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Abstract. The main goal of these notes is to describe a powerful differential geometric method
which yields precise existence theorems for solutions of equations du = v on (pseudoconvex)
complex manifolds. The main idea is to combine Hilbert space techniques with a geometric identity
known as the Bochner-Kodaira-Nakano identity. The BKN identity relates the complex Laplace
operators A’ and A" associated to & and & with a suitable curvature tensor. The curvature tensor
reflects the convexity properties of the manifold, from the viewpoint of complex geometry. In this
way, under suitable convexity assumptions, one is able to derive existence theorems for holomorphic
functions subject to certain constraints (in the form of L? estimates). The central ideas go back
to Kodaira and Nakano (1954) in the case of compact manifolds, and to Androtti-Vesentini and
Hérmander (1965) in the case of open manifolds with plurisubharmonic weights. Hérmander’s
estimates can be used for instance to give a quick solution of the Levi problem. They have many
other important applications to complex analysis, complex geometry, local algebra and algebraic
geometry ... Important variants of these estimates have been developped in the last two decades.
The first ones are the L? estimates of Skoda (1972, 1978), which deal with the problem of solving
“Bezout identities” Z fjg; = h when g; and h are given holomorphic functions and the f;’s are
the unknowns. The Tast ones are the L? estimates of Ohsawa-Takegoshi (1987), which concern
the problem of extending a holomorphic function given on a submanifold ¥ C X to the whole
manifold X. Our task will be to explain the main techniques leading to all three types of LZ2-
estimates (Hormander, Skoda, Ohsawa-Takegoshi), and to present a few applications.
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2 L? estimates for the d-operator on complex manifolds

1. Non bounded operators on Hilbert spaces

A few preliminary results of functional analysis are needed. Let H;, Hs be complex
Hilbert spaces. We consider a linear operator T' defined on a subspace DomT C H;
(called the domain of T') into Hs. The operator T is said to be densely defined if
Dom T is dense in H;, and closed if its graph

GrT = {(x,Tz) ; x € DomT}

is closed in H1 x Hs.

Assume now that 7" is closed and densely defined. The adjoint 7 of T" (in Von
Neumann’s sense) is constructed as follows: Dom T™* is the set of y € Hs such that
the linear form

DomT 3z — (Tx,y)s

is bounded in Hj-norm. Since Dom T is dense, there exists for every y in Dom T™
a unique element T*y € H; such that (T'z,y)s = (x,T*y); for all z € DomT™*. It

is immediate to verify that Gr7T* = (Gr(—T))L in Hy x Hy. It follows that T is
closed and that every pair (u,v) € Hy X Hy can be written

(u,v) = (x,-Tz)+ (T"y,y), = €DomT, ye& DomT*.
Take in particular u = 0. Then
e+ Ty=0, v=y-Te=y+TTy, (v,y9)2= |yl3+ [Tyl

If v € (DomT*)t we get (v,9)2 = 0, thus y = 0 and v = 0. This implies
(Dom T*)* = 0, hence T* is densely defined and our discussion yields

(1.1) Theorem (Von Neumann 1933). If T : Hy — Haz is a closed and densely
defined operator, its adjoint T* is also closed and densely defined and (T*)* = T.
Furthermore, we have the relation Ker T* = (ImT)* and its dual (Ker T)+ = Tm T*.

O

Consider now two closed and densely defined operators T', S :
Hi = Hy = Hy

such that S oT = 0. By this, we mean that the range T'(DomT) is contained in
Ker S C Dom S, in such a way that there is no problem for defining the composition
S o T. The starting point of all L? estimates is the following abstract existence
theorem.

(1.2) Theorem. There are orthogonal decompositions

Ho = (Ker SNKerT*) & ImT & Im S*,
Ker S = (Ker SNKerT*) @ ImT.

In order that ImT = Ker S, it suffices that
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(1.3) IT*z || +[|Sz||3 > Cllz[l3,  Va € Dom S NDomT™

for some constant C' > 0. In that case, for every v € Ho such that Sv = 0, there
exists u € Hq such that Tu = v and

1
Jull < = ol

In particular

ImT =ImT =KerS, ImS*=ImS* =KerT".

Proof. Since S is closed, the kernel Ker S is closed in Hy. The relation (Ker S)* =
Im S* implies

(1.4) Ho = Ker S & Im S*

and similarly Hy = Ker 7" @ Im 7. However, the assumption S oT" = 0 shows that
ImT C Ker S, therefore

(1.5) Ker S = (Ker SNKerT*) & Im7T.

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4)
and (1.5).

Now, under assumption (1.3), we are going to show that the equation Tu = v
is always solvable if Sv = 0. Let x € Dom T”*. One can write

r=2a+2" where 2’ €KerS and z” € (KerS)t ¢ ImT)* = Ker T*.
Since z, 2" € Dom T™*, we have also ' € Dom T*. We get
(v, 22 = (v,2")2 + (v, 2")9 = (v, 2)2

because v € Ker S and 2" € (KerS)*. As Sz’ = 0 and T*z"” = 0, the Cauchy-
Schwarz inequality combined with (1.3) implies

1 1
(v, @) < Iollz 12112 < Fllollz 1772t = Fllollz 17"

This shows that the linear form 7% > x —— (x,v)9 is continuous on Im7T* C H;
with norm < C~'/2||v||s. By the Hahn-Banach theorem, this form can be extended
to a continuous linear form on H; of norm < C~'/2||v|2, i.e. we can find u € H,
such that ||ull; < C71/2||v|| and

(x,v)o = (T"x,u)1, V€ DomT™.

This means that v € Dom(7*)* = Dom T and v = T'u. We have thus shown that
Im7T = Ker S, in particular Im 7" is closed. The dual equality Im $* = Ker T™* follows
by considering the dual pair (S*,T%). O
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2. Basic concepts of complex analysis in several variables

For more details on the concepts introduced here, we refer to Thierry Bouche’s
lecture notes. Let X be a n-dimensional complex manifold and let (z1,...,2,) be
holomorphic local coordinates on some open set {2 C X (we usually think of {2 as
being just an open set in C™). We write z; = x; +iy; and

(21) de = d.’l?j + idyj, dgj = d.’l?j — ldyj
(Complex) differential forms over X can be defined to be linear combinations

Z Car...ap,BroBon ATy N - Ndxo, Ndyg, N--- Ndyg,,

with complex coefficients. Since dz; = 3(dz; +dz;) and dy; = 5 (dz; — dz;), we can
rearrange the wedge products as products in the complex linear forms dz; (such that
dzj(§) = &;) and the conjugate linear forms dz; (such that dz;(§) = EJ) A (p,q)-
form is a differential form of total degree p + ¢ with complex coefficients, which can
be written as

(2.2) u(z) = Y upy(z)dz Adzy,
l=p; |J]=q
where I = (i1,...,4p) and J = (ji,...,J,) are multiindices (arranged in increasing
order) and
dZ]:dZil/\"'/\dZZ'p, dEJ:del/\-~-/\dqu.

The vector bundle of complex valued (p, ¢)-forms over X will be denoted by AP9T%.
In this setting, the differential of a C'! function f can be expressed as

_ O g 2 Oy Of g 9F
df = > o+ o dy; = ) o dzj + 5 dz,

1<jgn Y 1<j<n

h
o of _L(Of _ofy  0f 101 .01y
sz 2 81’]’ 6yj ’ 623' 2 8CL’j 8yj '

We thus get df = d'f +d"f (or df = df + Jf in British-American style), where
of of
/ _ . 1! . J .
df= Z a—zjdz], resp. d'f = Z oz dz;
1<j<n 1<j<n

is C-linear (resp. conjugate C-linear). We say that f is holomorphic if df is C-linear,
or, in an equivalent way, if d”f = 0 (Cauchy-Riemann equation). More generally,
the exterior derivative du of the (p, ¢)-form w is

9 )
du = Z ( ;U dzi + 8“_” dzk)d,zj NdZj.
|I|=p, |J|=q,1<k<n “k Zk

We may therefore write du = d'u + d”u with uniquely defined forms d'u of type
(p+1,q) and d"u of type (p,q+ 1), such that
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(2.3) d'u = > 68“;: dzw Adzr N dz,
[I|=p, |J|=¢, 1<k<n
(2.3") d'u = 3 OULT o Ny A d5.
0z

I|=p, |J|=q, 1<k<n

The operators d’ = 0 can be viewed as linear differential operators acting on the
bundles of complex (p, g)-forms (see §4). As

0:d2 — (d/+d//)2 :d/2+(d/d//+d//d/>+d//2
where each of the three components are of different types, we get the identities
(2.4) d?=0, d”?=0, dd'+d'd=0.

Moreover, d’ and d’ are conjugate, i.e., du = d"u for any (p,q)-form u on X. A
basic result is the so-called Dolbeault-Grothendieck lemma, which is the complex
analogue of the Poincaré lemma.

(2.5) Dolbeault-Grothendieck lemma. Let v = Z|J|=q vydzy, ¢ = 1, be a
smooth form of bidegree (0, q) on a polydisk 2 = D(0, R) = D(0, Ry) x---xD(0, Ry,)
in C™. Then there is a smooth (0,q — 1)-form u on §2 such that d"uv = v on (2.

Proof. We first show that a solution u exists on any smaller polydisk D(0,7) € {2,
rj < R;. Let k be the smallest integer such that the monomials dz; appearing in v
only involve dzi, ..., dzy. We prove by induction on k that the equation d"u = v
can be solved on the polydisk D(0,7). If & = 0, then v = 0 and there is nothing
to prove, whilst £k = n is the desired result. Now, assume that the result has been
settled for k£ — 1, that v only involves dzq, ..., dZ, and set

v=dz A f+g,  f= Y fidZ;, 9= gsdz,

|J|=¢—1 |J|=q
where f, g only involve dz1, ..., dZy_1. The assumption d”’v = 0 implies
d'v=—dzxy Nd"f+d"g=0

where dzp A d” f involves terms 0f;/0Z¢ dzy Ndzy Ndzy, £ > k, and d”g can only
involve one factor dzy, with an index ¢ > k. From this we conclude that 9f;/0z, =0
for £ > k. Hence the coefficients f; are holomorphic in zx41,...,2,. Now, let us
consider the (0,q — 1)-form

F = Z Fydz;, Fj(z) = (Y(zk)fs(2)) %k <L>,

T2
|J|=q—1

where 1(zy) is a cut-off function with support in D(0, Ry), equal to 1 on some disk
D(0,7},), r. € |k, Ri[, and *, denotes a partial convolution with respect to zj. In
other words,
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1

md)\(w).

FJ(Z):/ ¢(w)fJ(21,~-~;Zk—1,w72k+17-~-,2n)
weD(0,R;)

1
= V(zk —w)fr(21, .00y 21, 2k — W, 2kt 1y - - - 2n) —dA(W).
weC W

It follows from differentiation under integral sign that F; is a smooth function on {2

which is holomorphic in all variables zx1, ..., z,. Moreover, as # is a fundamental
solution of 2 in C (that is, Z (L) = do), we see that
0
8—216FJ<Z) = w(Zk)fJ(zh ce s REk—15Rky Rk41s - - Zn)7

in particular %FJ = f7 on some polydisk D(0,7'), 7} € |r;, R;[. Therefore

0
d'F= Y O 4zy Ndzy = dzx A f + g1
625
|J|=q—1,1<0<k
where g; is a (0, ¢) form which only involves dz, ..., dz;_1. Hence

vy :=v—d'F=(dzZxNf+9)—([dzZe Nf+91) =9—n

only involves dz1, ...,dZ;_1. As vy is again a d"-closed form, the induction hypothe-
sis applied on D(0, ") shows that we can find a smooth (0, ¢ — 1)-form u; on D(0,r)
such that d”u; = v;. Therefore v = d”(F + uy) on D(0,r), and we have thus found
a solution u = F'+u; on D(0,7) € (2.

To conclude the proof, we now show by induction on ¢ that one can find a
solution u defined on all of 2 = D(0, R). Set R, = (R1 —27%,..., R, —27"). By
what we have proved above, there exists a smooth solution u, € D(0, R(,)) of the
equation d"u, = v. Now, if ¢ = 1, we get d"(u,11 —u,) = 0 on D(0, R,), i.e.,
Uy+1 — Uy is holomorphic on D(0, R(,y). By looking at its Taylor expansion at 0, we
get a polynomial P, (equal to the sum of all terms in the Taylor expansion up to
a certain degree) such that |u, 1 —u, — B, < 27" on D(0, R(,_1)) € D(0, R,)).
If we set u, = uy, + P + -+ P,_1, then wu, is a uniform Cauchy sequence on
every compact subset of D(0, R). Since 4,41 — u, is holomorphic on D(0, R,)), we
conclude that the limit v is smooth and satisfies d’u = d"u, = v on D(0, R(,))
for every v, QED. Now, if ¢ > 2, the difference u, 11 — u, is d”’-closed of degree
q—12>1on D(0, R,)). Hence, by the induction hypothesis, we can find a (0, —2)
form w, on D(0, R(l,)) such that u, 1 —u, = d"w,. If we replace inductively u, 1 by
uy+1 — d’ (Y,w,) where 1, is a cut-off function with support in D(0, R,)) equal to
1 on D(0, R(,_1)), we see that we take arrange the sequence so that u, 1 coincides
with u, on D(0, R(,_1)). Hence we get a stationary sequence converging towards a
limit u such that d"u = v. O

We now introduce the concept of cohomology group. A differential complex
is a graded module K* = P ., K? over some (commutative) ring R, together
with a differential d : K* — K* of degree 1, that is, a R-linear map such that
d=d?: K?— K% on K9 and d*> =0 (i.e., d97 0 d? = 0 for every ¢). One defines
the cocycle and coboundary modules to be
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(2.67) Z9(K*®) = Ker(d? : K9 — K1),
(2.65) BYK®) =Im(d?': K97! — K9).

The assumption d? = 0 immediately shows that BY(K®) C Z9(K*), and one defines
the g-th cohomology group of K*® to be

(2.7) HI(K*) = Z9(K*)/BI(K*).

A basic example is the De Rham compler K7 = C*° (X, A9T%) together with the
exterior derivative d, defined whenever X is a smooth differentiable manifold. Its
cohomology groups are denoted H), (X, R) (resp. Hp)z (X, C) in the case of complex
valued forms) and are called the De Rham cohomology groups of X. Here, we will
be rather concerned with the complex case. If X is a complex n-dimensional man-
ifold, we consider for each integer p fixed the Dolbeault complex (KP*,d") defined
by KP1 = C®(X, AP9T% ) together with the d”-exterior differential; its cohomology
groups HP9(X) are called the Dolbeault cohomology groups of X. More generally,
let us consider a holomorphic vector bundle £ — X. This means that we have a
collection of trivializations Ey, ~ U; x C", r = rank E, such that the transition ma-
trices g;,(z) are holomorphic. We consider the complex K% = C> (X, AP1T% Q E)
of E-valued smooth (p, ¢)-forms with values in E. Again, K% possesses a canon-
ical d”-operator. Indeed, if u is a smooth (p, ¢)-section of E represented by forms
uj; € C°(U;, AP9T% ® C") over the open sets U;, we have the transition relation
uj = g;rui; this relation implies d’u; = g;pd"uy (since d”g;r = 0), hence the
collection (d"u;) defines a unique global (p,q + 1)-section d”u. By definition, the
Dolbeault cohomology groups of X with values in E are

(2.8) HP9(X, E) = HY(K2®,d").

An important observation is that the Dolbeault complex K%:* is identical to the
Dolbeault complex K 91’;T;(® 5, thanks to the obvious equality

APITY @ E = AT @ (APTx @ E)

and the fact that APTY is itself a holomorphic vector bundle. In particular, we get
an equality

(2.9) HP (X, E) = H"(X, APT% @ E).

It X = (2 is an open subset of C", the bundle APT ~ (’)g(”> is isomorphic to a
direct sum of (;L) copies of the trivial line bundle Oy, hence we simply get
HP9(0Q,E) = H*(02, E) ®c AP(C™)* = H*9(02, B)*().

In this setting, the Dolbeault-Grothendieck lemma can be restated:

(2.10) Corollary. On every polydisk D(0, R) = D(0,Ry) x --- x D(0,R,,) C C™,
we have H”9(D(0, R), Op(o,r)) =0 for allp >0 and q > 1. O

We finally discuss some basic properties of plurisubharmonic functions. In com-
plex geometry, plurisubharmonic functions play exactly the same role as convex
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functions do in real (affine) geometry. A function ¢ : 2 — [—o0, +00[ on an open
subset 2 C C™ is said to be plurisubharmonic (usually abbreviated as psh) if ¢ is
upper semicontinuous and satisfies the mean value inequality

1

27
(2.11) v(20) < —/ (20 + ae') do
2 Jo

for every a € C™ such that the closed disk zg+ aD is contained in £2 (here I denotes
the unit disk in C).

(2.12) Example. Every convex function ¢ on {2 is psh, since convexity implies
continuity, and since the convexity inequality

1

p(20) < 5 (p(z0 +ae”) + p(z0 — ae”))

implies (2.11) by computing the average over 6 € [0, ].

Given a closed (euclidean) ball B(zg,r) C {2, the spherical mean value
o fZGS(ZO,r) ©(z) do(z) is equal to the average of the mean values com-
puted on each circle zp + adD, when a describes the sphere S(0, 7). Hence, (2.11)
implies the weaker mean value inequality

(213) o) < e [ el ot

02n—1

for every ball B(zg,r) C £2, in other words, every psh function is subharmonic (with
respect to the Euclidean metric). Notice that (2.13) still implies the apparently
weaker inequality

1
2.13 v(20) < / p(z)dV (z
( ) (=0) Vop 20 B(zo,r) ) )

by averaging again over all radii in the range ]0,r[, with respect to the density
2nr?"~1dr (in fact, one can show that the mean value properties (2.13) and (2.13')
are equivalent). As a consequence, we get inclusions

(2.14) Conv(§2) C Psh(£2) C Sh({?2)

where Conv({2), Psh(£2), Sh(§2) are the spaces of convex, psh and subharmonic
functions, respectively. Now, if X is a complex manifold, we say that a function
¢ : X — [—00,400] is psh if ¢ is psh on every holomorphic coordinate patch 2,
when viewed as a function of the corresponding coordinates. In fact, Property 2.15 j)
below shows that the plurisubharmonicity property does not depend on the choice
of complex coordinates; this contrasts with convexity or subharmonicity, which do
require an additional linear or riemannian structure, respectively.

(2.15) Basic properties of psh functions.

a) For any decreasing sequence of psh functions @i € Psh(X), the limit o = lim @y
1s psh on X.
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Let (v;)jes be a family of psh functions on X. Assume that ¢ := sup;c; ¢; is
upper semicontinuous and locally bounded from above. Then ¢ is psh on X.

Let p1,...,¢p € Psh(X) and x : RP — R be a convex function such that
X(t1,...,tp) is increasing in each t;. Then x(p1,...,¢p) is psh on £2. In par-
ticular o1 + -+ - + ¢p, max{p1,...,pp} and log(e®* + ---+e¥?) are psh on X.

Let f € O(X) be a holomorphic function. Then log|f| is psh on X.

Let f1,..., f, € O(X) be holomorphic functions, and let v1,...,7, be positive
numbers. Then

p=log (|1l +- - +1fp[")
1s psh on X.

If pu is a Radon measure on some compact space K and (z,w) — &(z,w) is an
upper semicontinuous function on X x K such that z — ®(z,w) is psh on X

for p-almost every w € K, then ¢(2) = [ o P(2,w) du(w) is psh on X.

A function ¢ of class C? is psh if and only if the hermitian matriz of mized
derivatives (0%¢/0z;0Zk) 1<), k<n 1S semipositive at every point. In particular,
in dimension n = 1, a function ¢ of class C? is (pluri)subharmonic if and only

if Ap > 0.
A function ¢ € Li (X) is equal (almost everywhere) to a psh function g if

loc
and only if for every a € C™ we have

>0 (as a positive measure)

when 8%¢/0z;0Z, is computed as a distribution.

Let ¢ € Psh(§2) where §2 is an open subset of C™ and assume that ¢ € L (§2).

loc

If (pe) is a family of smoothing kernels, then ¢ x p. is C* and psh on
Q. ={z€0;d(z,L0) > e}
Moreover, the family (@ * p2) is increasing in € and lim._g @ x p. = @.

If F:Y — X is a holomorphic map from a complex manifold Y to a complex
manifold X and if ¢ € Psh(X) then ¢ o F' € Psh(Y).

Assume that 2 = w @ iR" is a “tube domain” of base an open subset w C R™.
Let p(x +1y) = ¢(x) be a function depending only on x € w. Then z +— (z) is
psh on 2 if and only if x — p(x) is conver on w.

Let © be a psh function on an open subset {2 C C™. Given a point zy € §2, let
R = d(z0,082). Then the functions

1
logr — sup ¢, logr — 7/ w(z) dA(2)
B(zo,r) WnTQn/n! z€B(zo,r)

are convez increasing functions on | — oo, log R|.

Proof. a) is just a consequence of the monotone convergence theorem, while b)
follows from the obvious inequality sup [ ¢; < [ sup ¢;. Now, let us prove c). The
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conclusion is clearly true if x(t) = a(t) = a1t1 + - - - + aptp + b is an affine function
with all a; > 0, for the function

a(@l?"'a@p):algpl—i_"'—i_ap@p—i_b

also satisfies the mean value inequality by taking positive linear combinations. How-
ever, it is well known that every convex function x is equal to the upper envelope
X = sup,c4 & wWhere A is the family of all affine functions a such that a < x;
such functions « are necessarily increasing in each variable if x is. Hence c) fol-
lows from b), and the case of log(e®* 4 --- + e¥7) is obtained by checking that
X(t1,y...,tp) = log(e'* +--- 4 €'r) is a convex increasing function (exercise: check
that the matrix (9%x/0t;0t) is semipositive of rank p — 1 at any point ¢ € RP).

Property d) can be reduced easily to the Jensen formula in one variable: indeed
the Jensen formula tells us that the average of log|f| on a circle of radius r is the
sum of the value log|f(z9)| at the center plus a term ) m;log(r/|w; — z|) = 0
where (w;) are the zeros in the disk and m; the multiplicities. Property e) is a
special case of d) when we take ¢; = ~;log|f;|, and f) is an immediate consequence
of the Fubini theorem. Now, the convolution

oxpe(z) = /B Pl wpw)

is a smooth function on (2., and f) shows that it is psh; hence the first part of i)
follows. In dimension n = 1, the proof of g) is based on the elementary formula

1 27 . d
(2.16) - / (20 + 1 €e?)dh = p(2) / ep / z)dx dy.
™ 0 D(ZO,p)

(In fact, assuming zg = 0 for simplicity, the Green-Riemann formula yields

1 / 1 dp . Op
— Ap(z)drdy = —/ —dy — —dx
P JD(0,p) 90( ) P Jz|=p Oz ay

_ Oy Oy _ AT e
_/Z| p%(:osﬁd@—l—a—ysmedﬁ d_p p(pe”)do,

an we get (2.16) after an integration.) Now, if Ap > 0, we infer from (2.16) that
the mean value inequality holds; on the other hand, if Ap(zp) < 0, the mean value
inequality fails for r small, QED. In higher dimensions, the conclusion is easily
obtained by putting ) (w) = ¢(z¢ + aw) ; we then get

2 2
iﬂlb(w): 8¢_: Z ajakai(zo-l—aw)

Jwow 02:0Z
1<j,k<n 3Eck

and everything follows.

i) (end of proof) Notice that (2.16) implies that the circular mean value
f ©(z0 + rel?)df of a C? subharmonic function in 2 C C is an increasing func-
tion of r. The same is true for spherical mean values of psh functions on open sets
2 C C™, since we can compute them by averaging the circular mean values with
respect to all complex directions. In particular, if ¢ is of class C?, we conclude
(through a use of polar coordinates) that
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% pelz) = /B o P I ) X)

is an increasing function of ¢, for any z € (2 fixed). Since ¢ x p, is a smooth psh
function on 2, we get that (¢ x p,) % p is increasing in € whenever z € {2.,. By
passing to the limit when n — 0, we see that ¢ % p.(2) is always increasing in ¢
(even though ¢ is maybe not smooth). Since ¢ x p-(2) > ¢(z) by the mean value
inequality and limsup,_,, ¢ *p:(2) < ¢(2z) by the upper semicontinuity, we conclude
that lim. o ¢ % pc(2) = @(2z) everywhere.

Let us now prove h). If g is psh and ¢ = ¢ almost everywhere, then ¢ * p. =
Yo * pe is smooth and psh, hence

9%p * p- e
ajlp—F——F— = ( Z j0g ) *pe =20
1<j,k<n 1<j,k<n 62 8Z
for every A € C™ and every € > 0. By passing to a weak limit, we conclude that the
2

. . . — o %) . . . . . .
distribution ) @j0k g, oz, 15 2 positive measure. Conversely, if this is the case, the

convolution ¢ * p,, is psh by g). Hence (¢ x p,;) * p- is an increasing function of e,
and by taking the limit as n tends to 0, we see again that ¢ % p. is increasing in ¢.
Therefore the decreasing limit

o = kgrilm ©* P1/k

is psh by a), and Lebesgue’s theorem shows that ¢y = ¢ almost everywhere.
When ¢ is smooth, j) follows from the formula
OF;
bj = ag—]
tm ¢ we

in suitable coordinate systems (z;) on X and (w¢) on Y. In general, we conclude by
considering regularizations ¢ x p. and passing to the limit.

k) is obvious when ¢ is smooth, since the convexity of ¢(x) and the plurisub-
harmonicity of ¢(z) are both characterized by the condition that (0%¢/0xz;0zy) is
semipositive everywhere. In general, we obtain the conclusion by using regulariza-
tions ¢ x pe.

Finally, property 1) follows from the following observation: the functions

olw)= sup p= sup ¢(zg+ae’),
Bs,elew)  a€B(0,1)

1 1
Hw) = e Rew /n] /B<zo,eR6w> #lz) dX(z) T /n! /aeB(o,l) #lrotact)da)

are psh on the half-plane {Rew < log R} C C, thanks to j), b) and f). As they only
depend on Rew, they must be convex in Re w. Moreover, o(w) is clearly increasing
with respect to Rew, and the same is true for p by (2.16). O

(2.17) Definition. A complez (1,1)-form
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u =i Z ujrdz; N dzy,

1<j,k<n

is said to be (semi)positive if the hermitian matriz (u;y) is (semi)positive.

Notice that u is real, i.e. w = u, if and only if uw;;, = wuy;, i.e. iff the matrix is
hermitian). In this setting, a real L] function ¢ is psh if and only if id'd"¢ > 0 as
a (1,1)-form.

3. Kahler metrics and Kahler manifolds

Let us recall that a Riemannian metric on a (real) differentiable manifold M is a
positive definite symmetric bilinear form

g = Z gjk(:v) d.CCj ® dxy,

1<g,k<n

on the tangent bundle Tys, where (x1,...,z,) are local coordinates on M. We
usually assume that the coeflicients g;i(x) are smooth. Then, for any tangent vector
§=>£0/0x; € Trr, one defines its norm with respect to g by

(3.1) 2= gir(@)&én.

1<,k <n

If M is moreover assumed to be oriented, one defines a corresponding volume element
(3.2) dVy = y/det(g;x(z)) dzq Adxo A--- Adxy,

whenever (x1,...,z,) fit with the given orientation. It is easy to check by the Jaco-
bian formula that this definition of dV} is independent of the choice of coordinates.

Now, we consider the complex case. Let X be a complex n-dimensional mani-
fold. A hermitian metric on X is a positive definite hermitian form of class
C* on Tx; in a coordinate system (z1,...,2,), such a form can be written
h(z) = 321<jren Pik(2) dzj ® dzi, where (hj)) is a positive hermitian matrix with
C° coefficients. Thanks to the hermitian condition h;; = hy;, our form h can be
written as h = g — iw, where

hEn) = D hiw(2)&my,

1<g,k<n

(3.3) g(§&;m) =Reh(&,n) =

D ()M + har(2) E;mi)

1

2 4
1<j,k<n

1

2

hk(2) (& + 05€k)

hik(2) (&7, — n3€) ie.
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By definition, w is the fundamental (1, 1)-form associated with h. It is a positive defi-
nite (1, 1)-form (according to the general definition). Since w and h are “isomorphic”
objects, we usually do not make any difference and will think of hermitian metrics
as being positive (1, 1)-forms.

(3.5) Definition.

a) A hermitian manifold is a pair (X,w) where w is a C* positive definite (1,1)-
form on X.

b) The metric w is said to be kdhler if dw = 0.

c) X is said to be a Kdhler manifold if X possesses at least one Kdhler metric.

Since w is real, the conditions dw = 0, dw = 0, d"w = 0 are all equivalent. In
local coordinates we see that d'w = 0 if and only if
6hjk - Ohi
82!1 n 82’]‘ ’

1<,k 1 <n.

A simple computation gives %dzj Ndz; = dxj A dy; and

“o = det(hy) N\ (%d,zj Ndz;) = det(hg) day Adyy A+ A da A dy,

n!
1<j<n

where z,, = x,, + iy,,. Therefore the (n,n)-form
(3.6) dv, = —w"

is positive with respect to the canonical orientation of X. Since det(g) = det(h)? by
(3.3), we see that dV, = dV} coincides with the Riemannian volume element of X.
If X is compact, then fX w™ = n! Vol,(X) > 0. This simple remark already implies
that compact Kéahler manifolds must satisfy some restrictive topological conditions:

(3.7) Consequence.

a) If (X,w) is compact Kdhler and if {w} denotes the cohomology class of w in
H?(X,R), then {w}™ # 0.
b) If X is compact Kihler, then H**(X,R) # 0 for 0 < k < n. In fact, {w}* is a

non zero class in H**(X,R).

(3.8) Examples.

a) The most obvious example is C™ together with the standard K&hler metric

i _ .
w:§ Z dzj Ndzj =1 Z dxj N dy;.

1< <n 1<j<n

The volume element dV,, coincides with the Lebesgue measure of C"* ~ R2".
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b) The complex projective space P™ is Kéhler. A natural Kéhler metric w on P,
called the Fubini-Study metric, is defined by

N 1
pPrw = §d/d” log (|Col> 4+ G2+ -+ -+ ¢al?)

where (o, (1, ...,(, are coordinates of C"™ and where p : C**1\ {0} — P" is the
projection. Let z = ((1/Co,-..,(n/Co) be non homogeneous coordinates on C" =
{¢o # 0} C P™. Then, since d’d"” log|(o|*> = 0 on {{y # 0}, we see that

i /d'd"|z]?  (dz,z) A{dz,z)
(T E (e )
€17 (€, 2)1*  _ [P+ 1€ 2

2 _ — =
S e T e A (I PR

w = %d’d” log(1 + |2[?) =

thanks to Lagrange’s identity |£]?]2]? = [(£,2)|? + |€ A 2]?. The eigenvalues of the
Fubini-Study metric with respect to the standard Euclidean metric are 1/(1+|z|?)?
in the radial direction Cz, and 1/(1 + |2|?) in the hyperplane (Cz)*. From this we
infer

d\(z)
A

A computation shows that the global volume is Vol,(P") = [, dV,, = 7" /n!.

dv, =

c) A complex torus is a quotient X = C"/I" by a lattice I" of rank 2n. Then X is
a compact complex manifold. Any positive definite hermitian form with constant
coefficients w =1) hjrdz; A dz), defines a Kéhler metric on X.

d) Every (complex analytic) submanifold Y of a Ké&hler manifold (X,w) is Kéhler
with metric w}y . Especially, all complex submanifolds of P" are Kéhler.

e) Consider the complex surface
X =(C*\{oh/T

where I' = {\" ; n € Z}, A < 1, acts as a group of homotheties. Since C? \ {0}
is diffeomorphic to R% x S3, we have X ~ S x §2. Therefore H*(X,R) = 0 by
Kiinneth’s formula, and property 3.7 b) shows that X is not Ké&hler. Hence there
are compact complex surfaces which are not Kéhler. O

The following Theorem shows that a hermitian metric w on X is Kahler if
and only if the metric w is tangent at order 2 to a hermitian metric with constant
coefficients at every point of X.

(3.9) Theorem. Let w be a C* positive definite (1,1)-form on X. In order that w
be Kahler, it is necessary and sufficient that to every point xo € X corresponds a
holomorphic coordinate system (z1,...,z,) centered at xo such that

w=1 Z Wim A2y N dZpy Wi = O + O(|2]?).

1<I,m<n
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Proof. 1t is clear that the existence of a Taylor expansion as above implies d,,w = 0,
so the condition is sufficient. Conversely, assume that w is Kéahler. Then one can
choose local holomorphic coordinates (z1,...,x,) such that (dzi,...,dz,) is an
w-orthonormal basis of T% , . Therefore

w=1 Z Wi dxy N dT,,,  where

1<i,m<n
~ _ _ ! = 2
Bim = O + O(|2]) = 61m + Y (aimz;j + 0%, T5) + O(J2]?).
1<jsn
Since w is real, we have a}lm = @jm;; on the other hand the Kahler condition

Owim /0xj = Owjm, /Ox; at xo implies ajipm = aijm. Set now

1
zm:xm+§Zlajlmxjxl, 1<m<n.
Js

Then (z,,) is a coordinate system at zo, and

dzym = dx,, + Z ajimT;dTy,
gyl
iZdzm ANdZ,, = iZdwm ANdT,, +1 Z ajimT; dxy N\ dTp,
m m j:lam
+1) i T da A dZ + O(|2])
7,l,m
= iZ&lm dx; A dz,, + O(|z]?) = w + O(|2]?).

Im

Theorem 3.9 is proved. O

(3.10) Remark. When w is Kéhler, one can refine the above proof to shows that
there are local coordinates (21, ..., 2z,) centered at x( such that w = 5 Zlm Wimdzi A
dz,, with

Wim =0 — Y Cirm 2%k + O(|2*).

1<g,k<n

The coefficients c¢;p,, satisfy the symmetry relations
Ciklm = Ckjmls  Cjklm = Clkjm = Cjmlk = Clmjk-

(The c¢jkim can be interpreted as the coeflicients of the Levi-Civita curvature tensor
of (T'x,w), but we will not use this fact).
4. Differential operators on vector bundles

We first describe some basic concepts concerning differential operators (symbol,
composition, adjunction, ellipticity), in the general setting of vector bundles. Let M
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be a C°° differentiable manifold, dimg M = m, and let E, F' be K-vector bundles
over M, with K=R or K=C, rank E = r, rank F' = r’.

(4.1) Definition. A (linear) differential operator of degree 6 from E to F is a
K-linear operator P : C*°(M,E) — C*(M, F), u— Pu of the form

Pu(x) = Z aq(z)D%u(x),

lor| <6

where Eyg ~ 2 x K", Fio ~ (2 X K" are trivialized locally on some open chart
2 C M equipped with local coordinates (z1,...,%m), and

aa(.I) = (aaku(’r»lg)\gﬂ,lSHgT

are v’ x r-matrices with C* coefficients on 2. Here D = (0/0x1)* ...(0/0%y,)*™
as usual, and u = (uy)1<u<r, D = (D%uy)1<u<r are viewed as column matrices.

If t € Kis a parameter and f € C*°(M,K), u € C*°(M, E), a simple calculation
shows that e~ *f(®) P(et/(#)y(z)) is a polynomial of degree § in ¢, of the form

e @ Pt @y(2)) = top(x, df (z)) - u(z) + lower order terms ¢;(z)t?, j < 6,

where op is the homogeneous polynomial map 7%, — Hom(E, F') defined by

(4.2) T, 26— op(2,§) € Hom(E,, Fy),  op(z,) = ) aa(2)*.
|a|=6

Then op(x,£) is smooth on T}, as a function of (z,¢), and is independent of the
choice of coordinates or of the trivializations used for E, F'. We say that op is the
principal symbol of P. The symbol of a composition () o P of differential operators
is simply the product

(4.3) 9Qop(,8) = 0q(z,§)op(z, ),

computed as a product of matrices.

Now, assume that E is a euclidean or hermitian vector bundle. Recall that a
hermitian form h on a complex vector bundle F if a collection of positive definite
hermitian forms h(z) on each fiber E,, such that the map

E—Ry, E,>& |E2 = h(=)(€)

is smooth. A hermitian vector bundle is a pair (E,h) where E is a complex vector
bundle and h a hermitian metric on E. The notion of a euclidean (real) vector
bundle is similar, so we leave the reader adapt our notations to that case. We
assume in addition that M is oriented and is equipped with a smooth volume form
dV(z) = y(x)dxy A~ - - dxyy,, where y(z) > 0 is a smooth density (usually, dV will be
the volume element dVj, of some Riemannian metric). Then we get a Hilbert space
L?(M, E) of global sections u of E with L? coefficients, by looking at all sections
r — u(x) € E, satisfying the L? estimate
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(4.4 Jull? = [ Ju() av (@) < +x.
We denote the corresponding global L? inner product by
(4.4") {(u,v)) = /M<u(x), v(z)) dV(z), u,v € L*(M, E)

(4.5) Definition. If P : C°(M,E) — C>(M,F) is a differential operator and
both E, F are euclidean or hermitian, there exists a unique differential operator

P*:C®(M,F) — C>®(M, E),

called the formal adjoint of P, such that for all sections u € C®(M,FE) and v €
C™ (M, F) there is an identity

{(Pu,v)) = (u, P*v)), whenever Suppu N Suppv € M.

Proof. The uniqueness is easy, using the density of smooth compactly supported
forms in L?(M, E). By a partition of unity argument, it is enough to show the
existence of P* locally. Now, let Pu(z) =, <5 @a(z)D%u(z) be the expansion of
P with respect to trivializations of E, F' given by orthonormal frames over some
coordinate open set 2 C M. When Suppu N Suppv € {2 an integration by parts
yields

{(Pu,v)) / Z oy D, (2)0x () y(2) dx1, . . ., day,

|| <8, A, 1

/ Z 1)1, (2) D (v() GorpVr(T) dze, . .. dTpy,

| <6, A, 1

:/Q<u, 3 (= 1)y (@) D% ((2) TFav(a))) AV ().

|| <8
Hence we see that P* exists and is uniquely defined by

(4.6) Pro(z) = Y (-1)y(z) ' DY (v(z) "@av(z)).0

lor| <6

It follows immediately from (4.6) that the principal symbol of P* is

(4.7) op:(2,6) = (-1)° > "t = (—1)°op(z, )"

lo|=6

(4.8) Hilbertian extensions of differential operators. Given a differential
operator P : C°(M,E) — C*(M,F), we can extend it as an operator P :
D'(M,E) — D'(M,F) by computing Pu in the sense of distributions. Especially,
we get an operator

Py : L*(M,E) — L*(M, F),
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which we call the maximal (Hilbertian) extension of P, such that u € Dom(Py) if
and only if u € L?(M, E) and Pu € L?>(M, F); we then set of course Pyu = Pu.

(4.9) Proposition. For any differential operator P : C*>°(M,E) — C*(M, F), its
Hilbertian extension Py is a closed and densely defined operator.

Proof. First observe that Dom Py, contains the space D(M, E) of smooth sections
with compact support in M. As D(M, E) is dense in L?(M, E), we conclude that
Py has a dense domain. Now, let (u,,v,) be a sequence in the graph of Py, con-
verging towards a limit (u,v) in L?(M, E) x L*(M, F). Then, u, — u in L?(M, E)
and in particular u, converges weakly to u in D'(M, E). As differentiations and
multiplications by smooth functions are continuous for the weak topology, we infer
that v, = Pu, converges weakly to Pu in D'(M, F). Since the weak topology is
Hausdorff, we conclude that v = Pu. Hence u € Dom Py and v = Pyu, as desired.

O

By the general results of §1, we know that Py admits a closed and densely
defined adjoint (Py)* : L*(M,F) — L*(M, E), called the Hilbert adjoint of Py,
such that

{(Pru,v)) = ((u, (Py)*v)), Vu € Dom Py, Yv € Dom(Py)*.

In particular, this identity must hold true for all u € D(M, E'), and we conclude from
this that (Pp)*v coincides with the formal adjoint P*v computed in the sense of
of distributions. Hence, if (P*)s is the maximal Hilbertian extension of the formal
adjoint (usually simply called the formal adjoint), we see that

(4.10) Dom(Py)* C Dom(P*)y

and that both operators (Py)* (Hilbert adjoint) and (P*)y (formal adjoint) coin-
cide on Dom(Py)*. However, the domains are in general distinct, as shown by the
following simple example.

(4.11) Example. Consider M = ]0, 1], dV = dz, together with the trivial hermitian
vector bundles ¥ = F = M x C, and the differential operator
d

P =—:C%(J0,1[,C) — 0=(0,1[.C).

Our general formula for the formal adjoint shows that

d

P*:——:
dx

—P.

Now, the domain of Py consists of all u € L?(]0,1[,C) such that ' € L?(]0,1[,C)
and is therefore nothing else by definition than the Sobolev space W(]0,1][,C).
However W1(]0, 1], C) injects continuously in C%(]0, 1[, C), since v’ € L*(]0,1[,C) C
L1(]0,1[,C) implies that u extends as a continuous function in C°([0,1],C). In
particular, any u € Dom Py = W!(]0,1[,C) can be assigned well defined values
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u(0) and u(1l). Now, given u € Dom Py and v € Dom(Py)*, (4.10) shows that
u,v € W(]0,1[,C) c C°(]0, 1], C). We then get the integration by part formula

( Pru,v)) = /0 o' (x)v(z) do = u(1)v(1) — u(0)v(0) — /0 u(x)v'(z) de,

which can be easily reduced to the case of smooth functions by using convolution
with reglarizing kernels. As v' € L2, we conclude that the linear form u — (Pu,v))
is continuous in the L? topology if and only if v(0) = v(1) = 0 (and in that case we
do have (Py)*v = —v' = (P*)nv). Hence

Dom(Py)* = Wy (]0,1[,C) := {v € W'(]0,1[,C); v(0) = v(1) =0}
g W1(]0,1[,C) = Dom(P*)x. O

(4.12) Elliptic operators. Especially important in PDE theory are the so-called
elliptic differential operators:

(4.13) Definition. A differential operator P is said to be elliptic if op(x,&) €
Hom(E, F;) is injective for every x € M and § € Ty, , ~ {0}.

The main result of elliptic PDE theory, which we only quote here (see e.g.
(Hormander 1963)), is

(4.14) Theorem. Every solution uw € D' (M, E) of an elliptic equation Pu = v with
v € C®(M,F) is in fact smooth, i.e., uw € C*(M, E). In fact, if P is of degree §
and v is in some Sobolev space W (M, F), then u e W (M, E).

5. Operators of Kahler geometry and commutation identities

In Kéhler geometry, many linear differential operators are to be considered, together
with their commutation relations. All these operators are C-linear endomorphisms
acting on the (bi)graded module @, o C* (X, AP ® E), where E is some her-
mitian vector bundle over X. These operators form a bigraded algebra A = P A, ,:
an operator is called of type (or bidegree) (r, s) if it maps

(5.1) C=(X, APIT, @ E) — C(X, AP+m1H5T% @ E)

for all p, q; the (total) degree of such an operator is by definition £k = r + s, and
we set Ay = EBTJFS:,C A, s. Given homogeneous operators A, B of degrees a, b in a
graded algebra A = @ Ay, their graded commutator is defined to be

(5.2) [A,B] = AB — (—1)"BA.

If C' is another endomorphism of degree ¢, the following Jacobi identity holds (as a
purely formal computation shows):
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(5.3) (=) [A,[B.C]] + (=1)*[B, [C, A]] + (-1)*[C, [A, B]] = 0.

To every form a € C*° (X, AP9T% ) corresponds an endomorphism of type (p, ¢) on
C*(X,A*°*T% @ E), defined by u +— a A u. We will often use again the notation «
for this endomorphism, i.e., we will write a(u) = a A u.

(5.4) Pointwise and global hermitian metrics on spaces of (p,q)-forms.
From now on, we suppose that (X,w) is a Kéhler manifold and set n = dim¢ X.
The underlying Riemannian metric g defines a euclidean metric on the real tangent
space T}?, hence a hermitian metric on the complexified tangent space C ®g TE. We
get as well a hermitian metric on

Homg (T%,C) = Home(C @ Tx,C) = AYOT% @ A% T%.
For instance, in C™ with the usual euclidean metric, we have

_’li_ii
o anj 28yj

Y

o1 |90 _ ! 0 1 |0
’Gx]’_’(‘)yjl_ ’ ’82’] \/5_’82]‘
(8/0z;), (0/0%),) are orthogonal bases of Ti), Tos" (which are themselves mutually
orthogonal). The dual metric on AM0T%, & AT, is such that |dz;| = |dz;+idy;| =
V2 = |dz;|. Now, for an arbitrary Kihler manifold (X, w), we can use the Gram-
Schmidt orthogonalization process in order to construct on any coordinate open set
2 C X an orthonormal frame (&1,...,&,) of T)O("IQ for the metric w. The dual basis
(fj*) defines an orthonormal frame of A0T% for the dual metric, furthermore, any
(p, q¢)-form can be written in a unique way

—*
u= > u&Ag.
[I|=p, |J|=q

We define the (pointwise) hermitian norm of u to be |u|? = dorg |urs]?. In this
way, we get a hermitian metric on AP9T%, which is actually independent of the
initial choice of the orthonormal frame (§;). One can check this by observing that
the corresponding hermitian inner product satisfies the intrinsic property

(Ur A= Ay ATy - - ANvg, uh A= Ny AT -+ AT ) = det((uy, up)o) det((vy, v))w),
which characterizes the inner product in a unique way. Now, we consider the Hilbert

space L2(X, AP9T%) of global (p, q)-forms u with measurable complex coefficients
such that

(5.5) ]2, :/ lu|?dV,, < +o0.
X
The corresponding global L? inner product is

<<u7v>>w:/X<U,U>dew.

Unless there are several Kahler metrics under consideration, we will usually omit
the subscripts in the notation of the norms or inner products.
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(5.6) Contraction of a differential form by a tangent vector. Let u be a (p, q)-
form on (2, viewed as an antisymmetric R-linear form of degree k£ = p 4 ¢q. Given
a complex tangent vector § = > ¢ 0/0z; + > &7 0/0z;, we define the contraction
¢ 1 u to be the differential form of degree k — 1 = p + ¢ — 1 such that

(é = u)(nh e -,77k:—1) = u<£77717 .- wﬂp—l)

for all tangent vectors 7;. Then (§,u) — £ J u is bilinear, and from the fact that
u Av is the antisymmetrization of ©u® v one easily sees that contraction by a tangent
vector is a derivation, i.e.

E1 (uAv)=(EJu)Av+ (=1)%8uy A (€ 1 ).

From this and the obvious rule 8%@ 1 dz; = 0;0 we derive the explicit formulas
0 _ 0 if ¢¢1,
6—25 a (dZI A dZJ) - { (—1)8_161.%‘[\{[} if (=i,¢ [,

9 _ 0 it £¢.J,
G—Eg . (dZI A dZJ) - { (—1)p+s_1d$1\{g} if £=j55€J,

whenever |I| = p and |J| = ¢. An easy check shows that the interior product £ | e
is the adjoint of the wedge multiplication £* A e, where £* = (e, &), is the (1,0)-form
associated with &, i.e.

(€ u,v) = (u,§" Aw)

for any pair of forms (u, v) of respective degrees k, k—1. Of course, a similar formula
also holds for global inner products {( , )), since we need only integrate the above
pointwise formula.

(5.7) Operators of Kihler geometry. Here is a short list of the operators we
will have to deal with:

a) The operators d = d’ + d” acting on C*°(X, A**T% ), which are all three of
degree 1 (d’ being of bidegree (1,0) and d” of bidegree (0, 1)).

b) Their adjoints d* = d™* + d*, computed with respect to the global L? inner
product. We have for instance

(d"u,v) = (u,d"v))

for all smooth forms u of type (p,¢—1) and v of type (p, ¢) with Supp uNnSupp v
compact. Hence d’ is of type (—1,0) and d” is of type (0, —1). (More generally,
the adjoint of an operator of type (r, s) is of type (—7, —s).)

c) The Laplace-Beltrami operators
A=dd*+d*d = [d,d"],
A/ — d/d/* +d/*d/ — [d/,d/*],
AH — d//d//* + d//*d// — [d// d//*].

d) Two other important operators are the operators L of type (1,1) defined by 2

Lu=w Awu,
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and its adjoint A = L*, which is obtained by taking the pointwise adjoint
(u, Av) = (Lu,v). O
(5.8) Special case of the flat hermitian metric on open subsets of C".

Assume that X = 2 C C™ is an open subset and that w is the standard Kéahler
metric of C™, multiplied by 2, i.e.

w=1 Z de/\dzj

1<j<n

(the reason for multiplying the standard metric by 2 is that we get in this way
|0/0z;| =1, and this allows us to avoid annoying constants 2 or 1/2 in the compu-
tations). For any form u € C*(£2, AP9T%) we have

::§:éh”Jd%/quAd2]: > day\(gg>

1,0k Oz 1<k<n Oz
&= OULT o A oy Ny = Y dz A (a—“)
0%}, 0z /)’
1.7k 1<k<n

where 0u/0z and du/0Z) are the differentiations of w in zx, Zx, taken component-
wise on each coefficient uy ;. From this we easily get

(5.9) Lemma. On any open subset w C C™ equipped with the flat hermitian met-
ric w, we have

é)uI J 0 —
d*u = — E = —— 1 (dzy AN d
v 7 0z, Oz ( “1 ZJ>7

aUIJ 0 —
d™*u = — = —— | (dzy NdZzJ).

These formulas can be written more briefly as

dru=— 3 %J (5—%), 4y = — (%J (5—2).

1<k<n 1<k<n

Proof. The adjoint of dz; A e is % 1 o . In the case of d'*, for instance, we get
J

(d', /Q (Y dzk/\( vy dV = /Q 6zk a(zk vy dV

1<k<n 1<k<n
8 /0
:/Q<u,—1<;<na—zk(a—%J v))dV:/ Z sz (azk)wv

whenever u (resp. v) is a (p—1, ¢)-form (resp. (p, ¢)-form), with Supp uNSupp v € {2.
The third equality is simply obtained through an integration par parts, and amounts
to observe that the formal adjoint of 9/0zy is —0/0Z. O
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We now prove a basic lemma due to (Akizuki and Nakano 1954).
(5.10) Lemma. In C", we have [d"*, L] =id'.

Proof. Using Lemma 5.9, we find

[d"™, Llu=d"™(wAu) —wAd™*u

. : ou
Since w has constant coefficients, we have — (w A u) = w A —— and therefore
2k Zk

[d”*,LJu=—§<a%J (nim) = (s 22)

0
—Jw——Jl dz; Ndz; = —idzy,
0Z 0z 1<JZ<TL J J k
hence
//* /
[d u—lzdzk/\a—Zk—ld O

We are now ready to derive the basic commutation relations in the case of an
arbitrary Kéahler manifold (X, w).

(5.11) Theorem. If (X,w) is Kdihler, then

[ L= id,  [d*L]=-id",
[A,d"] =—id*, [Ad] = id".

Proof. 1t is sufficient to verify the first relation, because the second one is the con-
jugate of the first, and the relations of the second line are the adjoint of those
of the first line. According to Theorem 3.9, let (z;) be a coordinate system at a
point xy € X, chosen such that we,, = dpm + O(|2]? ) For any (p, q)-forms w, v with
compact support in a neighborhood of zg, we get

{(u, v)) = /M (Z urjry + Z arjKL UIJUKL) dv,

I1,J,K,L

with aryx 1 (2) = O(]z|?) at zg. An integration by parts as in the proof of Lemma 5.9
yields
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Our,y 0 _ _
d//*u:—z ’ TJ (dZ]/\dZJ)+ Z b[JKLU[JdZK/\dZL,
J,k azk 6Zk I,J,K,L

where the coefficients by jx; are obtained by derivation of the ajjx’s. Therefore
brikr = O(|z]). Since Ow/dzr = O(|z]), the proof of Lemma 5.10 implies here
[d"*, Llu = id'u + O(]z]), in particular both terms coincide at every given point
To € X. ]

(5.12) Corollary. If (X,w) is Kahler, the complex Laplace-Beltrami operators sat-
1sfy
A =A" = 1A.
2

Proof. Tt will be first shown that A” = A’. We have
A" =[d",d"™] = —i[d",[A,d]].
Since [d,d"] = 0, the Jacobi identity implies
—[d",[A,d) + [d',[d", A]] =0,
hence A” = [d', —i[d”, A]] = [d',d”*] = A’. On the other hand
A=[d+d",d*+d™"]=A"+ A" +[d,d"™]+[d",d"].
Thus, it is enough to prove:

(5.13) Lemma. [d',d"*] =0, [d",d™*] = 0.

Proof. We have [d',d"*] = —i[d’,[A, d']] and the Jacobi identity implies
— [d', [/l,d/H + [/1, [d/,d/H + [d/, [d/,/l]] =0,

hence —2[d’, [A,d']] = 0 and [d’,d"*] = 0. The second relation [d",d*] = 0 is the
adjoint of the first. O

From the above, we also get the following result, which is of fundamental im-
portance in Hodge theory.

(5.14) Theorem. A commutes with all operators d', d”, d*, d'"*, L, A.

Proof. The identities [d', A’] = [d*, A'] =0, [d", A"] = [d"*, A”] = 0 are immediate.
Furthermore, the equality [d’, L] = d'w = 0 together with the Jacobi identity implies

LA = [L,[d,d*)] = —[d,[d"*, L] =i[d,d"] =0.

By adjunction, we also get [A’, A] = 0. O
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6. Connections and curvature

The goal of this section is to recall the most basic definitions of hermitian differential
geometry related to the concepts of connection, curvature and first Chern class of a
line bundle.

Let E be a complex vector bundle of rank r over a smooth differentiable mani-
fold M. A connection D on F is a linear differential operator of order 1

D :C®(M, ATy, @ E) — C®(M,A"™'T}; ® E)
such that
(6.1) D(f Au)=df Ahu+ (—=1)%/f A Du

for all forms f € C°(M, APT},), u € C*°(X, A9T}, ® E). On an open set 2 C M
where F/ admits a trivialization 0 : =, 2 xC", a connection D can be written

Du~ydu+I1 Nu

where I' € C*°(£2, A'T;; ® Hom(C",C")) is an arbitrary matrix of 1-forms and d
acts componentwise. It is then easy to check that

D*uc~y (Al + T AT)Au on £2.
Since D? is a globally defined operator, there is a global 2-form
(6.2) O(D) € C>=(M, A*T}; ® Hom(E, E))

such that D?u = ©(D) A u for every form u with values in E.

Assume now that F is endowed with a C°° hermitian metric along the fibers
and that the isomorphism E}n ~ {2 x C" is given by a C*° frame (ey). We then
have a canonical sesquilinear pairing

(6.3) C®(M, NPT}, ® E) x C®(M, AT}, @ E) — C>°(M, APT9T}, @ C)

(u,v) — {u, v}

given by
{u,v}:ZuA/\Eu<e>\,eu>, u:ZuAQZ)e)\, v:Zqu@eu.
A

The connection D is said to be hermitian if it satisfies the additional property
d{u,v} = {Du, v} + (=1)9 “{u, Dv}.

Assuming that (ey) is orthonormal, one easily checks that D is hermitian if and only
if I'™* = —I'. In this case ©(D)* = —O(D), thus

i9(D) € C*™(M, A*°Ty; ® Herm(E, E)).

(6.4) Special case. For a bundle F of rank 1, the connection form I" of a hermitian
connection D can be seen as a 1-form with purely imaginary coefficients I' = iA (A
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real). Then we have @(D) = dI" = idA. In particular i@ (F) is a closed 2-form. The
First Chern class of E is defined to be the cohomology class

c(E)r = {5-6(D) } € Hpy(M.R).

The cohomology class is actually independent of the connection, since any other
connection D; differs by a global 1-form, Diu = Du + B A u, so that @(D;) =
O(D) + dB. (Note: the normalizing factor 27 is introduced in such a way that
c1(E)r becomes the image in H2(M,R) of an integral class ¢ (E) € H?(M,Z) ; see
e.g. (Griffiths-Harris 1978) for details). O

We now concentrate ourselves on the complex analytic case. If M = X is a
complex manifold X, every connection D on a complex C'°® vector bundle F can be
split in a unique way as a sum of a (1,0) and of a (0, 1)-connection, D = D" + D".
In a local trivialization 6 given by a C'* frame, one can write

(6.5") D'u~ygdu+TI"Nu,
(6.5") D'"u~gd"u+T" Nu,
with I = I+ I"". The connection is hermitian if and only if I = —(I"”)* in any or-

thonormal frame. Thus there exists a unique hermitian connection D corresponding
to a prescribed (0, 1) part D".

Assume now that the bundle FE itself has a holomorphic structure. The unique
hermitian connection for which D" is the d” operator defined in § 1 is called the
Chern connection of E. In a local holomorphic frame (ey) of E,,, the metric is given
by the hermitian matrix H = (hy,), hay, = (ex,e,). We have

{u,v} = thuux\ AT, =ul A HT,
A

where u! is the transposed matrix of u, and easy computations yield

d{u,v} = (du)' N HT + (=1)98 %" A (dH AT + Hdv)

= (du+ H dHA u)T AHT + (—=1)%8 Uyt A (dv+H d’H Av)

using the fact that dH = d'H + d’H and H' = H. Therefore the Chern connection
D coincides with the hermitian connection defined by

Ducydu+H dHAMu,
(6.6)

D ~yd +H 'dHNe=H 'd(H.), D'=d"
It is clear from this relations that D'? = D”? = 0. Consequently D? is given by
to D? = D'D"” + D"D’, and the curvature tensor @(D) is of type (1,1). Since
dd"+d"'d =0, we get
(D'D" +D"Duy H dHANdu+d"(H dHAu)

=d"(H 'dH) A
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(6.7) Proposition. The Chern curvature tensor ©(E) := O(D) is such that
iO(F) € C=(X, A"'T% @ Herm(E, E)).

If0 : By — 2xC" is a holomorphic trivialization and if H is the hermitian matriz
representing the metric along the fibers of E,q, then

i1O(E) ~p id"(H 'dH) on 0. O

Let (z1,...,%n) be holomorphic coordinates on X and let (ey)1<a<r be an
orthonormal frame of E. Writing

i0(F) = Z Citapdz; N dz, ® eX Q e,

1<,k <n, 1A, u<r

we can identify the curvature tensor to a hermitian form

(6.8) O(E)(E®v,E@v) = Z Citan&iCptaly

1<g k<, IS, pusr

on Tx ® E. This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira (Kodaira 1953), (Nakano 1955) and (Griffiths 1966).

(6.9) Definition. The hermitian vector bundle E is said to be

a) positive in the sense of Nakano if O(E)(r,7) = Y CikanTiaTep > 0 for all non
zero tensors T =Y Tj30/0z; ® ey € Tx @ E.

b) positive in the sense of Griffiths if é(E)(ﬁ ® v, ®v) > 0 for all non zero
decomposable tensors E Qv € Tx Q@ E;

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.
We will write E >Nax 0, E >Nax 0, E >arif 0, E >arir 0 to express that E possesses
a smooth hermitian metric with the corresponding (semi)positivity properties.

(6.10) Special case of rank 1 bundles. Assume that F is a line bundle. The
hermitian matrix H = (hy1) associated to a trivialization 0 : E} ~ 2 x C is simply
a positive function which we find convenient to denote by e~%, ¢ € C*°({2,R). In
this case Prop. 6.10 shows that the curvature form ©(FE) can be identified with the
(1,1)-form d'd" ¢, and
iO(E) =id'd"y

is a real (1,1)-form. Hence E is semipositive (in either Nakano or Griffiths sense)
if and only if ¢ is psh, resp. positive definite if and only if ¢ is strictly psh (in the
sense that id'd"¢ > 0).
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7. Bochner-Kodaira-Nakano identity and inequality

We now proceed to explain the basic ideas of the Bochner technique used to prove
existence theorems for solutions of d”. Let (X,w) be a Kéhler manifold (the as-
sumption that w is Kéahler is not absolutely necessary, but considerably simplifies
the computations). Let (E,h) be a holomorphic vector bundle on X, and let D
be the associated Chern connection. We first prove a lemma which will reduce the
situation to the case of a trivial vector bundle.

(7.1) Lemma. For every point xo € X and every coordinate system (zj)i<j<n ot
xo, there exists a holomorphic frame (ex)1<a<r in a neighborhood of xy such that

(ex(2),€u(2)) =0xu— D ciran 2%k + O(|2%)
1<5,k<n

where (cjipay) are the coefficients of the Chern curvature tensor O(E)y,. Such a
frame (ey) is called a normal coordinate frame at xg.

Proof. Let (e)) be a holomorphic frame of E. After replacing (¢)) by suitable lin-
ear combinations with constant coefficients, we may assume that (ex(zo)) is an
orthonormal basis of E,,. Then the inner products (e, e,) have an expansion

(ex(2),eu(2)) = Oap + Z(am %+, %) + O([2]%)

for some complex coefficients a;y,, a;w such that a;w = @ - Set first
m(z) = ex(2) = D a7 eul2).
Joth

: / i
Then there are coefficients a i, ik Vikau such that

(A (2), 1 (2)) = Or + O(|2])
= O + Z (@gkr 2%k + @prg 2326 + afin,ZiZk) + O(|2]%).
Jk
The holomorphic frame (ey) we are looking for is
ex(z) =ma(2) = Y a2z nu(2).
Jrksp
Since a’jyy,, = @)y, We easily find
(ex(2), eu(2)) = Oxu + Y ajin 27k + O(I21),
4.k
d'(eA,eu) = {D’e,, et = ZaﬂfM Zrdzj + O(|z|2),
4.k
@(E) cey = D”(DIB)\) = Z T dzi N\ dzj & ey + O(|Z|),

Jrk, 1
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therefore cjpry = —ajrru- =

(7.2) Extended commutation relations. Let (X,w) be a Kdihler manifold and
let L be the operators defined by Lu = w A u and A = L*. Then

[D//*,L] — iD/, [D/*,L] — —iD//,
(A, D"] = —iD"*, (A, D'] =iD"*.
Proof. Fix a point z( in X and a coordinate system z = (21, ..., z,,) centered at xg.

Then Lemma 7.1 shows the existence of a normal coordinate frame (ey) at zo. Given
any section s =) , 0y ®ey € C’I?fq(X, E), it is easy to check that the operators D,
D>, ... have Taylor expansions of the type

Ds=3) dox®ex+0(2), D"™s=) d"ox@ex+0(l2]), ...
A A

in terms of the scalar valued operators d, d"*, .... Here the terms O(|z|) depend on
the curvature coefficients of E. The proof of Th. 7.2 is then reduced to the case of
operators with values in the trivial bundle X x C, which is granted by Theorem 5.11.

O

(7.3) Bochner-Kodaira-Nakano identity. If (X,w) is Kdhler, the complex
Laplace operators A" and A" acting on E-valued forms satisfy the identity

A" = A+ [i0(E), .

Proof. The last equality in (7.2) yields D"* = —i[A, D'], hence
A" =[D",D"™] = —i[D", [A,D")].
By the Jacobi identity we get
[D",[A, D] = [A,[D',D"]] + [D', [D", A]] = [A,0(E)] +i[D’, D"],
taking into account that [D’, D"] = D? = O(E). The formula follows. O

Assume that X is compact and that u € C*° (X, AP9T*X ® E) is an arbitrary
(p, g¢)-form. An integration by parts yields

(A'w,u) = || D'ull® + | D™ ul* = 0
and similarly for A”, hence we get the basic inequalities
ID"u|* + | D" ul* = | D'ull* + | D" ul|* +/ ((O(E), Alu, u)dVL,
X

(7.4) HD”UI!2+|!D”*UI!2>/<[i@(E),A]u,U>de-
X

This a priori inequality is known as the Bochner-Kodaira-Nakano inequality (see
(Bochner 1948), (Kodaira 1953), (Nakano 1955)). Thanks to the general functional
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analysis results of §1 (see (1.3)), this inequality can be used to obtain existence
theorem for solutions of d”-equations.

Now, one of the main points is to compute the curvature term ([iO(FE), AJu, u).
Unfortunately, as we will soon see, this term turns out to be rather intricate. Fix
xo € X and local coordinates (z1, ..., 2,) such that (0/0z,...,0/0z,) is an ortho-
normal basis of (Ty°,w) at xo. One can write

Wey = i E de A dij,
1<5<n

i@(E>aco =1 Z CikAp de ANdZE ® 6§ ey,
j7k7A7u

where (eq,...,e,) is an orthonormal basis of E,,. Let

u = Z U‘]’K)\dZ']/\de@e)\e(Ap’qT;((gE)
|J|=p, |K|=q, A

zo’
As A=L"= (—iZdEk/\(dzk/\.)>*:iZaiZkJ ((%CJ

.), a simple compu-
tation gives

Au =i(—=1)P Z UJ K\ (% J dZJ) A (828 J dEK) ® ex,

i@(E)/\u:i(—l)p Z Cjk)\uu‘]’](’)\dz]‘/\dZ!]/\dzk/\de®eu,
7k u,J K
(O(E), Alu = i6(E) A (Au) — A(IO(E) A u)

0 _
= Z cjkAou,K,Ade/\(gJ dZJ)/\dZK®€H
Gk K F

_ 0 _
+ Z CjkAuUJ,K,AdZJ/\de/\<FJ dZK>®€H
I BWNA S #

— E ij)\MUJ7K7)\dZJ/\d§K®6H.
hau,J, K

We extend the definition of u s i  to non increasing multi-indices J = (js), K = (ks)
by deciding that ujx » = 0 if J or K contains identical components repeated and
that wy x  is alternate in the indices (js), (ks). Then the above equality can be
written

(7.5) (iO(E), Au,u) = > Ciran s Tiks
gk, J,S

+ E  Cikau YRR KN U R Ko
kA, Ry K

- Z CJJAH uJ7K7>\ uJ:K:lﬂ
JAspy K

where the sum is extended to all indices 1 < 7,k < n, 1 < A, < r and multiindices
|R| = p—1, |S| = ¢ — 1 (here the notation u;x is extended to non necessarily
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increasing multiindices by making it alternate with respect to permutations). It is
usually hard to decide the sign of the curvature term (7.5), except in some special
cases.

The easiest case is when p = n. Then all terms in the second summation of
(7.5) must have j = k and R = {1,...,n} ~ {j}, therefore the second and third
summations are equal. Formula (7.5) takes the simpler form

(7.6) ([IO(E), Alu,u) = Y Cjkautsjsx UTkSp,
j’k’A7H7J7S

and it follows that [iO(F), A] is positive on (n, ¢)-forms under the assumption that
E is positive in the sense of Nakano (we will see later in §10 refined sufficient
conditions).

Another tractable case is the case where F is a line bundle (r = 1). Indeed,
at each point x € X, we may then choose a coordinate system which diagonalizes
simultaneously the hermitians forms w(z) and i©(F)(z), in such a way that

w(’r) =1 Z de A dzja 1@(E)(.’B) =i Z ’deZj A dEj

1<j<n 1<j<n

with 71 <... < ,. The curvature eigenvalues v; = v;(z) are then uniquely defined
and depend continuously on x. With our previous notation, we have v; = ¢;;11 and
all other coefficients c;x»,, are zero. For any (p, q)-form u = Y ujxdz; N dZg ® eq,
this gives

GOE) Aluwwy = > (Y wm+ > = 3 )kl

|J|=p, |K|=q J€J JEK 1<j<n

(77> = (71+"'+7q_’7n—p—|—1 _"'_’7n>|u|2-

8. L? estimates for solutions of d’-equations

Our goal here is to prove a central L? existence theorem, which is essentially due
to (Hérmander 1965, 1966), and (Andreotti-Vesentini 1965). We will only outline
the main ideas, referring e.g. to [ (Demailly 1982) for a more detailed exposition of
the technical situation considered here. We start with a Kéhler manifold (X, w) and
denote by ¢, the geodesic distance associated with w. One says that w is complete
if 9, is complete. The proof is based on the following two observations.

(8.1) Hopf-Rinow lemma. If§,, is complete, then all 6,,-balls B(xq,r) are compact
(and conversely). Moreover, under this hypothesis, there exist a sequence of compact
sets K, with X = JK, and K, C Ky, and a sequence of cut-off functions 1,
such that |dv, |, < 1, ¥, =1 on K, and Supp ¢, C K, 41.

Proof (abridged). Take the infimum rq of radii r such that the ball B(zo,r) is not
compact, if any; then B(zg,79) is non compact (otherwise the local compactness
of X would imply that some slightly larger ball is still compact). Hence, there is a
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sequence of points ¥, € B(xg,7) without any accumulation point. For each k, we
can select (along a suitable path from z( to y,) a point 2, such that §(zo, 2,.%) <
ro —27% and §(2, k, y,) < 271 Since B(zg,r9 —27%) is compact, we may assume
after taking subsequences and a diagonal subsequence, that all sequences (z, k).
converge to a point z; € B(xg,79 — 27%). One then sees that (y,) is a Cauchy
sequence without any accumulation point, contradiction. Now, the functions (1),)
can be defined by
Yy (x) = 0(37"d(zo, z))

where 6 : R — R is a smooth function with —0.9 < ¢’ < 0 such that 6(¢t) = 1 for
t < 1.1, 0(t) = 0 for t > 2.9, if we set K, = B(x¢,3"). As the distance function
x +— 0y (o, x) is a 1-Lipschitz function, it is almost everywhere differentiable with
a differential of norm < 1, hence |d, | < 0.9. It still remains to get 1, smooth, and
this can be achieved by taking suitable convolutions with regularizing kernels. [

(8.2) Lemma (Andreotti-Vesentini). Assume that w is complete. For every mea-
surable form u on X with values in AP9T% ® E such that

a) u€ L? and D"u € L?, resp.
b) wu € L? and D"*u € L?, resp.
¢c) wel? D"uelL? and D"*u € L?,

there exists a sequence of smooth forms u, with compact support, such that u, — u
in L? in all cases a,b,c) and D"u, — D"u in L* in case a) (resp. D"*u, — D"*u
in L?, resp. D"u, — D"u in L* and D"*u, — D"*u in L? in cases b) and c)).

Proof. Let 1, be a sequence of cut-off functions as in Lemma 8.1. If u € L? and
D"u € L?, then v, u € L? and

D//(¢UU) :'QZ);/DHU‘i‘d//'QZJV/\U 6 LQ.

Moreover v, D"u — D" and d”1, Au — 0 in L? by Lebesgue’s bounded conver-
gence theorem (as ¥, — 1 and |d"1, |, — 0 pointwise, with 1 as a uniform bound).
The above formula shows that v, D" = D" (1,e) — d"1,, A e, hence by adjunction

D"*(hye) = 1, D" — (grad¢,)>' 1o, D"*(pyu) = 1, D" u — (gradp,)” J u.

We infer as before that D"* (1, u) — D"*u in L? as soon as v € L? and D"*u € L>.
We have thus been able to approximate u by the compactly supported elements
Ypu. In order to get smooth approximants u,, we need only use convolution by
regularizing kernels, i.e., u, = (1, u) * p. (possibly after using a partition of unity
so as to divide the support of 1, u in small pieces contained in coordinate open
sets). O

(8.3) Corollary. If w is complete, the Von Neumann adjoint (DY) and the hilber-
tian extension (D"*)y of the formal adjoint coincide.

Proof. The result is equivalent to proving that (D"u,v)) = (u, D"*v)) whenever
u, v € L? and D"u € L?, D"*v € L? (with these operators being computed in the
sense of distributions). However we certainly have the equality
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<<DHUV7 v) = (uy, DH*UV»

for any smooth approximants u,, v, of u and v (as in Lemma 8.2 a) and b)). The
desired equality is obtained by taking the limits in L2. O

(8.4) Theorem. Let (X,w) be a Kdhler manifold. Here X is not necessarily
compact, but we assume that the metric w is complete on X. Let E be a her-
mitian vector bundle of rank r over X, and assume that the curvature opera-
tor A = ARY = [IO(F), A,] is positive definite everywhere on APiT% @ E, for
some ¢ = 1. Then for any form g € L*(X, AP9T% ® E) satisfying D"g = 0 and
Jx (A7 g, 9) dV,, < +oo, there exists f € L*(X, AP97'T% @ E) such that D"f = g
and

/ |f|2de</ (A 1g,g)dV,,.
X X

Proof. Lemma 8.2 c) shows that the basic a priori inequality (7.4) extends to ar-
bitrary forms u such that v € L?, D"u € L? and D"*u € L? . Now, consider the
Hilbert space orthogonal decomposition

L*(X, APT% @ E) = Ker D" @ (Ker D)™,

observing that Ker D” is weakly (hence strongly) closed. Let v = v; 4+ vy be
the decomposition of a smooth form v € DP9(X, E) with compact support ac-
cording to this decomposition (vy, vo do not have compact support in general!).
Since (Ker D)+ C Ker D"* by duality and g, v; € Ker D" by hypothesis, we get
D"*vy = 0 and

g, o) = l{g, on)? < /X (A'g, g)dV, /X (Avy, v1) dV,

thanks to the Cauchy-Schwarz inequality. The a priori inequality (7.4) applied to
u = vy yields

[ v o) av < ID"al + Do P = D70 = 10"
X
Combining both inequalities, we find

gl < ([ (a7 tggav) D2
X

for every smooth (p, ¢)-form v with compact support. This shows that we have a
well defined linear form

w = D"*v+—— (v, g), L*(X, AP971T% @ E) D D"*(DP4(E)) — C

on the range of D""*. This linear form is continuous in L? norm and has norm < C

with 12
C= (/X<A—1g,g> de) .

By the Hahn-Banach theorem, there is an element f € L*(X, AP97!1T% @ E) with
I fIl < C, such that (v,g) = (D"*v, f) for every v, hence D”f = g in the sense
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of distributions. The inequality ||f|| < C is equivalent to the last estimate in the
theorem. 0

(8.5) Remark. One can always select a solution f satisfying the additional prop-
erty that f € (Ker D)% (otherwise, just replace f by its orthogonal projection on
(Ker D")*). This solution is clearly unique and is precisely the solution of minimal
L? norm of the equation D" f = g. Since (Ker D)+ = Im D"* C Ker D"*, we see
that the minimal L? solution satisfies the additional equation

D™ f =0,

Consequently A" f = D"*D"f = D"*g. If g is of class C'*°, the ellipticity of the
A" -operator shows that f is automatically smooth. O

The above L? existence theorem can be applied in the fairly general context of
weakly (strongly) pseudoconvex manifolds (these manifolds are frequently referred to
as weakly (resp. strongly) 1-complete manifolds in the literature, but we feel that
this terminology is a bit misleading).

(8.6) Definition. A complex manifold X is said to be weakly (resp. strongly) pseu-
doconvez if there exists a smooth psh (resp. strongly psh) exhaustion function 1 on
X (¢ is said to be an exhaustion if for every ¢ > 0 the sublevel set X, = 1~ 1(c)
is relatively compact, i.e. (z) tends to +0o0 when z tends to “infinity” in X, with
respect to the filter of complements of compact sets).

For example, every closed analytic submanifold of CV is strongly pseudoconvex
(take 1(2) = |z|?). Convex open subsets of C" are likewise strongly pseudoconvex
(take ¥(2) = |22 +(1—7,(2)) "t where 7, is the “gauge function” with center a € 2,
namely the unique nonnegative function which is equal to 1 on the boundary of (2
and linear on each half-ray through a; if v, is not smooth, one can take a small
“convolution” z — [ p.(w)va—w(2)dA(w) to get a smooth function). Examples of
weakly pseudoconvex manifolds are compact manifolds (just take ¢» = 0 in that
case!), products of such with strongly pseudoconvex manifolds, closed submanifolds
of weakly pseudoconvex manifolds, etc. Now, a basic observation is

(8.7) Proposition. Every weakly pseudoconvex Kdhler manifold (X,w) carries a
complete Kahler metric @.

Proof. Let 1) > 0 be a psh exhaustion function and set
O=w+id'd" (xo) =w+ix o d'd"y +ix" oy d'Pp ANd"Y

where x : R — R is a convex increasing function. For any function p : R — R, we
get
P o 9|

d(po ~L —.
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If we assume f0+°° VX' (t) dt = +o0 (as is the case e.g. if x(t) = t? or x(t) = t—logt
for t > 1), the function p(t) = fg VX" (T)dr tends to +o00 as t — +o00, and we have
[d(po )]s < V2. By integrating along paths, this bound yields

lpow(z) — pot(y)| < V20i5(z,y).

It follows easily from the fact that ¢/ is an exhaustion that all closed geodesic balls
are compact. Therefore d- is complete. O

If we apply the main L? existence theorem for the complete Kiahler metrics we,
we see by passing to the limit that the theorem even applies to the non necessarily
complete metric w. An important special consequence is the following

(8.8) Theorem. Let (X,w) be a Kdhler manifold with dim X = n (w is not assumed
to be complete). Assume that X is weakly pseudoconvez. Let E be a hermitian holo-
morphic line bundle and let

(@) < <)

be the curvature eigenvalues (i.e. the eigenvalues of iO(E) with respect to the met-
ric w) at every point. Assume that the curvature is positive, i.e. v > 0 every-
where. Then for any form g € L (X, A™1T% ® E), q > 1, satisfying D"g = 0 and

Jx{(r+ -+ 7)Mol dVi, < 400, there exists f € L*(X, A™97'T% @ E) such that
D"f =g and

/ |f|2de</(71+---+’yq)‘1|g|2de.
X X

Proof. Indeed, for p = n, Eormula 7.7 shows that
(Au,u) > (1 + -+ 79)|ul?,

hence (A7 u, u) < (914 - ~+74) " Hul?. The assumption that g € L (X, A™IT%QF)
instead of g € L?(X,A™9T% ® E) is not a real problem, since we may restrict
ourselves to X, = {x € X ; ¢¥(x) < ¢} € X where ¢ is a psh exhaustion func-
tion on X. Then X. itself is weakly pseudoconvex (with psh exhaustion func-
tion . = 1/(c — 1)), hence X, can be equipped with a complete Kéhler met-
ric wee = w + eid'd”(¢?). For each (c,e), Theorem 8.4 yields a solution f.. €

Lic’i (X, A™M971T% ® E) of the equation D" f.. = g on X,, such that

/. e

A simple computation shows that the integral in the right hand side is monotonic
decreasing with respect to w, hence

Zc’g dv"-}c,s < / <<A%’3dc’5)_1g7 g)wc,g dv"-}c,s

c

/)‘( <(A%7,qwcye>_1g7g>wc,s dVUJc,s </‘ <(A%7:Zu)_1ghg>wde

Xe

</X(%+-~-+vq)_1|gl2de.
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Therefore the solutions f. . are uniformly bounded in L? norm on every compact
subset of X. Since the closed unit ball of an Hilbert space is weakly compact (and
metrizable if the Hilbert space is separable), we can extract a subsequence

2
fck7€k - f € Lloc

converging weakly in L? on any compact subset K C X, for some ¢, — 400 and
er — 0. By the weak continuity of differentiations, we get again in the limit D" f = g.
Also, for every compact set K C X we get

J v, <tmint [ 1fe ol 4V,

by weak L2  convergence (closed balls, and more generally closed convex sets, are
closed in the weak topology of any Banach space). Finally, we let K increase to X

and conclude that the desired estimate holds on all of X. ]

An important observation is that the above theorem still applies when the
hermitian metric on E is a singular metric with positive curvature in the sense of
currents.

(8.9) Corollary. Let (X,w) be a Kdihler manifold, dim X = n. Assume that X is
weakly pseudoconver. Let E be a hermitian holomorphic line bundle and let p € L

be a weight function (no further regularity assumption is made on ¢). Suppose that
iO(E) +id'd"¢ > yw

for some positive continuous function v > 0 on X. Then for any form g €
L (X, A™T% ® E), q¢ > 1, satisfying D"g = 0 and [ v~ 'g|*e”?dV,, < 400,
there exists f € L*(X, AP971T% ® E) such that D" f = g and

1
/ fPePav, < X / o Hgl2e* avi,.
X qJx

Proof (sketch) . The general proof is based on regularization techniques for psh
functions (see e.g. (Demailly 1982)). It is technically involved essentially because
the required regularization techniques are difficult in the case of arbitrary manifolds.
We will therefore just explain the proof in the simple case when X = (2 is a weakly
pseudoconvex open set in C™ with a psh exhaustion function . Then the function
Ye = @ * pe is well defined, smooth on 2. = {z € 2; () < ¢} for € small enough.
Moreover, it satisfies a lower bound of the form

idd o. > (yw —1O(E)) * pe = vew — iO(E)

for some continuous function 7. converging uniformly to v on compact subsets of (2
as € — 0. We define new hermitian metrics h. on the line bundle £ by multiplying
the original metric h with the weight e~%< i.e., we set h. = he~%<. Then

i0,_(F) =10, (E) +id'd"¢. > y.w.
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We thus get solutions f.. on X, such that

/ e

whenever v. > 0 on X.. As . > ¢ converges to ¢ monotonically, we conclude by
extracting weak limits and applying Lebesgue’s monotone convergence theorem as
before. U

1
Zem%edV, < —/ v glPe™#e dvi,
q

Xe

The next corollaries are simple special cases of Hormander’s estimates which are
especially convenient in the case of bounded or unbounded pseudoconvex domains

in C™.

(8.10) Corollary. Let {2 be a bounded (weakly) pseudoconvex open set in C", and
let ¢ be a psh function on 2. Then for any form g € L*(2, AP9T¢), q > 1, such
that d"g = 0, there exists f € L?>(2, AP»97YT%) such that d"f = g and

/ If|2e=% dV,, < i(diamQ)Q/ lg|2e=% dV,
X 2q D'e
All norms being computed with the standard metric +d'd"|z|?.

2

Proof. This is a special case of Corollary 8.9 when we take ' = {2 x C to be the
trivial bundle equipped with the weight function

ve(z) = (2) + €|z — zo|2, 20 € 2, e=1/(diam _Q)Q

instead of ¢. We then find ¢ < ¢, < p+1 and id’d”¢. > 2cw on (2. The L? estimate
follows immediately. O

(8.11) Corollary. Let 2 be a (weakly) pseudoconvex open set in C", and let ¢ be
a psh function on 2. Then for any form g € L2 (2, AP9T}), q > 1, satisfying

loc

d"g =0 and [,]g|>(1+4 |2]?)* e ¥ dV < 4oc0 for some ¢ € ]0,+00], there exists
fe L (2,AP97YTE) such that d" f = g and

loc
1
J AP e av < o [ P e av
X 2eq Jx
All norms being computed with the standard metric Sd'd"|z|?.
2

Proof. The proof is essentially the same as before, except that we take

0e(2) = p(2) +elog(1 + |2|?)
Then the computations made in example 3.8 b) gives

id'd"| 2|2 %
d'd" o, > eid' d" log(1 2y 5 21 _ . 0
ddpe > eiddlog(1 1|21 > T pe = Ty apE @
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9. Some applications of Hormander’s L? estimates

The main applications concern three principal items: vanishing theorems for Dol-
beault cohomology groups, existence and approximation theorems for holomorphic
functions (these aspects are in fact intimately related, as we will see).

We first list four important vanishing theorems.

(9.1) Nakano vanishing theorem (Nakano 1955 for the compact case, Nakano
1973 in general). Let E we a hermitian holomorphic vector bundle on a weakly
pseudoconver complex manifold X, dim X = n, such that i@(E) > 0 in the sense of
Nakano. Then H™4(X,E) =0 for all ¢ > 1.

Proof. Indeed, (7.5) implies that ([i@(F), Alu, u) is positive definite. Theorem 8.4
shows that the equation D" f = g can be solved whenever ¢ is D"-closed and sat-
isfies a suitable L?-condition (moreover Remark 8.5 implies that f is smooth if g
is smooth). In fact, we want to solve the equation for a given smooth D”-closed
form, whatever is its growth at infinity. For this, we let 1) be a smooth psh exhaus-
tion function on X and multiply the metric of E by the weight factor e X°¥ where
X : R — R is a convex increasing function. If the resulting curvature tensor of FE is
denoted O, (F), we find

10, (E) =10¢(E) +id'd"(x o) =10¢(E) +i(x oy d'd" + X" op d'tb A d"1),

and both terms d’'d”+ and d't) A d'’v) yield nonnegative contributions (in the sense
of Nakano) to the curvature tensor. In particular the resulting curvature operator
Ay on (n, q)-forms satisfies A, > A, A" < A~ and we get

/ <A;1.g7g>e_xo¢de < / <A_1g,g)6_xodew < 400
X X

when x grows quickly enough [take e.g. x so that
6_"('“)/ (A7lg,g)dV, < 27"
{k<y<h+1}

for every integer k > 0]. We then get a smooth (minimal) L? solution f. This implies
H™1(X FE) =0 for ¢ > 1, as desired. O

(9.2) Cartan theorem B (1953). Let X be a strongly pseudoconver manifold.
Then HP9(X, E) =0 for every holomorphic vector bundle E and every q > 1.

Proof. Fix an arbitrary hermitian metric h on E. By the above formula
10, (F) =10¢(E) +i(x oo d'd"y + X" oo d'p Nd"Y),

we see that the curvature of E can be made positive definite if the first derivative
of x grows fast enough. We then conclude that H™(X,FE) = 0 for ¢ > 1 as for
Theorem 9.1. To obtain the conclusion for (p, ¢)-forms as well, we just observe that
we have a canonical duality pairing
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ATy @ A*T% — C,

hence a (p, q)-form with values in E can be viewed as a section of

APITS @ B = A% @ APTE: @ E = A™IT% @ F
where F is the holomorphic vector bundle

E=A"Tx @ A’T; @ E=A"""Tx ® E,
through the contraction pairing
ATy @ APT — A" PTx.

Moreover the Dolbeault complex AP*T% ® E is isomorphic to the Dolbeault complex
AT ® E, hence
HPY(X,FE)=H"1(X,FE)=0. U

(9.3) Akizuki-Kodaira-Nakano theorem (1954, also referred to as “precise van-

ishing theorem”). Let E be a hermitian holomorphic line bundle on a compact com-
plex manifold X, dim X = n, such that i©(FE) > 0. Then the Dolbeault cohomology
groups vanish in the range p+q > n+1, i.e.

HPY(X,E)=0 forp+q>=n+1.

Proof. Since iO(F) is a closed positive (1,1)-form, one can select w = iO(F) as
the basic Kahler metric on X (in particular, X is automatically Kéhler). Then the
eigenvalues of i©(FE) with respect to w are

Nn=- = =1
and (7.7) implies
({O(E), AJu,u) = (g — (n = p))|ul’ = (p+q —n)|ul”.

We then get the conclusion from Theorem 8.4. O

(9.4) Kodaira-Serre vanishing theorem (1953, “unprecise vanishing theorem?”).
Let E we a hermitian holomorphic line bundle on a compact complexr manifold X
such that iI©(FE) > 0. Then for every holomorphic vector bundle F', there exists an
integer ko = ko(F') such that

HPYX,E®*@ F)=0  forallp>0,q>1, k> ko.

Proof. If p = n, we reduce (9.4) to the Nakano vanishing theorem. In fact, for any
pair of hermitian holomorphic vector bundles F', G, the Chern connections of F', G
and F ® G are related by

Drgc(u®v) = Dpu® v+ (—1)48 %y @ Dgu,
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and this implies easily
(9.5) O(F®G)=0(F)®Ildg+1dr ®G.

In particular, as E is a line bundle, we have O(E®*) = k O(F) (with the identifica-
tion End(F) = C), hence

O(E®** @ F) = kO(E)®1dp +O(F),

again with the identifications End(F) = End(E®*) = C. In other words, the asso-
ciated hermitian form of Tx ® F' satisfies

O(E®* @ F) (€ ®v,E®v) = kO(F)(&6)|v]* + O(F) (€ @ v, £ ®v)
O(E®* @ F)(r,7) = k|7|> + O(F)(r, 1)

for all elements £ ® v, 7 € Tx ® F', when w = 1O(F) is taken as the Kéhler metric
on X. Hence E®* @ F is Nakano positive for k > kg large enough, and we infer
H™9(X,E®* @ F) =0 for ¢ > 1 and k > ko. The case of (p, q)-cohomology groups
is obtained by replacing F' with

F=A"PTx ®F

as in the proof of 9.2. O

The next application of L? estimates is the solution of the so-called Levi prob-
lem. In vague terms, the Levi problem asserts that the existence of holomorphic
functions on a complex manifold X is intimately related to its pseudoconvexity
properties. Complex analysts became aware of the question with the foundational
paper of (E.E. Levi, 1910). The final solution for domains of C™ has been finally
settled in three independent papers by (Oka 1953), (Norguet 1954) and (Bremer-
mann, 1954). The generalization to complex manifolds is due to (Grauert, 1958); it
gives a characterization of the so called “Stein manifolds”, which were introduced
by K. Stein and H. Cartan in the early fifties.

(9.6) Concept of holomorphic convexity. Let X be a complex manifold and let
A C X be a closed subset. The holomorphic hull Ap(xy is defined to be

A\O(X) ={zeX;|f(z) < Slfllp|f|}-

The subset A is said to be holomorphically convex (in X) if A\@(X) = A. The mani-

fold X 1is said to be holomorphically convex zf[? 18 compact for every compact set K,
or equivalently, if X can be exhausted by holomorphically convex compact sets K,
(we say that X is “exhausted” by the K,’s if X =|J K, and K, C KJ_, for allv).

Observe that g@(x) is a closed subset of X and that A\@(X) = A\@(X), i.e.,

A\@( x) is holomorphically convex in X. Hence, if X is holomorphically convex, we
get inductively an exhausting and strictly increasing sequence of holomorphically
convex compact sets K, by putting



9. Some applications of Hérmander’s L? estimates 41
K, = (SV)O(X), S, = a compact neighborhood of K,,_1 U L,,
where L, is any exhausting sequence of compact sets.

A similar concept of “pseudoconvex hull” A peo(x) With respect to the class
P>(X) =Psh(X)NC>*(X) exists, namely one can set

(9.7) A\POO(X) ={zeX; p(zx) < sgp 0}

Since p = |f|? € P>(X) for every f € O(X), the inclusion A\POO(X) C ﬁ@(x) always
holds. It is not hard to see that a manifold X is weakly pseudoconvex if and only if
K poe (X) is compact for every compact set K in X ; in fact if ¢ is a psh exhaustion
function, then K, = {z € X ; ¢y(z) < v} is an exhausting sequence of pseudoconvex

compact sets; conversely if such a sequence K, with (K,)pe (x) = K, exists, we
define a psh exhaustion 1 by putting

+00
¢:ZQVXO‘PV

v=0

where x : R — R is a smooth convex increasing function such that x(¢) = 0 for ¢ < 0,
x(t) > 1fort > 1, and ¢, € P*°(X) is chosen such that ¢, <0 on K, and ¢, > 1
on K,1o ~\ Ky (afinite “regularized” maximum ¢, = (maxxp:)(@u,1,---,Pu,N)
with ¢, ;(z;) > 1> 0 > supg ¢, ; at sufficiently many points z; € K, 1o\ K7
will do by the Borel-Lebesgue lemma).

(9.8) Stein manifolds. Let X be a n-dimensional complex manifold. Then X is
said to be a Stein manifold if it satisfies the following two properties.

a) X is holomorphically conver;

b) O(X) locally separates points, in the sense that every point x € X has a
neighborhood V' such that for any y € V ~ {z} there exists f € O(X) with

fy) # 1),

We first prove the “easy direction” in the Levi problem, namely the implication
Stein = strongly pseudoconvex,

which depends only on elementary considerations about psh functions. The converse
(deeper) implication <= can be proved using L? estimates.

(9.9) Theorem. Let X be a complex manifold.

a) If X is holomorphically convezx, then X is weakly pseudoconvez.

b) If O(X) satisfies the local separation property 9.8b), there exists a smooth non-
negative strictly plurisubharmonic function u € Psh(X).

c) If X is Stein, then X is strongly pseudoconver.
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Proof. a) If X is holomorphically convex, we have seen that there is an exhausting
sequence (K,) of holomorphically convex compact sets of X. These compact sets

then satisty (K,)o(x) = (Ku)poo(x) = K, hence X is weakly pseudoconvex.

b) Fix xzy € X. We first show that there exists a smooth nonnegative function ug €
Psh(X') which is strictly plurisubharmonic on a neighborhood of xq. Let (21, ..., z,)
be local analytic coordinates centered at xo, and if necessary, replace z; by Az; so
that the closed unit ball B = {3~ |;|*> < 1} is contained in the neighborhood V 3
on which (6.16 b) holds. Then, for every point y € 0B, there exists a holomorphic
function f € O(X) such that f(y) # f(zo). Replacing f with A(f — f(xo)), we
can achieve f(zo) =0 and |f(y)| > 1. By compactness of 0B, we find finitely many
functions fi,...,fn € O(X) such that vy = Y |f;|? satisfies vo(zg) = 0, while
vo = 1 on OB. Now, we set

un () — vo(2) on X \ B,
0(2) {maxg{vo(z),(|z|2+1)/3} on B.

where max. = max(s, o) * p; is a regularized max function in R2. Then ug is smooth
and plurisubharmonic, coincides with vy near 9B and with (|z|> + 1)/3 on a neigh-
borhood of 2. We can cover X by countably many neighborhoods (V});>1, for which
we have a smooth plurisubharmonic functions u; € Psh(X) such that u; is strictly
plurisubharmonic on Vj. Then select a sequence €; > 0 converging to 0 so fast that
u=> ¢eju; € C°(X). The function u is nonnegative and strictly plurisubharmonic
everywhere on X.

c) Select ¥ as in a) and u as in b). Then 9 + w is a strictly psh exhaustion function
of X. O

Conversely, we have the following existence theorem derived from L? estimates.

(9.10) Theorem. Let X be a strongly pseudonconvex manifold. For every lo-
cally finite sequence (x,) of distinct points of X and every sequence of polynomials
P,(z") relative to local coordinates z¥ = (27,...,zF) around x, (with given bounds

deg P, < m, for the degrees), there is a global holomorphic function f € O(X) such
that the Taylor expansion of order m, of f at x, coincides with P,.

Proof. The main idea is to use a L? estimate with a weight assuming a logarithmic
pole at each point x,. Let U, be the open coordinate patch where 2" is defined and
let 6, € D(U,) be a cut-off function such that 6, = 1 on a neighborhood of z, and
0<46,<1. Then

Yo = Z 2(” + mu)eu log |Znu|

is psh in a neighborhood of z, and ¢g is smooth on X \ {z,}. It follows that
the negative part of id’'d”pq is locally bounded below everywhere. Hence, if v is
a strictly psh exhaustion function on X, there exists a convex increasing function
X1 : R — R such that @13 = pg + x1 © 9 is psh (with an arbitrarily large positive
preassigned Hessian form id'd”¢1). Now, the function F = > 6,P, is a smooth
function which has the prescribed Taylor expansions at all points x,. The idea is to
solve the equation
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d'uv=v:=d'F

where v is a (0, 1)-form with complex values, that is, a (n,1)-form with values in
A"Tx . We assume that i@(A"Tx ) +id'd"p1 > w :=1d'd"+. Then, for every convex
increasing function y and ¢ = ¢1 + x o1 = ¢o + (X + x1) © ¥, we get a solution u
such that

/ [ul*e™#dVL, </ vfPe™?dV,, = Z/ [P, *[d"8, e 2(m )t logl =l xev gy,
X X . JU,

provided that the right hand side is convergent. However, each term in the sum is
convergent since the support of d”6, avoids a neighborhood of z,, and the global
convergence is easily guaranteed if y grows fast enough. As d” is elliptic in bidegree
(0,0), we get a smooth solution u such that

2
[
U

’ |ZU |2(n—|—m,,)

for each v. From this one concludes that D®u(z,) = 0 for |o| < m,,, hence f = F—u
is a holomorphic function on X with P, as its Taylor expansion of order m,, at x,.
U

(9.11) Corollary. Every strongly pseudoconvex manifold X is Stein. Moreover, the
functions in O(X) separate any pair of distinct points in X, and for xo € X given,
there are functions fi,..., fn € O(X) such that (f1,...,fn) is a local coordinate
system at xg.

Proof. Let X be a complex manifold. The holomorphic convexity property of X is
formally equivalent to the following assertion: for every sequence (z,) in X, there
exists a holomorphic function f € O(X) such that (f(z,)) is unbounded (the equiv-
alence can be seen more or less by the same argument as in 9.9 a)). By Theorem 9.10
we need only take a function f which interpolates the values f(x,) = v. The prop-
erty of local separation of points 9.9 b) is also clear, as well as the stronger properties
asserted in Corollary 9.11. O

We end this section by proving a general n-dimensional version of the Runge
theorem.

(9.12) Runge approximation theorem. Let E be a holomorphic vector bundle
on a Stein manifold X. Let ¢ be a psh exhaustion of X and let

K=K.={reX; () <c}

for some ¢ (¢ need not be strictly psh). Then every holomorphic section g defined
on a neighborhood of K is a uniform limit on a neighborhood of K of a sequence of
global holomorphic sections f, of E over X.

Proof. Fix ¢;, 1 = 1,2,3,4 such that ¢ < ¢; < ¢s < ¢3 < ¢4 and g is holomorphic
on 2., ={r € X; ¢(x) < ¢s}. Fix a cut-off function 6 € D(X) with Suppf C (2.,
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and 0 = 1 on (2.,. We view g6 as a smooth function on X (by defining it to be 0 on
X \ £2.,), and solve the equation

d"v=v:=d"(g0)=gd"0

with a weight of the form ¢, = v+ y o1, where 9 is a strictly psh exhaustion func-
tion and x a convex increasing function such that the resulting curvature eigenvalues
are > 1. We then get a solution u = u, such that

/\UVPe—w—Wdeg/ lg|?|d"6|2e "¢ XV dV,.
X X

As d”6 has support in 2., \ 2., C {¢ > c3}, the right hand side is bounded by
Ce V%, From the L? estimate, we infer

/ |u,, |2dV, < 0'6”02/ |, [2e7VTXOVAY, < CMeV2eV — ().
Q

v——+400
C2 ch

Finally, as d"u, = gd"6 = 0 on §2.,, the function |u,|? is plurisubharmonic on (2., .
By the mean value inequality, we see that u, converges uniformly to 0 on {2.,. Hence
fu = g0 —u, € O(X) converges uniformly to f on {2, . O

(9.13) Remark. The assumption that K = {¢) < ¢} for some psh exhaustion
function 1 is satisfied if and only if Kpe(x) = K (in which case we say that K is
pseudoconver). In fact, we have the following lemma.

(9.14) Lemma. Let X be a weakly (resp. strongly) pseudoconvex manifold with a
weakly (strictly) psh exhaustion function vy. If K C X is a pseudoconver compact

set, i.e., if Kpoo(x) = K, there exists an evhaustion function ¢ € P*°(X) such that
a) ¢=0o0nX;
b) ¢ >0 and ¢ is weakly (strictly) psh on X \ K.

Proof. Let x : R — R be a convex increasing with y(¢) = 0 for ¢ < 0 and x(¢) > 0
for t > 0. For any = ¢ K, there is a function ¢, € P°°(X) such that

Pu(x) > 0 > sup p,.
K
We set u, = x (@ + d1bg) (§ > 0 small), so as to get a nonnegative function u, €
P>°(X) such that u, = 0 on K and u, > 0 (strictly psh) on a neighborhood V,

of z. Then X \ K can be covered by countably many such neighborhoods V,. and
we get a function ¢ with the required properties by setting

= x(o—C)+ Zauuxu

for some large constant C'. O

(9.15) Corollary. If X is strongly pseudoconvex, then

IA(P“’(X) - IA{O(X)
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for every compact set K C X.

Proof. Set K= I?poo (X). Then K is pseudoconvex and we thus get by Lemma 9.14
a function ¢ € P>*(X) with ¢ =0 on K and ¢ > 0 strictly psh on X \ K. Fix an
arbitrary point zp € X \ K, a coordinate system z = (z1,..., 2,) centered at z,
and a cut-off function # equal to 1 on a neighborhood of xg, with support disjoint
from K. For 0 < € < 1, the function

oo (z) = p(a) + eb(x) log(|2|* + e 1/)

is psh everywhere and ¢.(zg) = ¢(zo) — 1/e < 0. Thus K. = {yp. < 0} is equal to
K union a small neighborhood V. of z disjoint from K. We define a holomorphic
function g on a neighborhood of K. by taking ¢ = 0 on a neighborhood of K and
g = 1 on a neighborhood of V.. The Runge approximation theorem provides a
global holomorphic function f € O(X) such that |f — g| < 1/3 on K.. We thus get
17| <1/3 on K and |f(zo)| = 2/3. This implies that every o ¢ K is not either in
the holomorphic hull of K , hence K is holomorphically convex. From this we infer

—

Koix) C (K)ox) = K = Kp(x),

and the opposite inclusion is clear. O

10. Further preliminary results of hermitian differential
geometry

In the course of the proof of Skoda’s L? estimates, we will have to deal with dual
bundles and exact sequences of hermitian vector bundles. The following fundamental
differential geometric lemma will be needed.

(10.1) Lemma. Let E be a hermitian holomorphic vector bundle of rank r on
a complex n-dimensional manifold X. Then the Chern connections of E and E*
are related by O(E*) = —*O(E) where * denotes transposition. In other words, the

associated hermitian forms O(E) and ©(E*) are related by

~ B 0
O(E)(r,7) = E CikApnTiAT ks T = g Tj,,\a X ey,
1<j,k<n, 1<, u<r FA J
~ 0
* * —% * * *
@(E )(7-7 7_) - = E Cjku)\Tj)\Tky,7 T = E T")\a & €x-
1<j,k<n, 1<, u<r FA J

In particular E >ayir 0 if and only if E* <gyis O.
Notice that the corresponding duality statement for Nakano positivity is wrong
(because of the twist of indices, which is fortunately irrelevant in the case of decom-

posable tensors).

Proof. The Chern connections of ' and E™ are related by the Leibnitz rule
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d(oc Ns) = (Dg+o) As+ (—=1)%87g A Dgs

whenever s, o are forms with values in E, E* respectively, and o A s is computed
using the pairing F* ® EF — C. If we differentiate a second time, this yields the
identity

0= (D%.0) As+ o A D%s,

which is equivalent to the formula ©(E*) = —'O(FE). All other assertions follow. [

(10.2) Lemma. Let
0—S 1 FE 2.Q—0

be an exact sequence of holomorphic vector bundles. Assume that E is equipped
with a smooth hermitian metric, and that S and Q) are endowed with the metrics
(restriction-metric and quotient-metric) induced by that of E. Then

(10.3) JF®g:E—S3Q, jOg :S»pQ — FE

are C*° isomorphisms of bundles, which are inverse of each other. In the C°°-
splitting EE ~ S & Q, the Chern connection of E admits a matriz decomposition

_(Ds =p"
(10.4) Dgp = ( 55 DQ)

in terms of the Chern connections of S and QQ, where
B e C™(X,A"°T§ @ Hom(S, Q)), B e C>(X,A"' T @ Hom(Q, S)).

The form B is called the second fundamental form associated with the exact sequence.
It is uniquely defined by each of the two formulas

(105> D;—Iom(S,E)j = g* o ﬁa Jo ﬁ* = _Di-llom(Q,E)g*’

We have D'Hom(S’Q)ﬁ =0, Dﬁom(Q’S)ﬂ* =0, and the curvature form of E splits as

_ @<S) - 6* A 6 _Di-lom(Q,S)ﬁ*)
. o) = ( Dpoisaf OQ = FA5 )

and the curvature forms of S and Q) can be expressed as
(10.7) O(S)=0(E)is+B8°AB,  O(Q)=6(E)jq+ BN,
where O(E) s, O(E)q stand for j* o O(E)oj and go O(FE) o g*.

Proof. Because of the uniqueness property of Chern connections, it is easy to see
that we have a Leibnitz formula

DF(f A ’LL) - (DHorn(E,F)f> ANu+ (_1)degff A DEU

whenever u, f are forms with values in hermitian vector bundles F and Hom(FE, F')
(where Hom(F, F') = E* ® F is equipped with the tensor product metric and f A u
incorporates the evaluation mapping Hom(FE, F) ® E — F'). In our case, given a
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form w with values in E, we write u = jus + g*ug where ug = j*u and ug = gu
are the projections of v on S and ). We then get

DEU = DE(]’LLS + Q*UQ)
= (Dhom(s,E)J) N us +j - Dsus + (Duom(q,5)9”) A ug + g* - Douqg-

Since j is holomorphic as well as j* o j = Idg, we find Dglom( s.p)J = 0 and

Droms,s) 1ds = 0= Dito(,5)5™ © J:

By taking the adjoint, we see that j* o D/Hom(s E)j = 0, hence D/Hom(s E)j takes
values in ¢g*(Q) and we thus have a unique form 3 as in the Lemma such that

D'Hom(S’E)j = g* o 3. Similarly, g and g o g* = Idg are holomorphic, thus

D};om(Q,Q) Idg=0=go Dﬁom(Q,E)g*

and there is a form v € C*° (X, A% T% ®Hom(Q, S)) such that Dftom0.2y9" = J 0.
By adjunction, we get Dhom(E’Q)g = ~4* o j* and D’Igom(E’Q)g = 0 implies
D'Hom(Q E)g* = 0. If we differentiate g o 5 = 0 we then get

OZDhom(E,Q)goj—i_goDﬁom(S,E)j:V*Oj*oj+gog*oﬁzv*+ﬁ7

thus v = —(* and Dﬁom(Q g)9" = —joB*. Combining all this, we get

DEu:g*ﬁ/\uS+j-DSuS—jﬂ*/\uQ +g*~DQuQ
= j(Dsus — B Aug) + g* (8 A us + Doug),

and the asserted matrix decomposition formula follows. By squaring the matrix, we
get
p2_( D§—=B"NB  —Dsof*—pB oDq
5=\ DgoB+BoDs  DR—pAp )

As Dg o B+ B0 Ds = Dyoms,)f and Dg o * + 3* o Dg = Dyom(q,s)3* by
the Leibnitz rule, the curvature formulas follow (observe, since the Chern curvature
form is of type (1,1), that we must have D/Hom(s Q)ﬁ =0, Dﬁom(Q S)ﬂ* =0). d

(10.8) Corollary. Let 0 — S — E — @ — 0 be an exact sequence of hermitian
vector bundles. Then

a) EF>qi0 = Q Zarit 0,
b) FE <arif 0 —= S SGrif 07
c) E<nak0 = 5 <nax 0,

and analogous implications hold true for strict positivity.

Proof. If § is written ) dz; ® f3;, 5; € Hom(S, @), then formulas (10.7) yield
IQ(S) = IQ(E) 1S — Z de ANdzZp ® ﬁ,:ﬂj,
i0(Q) =i0(E) g + ) _ dzj A dzx ® B; 5.
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Since 8- (E®s) = &8;-sand B* - (€@ 5) =Y. &0 - s we get
O(S) @ s, @) =OE)E®s,E @s) = > §E(B; 5,0 5),
7,k

O(S)(u,u) = O(E)(u,u) — |3 - ul*,
OQ)E®s, ®s)=0(BE)Es,E @s)+ Y GG -5,55),
7,k

OQ)(E®s,ERs)=O(E)(E®s,ERs) = 5" (E2s) O

Next, we need positivity properties which somehow interpolate between Grif-
fiths and Nakano positivity. This leads to the concept of m-tensor positivity.

(10.9) Definition. Let T and E be complex vector spaces of dimensions n, T re-
spectively, and let © be a hermitian form on T ® E.

a) A tensoru € T ® E is said to be of rank m if m is the smallest > 0 integer
such that u can be written

UIZ£j®Sj, ijT, SjEE.
j=1

b) O is said to be m-tensor positive (resp. m-tensor semi-positive) if ©(u,u) > 0
(resp. O(u,u) > 0) for every tensor u € T ® E of rank < m, u # 0. In this
case, we write

6 >,0 (resp. O =, 0).

We say that a hermitian vector bundle E is m-tensor positive if O(E) >, 0.
Griffiths positivity corresponds to m = 1 and Nakano positivity to m > min(n,r).
Recall from (7.6) that we have

(IO(E), AJu,u) = > > Cirap s AT,y

|S|:q_1 j:kakau

for every (n,q)-form v = > ugrdzi A ... ANdz, N dZg ® ey with values in E.
Since u;g ) = 0 for j € S, the rank of the tensor (u;s1);x € C" ® C" is in fact
< min{n — ¢+ 1,7}. We obtain therefore:

(10.10) Lemma. Assume that E >,, 0 (resp. E >,, 0). Then the hermitian oper-
ator [IO(E), A] is semipositive (resp. positive definite) on A™IT*X @ E for q > 1
and m > min{n —q+ 1,r}.

The Nakano vanishing theorem can then be improved as follows.

(10.11) Theorem. Let X be a weakly pseudoconvex Kihler manifold of dimension
n and let E a hermitian vector bundle of rank r such that ©O(E) >,, 0 over X. Then



10. Further preliminary results of hermitian differential geometry 49

H"(X,E)=0 for ¢>1 and m > min{n—q+1,r}.

We next study some important relations which exist between the various posi-
tivity concepts. Our starting point is the following result of (Demailly-Skoda 1979).

(10.12) Theorem. For any hermitian vector bundle E,

EF>q0 — FE®detFE >nax 0.

To prove this result, we use the fact that
(10.13) O(det E) = Trg O(F)
where Trg : Hom(F, F) — C is the trace map, together with the identity
O(E®detE) =0(F)+Trg(O(F)) ® Idg,

which is a special case of formula (9.5). Formula (10.13) is easily obtained by differ-
entiating twice a wedge product, according to the formula

p
DApE(Sl JANEE Sp) = Z(_1>degsl+m—|—degsj_181 A A Sj_l A DESj N A Sp-
j=1

We then get O(FE®det E) = O(E) +Trg O(FE) ® Idg. The corresponding hermitian
forms on T'x ® E are thus related by

O(E @ det E) = O(E) + Trg O(E) ® h,

where h denotes the hermitian metric on E and Trg ©(E) is the hermitian form on
T'x defined by

TrEé<E)<£7£): Z é(E)(§®6A7§®6A)7 fETX,

1<ALr

for any orthonormal frame (eq,...,e,) of E. Theorem 10.12 is now a consequence
of the following simple property of hermitian forms on a tensor product of complex
vector spaces.

(10.14) Proposition. Let T, E be complex vector spaces of respective dimensions
n,r, and h a hermitian metric on E. Then for every hermitian form © on T ® E

O >0 = O+TrgO®h >Nak 0.

We first need a lemma analogous to Fourier inversion formula for discrete
Fourier transforms.

(10.15) Lemma. Let g be an integer > 3, and xx, yu, 1 < A\, u < r, be complex
numbers. Let o describe the set U, of r-tuples of q-th roots of unity and put
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/ — / —
T, = E TAON, Yy = E Yuou, o€U,.
1<ALr 1<pugr

Then for every pair (o, 3), 1 < a, 8 < r, the following identity holds:

«Ta@g Zf Of?éﬁ,
—r 1 =1 ———
? ZUT%%%"B_ > @y, if a=4.
7% 1<p<r

Proof. The coefficient of z,7,, in the summation ¢=" >~ XLyl 0,03 is given by
q

—r — —
q E 0a030)\0 -
oeUy

This coefficient equals 1 when the pairs {a, u} and {3, A\} are equal (in which case
040300, = 1 for any one of the ¢" elements of U;). Hence, it is sufficient to prove

that
Z 0a0p30\0,, = 0
oeUy

when the pairs {«, u} and {5, A\} are distinct.

If {o, u} # {5, A}, then one of the elements of one of the pairs does not belong
to the other pair. As the four indices «, 3, A, u play the same role, we may suppose
for example that o ¢ {3, A\}. Let us apply to o the substitution o — 7, where 7 is
defined by .

Ta = eQm/qaa, T, =0, for v#a.
We get
62”1/[12 if a# pu,
0a030\0,, = = R
; a?p H z e47r1/qz if a=p,
g

Since g > 3 by hypothesis, it follows that

Z 0a0p30\0,, = 0.
g

Proof of Proposition 10.14. Let (tj)1<j<n be a basis of T, (ex)1<a<r an orthonormal
basis of F and £ = Zj &t eT, u= Zj)\ ujrt;®ex € T®E. The coefficients ¢,
of © with respect to the basis t; ® ey satisfy the symmetry relation ¢ji\, = cijun,
and we have the formulas

@(u,u) = E CikAp Ui Uk
j7k7A’l’L

Trg O, &) = Z il

JsksA

(@ +Trg O ® h)(u, u) = Z CikApUiAUkp T+ CANUj Uy -
j7k7A’l’L



10. Further preliminary results of hermitian differential geometry 51

For every o € U, (cf. Lemma 10.15), put

/ —
Uje = E UFNO A eC,

1<ALr

{L\gzzugat]’ET , é\g:ZaAeAEE.
J A
Lemma 10.15 implies

—r ~ ~ o~ ~ —r Y- —
q E Oty ® €y, Uy R €y) = q E CikAnWjoUko OO

GGU&" O’GUZ;
= E  CikAuUA TRy + E Gk T
I,k AF kA

The Griffiths positivity assumption shows that the left hand side is > 0, hence
(O +TrgO@h)(u,u) = Y cirartjnlizy =0
Ik, A
with strict positivity if © >qir 0 and u # 0. O

We now relate Griffiths positivity to m-tensor positivity. The most useful result
is the following

(10.16) Proposition. Let T be a complex vector space and (E,h) a hermitian
vector space of respective dimensions n,r with r > 2. Then for any hermitian form
O onT ® FE and any integer m > 1

O>cir0 = mTrg®@Rh—-6 >,,0.

Proof. Let us distinguish two cases.

a) m=1. Let u € T® FE be a tensor of rank 1. Then u can be written u = & ® €1
with & € T, & # 0, and e; € E, |e;] = 1. Complete e; into an orthonormal basis
(e1,...,6e.) of E. One gets immediately

(Tre @ @ h)(u,u) = Trp O(E1,€1) = Y O(61 @ ex, &1 @ ey)

1<KAKr

>0 ®e, & ®er) = O(u,u).

b) m > 2. Every tensor u € T ® F of rank < m can be written

U = ZfA@eA ; £A€T7

1<A<q

with ¢ = min(m, r) and (ey)1<a<r an orthonormal basis of E. Let F' be the vector
subspace of E generated by (eq,...,e,) and O the restriction of © to T ® F. The
first part shows that
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O =TrrOr @h — O >arit 0.
Proposition 10.14 applied to © on T ® F yields
O 4+Trr@ h=qTrrOr@h— Op >4 0.
Since u € T ® F is of rank < ¢ < m, we get (for u # 0)

O(u,u) = Op(u,u) < ¢(Trrp O @ h)(u,u)
=q Z @(§j®e>\,§j®e>\) ngrE@@)h(u,u). ]

1<),A5q

Proposition 10.16 is of course also true in the semi-positive case. From these
facts, we deduce

(10.17) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then
for any integer m > 1

E*® (det E)™ >,, 0 (resp. =, 0).

Proof. We apply Prop. 10.16 to © = —O(E*) = 'O(E) >aut 0 on Tx ® E* and
observe that
O(det E) = Trg O(F) = Trg- 6.

(10.18) Theorem. Let 0 — S — E — @ — 0 be an exact sequence of hermitian

vector bundles. Then for any m > 1

E>,0 = S®(detQ)™ >,0.

Proof. Formulas (10.7) imply
10(S) >m i8NS, 10(Q) > iBA B,
i0(det Q) = Trq(i0(Q)) > Trq(iB A 7).
If we write 8 = Y dz; ® §; as in the proof of Corollary 10.8, then
Tro(iB A BY) =Y idz; A dzy, Trq(S3;6%)
= idz; Adz), Trs(B;8;) = Trs(—iB* A B).

Furthermore, it has been already proved that —i8* A 8 >nax 0. By Prop. 8.1 applied
to the corresponding hermitian form @ on Tx ® S, we get

mTrs(—if* A B) @ Idg +i6* A B =, 0,

and Theorem 10.18 follows. ]
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(10.19) Corollary. Let X be a weakly pseudoconvex Kdhler n-dimensional mani-
fold, E a holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then

a) E>auf 0= H"(X,E®det ) =0 forq>1;
b) E >qir 0= H”’q(X, E*®(det E)m) =0forq>1andm > min{n — g+ 1,7};

c) Let 0 — S — FE — @ — 0 be an exact sequence of vector bundles and
m =min{n—q+ 1,k S}, ¢ > 1. If E >,,, 0 and if L is a line bundle such that
L® (det@)~™ >0, then

H™(X,5® L) =0.

Proof. Immediate consequence of Theorem 10.11, in combination with 10.12 for a),
10.17 for b) and 10.18 for c). O

11. Skoda’s L? estimates for surjective bundle morphisms

Let (X,w) be a Kéhler manifold, dim X = n, and let g : E — @ a holomorphic
morphism of hermitian vector bundles over X. Assume in the first instance that g
is surjective. We are interested in conditions insuring that the induced morphisms
g: HY" (X, E) — H™*(X,Q) are also surjective (dealing with (n,) bidegrees is
always easier, since we have to understand positivity conditions for the curvature
term). For that purpose, it is natural to consider the subbundle S = Ker g C E and
the exact sequence

(11.1) 0—S 2FE 25Q—0

where j : S — FE is the inclusion. In fact, we need a little more flexibility to handle
the curvature terms, so we take the tensor product of the exact sequence by a
holomorphic line bundle L (whose properties will be specified later):

(11.2) 0—S®L—EQL 25Q®L— 0.

(11.3) Theorem. Let k be an integer such that 0 < k < n. Set r =1k E, ¢ = rkQ,
s=rkS=r—q and

m = min{n — k, s} = min{n — k,r — q}.

Assume that (X,w) possesses also a complete Kdihler metric O, that E >, 0, and
that L — X is a hermitian holomorphic line bundle such that

1O(L) — (m +€)iO(det Q) > 0

for some € > 0. Then for every D" -closed form f of type (n, k) with values in Q ® L
such that || f|| < 400, there exists a D" -closed form h of type (n, k) with values in
FE ® L such that f =¢g-h and

IRl1* < (1 +m/e) | I
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The idea of the proof is essentially due to (Skoda 1978), who actually proved
the special case k = 0. The general case appeared in (Demailly 1982).

Proof. Let j : S — FE be the inclusion morphism, ¢* : ) — E and j* : E — S
the adjoints of g, j, and the matrix of Dg with respect to the orthogonal splitting
E ~S®Q (cf. Lemma 10.2). Then ¢*f is a lifting of f in F ® L. We will try to
find h under the form

h=g"f+iju, uecl*X,A""T%®S®L).

As the images of S and Q in E are orthogonal, we have |h|? = |f|? + |u|? at every
point of X. On the other hand Dg); f = 0 by hypothesis and D"g* = —j o * by
(10.5), hence

Digerh=—j(6"Nf)+jDsgr = j(Dsgr — B A f).
We are thus led to solve the equation

and for that, we apply Th. 8.4 to the (n,k+ 1)-form S* A f. One now observes that
the curvature of S ® L can be expressed in terms of 3. This remark will be used to
prove:

(11.5) Lemma. Let A, = [1O(S ® L), A] be the curvature operator acting on
(n, ks +1)-forms. Then (A1 (5" A £), (8* A f)) < (mfe) [£12.

If the Lemma is taken for granted, Th. 8.4 yields a solution u of (11.4) in
L2(X, A™T5 @ S @ L) such that [ul|* < (m/e) [f]]*. As [|h[|* = [If]]* + [[ul®, the
proof of Th. 11.3 is complete. U

Proof of Lemma 11.5. Exactly as in the proof of Th. 10.18 formulas (10.7) yield
i0(S) Zm 1B A B,  10(det Q) > Trq(iB A %) = Trs(—iB* A B).
Since C°(X, AYT% @ Herm S) 2 O := —if8* A B >quir 0, Prop. 10.16 implies
m Trg(—if* A B) @ Ids +i* A 3 >, 0.
From the hypothesis on the curvature of L we get

10(S ® L) =, 10(S) @ Idg, +(m +¢)i0(det Q) ® Idser
Zm (iﬁ* AP+ (m + 6) Trs(—iﬁ* N ﬁ) (059 Ids) ® Idg,
> (e/m) (—if* A B) @ Idg ®1dy, .

For any v € A™*T1T% @ S @ L, Lemma 10.10 implies
(11.6) (Agv,v) = (e/m) (=" A B A Av,v),

because rk(S® L) = s and m = min{n—k, s}. Let (dz1,...,dz,) be an orthonormal
basis of T% at a given point ¢ € X and set
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B= Y dz®pB;, B €Hom(S, Q).

1< <n

The adjoint of the operator f* Ae =) dzZ; A 35  is the contraction operator 3 J e
defined by

Blo=>" a% 1 (Bv) =Y —idz; A A(Bjv) = =i A Av.

We get consequently (—if* A B A Av,v) = |8 J v|? and (11.6) implies

(8" A foo)l? = [(f. 8 3 o) <IFPP1B Jvf* < (m/e){Apv,v) [ fI°.

This is equivalent to the estimate asserted in the lemma. 0

If X has a plurisubharmonic exhaustion function v, we can select a convex
increasing function y € C*°(R,R) and multiply the metric of L by the weight
exp(—x o %) in order to make the L? norm of f converge. Theorem 11.3 implies
therefore:

(11.7) Corollary. Let (X,w) be a weakly pseudoconvexr Kihler manifold, g : E — Q
a surjective bundle morphism with r = tk E, ¢ = vk Q, and L — X a hermitian
holomorphic line bundle. We set m = min{n — k,r — q} and assume that E >,, 0
and

iO(L) — (m+¢)iO(det Q) = 0

for some € > 0. Then g induces a surjective map

H" X E®L) — H"™(X,Q®L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A
careful examination of the proof shows that it amounts to verify that the image of
the coboundary morphism

—B3*Ne : H"™"(X,Q® L) — H™ (X, S® L)

vanishes; however the cohomology group H™*+1(X, S® L) itself does not necessarily
vanish, as it would do under a strict positivity assumption (cf. Cor. 10.19 c)).

We want now to get also estimates when @) is endowed with a metric given
a priori, that can be distinct from the quotient metric of E by g. Then the map
g*(gg*)™' : Q — E is the lifting of Q orthogonal to S = Kerg. The quotient
metric |o/ on @ is therefore defined in terms of the original metric |e| by

[0 = 1g*(99%) 0] = ((9g”) *v,v) = det(gg”) " (9970, )

where gg* € End(Q) denotes the endomorphism of () whose matrix is the transposed
of the comatrix of gg*. For every w € det @), we find

[w]” = det(gg") ™" [w]*.
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If Q' denotes the bundle @ with the quotient metric, we get
i0(det Q') = iO(det Q) + id'd" log det(gg*).

In order that the hypotheses of Th. 11.3 be satisfied, we are led to define a new
metric |o| on L by |u|? = |u|? (det(gg*))” " . Then

iIO(L") =1i0(L) + (m + €)id'd" log det(gg*) = (m + €)iO(det Q’).

Theorem 11.3 applied to (E,Q’, L") can now be reformulated:

(11.8) Theorem. Let X be a complete Kdhler manifold equipped with a Kdhler
metric w on X, let E — @ be a surjective morphism of hermitian vector bundles
and let L — X be a hermitian holomorphic line bundle. Set r =1tk E, ¢ =k Q) and
m = min{n — k,r — q}, and assume that E >,, 0 and

1O(L) — (m +€)iO(det Q) > 0

for some € > 0. Then for every D" -closed form f of type (n, k) with values in Q® L
such that

I= /X@EJ;JC, f) (det gg*) ™™ 17 AV < +o0,

there exists a D" -closed form h of type (n, k) with values in E® L such that f = g-h
and

/ |h|? (det gg*) ™™= dV < (1+m/e) L. 0
X

Our next goal is to extend Th. 11.8 in the case when g : F — @ is only
generically surjective; this means that the analytic set

Y={zre€eX; g, : E, — @ is not surjective }

defined by the equation A%g = 0 is nowhere dense in X. Here A%g is a section of the
bundle Hom(A?E, det Q). The idea is to apply the above Theorem 11.8 to X \ Y.
For this, we have to know whether X \ Y has a complete Kahler metric.

(11.9) Lemma. Let (X,w) be a Kdihler manifold, and Y = o~*(0) an analytic
subset defined by a section of a hermitian vector bundle E — X. If X is weakly
pseudoconver and exhausted by X, = {x € X ; ¢Y(x) < ¢}, then X. \NY has a
complete Kdhler metric for all ¢ € R. The same conclusion holds for X \Y if

(X,w) is complete and if for some constant C > 0 we have O <guit Cw ® (, )p
on X.

Proof. Set 7 = log|o|?. Then d't = {D'0,0}/|0|? and D"D'c = D?*c = O(E)o,
thus

{D'o,D'o} i{D'U,U} Ao, D'o}  {iO(E)o, 0}
o2 o] o>

For every & € T'x, we find therefore
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_ oA ID'o ¢~ (Do 0)?  O(E)(¢®a,E®o)

o] - |o]?

Hr(£)

by the Cauchy-Schwarz inequality. If C'" is a bound for the coefficients of é(E) on
the compact subset X ., we get id'd"T > —Cw on X.. Let x € C*°(R,R) be a convex
increasing function. We set

D=w+id'd"(xor)=w+i(x or dd"T+x" o dTANd"T).

We thus see that @ is positive definite if x’ < 1/2C, and by a computation similar
to that in proposition 8.7, we check that @ is complete near Y = 7-!(—00) as soon

as .
/ VX" (t) dt = +o0.

One can choose for example y such that x(¢) = =5 (¢ —log|t|) for ¢ < —1. In order to
obtain a complete Kahler metric on X.\ Y, we also need the metric to be complete
near 0X.. If @ is not, such a metric can be defined by

id/duw ldlw A dllw
c=¢ = (c—y)?
> id'log(c — )"t Ad" log(c — )1 ;

O =0+id'd" log(c — )t =0+

@ is complete on X, \ £2 because log(c — )~ ! tends to +o00 on X.. O

We also need another elementary lemma dealing with the extension of partial
differential equalities across analytic sets.

(11.10) Lemma. Let 2 be an open subset of C" and Y an analytic subset of (2.
Assume that v is a (p,q — 1)-form with L% coefficients and w a (p, q)-form with
L coefficients such that d"v =w on 2 \'Y (in the sense of distribution theory).

Then d'"v =w on (2.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the
result in a neighborhood of a regular point a € Y. By using a local analytic iso-
morphism, the proof is reduced to the case where Y is contained in the hyperplane
z1 = 0, with @ = 0. Let A € C*(R,R) be a function such that A(t) = 0 for ¢ < 3
and A\(t) =1 for t > 1. We must show that

(11.11) /w/\a:(—l)p+q/ vAd
02 0

for all a € D(02, A"~ P"79TE). Set Ac(z) = A(]z1]/¢) and replace « in the integral
by Aca. Then Acav € D(2 N\ Y, A"~P"74T%) and the hypotheses imply

/ WAl = (—1)p+q/ vAd' (Aea) = (—1)p+q/ v A (d'Ae N+ Ad ).
0 0 0
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As w and v have LllOC coefficients on {2, the integrals of w A A\;av and v A A\.d”"«

converge respectively to the integrals of w A o and v A d”« as ¢ tends to 0. The
remaining term can be estimated by means of the Cauchy-Schwarz inequality:

‘/ vAd A A a </ |v/\a|2dV./ A2 dV ;
n |z1|<e Supp o

as v € L2 _(£2), the integral f|z lv A a]? dV converges to 0 with ¢, whereas

‘ 2

loc 1|<e

C
/ |d”"A\e|? dV < — Vol(Supp an{|z| <e}) <C.
Supp a €
Equality (11.11) follows when & tends to 0. O

(11.12) Theorem. The existence statement and the estimates of Th. 11.8 remain
true for a generically surjective morphism g : E — @Q, provided that X 1is weakly
pseudoconvex.

Proof. Apply Th. 11.8 to each relatively compact domain X.\Y (these domains are
complete Kéhler by Lemma 11.9). From a sequence of solutions on X. \ Y we can
extract a subsequence converging weakly on X \ Y as c tends to +0o. One gets a
form h satisfying the estimates, such that D”"h =0on X \Y and f = ¢g-h. In order
to see that D””h = 0 on X, it suffices to apply Lemma 11.10 and to observe that h

has L2 _ coefficients on X by our estimates. U

A very special but interesting case is obtained for the trivial bundles £ = 2xC",
Q = (2 x C over a pseudoconvex open set 2 C C"™. Then the morphism g is given
by a r-tuple (¢1,...,g.) of holomorphic functions on 2. Let us take £k = 0 and
L = 2 x C with the metric given by a weight e~ . If we observe that §§¥ = Id when
tk Q =1, Th. 11.8 applied on X = 2~ ¢~1(0) and Lemmas 11.9, 11.10 give:

(11.13) Theorem (Skoda 1972b). Let §2 be a complete Kdhler open subset of C"
and ¢ a plurisubharmonic function on §2. Set m = min{n,r — 1}. Then for every
holomorphic function f on (2 such that

I:/ |f|2|g|—2(77’L—|—1—|—5)e—<,0d‘/<_|_oo7
02\7z

where Z = g=1(0), there exist holomorphic functions (hy,...,h.) on §2 such that
f=>g;h; and

/ |h[? |g] 2" em? AV < (14 m/e)l. O
0\Y

This last theorem can be used in order to obtain interesting results about
domains of holomorphy in C™ and the relation with the existence of complete Kahler
metrics. Recall that an open set 2 C C™ is said to be a domain of holomorphy if
for every connected open subset U such that U N 92 # () and every connected
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component W of U N {2 there exists a holomorphic function h on {2 such that hy
cannot be continued to U. It is well known that (2 is a domain of holomorphy if and
only if 2 is Stein [the latter condition being of course trivially sufficient; see e.g.
(Hormander 1966), chap. 2].

(11.14) Theorem (Diederich-Pflug 1981). Let £2 C C" be an open subset. If (£2)° =
2 and (2 admits a complete Kdahler metric @, then (2 is a domain of holomorphy.

Note that the statement becomes false if the assumption (§2)° = {2 is omitted:
in fact C" ~ {0} is complete Kéhler by Lemma 10.9, but it is not a domain of
holomorphy if n > 2.

Proof. Since (£2)° = (2, the set U . 2 is not empty. We select a € U . £2. Then the
integral

/ |z — a2 gV (2)
(P

converges. By Th. 11.13 applied to f(z) =1, g;(2) = z; — a; and ¢ = 0, there exist
holomorphic functions h; on {2 such that > (z; — a;) h;(z) = 1. This shows that at
least one of the functions h; cannot be analytically continued at a € U. O

(11.15) Remark. Skoda’s theorem 11.13 can also be used to prove the implication
{2 pseudoconvex =—> (2 domain of holomorphy,

which is equivalent to the “interesting implication” in the Levi problem (modulo
the equivalence of domains of holomorphy with Stein open sets, an easy property).
In fact, if {2 is pseudoconvex, it can be shown that the function z — — logd(z, (£2)
is psh (see again Hérmander 1966, chap. 2). Given any open connected set U such
that U N 982 # 0, select a € U N 9. The weight function

©(2) = (n 4 ¢)log(1 + |2|*) — 2(n + ) log d(z,C12)

is psh on £2. As |z — a| > d(2,02), we see that the integral
/ 2 — a2 ) gy (z) < / (1+]22) "= dV (2)
0 Q

converges, and we conclude as in the proof of 11.14. O

12. Application of Skoda’s L? estimates to local algebra

We show here how Theorem 11.13 can be applied to get deep results concerning
ideals of the local ring O,, = C{zy,...,2,} of germs of holomorphic functions on

(C™,0). Let Z = (¢g1,..-,9-) # (0) be an ideal of O,,.

(12.1) Definition. Let k € R;.. We associate to I the following ideals:
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a) the ideal 7 of germs u € O,, such that |u| < C|g|¥ for some constant C > 0,
where |g|* = [g1 > + -+ + |g,[*.

b) the ideal gAG) of germs u € O,, such that
/ lul? |g| 72+ dV < 400
0

on a small ball §2 centered at 0, if € > 0 is small enough.

(12.2) Proposition. For all k,l € Ry we have
7" 7w,

Q
~—

b 8 cT™ ifkeN;
) j—(k).j(l) c j—(kH);
d) W IO ¢ 70D,

All properties are immediate from the definitions except a) which is a conse-
quence of the integrability of |g|~¢ for € > 0 small (exercise to the reader!). Before
stating the main result, we need a simple lemma.

(12.3) Lemma. IfZ = (¢1,...,9,) and r > n, we can find elements g1,...,Gn € L
such that C~1|g| < |g] < Clg| on a neighborhood of 0. Each g; can be taken to be a
linear combination

gi=a;.g= Z a;kgr, a; € C"~ {0}

1<kLr

where the coefficients ([a1], ..., [ay]) are chosen in the complement of a proper ana-
lytic subset of (P™~1)".

It follows from the Lemma that the ideal 7 = (g1, ..., gn) C T satisfies T =
Z® and J® =I® for all k.

Proof. Assume that g € O(§2)". Consider the analytic subsets in 2 x (P"~1)" defined
by

A={(z,[wi],...,[wn]); w;. g(z) =0},
A = Uirreducible components of A not contained in g~*(0) x (P"~1)".
For z ¢ g—1(0) the fiber A, = {([w1],...,[wn]); w;.g(z) = 0} = A% is a product of
n hyperplanes in P"~! hence AN (2~ g~1(0)) x (P"~1)" is a fiber bundle with base
2~ g7 10) and fiber (P"~2)". As A* is the closure of this set in 2 x (P"~1)" we

have
dim A* = n 4+ n(r —2) = n(r — 1) = dim(P" )",

It follows that the zero fiber
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Af = A"n ({0} x (P H)™)
is a proper subset of {0} x (P"~1)". Choose (ai,...,a,) € (C" ~ {0})" such

that (0,[a1],...,[as]) is not in Af. By an easy compactness argument the set
A* N (B(0,g) x (P"~1)™) is disjoint from the neighborhood B(0,¢) x [[[B(a;,€)] of
(0, [a1], ..., [an]) for € small enough. For z € B(0,¢) we have |a;. g(2)| > ¢|g(z)| for

some j, otherwise the inequality |a;.g(z)| < €|g(z)| would imply the existence of
h; € C" with |h;| < ¢ and a;. g(2) = h;. g(z). Since g(z) # 0, we would have

(z,]la1r — hi], ..., [an — hy]) € AN (B(O,s) X (Pr_l)”),
a contradiction. We obtain therefore

elg(2)] < max|a;. g(2)] < (max|a;[) [g(2)] on B(0,é). U

(12.4) Theorem (Briancon-Skoda 1974). Set p = min{n — 1, — 1}. Then
a) Z®HD =770 =TI®  fork>p
by T"P 040 c TF  for all k € N.

Proof. a) The inclusions 70 c TT® c T(,+D are obvious thanks to Prop. 12.2,

so we only have to prove that T+ « T77(®) . Assume first that r <n. Let f e
Z(k+1) be such that

\f\Q |g| 72 H1%9) 4V < 400

For £ > p — 1, we can apply Th. 11.13 with m = r — 1 and with the weight
= (k—m) 10g|g|2. Hence f can be written f =) g;h; with

/ B2 g 2049 4V < o0,
N
thus h; € 7®) and f e 77Z® . When r > n, Lemma 12.3 shows that there is an
ideal j C 7 with n generators such that j(k) — 7). We find
Tk = 7D « 7 70 7T for k>=n—1.

b) Property a) implies inductively Zk+p) = TET(®) for all k € N. This gives in
particular Z(++P) ¢ 7%, O

(12.5) Corollary.

a) The ideal T is the integral closure of I, i.e. by definition the set of germs u € O,,
which satisfy an equation

ud+a1ud_1—|—-~-—i—ad:(), as €1°, 1 <s<d.

b)  Similarly, T(k) is the set of germs u € O,, which satisfy an equation

ud—l-alud_l—l—---—l—ad:O, asEI“"SW, 1 <s<d,
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where [t] denotes the smallest integer > t.

As the ideal T(k) is finitely generated, property b) shows that there always
exists a rational number [ > k such that ZW = 7).

Proof. a) If u € O,, satisfies a polynomial equation with coefficients as € Z°, then
clearly |as| < Cs|g|® and the usual elementary bound

roots| < 2 max |as|'/®
<s<d
for the roots of a monic polynomial implies |u| < C'|g|.

Conversely, assume that v € Z. The ring O,, is Noetherian, so the ideal 7 (p)Ahas
a finite number of generators vy, ...,vy. For every j we have uv; € Z1®) =17®),
hence there exist elements b;, € 7 such that

uv; = E bjrvk.

1<k<N

The matrix (udj; — b;i) has the non zero vector (v;) in its kernel, thus u satisfies
the equation det(ud;r — bjr) = 0, which is of the required type.

b) Observe that vi,...,vx_satisfy simultaneously some integrability condition
[0 [v;]720F9) < 400, thus P = Z®*M for 5 € [0,e[. Let u € 0. For every
integer m € N we have

uv; € 0™ F+n)  Flkmtnt),

If £ ¢ Q, we can find m such that d(km +¢/2,7Z) < /2, thus km +n € N for some
n €10,el. If k € Q, we take m such that km € N and n = 0. Then

umv; € IWN+P) =N T with N =km+n €N,

and the reasoning made in a) gives det(u™d;; — bji) = 0 for some b; € Z%. This is
an equation of the type described in b), where the coefficients as vanish when s is
not a multiple of m and a,,s € IV C ZlTkms], O

Let us mention that Briancon and Skoda’s result 12.4 b) is optimal for k = 1.
Take for example 7 = (g1,...,9,) with g;(2) =27, 1 <j < r,and f(2) = 21... 2.
Then |f| < C|g| and 12.4 b) yields f" € Z; however, it is easy to verify that
fr=1 ¢ Z. The theorem also gives an answer to the following conjecture made by
J. Mather.

(12.6) Corollary. Let f € O,, and Iy = (210f/0z1,...,2,0f/0z,). Then f € Iy,
and for every integer k >0, fktn=1 ¢ I’J?.

The Corollary is also optimal for £ = 1 : for example, one can verify that the
function f(2) = (21...2,)% +2{" 7" + -+ 25" is such that f*7 ¢ I
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Proof. Set gj(z) = z;0f/0z;, 1 < j < n. By 12.4 b), it suffices to show that

|f| < C|g|. For every germ of analytic curve C > ¢t —— ~(t), v # 0, the vanishing
order of fo~(t) at t = 0 is the same as that of

oD 5 2 ).

1<G<n 02
We thus obtain
d(f o of
Formi<anl |22 <oy S ol | 2L ()] < s lgonte)
1<j<n J
and conclude by the following elementary lemma. U

(12.7) Curve selection lemma. Let f,g1,...,9, € O, be germs of holomorphic
functions vanishing at 0. Then we have |f| < C|g| for some constant C if and only
if for every germ of analytic curve v through O there exists a constant C., such that

[fov] <Cylgonl

Proof. If the inequality |f| < C|g| does not hold on any neighborhood of 0, the germ
of analytic set (A4,0) C (C™*",0) defined by

gj(z) = f(z)zn+j7 I<y<,

contains a sequence of points (z,,g;(z,)/f(2,)) converging to 0 as v tends to +oo,
with f(z,) # 0. Hence (A, 0) contains an irreducible component on which f # 0 and
there is a germ of curve ¥ = (v, vn4;) : (C,0) — (C™*",0) contained in (4, 0) such
that fo~y # 0. We get gj oy = (f ©¥)Vn+j, hence |g o y(t)| < C|t||f o~(t)] and the
inequality |f o | < Cy|g o y| does not hold. O

13. The Ohsawa-Takegoshi L? extension theorem

We address here the following extension problem: let Y be a complex analytic sub-
manifold of a complex manifold X ; given a holomorphic function f on Y satisfying
suitable L? conditions on Y, find a holomorphic extension F of f to X, together with
a good L? estimate for F' on X. The first satisfactory solution has been obtained
only rather recently by (Ohsawa-Takegoshi 1987). We follow here a more geometric
approach due to (Manivel 1993), which provides a generalized extension theorem
in the general framework of vector bundles. As in Ohsawa-Takegoshi’s fundamental
paper, the main idea is to use a modified Bochner-Kodaira-Nakano inequality. Such
inequalities were originally introduced in the work of (Donnelly-Fefferman 1983)
and (Donnelly-Xavier 1984). The main a priori inequality we are going to use is a
simplified (and slightly extended) version of the original Ohsawa-Takegoshi a priori
inequality, as proposed recently by (Ohsawa 1995); see also (Berndtsson 1995) for
related calculations in the special case of domains in C™.
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(13.1) Lemma (Ohsawa 1995). Let E' be a hermitian vector bundle on a complex
manifold X equipped with a Kdahler metric w. Let n, A > 0 be smooth functions
on X. Then for every form u € D(X, AP9T% ® E) with compact support we have

(0% + X2)D"u|]” + [z D"ul* + [N D'u||” + 2|\~ Zd'n A u*
> ([niO(E) —id'd"n —ix"td'n Ad'n, Alu, ).

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D'nD"™* + D"*nD’' = n[D', D"*| + [D',n]D"™* + [D"*,n] D’
= A"+ (d'n)D"™ — (d'n)* D',
D"yD"* + D" nD" = p[D", D"*] + [D", 5| D"* + [D"*, 7| D"
— g+ (@)D" — (&) D

where 7, (d'n), (d"n) are abbreviated notations for the multiplication operators 7e,
(d'n) N e, (d"n) A e. By subtracting the above equalities and taking into account the
Bochner-Kodaira-Nakano identity A” — A" = [iO(F), 4], we get

D///),/D//* + DH*T]DH _ D/T]D/* _ D/*/),/D/
(13.2) = n[iO(E), Al + (d"n) D" — (d"n)*D" + (d'n)*D" — (d'n) D"

Moreover, the Jacobi identity yields
[Dllv [d/777 A” - [d/nv [A7 DH” + [A7 [DH7 dl??]] =0,

whilst [A, D] = —iD’* by the basic commutation relations 7.2. A straightforward
computation shows that [D” d'n] = —(d'd"n) and [d'n, A] = i(d"n)*. Therefore we
get

i[D//, (d//n)*] + i[d/n, D/*] _ [A, (d/d//n)] — O,

that is,
[1 d/d”T], A] — [.D//, (d//,r’)*] + [D/*, d/T]] — D//(d///),I)*_i_ (dHT])*DH‘i_D/*(d/TI) + (d/T])D/*.
After adding this to (13.2), we find

D///),]D//* + DH*T]DH _ D/nD/* _ D/*/),]DI + [1 d/d//n, A]
=nliO(E), Al + (d"n)D"* + D"(d"n)* + (d'n)*D" + D™ (d'n).

We apply this identity to a form u € D(X, AP9T% ® F) and take the inner bracket
with u. Then

((D"0D" ) = (D", D)) = n* D"u?.
and likewise for the other similar terms. The above equalities imply
172 D"*u||* + |92 D"ul* — ||[n% D'ul|* — [In D" ul|* =
{[niO(E) —id'd"n, AJu,u)) +2Re (D"*u, (d"n)*u) + 2Re (D'u,d'n A u)).

By neglecting the negative terms —||nz D'u|? — ||[nz D'*u||? and adding the squares
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IAZ D" ul|? + 2 Re (D"*u, (d"n)*u) + A~ 2 (d"n)*u|? =
IANZD"ul|? + 2Re (D'u, d'n Aw) + |A"2d'p Aul? >
we get
1(n% + A2)D"*u|® + [|n2 D" ul® + |IN2 D'u|l? + |A"2d'n Aul® + A2 (d"n)*ul®
> ([niO(E) —id'd"n, Alu, u)).
Finally, we use the identities
(d'n)*(d'n) — (d"n)(d"n)* = i[d"n, A)(d'n) +i(d"n)[d'n, A] = [id"n A d'n, A],
_1 _1 % Ty —
IA"2d'n Aul|? — A2 (dn)*u))® = —([ix"td'n A d"n, Alu, u),

The inequality asserted in Lemma 13.1 follows by adding the second identity to our
last inequality. O

In the special case of (n,g)-forms, the forms D'u and d'n A u are of bidegree
(n+1,q), hence the estimate takes the simpler form

(13.3) |2 +A7) D" u|*+||n D"u||* = ([niO(E)—id'd"n—ix"" d'nrd”n, Alu, u).

(13.4) Proposition. Let X be a complete Kdihler manifold equipped with a (non ne-
cessarily complete) Kdahler metric w, and let E be a hermitian vector bundle over X .
Assume that there are smooth and bounded functions n, A > 0 on X such that the
(hermitian) curvature operator B = Byl = [niO(E) —id'd"n— iINTrd'nAd'n, Ay
is positive definite everywhere on A™9T% ® E, for some q > 1. Then for every form

g€ LQ(X’ AT @ E) such that D"g = 0 and fX<B_19,Q> dV,, < 400, there exists
f S L2<X7 An,q—lT;( & E) such that D”f =g and

/ (n+ NPV, <2 / (B1g, ) dV.
X X

Proof. The proof is almost identical to the proof of Theorem 8.4, except that we use
(13.4) instead of (7.4). Assume first that w is complete. With the same notation as
in 7.4, we get for every v = v; + vy € (Ker D”) @ (Ker D”)* the inequalities

|<g,v>\2=\<g,v1>\2</X<B‘1g,g>de/X<Bv1,v1>de,

and
/X (Bui,v1) dV,, < [[(n2 +A2) D" vy |2 + 92 D" va|* = [|(n? + A2)D"*v|?
provided that v € Dom D”*. Combining both, we find
(9.0 < ([ (B 0u0) VL)t + A8 D"

This shows the existence of an element w € L?(X, A™9T% ® E) such that
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Jwl? < / (B~lg.g)dV,  and
X
(v,g) = ((n? + A2)D"™v,w) Vg € Dom D" NDom D'"*.

As (nY/2 4 22)2 < 2(n+ A), it follows that f = (n*/2 + A2)w satisfies D f = g as
well as the desired L? estimate. If w is not complete, we set w, = w + €& with some
complete Kédhler metric @. The final conclusion is then obtained by passing to the

limit and using a monotonicity argument (the integrals are monotonic with respect
to €). O

(13.5) Remark. We will also need a variant of the L2-estimate, so as to obtain
approximate solutions with weaker requirements on the data: given § > 0 and
g € L*(X,A™T% ® E) such that D”g = 0 and [ ((B + 61)"'g,g) dV,, < +oo,
there exists an approximate solution f € L?(X,A™971T% ® F) and a correcting
term h € L?(X, A™9T% ® E) such that D" f + §'/2h = g and

/ (n+ X)LV, + / P dV, < 2 / (B+60)"g, g) V..
X X X

The proof is almost unchanged, we rely instead on the estimates

(g o) < /X (B +61)"g, 9) V. /X (B + 6T)oy, 1) dVi,

and
/ (B + 81)v1,v1) dV,, < [[(n% + AZ) D] + 8]|v]?. O
X

(13.6) Theorem. Let X be a weakly pseudoconvex n-dimensional complex manifold
equipped with a Kdhler metric w, let L (resp. E) be a hermitian holomorphic line
bundle (resp. a hermitian holomorphic vector bundle of rank r over X), and s a
global holomorphic section of E. Assume that s is generically transverse to the zero
section, and let

Y ={z€X; s(x)=0,A"ds(z) # 0}, p=dimY =n—r.

Moreover, assume that the (1,1)-form iO(L) + rid'd" log|s|?* is semipositive and
that there is a continuous function o > 1 such that the following two inequalities
hold everywhere on X :

1 {IO(E)s, s}

a) iO(L)+ridd"log|s|* > a e
s

b) |s| <e .
Then for every smooth D" -closed (0, q)-form f over'Y with values in the line bundle
A"T% @ L (restricted to Y), such that [, |f|*|A"(ds)|~2dV,, < +oo, there exists a

D" -closed (0,q)-form F over X with values in A"T% ® L, such that F is smooth
over X \ {s = A"(ds) = 0}, satisfies F}y = f and

/ Ly dVx ., < C / ﬁdVy
x [sPr (= logls)? y [P
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where C. is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points
where s vanishes) induces a vector bundle isomorphism ds : Tx /Ty — E along Y,
hence a non vanishing section A"(ds), taking values in

Ar(Tx/Ty)* X det E C ATT)*( X det E.

The norm |A"(ds)| is computed here with respect to the metrics on A" T% and det E
induced by the Kéahler metric w and by the given metric on F. Also notice that if
hypothesis a) is satisfied for some «, one can always achieve b) by multiplying the
metric of E with a sufficiently small weight e=X°% (with 1 a psh exhaustion on X
and x a convex increasing function; property a) remains valid after we multiply the
metric of L by e~ ("% )x°¥ where a = infyex a(z).

Proof. Let us first assume that the singularity set X' = {s = 0} N {A"(ds) = 0} is
empty, so that Y is closed and nonsingular. We claim that there exists a smooth
section

Foo € C®°(X, A™IT% @ L) = C*°(X, A% T% @ A"T% ® L)

such that

(a) F coincides with f in restriction to Y,

(b) |Fo| = |f| at every point of Y,

(¢) D"Fy = 0 at every point of Y.

For this, consider coordinates patches U; C X biholomorphic to polydiscs such that

UjﬂY:{ZEUj;le...:ZT:O}

in the corresponding coordinates. We can find a section f in C*°(X,A™T% @ L)
which achieves a) and b), since the restriction map (A%9T%);y — A%Ty can be
viewed as an orthogonal projection onto a C*°-subbundle of (A%9T% )y . It is enough
to extend this subbundle from U; NY to U; (e.g. by extending each component of
a frame), and then to extend f globally via local smooth extensions and a partition
of unity. For any such extension f we have

(D" flyy = (D" fry)=D"f=0.

It follows that we can divide D" f = Y 1<acr 9ia(z) Adzy on U NY, with suitable
smooth (0, g)-forms g; » which we also extend arbitrarily from U; NY to U;. Then

Foi=f— Zﬁj(Z) Z ZxgjA(2)

1<ALr

coincides with fon Y and satisfies (c). Since we do not know about Fi, except in an
infinitesimal neighborhood of Y, we will consider a truncation F; of F, with support
in a small tubular neighborhood |s| < € of Y, and solve the equation D"u. = D" F
with the constraint that u. should be 0 on Y. As codimY = r, this will be the
case if we can guarantee that |u.|?|s|™2" is locally integrable near Y. For this, we
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will apply Proposition 13.4 with a suitable choice of the functions 1 and A, and an
additional weight |s|™2" in the metric of L.

Let us consider the smooth strictly convex function xq : | — 00,0] — | — 00, 0]
defined by xo(t) =t —log(1l —t) for ¢ < 0, which is such that xo(t) <t, 1 < x( < 2
and xg(t) = 1/(1 —t)%. We set

o. = log(|s|* + 2), Ne =€ — xo(oe)-
As |s|] <e @ < el we have 0. < 0 for € small, and
Ne =€ —o0c >¢e—log(e 2 +&%).

Given a relatively compact subset X. = {¢ < ¢} € X, we thus have 7. > 2« for
e < g(c) small enough. Simple calculations yield

i i{D’s, s}
do, =205
T s e
A — {D's,D's} i{D's,s} AN{s,D's} {iO(E)s,s}
T [sP e (s> +¢2)? |s]? + €2
< g2 i{D’'s,s} N{s,D's} {iO(E)s, s}
T s (s +e2)? |s]? + €2
2 .
2 E:—id/O'E /\ d//UE _ {IQ(E)S7S}7
P s+ 22

thanks to Lagrange’s inequality i{D’s, s} A{s, D's} < |s|?i{D’s, D’s}. On the other
hand, we have d'n. = —x{(0c)do. with 1 < x((0:) < 2, hence
—id'd"n. = x,(0e)id'd" o + x((0:)id o N d" o,
< ( 1 g2 X0 (o) {iOgs, s}
’ Pre

Xo(e) [s[2 xo(oe)?

>id/77£ A d//ne - X6(Ue)

We consider the original metric of L multiplied by the weight |s|~2". In this way,
we get a curvature form

1 {i@gs, s}

10, + rid'd" log|s|* > P
s|2+¢e

1
§X6(06)O‘

by hypothesis a), thanks to the semipositivity of the left hand side and the fact that
%XE)(O-E) |S|21+52 < # As n. > 2a on X, for € small, we infer

x{)’(ag) < a1 1 g2
idn.Nd"n. > ——
Xo(oe)2 " © 7 Xoloe)ls|?

on X.. Hence, if \c = x{(0:)?/x§(0:), we obtain

n.(i0, + id'd" log |s|*) —id'd"n. — id'n. Ad'n.

B. = [n:(i0 +id'd" log|s|*) —id'd"n. — A\ 'id'n. Ad" e, A]
2 2

> 7-61/ /\d// A] — 67 d// d// *
|:X6<0-€)‘S|21 Tle Te ‘5|2( 776)( ns)

Xo(0¢)

as an operator on (n, q)-forms (see the proof of Lemma 13.1).
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Let 6 : R — [0, 1] be a smooth cut-off function such that 6(t) = 1 on | — o0, 1/2],
Suppf C | — oo,1[ and |¢'| < 3. For € > 0 small, we consider the (n,q)-form
F. = 0(e72|s]?) F5 and its D"-derivative

ge = D"F. = (14+e72|5]*)0' (¢ 2|s|*)d" 0. A Foo + 0(c2|5|>) D" Fy

[as is easily seen from the equality 1 + e 2|s|?> = e72e%= |. We observe that g. has
its support contained in the tubular neighborhood |s| < €; moreover, as € — 0, the
second term in the right hand side converges uniformly to 0 on every compact set;
it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d”o. and d”7., and can be controlled in
terms of B.. In fact, for any (n, ¢)-form v and any (n,q + 1)-form v we have

[(d"ne A, ) |* = [(u, (7)) |* < Jul?(d"ne) ol = [ul*((d"ne) (d" ) v, v)

/ 2
< X0l 2 0,0,
This implies
/ 2
(B ' Aw), (@' Ay < ST 2

The main term in g. can be written

gl = (14721510 (e 2[5 x0(00) " e A Fac.
On Supp ggl) C {|s| < e}, since x((oe) = 1, we thus find

(B g, g) < (L4722 0/ (e72[s)? | Foc .

Instead of working on X itself, we will work rather on the relatively compact subset
X NY., where Y. =Y NX.=YN{yY < c}. We know that X\ Y, is again complete
Kihler by Lemma 11.9. In this way, we avoid the singularity of the weight |s|=2"
along Y. We find

/ <Bglg§”,g§”>\s|‘27"de</ |Foo|2(1 + e 2|s|2)20' (e 723]2)2|s| "2 dV.
X NY, X N\Y,

Now, we let ¢ — 0 and view s as “transverse local coordinates” around Y. As F
coincides with f on Y, it is not hard to see that the right hand side converges to
¢r [y |fI?|A7(ds)|~?dVy,, where ¢, is the “universal” constant

i AT (dz) A AT (dZ)

‘2‘27’

o= [ aEPPEP? <400
z€Cr, |2|<1

depending only on 7. The second term
g§2) _ 9(8_2|8|2)d//Foo

in g. satisfies Supp(gg)) C {|s| < €} and |g§2)| = O(|s]) (just look at the Taylor

expansion of d”F, near Y). From this we easily conclude that

/ (B9, 9 [s| 7 dVx o = O(?),
XcNYe
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provided that B. remains locally uniformly bounded below near Y (this is the case
for instance if we have strict inequalities in the curvature assumption a)). If this holds
true, we apply Proposition 8.4 on X, \ Y, with the additional weight factor |s|=2".
Otherwise, we use the modified estimate stated in Remark 8.5 in order to solve
the approximate equation D”u + 6'/2h = g, with § > 0 small. This yields sections
U = Uce,s5, h = hce s such that

/ (e + Xe) ™ utgre 5 2|52 AV, + / e sl ]| 2" V.,
X NY,

X NY,

<9 / (Bo+61)Yg., g.)|s| > dVL,
X N\Y,

and the right hand side is under control in all cases. The extra error term §'/2h can
be removed at the end by letting § tend to 0. Since there is essentially no additional

difficulty involved in this process, we will assume for simplicity of exposition that

we do have the required lower bound for B. and the estimates of gél) and gg)

as above. For § = 0, the above estimate provides a solution u.. of the equation
D"u,. = g. = D"F. on X, \ Y, such that

/ (e £ A) e Pls| 2 Vi < 2 / (B gerg2) [s| 7" dVico,
X . N\Y, X.N\Y,

|f|?
<2 T T A7 7 N1 w .
¢ /Y Ve +00)

Here we have
e = log(|s|* +¢?) <log(e™* +¢%) < —2a+ O(¢?) < =2+ O(?),
e =€ —xo(02) < (1+ 0O(e))a?Z,
X6(06>2
Xo (02)
Ne+ A < (44 0())02 < (4+0(€)) (= log(Js]* +£2))°.

Ae = =(1-0)"+(1-0.) <(3+0(e))oz,

As F; is uniformly bounded with support in {|s| < €}, we conclude from an obvious
volume estimate that

/ |F.|? Ve < Const
x. (IsP +e2)7(=log (s> +¢2))2 " " = (loge)?’

Therefore, thanks to the usual inequality [t +wu|? < (1+k)|t|*+ (1 +k71)|u|? applied
to the sum F. . = f. — uc with k = |loge|, we obtain from our previous estimates

Wy < 8er / P
2 v, 147 (ds)P?

/ |Fc,6 2
x.v, ([s]* +¢e2)7(—log(|s[* +€?))

In addition to this, we have d”F,. . = 0 by construction, and this equation extends
from X, \ Y. to X, by Lemma 11.10.

If ¢ = 0, then u. . must be smooth also, and the non integrability of the weight
|s| 72" along Y shows that u, . vanishes on Y, therefore

dVy ,+O(|loge| ™).
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Fooiy =Foy = Fory = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first
as € — 0, and then as ¢ — +o00. The initial assumption that X = {s = A" (ds) = 0}
is empty can be easily removed in two steps: i) the result is true if X is Stein, since
we can always find a complex hypersurface Z in X such that X C Y NZ C Y, and
then apply the extension theorem on the Stein manifold X \ Z, in combination with
Lemma 11.10; ii) the whole procedure still works when X' is nowhere dense in Y (and
possibly nonempty). Indeed local L? extensions E still exist by step i) applied on
small coordinate balls U; ; we then set Foo =) ijj and observe that | D" F..|?|s| 2"
is locally integrable, thanl{s to the estimate ij |E|2|s|_2T(log |s])72dV < 400 and
the fact that | Y d"0; A f;] = O(|s|®) for suitable § > 0 [as follows from Hilbert’s
Nullstensatz applied to J?; — ,]?;C at singular points of Y].

When ¢ > 1, the arguments needed to get a smooth solution involve more
delicate considerations, and we will only sketch the details. The main difficulty lies
in the presence of the weight |s|=2", which creates trouble at points of Y when one
tries to use an elliptic regularity argument (see Remark 8.5). If » = 1, however, the
subvariety Y is a divisor; therefore, when we consider a D" equation with values in
the line bundle A"T% ® L, a L? solution for the weight |s|~2 can be interpreted as a
L? solution with values in the twisted line bundle A"T% ® L ® Ox (=Y, equipped
with a smooth hermitian metric. Hence, if » = 1, the minimal L? solution u.. of
the D" equation considered earlier satisfies the equations

D"u..=g. =D"F,, D"*(|s| *ue.) =0 (minimality condition)
on X. \ Y.. These equations can be rewritten as
D”(s_luc@) = s 'D"F., D”*(s_luc@) =0.

By Lemma 11.10, the latter equalities are valid on X, and not only on X, \ Y.,
for s .. is locally L? and s~1D”F. is locally bounded. From this, we infer that
F. .= F. — u.. satisfies

D//(S_IFC,E) — D//<S_1F€) o 8_1D//F€,
D//*(S—ch’E) — D//*(S_lFE) — D//* (0(8_2|S|2>8_1Foo).

It is easy to show that D"/ (s~ * f:) —s~1D" f is independent of the choice of the smooth
extension f of f (whether f is D"-closed or not is irrelevant), and that it is equal
to the current D" (s~1) A f with support in Y. On the other hand, s~!F, is locally
integrable, hence §(c2|s|?)s ™1 F,, converges weakly to 0 as € — 0. By extracting a
weak limit F.. — F in L2 _((]s|log]s|)™2), we easily see that s7'F.. — s™'F in

the weak topology of distributions, therefore
D//(S—lp) _ D//(S—l) /\}7, D//*(S—lp) -0

in the limit. In particular s™'F is A’”-harmonic on X \ Y, hence F is smooth
on X \ Y. Unfortunately, the above equations do not imply smoothness of the
coefficients of F' all over X, but only Hélder continuity near Y (for any Holder
exponent v < 1). In fact, we can always choose a smooth local extension f such
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that D”f: 0 and V%'s | f=0onY (if the second condition is not satisfied, we
replace f with f — D" (5h), where h is a suitable smooth (n,q — 1)-form on X ; the
values taken by f on Y are then uniquely defined). We find

D"(sM(F = f))=0,  D"™(s'(F~f))=-D"(s"'f),

and the condition V!5 _ f: 0 on Y shows that the singularity of D”*(s_lf) along
Y is at most O(|s|™1). Our equations yield

A//(8_1<F N f)) _ _D//D//*(S—lf),
hence
8_1(F N f) — G4 (D//D//*(S—lf)) _ D//Gn,q—l (D//*(S_lf» mod O

where GP7 is a (local) Green kernel for the A” operator in bidegree (p,q). As the
derivatives of order 1 of G™9~! have singularity |z —y|~ (27—1) along the diagonal and
D" (s _1f) O(|s|™1), we find s 7! (F — f) = O(log |s|) and the Holder continuity of
F — f (hence of F') follows, as well as the fact that Fjy = f y = f. We claim that
F' can be corrected so as to obtain a smooth extension F with |F — F | small and
decaying as rapidly as we wish at infinity; hence F will satisfy the desired global L?
estimate. Indeed, there is a covering of Y by open sets U; in X such that f admits
a smooth D"-closed extension f; on Uj, with the followmg additional properties:
VOls f =0on Y NUj, and s~ (fj fk) is smooth on U; N Uy. Only the latter
property needs to be checked. We show by induction on ¢ > 1 that f; can be chosen
so that

fr = fi = svje + 5 wji
with suitable smooth (n, g)-forms v;;, and wj),. This is true when ¢ = 1, since by
uniqueness fi — f; must vanish on Y N U;. Now, the D”-closedness implies

0=5D"vj +3'D"wjp + 5" D's Awjy,
and an identification of the coefficients of the Taylor expansion in s, s shows that
D’s Nwj, = 0 on Y NU; NUy. This implies
=D's A w(i) + sw(2) + sw](i)
with smooth forms w§i), wﬁ), (3) . The (n,q — 1) form w](.}c) is uniquely defined if
we require the additional condltlon VOls | w§i) = 0. Then (wﬁ)) satisfies the Cech

cocycle condition and we can write w! k) = w(l) — wj(.l) for some 0-cochain (wj(.l)).

We conclude from these relations that f] £+ 1)"tD” (E“’lw](-l)) admits a Cech
1-coboundary

fo—fi— 0+ 1)—1D"(§f+1 N =fo—fi— sﬂpfsAw(k} mod(31)
= s(vjr +3 w( )) mod(3°*1),

hence it satisfies the induction hypothesis at order £+ 1. By arranging the asympotic
expansion up to infinite order, we infer that f; — f; —swv;; is flat along Y, hence that
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s fo — fy) is smooth. Our claim is thus proved. Now, the Green kernel argument
shows that F' can be written as F' = f; + sD"h; on U;, where

h; = G™~YD"™ (s f;))  modC™

is smooth on U; \Y and has its first order derivatives bounded by O(log|s|) near Y.
Furthermore, hj — h; is smooth on U; N Uy. Therefore, if we select sufficiently
good approximations h; x p.,; of h; and a collection of smooth functions (6;) with
Suppf; C U;, 0<6; <1and ) 6; =1near Y, the (n,q)-form

F=F— D“( Ze — Dy * pe, ))

is smooth and satisfies all our requirements.

When r > 1, the above argument can no longer be applied directly; one possi-
bility to overcome this difficulty is to blow-up Y so as to deal again with the case of
a divisor. We may assume that X = () (otherwise, we just replace X, with X, \ X,
which is again complete Kéihler) Instead of working on X, \ Y, as we did earlier,
we work on the blow-up X of X. along Y.. If pu : )? — X, is the blow—up map,
Y = 1 (Y.) the exceptional divisor and 7 a positive constant, we equip X, with
the smooth Kihler metric ©, = p*w + v (id'd” log |s|? + %@(L)) > p*w. Then the
minimal L?(w.) solution u. . - satisfies the equations

D"ue e = prge = D" (W F.),  DI(Is| ™ ueen) =0

on X, \Y., and F. ., = F. — u. . satisfies the L? estimate

[Feey / bis Const
= dVs < 8¢ ————=dVy,
/)?c (57 + %) (“log(32 + e2))2 " Xewn S5 [, [A7(ds) 2" " {loge)?

where 5§ = s o p (one can use monotonicity with respect to metrics and the fact
that wy > p*w to see that the right hand side always admits the w-bound as an
upper bound). We can view X, as a submanifold of the projectivized bundle P(F)

of lines of £, and O (—?c) as the restriction to X, of the tautological line bundle

Op(r)(—1) on P(E). We thus view s as a section of O (—EA/C) (actually, 5'is a gene-

rator of that ideal sheaf). Since [5|72"|u. ~.c|? is locally integrable by construction,
we get
D' o) =5 DR, DU ) =0

on )/(\'c. Passing to the limit as €, 7 tend to 0 and ¢ tends to +o00, we find a (n, ¢)-form
F with L2 . coefficients on X such that

|F|? / £
dVs <8¢ | ————=dVy,
/ 527 (—log [5])2 " X y. [AT(ds)[27 "

and

D//(A T,u*f) B /S\—rD//<M*f) _ D//<§_1) A (é\_(r_l)ﬂ*f)7

3

)

I

) 3>
I
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in the sense of distributions (everywhere on X and not only on X~ 17'), indeed,
thanks to the equality

pHAMTR) = AMTE @ O (—(r - 1)Y,),

we see that u*f vanishes at order r — 1 along Y. If we view F as a (0, ¢)-form
with values in p*(A™T% ® L) rather than as a (n, g)-form on X, we may consider
philosophically that we cancel out a factor 5" 1in the equations. This shows that we
are essentially in the same situation as in the earlier case r = 1, except that D;ﬁw is
computed with respect to a metric p*w which is degenerate along Y. A finer analysis
of the Green kernel of Al , shows that F':= p, F' is smooth on X \'Y, that F' still
has continuous coefficients near Y, and that F}y = f. We then produce the desired
solution by taking a small perturbation of F' as above. The details are rather tedious

and will be left to the reader. ]

(13.7) Remarks.

a) When ¢ = 0, the estimates provided by Theorem 13.6 are independent of the
Kahler metric w. In fact, if f and F' are holomorphic sections of A"T% ® L over Y
(resp. X), viewed as (n,0)-forms with values in L, we can “divide” f by A"(ds) €
A"(TX/TY)* @ det E to get a section f/A"(ds) of APTy ® L @ (det E)~1 over Y.
We then find )

|F|?dVx,., =i" {F, F},

L — »? "(ds "(ds
|Ar(d8)|2dVY,w =i {f/A"(ds), f/A"(ds)},

where {e, ¢} is the canonical bilinear pairing described in (6.3).

b) The hermitian structure on F is not really used in depth. In fact, one only needs
FE to be equipped with a Finsler metric, that is, a smooth complex homogeneous
function of degree 2 on E [or equivalently, a smooth hermitian metric on the tau-
tological bundle Op(g)(—1) of lines of E over the projectivized bundle P(E)]. The
section s of E induces a section [s] of P(E) over X \ s~(0) and a corresponding
section 5 of the pull-back line bundle [s]*Op(g)(—1). A trivial check shows that
Theorem 13.6 as well as its proof extend to the case of a Finsler metric on E, if we
replace everywhere {i6(E)s, s} by {iO([s]*Op(g)(—1))5,5} (especially in hypothe-
sis 13.6 b)). A minor issue is that |A"(ds)| is (a priori) no longer defined, since no
obvious hermitian norm exists on det E/. A posteriori, we have the following ad hoc
definition of a metric on (det E)* which makes the L? estimates work as before: for
x € X and £ € A"E}, we set

iENE

|Z|2r

(

1
€15 = —/ (1+ [2[)%0'(|2*)?
c zeFE,

where |z| is the Finsler norm on FE, [the constant ¢, is there to make the result agree
with the hermitian case; it is not hard to see that this metric does not depend on
the choice of #]. O

We now present a few interesting corollaries. The first one is a surjectivity
theorem for restriction morphisms in Dolbeault cohomology.
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(13.8) Corollary. Let X be a projective algebraic manifold and E a holomor-
phic vector bundle of rank r over X, s a holomorphic section of E which is ev-
erywhere transverse to the zero section, Y = s~1(0), and let L be a holomorphic line
bundle such that F = LY/ ® E* is Griffiths positive (we just mean formally that
1iO(L) @ Idg —iO(E) >quir 0). Then the restriction morphism

HYYX, A"T% @ L) — H>Y(Y, A"T% @ L)

is surjective for every q = 0.

Proof. A short computation gives
D/
id'd" log|s|? = id’(7{818‘28}>

_ i({D’S,D’s} _{D's,; s} A {s, D's} N {s,@(E)s}) 5 {ie(E)s, s}

|52 |s[* |s[? s

thanks to Lagrange’s inequality and the fact that ©(F) is antisymmetric. Hence, if
0 is a small positive constant such that

1
—i@(E) + ;1@([;) RIdg >arit dw ®Idg > 0,

we find
iO(L) +ridd log|s|> > réw.

The compactness of X implies iO(F) < Cw ® Idg for some C' > 0. Theorem 13.6
can thus be applied with a = 7§/C and Corollary 13.8 follows. By remark 13.7 b),
the above surjectivity property even holds if L'/" @ E* is just assumed to be ample

(in the sense that the associated line bundle 7*L'/" ® Op(g)(1) is positive on the
projectivized bundle 7w : P(E) — X of lines of E). O

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains {2 € C". Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(13.9) Corollary. Let 2 C C™ be a bounded pseudoconver domain, and let Y C X
be a monsingular complexr submanifold defined by a section s of some hermitian
vector bundle E with bounded curvature tensor on (2. Assume that s is everywhere
transverse to the zero section and that |s| < e™! on 2. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function
© on §2, every holomorphic function f on'Y with [, |f|?|A"(ds)|"2e?dVy < 400,
there exists an extension F' of f to {2 such that

FP / |f|2 -
dVo < C e ?dVs .
AR Tapt W

Proof. We apply essentially the same idea as for the previous corollary, in the Specigml
case when L = 2xC is the trivial bundle equipped with a weight function e~ 412",
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The choice of a sufficiently large constant A > 0 guarantees that the curvature
assumption 13.6 a) is satisfied (A just depends on the presupposed bound for the
curvature tensor of F). U

(13.10) Remark. The special case when Y = {zp} is a point is especially inter-
esting. In that case, we just take s(z) = (ediam 2)71(z — z), viewed as a section
of the rank r = n trivial vector bundle 2 x C" with |s| < e™!. We take a = 1 and
replace |s|"(—log|s|)? in the denominator by |s|2("~¢) using the inequality

1 1
—log |s| = glog|s|_5 < g|s|_5, Ve > 0.

For any given value fj, we then find a holomorphic function f such that f(zo) = fo

and
FAC)] S—— Ch 2 -
Z) dV/. < @(ZO)‘
/Q |z — 2o|2(n—) ‘ “ e2(diam £2)2(n—¢) [fole

14. Approximation of psh functions by logarithms of
holomorphic functions

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that
every psh function on a pseudoconvex open set 2 C C" can be approximated very
accurately by functions of the form clog|f|, where ¢ > 0 and f is a holomorphic
function. The main idea is taken from (Demailly 1992). For other applications to
algebraic geometry, see (Demailly 1993b) and (Demailly-Kollar 1996). Recall that
the Lelong number of a function ¢ € Psh({2) at a point z is defined to be

! su xo,T
z—xq lOg ‘Z — .CC()‘ 7‘—>OJr logr

In particular, if ¢ = log|f| with f € O(£2), then v(p, z) is equal to the vanishing
order ord,,(f) = sup{k € N; D“f(z¢) =0, V|a| < k}.

(14.1) Theorem. Let ¢ be a plurisubharmonic function on a bounded pseudoconvez
open set {2 C C™. For every m > 0, let Ho(my) be the Hilbert space of holomorphic
functions f on 2 such that [,|f|?e>"?d\ < +oo and let p,, = 5-log Y |oy|?
where (o¢) is an orthonormal basis of Ho(mp). Then there are constants Cq,Cy > 0
independent of m such that

C 1
2 p(2) = <on(@) < swp p(O)+ o
—z|<r

for every z € 2 and r < d(z,012). In particular, ¢,, converges to ¢ pointwise
and in Li . topology on 2 when m — +oo and

e

b) v(p,2)— % < v(om,2) < v(p,z) for every z € (2.
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Proof. Note that > |o¢(2)|? is the square of the norm of the evaluation linear form
f— f(z) on Ho(myp). As ¢ is locally bounded above, the L? topology is actually
stronger than the topology of uniform convergence on compact subsets of (2. It
follows that the series > |oy|? converges uniformly on {2 and that its sum is real
analytic. Moreover we have

1
©m(z) = sup —log|f(2)|
feB(1) m

where B(1) is the unit ball of Hg,(mep). For r < d(z,012), the mean value inequality
applied to the psh function |f|? implies

1
w2 /n)
1

= gnp2n /n)

7P < IR

exp (Qm sup gp(())/g\f\Qe_Qm‘pd)\.

[C—z|<r

If we take the supremum over all f € B(1) we get

1 1
< —log ————
om(z) < ‘Cilill)q‘P(O + om 0g 20 /)]

and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi ex-
tension theorem (estimate 13.10) applied to the 0-dimensional subvariety {z} C {2
shows that for any a € C there is a holomorphic function f on 2 such that f(z) =a
and

/ |f|26—2mcpd/\ < C«3|a|26—2mc,o(z)7
0

where C3 only depends on n and diam {2. We fix a such that the right hand side
is 1. This gives the other inequality

_log Gy

1
ful2) > loga] = (2) — B0

The above inequality implies v(p,, 2) < v(p, 2). In the opposite direction, we find

1 Cs
sup  om(z) < sup  @(¢) + —log —.
|lz—z|<r |¢—z|<2r m r

Divide by logr and take the limit as r tends to 0. The quotient by logr of the
supremum of a psh function over B(z,r) tends to the Lelong number at z. Thus we

obtain
n

V(om, ) > V(o 7) = - =

Theorem 14.1 implies in a straighforward manner a deep result of (Siu 1974)
on the analyticity of the Lelong number sublevel sets.

(14.2) Corollary. Let ¢ be a plurisubharmonic function on a complex manifold X .
Then, for every ¢ > 0, the Lelong number sublevel set
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E.(p) = {z € X;vipz) = c}

s an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ¢ on a pseudoconvex open set {2 C C". The inequalities obtained in
14.1 b) imply that

Ec(p) = ﬂ EC—”/m(SOm)'

m>=mo

Now, it is clear that E.(¢,,) is the analytic set defined by the equations aéa)(z) =0

for all multi-indices « such that |a| < me. Thus E.(p) is analytic as a (countable)
intersection of analytic sets. U

15. Nadel vanishing theorem

In this final section, we prove a vanishing theorem due to (Nadel 1989), which
has found recently many deep and important applications in complex differential
geometry and in algebraic geometry. It contains as a special case the well-known
Kawamata-Viehweg vanishing theorem (Kawamata 1982, Viehweg 1982), which can
be seen as an algebraic version of the general vanishing theorem [here, the reader is
assumed to have some knowledge of sheaf theory, namely coherent analytic sheaves,
sheaf cohomology, etc]. We first introduce the concept of multiplier ideal sheaf,
following (Nadel 1989). The main idea actually goes back to the fundamental works
of (Bombieri 1970) and (Skoda 1972a).

(15.1) Definition. Let ¢ be a psh function on an open subset 2 C X ; to ¢ is
associated the ideal subsheaf (@) C Ogq of germs of holomorphic functions f € Og
such that | f|?e=2% is integrable with respect to the Lebesque measure in some local
coordinates near x.

The zero variety V(Z(¢p)) is thus the set of points in a neighborhood of which
e~ 2% is non integrable. Of course, such points occur only if ¢ has logarithmic poles.
This is made precise as follows.

(15.2) Definition. A psh function ¢ is said to have a logarithmic pole of coefficient
~v at a point x € X if the Lelong number

v(p, ) := liminf vl
z—z log|z — x|

is non zero and if v(p,x) = 7.

(15.3) Lemma (Skoda 1972a). Let ¢ be a psh function on an open set {2 and let
x € (2.

a) If v(p,x) < 1, then e=2¢ is integrable in a neighborhood of x, in particular
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b) If v(p,x) = n+ s for some integer s > 0, then e™2? > Clz — z|72"72% in a

neighborhood of x and I(p), C m?;ml, where Mg 4 is the mazimal ideal of O .

c) The zero variety V(Z(p)) of Z(p) satisfies

En(p) CV(Z(v) C Er(p)
where E.(p) = {z € X;v(p,x) > c} is the c-sublevel set of Lelong numbers
of .

Proof. a) We use the following well-known facts about Lelong numbers, see (Lelong
1968) or (Demailly 1993a): set d° = 5-(d' — d"), so that dd® = 1d'd”, and put
O = dd°yp; we then have the equality

1 c n— c n—
/O.5r) = mpzs [ @Y = [ on ol —al)

it follows from the last integral that v(©, x, r) is an increasing function of r ; the limit
v(0,r) = lim,_o, (O, x,7) is equal to v(p, ). Now, let x be a cut-off function
will support in a small ball B(z, ), equal to 1 in B(x,r/2). As (dd®log|z|)"™ = do,
we get

o(z) = /B L XOpOE0g]¢ =)

- /B | ATOAQR(Q) N og] ¢ — =I(d g =1

for z € B(z,r/2). Expanding dd°(xy) and observing that dy = dd°x = 0 on
B(z,7/2), we find

#2)= [ X Alog]C —=[(dlog ¢ — ="~ + smooth terms
on B(z,r/2). Fix r so small that
[, MO8 A (@ o] —2l)" ! <v(©,2,7) < 1
By continuity, thelje exists 0, > 0 such that
1= [ X A @ loglc —20) ! <10

for all z € B(x,¢). Applying Jensen’s convexity inequality to the probability measure

dp1:(0) = I(2)"X(C)O(C) A (dd° log ¢ — =)™,
we find
—p(z) = / I(2)log|¢ — 2| dua(C) + O(1)  —>
B(z,r)

e ) <o ¢ — 2721 dp.(¢).
B(z,r)
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dp=(C) < C1[¢ — 2|72 O(Q) A (dd°I¢1P)" ™ = Cal¢ — 2|~ doe (),

we get

6—290(z) < 03/ |€ . Z|—2(1—6)—(2n—2)d0_@(€),
B(x,r)

and the Fubini theorem implies that e=2#(#) is integrable on a neighborhood of z.

b) If v(p, ) = 7, the convexity properties of psh functions, namely, the convexity
of logr + sup|,_,—, ¢(2) implies that

¢(z) < vloglz —z|/ro + M,

where M is the supremum on B(z,ry). Hence there exists a constant C' > 0 such
that e=2#(*) > C|z — 2|~%7 in a neighborhood of x. The desired result follows from
the identity

(03 2 T0
/ 7} Z%Q‘Z ’ dVv(z) = Const/ (Z |aa|2r2|"‘|)r2”_1_2V dr,
BOr)  |2[*7 0

which is an easy consequence of Parseval’s formula. In fact, if v has integral part
[7] = n + s, the integral converges if and only if a, = 0 for |a| < s.

c) is just a simple formal consequence of a) and b). O

(15.4) Proposition (Nadel 1989). For any psh function ¢ on 2 C X, the sheaf
Z(p) is a coherent sheaf of ideals over (2.

Proof. Since the result is local, we may assume that (2 is the unit ball in C". Let E
be the set of all holomorphic functions f on §2 such that [, |f|*¢™*# d\ < +oo. By
the strong noetherian property of coherent sheaves, the set F generates a coherent
ideal sheaf J C Og. It is clear that J C Z(y); in order to prove the equality, we
need only check that J, +Z(¢), N m‘;;'wl = Z(p), for every integer s, in view of the
Krull lemma. Let f € Z(¢), be defined in a neighborhood V' of x and let 6 be a
cut-off function with support in V' such that § = 1 in a neighborhood of x. We solve
the equation d’u = g := d”(6f) by means of Hérmander’s L? estimates 8.9, where
FE is the trivial line bundle {2 x C equipped with the strictly psh weight

P(2) = (2) + (n+ s)log |z — x| + |2*.

We get a solution u such that [, [u|?e™2?|z — 2| 72" T*)d\ < 0o, thus F = 0f —u is
holomorphic, F' € F and f, — F, = u, € Z(¢) N m‘;;:; . This proves our contention.
O

The multiplier ideal sheaves satisfy the following basic fonctoriality property
with respect to direct images of sheaves by modifications.

(15.5) Proposition. Let p : X' — X be a modification of non singular complex
manifolds (i.e. a proper generically 1:1 holomorphic map), and let ¢ be a psh func-
tion on X. Then
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115 (O(Kxr) @ I(p o p)) = O(Kx) @ Z(g).

Proof. Let n = dim X = dim X’ and let S C X be an analytic set such that
i X'S" — X ~ S is a biholomorphism. By definition of multiplier ideal sheaves,
O(Kx) ®Z(p) is just the sheaf of holomorphic n-forms f on open sets U C X such
that i”zf Afe 2% ¢ Llloc(U). Since ¢ is locally bounded from above, we may even
consider forms f which are a priori defined only on U ~\ S, because f will be in
L2 _(U) and therefore will automatically extend through S. The change of variable
formula yields

icangere= [ wtus iz,
U p=H(U)

hence f € I'(U,O(Kx) ® Z(yp)) if and only if p*f € I'(u=1(U), O(Kx:) @ Z(pou)).
Proposition 15.5 is proved. O

(15.6) Remark. If ¢ has “analytic singularities” the computation of Z(y) can be
reduced to a purely algebraic problem.

The first observation is that Z(¢) can be computed easily if ¢ has the form ¢ =
> ajloglg;| where D; = gj_l(()) are nonsingular irreducible divisors with normal
crossings. Then Z(¢p) is the sheaf of functions h on open sets U C X such that

/ B T lg;1 2% dV < +oc.
U

Since locally the g; can be taken to be coordinate functions from a local coordinate
system (z1, ..., z,), the condition is that h is divisible by [] g;-nj where m; —a; > —1
for each j, i.e. m; > |a;] (integer part). Hence

I(p) = O(=|D]) = O(= ) _|ay;] D;)

where | D] denotes the integral part of the Q-divisor D =) «a;D;.

Now, consider the general case of analytic singularities, i.e., the case of a psh
function such that

o= log (LA +--+1fn]?) +0(1)

near the poles. Let J be the (coherent) integrally closed ideal sheaf of holomorphic
functions h such that |h| < Cexp(p/a). In this case, the computation is made as
follows. First, one computes a smooth modification y : X — X of X such that w g
is an invertible sheaf O(—D) associated with a normal crossing divisor D = ) A\; D;,
where (D;) are the components of the exceptional divisor of X (take the blow-up
X’ of X with respect to the ideal J so that the pull-back of J to X’ becomes
an invertible sheaf O(—D’), then blow up again by the Hironaka desingularization
theorem (Hironaka 1964) to make X’ smooth and D’ have normal crossings). Now,
we have K¢ = p*Kx + R where R = ) p;D; is the zero divisor of the Jacobian
function J, of the blow-up map. By the direct image formula 15.5, we get

I(p) = ux (O(K g = ' Kx) @ Z(p o ) = pix (O(R) @ (g © ).
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Now, (f; o p) are generators of the ideal O(—D), hence

pop~ay Aloglg

where g; are local generators of O(—D;). We are thus reduced to computing multi-
plier ideal sheaves in the case where the poles are given by a Q-divisor with normal

crossings ) aA;D;. We obtain Z(p o u) = O(—>_|aA;|D;), hence

Z(p) = 105 (D _(pj — LaX;])D;). U

(15.7) Exercise. Compute the multiplier ideal sheaf Z(y) associated with ¢ =
log(|z1|** + ...+ |2p|“r) for arbitrary real numbers a; > 0.

Hint: using Parseval’s formula and polar coordinates z; = rjewf, show that the
problem is equivalent to determining for which p-tuples (51, ..., p) € NP the inte-
gral

/ r?ﬁl .. .riﬁp ridry...rpdr, / tﬁﬁl“)/o‘l .. .téﬁpﬂ)/a” dty dt,
[0,1]P [0,1]P tl + ...+ tp tl o tp

2 2«
rit ety T

is convergent. Conclude from this that Z(¢) is generated by the monomials 27" ... zg P
such that ) (8, + 1)/a, > 1. (This exercise shows that the analytic definition of
Z(p) is sometimes also quite convenient for computations). O

Let F be a line bundle over X with a singular metric A of curvature current
O, (F). If e72¢ is the weight representing the metric in an open set £2 C X, the ideal
sheaf Z () is independent of the choice of the trivialization and so it is the restriction
to 2 of a global coherent sheaf Z(h) on X. We will sometimes still write Z(h) = Z(¢p)
by abuse of notation. In this context, we have the following fundamental vanishing
theorem, which is probably one of the most central results of analytic and algebraic
geometry (especially, it contains the Kawamata-Viehweg vanishing theorem as a
special case).

(15.8) Nadel vanishing theorem (Nadel 1989, Demailly 1993b). Let (X,w) be
a Kdahler weakly pseudoconvex manifold, and let L be a holomorphic line bundle
over X equipped with a singular hermitian metric h of weight e=2¢. Assume that
i01,(L) > ew for some continuous positive function € on X. Then

HY(X,0(Kx ® L)®Z(h)) =0 for all g > 1.

Proof. Let L7 be the sheaf of germs of (n, ¢)-forms u with values in L and with mea-
surable coefficients, such that both |u|?e™2¢ and |d"u|?e™2¢ are locally integrable.
The d” operator defines a complex of sheaves (£®,d”) which is a resolution of the
sheaf O(Kx ® L) ® I(¢p): indeed, the kernel of d” in degree 0 consists of all germs
of holomorphic n-forms with values in L which satisfy the integrability condition;
hence the coefficient function lies in Z(¢); the exactness in degree g > 1 follows from
Corollary 8.9 applied on arbitrary small balls. Each sheaf £? is a C°*°-module, so L*
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is a resolution by acyclic sheaves. Let 1 be a smooth psh exhaustion function on X.
Let us apply Corollary 8.9 globally on X, with the original metric of L multiplied
by the factor e~X°¥ where  is a convex increasing function of arbitrary fast growth
at infinity. This factor can be used to ensure the convergence of integrals at infin-
ity. By Corollary 8.9, we conclude that H¢Y (F(X, /3‘)) = 0 for ¢ > 1. The theorem
follows. U

(15.9) Corollary. Let (X,w), L and ¢ be as in Theorem 15.8 and let x1,...,zN
be isolated points in the zero variety V(Z(p)). Then there is a surjective map

HO(X,Kx ® L) —» @ O(Kx ® L)s, ® (0x/Z(¢)),

J

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 — Z(p) — Ox — Ox/Z(p) — 0 twisted by O(Kx ® L), and apply
Theorem 15.8 to obtain the vanishing of the first H' group. The asserted surjectivity
property follows. O

(15.10) Corollary. Let (X,w), L and ¢ be as in Theorem 15.8 and suppose that
the weight function ¢ is such that v(p,z) > n+ s at some point x € X which is an
isolated point of E1(p). Then H°(X, Kx ® L) generates all s-jets at x.

Proof. The assumption is that v(p,y) < 1 for y near x, y # x. By Skoda’s lemma
15.3 b), we conclude that e 2% is integrable at all such points y, hence Z(p), = Ox 4,
whilst Z(¢), C m?'l by 15.3 a). Corollary 15.10 is thus a special case of 15.9. [

The philosophy of these results (which can be seen as generalizations of the
Hormander-Bombieri-Skoda theorem (Bombieri 1970), (Skoda 1972a, 1975) is that
the problem of constructing holomorphic sections of Kx ® L can be solved by con-
structing suitable hermitian metrics on L such that the weight ¢ has isolated poles
at given points ;.

(15.11) Exercise. Assume that X is compact and that L is a positive line bundle
on X. Let {z1,...,zn} be a finite set. Show that there are constants a,b > 0
depending only on L and N such that H°(X, L®™) generates jets of any order s at
all points x; for m > as + b.

Hint: Apply Corollary 15.9 to L' = K)_(l ® L®™, with a singular metric on L of
the form h = hge ¥, where hg is smooth of positive curvature, ¢ > 0 small and
Y (2) ~log |z — x| in a neighborhood of ;.

Recall that a line bundle L is said to be very ample if the sections of H(X, L)
generate any pair of L, @ L, for distinct points  # y in X, as well as 1-jets of L
at any point x € X. The line bundle L is said to be ample if some positive multiple
L®™ is very ample. Then derive the Kodaira embedding theorem:

(15.12) Theorem (Kodaira 1954). If L is a line bundle on a compact complex
manifold, then L is ample if and only if L is positive.
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