
L2 estimates for the ∂-operator

on complex manifolds

Jean-Pierre Demailly
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Abstract. The main goal of these notes is to describe a powerful differential geometric method
which yields precise existence theorems for solutions of equations ∂u = v on (pseudoconvex)
complex manifolds. The main idea is to combine Hilbert space techniques with a geometric identity
known as the Bochner-Kodaira-Nakano identity. The BKN identity relates the complex Laplace

operators ∆′ and ∆′′ associated to ∂ and ∂ with a suitable curvature tensor. The curvature tensor
reflects the convexity properties of the manifold, from the viewpoint of complex geometry. In this
way, under suitable convexity assumptions, one is able to derive existence theorems for holomorphic
functions subject to certain constraints (in the form of L2 estimates). The central ideas go back
to Kodaira and Nakano (1954) in the case of compact manifolds, and to Androtti-Vesentini and
Hörmander (1965) in the case of open manifolds with plurisubharmonic weights. Hörmander’s
estimates can be used for instance to give a quick solution of the Levi problem. They have many
other important applications to complex analysis, complex geometry, local algebra and algebraic
geometry . . . Important variants of these estimates have been developped in the last two decades.
The first ones are the L2 estimates of Skoda (1972, 1978), which deal with the problem of solving
“Bezout identities”

∑
fjgj = h when gj and h are given holomorphic functions and the fj ’s are

the unknowns. The last ones are the L2 estimates of Ohsawa-Takegoshi (1987), which concern
the problem of extending a holomorphic function given on a submanifold Y ⊂ X to the whole
manifold X. Our task will be to explain the main techniques leading to all three types of L2-
estimates (Hörmander, Skoda, Ohsawa-Takegoshi), and to present a few applications.
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2 L2 estimates for the ∂-operator on complex manifolds

1. Non bounded operators on Hilbert spaces

A few preliminary results of functional analysis are needed. Let H1, H2 be complex
Hilbert spaces. We consider a linear operator T defined on a subspace DomT ⊂ H1

(called the domain of T ) into H2. The operator T is said to be densely defined if
DomT is dense in H1, and closed if its graph

GrT =
{
(x, Tx) ; x ∈ DomT

}

is closed in H1 ×H2.

Assume now that T is closed and densely defined. The adjoint T ⋆ of T (in Von
Neumann’s sense) is constructed as follows: DomT ⋆ is the set of y ∈ H2 such that
the linear form

DomT ∋ x 7−→ 〈Tx, y〉2
is bounded in H1-norm. Since DomT is dense, there exists for every y in DomT ⋆

a unique element T ⋆y ∈ H1 such that 〈Tx, y〉2 = 〈x, T ⋆y〉1 for all x ∈ DomT ⋆. It

is immediate to verify that GrT ⋆ =
(
Gr(−T )

)⊥
in H1 × H2. It follows that T ⋆ is

closed and that every pair (u, v) ∈ H1 ×H2 can be written

(u, v) = (x,−Tx) + (T ⋆y, y), x ∈ DomT, y ∈ DomT ⋆.

Take in particular u = 0. Then

x+ T ⋆y = 0, v = y − Tx = y + TT ⋆y, 〈v, y〉2 = ‖y‖2
2 + ‖T ⋆y‖2

1.

If v ∈ (DomT ⋆)⊥ we get 〈v, y〉2 = 0, thus y = 0 and v = 0. This implies
(DomT ⋆)⊥ = 0, hence T ⋆ is densely defined and our discussion yields

(1.1) Theorem (Von Neumann 1933). If T : H1 −→ H2 is a closed and densely
defined operator, its adjoint T ⋆ is also closed and densely defined and (T ⋆)⋆ = T .
Furthermore, we have the relation Ker T ⋆ = (ImT )⊥ and its dual (KerT )⊥ = ImT ⋆.

�

Consider now two closed and densely defined operators T , S :

H1
T−→ H2

S−→ H3

such that S ◦ T = 0. By this, we mean that the range T (DomT ) is contained in
KerS ⊂ DomS, in such a way that there is no problem for defining the composition
S ◦ T . The starting point of all L2 estimates is the following abstract existence
theorem.

(1.2) Theorem. There are orthogonal decompositions

H2 = (KerS ∩ KerT ⋆) ⊕ ImT ⊕ ImS⋆,

KerS = (KerS ∩ KerT ⋆) ⊕ ImT .

In order that ImT = KerS, it suffices that
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(1.3) ‖T ⋆x‖2
1 + ‖Sx‖2

3 > C‖x‖2
2, ∀x ∈ DomS ∩ DomT ⋆

for some constant C > 0. In that case, for every v ∈ H2 such that Sv = 0, there
exists u ∈ H1 such that Tu = v and

‖u‖2
1 6

1

C
‖v‖2

2.

In particular

ImT = ImT = KerS, ImS⋆ = ImS⋆ = KerT ⋆.

Proof. Since S is closed, the kernel KerS is closed in H2. The relation (KerS)⊥ =
ImS⋆ implies

(1.4) H2 = KerS ⊕ ImS⋆

and similarly H2 = Ker T ⋆ ⊕ ImT . However, the assumption S ◦ T = 0 shows that
ImT ⊂ KerS, therefore

(1.5) KerS = (KerS ∩ KerT ⋆) ⊕ ImT .

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4)
and (1.5).

Now, under assumption (1.3), we are going to show that the equation Tu = v
is always solvable if Sv = 0. Let x ∈ DomT ⋆. One can write

x = x′ + x′′ where x′ ∈ KerS and x′′ ∈ (KerS)⊥ ⊂ (ImT )⊥ = Ker T ⋆.

Since x, x′′ ∈ DomT ⋆, we have also x′ ∈ DomT ⋆. We get

〈v, x〉2 = 〈v, x′〉2 + 〈v, x′′〉2 = 〈v, x′〉2
because v ∈ KerS and x′′ ∈ (KerS)⊥. As Sx′ = 0 and T ⋆x′′ = 0, the Cauchy-
Schwarz inequality combined with (1.3) implies

|〈v, x〉2|2 6 ‖v‖2
2 ‖x′‖2

2 6
1

C
‖v‖2

2 ‖T ⋆x′‖2
1 =

1

C
‖v‖2

2 ‖T ⋆x‖2
1.

This shows that the linear form T ⋆X ∋ x 7−→ 〈x, v〉2 is continuous on ImT ⋆ ⊂ H1

with norm 6 C−1/2‖v‖2. By the Hahn-Banach theorem, this form can be extended
to a continuous linear form on H1 of norm 6 C−1/2‖v‖2, i.e. we can find u ∈ H1

such that ‖u‖1 6 C−1/2‖v‖2 and

〈x, v〉2 = 〈T ⋆x, u〉1, ∀x ∈ DomT ⋆.

This means that u ∈ Dom(T ⋆)⋆ = DomT and v = Tu. We have thus shown that
ImT = KerS, in particular ImT is closed. The dual equality ImS⋆ = KerT ⋆ follows
by considering the dual pair (S⋆, T ⋆). �
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2. Basic concepts of complex analysis in several variables

For more details on the concepts introduced here, we refer to Thierry Bouche’s
lecture notes. Let X be a n-dimensional complex manifold and let (z1, . . . , zn) be
holomorphic local coordinates on some open set Ω ⊂ X (we usually think of Ω as
being just an open set in Cn). We write zj = xj + iyj and

(2.1) dzj = dxj + idyj, dzj = dxj − idyj.

(Complex) differential forms over X can be defined to be linear combinations

∑
cα1...αℓ,β1...βm

dxα1
∧ · · · ∧ dxαℓ

∧ dyβ1
∧ · · · ∧ dyβm

with complex coefficients. Since dxj = 1
2
(dzj +dzj) and dyj = 1

2i
(dzj −dzj), we can

rearrange the wedge products as products in the complex linear forms dzj (such that
dzj(ξ) = ξj) and the conjugate linear forms dzj (such that dzj(ξ) = ξj). A (p, q)-
form is a differential form of total degree p+ q with complex coefficients, which can
be written as

(2.2) u(z) =
∑

|I|=p, |J|=q

uIJ (z) dzI ∧ dzJ ,

where I = (i1, . . . , ip) and J = (j1, . . . , jq) are multiindices (arranged in increasing
order) and

dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dzj1 ∧ · · · ∧ dzjq .
The vector bundle of complex valued (p, q)-forms over X will be denoted by Λp,qT ⋆X .
In this setting, the differential of a C1 function f can be expressed as

df =
∑

16j6n

∂f

∂xj
dxj +

∂f

∂yj
dyj =

∑

16j6n

∂f

∂zj
dzj +

∂f

∂zj
dzj

where
∂f

∂zj
=

1

2

( ∂f

∂xj
− i

∂f

∂yj

)
,

∂f

∂zj
=

1

2

( ∂f

∂xj
+ i

∂f

∂yj

)
.

We thus get df = d′f + d′′f (or df = ∂f + ∂f in British-American style), where

d′f =
∑

16j6n

∂f

∂zj
dzj , resp. d′′f =

∑

16j6n

∂f

∂zj
dzj

is C-linear (resp. conjugate C-linear). We say that f is holomorphic if df is C-linear,
or, in an equivalent way, if d′′f = 0 (Cauchy-Riemann equation). More generally,
the exterior derivative du of the (p, q)-form u is

du =
∑

|I|=p, |J|=q, 16k6n

(∂uIJ
∂zk

dzk +
∂uIJ
∂zk

dzk

)
dzI ∧ dzJ .

We may therefore write du = d′u + d′′u with uniquely defined forms d′u of type
(p+ 1, q) and d′′u of type (p, q + 1), such that
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d′u =
∑

|I|=p, |J|=q, 16k6n

∂uIJ
∂zk

dzk ∧ dzI ∧ dzJ ,(2.3′)

d′′u =
∑

|I|=p, |J|=q, 16k6n

∂uIJ
∂zk

dzk ∧ dzI ∧ dzJ .(2.3′′)

The operators d′′ = ∂ can be viewed as linear differential operators acting on the
bundles of complex (p, q)-forms (see § 4). As

0 = d2 = (d′ + d′′)2 = d′2 + (d′d′′ + d′′d′) + d′′2

where each of the three components are of different types, we get the identities

(2.4) d′2 = 0, d′′2 = 0, d′d′′ + d′′d′ = 0.

Moreover, d′ and d′′ are conjugate, i.e., d′u = d′′u for any (p, q)-form u on X . A
basic result is the so-called Dolbeault-Grothendieck lemma, which is the complex
analogue of the Poincaré lemma.

(2.5) Dolbeault-Grothendieck lemma. Let v =
∑

|J|=q vJdzJ , q > 1, be a

smooth form of bidegree (0, q) on a polydisk Ω = D(0, R) = D(0, R1)×· · ·×D(0, Rn)
in Cn. Then there is a smooth (0, q − 1)-form u on Ω such that d′′u = v on Ω.

Proof. We first show that a solution u exists on any smaller polydisk D(0, r) ⋐ Ω,
rj < Rj. Let k be the smallest integer such that the monomials dzJ appearing in v
only involve dz1, . . ., dzk. We prove by induction on k that the equation d′′u = v
can be solved on the polydisk D(0, r). If k = 0, then v = 0 and there is nothing
to prove, whilst k = n is the desired result. Now, assume that the result has been
settled for k − 1, that v only involves dz1, . . . , dzk, and set

v = dzk ∧ f + g, f =
∑

|J|=q−1

fJdzJ , g =
∑

|J|=q

gJdzJ

where f , g only involve dz1, . . ., dzk−1. The assumption d′′v = 0 implies

d′′v = −dzk ∧ d′′f + d′′g = 0

where dzk ∧ d′′f involves terms ∂fJ/∂zℓ dzk ∧ dzℓ ∧ dzJ , ℓ > k, and d′′g can only
involve one factor dzℓ with an index ℓ > k. From this we conclude that ∂fJ/∂zℓ = 0
for ℓ > k. Hence the coefficients fJ are holomorphic in zk+1, . . . , zn. Now, let us
consider the (0, q − 1)-form

F =
∑

|J|=q−1

FJdzJ , FJ(z) =
(
ψ(zk)fJ(z)

)
⋆k

( 1

πzk

)
,

where ψ(zk) is a cut-off function with support in D(0, Rk), equal to 1 on some disk
D(0, r′k), r

′
k ∈ ]rk, Rk[, and ⋆k denotes a partial convolution with respect to zk. In

other words,
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FJ (z) =

∫

w∈D(0,Rj)

ψ(w)fJ(z1, . . . , zk−1, w, zk+1, . . . , zn)
1

π(zk − w)
dλ(w).

=

∫

w∈C

ψ(zk − w)fJ(z1, . . . , zk−1, zk − w, zk+1, . . . , zn)
1

πw
dλ(w).

It follows from differentiation under integral sign that FJ is a smooth function on Ω
which is holomorphic in all variables zk+1, . . . , zn. Moreover, as 1

πz is a fundamental

solution of ∂
∂z in C (that is, ∂

∂z (
1
πz ) = δ0), we see that

∂

∂zk
FJ (z) = ψ(zk)fJ(z1, . . . , zk−1, zk, zk+1, . . . , zn),

in particular ∂
∂zk

FJ = fJ on some polydisk D(0, r′), r′j ∈ ]rj , Rj[. Therefore

d′′F =
∑

|J|=q−1, 16ℓ6k

∂fJ
∂zℓ

dzℓ ∧ dzJ = dzk ∧ f + g1

where g1 is a (0, q) form which only involves dz1, . . . , dzk−1. Hence

v1 := v − d′′F = (dzk ∧ f + g) − (dzk ∧ f + g1) = g − g1

only involves dz1, . . . , dzk−1. As v1 is again a d′′-closed form, the induction hypothe-
sis applied on D(0, r′) shows that we can find a smooth (0, q−1)-form u1 on D(0, r)
such that d′′u1 = v1. Therefore v = d′′(F + u1) on D(0, r), and we have thus found
a solution u = F + u1 on D(0, r) ⋐ Ω.

To conclude the proof, we now show by induction on q that one can find a
solution u defined on all of Ω = D(0, R). Set Rν = (R1 − 2−ν , . . . , Rn − 2−ν). By
what we have proved above, there exists a smooth solution uν ∈ D(0, R(ν)) of the
equation d′′uν = v. Now, if q = 1, we get d′′(uν+1 − uν) = 0 on D(0, R(ν)), i.e.,
uν+1 −uν is holomorphic on D(0, R(ν)). By looking at its Taylor expansion at 0, we
get a polynomial Pν (equal to the sum of all terms in the Taylor expansion up to
a certain degree) such that |uν+1 − uν − Pν | 6 2−ν on D(0, R(ν−1)) ⋐ D(0, R(ν)).
If we set ũν = uν + P1 + · · · + Pν−1, then ũν is a uniform Cauchy sequence on
every compact subset of D(0, R). Since ũν+1 − ũν is holomorphic on D(0, R(ν)), we
conclude that the limit u is smooth and satisfies d′′u = d′′uν = v on D(0, R(ν))
for every ν, QED. Now, if q > 2, the difference uν+1 − uν is d′′-closed of degree
q− 1 > 1 on D(0, R(ν)). Hence, by the induction hypothesis, we can find a (0, q− 2)
form wν on D(0, R(ν)) such that uν+1−uν = d′′wν . If we replace inductively uν+1 by
uν+1 − d′′(ψνwν) where ψν is a cut-off function with support in D(0, R(ν)) equal to
1 on D(0, R(ν−1)), we see that we take arrange the sequence so that uν+1 coincides
with uν on D(0, R(ν−1)). Hence we get a stationary sequence converging towards a
limit u such that d′′u = v. �

We now introduce the concept of cohomology group. A differential complex
is a graded module K• =

⊕
q∈Z

Kq over some (commutative) ring R, together
with a differential d : K• → K• of degree 1, that is, a R-linear map such that
d = dq : Kq → Kq+1 on Kq and d2 = 0 (i.e., dq+1 ◦ dq = 0 for every q). One defines
the cocycle and coboundary modules to be
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Zq(K•) = Ker(dq : Kq → Kq+1),(2.6Z)

Bq(K•) = Im(dq−1 : Kq−1 → Kq).(2.6B)

The assumption d2 = 0 immediately shows that Bq(K•) ⊂ Zq(K•), and one defines
the q-th cohomology group of K• to be

(2.7) Hq(K•) = Zq(K•)/Bq(K•).

A basic example is the De Rham complex Kq = C∞(X,ΛqT ⋆X) together with the
exterior derivative d, defined whenever X is a smooth differentiable manifold. Its
cohomology groups are denoted Hq

DR(X,R) (resp. Hq
DR(X,C) in the case of complex

valued forms) and are called the De Rham cohomology groups of X . Here, we will
be rather concerned with the complex case. If X is a complex n-dimensional man-
ifold, we consider for each integer p fixed the Dolbeault complex (Kp,•, d′′) defined
by Kp,q = C∞(X,Λp,qT ⋆X) together with the d′′-exterior differential; its cohomology
groups Hp,q(X) are called the Dolbeault cohomology groups of X . More generally,
let us consider a holomorphic vector bundle E → X . This means that we have a
collection of trivializations E↾Uj

≃ Uj×Cr, r = rankE, such that the transition ma-
trices gjk(z) are holomorphic. We consider the complex Kp,q

E = C∞(X,Λp,qT ⋆X ⊗E)
of E-valued smooth (p, q)-forms with values in E. Again, Kp,q

E possesses a canon-
ical d′′-operator. Indeed, if u is a smooth (p, q)-section of E represented by forms
uj ∈ C∞(Uj , Λ

p,qT ⋆X ⊗ Cr) over the open sets Uj , we have the transition relation
uj = gjkuk ; this relation implies d′′uj = gjkd

′′uk (since d′′gjk = 0), hence the
collection (d′′uj) defines a unique global (p, q + 1)-section d′′u. By definition, the
Dolbeault cohomology groups of X with values in E are

(2.8) Hp,q(X,E) = Hq(Kp,•
E , d′′).

An important observation is that the Dolbeault complex Kp,•
E is identical to the

Dolbeault complex K0,•
ΛpT⋆

X
⊗E , thanks to the obvious equality

Λp,qT ⋆X ⊗ E = Λ0,qT ⋆X ⊗ (ΛpT ⋆X ⊗ E)

and the fact that ΛpT ⋆X is itself a holomorphic vector bundle. In particular, we get
an equality

(2.9) Hp,q(X,E) = H0,q(X,ΛpT ⋆X ⊗ E).

If X = Ω is an open subset of Cn, the bundle ΛpT ⋆Ω ≃ O⊕(n
n)

Ω is isomorphic to a
direct sum of

(
n
p

)
copies of the trivial line bundle OΩ , hence we simply get

Hp,q(Ω,E) = H0,q(Ω,E)⊗C Λ
p(Cn)⋆ = H0,q(Ω,E)⊕(n

p).

In this setting, the Dolbeault-Grothendieck lemma can be restated:

(2.10) Corollary. On every polydisk D(0, R) = D(0, R1) × · · · × D(0, Rn) ⊂ Cn,
we have Hp,q(D(0, R),OD(0,R)) = 0 for all p > 0 and q > 1. �

We finally discuss some basic properties of plurisubharmonic functions. In com-
plex geometry, plurisubharmonic functions play exactly the same role as convex
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functions do in real (affine) geometry. A function ϕ : Ω → [−∞,+∞[ on an open
subset Ω ⊂ Cn is said to be plurisubharmonic (usually abbreviated as psh) if ϕ is
upper semicontinuous and satisfies the mean value inequality

(2.11) ϕ(z0) 6
1

2π

∫ 2π

0

ϕ(z0 + a eiθ) dθ

for every a ∈ Cn such that the closed disk z0 +aD is contained in Ω (here D denotes
the unit disk in C).

(2.12) Example. Every convex function ϕ on Ω is psh, since convexity implies
continuity, and since the convexity inequality

ϕ(z0) 6
1

2

(
ϕ(z0 + a eiθ) + ϕ(z0 − a eiθ)

)

implies (2.11) by computing the average over θ ∈ [0, π].

Given a closed (euclidean) ball B(z0, r) ⊂ Ω, the spherical mean value
(σ2n−1r

2n−1)−1
∫
z∈S(z0,r)

ϕ(z) dσ(z) is equal to the average of the mean values com-

puted on each circle z0 + a∂D, when a describes the sphere S(0, r). Hence, (2.11)
implies the weaker mean value inequality

(2.13) ϕ(z0) 6
1

σ2n−1r2n−1

∫

S(z0,r)

ϕ(z) dσ(z)

for every ball B(z0, r) ⊂ Ω, in other words, every psh function is subharmonic (with
respect to the Euclidean metric). Notice that (2.13) still implies the apparently
weaker inequality

(2.13′) ϕ(z0) 6
1

v2nr2n

∫

B(z0,r)

ϕ(z) dV (z)

by averaging again over all radii in the range ]0, r[, with respect to the density
2n r2n−1dr (in fact, one can show that the mean value properties (2.13) and (2.13′)
are equivalent). As a consequence, we get inclusions

(2.14) Conv(Ω) ⊂ Psh(Ω) ⊂ Sh(Ω)

where Conv(Ω), Psh(Ω), Sh(Ω) are the spaces of convex, psh and subharmonic
functions, respectively. Now, if X is a complex manifold, we say that a function
ϕ : X → [−∞,+∞[ is psh if ϕ is psh on every holomorphic coordinate patch Ω,
when viewed as a function of the corresponding coordinates. In fact, Property 2.15 j)
below shows that the plurisubharmonicity property does not depend on the choice
of complex coordinates; this contrasts with convexity or subharmonicity, which do
require an additional linear or riemannian structure, respectively.

(2.15) Basic properties of psh functions.

a) For any decreasing sequence of psh functions ϕk ∈ Psh(X), the limit ϕ = limϕk
is psh on X.
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b) Let (ϕj)j∈J be a family of psh functions on X. Assume that ϕ := supj∈J ϕj is
upper semicontinuous and locally bounded from above. Then ϕ is psh on X.

c) Let ϕ1, . . . , ϕp ∈ Psh(X) and χ : Rp −→ R be a convex function such that
χ(t1, . . . , tp) is increasing in each tj. Then χ(ϕ1, . . . , ϕp) is psh on Ω. In par-
ticular ϕ1 + · · ·+ ϕp, max{ϕ1, . . . , ϕp} and log(eϕ1 + · · ·+ eϕp) are psh on X.

d) Let f ∈ O(X) be a holomorphic function. Then log |f | is psh on X.

e) Let f1, . . . , fp ∈ O(X) be holomorphic functions, and let γ1, . . . , γp be positive
numbers. Then

ϕ = log
(
|f1|γ1 + · · ·+ |fp|γp

)

is psh on X.

f) If µ is a Radon measure on some compact space K and (z, w) 7→ Φ(z, w) is an
upper semicontinuous function on X × K such that z 7→ Φ(z, w) is psh on X
for µ-almost every w ∈ K, then ϕ(z) =

∫
w∈K

Φ(z, w) dµ(w) is psh on X.

g) A function ϕ of class C2 is psh if and only if the hermitian matrix of mixed
derivatives (∂2ϕ/∂zj∂zk)16j,k6n is semipositive at every point. In particular,
in dimension n = 1, a function ϕ of class C2 is (pluri)subharmonic if and only
if ∆ϕ > 0.

h) A function ϕ ∈ L1
loc(X) is equal (almost everywhere) to a psh function ϕ0 if

and only if for every a ∈ Cn we have

∑

16j,k6n

ajak
∂2ϕ

∂zj∂zk
> 0 (as a positive measure)

when ∂2ϕ/∂zj∂zk is computed as a distribution.

i) Let ϕ ∈ Psh(Ω) where Ω is an open subset of Cn and assume that ϕ ∈ L1
loc(Ω).

If (ρε) is a family of smoothing kernels, then ϕ ⋆ ρε is C∞ and psh on

Ωε =
{
z ∈ Ω ; d(z, ∁Ω) > ε

}
.

Moreover, the family (ϕ ⋆ ρε) is increasing in ε and limε→0 ϕ ⋆ ρε = ϕ.

j) If F : Y → X is a holomorphic map from a complex manifold Y to a complex
manifold X and if ϕ ∈ Psh(X) then ϕ ◦ F ∈ Psh(Y ).

k) Assume that Ω = ω ⊕ iRn is a “tube domain” of base an open subset ω ⊂ Rn.
Let ϕ(x+ iy) = ϕ(x) be a function depending only on x ∈ ω. Then z 7→ ϕ(z) is
psh on Ω if and only if x 7→ ϕ(x) is convex on ω.

l) Let ϕ be a psh function on an open subset Ω ⊂ Cn. Given a point z0 ∈ Ω, let
R = d(z0, ∁Ω). Then the functions

log r 7→ sup
B(z0,r)

ϕ, log r 7→ 1

πnr2n/n!

∫

z∈B(z0,r)

ϕ(z) dλ(z)

are convex increasing functions on ] −∞, logR[.

Proof. a) is just a consequence of the monotone convergence theorem, while b)
follows from the obvious inequality sup

∫
ϕj 6

∫
supϕj . Now, let us prove c). The



10 L2 estimates for the ∂-operator on complex manifolds

conclusion is clearly true if χ(t) = α(t) = a1t1 + · · · + aptp + b is an affine function
with all aj > 0, for the function

α(ϕ1, . . . , ϕp) = a1ϕ1 + · · ·+ apϕp + b

also satisfies the mean value inequality by taking positive linear combinations. How-
ever, it is well known that every convex function χ is equal to the upper envelope
χ = supα∈A α where A is the family of all affine functions α such that α 6 χ ;
such functions α are necessarily increasing in each variable if χ is. Hence c) fol-
lows from b), and the case of log(eϕ1 + · · · + eϕp) is obtained by checking that
χ(t1, . . . , tp) = log(et1 + · · · + etp) is a convex increasing function (exercise: check
that the matrix (∂2χ/∂tj∂tk) is semipositive of rank p− 1 at any point t ∈ Rp).

Property d) can be reduced easily to the Jensen formula in one variable: indeed
the Jensen formula tells us that the average of log |f | on a circle of radius r is the
sum of the value log |f(z0)| at the center plus a term

∑
mj log(r/|wj − z0|) > 0

where (wj) are the zeros in the disk and mj the multiplicities. Property e) is a
special case of d) when we take ϕj = γj log |fj|, and f) is an immediate consequence
of the Fubini theorem. Now, the convolution

ϕ ⋆ ρε(z) =

∫

B(0,ε)

ϕ(z − w)ρε(w) dλ(w)

is a smooth function on Ωε, and f) shows that it is psh; hence the first part of i)
follows. In dimension n = 1, the proof of g) is based on the elementary formula

(2.16)
1

2π

∫ 2π

0

ϕ(z0 + r eiθ)dθ = ϕ(z0) +
1

2π

∫ r

0

dρ

ρ

∫

D(z0,ρ)

∆ϕ(z) dx dy.

(In fact, assuming z0 = 0 for simplicity, the Green-Riemann formula yields

1

ρ

∫

D(0,ρ)

∆ϕ(z) dx dy =
1

ρ

∫

|z|=ρ

∂ϕ

∂x
dy − ∂ϕ

∂y
dx

=

∫

|z|=ρ

∂ϕ

∂x
cos θ dθ +

∂ϕ

∂y
sin θ dθ =

d

dρ

∫ 2π

0

ϕ(ρeiθ)dθ,

an we get (2.16) after an integration.) Now, if ∆ϕ > 0, we infer from (2.16) that
the mean value inequality holds; on the other hand, if ∆ϕ(z0) < 0, the mean value
inequality fails for r small, QED. In higher dimensions, the conclusion is easily
obtained by putting ψ(w) = ϕ(z0 + aw) ; we then get

1

4
∆ψ(w) =

∂2ψ

∂w∂w
=

∑

16j,k6n

ajak
∂2ϕ

∂zj∂zk
(z0 + aw)

and everything follows.

i) (end of proof) Notice that (2.16) implies that the circular mean value∫ 2π

0
ϕ(z0 + r eiθ)dθ of a C2 subharmonic function in Ω ⊂ C is an increasing func-

tion of r. The same is true for spherical mean values of psh functions on open sets
Ω ⊂ Cn, since we can compute them by averaging the circular mean values with
respect to all complex directions. In particular, if ϕ is of class C2, we conclude
(through a use of polar coordinates) that
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ϕ ⋆ ρε(z) =

∫

B(0,1)

ϕ(z − εw)ρ1(w) dλ(w)

is an increasing function of ε, for any z ∈ Ωε fixed). Since ϕ ⋆ ρη is a smooth psh
function on Ωη, we get that (ϕ ⋆ ρη) ⋆ ρε is increasing in ε whenever z ∈ Ωε+η. By
passing to the limit when η → 0, we see that ϕ ⋆ ρε(z) is always increasing in ε
(even though ϕ is maybe not smooth). Since ϕ ⋆ ρε(z) > ϕ(z) by the mean value
inequality and lim supε→0 ϕ⋆ρε(z) 6 ϕ(z) by the upper semicontinuity, we conclude
that limε→0 ϕ ⋆ ρε(z) = ϕ(z) everywhere.

Let us now prove h). If ϕ0 is psh and ϕ = ϕ0 almost everywhere, then ϕ ⋆ ρε =
ϕ0 ⋆ ρε is smooth and psh, hence

∑

16j,k6n

ajak
∂2ϕ ⋆ ρε
∂zj∂zk

=
( ∑

16j,k6n

ajak
∂2ϕ

∂zj∂zk

)
⋆ ρε > 0

for every λ ∈ Cn and every ε > 0. By passing to a weak limit, we conclude that the

distribution
∑
ajak

∂2ϕ
∂zj∂zk

is a positive measure. Conversely, if this is the case, the

convolution ϕ ⋆ ρη is psh by g). Hence (ϕ ⋆ ρη) ⋆ ρε is an increasing function of ε,
and by taking the limit as η tends to 0, we see again that ϕ ⋆ ρε is increasing in ε.
Therefore the decreasing limit

ϕ0 = lim
k→+∞

ϕ ⋆ ρ1/k

is psh by a), and Lebesgue’s theorem shows that ϕ0 = ϕ almost everywhere.

When ϕ is smooth, j) follows from the formula

∑

ℓ,m

aℓam
∂2(ϕ ◦ F )

∂wℓ∂wm
=

∑

j,k

bjbk
∂2ϕ

∂zj∂zk
◦ F, bj =

∑

ℓ

aℓ
∂Fj
wℓ

in suitable coordinate systems (zj) on X and (wℓ) on Y . In general, we conclude by
considering regularizations ϕ ⋆ ρε and passing to the limit.

k) is obvious when ϕ is smooth, since the convexity of ϕ(x) and the plurisub-
harmonicity of ϕ(z) are both characterized by the condition that (∂2ϕ/∂xj∂xk) is
semipositive everywhere. In general, we obtain the conclusion by using regulariza-
tions ϕ ⋆ ρε.

Finally, property l) follows from the following observation: the functions

σ(w) = sup
B(z0,eRe w)

ϕ = sup
a∈B(0,1)

ϕ(z0 + a ew),

µ(w) =
1

πne2nRew/n!

∫

B(z0,eRe w)

ϕ(z) dλ(z) =
1

πn/n!

∫

a∈B(0,1)

ϕ(z0 + a ew) dλ(a)

are psh on the half-plane {Rew < logR} ⊂ C, thanks to j), b) and f). As they only
depend on Rew, they must be convex in Rew. Moreover, σ(w) is clearly increasing
with respect to Rew, and the same is true for µ by (2.16). �

(2.17) Definition. A complex (1, 1)-form
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u = i
∑

16j,k6n

ujkdzj ∧ dzk

is said to be (semi)positive if the hermitian matrix (ujk) is (semi)positive.

Notice that u is real, i.e. u = u, if and only if ujk = ukj , i.e. iff the matrix is
hermitian). In this setting, a real L1

loc function ϕ is psh if and only if id′d′′ϕ > 0 as
a (1, 1)-form.

3. Kähler metrics and Kähler manifolds

Let us recall that a Riemannian metric on a (real) differentiable manifold M is a
positive definite symmetric bilinear form

g =
∑

16j,k6n

gjk(x) dxj ⊗ dxk

on the tangent bundle TM , where (x1, . . . , xn) are local coordinates on M . We
usually assume that the coefficients gjk(x) are smooth. Then, for any tangent vector
ξ =

∑
ξj∂/∂xj ∈ TM,x, one defines its norm with respect to g by

(3.1) |ξ|2g =
∑

16j,k6n

gjk(x)ξjξk.

IfM is moreover assumed to be oriented, one defines a corresponding volume element

(3.2) dVg =
√

det(gjk(x)) dx1 ∧ dx2 ∧ · · · ∧ dxn
whenever (x1, . . . , xn) fit with the given orientation. It is easy to check by the Jaco-
bian formula that this definition of dVg is independent of the choice of coordinates.

Now, we consider the complex case. Let X be a complex n-dimensional mani-
fold. A hermitian metric on X is a positive definite hermitian form of class
C∞ on TX ; in a coordinate system (z1, . . . , zn), such a form can be written
h(z) =

∑
16j,k6n hjk(z) dzj ⊗ dzk, where (hjk) is a positive hermitian matrix with

C∞ coefficients. Thanks to the hermitian condition hjk = hkj , our form h can be
written as h = g − iω, where

h(ξ, η) =
∑

16j,k6n

hjk(z)ξjηk,

g(ξ, η) = Reh(ξ, η) =
1

2

∑

16j,k6n

(
hjk(z)ξjηk + hjk(z) ξjηk

)
(3.3)

=
1

2

∑

16j,k6n

hjk(z)
(
ξjηk + ηjξk

)
,

ω(ξ, η) = − Imh(ξ, η) =
i

2

∑

16j,k6n

hjk(z)
(
ξjηk − ηjξk

)
, i.e.

ω = − Imh =
i

2

∑

16j,k6n

hjk(z) dzj ∧ dzk.(3.4)
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By definition, ω is the fundamental (1, 1)-form associated with h. It is a positive defi-
nite (1, 1)-form (according to the general definition). Since ω and h are “isomorphic”
objects, we usually do not make any difference and will think of hermitian metrics
as being positive (1, 1)-forms.

(3.5) Definition.

a) A hermitian manifold is a pair (X,ω) where ω is a C∞ positive definite (1, 1)-
form on X.

b) The metric ω is said to be kähler if dω = 0.

c) X is said to be a Kähler manifold if X possesses at least one Kähler metric.

Since ω is real, the conditions dω = 0, d′ω = 0, d′′ω = 0 are all equivalent. In
local coordinates we see that d′ω = 0 if and only if

∂hjk
∂zl

=
∂hlk
∂zj

, 1 6 j, k, l 6 n.

A simple computation gives i
2dzj ∧ dzj = dxj ∧ dyj and

ωn

n!
= det(hjk)

∧

16j6n

( i

2
dzj ∧ dzj

)
= det(hjk) dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

where zn = xn + iyn. Therefore the (n, n)-form

(3.6) dVω =
1

n!
ωn

is positive with respect to the canonical orientation of X . Since det(g) = det(h)2 by
(3.3), we see that dVω = dVg coincides with the Riemannian volume element of X .
If X is compact, then

∫
X
ωn = n! Volω(X) > 0. This simple remark already implies

that compact Kähler manifolds must satisfy some restrictive topological conditions:

(3.7) Consequence.

a) If (X,ω) is compact Kähler and if {ω} denotes the cohomology class of ω in
H2(X,R), then {ω}n 6= 0.

b) If X is compact Kähler, then H2k(X,R) 6= 0 for 0 6 k 6 n. In fact, {ω}k is a
non zero class in H2k(X,R).

(3.8) Examples.

a) The most obvious example is Cn together with the standard Kähler metric

ω =
i

2

∑

16j6n

dzj ∧ dzj = i
∑

16j6n

dxj ∧ dyj .

The volume element dVω coincides with the Lebesgue measure of Cn ≃ R2n.
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b) The complex projective space Pn is Kähler. A natural Kähler metric ω on Pn,
called the Fubini-Study metric, is defined by

p⋆ω =
i

2
d′d′′ log

(
|ζ0|2 + |ζ1|2 + · · ·+ |ζn|2

)

where ζ0, ζ1, . . . , ζn are coordinates of Cn+1 and where p : Cn+1 \ {0} → Pn is the
projection. Let z = (ζ1/ζ0, . . . , ζn/ζ0) be non homogeneous coordinates on Cn =
{ζ0 6= 0} ⊂ Pn. Then, since d′d′′ log |ζ0|2 = 0 on {ζ0 6= 0}, we see that

ω =
i

2
d′d′′ log(1 + |z|2) =

i

2

(d′d′′|z|2
1 + |z|2 − 〈dz, z〉 ∧ 〈dz, z〉

(1 + |z|2)2
)
,

|ξ|2ω =
|ξ|2

1 + |z|2 − |〈ξ, z〉|2
(1 + |z|2)2 =

|ξ|2 + |ξ ∧ z|2
(1 + |z|2)2 ,

thanks to Lagrange’s identity |ξ|2|z|2 = |〈ξ, z〉|2 + |ξ ∧ z|2. The eigenvalues of the
Fubini-Study metric with respect to the standard Euclidean metric are 1/(1+ |z|2)2
in the radial direction Cz, and 1/(1 + |z|2) in the hyperplane (Cz)⊥. From this we
infer

dVω =
dλ(z)

(1 + |z|2)n+1
.

A computation shows that the global volume is Volω(Pn) =
∫

Pn dVω = πn/n!.

c) A complex torus is a quotient X = Cn/Γ by a lattice Γ of rank 2n. Then X is
a compact complex manifold. Any positive definite hermitian form with constant
coefficients ω = i

∑
hjkdzj ∧ dzk defines a Kähler metric on X .

d) Every (complex analytic) submanifold Y of a Kähler manifold (X,ω) is Kähler
with metric ω↾Y . Especially, all complex submanifolds of Pn are Kähler.

e) Consider the complex surface

X = (C2 \ {0})/Γ

where Γ = {λn ; n ∈ Z}, λ < 1, acts as a group of homotheties. Since C2 \ {0}
is diffeomorphic to R⋆+ × S3, we have X ≃ S1 × S3. Therefore H2(X,R) = 0 by
Künneth’s formula, and property 3.7 b) shows that X is not Kähler. Hence there
are compact complex surfaces which are not Kähler. �

The following Theorem shows that a hermitian metric ω on X is Kähler if
and only if the metric ω is tangent at order 2 to a hermitian metric with constant
coefficients at every point of X .

(3.9) Theorem. Let ω be a C∞ positive definite (1, 1)-form on X. In order that ω
be Kähler, it is necessary and sufficient that to every point x0 ∈ X corresponds a
holomorphic coordinate system (z1, . . . , zn) centered at x0 such that

ω = i
∑

16l,m6n

ωlm dzl ∧ dzm, ωlm = δlm +O(|z|2).
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Proof. It is clear that the existence of a Taylor expansion as above implies dx0
ω = 0,

so the condition is sufficient. Conversely, assume that ω is Kähler. Then one can
choose local holomorphic coordinates (x1, . . . , xn) such that (dx1, . . . , dxn) is an
ω-orthonormal basis of T ⋆X,x0

. Therefore

ω = i
∑

16l,m6n

ω̃lm dxl ∧ dxm, where

ω̃lm = δlm +O(|x|) = δlm +
∑

16j6n

(ajlmxj + a′jlmxj) +O(|x|2).

Since ω is real, we have a′jlm = ajml ; on the other hand the Kähler condition
∂ωlm/∂xj = ∂ωjm/∂xl at x0 implies ajlm = aljm. Set now

zm = xm +
1

2

∑

j,l

ajlmxjxl, 1 6 m 6 n.

Then (zm) is a coordinate system at x0, and

dzm = dxm +
∑

j,l

ajlmxjdxl,

i
∑

m

dzm ∧ dzm = i
∑

m

dxm ∧ dxm + i
∑

j,l,m

ajlmxj dxl ∧ dxm

+ i
∑

j,l,m

ajlmxj dxm ∧ dxl +O(|x|2)

= i
∑

l,m

ω̃lm dxl ∧ dxm +O(|x|2) = ω +O(|z|2).

Theorem 3.9 is proved. �

(3.10) Remark. When ω is Kähler, one can refine the above proof to shows that
there are local coordinates (z1, . . . , zn) centered at x0 such that ω = i

2

∑
lm ωlmdzl∧

dzm with

ωlm = δlm −
∑

16j,k6n

cjklm zjzk +O(|z|3).

The coefficients cjklm satisfy the symmetry relations

cjklm = ckjml, cjklm = clkjm = cjmlk = clmjk.

(The cjklm can be interpreted as the coefficients of the Levi-Civita curvature tensor
of (TX , ω), but we will not use this fact).

4. Differential operators on vector bundles

We first describe some basic concepts concerning differential operators (symbol,
composition, adjunction, ellipticity), in the general setting of vector bundles. Let M
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be a C∞ differentiable manifold, dimR M = m, and let E, F be K-vector bundles
over M , with K = R or K = C, rankE = r, rankF = r′.

(4.1) Definition. A (linear) differential operator of degree δ from E to F is a
K-linear operator P : C∞(M,E) → C∞(M,F ), u 7→ Pu of the form

Pu(x) =
∑

|α|6δ

aα(x)Dαu(x),

where E↾Ω ≃ Ω × Kr, F↾Ω ≃ Ω × Kr′ are trivialized locally on some open chart
Ω ⊂M equipped with local coordinates (x1, . . . , xm), and

aα(x) =
(
aαλµ(x)

)
16λ6r′, 16µ6r

are r′×r-matrices with C∞ coefficients on Ω. Here Dα = (∂/∂x1)
α1 . . . (∂/∂xm)αm

as usual, and u = (uµ)16µ6r, D
αu = (Dαuµ)16µ6r are viewed as column matrices.

If t ∈ K is a parameter and f ∈ C∞(M,K), u ∈ C∞(M,E), a simple calculation
shows that e−tf(x)P (etf(x)u(x)) is a polynomial of degree δ in t, of the form

e−tf(x)P (etf(x)u(x)) = tδσP (x, df(x)) · u(x) + lower order terms cj(x)t
j , j < δ,

where σP is the homogeneous polynomial map T ⋆M → Hom(E, F ) defined by

(4.2) T ⋆M,x ∋ ξ 7→ σP (x, ξ) ∈ Hom(Ex, Fx), σP (x, ξ) =
∑

|α|=δ

aα(x)ξα.

Then σP (x, ξ) is smooth on T ⋆M as a function of (x, ξ), and is independent of the
choice of coordinates or of the trivializations used for E, F . We say that σP is the
principal symbol of P . The symbol of a composition Q ◦ P of differential operators
is simply the product

(4.3) σQ◦P (x, ξ) = σQ(x, ξ)σP (x, ξ),

computed as a product of matrices.

Now, assume that E is a euclidean or hermitian vector bundle. Recall that a
hermitian form h on a complex vector bundle E if a collection of positive definite
hermitian forms h(x) on each fiber Ex, such that the map

E → R+, Ex ∋ ξ 7→ |ξ|2h := h(x)(ξ)

is smooth. A hermitian vector bundle is a pair (E, h) where E is a complex vector
bundle and h a hermitian metric on E. The notion of a euclidean (real) vector
bundle is similar, so we leave the reader adapt our notations to that case. We
assume in addition that M is oriented and is equipped with a smooth volume form
dV (x) = γ(x)dx1 ∧ · · ·dxm, where γ(x) > 0 is a smooth density (usually, dV will be
the volume element dVg of some Riemannian metric). Then we get a Hilbert space
L2(M,E) of global sections u of E with L2 coefficients, by looking at all sections
x 7→ u(x) ∈ Ex satisfying the L2 estimate
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(4.4) ‖u‖2 =

∫

M

|u(x)|2 dV (x) < +∞.

We denote the corresponding global L2 inner product by

(4.4′) 〈〈u, v〉〉 =

∫

M

〈u(x), v(x)〉 dV (x), u, v ∈ L2(M,E)

(4.5) Definition. If P : C∞(M,E) → C∞(M,F ) is a differential operator and
both E, F are euclidean or hermitian, there exists a unique differential operator

P ⋆ : C∞(M,F ) → C∞(M,E),

called the formal adjoint of P , such that for all sections u ∈ C∞(M,E) and v ∈
C∞(M,F ) there is an identity

〈〈Pu, v〉〉 = 〈〈u, P ⋆v〉〉, whenever Supp u ∩ Supp v ⋐ M.

Proof. The uniqueness is easy, using the density of smooth compactly supported
forms in L2(M,E). By a partition of unity argument, it is enough to show the
existence of P ⋆ locally. Now, let Pu(x) =

∑
|α|6δ aα(x)Dαu(x) be the expansion of

P with respect to trivializations of E, F given by orthonormal frames over some
coordinate open set Ω ⊂ M . When Supp u ∩ Supp v ⋐ Ω an integration by parts
yields

〈〈Pu, v〉〉 =

∫

Ω

∑

|α|6δ,λ,µ

aαλµD
αuµ(x)vλ(x) γ(x) dx1, . . . , dxm

=

∫

Ω

∑

|α|6δ,λ,µ

(−1)|α|uµ(x)Dα(γ(x) aαλµvλ(x) dx1, . . . , dxm

=

∫

Ω

〈u,
∑

|α|6δ

(−1)|α|γ(x)−1Dα
(
γ(x) taαv(x)

)
〉 dV (x).

Hence we see that P ⋆ exists and is uniquely defined by

(4.6) P ⋆v(x) =
∑

|α|6δ

(−1)|α|γ(x)−1Dα
(
γ(x) taαv(x)

)
.�

It follows immediately from (4.6) that the principal symbol of P ⋆ is

(4.7) σP ⋆(x, ξ) = (−1)δ
∑

|α|=δ

taαξ
α = (−1)δσP (x, ξ)⋆.

(4.8) Hilbertian extensions of differential operators. Given a differential

operator P : C∞(M,E) → C∞(M,F ), we can extend it as an operator P̃ :
D′(M,E) → D′(M,F ) by computing Pu in the sense of distributions. Especially,
we get an operator

PH : L2(M,E) → L2(M,F ),
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which we call the maximal (Hilbertian) extension of P , such that u ∈ Dom(PH) if

and only if u ∈ L2(M,E) and P̃ u ∈ L2(M,F ) ; we then set of course PHu = P̃ u.

(4.9) Proposition. For any differential operator P : C∞(M,E) → C∞(M,F ), its
Hilbertian extension PH is a closed and densely defined operator.

Proof. First observe that DomPH contains the space D(M,E) of smooth sections
with compact support in M . As D(M,E) is dense in L2(M,E), we conclude that
PH has a dense domain. Now, let (uν , vν) be a sequence in the graph of PH, con-
verging towards a limit (u, v) in L2(M,E)× L2(M,F ). Then, uν → u in L2(M,E)
and in particular uν converges weakly to u in D′(M,E). As differentiations and
multiplications by smooth functions are continuous for the weak topology, we infer
that vν = Puν converges weakly to P̃ u in D′(M,F ). Since the weak topology is

Hausdorff, we conclude that v = P̃ u. Hence u ∈ DomPH and v = PHu, as desired.
�

By the general results of § 1, we know that PH admits a closed and densely
defined adjoint (PH)⋆ : L2(M,F ) → L2(M,E), called the Hilbert adjoint of PH,
such that

〈〈PHu, v〉〉 = 〈〈u, (PH)⋆v〉〉, ∀u ∈ DomPH, ∀v ∈ Dom(PH)⋆.

In particular, this identity must hold true for all u ∈ D(M,E), and we conclude from

this that (PH)⋆v coincides with the formal adjoint P̃ ⋆v computed in the sense of
of distributions. Hence, if (P ⋆)H is the maximal Hilbertian extension of the formal
adjoint (usually simply called the formal adjoint), we see that

(4.10) Dom(PH)⋆ ⊂ Dom(P ⋆)H

and that both operators (PH)⋆ (Hilbert adjoint) and (P ⋆)H (formal adjoint) coin-
cide on Dom(PH)⋆. However, the domains are in general distinct, as shown by the
following simple example.

(4.11) Example. Consider M = ]0, 1[, dV = dx, together with the trivial hermitian
vector bundles E = F = M × C, and the differential operator

P =
d

dx
: C∞(]0, 1[,C) → C∞(]0, 1[,C).

Our general formula for the formal adjoint shows that

P ⋆ = − d

dx
= −P.

Now, the domain of PH consists of all u ∈ L2(]0, 1[,C) such that u′ ∈ L2(]0, 1[,C)
and is therefore nothing else by definition than the Sobolev space W 1(]0, 1[,C).
However W 1(]0, 1[,C) injects continuously in C0(]0, 1[,C), since u′ ∈ L2(]0, 1[,C) ⊂
L1(]0, 1[,C) implies that u extends as a continuous function in C0([0, 1],C). In
particular, any u ∈ DomPH = W 1(]0, 1[,C) can be assigned well defined values
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u(0) and u(1). Now, given u ∈ DomPH and v ∈ Dom(PH)⋆, (4.10) shows that
u, v ∈W 1(]0, 1[,C) ⊂ C0([0, 1],C). We then get the integration by part formula

〈〈PHu, v〉〉 =

∫ 1

0

u′(x)v(x) dx = u(1)v(1) − u(0)v(0) −
∫ 1

0

u(x)v′(x) dx,

which can be easily reduced to the case of smooth functions by using convolution
with reglarizing kernels. As v′ ∈ L2, we conclude that the linear form u 7→ 〈〈Pu, v〉〉
is continuous in the L2 topology if and only if v(0) = v(1) = 0 (and in that case we
do have (PH)⋆v = −v′ = (P ⋆)Hv). Hence

Dom(PH)⋆ = W 1
0 (]0, 1[,C) :=

{
v ∈W 1(]0, 1[,C) ; v(0) = v(1) = 0

}

( W 1(]0, 1[,C) = Dom(P ⋆)H. �

(4.12) Elliptic operators. Especially important in PDE theory are the so-called
elliptic differential operators:

(4.13) Definition. A differential operator P is said to be elliptic if σP (x, ξ) ∈
Hom(Ex, Fx) is injective for every x ∈M and ξ ∈ T ⋆M,x r {0}.

The main result of elliptic PDE theory, which we only quote here (see e.g.
(Hörmander 1963)), is

(4.14) Theorem. Every solution u ∈ D′(M,E) of an elliptic equation P̃ u = v with
v ∈ C∞(M,F ) is in fact smooth, i.e., u ∈ C∞(M,E). In fact, if P is of degree δ
and v is in some Sobolev space W s

loc(M,F ), then u ∈W s
loc(M,E).

5. Operators of Kähler geometry and commutation identities

In Kähler geometry, many linear differential operators are to be considered, together
with their commutation relations. All these operators are C-linear endomorphisms
acting on the (bi)graded module

⊕
p,q>0C

∞(X,Λp,qT ⋆X ⊗E), where E is some her-
mitian vector bundle over X . These operators form a bigraded algebra A =

⊕Ar,s:
an operator is called of type (or bidegree) (r, s) if it maps

(5.1) C∞(X,Λp,qT ⋆X ⊗E) → C∞(X,Λp+r,q+sT ⋆X ⊗E)

for all p, q ; the (total) degree of such an operator is by definition k = r + s, and
we set Ak =

⊕
r+s=kAr,s. Given homogeneous operators A, B of degrees a, b in a

graded algebra A =
⊕Ak, their graded commutator is defined to be

(5.2) [A,B] = AB − (−1)abBA.

If C is another endomorphism of degree c, the following Jacobi identity holds (as a
purely formal computation shows):
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(5.3) (−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

To every form α ∈ C∞(X,Λp,qT ⋆X) corresponds an endomorphism of type (p, q) on
C∞(X,Λ•,•T ⋆X ⊗ E), defined by u 7→ α ∧ u. We will often use again the notation α
for this endomorphism, i.e., we will write α(u) = α ∧ u.

(5.4) Pointwise and global hermitian metrics on spaces of (p, q)-forms.
From now on, we suppose that (X,ω) is a Kähler manifold and set n = dimC X .
The underlying Riemannian metric g defines a euclidean metric on the real tangent
space TR

X , hence a hermitian metric on the complexified tangent space C⊗R T
R

X . We
get as well a hermitian metric on

HomR(TR

X ,C) = HomC(C ⊗R T
R

X ,C) = Λ1,0T ⋆X ⊕ Λ0,1T ⋆X .

For instance, in Cn with the usual euclidean metric, we have

∣∣∣ ∂

∂xj

∣∣∣ =
∣∣∣ ∂

∂yj

∣∣∣ = 1,
∣∣∣ ∂

∂zj

∣∣∣ =
∣∣∣1
2

∂

∂xj
− i

2

∂

∂yj

∣∣∣ =
1√
2

=
∣∣∣ ∂

∂zj

∣∣∣,

(∂/∂zj), (∂/∂zk) are orthogonal bases of T 1,0
Cn , T 0,1

Cn (which are themselves mutually
orthogonal). The dual metric on Λ1,0T ⋆

Cn ⊕Λ0,1T ⋆
Cn is such that |dzj| = |dxj+idyj| =√

2 = |dzj |. Now, for an arbitrary Kähler manifold (X,ω), we can use the Gram-
Schmidt orthogonalization process in order to construct on any coordinate open set
Ω ⊂ X an orthonormal frame (ξ1, . . . , ξn) of T 0,1

X|Ω for the metric ω. The dual basis

(ξ⋆j ) defines an orthonormal frame of Λ1,0T ⋆X for the dual metric, furthermore, any
(p, q)-form can be written in a unique way

u =
∑

|I|=p, |J|=q

uIJξ
⋆
I ∧ ξ

⋆

J .

We define the (pointwise) hermitian norm of u to be |u|2ω =
∑
I, J |uIJ |2. In this

way, we get a hermitian metric on Λp,qT ⋆X , which is actually independent of the
initial choice of the orthonormal frame (ξj). One can check this by observing that
the corresponding hermitian inner product satisfies the intrinsic property

〈u1 ∧ · · · ∧up ∧ v1 · · · ∧ vq, u′1 ∧ · · ·∧u′p ∧ v′1 · · · ∧ v′q〉ω = det(〈uj , u′k〉ω) det(〈vj , v′k〉ω),

which characterizes the inner product in a unique way. Now, we consider the Hilbert
space L2(X,Λp,qT ⋆X) of global (p, q)-forms u with measurable complex coefficients
such that

(5.5) ‖u‖2
ω =

∫

X

|u|2ωdVω < +∞.

The corresponding global L2 inner product is

〈〈u, v〉〉ω =

∫

X

〈u, v〉ωdVω.

Unless there are several Kähler metrics under consideration, we will usually omit
the subscripts in the notation of the norms or inner products.
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(5.6) Contraction of a differential form by a tangent vector. Let u be a (p, q)-
form on Ω, viewed as an antisymmetric R-linear form of degree k = p + q. Given
a complex tangent vector ξ =

∑
ξ′j ∂/∂zj +

∑
ξ′′j ∂/∂zj , we define the contraction

ξ u to be the differential form of degree k − 1 = p+ q − 1 such that

(ξ u)(η1, . . . , ηk−1) = u(ξ, η1, . . . , ηp−1)

for all tangent vectors ηj . Then (ξ, u) 7−→ ξ u is bilinear, and from the fact that
u∧v is the antisymmetrization of u⊗v one easily sees that contraction by a tangent
vector is a derivation, i.e.

ξ (u ∧ v) = (ξ u) ∧ v + (−1)deg uu ∧ (ξ v).

From this and the obvious rule ∂
∂zℓ

dzj = δjℓ we derive the explicit formulas

∂

∂zℓ
(dzI ∧ dzJ ) =

{
0 if ℓ /∈ I,
(−1)s−1dxIr{ℓ} if ℓ = is ∈ I,

∂

∂zℓ
(dzI ∧ dzJ ) =

{
0 if ℓ /∈ J ,
(−1)p+s−1dxIr{ℓ} if ℓ = js ∈ J ,

whenever |I| = p and |J | = q. An easy check shows that the interior product ξ •

is the adjoint of the wedge multiplication ξ⋆∧ •, where ξ⋆ = 〈•, ξ〉ω is the (1, 0)-form
associated with ξ, i.e.

〈ξ u, v〉 = 〈u, ξ⋆ ∧ v〉
for any pair of forms (u, v) of respective degrees k, k−1. Of course, a similar formula
also holds for global inner products 〈〈 , 〉〉, since we need only integrate the above
pointwise formula.

(5.7) Operators of Kähler geometry. Here is a short list of the operators we
will have to deal with:

a) The operators d = d′ + d′′ acting on C∞(X,Λ•,•T ⋆X), which are all three of
degree 1 (d′ being of bidegree (1, 0) and d′′ of bidegree (0, 1)).

b) Their adjoints d⋆ = d′⋆ + d′′⋆, computed with respect to the global L2 inner
product. We have for instance

〈〈d′′u, v〉〉 = 〈〈u, d′′⋆v〉〉

for all smooth forms u of type (p, q−1) and v of type (p, q) with Supp u∩Supp v
compact. Hence d′ is of type (−1, 0) and d′′ is of type (0,−1). (More generally,
the adjoint of an operator of type (r, s) is of type (−r,−s).)

c) The Laplace-Beltrami operators

∆ = dd⋆ + d⋆d = [d, d⋆],

∆′ = d′d′⋆ + d′⋆d′ = [d′, d′⋆],

∆′′ = d′′d′′⋆ + d′′⋆d′′ = [d′′, d′′⋆].

d) Two other important operators are the operators L of type (1, 1) defined by 2

Lu = ω ∧ u,
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and its adjoint Λ = L⋆, which is obtained by taking the pointwise adjoint

〈u, Λv〉 = 〈Lu, v〉. �

(5.8) Special case of the flat hermitian metric on open subsets of Cn.
Assume that X = Ω ⊂ Cn is an open subset and that ω is the standard Kähler
metric of Cn, multiplied by 2, i.e.

ω = i
∑

16j6n

dzj ∧ dzj

(the reason for multiplying the standard metric by 2 is that we get in this way
|∂/∂zj| = 1, and this allows us to avoid annoying constants 2 or 1/2 in the compu-
tations). For any form u ∈ C∞(Ω,Λp,qT ⋆Ω) we have

d′u =
∑

I,J,k

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ =
∑

16k6n

dzk ∧
( ∂u

∂zk

)
,

d′′u =
∑

I,J,k

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ =
∑

16k6n

dzk ∧
( ∂u

∂zk

)
,

where ∂u/∂zk and ∂u/∂zk are the differentiations of u in zk, zk, taken component-
wise on each coefficient uIJ . From this we easily get

(5.9) Lemma. On any open subset ω ⊂ Cn equipped with the flat hermitian met-
ric ω, we have

d′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ ),

d′′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ).

These formulas can be written more briefly as

d′⋆u = −
∑

16k6n

∂

∂zk

( ∂u

∂zk

)
, d′′⋆u = −

∑

16k6n

∂

∂zk

( ∂u

∂zk

)
.

Proof. The adjoint of dzj ∧ • is ∂
∂zj

• . In the case of d′⋆, for instance, we get

〈〈d′u, v〉〉 =

∫

Ω

〈
∑

16k6n

dzk ∧
( ∂u

∂zk

)
, v〉 dV =

∫

Ω

∑

16k6n

〈 ∂u
∂zk

,
∂

∂zk
v〉 dV

=

∫

Ω

〈u,−
∑

16k6n

∂

∂zk

( ∂

∂zk
v
)
〉 dV =

∫

Ω

〈u,−
∑

16k6n

∂

∂zk

( ∂v

∂zk

)
〉 dV

whenever u (resp. v) is a (p−1, q)-form (resp. (p, q)-form), with Supp u∩Supp v ⋐ Ω.
The third equality is simply obtained through an integration par parts, and amounts
to observe that the formal adjoint of ∂/∂zk is −∂/∂zk. �
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We now prove a basic lemma due to (Akizuki and Nakano 1954).

(5.10) Lemma. In Cn, we have [d′′⋆, L] = id′.

Proof. Using Lemma 5.9, we find

[d′′⋆, L]u = d′′⋆(ω ∧ u) − ω ∧ d′′⋆u

= −
∑

k

∂

∂zk

( ∂

∂zk
(ω ∧ u)

)
+ ω ∧

∑

k

∂

∂zk

( ∂u

∂zk

)
.

Since ω has constant coefficients, we have
∂

∂zk
(ω ∧ u) = ω ∧ ∂u

∂zk
and therefore

[d′′⋆, L] u = −
∑

k

(
∂

∂zk

(
ω ∧ ∂u

∂zk

)
− ω ∧

( ∂

∂zk

∂u

∂zk

))

= −
∑

k

( ∂

∂zk
ω
)
∧ ∂u

∂zk

by the derivation property of . Clearly

∂

∂zk
ω =

∂

∂zk
i

∑

16j6n

dzj ∧ dzj = −i dzk,

hence

[d′′⋆, L] u = i
∑

k

dzk ∧
∂u

∂zk
= i d′u. �

We are now ready to derive the basic commutation relations in the case of an
arbitrary Kähler manifold (X,ω).

(5.11) Theorem. If (X,ω) is Kähler, then

[d′′⋆, L] = i d′, [d′⋆, L] = −i d′′,

[Λ, d′′] = −i d′⋆, [Λ, d′] = i d′′⋆.

Proof. It is sufficient to verify the first relation, because the second one is the con-
jugate of the first, and the relations of the second line are the adjoint of those
of the first line. According to Theorem 3.9, let (zj) be a coordinate system at a
point x0 ∈ X , chosen such that ωℓm = δℓm +O(|z|2). For any (p, q)-forms u, v with
compact support in a neighborhood of x0, we get

〈〈u, v〉〉 =

∫

M

(∑

I,J

uIJvIJ +
∑

I,J,K,L

aIJKL uIJvKL

)
dV,

with aIJKL(z) = O(|z|2) at x0. An integration by parts as in the proof of Lemma 5.9
yields
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d′′⋆u = −
∑

I,J,k

∂uI,J
∂zk

∂

∂zk
(dzI ∧ dzJ ) +

∑

I,J,K,L

bIJKL uIJ dzK ∧ dzL,

where the coefficients bIJKL are obtained by derivation of the aIJKL’s. Therefore
bIJKL = O(|z|). Since ∂ω/∂zk = O(|z|), the proof of Lemma 5.10 implies here
[d′′⋆, L]u = id′u + O(|z|), in particular both terms coincide at every given point
x0 ∈ X . �

(5.12) Corollary. If (X,ω) is Kähler, the complex Laplace-Beltrami operators sat-
isfy

∆′ = ∆′′ =
1

2
∆.

Proof. It will be first shown that ∆′′ = ∆′. We have

∆′′ = [d′′, d′′⋆] = −i
[
d′′, [Λ, d′]

]
.

Since [d′, d′′] = 0, the Jacobi identity implies

−
[
d′′, [Λ, d′]

]
+

[
d′, [d′′, Λ]

]
= 0,

hence ∆′′ =
[
d′,−i[d′′, Λ]

]
= [d′, d′⋆] = ∆′. On the other hand

∆ = [d′ + d′′, d′⋆ + d′′⋆] = ∆′ +∆′′ + [d′, d′′⋆] + [d′′, d′⋆].

Thus, it is enough to prove:

(5.13) Lemma. [d′, d′′⋆] = 0, [d′′, d′⋆] = 0.

Proof. We have [d′, d′′⋆] = −i
[
d′, [Λ, d′]

]
and the Jacobi identity implies

−
[
d′, [Λ, d′]

]
+

[
Λ, [d′, d′]

]
+

[
d′, [d′, Λ]

]
= 0,

hence −2
[
d′, [Λ, d′]

]
= 0 and [d′, d′′⋆] = 0. The second relation [d′′, d′⋆] = 0 is the

adjoint of the first. �

From the above, we also get the following result, which is of fundamental im-
portance in Hodge theory.

(5.14) Theorem. ∆ commutes with all operators d′, d′′, d′⋆, d′′⋆, L, Λ.

Proof. The identities [d′, ∆′] = [d′⋆, ∆′] = 0, [d′′, ∆′′] = [d′′⋆, ∆′′] = 0 are immediate.
Furthermore, the equality [d′, L] = d′ω = 0 together with the Jacobi identity implies

[L,∆′] =
[
L, [d′, d′⋆]

]
= −

[
d′, [d′⋆, L]

]
= i[d′, d′′] = 0.

By adjunction, we also get [∆′, Λ] = 0. �
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6. Connections and curvature

The goal of this section is to recall the most basic definitions of hermitian differential
geometry related to the concepts of connection, curvature and first Chern class of a
line bundle.

Let E be a complex vector bundle of rank r over a smooth differentiable mani-
fold M . A connection D on E is a linear differential operator of order 1

D : C∞(M,ΛqT ⋆M ⊗E) → C∞(M,Λq+1T ⋆M ⊗E)

such that

(6.1) D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du

for all forms f ∈ C∞(M,ΛpT ⋆M ), u ∈ C∞(X,ΛqT ⋆M ⊗ E). On an open set Ω ⊂ M

where E admits a trivialization θ : E↾Ω
≃−→ Ω×Cr, a connection D can be written

Du ≃θ du+ Γ ∧ u

where Γ ∈ C∞(Ω,Λ1T ⋆M ⊗ Hom(Cr,Cr)) is an arbitrary matrix of 1-forms and d
acts componentwise. It is then easy to check that

D2u ≃θ (dΓ + Γ ∧ Γ ) ∧ u on Ω.

Since D2 is a globally defined operator, there is a global 2-form

(6.2) Θ(D) ∈ C∞(M,Λ2T ⋆M ⊗ Hom(E,E))

such that D2u = Θ(D) ∧ u for every form u with values in E.

Assume now that E is endowed with a C∞ hermitian metric along the fibers
and that the isomorphism E↾Ω ≃ Ω × Cr is given by a C∞ frame (eλ). We then
have a canonical sesquilinear pairing

C∞(M,ΛpT ⋆M ⊗E) × C∞(M,ΛqT ⋆M ⊗E) −→ C∞(M,Λp+qT ⋆M ⊗ C)(6.3)

(u, v) 7−→ {u, v}

given by

{u, v} =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉, u =
∑

uλ ⊗ eλ, v =
∑

vµ ⊗ eµ.

The connection D is said to be hermitian if it satisfies the additional property

d{u, v} = {Du, v} + (−1)deg u{u,Dv}.

Assuming that (eλ) is orthonormal, one easily checks that D is hermitian if and only
if Γ ⋆ = −Γ . In this case Θ(D)⋆ = −Θ(D), thus

iΘ(D) ∈ C∞(M,Λ2T ⋆M ⊗ Herm(E,E)).

(6.4) Special case. For a bundle E of rank 1, the connection form Γ of a hermitian
connection D can be seen as a 1-form with purely imaginary coefficients Γ = iA (A
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real). Then we have Θ(D) = dΓ = idA. In particular iΘ(E) is a closed 2-form. The
First Chern class of E is defined to be the cohomology class

c1(E)R =
{ i

2π
Θ(D)

}
∈ H2

DR(M,R).

The cohomology class is actually independent of the connection, since any other
connection D1 differs by a global 1-form, D1u = Du + B ∧ u, so that Θ(D1) =
Θ(D) + dB. (Note: the normalizing factor 2π is introduced in such a way that
c1(E)R becomes the image in H2(M,R) of an integral class c1(E) ∈ H2(M,Z) ; see
e.g. (Griffiths-Harris 1978) for details). �

We now concentrate ourselves on the complex analytic case. If M = X is a
complex manifold X , every connection D on a complex C∞ vector bundle E can be
split in a unique way as a sum of a (1, 0) and of a (0, 1)-connection, D = D′ +D′′.
In a local trivialization θ given by a C∞ frame, one can write

D′u ≃θ d′u+ Γ ′ ∧ u,(6.5′)

D′′u ≃θ d′′u+ Γ ′′ ∧ u,(6.5′′)

with Γ = Γ ′+Γ ′′. The connection is hermitian if and only if Γ ′ = −(Γ ′′)⋆ in any or-
thonormal frame. Thus there exists a unique hermitian connection D corresponding
to a prescribed (0, 1) part D′′.

Assume now that the bundle E itself has a holomorphic structure. The unique
hermitian connection for which D′′ is the d′′ operator defined in § 1 is called the
Chern connection of E. In a local holomorphic frame (eλ) of E↾Ω , the metric is given
by the hermitian matrix H = (hλµ), hλµ = 〈eλ, eµ〉. We have

{u, v} =
∑

λ,µ

hλµuλ ∧ vµ = u† ∧Hv,

where u† is the transposed matrix of u, and easy computations yield

d{u, v} = (du)† ∧Hv + (−1)deg uu† ∧ (dH ∧ v +Hdv)

=
(
du+H

−1
d′H ∧ u

)† ∧Hv + (−1)deg uu† ∧ (dv +H
−1
d′H ∧ v)

using the fact that dH = d′H + d′H and H
†

= H. Therefore the Chern connection
D coincides with the hermitian connection defined by

(6.6)

{
Du ≃θ du+H

−1
d′H ∧ u,

D′ ≃θ d′ +H
−1
d′H ∧ • = H

−1
d′(H•), D′′ = d′′.

It is clear from this relations that D′2 = D′′2 = 0. Consequently D2 is given by
to D2 = D′D′′ + D′′D′, and the curvature tensor Θ(D) is of type (1, 1). Since
d′d′′ + d′′d′ = 0, we get

(D′D′′ +D′′D′)u ≃θ H
−1
d′H ∧ d′′u+ d′′(H

−1
d′H ∧ u)

= d′′(H
−1
d′H) ∧ u.



6. Connections and curvature 27

(6.7) Proposition. The Chern curvature tensor Θ(E) := Θ(D) is such that

iΘ(E) ∈ C∞(X,Λ1,1T ⋆X ⊗ Herm(E,E)).

If θ : E↾Ω → Ω×Cr is a holomorphic trivialization and if H is the hermitian matrix
representing the metric along the fibers of E↾Ω, then

iΘ(E) ≃θ i d′′(H
−1
d′H) on Ω. �

Let (z1, . . . , zn) be holomorphic coordinates on X and let (eλ)16λ6r be an
orthonormal frame of E. Writing

iΘ(E) =
∑

16j,k6n, 16λ,µ6r

cjkλµdzj ∧ dzk ⊗ e⋆λ ⊗ eµ,

we can identify the curvature tensor to a hermitian form

(6.8) Θ̃(E)(ξ ⊗ v, ξ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµξjξkvλvµ

on TX ⊗E. This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira (Kodaira 1953), (Nakano 1955) and (Griffiths 1966).

(6.9) Definition. The hermitian vector bundle E is said to be

a) positive in the sense of Nakano if Θ̃(E)(τ, τ) =
∑
cjkλµτjλτkµ > 0 for all non

zero tensors τ =
∑
τjλ∂/∂zj ⊗ eλ ∈ TX ⊗E.

b) positive in the sense of Griffiths if Θ̃(E)(ξ ⊗ v, ξ ⊗ v) > 0 for all non zero
decomposable tensors ξ ⊗ v ∈ TX ⊗E ;

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.
We will write E >Nak 0, E >Nak 0, E >Grif 0, E >Grif 0 to express that E possesses
a smooth hermitian metric with the corresponding (semi)positivity properties.

(6.10) Special case of rank 1 bundles. Assume that E is a line bundle. The
hermitian matrix H = (h11) associated to a trivialization θ : E↾Ω ≃ Ω×C is simply
a positive function which we find convenient to denote by e−ϕ, ϕ ∈ C∞(Ω,R). In
this case Prop. 6.10 shows that the curvature form Θ(E) can be identified with the
(1, 1)-form d′d′′ϕ, and

iΘ(E) = i d′d′′ϕ

is a real (1, 1)-form. Hence E is semipositive (in either Nakano or Griffiths sense)
if and only if ϕ is psh, resp. positive definite if and only if ϕ is strictly psh (in the
sense that i d′d′′ϕ≫ 0).
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7. Bochner-Kodaira-Nakano identity and inequality

We now proceed to explain the basic ideas of the Bochner technique used to prove
existence theorems for solutions of d′′. Let (X,ω) be a Kähler manifold (the as-
sumption that ω is Kähler is not absolutely necessary, but considerably simplifies
the computations). Let (E, h) be a holomorphic vector bundle on X , and let D
be the associated Chern connection. We first prove a lemma which will reduce the
situation to the case of a trivial vector bundle.

(7.1) Lemma. For every point x0 ∈ X and every coordinate system (zj)16j6n at
x0, there exists a holomorphic frame (eλ)16λ6r in a neighborhood of x0 such that

〈eλ(z), eµ(z)〉 = δλµ −
∑

16j,k6n

cjkλµ zjzk +O(|z|3)

where (cjkλµ) are the coefficients of the Chern curvature tensor Θ(E)x0
. Such a

frame (eλ) is called a normal coordinate frame at x0.

Proof. Let (ελ) be a holomorphic frame of E. After replacing (ελ) by suitable lin-
ear combinations with constant coefficients, we may assume that

(
ελ(x0)

)
is an

orthonormal basis of Ex0
. Then the inner products 〈ελ, εµ〉 have an expansion

〈ελ(z), εµ(z)〉 = δλµ +
∑

j

(ajλµ zj + a′jλµ zj) +O(|z|2)

for some complex coefficients ajλµ, a
′
jλµ such that a′jλµ = ajµλ. Set first

ηλ(z) = ελ(z) −
∑

j,µ

ajλµ zj εµ(z).

Then there are coefficients ajkλµ, a
′
jkλµ, a

′′
jkλµ such that

〈ηλ(z), ηµ(z)〉 = δλµ +O(|z|2)
= δλµ +

∑

j,k

(
ajkλµ zjzk + a′jkλµ zjzk + a′′jkλµzjzk

)
+O(|z|3).

The holomorphic frame (eλ) we are looking for is

eλ(z) = ηλ(z) −
∑

j,k,µ

a′jkλµ zjzk ηµ(z).

Since a′′jkλµ = a′jkµλ, we easily find

〈eλ(z), eµ(z)〉 = δλµ +
∑

j,k

ajkλµ zjzk +O(|z|3),

d′〈eλ, eµ〉 = {D′eλ, eµ} =
∑

j,k

ajkλµ zk dzj +O(|z|2),

Θ(E) · eλ = D′′(D′eλ) =
∑

j,k,µ

ajkλµ dzk ∧ dzj ⊗ eµ +O(|z|),
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therefore cjkλµ = −ajkλµ. �

(7.2) Extended commutation relations. Let (X,ω) be a Kähler manifold and
let L be the operators defined by Lu = ω ∧ u and Λ = L⋆. Then

[D′′⋆, L] = iD′,

[Λ,D′′] = −iD′⋆,

[D′⋆, L] = −iD′′,

[Λ,D′] = iD′′⋆.

Proof. Fix a point x0 in X and a coordinate system z = (z1, . . . , zn) centered at x0.
Then Lemma 7.1 shows the existence of a normal coordinate frame (eλ) at x0. Given
any section s =

∑
λ σλ ⊗ eλ ∈ C∞

p,q(X,E), it is easy to check that the operators D,
D′′⋆, . . . have Taylor expansions of the type

Ds =
∑

λ

dσλ ⊗ eλ +O(|z|), D′′⋆s =
∑

λ

d′′⋆σλ ⊗ eλ +O(|z|), . . .

in terms of the scalar valued operators d, d′′⋆, . . .. Here the terms O(|z|) depend on
the curvature coefficients of E. The proof of Th. 7.2 is then reduced to the case of
operators with values in the trivial bundle X×C, which is granted by Theorem 5.11.

�

(7.3) Bochner-Kodaira-Nakano identity. If (X,ω) is Kähler, the complex
Laplace operators ∆′ and ∆′′ acting on E-valued forms satisfy the identity

∆′′ = ∆′ + [iΘ(E), Λ].

Proof. The last equality in (7.2) yields D′′⋆ = −i[Λ,D′], hence

∆′′ = [D′′, D′′⋆] = −i[D′′,
[
Λ,D′]

]
.

By the Jacobi identity we get
[
D′′, [Λ,D′]

]
=

[
Λ, [D′, D′′]] +

[
D′, [D′′, Λ]

]
= [Λ,Θ(E)] + i[D′, D′⋆],

taking into account that [D′, D′′] = D2 = Θ(E). The formula follows. �

Assume that X is compact and that u ∈ C∞(X,Λp,qT ⋆X ⊗E) is an arbitrary
(p, q)-form. An integration by parts yields

〈∆′u, u〉 = ‖D′u‖2 + ‖D′⋆u‖2 > 0

and similarly for ∆′′, hence we get the basic inequalities

‖D′′u‖2 + ‖D′′⋆u‖2 = ‖D′u‖2 + ‖D′⋆u‖2 +

∫

X

〈[iΘ(E), Λ]u, u〉dVω,

‖D′′u‖2 + ‖D′′⋆u‖2 >

∫

X

〈[iΘ(E), Λ]u, u〉dVω.(7.4)

This a priori inequality is known as the Bochner-Kodaira-Nakano inequality (see
(Bochner 1948), (Kodaira 1953), (Nakano 1955)). Thanks to the general functional
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analysis results of § 1 (see (1.3)), this inequality can be used to obtain existence
theorem for solutions of d′′-equations.

Now, one of the main points is to compute the curvature term 〈[iΘ(E), Λ]u, u〉.
Unfortunately, as we will soon see, this term turns out to be rather intricate. Fix
x0 ∈ X and local coordinates (z1, . . . , zn) such that (∂/∂z1, . . . , ∂/∂zn) is an ortho-
normal basis of (T 1,0

X , ω) at x0. One can write

ωx0
= i

∑

16j6n

dzj ∧ dzj ,

iΘ(E)x0
= i

∑

j,k,λ,µ

cjkλµ dzj ∧ dzk ⊗ e⋆λ ⊗ eµ

where (e1, . . . , er) is an orthonormal basis of Ex0
. Let

u =
∑

|J|=p, |K|=q,λ

uJ,K,λ dzJ ∧ dzK ⊗ eλ ∈
(
Λp,qT ⋆X ⊗E

)
x0
.

As Λ = L⋆ =
(
− i

∑
dzk ∧ (dzk ∧ •)

)⋆
= i

∑ ∂

∂zk

( ∂

∂zk
•

)
, a simple compu-

tation gives

Λu = i(−1)p
∑

J,K,λ,s

uJ,K,λ

( ∂

∂zs
dzJ

)
∧

( ∂

∂zs
dzK

)
⊗ eλ,

iΘ(E) ∧ u = i(−1)p
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzj ∧ dzJ ∧ dzk ∧ dzK ⊗ eµ,

[iΘ(E), Λ]u = iΘ(E) ∧ (Λu) − Λ
(
iΘ(E) ∧ u

)

=
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzj ∧
( ∂

∂zk
dzJ

)
∧ dzK ⊗ eµ

+
∑

j,k,λ,µ,J,K

cjkλµ uJ,K,λ dzJ ∧ dzk ∧
( ∂

∂zj
dzK

)
⊗ eµ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ dzJ ∧ dzK ⊗ eµ.

We extend the definition of uJ,K,λ to non increasing multi-indices J = (js),K = (ks)
by deciding that uJ,K,λ = 0 if J or K contains identical components repeated and
that uJ,K,λ is alternate in the indices (js), (ks). Then the above equality can be
written

〈[iΘ(E), Λ]u, u〉 =
∑

j,k,λ,µ,J,S

cjkλµ uJ,jS,λ uJ,kS,µ(7.5)

+
∑

j,k,λ,µ,R,K

cjkλµ ukR,K,λ ujR,K,µ

−
∑

j,λ,µ,J,K

cjjλµ uJ,K,λ uJ,K,µ,

where the sum is extended to all indices 1 6 j, k 6 n, 1 6 λ, µ 6 r and multiindices
|R| = p − 1, |S| = q − 1 (here the notation uJKλ is extended to non necessarily
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increasing multiindices by making it alternate with respect to permutations). It is
usually hard to decide the sign of the curvature term (7.5), except in some special
cases.

The easiest case is when p = n. Then all terms in the second summation of
(7.5) must have j = k and R = {1, . . . , n} r {j}, therefore the second and third
summations are equal. Formula (7.5) takes the simpler form

(7.6) 〈[iΘ(E), Λ]u, u〉 =
∑

j,k,λ,µ,J,S

cjkλµ uJ,jS,λ uJ,kS,µ,

and it follows that [iΘ(E), Λ] is positive on (n, q)-forms under the assumption that
E is positive in the sense of Nakano (we will see later in § 10 refined sufficient
conditions).

Another tractable case is the case where E is a line bundle (r = 1). Indeed,
at each point x ∈ X , we may then choose a coordinate system which diagonalizes
simultaneously the hermitians forms ω(x) and iΘ(E)(x), in such a way that

ω(x) = i
∑

16j6n

dzj ∧ dzj , iΘ(E)(x) = i
∑

16j6n

γjdzj ∧ dzj

with γ1 6 . . . 6 γn. The curvature eigenvalues γj = γj(x) are then uniquely defined
and depend continuously on x. With our previous notation, we have γj = cjj11 and
all other coefficients cjkλµ are zero. For any (p, q)-form u =

∑
uJKdzJ ∧ dzK ⊗ e1,

this gives

〈[iΘ(E), Λ]u, u〉 =
∑

|J|=p, |K|=q

(∑

j∈J

γj +
∑

j∈K

γj −
∑

16j6n

γj

)
|uJK |2

> (γ1 + · · ·+ γq − γn−p+1 − · · · − γn)|u|2.(7.7)

8. L
2 estimates for solutions of d

′′-equations

Our goal here is to prove a central L2 existence theorem, which is essentially due
to (Hörmander 1965, 1966), and (Andreotti-Vesentini 1965). We will only outline
the main ideas, referring e.g. to [ (Demailly 1982) for a more detailed exposition of
the technical situation considered here. We start with a Kähler manifold (X,ω) and
denote by δω the geodesic distance associated with ω. One says that ω is complete
if δω is complete. The proof is based on the following two observations.

(8.1) Hopf-Rinow lemma. If δω is complete, then all δω-balls B(x0, r) are compact
(and conversely). Moreover, under this hypothesis, there exist a sequence of compact
sets Kν with X =

⋃
Kν and Kν ⊂ K◦

ν+1, and a sequence of cut-off functions ψν
such that |dψν |ω 6 1, ψν = 1 on Kν and Suppψν ⊂ Kν+1.

Proof (abridged). Take the infimum r0 of radii r such that the ball B(x0, r) is not
compact, if any ; then B(x0, r0) is non compact (otherwise the local compactness
of X would imply that some slightly larger ball is still compact). Hence, there is a
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sequence of points yν ∈ B(x0, r0) without any accumulation point. For each k, we
can select (along a suitable path from x0 to yν) a point zν,k such that δ(x0, zν,k) 6
r0 − 2−k and δ(zν,k, yν) 6 2−k+1. Since B(x0, r0 − 2−k) is compact, we may assume
after taking subsequences and a diagonal subsequence, that all sequences (zν,k)ν
converge to a point zk ∈ B(x0, r0 − 2−k). One then sees that (yν) is a Cauchy
sequence without any accumulation point, contradiction. Now, the functions (ψν)
can be defined by

ψν(x) = θ
(
3−νd(x0, x)

)

where θ : R → R is a smooth function with −0.9 6 θ′ 6 0 such that θ(t) = 1 for
t 6 1.1, θ(t) = 0 for t > 2.9, if we set Kν = B(x0, 3

ν). As the distance function
x 7→ δω(x0, x) is a 1-Lipschitz function, it is almost everywhere differentiable with
a differential of norm 6 1, hence |dψν | 6 0.9. It still remains to get ψν smooth, and
this can be achieved by taking suitable convolutions with regularizing kernels. �

(8.2) Lemma (Andreotti-Vesentini). Assume that ω is complete. For every mea-
surable form u on X with values in Λp,qT ⋆X ⊗ E such that

a) u ∈ L2 and D′′u ∈ L2, resp.

b) u ∈ L2 and D′′⋆u ∈ L2, resp.

c) u ∈ L2, D′′u ∈ L2 and D′′⋆u ∈ L2,

there exists a sequence of smooth forms uν with compact support, such that uν → u
in L2 in all cases a,b,c) and D′′uν → D′′u in L2 in case a) (resp. D′′⋆uν → D′′⋆u
in L2, resp. D′′uν → D′′u in L2 and D′′⋆uν → D′′⋆u in L2 in cases b) and c)).

Proof. Let ψν be a sequence of cut-off functions as in Lemma 8.1. If u ∈ L2 and
D′′u ∈ L2, then ψνu ∈ L2 and

D′′(ψνu) = ψνD
′′u+ d′′ψν ∧ u ∈ L2.

Moreover ψνD
′′u → D′′u and d′′ψν ∧ u → 0 in L2 by Lebesgue’s bounded conver-

gence theorem (as ψν → 1 and |d′′ψν |ω → 0 pointwise, with 1 as a uniform bound).
The above formula shows that ψνD

′′ = D′′(ψν•) − d′′ψν ∧ •, hence by adjunction

D′′⋆(ψν•) = ψνD
′′⋆ − (gradψν)

0,1
•, D′′⋆(ψνu) = ψνD

′′⋆u− (gradψν)
0,1 u.

We infer as before that D′′⋆(ψνu) → D′′⋆u in L2 as soon as u ∈ L2 and D′′⋆u ∈ L2.
We have thus been able to approximate u by the compactly supported elements
ψνu. In order to get smooth approximants uν , we need only use convolution by
regularizing kernels, i.e., uν = (ψνu) ⋆ ρε (possibly after using a partition of unity
so as to divide the support of ψνu in small pieces contained in coordinate open
sets). �

(8.3) Corollary. If ω is complete, the Von Neumann adjoint (D′′
H)⋆ and the hilber-

tian extension (D′′⋆)H of the formal adjoint coincide.

Proof. The result is equivalent to proving that 〈〈D′′u, v〉〉 = 〈〈u,D′′⋆v〉〉 whenever
u, v ∈ L2 and D′′u ∈ L2, D′′⋆v ∈ L2 (with these operators being computed in the
sense of distributions). However we certainly have the equality
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〈〈D′′uν , vν〉〉 = 〈〈uν , D′′⋆vν〉〉

for any smooth approximants uν , vν of u and v (as in Lemma 8.2 a) and b)). The
desired equality is obtained by taking the limits in L2. �

(8.4) Theorem. Let (X,ω) be a Kähler manifold. Here X is not necessarily
compact, but we assume that the metric ω is complete on X. Let E be a her-
mitian vector bundle of rank r over X, and assume that the curvature opera-
tor A = Ap,qE,ω = [iΘ(E), Λω] is positive definite everywhere on Λp,qT ⋆X ⊗ E, for

some q > 1. Then for any form g ∈ L2(X,Λp,qT ⋆X ⊗ E) satisfying D′′g = 0 and∫
X
〈A−1g, g〉 dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗ E) such that D′′f = g

and ∫

X

|f |2 dVω 6

∫

X

〈A−1g, g〉 dVω.

Proof. Lemma 8.2 c) shows that the basic a priori inequality (7.4) extends to ar-
bitrary forms u such that u ∈ L2, D′′u ∈ L2 and D′′⋆u ∈ L2 . Now, consider the
Hilbert space orthogonal decomposition

L2(X,Λp,qT ⋆X ⊗ E) = KerD′′ ⊕ (KerD′′)⊥,

observing that KerD′′ is weakly (hence strongly) closed. Let v = v1 + v2 be
the decomposition of a smooth form v ∈ Dp,q(X,E) with compact support ac-
cording to this decomposition (v1, v2 do not have compact support in general !).
Since (KerD′′)⊥ ⊂ KerD′′⋆ by duality and g, v1 ∈ KerD′′ by hypothesis, we get
D′′⋆v2 = 0 and

|〈g, v〉|2 = |〈g, v1〉|2 6

∫

X

〈A−1g, g〉 dVω
∫

X

〈Av1, v1〉 dVω

thanks to the Cauchy-Schwarz inequality. The a priori inequality (7.4) applied to
u = v1 yields

∫

X

〈Av1, v1〉 dVω 6 ‖D′′v1‖2 + ‖D′′⋆v1‖2 = ‖D′′⋆v1‖2 = ‖D′′⋆v‖2.

Combining both inequalities, we find

|〈g, v〉|2 6
(∫

X

〈A−1g, g〉 dVω
)
‖D′′⋆v‖2

for every smooth (p, q)-form v with compact support. This shows that we have a
well defined linear form

w = D′′⋆v 7−→ 〈v, g〉, L2(X,Λp,q−1T ⋆X ⊗ E) ⊃ D′′⋆(Dp,q(E)) −→ C

on the range of D′′⋆. This linear form is continuous in L2 norm and has norm 6 C
with

C =
(∫

X

〈A−1g, g〉 dVω
)1/2

.

By the Hahn-Banach theorem, there is an element f ∈ L2(X,Λp,q−1T ⋆X ⊗ E) with
‖f‖ 6 C, such that 〈v, g〉 = 〈D′′⋆v, f〉 for every v, hence D′′f = g in the sense
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of distributions. The inequality ‖f‖ 6 C is equivalent to the last estimate in the
theorem. �

(8.5) Remark. One can always select a solution f satisfying the additional prop-
erty that f ∈ (KerD′′)⊥ (otherwise, just replace f by its orthogonal projection on
(KerD′′)⊥). This solution is clearly unique and is precisely the solution of minimal
L2 norm of the equation D′′f = g. Since (KerD′′)⊥ = ImD′′⋆ ⊂ KerD′′⋆, we see
that the minimal L2 solution satisfies the additional equation

D′′⋆f = 0.

Consequently ∆′′f = D′′⋆D′′f = D′′⋆g. If g is of class C∞, the ellipticity of the
∆′′-operator shows that f is automatically smooth. �

The above L2 existence theorem can be applied in the fairly general context of
weakly (strongly) pseudoconvex manifolds (these manifolds are frequently referred to
as weakly (resp. strongly) 1-complete manifolds in the literature, but we feel that
this terminology is a bit misleading).

(8.6) Definition. A complex manifold X is said to be weakly (resp. strongly) pseu-
doconvex if there exists a smooth psh (resp. strongly psh) exhaustion function ψ on
X (ψ is said to be an exhaustion if for every c > 0 the sublevel set Xc = ψ−1(c)
is relatively compact, i.e. ψ(z) tends to +∞ when z tends to “infinity” in X, with
respect to the filter of complements of compact sets).

For example, every closed analytic submanifold of CN is strongly pseudoconvex
(take ψ(z) = |z|2). Convex open subsets of Cn are likewise strongly pseudoconvex
(take ψ(z) = |z|2+(1−γa(z))−1 where γa is the “gauge function” with center a ∈ Ω,
namely the unique nonnegative function which is equal to 1 on the boundary of Ω
and linear on each half-ray through a ; if γa is not smooth, one can take a small
“convolution” z 7→

∫
ρε(w)γa−w(z)dλ(w) to get a smooth function). Examples of

weakly pseudoconvex manifolds are compact manifolds (just take ψ ≡ 0 in that
case !), products of such with strongly pseudoconvex manifolds, closed submanifolds
of weakly pseudoconvex manifolds, etc. Now, a basic observation is

(8.7) Proposition. Every weakly pseudoconvex Kähler manifold (X,ω) carries a
complete Kähler metric ω̂.

Proof. Let ψ > 0 be a psh exhaustion function and set

ω̂ = ω + id′d′′(χ ◦ ψ) = ω + iχ′ ◦ ψ d′d′′ψ + iχ′′ ◦ ψ d′ψ ∧ d′′ψ

where χ : R → R is a convex increasing function. For any function ρ : R → R, we
get

|d′(ρ ◦ ψ)|
ω̂

6
|ρ′ ◦ ψ|√
χ′′ ◦ ψ .
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If we assume
∫ +∞

0

√
χ′′(t) dt = +∞ (as is the case e.g. if χ(t) = t2 or χ(t) = t− log t

for t > 1), the function ρ(t) =
∫ t
0

√
χ′′(τ) dτ tends to +∞ as t→ +∞, and we have

|d(ρ ◦ ψ)|
ω̂

6
√

2 . By integrating along paths, this bound yields

|ρ ◦ ψ(x) − ρ ◦ ψ(y)| 6
√

2 δ
ω̂
(x, y).

It follows easily from the fact that ψ is an exhaustion that all closed geodesic balls
are compact. Therefore δ

ω̂
is complete. �

If we apply the main L2 existence theorem for the complete Kähler metrics ωε,
we see by passing to the limit that the theorem even applies to the non necessarily
complete metric ω. An important special consequence is the following

(8.8) Theorem. Let (X,ω) be a Kähler manifold with dimX = n (ω is not assumed
to be complete). Assume that X is weakly pseudoconvex. Let E be a hermitian holo-
morphic line bundle and let

γ1(x) 6 . . . 6 γn(x)

be the curvature eigenvalues (i.e. the eigenvalues of iΘ(E) with respect to the met-
ric ω) at every point. Assume that the curvature is positive, i.e. γ1 > 0 every-
where. Then for any form g ∈ L2

loc(X,Λ
n,qT ⋆X ⊗ E), q > 1, satisfying D′′g = 0 and∫

X
〈(γ1 + · · · + γq)

−1|g|2 dVω < +∞, there exists f ∈ L2(X,Λn,q−1T ⋆X ⊗ E) such that
D′′f = g and ∫

X

|f |2 dVω 6

∫

X

(γ1 + · · ·+ γq)
−1|g|2 dVω.

Proof. Indeed, for p = n, Eormula 7.7 shows that

〈Au, u〉 > (γ1 + · · ·+ γq)|u|2,

hence 〈A−1u, u〉 6 (γ1+· · ·+γq)−1|u|2. The assumption that g ∈ L2
loc(X,Λ

n,qT ⋆X⊗E)
instead of g ∈ L2(X,Λn,qT ⋆X ⊗ E) is not a real problem, since we may restrict
ourselves to Xc = {x ∈ X ; ψ(x) < c} ⋐ X where ψ is a psh exhaustion func-
tion on X . Then Xc itself is weakly pseudoconvex (with psh exhaustion func-
tion ψc = 1/(c − ψ)), hence Xc can be equipped with a complete Kähler met-
ric ωc,ε = ω + ε i d′d′′(ψ2

c ). For each (c, ε), Theorem 8.4 yields a solution fc,ε ∈
L2
ωc,ε

(Xc, Λ
n,q−1T ⋆X ⊗ E) of the equation D′′fc,ε = g on Xc, such that

∫

Xc

|fc,ε|2ωc,ε
dVωc,ε

6

∫

Xc

〈(An,qE,ωc,ε
)−1g, g〉ωc,ε

dVωc,ε

A simple computation shows that the integral in the right hand side is monotonic
decreasing with respect to ω, hence

∫

Xc

〈(An,qE,ωc,ε
)−1g, g〉ωc,ε

dVωc,ε
6

∫

Xc

〈(An,qE,ω)−1g, g〉ω dVω

6

∫

X

(γ1 + · · ·+ γq)
−1|g|2 dVω.
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Therefore the solutions fc,ε are uniformly bounded in L2 norm on every compact
subset of X . Since the closed unit ball of an Hilbert space is weakly compact (and
metrizable if the Hilbert space is separable), we can extract a subsequence

fck,εk
→ f ∈ L2

loc

converging weakly in L2 on any compact subset K ⊂ X , for some ck → +∞ and
εk → 0. By the weak continuity of differentiations, we get again in the limitD′′f = g.
Also, for every compact set K ⊂ X we get

∫

K

|f |2ω dVω 6 lim inf
k→+∞

∫

K

|fck,εk
|2ωck,εk

dVωck,εk

by weak L2
loc convergence (closed balls, and more generally closed convex sets, are

closed in the weak topology of any Banach space). Finally, we let K increase to X
and conclude that the desired estimate holds on all of X . �

An important observation is that the above theorem still applies when the
hermitian metric on E is a singular metric with positive curvature in the sense of
currents.

(8.9) Corollary. Let (X,ω) be a Kähler manifold, dimX = n. Assume that X is
weakly pseudoconvex. Let E be a hermitian holomorphic line bundle and let ϕ ∈ L1

loc

be a weight function (no further regularity assumption is made on ϕ). Suppose that

iΘ(E) + id′d′′ϕ > γω

for some positive continuous function γ > 0 on X. Then for any form g ∈
L2

loc(X,Λ
n,qT ⋆X ⊗ E), q > 1, satisfying D′′g = 0 and

∫
X
γ−1|g|2e−ϕ dVω < +∞,

there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗E) such that D′′f = g and

∫

X

|f |2e−ϕ dVω 6
1

q

∫

X

γ−1|g|2e−ϕ dVω.

Proof (sketch) . The general proof is based on regularization techniques for psh
functions (see e.g. (Demailly 1982)). It is technically involved essentially because
the required regularization techniques are difficult in the case of arbitrary manifolds.
We will therefore just explain the proof in the simple case when X = Ω is a weakly
pseudoconvex open set in Cn with a psh exhaustion function ψ. Then the function
ϕε = ϕ ⋆ ρε is well defined, smooth on Ωc = {x ∈ Ω ; ψ(x) < c} for ε small enough.
Moreover, it satisfies a lower bound of the form

id′d′′ϕε > (γω − iΘ(E)) ⋆ ρε > γεω − iΘ(E)

for some continuous function γε converging uniformly to γ on compact subsets of Ω
as ε→ 0. We define new hermitian metrics hε on the line bundle E by multiplying
the original metric h with the weight e−ϕε , i.e., we set hε = h e−ϕε . Then

iΘhε
(E) = iΘh(E) + i d′d′′ϕε > γεω.
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We thus get solutions fc,ε on Xc such that
∫

Xc

|fc,ε|2e−ϕε dVω 6
1

q

∫

Xc

γ−1
ε |g|2e−ϕε dVω

whenever γε > 0 on Xc. As ϕε > ϕ converges to ϕ monotonically, we conclude by
extracting weak limits and applying Lebesgue’s monotone convergence theorem as
before. �

The next corollaries are simple special cases of Hörmander’s estimates which are
especially convenient in the case of bounded or unbounded pseudoconvex domains
in Cn.

(8.10) Corollary. Let Ω be a bounded (weakly) pseudoconvex open set in Cn, and
let ϕ be a psh function on Ω. Then for any form g ∈ L2(Ω,Λp,qT ⋆Ω), q > 1, such
that d′′g = 0, there exists f ∈ L2(Ω,Λp,q−1T ⋆Ω) such that d′′f = g and

∫

X

|f |2e−ϕ dVω 6
e

2q
(diamΩ)2

∫

X

|g|2e−ϕ dVω

(All norms being computed with the standard metric i
2
d′d′′|z|2.)

Proof. This is a special case of Corollary 8.9 when we take E = Ω × C to be the
trivial bundle equipped with the weight function

ϕε(z) = ϕ(z) + ε|z − z0|2, z0 ∈ Ω, ε = 1/(diamΩ)2

instead of ϕ. We then find ϕ 6 ϕε 6 ϕ+1 and id′d′′ϕε > 2εω on Ω. The L2 estimate
follows immediately. �

(8.11) Corollary. Let Ω be a (weakly) pseudoconvex open set in Cn, and let ϕ be
a psh function on Ω. Then for any form g ∈ L2

loc(Ω,Λ
p,qT ⋆Ω), q > 1, satisfying

d′′g = 0 and
∫
Ω
|g|2(1 + |z|2)2−εe−ϕ dV < +∞ for some ε ∈ ]0,+∞[, there exists

f ∈ L2
loc(Ω,Λ

p,q−1T ⋆Ω) such that d′′f = g and
∫

X

|f |2(1 + |z|2)−εe−ϕ dVω 6
1

2εq

∫

X

|g|2(1 + |z|2)2−εe−ϕ dVω

(All norms being computed with the standard metric i
2d

′d′′|z|2.)

Proof. The proof is essentially the same as before, except that we take

ϕε(z) = ϕ(z) + ε log(1 + |z|2)

Then the computations made in example 3.8 b) gives

id′d′′ϕε > ε id′d′′ log(1 + |z|2) >
ε id′d′′|z|2
(1 + |z|2)2 =

2ε

(1 + |z|2)2 ω. �
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9. Some applications of Hörmander’s L
2 estimates

The main applications concern three principal items: vanishing theorems for Dol-
beault cohomology groups, existence and approximation theorems for holomorphic
functions (these aspects are in fact intimately related, as we will see).

We first list four important vanishing theorems.

(9.1) Nakano vanishing theorem (Nakano 1955 for the compact case, Nakano
1973 in general). Let E we a hermitian holomorphic vector bundle on a weakly
pseudoconvex complex manifold X, dimX = n, such that iΘ(E) > 0 in the sense of
Nakano. Then Hn,q(X,E) = 0 for all q > 1.

Proof. Indeed, (7.5) implies that 〈[iΘ(E), Λ]u, u〉 is positive definite. Theorem 8.4
shows that the equation D′′f = g can be solved whenever g is D′′-closed and sat-
isfies a suitable L2-condition (moreover Remark 8.5 implies that f is smooth if g
is smooth). In fact, we want to solve the equation for a given smooth D′′-closed
form, whatever is its growth at infinity. For this, we let ψ be a smooth psh exhaus-
tion function on X and multiply the metric of E by the weight factor e−χ◦ψ where
χ : R → R is a convex increasing function. If the resulting curvature tensor of E is
denoted Θχ(E), we find

iΘχ(E) = iΘ0(E) + i d′d′′(χ ◦ ψ) = iΘ0(E) + i(χ′ ◦ ψ d′d′′ψ + χ′′ ◦ ψ d′ψ ∧ d′′ψ),

and both terms d′d′′ψ and d′ψ ∧ d′′ψ yield nonnegative contributions (in the sense
of Nakano) to the curvature tensor. In particular the resulting curvature operator
Aχ on (n, q)-forms satisfies Aχ > A, A−1

χ 6 A−1 and we get

∫

X

〈A−1
χ g, g〉e−χ◦ψdVω 6

∫

X

〈A−1g, g〉e−χ◦ψdVω < +∞

when χ grows quickly enough [take e.g. χ so that

e−χ(k)

∫

{k6ψ6k+1}

〈A−1g, g〉dVω 6 2−k

for every integer k > 0]. We then get a smooth (minimal) L2 solution f . This implies
Hn,q(X,E) = 0 for q > 1, as desired. �

(9.2) Cartan theorem B (1953). Let X be a strongly pseudoconvex manifold.
Then Hp,q(X,E) = 0 for every holomorphic vector bundle E and every q > 1.

Proof. Fix an arbitrary hermitian metric h on E. By the above formula

iΘχ(E) = iΘ0(E) + i(χ′ ◦ ψ d′d′′ψ + χ′′ ◦ ψ d′ψ ∧ d′′ψ),

we see that the curvature of E can be made positive definite if the first derivative
of χ grows fast enough. We then conclude that Hn,q(X,E) = 0 for q > 1 as for
Theorem 9.1. To obtain the conclusion for (p, q)-forms as well, we just observe that
we have a canonical duality pairing
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ΛkTX ⊗ ΛkT ⋆X −→ C,

hence a (p, q)-form with values in E can be viewed as a section of

Λp,qT ⋆X ⊗ E = Λ0,qT ⋆X ⊗ ΛpT ⋆X ⊗ E = Λn,qT ⋆X ⊗ Ẽ

where Ẽ is the holomorphic vector bundle

Ẽ = ΛnTX ⊗ ΛpT ⋆X ⊗E = Λn−pTX ⊗ E,

through the contraction pairing

ΛnTX ⊗ ΛpT ⋆X
≃−→ Λn−pTX .

Moreover the Dolbeault complex Λp,•T ⋆X⊗E is isomorphic to the Dolbeault complex
Λn,•T ⋆X ⊗ Ẽ, hence

Hp,q(X,E) = Hn,q(X, Ẽ) = 0. �

(9.3) Akizuki-Kodaira-Nakano theorem (1954, also referred to as “precise van-
ishing theorem”). Let E be a hermitian holomorphic line bundle on a compact com-
plex manifold X, dimX = n, such that iΘ(E) > 0. Then the Dolbeault cohomology
groups vanish in the range p+ q > n+ 1, i.e.

Hp,q(X,E) = 0 for p+ q > n+ 1.

Proof. Since iΘ(E) is a closed positive (1, 1)-form, one can select ω = iΘ(E) as
the basic Kähler metric on X (in particular, X is automatically Kähler). Then the
eigenvalues of iΘ(E) with respect to ω are

γ1 = · · · = γn = 1,

and (7.7) implies

〈[iΘ(E), Λ]u, u〉 > (q − (n− p))|u|2 = (p+ q − n)|u|2.

We then get the conclusion from Theorem 8.4. �

(9.4) Kodaira-Serre vanishing theorem (1953, “unprecise vanishing theorem”).
Let E we a hermitian holomorphic line bundle on a compact complex manifold X
such that iΘ(E) > 0. Then for every holomorphic vector bundle F , there exists an
integer k0 = k0(F ) such that

Hp,q(X,E⊗k ⊗ F ) = 0 for all p > 0, q > 1, k > k0.

Proof. If p = n, we reduce (9.4) to the Nakano vanishing theorem. In fact, for any
pair of hermitian holomorphic vector bundles F , G, the Chern connections of F , G
and F ⊗G are related by

DF⊗G(u⊗ v) = DFu⊗ v + (−1)deg uu⊗DGv,
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and this implies easily

(9.5) Θ(F ⊗G) = Θ(F ) ⊗ IdG+IdF ⊗G.

In particular, as E is a line bundle, we have Θ(E⊗k) = k Θ(E) (with the identifica-
tion End(E) = C), hence

Θ(E⊗k ⊗ F ) = kΘ(E) ⊗ IdF +Θ(F ),

again with the identifications End(E) = End(E⊗k) = C. In other words, the asso-
ciated hermitian form of TX ⊗ F satisfies

Θ̃(E⊗k ⊗ F )(ξ ⊗ v, ξ ⊗ v) = k Θ̃(F )(ξ, ξ)|v|2 + Θ̃(F )(ξ ⊗ v, ξ ⊗ v)

Θ̃(E⊗k ⊗ F )(τ, τ) > k|τ |2 + Θ̃(F )(τ, τ)

for all elements ξ ⊗ v, τ ∈ TX ⊗ F , when ω = iΘ(E) is taken as the Kähler metric
on X . Hence E⊗k ⊗ F is Nakano positive for k > k0 large enough, and we infer
Hn,q(X,E⊗k ⊗ F ) = 0 for q > 1 and k > k0. The case of (p, q)-cohomology groups
is obtained by replacing F with

F̃ = Λn−pTX ⊗ F

as in the proof of 9.2. �

The next application of L2 estimates is the solution of the so-called Levi prob-
lem. In vague terms, the Levi problem asserts that the existence of holomorphic
functions on a complex manifold X is intimately related to its pseudoconvexity
properties. Complex analysts became aware of the question with the foundational
paper of (E.E. Levi, 1910). The final solution for domains of Cn has been finally
settled in three independent papers by (Oka 1953), (Norguet 1954) and (Bremer-
mann, 1954). The generalization to complex manifolds is due to (Grauert, 1958); it
gives a characterization of the so called “Stein manifolds”, which were introduced
by K. Stein and H. Cartan in the early fifties.

(9.6) Concept of holomorphic convexity. Let X be a complex manifold and let

A ⊂ X be a closed subset. The holomorphic hull ÂO(X) is defined to be

ÂO(X) =
{
x ∈ X ; |f(x)| 6 sup

A
|f |

}
.

The subset A is said to be holomorphically convex (in X) if ÂO(X) = A. The mani-

fold X is said to be holomorphically convex if K̂ is compact for every compact set K,
or equivalently, if X can be exhausted by holomorphically convex compact sets Kν

(we say that X is “exhausted” by the Kν’s if X =
⋃
Kν and Kν ⊂ K◦

ν+1 for all ν).

Observe that ÂO(X) is a closed subset of X and that
̂̂
AO(X) = ÂO(X), i.e.,

ÂO(X) is holomorphically convex in X . Hence, if X is holomorphically convex, we
get inductively an exhausting and strictly increasing sequence of holomorphically
convex compact sets Kν by putting
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Kν = (̂Sν)O(X), Sν = a compact neighborhood of Kν−1 ∪ Lν ,

where Lν is any exhausting sequence of compact sets.

A similar concept of “pseudoconvex hull” ÂP∞(X) with respect to the class
P∞(X) = Psh(X) ∩ C∞(X) exists, namely one can set

(9.7) ÂP∞(X) =
{
x ∈ X ; ϕ(x) 6 sup

A
ϕ
}
.

Since ϕ = |f |2 ∈ P∞(X) for every f ∈ O(X), the inclusion ÂP∞(X) ⊂ ÂO(X) always
holds. It is not hard to see that a manifold X is weakly pseudoconvex if and only if
K̂P∞(X) is compact for every compact set K in X ; in fact if ψ is a psh exhaustion
function, then Kν = {x ∈ X ; ψ(x) 6 ν} is an exhausting sequence of pseudoconvex

compact sets; conversely if such a sequence Kν with ̂(Kν)P∞(X) = Kν exists, we
define a psh exhaustion ψ by putting

ψ =
+∞∑

ν=0

2νχ ◦ ϕν

where χ : R → R is a smooth convex increasing function such that χ(t) = 0 for t 6 0,
χ(t) > 1 for t > 1, and ϕν ∈ P∞(X) is chosen such that ϕν 6 0 on Kν and ϕν > 1
on Kν+2 r K◦

ν+1 (a finite “regularized” maximum ϕν = (max ⋆ρε)(ϕν,1, . . . , ϕν,N )
with ϕν,j(xj) > 1 > 0 > supKν

ϕν,j at sufficiently many points xj ∈ Kν+2 rK◦
ν+1

will do by the Borel-Lebesgue lemma).

(9.8) Stein manifolds. Let X be a n-dimensional complex manifold. Then X is
said to be a Stein manifold if it satisfies the following two properties.

a) X is holomorphically convex ;

b) O(X) locally separates points, in the sense that every point x ∈ X has a
neighborhood V such that for any y ∈ V r {x} there exists f ∈ O(X) with
f(y) 6= f(x).

We first prove the “easy direction” in the Levi problem, namely the implication

Stein ⇒ strongly pseudoconvex,

which depends only on elementary considerations about psh functions. The converse
(deeper) implication ⇐ can be proved using L2 estimates.

(9.9) Theorem. Let X be a complex manifold.

a) If X is holomorphically convex, then X is weakly pseudoconvex.

b) If O(X) satisfies the local separation property 9.8 b), there exists a smooth non-
negative strictly plurisubharmonic function u ∈ Psh(X).

c) If X is Stein, then X is strongly pseudoconvex.
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Proof. a) If X is holomorphically convex, we have seen that there is an exhausting
sequence (Kν) of holomorphically convex compact sets of X . These compact sets

then satisfy ̂(Kν)O(X) = ̂(Kν)P∞(X) = Kν , hence X is weakly pseudoconvex.

b) Fix x0 ∈ X . We first show that there exists a smooth nonnegative function u0 ∈
Psh(X) which is strictly plurisubharmonic on a neighborhood of x0. Let (z1, . . . , zn)
be local analytic coordinates centered at x0, and if necessary, replace zj by λzj so
that the closed unit ball B = {∑ |zj |2 6 1} is contained in the neighborhood V ∋ x0

on which (6.16 b) holds. Then, for every point y ∈ ∂B, there exists a holomorphic
function f ∈ O(X) such that f(y) 6= f(x0). Replacing f with λ(f − f(x0)), we
can achieve f(x0) = 0 and |f(y)| > 1. By compactness of ∂B, we find finitely many
functions f1, . . . , fN ∈ O(X) such that v0 =

∑ |fj |2 satisfies v0(x0) = 0, while
v0 > 1 on ∂B. Now, we set

u0(z) =

{
v0(z) on X rB,
maxε{v0(z), (|z|2 + 1)/3} on B.

where maxε = max(•, •) ⋆ρε is a regularized max function in R2. Then u0 is smooth
and plurisubharmonic, coincides with v0 near ∂B and with (|z|2 + 1)/3 on a neigh-
borhood of x0. We can cover X by countably many neighborhoods (Vj)j>1, for which
we have a smooth plurisubharmonic functions uj ∈ Psh(X) such that uj is strictly
plurisubharmonic on Vj . Then select a sequence εj > 0 converging to 0 so fast that
u =

∑
εjuj ∈ C∞(X). The function u is nonnegative and strictly plurisubharmonic

everywhere on X .

c) Select ψ as in a) and u as in b). Then ψ+ u is a strictly psh exhaustion function
of X . �

Conversely, we have the following existence theorem derived from L2 estimates.

(9.10) Theorem. Let X be a strongly pseudonconvex manifold. For every lo-
cally finite sequence (xν) of distinct points of X and every sequence of polynomials
Pν(z

ν) relative to local coordinates zν = (zν1 , . . . , z
ν
n) around xν (with given bounds

degPν 6 mν for the degrees), there is a global holomorphic function f ∈ O(X) such
that the Taylor expansion of order mν of f at xν coincides with Pν .

Proof. The main idea is to use a L2 estimate with a weight assuming a logarithmic
pole at each point xν . Let Uν be the open coordinate patch where zν is defined and
let θν ∈ D(Uν) be a cut-off function such that θν = 1 on a neighborhood of xν and
0 6 θν 6 1. Then

ϕ0 =
∑

ν

2(n+mν)θν log |znu|

is psh in a neighborhood of xν and ϕ0 is smooth on X r {xν}. It follows that
the negative part of i d′d′′ϕ0 is locally bounded below everywhere. Hence, if ψ is
a strictly psh exhaustion function on X , there exists a convex increasing function
χ1 : R → R such that ϕ1 = ϕ0 + χ1 ◦ ψ is psh (with an arbitrarily large positive
preassigned Hessian form i d′d′′ϕ1). Now, the function F =

∑
θνPν is a smooth

function which has the prescribed Taylor expansions at all points xν . The idea is to
solve the equation
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d′′u = v := d′′F

where v is a (0, 1)-form with complex values, that is, a (n, 1)-form with values in
ΛnTX . We assume that iΘ(ΛnTX)+ i d′d′′ϕ1 > ω := i d′d′′ψ. Then, for every convex
increasing function χ and ϕ = ϕ1 + χ ◦ ψ = ϕ0 + (χ+ χ1) ◦ ψ, we get a solution u
such that
∫

X

|u|2e−ϕdVω 6

∫

X

|v|2e−ϕdVω =
∑

ν

∫

Uν

|Pν |2|d′′θν |2e−2(n+mν )θν log |zν |+χ◦ψdVω,

provided that the right hand side is convergent. However, each term in the sum is
convergent since the support of d′′θν avoids a neighborhood of xν , and the global
convergence is easily guaranteed if χ grows fast enough. As d′′ is elliptic in bidegree
(0, 0), we get a smooth solution u such that

∫

Uν

|u|2
|zν |2(n+mν)

dVω < +∞

for each ν. From this one concludes that Dαu(xν) = 0 for |α| 6 mν , hence f = F−u
is a holomorphic function on X with Pν as its Taylor expansion of order mν at xν .

�

(9.11) Corollary. Every strongly pseudoconvex manifold X is Stein. Moreover, the
functions in O(X) separate any pair of distinct points in X, and for x0 ∈ X given,
there are functions f1, . . . , fn ∈ O(X) such that (f1, . . . , fn) is a local coordinate
system at x0.

Proof. Let X be a complex manifold. The holomorphic convexity property of X is
formally equivalent to the following assertion: for every sequence (xν) in X , there
exists a holomorphic function f ∈ O(X) such that (f(xν)) is unbounded (the equiv-
alence can be seen more or less by the same argument as in 9.9 a)). By Theorem 9.10
we need only take a function f which interpolates the values f(xν) = ν. The prop-
erty of local separation of points 9.9 b) is also clear, as well as the stronger properties
asserted in Corollary 9.11. �

We end this section by proving a general n-dimensional version of the Runge
theorem.

(9.12) Runge approximation theorem. Let E be a holomorphic vector bundle
on a Stein manifold X. Let ϕ be a psh exhaustion of X and let

K = Kc = {x ∈ X ; ϕ(x) 6 c}

for some c (ϕ need not be strictly psh). Then every holomorphic section g defined
on a neighborhood of K is a uniform limit on a neighborhood of K of a sequence of
global holomorphic sections fν of E over X.

Proof. Fix ci, i = 1, 2, 3, 4 such that c < c1 < c2 < c3 < c4 and g is holomorphic
on Ωc4 = {x ∈ X ; ϕ(x) 6 c4}. Fix a cut-off function θ ∈ D(X) with Supp θ ⊂ Ωc4
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and θ = 1 on Ωc3 . We view gθ as a smooth function on X (by defining it to be 0 on
X rΩc4), and solve the equation

d′′u = v := d′′(gθ) = g d′′θ

with a weight of the form ϕν = νϕ+χ◦ψ, where ψ is a strictly psh exhaustion func-
tion and χ a convex increasing function such that the resulting curvature eigenvalues
are > 1. We then get a solution u = uν such that

∫

X

|uν |2e−νϕ−χ◦ψdVω 6

∫

X

|g|2|d′′θ|2e−νϕ−χ◦ψdVω.

As d′′θ has support in Ωc4 r Ωc3 ⊂ {ϕ > c3}, the right hand side is bounded by
C e−νc3 . From the L2 estimate, we infer

∫

Ωc2

|uν |2dVω 6 C′eνc2
∫

Ωc2

|uν |2e−νϕ−χ◦ψdVω 6 C′′eνc2e−νc3 −→
ν→+∞

0.

Finally, as d′′uν = g d′′θ = 0 on Ωc3 , the function |uν |2 is plurisubharmonic on Ωc2 .
By the mean value inequality, we see that uν converges uniformly to 0 on Ωc1 . Hence
fν = gθ − uν ∈ O(X) converges uniformly to f on Ωc1 . �

(9.13) Remark. The assumption that K = {ψ 6 c} for some psh exhaustion

function ψ is satisfied if and only if K̂P∞(X) = K (in which case we say that K is
pseudoconvex). In fact, we have the following lemma.

(9.14) Lemma. Let X be a weakly (resp. strongly) pseudoconvex manifold with a
weakly (strictly) psh exhaustion function ψ0. If K ⊂ X is a pseudoconvex compact

set, i.e., if K̂P∞(X) = K, there exists an exhaustion function ϕ ∈ P∞(X) such that

a) ϕ = 0 on X ;

b) ϕ > 0 and ϕ is weakly (strictly) psh on X rK.

Proof. Let χ : R → R be a convex increasing with χ(t) = 0 for t 6 0 and χ(t) > 0
for t > 0. For any x /∈ K, there is a function ϕx ∈ P∞(X) such that

ϕx(x) > 0 > sup
K
ϕx.

We set ux = χ(ϕx + δψ0) (δ > 0 small), so as to get a nonnegative function ux ∈
P∞(X) such that ux = 0 on K and ux > 0 (strictly psh) on a neighborhood Vx
of x. Then X rK can be covered by countably many such neighborhoods Vxν

and
we get a function ϕ with the required properties by setting

ϕ = χ(ψ0 − C) +
∑

ενuxν

for some large constant C. �

(9.15) Corollary. If X is strongly pseudoconvex, then

K̂P∞(X) = K̂O(X)
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for every compact set K ⊂ X.

Proof. Set K̃ = K̂P∞(X). Then K̃ is pseudoconvex and we thus get by Lemma 9.14
a function ϕ ∈ P∞(X) with ϕ = 0 on K and ϕ > 0 strictly psh on X rK. Fix an
arbitrary point x0 ∈ X r K, a coordinate system z = (z1, . . . , zn) centered at x0,
and a cut-off function θ equal to 1 on a neighborhood of x0, with support disjoint
from K. For 0 < ε≪ 1, the function

ϕε(x) = ϕ(x) + εθ(x) log(|z|2 + e−1/ε2)

is psh everywhere and ϕε(x0) = ϕ(x0) − 1/ε < 0. Thus Kε = {ϕε 6 0} is equal to
K union a small neighborhood V ε of x0 disjoint from K. We define a holomorphic
function g on a neighborhood of Kε by taking g = 0 on a neighborhood of K and
g = 1 on a neighborhood of V ε. The Runge approximation theorem provides a
global holomorphic function f ∈ O(X) such that |f − g| 6 1/3 on Kε. We thus get

|f | 6 1/3 on K and |f(x0)| > 2/3. This implies that every x0 /∈ K̃ is not either in

the holomorphic hull of K̃, hence K̃ is holomorphically convex. From this we infer

K̂O(X) ⊂ (̂K̃)O(X) = K̃ = K̂P∞(X),

and the opposite inclusion is clear. �

10. Further preliminary results of hermitian differential

geometry

In the course of the proof of Skoda’s L2 estimates, we will have to deal with dual
bundles and exact sequences of hermitian vector bundles. The following fundamental
differential geometric lemma will be needed.

(10.1) Lemma. Let E be a hermitian holomorphic vector bundle of rank r on
a complex n-dimensional manifold X. Then the Chern connections of E and E⋆

are related by Θ(E⋆) = −tΘ(E) where t denotes transposition. In other words, the

associated hermitian forms Θ̃(E) and Θ̃(E⋆) are related by

Θ̃(E)(τ, τ) =
∑

16j,k6n, 16λ,µ6r

cjkλµτjλτkµ, τ =
∑

j,λ

τj,λ
∂

∂zj
⊗ eλ,

Θ̃(E⋆)(τ, τ) = −
∑

16j,k6n, 16λ,µ6r

cjkµλτ
⋆
jλτ

⋆
kµ, τ⋆ =

∑

j,λ

τ⋆j,λ
∂

∂zj
⊗ e⋆λ.

In particular E >Grif 0 if and only if E⋆ <Grif 0.

Notice that the corresponding duality statement for Nakano positivity is wrong
(because of the twist of indices, which is fortunately irrelevant in the case of decom-
posable tensors).

Proof. The Chern connections of E and E⋆ are related by the Leibnitz rule
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d(σ ∧ s) = (DE⋆σ) ∧ s+ (−1)deg σσ ∧DEs

whenever s, σ are forms with values in E, E⋆ respectively, and σ ∧ s is computed
using the pairing E⋆ ⊗ E → C. If we differentiate a second time, this yields the
identity

0 = (D2
E⋆σ) ∧ s+ σ ∧D2

Es,

which is equivalent to the formula Θ(E⋆) = −tΘ(E). All other assertions follow. �

(10.2) Lemma. Let

0 −→ S
j−→ E

g−→ Q −→ 0

be an exact sequence of holomorphic vector bundles. Assume that E is equipped
with a smooth hermitian metric, and that S and Q are endowed with the metrics
(restriction-metric and quotient-metric) induced by that of E. Then

(10.3) j⋆ ⊕ g : E → S ⊕Q, j ⊕ g⋆ : S ⊕Q→ E

are C∞ isomorphisms of bundles, which are inverse of each other. In the C∞-
splitting E ≃ S ⊕Q, the Chern connection of E admits a matrix decomposition

(10.4) DE =

(
DS −β⋆
β DQ

)

in terms of the Chern connections of S and Q, where

β ∈ C∞
(
X,Λ1,0T ⋆X ⊗ Hom(S,Q)

)
, β⋆ ∈ C∞

(
X,Λ0,1T ⋆X ⊗ Hom(Q, S)

)
.

The form β is called the second fundamental form associated with the exact sequence.
It is uniquely defined by each of the two formulas

(10.5) D′
Hom(S,E)j = g⋆ ◦ β, j ◦ β⋆ = −D′′

Hom(Q,E)g
⋆.

We have D′
Hom(S,Q)β = 0, D′′

Hom(Q,S)β
⋆ = 0, and the curvature form of E splits as

(10.6) Θ(E) =

(
Θ(S) − β⋆ ∧ β −D′

Hom(Q,S)β
⋆

D′′
Hom(S,Q)β Θ(Q) − β ∧ β⋆

)
,

and the curvature forms of S and Q can be expressed as

(10.7) Θ(S) = Θ(E)↾S + β⋆ ∧ β, Θ(Q) = Θ(E)↾Q + β ∧ β⋆,

where Θ(E)↾S, Θ(E)↾Q stand for j⋆ ◦Θ(E) ◦ j and g ◦Θ(E) ◦ g⋆.

Proof. Because of the uniqueness property of Chern connections, it is easy to see
that we have a Leibnitz formula

DF (f ∧ u) = (DHom(E,F )f) ∧ u+ (−1)deg ff ∧DEu

whenever u, f are forms with values in hermitian vector bundles E and Hom(E, F )
(where Hom(E, F ) = E⋆ ⊗ F is equipped with the tensor product metric and f ∧ u
incorporates the evaluation mapping Hom(E, F ) ⊗ E → F ). In our case, given a
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form u with values in E, we write u = juS + g⋆uQ where uS = j⋆u and uQ = gu
are the projections of u on S and Q. We then get

DEu = DE(juS + g⋆uQ)

= (DHom(S,E)j) ∧ uS + j ·DSuS + (DHom(Q,E)g
⋆) ∧ uQ + g⋆ ·DQuQ.

Since j is holomorphic as well as j⋆ ◦ j = IdS, we find D′′
Hom(S,E)j = 0 and

D′′
Hom(S,S) IdS = 0 = D′′

Hom(E,S)j
⋆ ◦ j.

By taking the adjoint, we see that j⋆ ◦ D′
Hom(S,E)j = 0, hence D′

Hom(S,E)j takes
values in g⋆Q and we thus have a unique form β as in the Lemma such that
D′

Hom(S,E)j = g⋆ ◦ β. Similarly, g and g ◦ g⋆ = IdQ are holomorphic, thus

D′′
Hom(Q,Q) IdQ = 0 = g ◦D′′

Hom(Q,E)g
⋆

and there is a form γ ∈ C∞
(
X,Λ0,1T ⋆X⊗Hom(Q, S)

)
such thatD′′

Hom(Q,E)g
⋆ = j ◦ γ.

By adjunction, we get D′
Hom(E,Q)g = γ⋆ ◦ j⋆ and D′′

Hom(E,Q)g = 0 implies

D′
Hom(Q,E)g

⋆ = 0. If we differentiate g ◦ j = 0 we then get

0 = D′
Hom(E,Q)g ◦ j + g ◦D′

Hom(S,E)j = γ⋆ ◦ j⋆ ◦ j + g ◦ g⋆ ◦ β = γ⋆ + β,

thus γ = −β⋆ and D′′
Hom(Q,E)g

⋆ = −j ◦ β⋆. Combining all this, we get

DEu = g⋆β ∧ uS + j ·DSuS − jβ⋆ ∧ uQ + g⋆ ·DQuQ
= j

(
DSuS − β⋆ ∧ uQ

)
+ g⋆

(
β ∧ uS +DQuQ

)
,

and the asserted matrix decomposition formula follows. By squaring the matrix, we
get

D2
E =

(
D2
S − β⋆ ∧ β −DS ◦ β⋆ − β⋆ ◦DQ

DQ ◦ β + β ◦DS D2
Q − β ∧ β⋆

)
.

As DQ ◦ β + β ◦ DS = DHom(S,Q)β and DS ◦ β⋆ + β⋆ ◦ DQ = DHom(Q,S)β
⋆ by

the Leibnitz rule, the curvature formulas follow (observe, since the Chern curvature
form is of type (1, 1), that we must have D′

Hom(S,Q)β = 0, D′′
Hom(Q,S)β

⋆ = 0). �

(10.8) Corollary. Let 0 → S → E → Q → 0 be an exact sequence of hermitian
vector bundles. Then

a) E >Grif 0 =⇒ Q >Grif 0,

b) E 6Grif 0 =⇒ S 6Grif 0,

c) E 6Nak 0 =⇒ S 6Nak 0,

and analogous implications hold true for strict positivity.

Proof. If β is written
∑
dzj ⊗ βj , βj ∈ Hom(S,Q), then formulas (10.7) yield

iΘ(S) = iΘ(E)↾S −
∑

dzj ∧ dzk ⊗ β⋆kβj ,

iΘ(Q) = iΘ(E)↾Q +
∑

dzj ∧ dzk ⊗ βjβ
⋆
k .
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Since β · (ξ ⊗ s) =
∑
ξjβj · s and β⋆ · (ξ ⊗ s) =

∑
ξkβ

⋆
k · s we get

Θ̃(S)(ξ ⊗ s, ξ′ ⊗ s′) = Θ̃(E)(ξ ⊗ s, ξ′ ⊗ s′) −
∑

j,k

ξjξ
′

k〈βj · s, βk · s′〉,

Θ̃(S)(u, u) = Θ̃(E)(u, u)− |β · u|2,

Θ̃(Q)(ξ ⊗ s, ξ′ ⊗ s′) = Θ̃(E)(ξ ⊗ s, ξ′ ⊗ s′) +
∑

j,k

ξjξ
′

k〈β⋆k · s, β⋆j · s′〉,

Θ̃(Q)(ξ ⊗ s, ξ ⊗ s) = Θ̃(E)(ξ ⊗ s, ξ ⊗ s) = |β⋆ · (ξ ⊗ s)|2. �

Next, we need positivity properties which somehow interpolate between Grif-
fiths and Nakano positivity. This leads to the concept of m-tensor positivity.

(10.9) Definition. Let T and E be complex vector spaces of dimensions n, r re-
spectively, and let Θ be a hermitian form on T ⊗E.

a) A tensor u ∈ T ⊗ E is said to be of rank m if m is the smallest > 0 integer
such that u can be written

u =
m∑

j=1

ξj ⊗ sj , ξj ∈ T, sj ∈ E.

b) Θ is said to be m-tensor positive (resp. m-tensor semi-positive) if Θ(u, u) > 0
(resp. Θ(u, u) > 0) for every tensor u ∈ T ⊗ E of rank 6 m, u 6= 0. In this
case, we write

Θ >m 0 (resp. Θ >m 0).

We say that a hermitian vector bundle E is m-tensor positive if Θ̃(E) >m 0.
Griffiths positivity corresponds to m = 1 and Nakano positivity to m > min(n, r).
Recall from (7.6) that we have

〈[iΘ(E), Λ]u, u〉 =
∑

|S|=q−1

∑

j,k,λ,µ

cjkλµ ujS,λukS,µ

for every (n, q)-form u =
∑
uK,λ dz1 ∧ . . . ∧ dzn ∧ dzK ⊗ eλ with values in E.

Since ujS,λ = 0 for j ∈ S, the rank of the tensor (ujS,λ)j,λ ∈ Cn ⊗ Cr is in fact
6 min{n− q + 1, r}. We obtain therefore:

(10.10) Lemma. Assume that E >m 0 (resp. E >m 0). Then the hermitian oper-
ator [iΘ(E), Λ] is semipositive (resp. positive definite) on Λn,qT ⋆X ⊗ E for q > 1
and m > min{n− q + 1, r}.

The Nakano vanishing theorem can then be improved as follows.

(10.11) Theorem. Let X be a weakly pseudoconvex Kähler manifold of dimension

n and let E a hermitian vector bundle of rank r such that Θ̃(E) >m 0 over X. Then
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Hn,q(X,E) = 0 for q > 1 and m > min{n− q + 1, r}.

We next study some important relations which exist between the various posi-
tivity concepts. Our starting point is the following result of (Demailly-Skoda 1979).

(10.12) Theorem. For any hermitian vector bundle E,

E >Grif 0 =⇒ E ⊗ detE >Nak 0.

To prove this result, we use the fact that

(10.13) Θ(detE) = TrE Θ(E)

where TrE : Hom(E,E) → C is the trace map, together with the identity

Θ(E ⊗ detE) = Θ(E) + TrE(Θ(E)) ⊗ IdE ,

which is a special case of formula (9.5). Formula (10.13) is easily obtained by differ-
entiating twice a wedge product, according to the formula

DΛpE(s1 ∧ · · · sp) =

p∑

j=1

(−1)deg s1+···+deg sj−1s1 ∧ · · · ∧ sj−1 ∧DEsj ∧ · · · ∧ sp.

We then get Θ(E⊗detE) = Θ(E)+TrE Θ(E)⊗ IdE . The corresponding hermitian
forms on TX ⊗ E are thus related by

Θ̃(E ⊗ detE) = Θ̃(E) + TrE Θ̃(E) ⊗ h,

where h denotes the hermitian metric on E and TrE Θ̃(E) is the hermitian form on
TX defined by

TrE Θ̃(E)(ξ, ξ) =
∑

16λ6r

Θ̃(E)(ξ ⊗ eλ, ξ ⊗ eλ), ξ ∈ TX ,

for any orthonormal frame (e1, . . . , er) of E. Theorem 10.12 is now a consequence
of the following simple property of hermitian forms on a tensor product of complex
vector spaces.

(10.14) Proposition. Let T,E be complex vector spaces of respective dimensions
n, r, and h a hermitian metric on E. Then for every hermitian form Θ on T ⊗ E

Θ >Grif 0 =⇒ Θ + TrE Θ ⊗ h >Nak 0.

We first need a lemma analogous to Fourier inversion formula for discrete
Fourier transforms.

(10.15) Lemma. Let q be an integer > 3, and xλ, yµ, 1 6 λ, µ 6 r, be complex
numbers. Let σ describe the set Urq of r-tuples of q-th roots of unity and put
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x′σ =
∑

16λ6r

xλσλ, y′σ =
∑

16µ6r

yµσµ, σ ∈ Urq .

Then for every pair (α, β), 1 6 α, β 6 r, the following identity holds:

q−r
∑

σ∈Ur
q

x′σy
′
σσασβ =





xαyβ if α 6= β,

∑

16µ6r

xµyµ if α = β.

Proof. The coefficient of xλyµ in the summation q−r
∑
σ∈Ur

q
x′σy

′
σσασβ is given by

q−r
∑

σ∈Ur
q

σασβσλσµ.

This coefficient equals 1 when the pairs {α, µ} and {β, λ} are equal (in which case
σασβσλσµ = 1 for any one of the qr elements of Urq ). Hence, it is sufficient to prove
that ∑

σ∈Ur
q

σασβσλσµ = 0

when the pairs {α, µ} and {β, λ} are distinct.

If {α, µ} 6= {β, λ}, then one of the elements of one of the pairs does not belong
to the other pair. As the four indices α, β, λ, µ play the same role, we may suppose
for example that α /∈ {β, λ}. Let us apply to σ the substitution σ 7→ τ , where τ is
defined by

τα = e2πi/qσα, τν = σν for ν 6= α.

We get

∑

σ

σασβσλσµ =
∑

τ

=





e2πi/q
∑

σ

if α 6= µ,

e4πi/q
∑

σ

if α = µ,

Since q > 3 by hypothesis, it follows that
∑

σ

σασβσλσµ = 0.

Proof of Proposition 10.14. Let (tj)16j6n be a basis of T , (eλ)16λ6r an orthonormal
basis of E and ξ =

∑
j ξjtj ∈ T , u =

∑
j,λ ujλ tj⊗eλ ∈ T ⊗E. The coefficients cjkλµ

of Θ with respect to the basis tj ⊗ eλ satisfy the symmetry relation cjkλµ = ckjµλ,
and we have the formulas

Θ(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ,

TrE Θ(ξ, ξ) =
∑

j,k,λ

cjkλλξjξk,

(Θ + TrE Θ ⊗ h)(u, u) =
∑

j,k,λ,µ

cjkλµujλukµ + cjkλλujµukµ.
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For every σ ∈ Urq (cf. Lemma 10.15), put

u′jσ =
∑

16λ6r

ujλσλ ∈ C,

ûσ =
∑

j

u′jσtj ∈ T , êσ =
∑

λ

σλeλ ∈ E.

Lemma 10.15 implies

q−r
∑

σ∈Ur
q

Θ(ûσ ⊗ êσ, ûσ ⊗ êσ) = q−r
∑

σ∈Ur
q

cjkλµu
′
jσu

′
kσσλσµ

=
∑

j,k,λ6=µ

cjkλµujλukµ +
∑

j,k,λ,µ

cjkλλujµukµ.

The Griffiths positivity assumption shows that the left hand side is > 0, hence

(Θ + TrE Θ ⊗ h)(u, u) >
∑

j,k,λ

cjkλλujλukλ > 0

with strict positivity if Θ >Grif 0 and u 6= 0. �

We now relate Griffiths positivity to m-tensor positivity. The most useful result
is the following

(10.16) Proposition. Let T be a complex vector space and (E, h) a hermitian
vector space of respective dimensions n, r with r > 2. Then for any hermitian form
Θ on T ⊗ E and any integer m > 1

Θ >Grif 0 =⇒ mTrE Θ ⊗ h−Θ >m 0.

Proof. Let us distinguish two cases.

a) m = 1. Let u ∈ T ⊗E be a tensor of rank 1. Then u can be written u = ξ1 ⊗ e1
with ξ1 ∈ T, ξ1 6= 0, and e1 ∈ E, |e1| = 1. Complete e1 into an orthonormal basis
(e1, . . . , er) of E. One gets immediately

(TrE Θ ⊗ h)(u, u) = TrE Θ(ξ1, ξ1) =
∑

16λ6r

Θ(ξ1 ⊗ eλ, ξ1 ⊗ eλ)

> Θ(ξ1 ⊗ e1, ξ1 ⊗ e1) = Θ(u, u).

b) m > 2. Every tensor u ∈ T ⊗ E of rank 6 m can be written

u =
∑

16λ6q

ξλ ⊗ eλ , ξλ ∈ T,

with q = min(m, r) and (eλ)16λ6r an orthonormal basis of E. Let F be the vector
subspace of E generated by (e1, . . . , eq) and ΘF the restriction of Θ to T ⊗ F . The
first part shows that
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Θ′ := TrF ΘF ⊗ h−ΘF >Grif 0.

Proposition 10.14 applied to Θ′ on T ⊗ F yields

Θ′ + TrF Θ
′ ⊗ h = qTrF ΘF ⊗ h−ΘF >q 0.

Since u ∈ T ⊗ F is of rank 6 q 6 m, we get (for u 6= 0)

Θ(u, u) = ΘF (u, u) < q(TrF ΘF ⊗ h)(u, u)

= q
∑

16j,λ6q

Θ(ξj ⊗ eλ, ξj ⊗ eλ) 6 mTrE Θ ⊗ h(u, u). �

Proposition 10.16 is of course also true in the semi-positive case. From these
facts, we deduce

(10.17) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then
for any integer m > 1

E⋆ ⊗ (detE)m >m 0 (resp. >m 0).

Proof. We apply Prop. 10.16 to Θ = −Θ(E⋆) = tΘ(E) >Grif 0 on TX ⊗ E⋆ and
observe that

Θ(detE) = TrE Θ(E) = TrE⋆ Θ.

(10.18) Theorem. Let 0 → S → E → Q → 0 be an exact sequence of hermitian
vector bundles. Then for any m > 1

E >m 0 =⇒ S ⊗ (detQ)m >m 0.

Proof. Formulas (10.7) imply

iΘ(S) >m iβ⋆ ∧ β , iΘ(Q) >m iβ ∧ β⋆,

iΘ(detQ) = TrQ(iΘ(Q)) > TrQ(iβ ∧ β⋆).
If we write β =

∑
dzj ⊗ βj as in the proof of Corollary 10.8, then

TrQ(iβ ∧ β⋆) =
∑

idzj ∧ dzk TrQ(βjβ
⋆
k)

=
∑

idzj ∧ dzk TrS(β⋆kβj) = TrS(−iβ⋆ ∧ β).

Furthermore, it has been already proved that −iβ⋆∧β >Nak 0. By Prop. 8.1 applied
to the corresponding hermitian form Θ on TX ⊗ S, we get

mTrS(−iβ⋆ ∧ β) ⊗ IdS +iβ⋆ ∧ β >m 0,

and Theorem 10.18 follows. �
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(10.19) Corollary. Let X be a weakly pseudoconvex Kähler n-dimensional mani-
fold, E a holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then

a) E >Grif 0 ⇒ Hn,q(X,E ⊗ det E) = 0 for q > 1 ;

b) E >Grif 0 ⇒ Hn,q
(
X,E⋆⊗(det E)m

)
= 0 for q > 1 and m > min{n− q + 1, r} ;

c) Let 0 → S → E → Q → 0 be an exact sequence of vector bundles and
m = min{n− q+ 1, rk S}, q > 1. If E >m 0 and if L is a line bundle such that
L⊗ (detQ)−m > 0, then

Hn,q(X,S ⊗ L) = 0.

Proof. Immediate consequence of Theorem 10.11, in combination with 10.12 for a),
10.17 for b) and 10.18 for c). �

11. Skoda’s L
2 estimates for surjective bundle morphisms

Let (X,ω) be a Kähler manifold, dimX = n, and let g : E → Q a holomorphic
morphism of hermitian vector bundles over X . Assume in the first instance that g
is surjective. We are interested in conditions insuring that the induced morphisms
g : Hn,k(X,E) −→ Hn,k(X,Q) are also surjective (dealing with (n, •) bidegrees is
always easier, since we have to understand positivity conditions for the curvature
term). For that purpose, it is natural to consider the subbundle S = Ker g ⊂ E and
the exact sequence

(11.1) 0 −→ S
j−→ E

g−→ Q −→ 0

where j : S → E is the inclusion. In fact, we need a little more flexibility to handle
the curvature terms, so we take the tensor product of the exact sequence by a
holomorphic line bundle L (whose properties will be specified later):

(11.2) 0 −→ S ⊗ L −→ E ⊗ L
g−→ Q⊗ L −→ 0.

(11.3) Theorem. Let k be an integer such that 0 6 k 6 n. Set r = rk E, q = rkQ,
s = rk S = r − q and

m = min{n− k, s} = min{n− k, r − q}.

Assume that (X,ω) possesses also a complete Kähler metric ω̂, that E >m 0, and
that L −→ X is a hermitian holomorphic line bundle such that

iΘ(L)− (m+ ε)iΘ(detQ) > 0

for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q⊗L
such that ‖f‖ < +∞, there exists a D′′-closed form h of type (n, k) with values in
E ⊗ L such that f = g · h and

‖h‖2 6 (1 +m/ε) ‖f‖2.
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The idea of the proof is essentially due to (Skoda 1978), who actually proved
the special case k = 0. The general case appeared in (Demailly 1982).

Proof. Let j : S → E be the inclusion morphism, g⋆ : Q → E and j⋆ : E → S
the adjoints of g, j, and the matrix of DE with respect to the orthogonal splitting
E ≃ S ⊕ Q (cf. Lemma 10.2). Then g⋆f is a lifting of f in E ⊗ L. We will try to
find h under the form

h = g⋆f + ju, u ∈ L2(X,Λn,kT ⋆X ⊗ S ⊗ L).

As the images of S and Q in E are orthogonal, we have |h|2 = |f |2 + |u|2 at every
point of X . On the other hand D′′

Q⊗Lf = 0 by hypothesis and D′′g⋆ = −j ◦ β⋆ by
(10.5), hence

D′′
E⊗Lh = −j(β⋆ ∧ f) + j D′′

S⊗L = j(D′′
S⊗L − β⋆ ∧ f).

We are thus led to solve the equation

(11.4) D′′
S⊗Lu = β⋆ ∧ f,

and for that, we apply Th. 8.4 to the (n, k+ 1)-form β⋆ ∧ f . One now observes that
the curvature of S ⊗ L can be expressed in terms of β. This remark will be used to
prove:

(11.5) Lemma. Let Ak = [iΘ(S ⊗ L), Λ] be the curvature operator acting on
(n, k + 1)-forms. Then 〈A−1

k (β⋆ ∧ f), (β⋆ ∧ f)〉 6 (m/ε) |f |2.

If the Lemma is taken for granted, Th. 8.4 yields a solution u of (11.4) in
L2(X,Λn,qT ⋆X ⊗ S ⊗ L) such that ‖u‖2 6 (m/ε) ‖f‖2. As ‖h‖2 = ‖f‖2 + ‖u‖2, the
proof of Th. 11.3 is complete. �

Proof of Lemma 11.5. Exactly as in the proof of Th. 10.18 formulas (10.7) yield

iΘ(S) >m iβ⋆ ∧ β, iΘ(detQ) > TrQ(iβ ∧ β⋆) = TrS(−iβ⋆ ∧ β).

Since C∞(X,Λ1,1T ⋆X ⊗ Herm S) ∋ Θ := −iβ⋆ ∧ β >Grif 0, Prop. 10.16 implies

m TrS(−iβ⋆ ∧ β) ⊗ IdS +iβ⋆ ∧ β >m 0.

From the hypothesis on the curvature of L we get

iΘ(S ⊗ L) >m iΘ(S) ⊗ IdL +(m+ ε) iΘ(detQ) ⊗ IdS⊗L

>m

(
iβ⋆ ∧ β + (m+ ε) TrS(−iβ⋆ ∧ β) ⊗ IdS

)
⊗ IdL

>m (ε/m) (−iβ⋆ ∧ β) ⊗ IdS ⊗ IdL .

For any v ∈ Λn,k+1T ⋆X ⊗ S ⊗ L, Lemma 10.10 implies

(11.6) 〈Akv, v〉 > (ε/m) 〈−iβ⋆ ∧ β ∧ Λv, v〉,

because rk(S⊗L) = s and m = min{n−k, s}. Let (dz1, . . . , dzn) be an orthonormal
basis of T ⋆X at a given point x0 ∈ X and set
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β =
∑

16j6n

dzj ⊗ βj , βj ∈ Hom(S,Q).

The adjoint of the operator β⋆ ∧ • =
∑
dzj ∧ β⋆j • is the contraction operator β •

defined by

β v =
∑ ∂

∂zj
(βjv) =

∑
−idzj ∧ Λ(βjv) = −iβ ∧ Λv.

We get consequently 〈−iβ⋆ ∧ β ∧ Λv, v〉 = |β v|2 and (11.6) implies

|〈β⋆ ∧ f, v〉|2 = |〈f, β v〉|2 6 |f |2 |β v|2 6 (m/ε)〈Akv, v〉 |f |2.

This is equivalent to the estimate asserted in the lemma. �

If X has a plurisubharmonic exhaustion function ψ, we can select a convex
increasing function χ ∈ C∞(R,R) and multiply the metric of L by the weight
exp(−χ ◦ ψ) in order to make the L2 norm of f converge. Theorem 11.3 implies
therefore:

(11.7) Corollary. Let (X,ω) be a weakly pseudoconvex Kähler manifold, g : E → Q
a surjective bundle morphism with r = rk E, q = rk Q, and L→ X a hermitian
holomorphic line bundle. We set m = min{n− k, r − q} and assume that E >m 0
and

iΘ(L) − (m+ ε) iΘ(detQ) > 0

for some ε > 0. Then g induces a surjective map

Hn,k(X,E ⊗ L) −→ Hn,k(X,Q⊗ L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A
careful examination of the proof shows that it amounts to verify that the image of
the coboundary morphism

−β⋆ ∧ • : Hn,k(X,Q⊗ L) −→ Hn,k+1(X,S ⊗ L)

vanishes; however the cohomology group Hn,k+1(X,S⊗L) itself does not necessarily
vanish, as it would do under a strict positivity assumption (cf. Cor. 10.19 c)).

We want now to get also estimates when Q is endowed with a metric given
a priori, that can be distinct from the quotient metric of E by g. Then the map
g⋆(gg⋆)−1 : Q −→ E is the lifting of Q orthogonal to S = Ker g. The quotient
metric |•|′ on Q is therefore defined in terms of the original metric |•| by

|v|′2 = |g⋆(gg⋆)−1v|2 = 〈(gg⋆)−1v, v〉 = det(gg⋆)−1 〈g̃g⋆v, v〉

where g̃g⋆ ∈ End(Q) denotes the endomorphism ofQ whose matrix is the transposed
of the comatrix of gg⋆. For every w ∈ detQ, we find

|w|′2 = det(gg⋆)−1 |w|2.



56 L2 estimates for the ∂-operator on complex manifolds

If Q′ denotes the bundle Q with the quotient metric, we get

iΘ(detQ′) = iΘ(detQ) + id′d′′ log det(gg⋆).

In order that the hypotheses of Th. 11.3 be satisfied, we are led to define a new

metric |•|′ on L by |u|′2 = |u|2
(
det(gg⋆)

)−m−ε
. Then

iΘ(L′) = iΘ(L) + (m+ ε) id′d′′ log det(gg⋆) > (m+ ε) iΘ(detQ′).

Theorem 11.3 applied to (E,Q′, L′) can now be reformulated:

(11.8) Theorem. Let X be a complete Kähler manifold equipped with a Kähler
metric ω on X, let E → Q be a surjective morphism of hermitian vector bundles
and let L→ X be a hermitian holomorphic line bundle. Set r = rk E, q = rk Q and
m = min{n− k, r − q}, and assume that E >m 0 and

iΘ(L)− (m+ ε)iΘ(detQ) > 0

for some ε > 0. Then for every D′′-closed form f of type (n, k) with values in Q⊗L
such that

I =

∫

X

〈g̃g⋆f, f〉 (det gg⋆)−m−1−ε dV < +∞,

there exists a D′′-closed form h of type (n, k) with values in E⊗L such that f = g ·h
and ∫

X

|h|2 (det gg⋆)−m−ε dV 6 (1 +m/ε) I. �

Our next goal is to extend Th. 11.8 in the case when g : E −→ Q is only
generically surjective; this means that the analytic set

Y = {x ∈ X ; gx : Ex −→ Qx is not surjective }

defined by the equation Λqg = 0 is nowhere dense in X . Here Λqg is a section of the
bundle Hom(ΛqE, detQ). The idea is to apply the above Theorem 11.8 to X r Y .
For this, we have to know whether X r Y has a complete Kähler metric.

(11.9) Lemma. Let (X,ω) be a Kähler manifold, and Y = σ−1(0) an analytic
subset defined by a section of a hermitian vector bundle E → X. If X is weakly
pseudoconvex and exhausted by Xc = {x ∈ X ; ψ(x) < c}, then Xc r Y has a
complete Kähler metric for all c ∈ R. The same conclusion holds for X r Y if
(X,ω) is complete and if for some constant C > 0 we have ΘE 6Grif C ω ⊗ 〈 , 〉E
on X.

Proof. Set τ = log |σ|2. Then d′τ = {D′σ, σ}/|σ|2 and D′′D′σ = D2σ = Θ(E)σ,
thus

id′d′′τ = i
{D′σ,D′σ}

|σ|2 − i
{D′σ, σ} ∧ {σ,D′σ}

|σ|4 − {iΘ(E)σ, σ}
|σ|2 .

For every ξ ∈ TX , we find therefore
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Hτ(ξ) =
|σ|2 |D′σ · ξ|2 − |〈D′σ · ξ, σ〉|2

|σ|4 − Θ̃(E)(ξ ⊗ σ, ξ ⊗ σ)

|σ|2

> − Θ̃(E)(ξ ⊗ σ, ξ ⊗ σ)

|σ|2

by the Cauchy-Schwarz inequality. If C is a bound for the coefficients of Θ̃(E) on
the compact subset Xc, we get id′d′′τ > −Cω on Xc. Let χ ∈ C∞(R,R) be a convex
increasing function. We set

ω̂ = ω + id′d′′(χ ◦ τ) = ω + i
(
χ′ ◦ τ d′d′′τ + χ′′ ◦ τ d′τ ∧ d′′τ

)
.

We thus see that ω̂ is positive definite if χ′ 6 1/2C, and by a computation similar
to that in proposition 8.7, we check that ω̂ is complete near Y = τ−1(−∞) as soon
as ∫ 0

−∞

√
χ′′(t) dt = +∞.

One can choose for example χ such that χ(t) = 1
5C

(t− log |t|) for t 6 −1. In order to
obtain a complete Kähler metric on XcrY , we also need the metric to be complete
near ∂Xc. If ω̂ is not, such a metric can be defined by

ω̃ = ω̂ + id′d′′ log(c− ψ)−1 = ω̂ +
id′d′′ψ

c− ψ
+

id′ψ ∧ d′′ψ
(c− ψ)2

> id′ log(c− ψ)−1 ∧ d′′ log(c− ψ)−1 ;

ω̃ is complete on Xc rΩ because log(c− ψ)−1 tends to +∞ on ∂Xc. �

We also need another elementary lemma dealing with the extension of partial
differential equalities across analytic sets.

(11.10) Lemma. Let Ω be an open subset of Cn and Y an analytic subset of Ω.
Assume that v is a (p, q − 1)-form with L2

loc coefficients and w a (p, q)-form with
L1

loc coefficients such that d′′v = w on Ω r Y (in the sense of distribution theory).
Then d′′v = w on Ω.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the
result in a neighborhood of a regular point a ∈ Y . By using a local analytic iso-
morphism, the proof is reduced to the case where Y is contained in the hyperplane
z1 = 0, with a = 0. Let λ ∈ C∞(R,R) be a function such that λ(t) = 0 for t 6 1

2
and λ(t) = 1 for t > 1. We must show that

(11.11)

∫

Ω

w ∧ α = (−1)p+q
∫

Ω

v ∧ d′′α

for all α ∈ D(Ω,Λn−p,n−qT ⋆Ω). Set λε(z) = λ(|z1|/ε) and replace α in the integral
by λεα. Then λεα ∈ D(Ω r Y, Λn−p,n−qT ⋆Ω) and the hypotheses imply

∫

Ω

w ∧ λεα = (−1)p+q
∫

Ω

v ∧ d′′(λεα) = (−1)p+q
∫

Ω

v ∧ (d′′λε ∧ α+ λεd
′′α).
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As w and v have L1
loc coefficients on Ω, the integrals of w ∧ λεα and v ∧ λεd

′′α
converge respectively to the integrals of w ∧ α and v ∧ d′′α as ε tends to 0. The
remaining term can be estimated by means of the Cauchy-Schwarz inequality:

∣∣∣
∫

Ω

v ∧ d′′λε ∧ α
∣∣∣
2

6

∫

|z1|6ε

|v ∧ α|2 dV.
∫

Suppα

|d′′λε|2 dV ;

as v ∈ L2
loc(Ω), the integral

∫
|z1|6ε

|v ∧ α|2 dV converges to 0 with ε, whereas

∫

Suppα

|d′′λε|2 dV 6
C

ε2
Vol

(
Supp α ∩ {|z1| 6 ε}

)
6 C′.

Equality (11.11) follows when ε tends to 0. �

(11.12) Theorem. The existence statement and the estimates of Th. 11.8 remain
true for a generically surjective morphism g : E → Q, provided that X is weakly
pseudoconvex.

Proof. Apply Th. 11.8 to each relatively compact domain XcrY (these domains are
complete Kähler by Lemma 11.9). From a sequence of solutions on Xc r Y we can
extract a subsequence converging weakly on X r Y as c tends to +∞. One gets a
form h satisfying the estimates, such that D′′h = 0 on XrY and f = g ·h. In order
to see that D′′h = 0 on X , it suffices to apply Lemma 11.10 and to observe that h
has L2

loc coefficients on X by our estimates. �

A very special but interesting case is obtained for the trivial bundles E = Ω×Cr,
Q = Ω × C over a pseudoconvex open set Ω ⊂ Cn. Then the morphism g is given
by a r-tuple (g1, . . . , gr) of holomorphic functions on Ω. Let us take k = 0 and
L = Ω×C with the metric given by a weight e−ϕ. If we observe that g̃g⋆ = Id when
rk Q = 1, Th. 11.8 applied on X = Ω r g−1(0) and Lemmas 11.9, 11.10 give:

(11.13) Theorem (Skoda 1972b). Let Ω be a complete Kähler open subset of Cn

and ϕ a plurisubharmonic function on Ω. Set m = min{n, r − 1}. Then for every
holomorphic function f on Ω such that

I =

∫

ΩrZ

|f |2 |g|−2(m+1+ε)e−ϕ dV < +∞,

where Z = g−1(0), there exist holomorphic functions (h1, . . . , hr) on Ω such that
f =

∑
gjhj and

∫

ΩrY

|h|2 |g|−2(m+ε)e−ϕ dV 6 (1 +m/ε)I. �

This last theorem can be used in order to obtain interesting results about
domains of holomorphy in Cn and the relation with the existence of complete Kähler
metrics. Recall that an open set Ω ⊂ Cn is said to be a domain of holomorphy if
for every connected open subset U such that U ∩ ∂Ω 6= ∅ and every connected
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component W of U ∩Ω there exists a holomorphic function h on Ω such that h↾W

cannot be continued to U . It is well known that Ω is a domain of holomorphy if and
only if Ω is Stein [the latter condition being of course trivially sufficient; see e.g.
(Hörmander 1966), chap. 2].

(11.14) Theorem (Diederich-Pflug 1981). Let Ω ⊂ Cn be an open subset. If (Ω)◦ =
Ω and Ω admits a complete Kähler metric ω̂, then Ω is a domain of holomorphy.

Note that the statement becomes false if the assumption (Ω)◦ = Ω is omitted:
in fact Cn r {0} is complete Kähler by Lemma 10.9, but it is not a domain of
holomorphy if n > 2.

Proof. Since (Ω)◦ = Ω, the set U rΩ is not empty. We select a ∈ U rΩ. Then the
integral ∫

Ω

|z − a|−2(n+ε) dV (z)

converges. By Th. 11.13 applied to f(z) = 1, gj(z) = zj − aj and ϕ = 0, there exist
holomorphic functions hj on Ω such that

∑
(zj − aj) hj(z) = 1. This shows that at

least one of the functions hj cannot be analytically continued at a ∈ U . �

(11.15) Remark. Skoda’s theorem 11.13 can also be used to prove the implication

Ω pseudoconvex =⇒ Ω domain of holomorphy,

which is equivalent to the “interesting implication” in the Levi problem (modulo
the equivalence of domains of holomorphy with Stein open sets, an easy property).
In fact, if Ω is pseudoconvex, it can be shown that the function z 7→ − log d(z, ∁Ω)
is psh (see again Hörmander 1966, chap. 2). Given any open connected set U such
that U ∩ ∂Ω 6= ∅, select a ∈ U ∩ ∂Ω. The weight function

ϕ(z) = (n+ ε) log(1 + |z|2) − 2(n+ ε) log d(z, ∁Ω)

is psh on Ω. As |z − a| > d(z, ∁Ω), we see that the integral

∫

Ω

|z − a|−2(n+ε) e−ϕ(z) dV (z) 6

∫

Ω

(1 + |z|2)−n−ε dV (z)

converges, and we conclude as in the proof of 11.14. �

12. Application of Skoda’s L2 estimates to local algebra

We show here how Theorem 11.13 can be applied to get deep results concerning
ideals of the local ring On = C{z1, . . . , zn} of germs of holomorphic functions on
(Cn, 0). Let I = (g1, . . . , gr) 6= (0) be an ideal of On.

(12.1) Definition. Let k ∈ R+. We associate to I the following ideals:
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a) the ideal I(k)
of germs u ∈ On such that |u| 6 C|g|k for some constant C > 0,

where |g|2 = |g1|2 + · · ·+ |gr|2.
b) the ideal Î(k) of germs u ∈ On such that

∫

Ω

|u|2 |g|−2(k+ε) dV < +∞

on a small ball Ω centered at 0, if ε > 0 is small enough.

(12.2) Proposition. For all k, l ∈ R+ we have

a) I(k) ⊂ Î(k) ;

b) Ik ⊂ I(k)
if k ∈ N ;

c) I(k)
.I(l) ⊂ I(k+l)

;

d) I(k)
.Î(l) ⊂ Î(k+l).

All properties are immediate from the definitions except a) which is a conse-
quence of the integrability of |g|−ε for ε > 0 small (exercise to the reader!). Before
stating the main result, we need a simple lemma.

(12.3) Lemma. If I = (g1, . . . , gr) and r > n, we can find elements g̃1, . . . , g̃n ∈ I
such that C−1|g| 6 |g̃| 6 C|g| on a neighborhood of 0. Each g̃j can be taken to be a
linear combination

g̃j = aj . g =
∑

16k6r

ajkgk, aj ∈ Cr r {0}

where the coefficients ([a1], . . . , [an]) are chosen in the complement of a proper ana-
lytic subset of (Pr−1)n.

It follows from the Lemma that the ideal J = (g̃1, . . . , g̃n) ⊂ I satisfies J (k) =
I(k) and Ĵ (k) = Î(k) for all k.

Proof. Assume that g ∈ O(Ω)r. Consider the analytic subsets in Ω×(Pr−1)n defined
by

A =
{
(z, [w1], . . . , [wn]) ; wj . g(z) = 0

}
,

A⋆ =
⋃

irreducible components of A not contained in g−1(0) × (Pr−1)n.

For z /∈ g−1(0) the fiber Az = {([w1], . . . , [wn]) ; wj . g(z) = 0} = A⋆z is a product of
n hyperplanes in Pr−1, hence A∩ (Ωrg−1(0))× (Pr−1)n is a fiber bundle with base
Ω r g−1(0) and fiber (Pr−2)n. As A⋆ is the closure of this set in Ω × (Pr−1)n, we
have

dimA⋆ = n+ n(r − 2) = n(r − 1) = dim(Pr−1)n.

It follows that the zero fiber
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A⋆0 = A⋆ ∩
(
{0} × (Pr−1)n

)

is a proper subset of {0} × (Pr−1)n. Choose (a1, . . . , an) ∈ (Cr r {0})n such
that (0, [a1], . . . , [an]) is not in A⋆0. By an easy compactness argument the set
A⋆ ∩

(
B(0, ε) × (Pr−1)n

)
is disjoint from the neighborhood B(0, ε)× ∏

[B(aj, ε)] of
(0, [a1], . . . , [an]) for ε small enough. For z ∈ B(0, ε) we have |aj . g(z)| > ε|g(z)| for
some j, otherwise the inequality |aj. g(z)| < ε|g(z)| would imply the existence of
hj ∈ Cr with |hj | < ε and aj . g(z) = hj . g(z). Since g(z) 6= 0, we would have

(z, [a1 − h1], . . . , [an − hn]) ∈ A⋆ ∩
(
B(0, ε) × (Pr−1)n

)
,

a contradiction. We obtain therefore

ε|g(z)| 6 max |aj. g(z)| 6 (max |aj |) |g(z)| on B(0, ε). �

(12.4) Theorem (Briançon-Skoda 1974). Set p = min{n− 1, r − 1}. Then

a) Î(k+1) = I Î(k) = I Î(k) for k > p.

b) I(k+p) ⊂ Î(k+p) ⊂ Ik for all k ∈ N.

Proof. a) The inclusions I Î(k) ⊂ I Î(k) ⊂ Î(k+1) are obvious thanks to Prop. 12.2,

so we only have to prove that Î(k+1) ⊂ I Î(k). Assume first that r 6 n. Let f ∈
Î(k+1) be such that ∫

Ω

|f |2 |g|−2(k+1+ε) dV < +∞.

For k > p − 1, we can apply Th. 11.13 with m = r − 1 and with the weight
ϕ = (k −m) log |g|2. Hence f can be written f =

∑
gjhj with

∫

Ω

|h|2 |g|−2(k+ε) dV < +∞,

thus hj ∈ Î(k) and f ∈ I Î(k). When r > n, Lemma 12.3 shows that there is an
ideal J ⊂ I with n generators such that Ĵ (k) = Î(k). We find

Î(k+1) = Ĵ (k+1) ⊂ J Ĵ (k) ⊂ I Î(k) for k > n− 1.

b) Property a) implies inductively Î(k+p) = Ik Î(p) for all k ∈ N. This gives in

particular Î(k+p) ⊂ Ik. �

(12.5) Corollary.

a) The ideal I is the integral closure of I, i.e. by definition the set of germs u ∈ On

which satisfy an equation

ud + a1u
d−1 + · · · + ad = 0, as ∈ Is, 1 6 s 6 d.

b) Similarly, I(k)
is the set of germs u ∈ On which satisfy an equation

ud + a1u
d−1 + · · ·+ ad = 0, as ∈ I⌈ks⌉, 1 6 s 6 d,
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where ⌈t⌉ denotes the smallest integer > t.

As the ideal I(k)
is finitely generated, property b) shows that there always

exists a rational number l > k such that I(l) = I(k).

Proof. a) If u ∈ On satisfies a polynomial equation with coefficients as ∈ Is, then
clearly |as| 6 Cs |g|s and the usual elementary bound

|roots| 6 2 max
16s6d

|as|1/s

for the roots of a monic polynomial implies |u| 6 C |g|.
Conversely, assume that u ∈ I. The ring On is Noetherian, so the ideal Î(p) has

a finite number of generators v1, . . . , vN . For every j we have uvj ∈ I Î(p) = I Î(p),
hence there exist elements bjk ∈ I such that

uvj =
∑

16k6N

bjkvk.

The matrix (uδjk − bjk) has the non zero vector (vj) in its kernel, thus u satisfies
the equation det(uδjk − bjk) = 0, which is of the required type.

b) Observe that v1, . . . , vN satisfy simultaneously some integrability condition∫
Ω
|vj |−2(p+ε) < +∞, thus Î(p) = Î(p+η) for η ∈ [0, ε[. Let u ∈ I(k). For every

integer m ∈ N we have

umvj ∈ I(km) Î(p+η) ⊂ Î(km+η+p).

If k /∈ Q, we can find m such that d(km+ ε/2,Z) < ε/2, thus km+ η ∈ N for some
η ∈ ]0, ε[. If k ∈ Q, we take m such that km ∈ N and η = 0. Then

umvj ∈ Î(N+p) = IN Î(p) with N = km+ η ∈ N,

and the reasoning made in a) gives det(umδjk − bjk) = 0 for some bjk ∈ IN . This is
an equation of the type described in b), where the coefficients as vanish when s is
not a multiple of m and ams ∈ INs ⊂ I⌈kms⌉. �

Let us mention that Briançon and Skoda’s result 12.4 b) is optimal for k = 1.
Take for example I = (g1, . . . , gr) with gj(z) = zrj , 1 6 j 6 r, and f(z) = z1 . . . zr.
Then |f | 6 C|g| and 12.4 b) yields f r ∈ I ; however, it is easy to verify that
f r−1 /∈ I. The theorem also gives an answer to the following conjecture made by
J. Mather.

(12.6) Corollary. Let f ∈ On and If = (z1∂f/∂z1, . . . , zn∂f/∂zn). Then f ∈ If ,
and for every integer k > 0, fk+n−1 ∈ Ikf .

The Corollary is also optimal for k = 1 : for example, one can verify that the
function f(z) = (z1 . . . zn)3 + z3n−1

1 + · · ·+ z3n−1
n is such that fn−1 /∈ If .
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Proof. Set gj(z) = zj ∂f/∂zj, 1 6 j 6 n. By 12.4 b), it suffices to show that
|f | 6 C|g|. For every germ of analytic curve C ∋ t 7−→ γ(t), γ 6≡ 0, the vanishing
order of f ◦ γ(t) at t = 0 is the same as that of

t
d(f ◦ γ)

dt
=

∑

16j6n

t γ′j(t)
∂f

∂zj

(
γ(t)

)
.

We thus obtain

|f ◦ γ(t)| 6 C1 |t|
∣∣∣d(f ◦ γ)

dt

∣∣∣ 6 C2

∑

16j6n

|t γ′j(t)|
∣∣∣ ∂f
∂zj

(
γ(t)

)∣∣∣ 6 C3 |g ◦ γ(t)|

and conclude by the following elementary lemma. �

(12.7) Curve selection lemma. Let f, g1, . . . , gr ∈ On be germs of holomorphic
functions vanishing at 0. Then we have |f | 6 C|g| for some constant C if and only
if for every germ of analytic curve γ through 0 there exists a constant Cγ such that
|f ◦ γ| 6 Cγ |g ◦ γ|.

Proof. If the inequality |f | 6 C|g| does not hold on any neighborhood of 0, the germ
of analytic set (A, 0) ⊂ (Cn+r, 0) defined by

gj(z) = f(z)zn+j , 1 6 j 6 r,

contains a sequence of points
(
zν , gj(zν)/f(zν)

)
converging to 0 as ν tends to +∞,

with f(zν) 6= 0. Hence (A, 0) contains an irreducible component on which f 6≡ 0 and
there is a germ of curve γ̃ = (γ, γn+j) : (C, 0) → (Cn+r, 0) contained in (A, 0) such
that f ◦ γ 6≡ 0. We get gj ◦ γ = (f ◦ γ)γn+j, hence |g ◦ γ(t)| 6 C|t| |f ◦ γ(t)| and the
inequality |f ◦ γ| 6 Cγ |g ◦ γ| does not hold. �

13. The Ohsawa-Takegoshi L
2 extension theorem

We address here the following extension problem: let Y be a complex analytic sub-
manifold of a complex manifold X ; given a holomorphic function f on Y satisfying
suitable L2 conditions on Y , find a holomorphic extension F of f toX , together with
a good L2 estimate for F on X . The first satisfactory solution has been obtained
only rather recently by (Ohsawa-Takegoshi 1987). We follow here a more geometric
approach due to (Manivel 1993), which provides a generalized extension theorem
in the general framework of vector bundles. As in Ohsawa-Takegoshi’s fundamental
paper, the main idea is to use a modified Bochner-Kodaira-Nakano inequality. Such
inequalities were originally introduced in the work of (Donnelly-Fefferman 1983)
and (Donnelly-Xavier 1984). The main a priori inequality we are going to use is a
simplified (and slightly extended) version of the original Ohsawa-Takegoshi a priori
inequality, as proposed recently by (Ohsawa 1995); see also (Berndtsson 1995) for
related calculations in the special case of domains in Cn.
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(13.1) Lemma (Ohsawa 1995). Let E be a hermitian vector bundle on a complex
manifold X equipped with a Kähler metric ω. Let η, λ > 0 be smooth functions
on X. Then for every form u ∈ D(X,Λp,qT ⋆X ⊗ E) with compact support we have

‖(η 1
2 + λ

1
2 )D′′⋆u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + 2‖λ− 1

2 d′η ∧ u‖2

> 〈〈[η iΘ(E) − i d′d′′η − iλ−1d′η ∧ d′′η, Λ]u, u〉〉.

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D′ηD′⋆ +D′⋆ηD′ = η[D′, D′⋆] + [D′, η]D′⋆ + [D′⋆, η]D′

= η∆′ + (d′η)D′⋆ − (d′η)∗D′,

D′′ηD′′⋆ +D′′⋆ηD′′ = η[D′′, D′′⋆] + [D′′, η]D′′⋆ + [D′′⋆, η]D′′

= η∆′′ + (d′′η)D′′⋆ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators η•,
(d′η)∧ •, (d′′η)∧ •. By subtracting the above equalities and taking into account the
Bochner-Kodaira-Nakano identity ∆′′ −∆′ = [iΘ(E), Λ], we get

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′

= η[iΘ(E), Λ] + (d′′η)D′′⋆ − (d′′η)⋆D′′ + (d′η)⋆D′ − (d′η)D′⋆.(13.2)

Moreover, the Jacobi identity yields

[D′′, [d′η, Λ]] − [d′η, [Λ,D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ,D′′] = −iD′⋆ by the basic commutation relations 7.2. A straightforward
computation shows that [D′′, d′η] = −(d′d′′η) and [d′η, Λ] = i(d′′η)⋆. Therefore we
get

i[D′′, (d′′η)⋆] + i[d′η,D′⋆] − [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η, Λ] = [D′′, (d′′η)⋆]+ [D′⋆, d′η] = D′′(d′′η)⋆+(d′′η)⋆D′′ +D′⋆(d′η)+(d′η)D′⋆.

After adding this to (13.2), we find

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′ + [i d′d′′η, Λ]

= η[iΘ(E), Λ] + (d′′η)D′′⋆ +D′′(d′′η)⋆ + (d′η)⋆D′ +D′⋆(d′η).

We apply this identity to a form u ∈ D(X,Λp,qT ⋆X ⊗E) and take the inner bracket
with u. Then

〈〈(D′′ηD′′⋆)u, u〉〉 = 〈〈ηD′′⋆u,D′′⋆u〉〉 = ‖η 1
2D′′⋆u‖2,

and likewise for the other similar terms. The above equalities imply

‖η 1
2D′′⋆u‖2 + ‖η 1

2D′′u‖2 − ‖η 1
2D′u‖2 − ‖η 1

2D′⋆u‖2 =

〈〈[η iΘ(E) − i d′d′′η, Λ]u, u〉〉 + 2 Re 〈〈D′′⋆u, (d′′η)⋆u〉〉 + 2 Re 〈〈D′u, d′η ∧ u〉〉.

By neglecting the negative terms −‖η 1
2D′u‖2 − ‖η 1

2D′⋆u‖2 and adding the squares
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‖λ 1
2D′′⋆u‖2 + 2 Re 〈〈D′′⋆u, (d′′η)⋆u〉〉 + ‖λ− 1

2 (d′′η)⋆u‖2 > 0,

‖λ 1
2D′u‖2 + 2 Re 〈〈D′u, d′η ∧ u〉〉 + ‖λ− 1

2 d′η ∧ u‖2 > 0

we get

‖(η 1
2 + λ

1
2 )D′′⋆u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + ‖λ− 1

2 d′η ∧ u‖2 + ‖λ− 1
2 (d′′η)⋆u‖2

> 〈〈[η iΘ(E)− i d′d′′η, Λ]u, u〉〉.

Finally, we use the identities

(d′η)⋆(d′η) − (d′′η)(d′′η)⋆ = i[d′′η, Λ](d′η) + i(d′′η)[d′η, Λ] = [id′′η ∧ d′η, Λ],

‖λ− 1
2 d′η ∧ u‖2 − ‖λ− 1

2 (d′′η)⋆u‖2 = −〈〈[iλ−1d′η ∧ d′′η, Λ]u, u〉〉,

The inequality asserted in Lemma 13.1 follows by adding the second identity to our
last inequality. �

In the special case of (n, q)-forms, the forms D′u and d′η ∧ u are of bidegree
(n+ 1, q), hence the estimate takes the simpler form

(13.3) ‖(η 1
2 +λ

1
2 )D′′⋆u‖2+‖η 1

2D′′u‖2 > 〈〈[η iΘ(E)−i d′d′′η−iλ−1 d′η∧d′′η, Λ]u, u〉〉.

(13.4) Proposition. Let X be a complete Kähler manifold equipped with a (non ne-
cessarily complete) Kähler metric ω, and let E be a hermitian vector bundle over X.
Assume that there are smooth and bounded functions η, λ > 0 on X such that the
(hermitian) curvature operator B = Bn,qE,ω,η = [η iΘ(E)− i d′d′′η− iλ−1d′η∧d′′η, Λω]
is positive definite everywhere on Λn,qT ⋆X ⊗E, for some q > 1. Then for every form
g ∈ L2(X,Λn,qT ⋆X ⊗E) such that D′′g = 0 and

∫
X
〈B−1g, g〉 dVω < +∞, there exists

f ∈ L2(X,Λn,q−1T ⋆X ⊗E) such that D′′f = g and
∫

X

(η + λ)−1|f |2 dVω 6 2

∫

X

〈B−1g, g〉 dVω.

Proof. The proof is almost identical to the proof of Theorem 8.4, except that we use
(13.4) instead of (7.4). Assume first that ω is complete. With the same notation as
in 7.4, we get for every v = v1 + v2 ∈ (KerD′′) ⊕ (KerD′′)⊥ the inequalities

|〈g, v〉|2 = |〈g, v1〉|2 6

∫

X

〈B−1g, g〉 dVω
∫

X

〈Bv1, v1〉 dVω,

and
∫

X

〈Bv1, v1〉 dVω 6 ‖(η 1
2 + λ

1
2 )D′′⋆v1‖2 + ‖η 1

2D′′v1‖2 = ‖(η 1
2 + λ

1
2 )D′′⋆v‖2

provided that v ∈ DomD′′⋆. Combining both, we find

|〈g, v〉|2 6
(∫

X

〈B−1g, g〉 dVω
)
‖(η 1

2 + λ
1
2 )D′′⋆v‖2.

This shows the existence of an element w ∈ L2(X,Λn,qT ⋆X ⊗ E) such that
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‖w‖2 6

∫

X

〈B−1g, g〉 dVω and

〈〈v, g〉〉 = 〈〈(η 1
2 + λ

1
2 )D′′⋆v, w〉〉 ∀g ∈ DomD′′ ∩ DomD′′⋆.

As (η1/2 + λ
1
2 )2 6 2(η + λ), it follows that f = (η1/2 + λ

1
2 )w satisfies D′′f = g as

well as the desired L2 estimate. If ω is not complete, we set ωε = ω+ εω̂ with some
complete Kähler metric ω̂. The final conclusion is then obtained by passing to the
limit and using a monotonicity argument (the integrals are monotonic with respect
to ε). �

(13.5) Remark. We will also need a variant of the L2-estimate, so as to obtain
approximate solutions with weaker requirements on the data : given δ > 0 and
g ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′g = 0 and

∫
X
〈(B + δI)−1g, g〉 dVω < +∞,

there exists an approximate solution f ∈ L2(X,Λn,q−1T ⋆X ⊗E) and a correcting
term h ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′f + δ1/2h = g and

∫

X

(η + λ)−1|f |2 dVω +

∫

X

|h|2 dVω 6 2

∫

X

〈(B + δI)−1g, g〉 dVω.

The proof is almost unchanged, we rely instead on the estimates

|〈g, v1〉|2 6

∫

X

〈(B + δI)−1g, g〉 dVω
∫

X

〈(B + δI)v1, v1〉 dVω,

and ∫

X

〈(B + δI)v1, v1〉 dVω 6 ‖(η 1
2 + λ

1
2 )D′′⋆v‖2 + δ‖v‖2. �

(13.6) Theorem. Let X be a weakly pseudoconvex n-dimensional complex manifold
equipped with a Kähler metric ω, let L (resp. E) be a hermitian holomorphic line
bundle (resp. a hermitian holomorphic vector bundle of rank r over X), and s a
global holomorphic section of E. Assume that s is generically transverse to the zero
section, and let

Y =
{
x ∈ X ; s(x) = 0, Λrds(x) 6= 0

}
, p = dimY = n− r.

Moreover, assume that the (1, 1)-form iΘ(L) + r i d′d′′ log |s|2 is semipositive and
that there is a continuous function α > 1 such that the following two inequalities
hold everywhere on X :

a) iΘ(L) + r i d′d′′ log |s|2 > α−1 {iΘ(E)s, s}
|s|2 ,

b) |s| 6 e−α.

Then for every smooth D′′-closed (0, q)-form f over Y with values in the line bundle
ΛnT ⋆X ⊗ L (restricted to Y ), such that

∫
Y
|f |2|Λr(ds)|−2dVω < +∞, there exists a

D′′-closed (0, q)-form F over X with values in ΛnT ⋆X ⊗ L, such that F is smooth
over X r {s = Λr(ds) = 0}, satisfies F↾Y = f and

∫

X

|F |2
|s|2r(− log |s|)2 dVX,ω 6 Cr

∫

Y

|f |2
|Λr(ds)|2dVY,ω ,
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where Cr is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points
where s vanishes) induces a vector bundle isomorphism ds : TX/TY → E along Y ,
hence a non vanishing section Λr(ds), taking values in

Λr(TX/TY )⋆ ⊗ detE ⊂ ΛrT ⋆X ⊗ detE.

The norm |Λr(ds)| is computed here with respect to the metrics on ΛrT ⋆X and detE
induced by the Kähler metric ω and by the given metric on E. Also notice that if
hypothesis a) is satisfied for some α, one can always achieve b) by multiplying the
metric of E with a sufficiently small weight e−χ◦ψ (with ψ a psh exhaustion on X
and χ a convex increasing function; property a) remains valid after we multiply the
metric of L by e−(r+α−1

0
)χ◦ψ, where α0 = infx∈X α(x).

Proof. Let us first assume that the singularity set Σ = {s = 0} ∩ {Λr(ds) = 0} is
empty, so that Y is closed and nonsingular. We claim that there exists a smooth
section

F∞ ∈ C∞(X,Λn,qT ⋆X ⊗ L) = C∞(X,Λ0,qT ⋆X ⊗ ΛnT ⋆X ⊗ L)

such that

(a) F∞ coincides with f in restriction to Y ,

(b) |F∞| = |f | at every point of Y ,

(c) D′′F∞ = 0 at every point of Y .

For this, consider coordinates patches Uj ⊂ X biholomorphic to polydiscs such that

Uj ∩ Y = {z ∈ Uj ; z1 = . . . = zr = 0}

in the corresponding coordinates. We can find a section f̃ in C∞(X,Λn,qT ⋆X ⊗ L)
which achieves a) and b), since the restriction map (Λ0,qT ∗

X)↾Y → Λ0,qT ∗
Y can be

viewed as an orthogonal projection onto a C∞-subbundle of (Λ0,qT ∗
X)↾Y . It is enough

to extend this subbundle from Uj ∩ Y to Uj (e.g. by extending each component of
a frame), and then to extend f globally via local smooth extensions and a partition
of unity. For any such extension f̃ we have

(D′′f̃)↾Y = (D′′f̃↾Y ) = D′′f = 0.

It follows that we can divide D′′f̃ =
∑

16λ6r gj,λ(z) ∧ dzλ on Uj ∩ Y , with suitable
smooth (0, q)-forms gj,λ which we also extend arbitrarily from Uj ∩ Y to Uj . Then

F∞ := f̃ −
∑

j

θj(z)
∑

16λ6r

zλgj,λ(z)

coincides with f̃ on Y and satisfies (c). Since we do not know about F∞ except in an
infinitesimal neighborhood of Y , we will consider a truncation Fε of F∞ with support
in a small tubular neighborhood |s| < ε of Y , and solve the equation D′′uε = D′′Fε
with the constraint that uε should be 0 on Y . As codimY = r, this will be the
case if we can guarantee that |uε|2|s|−2r is locally integrable near Y . For this, we



68 L2 estimates for the ∂-operator on complex manifolds

will apply Proposition 13.4 with a suitable choice of the functions η and λ, and an
additional weight |s|−2r in the metric of L.

Let us consider the smooth strictly convex function χ0 : ] −∞, 0] → ] −∞, 0]
defined by χ0(t) = t− log(1 − t) for t 6 0, which is such that χ0(t) 6 t, 1 6 χ′

0 6 2
and χ′′

0(t) = 1/(1 − t)2. We set

σε = log(|s|2 + ε2), ηε = ε− χ0(σε).

As |s| 6 e−α 6 e−1, we have σε 6 0 for ε small, and

ηε > ε− σε > ε− log(e−2α + ε2).

Given a relatively compact subset Xc = {ψ < c} ⋐ X , we thus have ηε > 2α for
ε < ε(c) small enough. Simple calculations yield

i d′σε =
i{D′s, s}
|s|2 + ε2

,

i d′d′′σε =
i{D′s,D′s}
|s|2 + ε2

− i{D′s, s} ∧ {s,D′s}
(|s|2 + ε2)2

− {iΘ(E)s, s}
|s|2 + ε2

>
ε2

|s|2
i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
− {iΘ(E)s, s}

|s|2 + ε2

>
ε2

|s|2 id′σε ∧ d′′σε −
{iΘ(E)s, s}
|s|2 + ε2

,

thanks to Lagrange’s inequality i{D′s, s}∧ {s,D′s} 6 |s|2i{D′s,D′s}. On the other
hand, we have d′ηε = −χ′

0(σε)dσε with 1 6 χ′
0(σε) 6 2, hence

−id′d′′ηε = χ′
0(σε)id

′d′′σε + χ′′
0(σε)id

′σε ∧ d′′σε

>
( 1

χ′
0(σε)

ε2

|s|2 +
χ′′

0(σε)

χ′
0(σε)

2

)
id′ηε ∧ d′′ηε − χ′

0(σε)
{iΘEs, s}
|s|2 + ε2

.

We consider the original metric of L multiplied by the weight |s|−2r. In this way,
we get a curvature form

iΘL + r id′d′′ log |s|2 >
1

2
χ′

0(σε)α
−1 {iΘEs, s}

|s|2 + ε2

by hypothesis a), thanks to the semipositivity of the left hand side and the fact that
1
2χ

′
0(σε)

1
|s|2+ε2 6 1

|s|2 . As ηε > 2α on Xc for ε small, we infer

ηε(iΘL + id′d′′ log |s|2) − id′d′′ηε −
χ′′

0(σε)

χ′
0(σε)

2
id′ηε ∧ d′′ηε >

ε2

χ′
0(σε)|s|2

id′ηε ∧ d′′ηε

on Xc. Hence, if λε = χ′
0(σε)

2/χ′′
0(σε), we obtain

Bε :=
[
ηε(iΘL + id′d′′ log |s|2) − id′d′′ηε − λ−1

ε id′ηε ∧ d′′ηε , Λ
]

>
[ ε2

χ′
0(σε)|s|2

id′ηε ∧ d′′ηε , Λ
]

=
ε2

χ′
0(σε)|s|2

(d′′ηε)(d
′′ηε)

⋆

as an operator on (n, q)-forms (see the proof of Lemma 13.1).
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Let θ : R → [0, 1] be a smooth cut-off function such that θ(t) = 1 on ]−∞, 1/2],
Supp θ ⊂ ] − ∞, 1[ and |θ′| 6 3. For ε > 0 small, we consider the (n, q)-form
Fε = θ(ε−2|s|2)F∞ and its D′′-derivative

gε = D′′Fε = (1 + ε−2|s|2)θ′(ε−2|s|2)d′′σε ∧ F∞ + θ(ε−2|s|2)D′′F∞

[as is easily seen from the equality 1 + ε−2|s|2 = ε−2eσε ]. We observe that gε has
its support contained in the tubular neighborhood |s| < ε ; moreover, as ε→ 0, the
second term in the right hand side converges uniformly to 0 on every compact set;
it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d′′σε and d′′ηε, and can be controlled in
terms of Bε. In fact, for any (n, q)-form u and any (n, q + 1)-form v we have

|〈d′′ηε ∧ u, v〉|2 = |〈u, (d′′ηε)⋆v〉|2 6 |u|2|(d′′ηε)⋆v|2 = |u|2〈(d′′ηε)(d′′ηε)⋆v, v〉

6
χ′

0(σε)|s|2
ε2

|u|2〈Bεv, v〉.

This implies

〈B−1
ε (d′′ηε ∧ u), (d′′ηε ∧ u)〉 6

χ′
0(σε)|s|2
ε2

|u|2.

The main term in gε can be written

g(1)
ε := (1 + ε−2|s|2)θ′(ε−2|s|2)χ′

0(σε)
−1d′′ηε ∧ F∞.

On Supp g
(1)
ε ⊂ {|s| < ε}, since χ′

0(σε) > 1, we thus find

〈B−1
ε g(1)

ε , g(1)
ε 〉 6 (1 + ε−2|s|2)2 θ′(ε−2|s|2)2|F∞|2.

Instead of working on X itself, we will work rather on the relatively compact subset
XcrYc, where Yc = Y ∩Xc = Y ∩{ψ < c}. We know that XcrYc is again complete
Kähler by Lemma 11.9. In this way, we avoid the singularity of the weight |s|−2r

along Y . We find
∫

XcrYc

〈B−1
ε g(1)

ε , g(1)
ε 〉 |s|−2rdVω 6

∫

XcrYc

|F∞|2(1 + ε−2|s|2)2θ′(ε−2|s|2)2|s|−2rdVω.

Now, we let ε → 0 and view s as “transverse local coordinates” around Y . As F∞

coincides with f on Y , it is not hard to see that the right hand side converges to
cr

∫
Yc

|f |2|Λr(ds)|−2dVY,ω where cr is the “universal” constant

cr =

∫

z∈Cr, |z|61

(1 + |z|2)2θ′(|z|2)2 ir
2

Λr(dz) ∧ Λr(dz)
|z|2r < +∞

depending only on r. The second term

g(2)
ε = θ(ε−2|s|2)d′′F∞

in gε satisfies Supp(g
(2)
ε ) ⊂ {|s| < ε} and |g(2)

ε | = O(|s|) (just look at the Taylor
expansion of d′′F∞ near Y ). From this we easily conclude that

∫

XcrYc

〈B−1
ε g(2)

ε , g(2)
ε 〉 |s|−2rdVX,ω = O(ε2),
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provided that Bε remains locally uniformly bounded below near Y (this is the case
for instance if we have strict inequalities in the curvature assumption a)). If this holds
true, we apply Proposition 8.4 on Xc r Yc with the additional weight factor |s|−2r.
Otherwise, we use the modified estimate stated in Remark 8.5 in order to solve
the approximate equation D′′u + δ1/2h = gε with δ > 0 small. This yields sections
u = uc,ε,δ, h = hc,ε,δ such that

∫

XcrYc

(ηε + λε)
−1|uc,ε,δ|2|s|−2r dVω +

∫

XcrYc

|hc,ε,δ|2|s|−2r dVω

6 2

∫

XcrYc

〈(Bε + δI)−1gε, gε〉|s|−2r dVω,

and the right hand side is under control in all cases. The extra error term δ1/2h can
be removed at the end by letting δ tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for simplicity of exposition that
we do have the required lower bound for Bε and the estimates of g

(1)
ε and g

(2)
ε

as above. For δ = 0, the above estimate provides a solution uc,ε of the equation
D′′uc,ε = gε = D′′Fε on Xc r Yc, such that

∫

XcrYc

(ηε + λε)
−1|uc,ε|2|s|−2rdVX,ω 6 2

∫

XcrYc

〈B−1
ε gε, gε〉 |s|−2rdVX,ω

6 2 cr

∫

Yc

|f |2
|Λr(ds)|2 dVY,ω +O(ε).

Here we have

σε = log(|s|2 + ε2) 6 log(e−2α + ε2) 6 −2α+O(ε2) 6 −2 +O(ε2),

ηε = ε− χ0(σε) 6 (1 +O(ε))σ2
ε ,

λε =
χ′

0(σε)
2

χ′′
0 (σε)

= (1 − σε)
2 + (1 − σε) 6 (3 +O(ε))σ2

ε ,

ηε + λε 6 (4 +O(ε))σ2
ε 6 (4 +O(ε))

(
− log(|s|2 + ε2)

)2
.

As Fε is uniformly bounded with support in {|s| < ε}, we conclude from an obvious
volume estimate that

∫

Xc

|Fε|2
(|s|2 + ε2)r(− log(|s|2 + ε2))2

dVX,ω 6
Const

(log ε)2
.

Therefore, thanks to the usual inequality |t+u|2 6 (1+k)|t|2+(1+k−1)|u|2 applied

to the sum Fc,ε = f̃ε − uc,ε with k = | log ε|, we obtain from our previous estimates

∫

XcrYc

|Fc,ε|2
(|s|2 + ε2)r(− log(|s|2 + ε2))2

dVX,ω 6 8 cr

∫

Yc

|f |2
|Λr(ds)|2 dVY,ω+O(| log ε|−1).

In addition to this, we have d′′Fc,ε = 0 by construction, and this equation extends
from Xc r Yc to Xc by Lemma 11.10.

If q = 0, then uc,ε must be smooth also, and the non integrability of the weight
|s|−2r along Y shows that uc,ε vanishes on Y , therefore
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Fc,ε↾Y = Fε↾Y = F∞↾Y = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first
as ε→ 0, and then as c→ +∞. The initial assumption that Σ = {s = Λr(ds) = 0}
is empty can be easily removed in two steps: i) the result is true if X is Stein, since
we can always find a complex hypersurface Z in X such that Σ ⊂ Y ∩ Z ( Y , and
then apply the extension theorem on the Stein manifold XrZ, in combination with
Lemma 11.10 ; ii) the whole procedure still works when Σ is nowhere dense in Y (and

possibly nonempty). Indeed local L2 extensions f̃j still exist by step i) applied on

small coordinate balls Uj ; we then set F∞ =
∑
θj f̃j and observe that |D′′F∞|2|s|−2r

is locally integrable, thanks to the estimate
∫
Uj

|f̃j |2|s|−2r(log |s|)−2dV < +∞ and

the fact that |∑ d′′θj ∧ f̃j | = O(|s|δ) for suitable δ > 0 [as follows from Hilbert’s

Nullstensatz applied to f̃j − f̃k at singular points of Y ].

When q > 1, the arguments needed to get a smooth solution involve more
delicate considerations, and we will only sketch the details. The main difficulty lies
in the presence of the weight |s|−2r, which creates trouble at points of Y when one
tries to use an elliptic regularity argument (see Remark 8.5). If r = 1, however, the
subvariety Y is a divisor; therefore, when we consider a D′′ equation with values in
the line bundle ΛnT ⋆X ⊗L, a L2 solution for the weight |s|−2 can be interpreted as a
L2 solution with values in the twisted line bundle ΛnT ⋆X ⊗ L⊗OX(−Y ), equipped
with a smooth hermitian metric. Hence, if r = 1, the minimal L2 solution uc,ε of
the D′′ equation considered earlier satisfies the equations

D′′uc,ε = gε = D′′Fε, D′′⋆(|s|−2uc,ε) = 0 (minimality condition)

on Xc r Yc. These equations can be rewritten as

D′′(s−1uc,ε) = s−1D′′Fε, D′′⋆(s−1uc,ε) = 0.

By Lemma 11.10, the latter equalities are valid on Xc and not only on Xc r Yc,
for s−1uc,ε is locally L2 and s−1D′′Fε is locally bounded. From this, we infer that
Fc,ε = Fε − uc,ε satisfies

D′′(s−1Fc,ε) = D′′(s−1Fε) − s−1D′′Fε,

D′′⋆(s−1Fc,ε) = D′′⋆(s−1Fε) = D′′⋆
(
θ(ε−2|s|2)s−1F∞

)
.

It is easy to show thatD′′(s−1f̃)−s−1D′′f̃ is independent of the choice of the smooth
extension f̃ of f (whether f̃ is D′′-closed or not is irrelevant), and that it is equal
to the current D′′(s−1)∧ f̃ with support in Y . On the other hand, s−1F∞ is locally
integrable, hence θ(ε−2|s|2)s−1F∞ converges weakly to 0 as ε→ 0. By extracting a
weak limit Fc,ε → F in L2

loc((|s| log |s|)−2), we easily see that s−1Fc,ε → s−1F in
the weak topology of distributions, therefore

D′′(s−1F ) = D′′(s−1) ∧ f̃ , D′′⋆(s−1F ) = 0

in the limit. In particular s−1F is ∆′′-harmonic on X r Y , hence F is smooth
on X r Y . Unfortunately, the above equations do not imply smoothness of the
coefficients of F all over X , but only Hölder continuity near Y (for any Hölder
exponent γ < 1). In fact, we can always choose a smooth local extension f̃ such
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that D′′f̃ = 0 and ∇0,1s f̃ = 0 on Y (if the second condition is not satisfied, we
replace f̃ with f̃ −D′′(s h), where h is a suitable smooth (n, q− 1)-form on X ; the
values taken by f̃ on Y are then uniquely defined). We find

D′′(s−1(F − f̃)) = 0, D′′⋆(s−1(F − f̃)) = −D′′⋆(s−1f̃),

and the condition ∇0,1s f̃ = 0 on Y shows that the singularity of D′′⋆(s−1f̃) along
Y is at most O(|s|−1). Our equations yield

∆′′(s−1(F − f̃)) = −D′′D′′⋆(s−1f̃),

hence

s−1(F − f̃) = Gn,q
(
D′′D′′⋆(s−1f̃)

)
= D′′Gn,q−1

(
D′′⋆(s−1f̃)

)
modC∞

where Gp,q is a (local) Green kernel for the ∆′′ operator in bidegree (p, q). As the
derivatives of order 1 ofGn,q−1 have singularity |x−y|−(2n−1) along the diagonal and
D′′⋆(s−1f̃) = O(|s|−1), we find s−1(F − f̃) = O(log |s|) and the Hölder continuity of
F − f̃ (hence of F ) follows, as well as the fact that F↾Y = f̃ ↾Y = f . We claim that
F can be corrected so as to obtain a smooth extension F̃ with |F − F̃ | small and
decaying as rapidly as we wish at infinity; hence F̃ will satisfy the desired global L2

estimate. Indeed, there is a covering of Y by open sets Uj in X such that f admits
a smooth D′′-closed extension f̃j on Uj , with the following additional properties:
∇0,1s f̃j = 0 on Y ∩ Uj , and s−1(f̃j − f̃k) is smooth on Uj ∩ Uk. Only the latter
property needs to be checked. We show by induction on ℓ > 1 that f̃j can be chosen
so that

f̃k − f̃j = s vjk + sℓwjk

with suitable smooth (n, q)-forms vjk and wjk. This is true when ℓ = 1, since by
uniqueness f̃k − f̃j must vanish on Y ∩ Uj . Now, the D′′-closedness implies

0 = sD′′vjk + sℓD′′wjk + ℓsℓ−1D′s ∧ wjk,

and an identification of the coefficients of the Taylor expansion in s, s shows that
D′s ∧ wjk = 0 on Y ∩ Uj ∩ Uk. This implies

wjk = D′s ∧ w(1)
jk + sw

(2)
jk + sw

(3)
jk

with smooth forms w
(1)
jk , w

(2)
jk , w

(3)
jk . The (n, q − 1) form w

(1)
jk is uniquely defined if

we require the additional condition ∇0,1s w
(1)
jk = 0. Then (w

(1)
jk ) satisfies the Čech

cocycle condition and we can write w
(1)
jk = w

(1)
k − w

(1)
j for some 0-cochain (w

(1)
j ).

We conclude from these relations that f̃j − (ℓ + 1)−1D′′(sℓ+1w
(1)
j ) admits a Čech

1-coboundary

f̃k − f̃j − (ℓ+ 1)−1D′′(sℓ+1w
(1)
jk ) = f̃k − f̃j − sℓD′s ∧ w(1)

jk mod(sℓ+1)

= s(vjk + sℓw
(2)
jk ) mod(sℓ+1),

hence it satisfies the induction hypothesis at order ℓ+1. By arranging the asympotic
expansion up to infinite order, we infer that f̃k − f̃j−s vjk is flat along Y , hence that



13. The Ohsawa-Takegoshi L2 extension theorem 73

s−1(f̃k − f̃j) is smooth. Our claim is thus proved. Now, the Green kernel argument
shows that F can be written as F = f̃j + sD′′hj on Uj , where

hj = Gn,q−1(D′′⋆(s−1f̃j)) modC∞

is smooth on UjrY and has its first order derivatives bounded by O(log |s|) near Y .
Furthermore, hk − hj is smooth on Uj ∩ Uk. Therefore, if we select sufficiently
good approximations hj ⋆ ρεj

of hj and a collection of smooth functions (θj) with
Supp θj ⊂ Uj , 0 6 θj 6 1 and

∑
θj = 1 near Y , the (n, q)-form

F̃ = F −D′′
(
s
∑

j

θj(hj − hj ⋆ ρεj
)
)

is smooth and satisfies all our requirements.

When r > 1, the above argument can no longer be applied directly; one possi-
bility to overcome this difficulty is to blow-up Y so as to deal again with the case of
a divisor. We may assume that Σ = ∅ (otherwise, we just replace Xc with Xc rΣ,
which is again complete Kähler). Instead of working on Xc r Yc as we did earlier,

we work on the blow-up X̂c of Xc along Yc. If µ : X̂c → Xc is the blow-up map,
Ŷc = µ−1(Yc) the exceptional divisor and γ a positive constant, we equip X̂c with
the smooth Kähler metric ω̂γ = µ⋆ω + γ (id′d′′ log |s|2 + i

rΘ(L)) > µ⋆ω. Then the
minimal L2(ωγ) solution uc,ε,γ satisfies the equations

D′′uc,ε,γ = µ⋆gε = D′′(µ⋆Fε), D′′⋆
ωγ

(|s|−2ruc,ε,γ) = 0

on X̂c r Ŷc, and F̂c,ε,γ = Fε − uc,ε,γ satisfies the L2 estimate

∫

X̂c

|F̂c,ε,γ|2
(|ŝ|2 + ε2)r(− log(|ŝ|2 + ε2))2

dV
X̂c,ωγ

6 8 cr

∫

Yc

|f |2
|Λr(ds)|2 dVY,ω +

Const

(log ε)2

where ŝ = s ◦ µ (one can use monotonicity with respect to metrics and the fact
that ωγ > µ⋆ω to see that the right hand side always admits the ω-bound as an
upper bound). We can view Xc as a submanifold of the projectivized bundle P (E)

of lines of E, and O
X̂c

(−Ŷc) as the restriction to Xc of the tautological line bundle

OP (E)(−1) on P (E). We thus view ŝ as a section of O
Ŷc

(−Ŷc) (actually, ŝ is a gene-

rator of that ideal sheaf). Since |ŝ|−2r|uc,γ,ε|2 is locally integrable by construction,
we get

D′′(ŝ−ruc,ε,γ) = ŝ−rD′′(µ⋆Fε), D′′⋆
ωγ

(ŝ−ruc,ε,γ) = 0

on X̂c. Passing to the limit as ε, γ tend to 0 and c tends to +∞, we find a (n, q)-form

F̂ with L2
loc coefficients on X̂ such that

∫

X̂

|F̂ |2
|ŝ|2r(− log |ŝ|)2 dVX̂,ω 6 8 cr

∫

Yc

|f |2
|Λr(ds)|2dVY,ω

and

D′′(ŝ−rF̂ ) = D′′(ŝ−rµ⋆f̃) − ŝ−rD′′(µ⋆f̃) = D′′(ŝ−1) ∧ (ŝ−(r−1)µ⋆f̃),

D′′⋆
µ⋆ω(ŝ−rF̂ ) = 0
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in the sense of distributions (everywhere on X̂ and not only on X̂ r Ŷ ); indeed,
thanks to the equality

µ⋆(ΛnT ⋆Xc
) = ΛnT ⋆

X̂c

⊗O
X̂c

(−(r − 1)Ŷc),

we see that µ⋆f̃ vanishes at order r − 1 along Ŷ . If we view F̂ as a (0, q)-form

with values in µ⋆(ΛnT ⋆X ⊗ L) rather than as a (n, q)-form on X̂, we may consider

philosophically that we cancel out a factor ŝ r−1 in the equations. This shows that we
are essentially in the same situation as in the earlier case r = 1, except that D′′⋆

µ⋆ω is

computed with respect to a metric µ⋆ω which is degenerate along Ŷ . A finer analysis
of the Green kernel of ∆′′

µ⋆ω shows that F := µ⋆F is smooth on X r Y , that F still
has continuous coefficients near Y , and that F↾Y = f . We then produce the desired
solution by taking a small perturbation of F as above. The details are rather tedious
and will be left to the reader. �

(13.7) Remarks.

a) When q = 0, the estimates provided by Theorem 13.6 are independent of the
Kähler metric ω. In fact, if f and F are holomorphic sections of ΛnT ⋆X ⊗ L over Y
(resp. X), viewed as (n, 0)-forms with values in L, we can “divide” f by Λr(ds) ∈
Λr(TX/TY )⋆ ⊗ detE to get a section f/Λr(ds) of ΛpT ⋆Y ⊗ L ⊗ (detE)−1 over Y .
We then find

|F |2dVX,ω = in
2{F, F},

|f |2
|Λr(ds)|2dVY,ω = ip

2{f/Λr(ds), f/Λr(ds)},

where {•, •} is the canonical bilinear pairing described in (6.3).

b) The hermitian structure on E is not really used in depth. In fact, one only needs
E to be equipped with a Finsler metric, that is, a smooth complex homogeneous
function of degree 2 on E [or equivalently, a smooth hermitian metric on the tau-
tological bundle OP (E)(−1) of lines of E over the projectivized bundle P (E)]. The
section s of E induces a section [s] of P (E) over X r s−1(0) and a corresponding
section s̃ of the pull-back line bundle [s]⋆OP (E)(−1). A trivial check shows that
Theorem 13.6 as well as its proof extend to the case of a Finsler metric on E, if we
replace everywhere {iΘ(E)s, s} by {iΘ([s]⋆OP (E)(−1))s̃, s̃ } (especially in hypothe-
sis 13.6 b)). A minor issue is that |Λr(ds)| is (a priori) no longer defined, since no
obvious hermitian norm exists on detE. A posteriori, we have the following ad hoc
definition of a metric on (detE)⋆ which makes the L2 estimates work as before: for
x ∈ X and ξ ∈ ΛrE⋆x, we set

|ξ|2x =
1

cr

∫

z∈Ex

(1 + |z|2)2θ′(|z|2)2 ir
2

ξ ∧ ξ
|z|2r

where |z| is the Finsler norm on Ex [the constant cr is there to make the result agree
with the hermitian case; it is not hard to see that this metric does not depend on
the choice of θ ]. �

We now present a few interesting corollaries. The first one is a surjectivity
theorem for restriction morphisms in Dolbeault cohomology.
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(13.8) Corollary. Let X be a projective algebraic manifold and E a holomor-
phic vector bundle of rank r over X, s a holomorphic section of E which is ev-
erywhere transverse to the zero section, Y = s−1(0), and let L be a holomorphic line
bundle such that F = L1/r ⊗ E⋆ is Griffiths positive (we just mean formally that
1
r iΘ(L)⊗ IdE −iΘ(E) >Grif 0). Then the restriction morphism

H0,q(X,ΛnT ⋆X ⊗ L) → H0,q(Y, ΛnT ⋆X ⊗ L)

is surjective for every q > 0.

Proof. A short computation gives

i d′d′′ log |s|2 = i d′
({s,D′s}

|s|2
)

= i
({D′s,D′s}

|s|2 − {D′s, s} ∧ {s,D′s}
|s|4 +

{s, Θ(E)s}
|s|2

)
> −{iΘ(E)s, s}

|s|2

thanks to Lagrange’s inequality and the fact that Θ(E) is antisymmetric. Hence, if
δ is a small positive constant such that

−iΘ(E) +
1

r
iΘ(L) ⊗ IdE >Grif δ ω ⊗ IdE > 0,

we find
iΘ(L) + r i d′d′′ log |s|2 > rδ ω.

The compactness of X implies iΘ(E) 6 Cω ⊗ IdE for some C > 0. Theorem 13.6
can thus be applied with α = rδ/C and Corollary 13.8 follows. By remark 13.7 b),
the above surjectivity property even holds if L1/r ⊗E⋆ is just assumed to be ample
(in the sense that the associated line bundle π⋆L1/r ⊗ OP (E)(1) is positive on the
projectivized bundle π : P (E) → X of lines of E). �

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains Ω ⋐ Cn. Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(13.9) Corollary. Let Ω ⊂ Cn be a bounded pseudoconvex domain, and let Y ⊂ X
be a nonsingular complex submanifold defined by a section s of some hermitian
vector bundle E with bounded curvature tensor on Ω. Assume that s is everywhere
transverse to the zero section and that |s| 6 e−1 on Ω. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function
ϕ on Ω, every holomorphic function f on Y with

∫
Y
|f |2|Λr(ds)|−2e−ϕdVY < +∞,

there exists an extension F of f to Ω such that

∫

Ω

|F |2
|s|2r(− log |s|)2 e

−ϕdVΩ 6 C

∫

Y

|f |2
|Λr(ds)|2 e

−ϕdVY .

Proof. We apply essentially the same idea as for the previous corollary, in the special
case when L = Ω×C is the trivial bundle equipped with a weight function e−ϕ−A|z|2 .
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The choice of a sufficiently large constant A > 0 guarantees that the curvature
assumption 13.6 a) is satisfied (A just depends on the presupposed bound for the
curvature tensor of E). �

(13.10) Remark. The special case when Y = {z0} is a point is especially inter-
esting. In that case, we just take s(z) = (ediamΩ)−1(z − z0), viewed as a section
of the rank r = n trivial vector bundle Ω × Cn with |s| 6 e−1. We take α = 1 and
replace |s|2n(− log |s|)2 in the denominator by |s|2(n−ε), using the inequality

− log |s| =
1

ε
log |s|−ε 6

1

ε
|s|−ε, ∀ε > 0.

For any given value f0, we then find a holomorphic function f such that f(z0) = f0
and ∫

Ω

|f(z)|2
|z − z0|2(n−ε)

e−ϕ(z)dVΩ 6
Cn

ε2(diamΩ)2(n−ε)
|f0|2e−ϕ(z0).

14. Approximation of psh functions by logarithms of

holomorphic functions

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that
every psh function on a pseudoconvex open set Ω ⊂ Cn can be approximated very
accurately by functions of the form c log |f |, where c > 0 and f is a holomorphic
function. The main idea is taken from (Demailly 1992). For other applications to
algebraic geometry, see (Demailly 1993b) and (Demailly-Kollár 1996). Recall that
the Lelong number of a function ϕ ∈ Psh(Ω) at a point x0 is defined to be

ν(ϕ, x0) = lim inf
z→x0

logϕ(z)

log |z − x0|
= lim

r→0+

supB(x0,r) ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing
order ordx0

(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

(14.1) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex
open set Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic
functions f on Ω such that

∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m
log

∑ |σℓ|2
where (σℓ) is an orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0
independent of m such that

a) ϕ(z) − C1

m
6 ϕm(z) 6 sup

|ζ−z|<r

ϕ(ζ) +
1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ϕm converges to ϕ pointwise
and in L1

loc topology on Ω when m→ +∞ and

b) ν(ϕ, z) − n

m
6 ν(ϕm, z) 6 ν(ϕ, z) for every z ∈ Ω.



14. Approximation of psh functions by logarithms of holomorphic functions 77

Proof. Note that
∑ |σℓ(z)|2 is the square of the norm of the evaluation linear form

f 7→ f(z) on HΩ(mϕ). As ϕ is locally bounded above, the L2 topology is actually
stronger than the topology of uniform convergence on compact subsets of Ω. It
follows that the series

∑ |σℓ|2 converges uniformly on Ω and that its sum is real
analytic. Moreover we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|

where B(1) is the unit ball of HΩ(mϕ). For r < d(z, ∂Ω), the mean value inequality
applied to the psh function |f |2 implies

|f(z)|2 6
1

πnr2n/n!

∫

|ζ−z|<r

|f(ζ)|2dλ(ζ)

6
1

πnr2n/n!
exp

(
2m sup

|ζ−z|<r

ϕ(ζ)
)∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z) 6 sup
|ζ−z|<r

ϕ(ζ) +
1

2m
log

1

πnr2n/n!

and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi ex-
tension theorem (estimate 13.10) applied to the 0-dimensional subvariety {z} ⊂ Ω
shows that for any a ∈ C there is a holomorphic function f on Ω such that f(z) = a
and ∫

Ω

|f |2e−2mϕdλ 6 C3|a|2e−2mϕ(z),

where C3 only depends on n and diamΩ. We fix a such that the right hand side
is 1. This gives the other inequality

ϕm(z) >
1

m
log |a| = ϕ(z) − logC3

2m
.

The above inequality implies ν(ϕm, z) 6 ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ϕm(x) 6 sup
|ζ−z|<2r

ϕ(ζ) +
1

m
log

C2

rn
.

Divide by log r and take the limit as r tends to 0. The quotient by log r of the
supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus we
obtain

ν(ϕm, x) > ν(ϕ, x) − n

m
. �

Theorem 14.1 implies in a straighforward manner a deep result of (Siu 1974)
on the analyticity of the Lelong number sublevel sets.

(14.2) Corollary. Let ϕ be a plurisubharmonic function on a complex manifold X.
Then, for every c > 0, the Lelong number sublevel set
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Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) > c

}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in
14.1 b) imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0

for all multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable)
intersection of analytic sets. �

15. Nadel vanishing theorem

In this final section, we prove a vanishing theorem due to (Nadel 1989), which
has found recently many deep and important applications in complex differential
geometry and in algebraic geometry. It contains as a special case the well-known
Kawamata-Viehweg vanishing theorem (Kawamata 1982, Viehweg 1982), which can
be seen as an algebraic version of the general vanishing theorem [here, the reader is
assumed to have some knowledge of sheaf theory, namely coherent analytic sheaves,
sheaf cohomology, etc]. We first introduce the concept of multiplier ideal sheaf,
following (Nadel 1989). The main idea actually goes back to the fundamental works
of (Bombieri 1970) and (Skoda 1972a).

(15.1) Definition. Let ϕ be a psh function on an open subset Ω ⊂ X ; to ϕ is
associated the ideal subsheaf I(ϕ) ⊂ OΩ of germs of holomorphic functions f ∈ OΩ,x

such that |f |2e−2ϕ is integrable with respect to the Lebesgue measure in some local
coordinates near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which
e−2ϕ is non integrable. Of course, such points occur only if ϕ has logarithmic poles.
This is made precise as follows.

(15.2) Definition. A psh function ϕ is said to have a logarithmic pole of coefficient
γ at a point x ∈ X if the Lelong number

ν(ϕ, x) := lim inf
z→x

ϕ(z)

log |z − x|
is non zero and if ν(ϕ, x) = γ.

(15.3) Lemma (Skoda 1972a). Let ϕ be a psh function on an open set Ω and let
x ∈ Ω.

a) If ν(ϕ, x) < 1, then e−2ϕ is integrable in a neighborhood of x, in particular
I(ϕ)x = OΩ,x.
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b) If ν(ϕ, x) > n + s for some integer s > 0, then e−2ϕ > C|z − x|−2n−2s in a
neighborhood of x and I(ϕ)x ⊂ m

s+1
Ω,x , where mΩ,x is the maximal ideal of OΩ,x.

c) The zero variety V (I(ϕ)) of I(ϕ) satisfies

En(ϕ) ⊂ V (I(ϕ)) ⊂ E1(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) > c} is the c-sublevel set of Lelong numbers
of ϕ.

Proof. a) We use the following well-known facts about Lelong numbers, see (Lelong
1968) or (Demailly 1993a): set dc = 1

2iπ (d′ − d′′), so that ddc = i
πd

′d′′, and put
Θ = ddcϕ ; we then have the equality

ν(Θ, x, r) =
1

2n−1r2n−2

∫

B(x,r)

Θ ∧ (ddc|z|2)n−1 =

∫

B(x,r)

Θ ∧ (ddc log |z − x|)n−1 ;

it follows from the last integral that ν(Θ, x, r) is an increasing function of r ; the limit
ν(Θ, x) := limr→0+

ν(Θ, x, r) is equal to ν(ϕ, x). Now, let χ be a cut-off function
will support in a small ball B(x, r), equal to 1 in B(x, r/2). As (ddc log |z|)n = δ0,
we get

ϕ(z) =

∫

B(x,r)

χ(ζ)ϕ(ζ)(ddc log |ζ − z|)n

=

∫

B(x,r)

ddc(χ(ζ)ϕ(ζ)) ∧ log |ζ − z|(ddc log |ζ − z|)n−1

for z ∈ B(x, r/2). Expanding ddc(χϕ) and observing that dχ = ddcχ = 0 on
B(x, r/2), we find

ϕ(z) =

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ log |ζ − z|(ddc log |ζ − z|)n−1 + smooth terms

on B(x, r/2). Fix r so small that
∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − x|)n−1 6 ν(Θ, x, r) < 1.

By continuity, there exists δ, ε > 0 such that

I(z) :=

∫

B(x,r)

χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1 6 1 − δ

for all z ∈ B(x, ε). Applying Jensen’s convexity inequality to the probability measure

dµz(ζ) = I(z)−1χ(ζ)Θ(ζ) ∧ (ddc log |ζ − z|)n−1,

we find

−ϕ(z) =

∫

B(x,r)

I(z) log |ζ − z|−1 dµz(ζ) +O(1) =⇒

e−2ϕ(z) 6 C

∫

B(x,r)

|ζ − z|−2I(z) dµz(ζ).

As
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dµz(ζ) 6 C1|ζ − z|−(2n−2)Θ(ζ) ∧ (ddc|ζ|2)n−1 = C2|ζ − z|−(2n−2)dσΘ(ζ),

we get

e−2ϕ(z) 6 C3

∫

B(x,r)

|ζ − z|−2(1−δ)−(2n−2)dσΘ(ζ),

and the Fubini theorem implies that e−2ϕ(z) is integrable on a neighborhood of x.

b) If ν(ϕ, x) = γ, the convexity properties of psh functions, namely, the convexity
of log r 7→ sup|z−x|=r ϕ(z) implies that

ϕ(z) 6 γ log |z − x|/r0 +M,

where M is the supremum on B(x, r0). Hence there exists a constant C > 0 such
that e−2ϕ(z) > C|z − x|−2γ in a neighborhood of x. The desired result follows from
the identity

∫

B(0,r0)

∣∣ ∑
aαz

α
∣∣2

|z|2γ dV (z) = Const

∫ r0

0

(∑
|aα|2r2|α|

)
r2n−1−2γ dr,

which is an easy consequence of Parseval’s formula. In fact, if γ has integral part
[γ] = n+ s, the integral converges if and only if aα = 0 for |α| 6 s.

c) is just a simple formal consequence of a) and b). �

(15.4) Proposition (Nadel 1989). For any psh function ϕ on Ω ⊂ X, the sheaf
I(ϕ) is a coherent sheaf of ideals over Ω.

Proof. Since the result is local, we may assume that Ω is the unit ball in Cn. Let E
be the set of all holomorphic functions f on Ω such that

∫
Ω
|f |2e−2ϕ dλ < +∞. By

the strong noetherian property of coherent sheaves, the set E generates a coherent
ideal sheaf J ⊂ OΩ . It is clear that J ⊂ I(ϕ); in order to prove the equality, we
need only check that Jx + I(ϕ)x ∩m

s+1
Ω,x = I(ϕ)x for every integer s, in view of the

Krull lemma. Let f ∈ I(ϕ)x be defined in a neighborhood V of x and let θ be a
cut-off function with support in V such that θ = 1 in a neighborhood of x. We solve
the equation d′′u = g := d′′(θf) by means of Hörmander’s L2 estimates 8.9, where
E is the trivial line bundle Ω × C equipped with the strictly psh weight

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x| + |z|2.

We get a solution u such that
∫
Ω
|u|2e−2ϕ|z− x|−2(n+s)dλ <∞, thus F = θf − u is

holomorphic, F ∈ E and fx−Fx = ux ∈ I(ϕ)x ∩m
s+1
Ω,x . This proves our contention.

�

The multiplier ideal sheaves satisfy the following basic fonctoriality property
with respect to direct images of sheaves by modifications.

(15.5) Proposition. Let µ : X ′ → X be a modification of non singular complex
manifolds (i.e. a proper generically 1:1 holomorphic map), and let ϕ be a psh func-
tion on X. Then
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µ⋆
(
O(KX′) ⊗ I(ϕ ◦ µ)

)
= O(KX) ⊗ I(ϕ).

Proof. Let n = dimX = dimX ′ and let S ⊂ X be an analytic set such that
µ : X ′ r S′ → X r S is a biholomorphism. By definition of multiplier ideal sheaves,
O(KX)⊗I(ϕ) is just the sheaf of holomorphic n-forms f on open sets U ⊂ X such

that in
2

f ∧ f e−2ϕ ∈ L1
loc(U). Since ϕ is locally bounded from above, we may even

consider forms f which are a priori defined only on U r S, because f will be in
L2

loc(U) and therefore will automatically extend through S. The change of variable
formula yields

∫

U

in
2

f ∧ f e−2ϕ =

∫

µ−1(U)

in
2

µ⋆f ∧ µ⋆f e−2ϕ◦µ,

hence f ∈ Γ (U,O(KX)⊗I(ϕ)) if and only if µ⋆f ∈ Γ (µ−1(U),O(KX′)⊗I(ϕ ◦µ)).
Proposition 15.5 is proved. �

(15.6) Remark. If ϕ has “analytic singularities” the computation of I(ϕ) can be
reduced to a purely algebraic problem.

The first observation is that I(ϕ) can be computed easily if ϕ has the form ϕ =∑
αj log |gj | where Dj = g−1

j (0) are nonsingular irreducible divisors with normal
crossings. Then I(ϕ) is the sheaf of functions h on open sets U ⊂ X such that

∫

U

|h|2
∏

|gj|−2αjdV < +∞.

Since locally the gj can be taken to be coordinate functions from a local coordinate
system (z1, . . . , zn), the condition is that h is divisible by

∏
g
mj

j where mj−αj > −1
for each j, i.e. mj > ⌊αj⌋ (integer part). Hence

I(ϕ) = O(−⌊D⌋) = O(−
∑

⌊αj⌋Dj)

where ⌊D⌋ denotes the integral part of the Q-divisor D =
∑
αjDj .

Now, consider the general case of analytic singularities, i.e., the case of a psh
function such that

ϕ =
α

2
log

(
|f1|2 + · · ·+ |fN |2

)
+O(1)

near the poles. Let J be the (coherent) integrally closed ideal sheaf of holomorphic
functions h such that |h| 6 C exp(ϕ/α). In this case, the computation is made as

follows. First, one computes a smooth modification µ : X̃ → X of X such that µ⋆J
is an invertible sheaf O(−D) associated with a normal crossing divisorD =

∑
λjDj ,

where (Dj) are the components of the exceptional divisor of X̃ (take the blow-up
X ′ of X with respect to the ideal J so that the pull-back of J to X ′ becomes
an invertible sheaf O(−D′), then blow up again by the Hironaka desingularization
theorem (Hironaka 1964) to make X ′ smooth and D′ have normal crossings). Now,
we have K

X̃
= µ⋆KX + R where R =

∑
ρjDj is the zero divisor of the Jacobian

function Jµ of the blow-up map. By the direct image formula 15.5, we get

I(ϕ) = µ⋆
(
O(K

X̃
− µ⋆KX) ⊗ I(ϕ ◦ µ)

)
= µ⋆

(
O(R) ⊗ I(ϕ ◦ µ)

)
.
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Now, (fj ◦ µ) are generators of the ideal O(−D), hence

ϕ ◦ µ ∼ α
∑

λj log |gj|

where gj are local generators of O(−Dj). We are thus reduced to computing multi-
plier ideal sheaves in the case where the poles are given by a Q-divisor with normal
crossings

∑
αλjDj . We obtain I(ϕ ◦ µ) = O(−∑⌊αλj⌋Dj), hence

I(ϕ) = µ⋆OX̃

( ∑
(ρj − ⌊αλj⌋)Dj

)
. �

(15.7) Exercise. Compute the multiplier ideal sheaf I(ϕ) associated with ϕ =
log(|z1|α1 + . . .+ |zp|αp) for arbitrary real numbers αj > 0.
Hint: using Parseval’s formula and polar coordinates zj = rje

iθj , show that the
problem is equivalent to determining for which p-tuples (β1, . . . , βp) ∈ Np the inte-
gral

∫

[0,1]p

r2β1

1 . . . r
2βp
p r1dr1 . . . rpdrp

r2α1

1 + . . .+ r
2αp
p

=

∫

[0,1]p

t
(β1+1)/α1

1 . . . t
(βp+1)/αp
p

t1 + . . .+ tp

dt1
t1

. . .
dtp
tp

is convergent. Conclude from this that I(ϕ) is generated by the monomials zβ1

1 . . . z
βp
p

such that
∑

(βp + 1)/αp > 1. (This exercise shows that the analytic definition of
I(ϕ) is sometimes also quite convenient for computations). �

Let F be a line bundle over X with a singular metric h of curvature current
Θh(F ). If e−2ϕ is the weight representing the metric in an open set Ω ⊂ X , the ideal
sheaf I(ϕ) is independent of the choice of the trivialization and so it is the restriction
to Ω of a global coherent sheaf I(h) on X . We will sometimes still write I(h) = I(ϕ)
by abuse of notation. In this context, we have the following fundamental vanishing
theorem, which is probably one of the most central results of analytic and algebraic
geometry (especially, it contains the Kawamata-Viehweg vanishing theorem as a
special case).

(15.8) Nadel vanishing theorem (Nadel 1989, Demailly 1993b). Let (X,ω) be
a Kähler weakly pseudoconvex manifold, and let L be a holomorphic line bundle
over X equipped with a singular hermitian metric h of weight e−2ϕ. Assume that
iΘh(L) > εω for some continuous positive function ε on X. Then

Hq
(
X,O(KX ⊗ L) ⊗ I(h)

)
= 0 for all q > 1.

Proof. Let Lq be the sheaf of germs of (n, q)-forms u with values in L and with mea-
surable coefficients, such that both |u|2e−2ϕ and |d′′u|2e−2ϕ are locally integrable.
The d′′ operator defines a complex of sheaves (L•, d′′) which is a resolution of the
sheaf O(KX ⊗ L) ⊗ I(ϕ): indeed, the kernel of d′′ in degree 0 consists of all germs
of holomorphic n-forms with values in L which satisfy the integrability condition;
hence the coefficient function lies in I(ϕ); the exactness in degree q > 1 follows from
Corollary 8.9 applied on arbitrary small balls. Each sheaf Lq is a C∞-module, so L•
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is a resolution by acyclic sheaves. Let ψ be a smooth psh exhaustion function on X .
Let us apply Corollary 8.9 globally on X , with the original metric of L multiplied
by the factor e−χ◦ψ, where χ is a convex increasing function of arbitrary fast growth
at infinity. This factor can be used to ensure the convergence of integrals at infin-
ity. By Corollary 8.9, we conclude that Hq

(
Γ (X,L•)

)
= 0 for q > 1. The theorem

follows. �

(15.9) Corollary. Let (X,ω), L and ϕ be as in Theorem 15.8 and let x1, . . . , xN
be isolated points in the zero variety V (I(ϕ)). Then there is a surjective map

H0(X,KX ⊗ L) −→−→
⊕

16j6N

O(KX ⊗ L)xj
⊗

(
OX/I(ϕ)

)
xj
.

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 → I(ϕ) → OX → OX/I(ϕ) → 0 twisted by O(KX ⊗ L), and apply
Theorem 15.8 to obtain the vanishing of the first H1 group. The asserted surjectivity
property follows. �

(15.10) Corollary. Let (X,ω), L and ϕ be as in Theorem 15.8 and suppose that
the weight function ϕ is such that ν(ϕ, x) > n+ s at some point x ∈ X which is an
isolated point of E1(ϕ). Then H0(X,KX ⊗ L) generates all s-jets at x.

Proof. The assumption is that ν(ϕ, y) < 1 for y near x, y 6= x. By Skoda’s lemma
15.3 b), we conclude that e−2ϕ is integrable at all such points y, hence I(ϕ)y = OX,y,
whilst I(ϕ)x ⊂ m

s+1
X,x by 15.3 a). Corollary 15.10 is thus a special case of 15.9. �

The philosophy of these results (which can be seen as generalizations of the
Hörmander-Bombieri-Skoda theorem (Bombieri 1970), (Skoda 1972a, 1975) is that
the problem of constructing holomorphic sections of KX ⊗ L can be solved by con-
structing suitable hermitian metrics on L such that the weight ϕ has isolated poles
at given points xj .

(15.11) Exercise. Assume that X is compact and that L is a positive line bundle
on X . Let {x1, . . . , xN} be a finite set. Show that there are constants a, b > 0
depending only on L and N such that H0(X,L⊗m) generates jets of any order s at
all points xj for m > as+ b.
Hint: Apply Corollary 15.9 to L′ = K−1

X ⊗ L⊗m, with a singular metric on L of
the form h = h0e

−εψ, where h0 is smooth of positive curvature, ε > 0 small and
ψ(z) ∼ log |z − xj | in a neighborhood of xj .

Recall that a line bundle L is said to be very ample if the sections of H0(X,L)
generate any pair of Lx ⊕ Ly for distinct points x 6= y in X , as well as 1-jets of L
at any point x ∈ X . The line bundle L is said to be ample if some positive multiple
L⊗m is very ample. Then derive the Kodaira embedding theorem:

(15.12) Theorem (Kodaira 1954). If L is a line bundle on a compact complex
manifold, then L is ample if and only if L is positive.
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