X such that

µ⋆Tj = [Ej] + βj .

We consider the direct image current µ⋆(β1∧. . .∧βk) (which is a closed positive current
of bidegree (k, k) on X) and the corresponding integrals

∫

X̃

β1 ∧ . . . ∧ βk ∧ µ⋆u > 0.

If we change the representative Tj with another current T ′
j , we may always take a

simultaneous log-resolution such that µ⋆T ′
j = [E′

j ] + β′
j , and by using (5.4′) we can

always assume that E′
j 6 Ej . Then Dj = Ej − E′

j is an effective divisor and we find
[Ej] + βj ≡ [E′

j] + β′
j , hence β′

j ≡ βj + [Dj ]. A substitution in the integral implies

∫

X̃

β′
1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u

=

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u+

∫

X̃

[D1] ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u

>

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u.
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Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we find

∫

X̃

β′
1 ∧ β

′
2 ∧ . . . ∧ β

′
k ∧ µ⋆u >

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u.

We claim that the closed positive currents µ⋆(β1 ∧ . . . ∧ βk) are uniformly bounded in
mass. In fact, if ω is a Kähler metric in X , there exists a constant Cj > 0 such that
Cj{ω}−αj is a Kähler class. Hence Cjω− Tj ≡ γj for some Kähler form γj on X . By
pulling back with µ, we find Cjµ

⋆ω − ([Ej] + βj) ≡ µ⋆γj, hence

βj ≡ Cjµ
⋆ω − ([Ej] + µ⋆γj).

By performing again a substitution in the integrals, we find

∫

X̃

β1 ∧ . . . ∧ βk ∧ µ⋆u 6 C1 . . . Ck

∫

X̃

µ⋆ωk ∧ µ⋆u = C1 . . . Ck

∫

X

ωk ∧ u

and this is true especially for u = ωn−k. We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is achieved
by a sequence of currents (µm)⋆(β1,m∧. . .∧βk,m) obtained as direct images by a suitable
sequence of modifications µm : X̃m → X . By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the
integrals obtained when we evaluate against a smooth closed semi-positive form u). By
evaluating against a basis of positive classes {u} ∈ Hn−k,n−k(X), we infer by Poincaré
duality that the class of 〈α1 · α2 · · ·αk〉 is uniquely defined (although, in general, the
representing current is not unique).

(ii) It is indeed clear from the definition that the movable intersection product is
homogeneous, increasing and superadditive in each argument, at least when the αj ’s
are in E◦. However, we can extend the product to the closed cone E by monotonicity,
by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate against
closed semi-positive forms u). By weak compactness, the movable intersection product
can always be represented by a closed positive current of bidegree (k, k).

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact that they
hold true for nef classes, so we just have to apply them to the classes βj,m on X̃m and
pass to the limit.

(iv) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)⋆Tm} = lim
m→+∞

(µm)⋆[Em] + {(µm)⋆βm}
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and 〈α〉 = limm→+∞{(µm)⋆βm} by definition. However, the images Fm = (µm)⋆Fm

are effective Q-divisors in X , and the filtering property implies that Fm is a decreasing
sequence. It must therefore converge to a (uniquely defined) limit F = limFm := N(α)
which is an effective R-divisor, and we get the asserted decomposition in the limit.

Since N(α) = α − 〈α〉 we easily see that N(α) is subadditive and that N(α) = 0
if α is the class of a smooth semi-positive form. When α is no longer a big class, we
define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α+ (δ + ε)ω) 6 N(α+ δω)). The divisorial Zariski
decomposition follows except maybe for the fact that N(α) might be a convergent
countable sum of divisors. However, this will be ruled out when (v) is proved. As N(•)
is subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed convex
conne, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to [Bou02], E1

consists of those pseudo-effective classes which are “nef in codimension 1”).

(v) Let α ∈ E◦, and assume that N(α) contains linearly dependent components Fj .
Then already all currents T ∈ α should be such that µ⋆T = [E] + β where F = µ⋆E
contains those linearly dependent components. Write F =

∑
λjFj , λj > 0 and assume

that ∑

j∈J

cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must be
negative (and some other positive). Then E is numerically equivalent to

E′ ≡ E + tµ⋆
(∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a zero
coefficient on one of the components µ⋆Fj0 . By replacing E with min(E,E′) via (5.4′),
we eliminate the component µ⋆Fj0 . This is a contradiction since N(α) was supposed
to contain Fj0 .

5.6. Definition. For a class α ∈ H1,1
R

(X), we define the numerical dimension ν(α)
to be ν(α) = −∞ if α is not pseudo-effective, and

ν(α) = max{p ∈ N ; 〈αp〉 6= 0}, ν(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of [DP03], a class is big (α ∈ E◦) if and only if ν(α) = n. Classes of
numerical dimension 0 can be described much more precisely, again following Boucksom
[Bou02].

5.7. Theorem. Let X be a compact Kähler manifold. Then the subset D0 of irreducible
divisors D in X such that ν(D) = 0 is countable, and these divisors are rigid as well
as their multiples. If α ∈ E is a pseudo-effective class of numerical dimension 0, then
α is numerically equivalent to an effective R-divisor D =

∑
j∈J λjDj, for some finite
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subset (Dj)j∈J ⊂ D0 such that the cohomology classes {Dj} are linearly independent
and some λj > 0. If such a linear combination is of numerical dimension 0, then so is
any other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if 〈α〉 = 0, in other words if α = N(α). Thus α ≡

∑
λjDj

as described in 5.7, and since λj〈Dj〉 6 〈α〉, the divisors Dj must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X) ∩ E ⊂ H2(X,Z), otherwise two such divisors D ≡ D′ would yield

a blow-up µ : X̃ → X resolving the intersection, and by taking min(µ⋆D, µ⋆D′) via
(5.4′), we would find µ⋆D ≡ E + β, β 6= 0, so that {D} would not be of numerical
dimension 0. This implies that there are at most countably many divisors of numerical
dimension 0, and that these divisors are rigid as well as their multiples.

The above general concept of numerical dimension leads to a very natural formula-
tion of the abundance conjecture for non-minimal (Kähler) varieties.

5.8. Generalized abundance conjecture. For an arbitrary compact Kähler mani-
fold X, the Kodaira dimension should be equal to the numerical dimension :

κ(X) = ν(X) := ν(c1(KX)).

This appears to be a fairly strong statement. In fact, it is not difficult to show that
the generalized abundance conjecture would contain the Cn,m conjectures.

5.9. Remark. Using the Iitaka fibration, it is immediate to see that κ(X) ≤ ν(X).

5.10. Remark. It is known that abundance holds in case ν(X) = −∞ (if KX is not
pseudo-effective, no multiple of KX can have sections), or in case ν(X) = n. The
latter follows from the solution of the Grauert-Riemenschneider conjecture in the form
proven in [Dem85] (see also [DP03]).

In the remaining cases, the most tractable situation is probably the case when
ν(X) = 0. In fact Theorem 5.7 then gives KX ≡

∑
λjDj for some effective divisor

with numerically independent components, ν(Dj) = 0. It follows that the λj are
rational and therefore

(∗) KX ∼
∑

λjDj + F where λj ∈ Q+, ν(Dj) = 0 and F ∈ Pic0(X).

Especially, if we assume additionally that q(X) = h0,1(X) is zero, then mKX is lin-
early equivalent to an integral divisor for some multiple m, and it follows immediately
that κ(X) = 0. The case of a general projective (or compact Kähler) manifold with
ν(X) = 0 and positive irregularity q(X) > 0 would be interesting to understand.

§6 The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.
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6.1. Theorem. Let X be a projective manifold, and let α = {T} ∈ E◦
NS be a big class

represented by a Kähler current T . Consider an approximate Zariski decomposition

µ⋆
mTm = [Em] + [Dm]

Then
(Dn−1

m · Em)2 6 20 (Cω)n
(
Vol(α) −Dn

m

)

where ω = c1(H) is a Kähler form and C > 0 is a constant such that ±α is dominated
by Cω (i.e., Cω ± α is nef ).

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) > Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ⋆α−Dm = µ⋆
m(α+ Cω) − (Dm + Cµ⋆

mω).

6.2. Lemma. For all nef R-divisors A, B we have

Vol(A−B) > An − nAn−1 ·B

as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities, [Dem01, 8.4]. IfA andB are Q-Cartier, we conclude by
the homogeneity of the volume. The general case of R-divisors follows by approximation
using the upper semi-continuity of the volume [Bou02, 3.1.26].

6.3. Remark. We hope that Lemma 6.2 also holds true on an arbitrary Kähler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from a
generalization of holomorphic Morse inequalities to non integral classes. However the
proof of such a result seems technically much more involved than in the case of integral
classes.

6.4. Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler mani-

fold X̃ such that each difference β′
j −βj is pseudo-effective. Then the n-th intersection

products satisfy
β1 · · ·βn 6 β′

1 · · ·β
′
n.

Proof. We can proceed step by step and replace just one βj by β′j ≡ βj + Tj where
Tj is a closed positive (1, 1)-current and the other classes β′

k = βk, k 6= j are limits of
Kähler forms. The inequality is then obvious.

End of proof of Theorem 6.1. In order to exploit the lower bound of the volume, we
write

tEm +Dm = A−B, A = Dm + tµ⋆
m(α+ Cω), B = t(Dm + Cµ⋆

mω).
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By our choice of the constant C, both A and B are nef. Lemma 6.2 and the binomial
formula imply

Vol(tEm +Dm) > An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ⋆
m(α+ Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k

m · µ⋆
m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ⋆

mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k

m · µ⋆
m(α+ Cω)k · (Dm + Cµ⋆

mω).

Now, we use the obvious inequalities

Dm 6 µ⋆
m(Cω), µ⋆

m(α+ Cω) 6 2µ⋆
m(Cω), Dm + Cµ⋆

mω 6 2µ⋆
m(Cω)

in which all members are nef (and where the inequality 6 means that the difference
of classes is pseudo-effective). We use Lemma 6.4 to bound the last summation in the
estimate of the volume, and in this way we get

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded by
4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) > Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (Dn−1

m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2

(Cω)n
6 Vol(Em +Dm) −Dn

m 6 Vol(α) −Dn
m

(and we have indeed t 6
1

10n by Lemma 6.4), whence Theorem 6.1. Of course, the
constant 20 is certainly not optimal.

6.5. Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) + 〈α〉
is such that

〈αn−1〉 ·N(α) = 0.

Proof. By replacing α by α+ δc1(H), one sees that it is sufficient to consider the case
where α is big. Then the orthogonality estimate implies

(µm)⋆(D
n−1
m ) · (µm)⋆Em = Dn−1

m · (µm)⋆(µm)⋆Em 6 Dn−1
m ·Em 6 C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)⋆(D
n−1
m ), N(α) = lim(µm)⋆Em and limDn

m = Vol(α), we get
the desired conclusion in the limit.
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§7 Proof of the duality theorem

The proof is reproduced from [BDPP03]. We want to show that ENS and SME(X)
are dual (Theorem 4.2). By 3.4 (iii) we have in any case

ENS ⊂ (SME(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS which
is in the interior of SME(X)∨.

E

ENS

M∨

(MNS)
∨

NSR(X) H1,1
R

(X)

MNS

α− εω

α
α+ δω

ω

Γ

N1(X)

Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α+ δω is big for every
δ > 0, and since α ∈ ((SME(X))∨)◦ we still have α− εω ∈ (SME(X))∨ for ε > 0 small.
Therefore

(7.1) α · Γ > εω · Γ

for every movable curve Γ. We are going to contradict (7.1). Since α + δω is big, we
have an approximate Zariski decomposition

µ⋆
δ(α+ δω) = Eδ +Dδ.

We pick Γ = (µδ)⋆(D
n−1
δ ). By the Hovanskii-Teissier concavity inequality

ω · Γ > (ωn)1/n(Dn
δ )(n−1)/n.

On the other hand

α · Γ = α · (µδ)⋆(D
n−1
δ )

= µ⋆
δα ·Dn−1

δ 6 µ⋆
δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·D
n−1
δ = Dn

δ +Dn−1
δ · Eδ.



§7 Proof of the duality theorem 23

By the orthogonality estimate, we find

α · Γ

ω · Γ
6
Dn

δ +
(
20(Cω)n(Vol(α+ δω) −Dn

δ )
)1/2

(ωn)1/n(Dn
δ )(n−1)/n

6 C′(Dn
δ )1/n + C′′ (Vol(α+ δω) −Dn

δ )1/2

(Dn
δ )(n−1)/n

.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also takeDδ to approximate Vol(α+δω) in such a way that (Vol(α+δω)−Dn
δ )1/2

tends to 0 much faster than Dn
δ . Notice that Dn

δ > δnωn, so in fact it is enough to take

Vol(α+ δω) −Dn
δ 6 δ2n.

This is the desired contradiction by (7.1).

7.2. Remark. If holomorphic Morse inequalities were known also in the Kähler case,
we would infer by the same proof that “α not pseudo-effective” implies the existence
of a blow-up µ : X̃ → X and a Kähler metric ω̃ on X̃ such that α · µ⋆(ω̃)n−1 < 0.
In the special case when α = KX is not pseudo-effective, we would expect the Kähler
manifold X to be covered by rational curves. The main trouble is that characteristic p
techniques are no longer available. On the other hand it is tempting to approach the
question via techniques of symplectic geometry :

7.3. Question. Let (M,ω) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with ω, and for this structure, assume that
c1(M) · ωn−1 > 0. Does it follow that M is covered by rational J-pseudoholomorphic
curves ?
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[Lam99a] Lamari, A.; Courants kählériens et surfaces compactes; Ann. Inst. Fourier 49 (1999)
263–285.
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Université de Grenoble I, Institut Fourier, UMR 5582 du CNRS
BP74, 100 rue des Maths, 38402 Saint-Martin d’Hères Cedex, France
E-mail: demailly@fourier.ujf-grenoble.fr

(version of July 26, 2003; printed on May 31, 2007)


