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Introduction

Compact Kähler manifolds with semipositive Ricci curvature have been
investigated by various authors. S. Kobayashi [Ko61] first proved the simple
connectedness of Fano manifolds, namely manifolds with positive Ricci curvature
or equivalently, with ample anticanonical line bundle −KX . Later on, generalizing
results of Y. Matsushima [Ma69], A. Lichnerowicz [Li71, 72] proved the following
interesting fibration theorem: if X is a compact Kähler manifold with semipositive
Ricci class, then X is a smooth fibration over its Albanese torus and there is a
group of analytic automorphisms of X lying over the group of torus translations
(see also Section 2 for another proof of these facts based on the solution of Calabi’s
conjecture and on Bochner’s technique). Finally, there were extensive works in the
last decades to study the structure and classification of Ricci flat Kähler manifolds,
see e.g. [Ca57], [Bo74a,b], [Be83] and [Kr86] ; of special interest for physicists is
the subclass of so-called Calabi-Yau manifolds, i.e. Ricci flat compact Kähler
manifolds with finite fundamental group, which appear as a natural generalization
of K3 surfaces.

To make things precise, one says that X has semipositive Ricci class c1(X)
if c1(X) contains a smooth semipositive closed (1, 1)-form, or equivalently if
−KX carries a smooth hermitian metric with semipositive curvature. By the
Aubin-Calabi-Yau theorem, this is equivalent to X having a Kähler metric with
semipositive Ricci curvature. On the other hand, recent developments of algebraic
geometry (especially those related to Mori’s minimal model program) have shown
the importance of the notion of numerical effectivity, which generalizes hermitian
semipositivity but is much more flexible. It would thus be important to extend
the above mentioned results to the case where −KX is numerically effective. The
purpose of this paper is to contribute to the following two conjectures.

Conjecture 1. — Let X be a compact Kähler manifold with numerically

effective anticanonical bundle −KX . Then the fundamental group π1(X) has

polynomial growth.

Conjecture 2. — Let X be a compact Kähler manifold with −KX numerically

effective. Then the Albanese map α : X → Alb(X) is surjective.

1



Before we state the results, let us recall the definition of a numerically
effective line bundle L on a compact complex manifold (see [DPS91] for more
details). The abbreviation “nef” will be used for “numerically effective”.

Definition. — Let X be a compact complex manifold with a fixed hermitian

metric ω. A holomorphic line bundle L over X is nef if for every ε > 0 there exists

a smooth hermitian metric hε on L such that the curvature satisfies

Θhε
≥ −εω.

Of course this notion does not depend on the choice of ω. If X is projective,
L is nef precisely if L · C ≥ 0 for all curves C ⊂ X . Our main contribution to
Conjecture 1 is

Theorem 1. — Let X be a compact Kähler manifold with −KX nef. Then

π1(X) is a group of subexponential growth.

The main tool to prove this result is the solution of the Calabi conjecture by
Aubin [Au76] and Yau [Y77], combined with volume bounds for geodesic balls due
to Bishop [Bi63] and Gage [Ga80] (see Section 1 for details). In fact, the volume
of a geodesic ball of radius R in the universal covering of X essentially counts
the number of words of π1(X) of length ≤ R. The difficulty is that we have to
deal with a sequence of metrics with Ricci curvature closer and closer to being
semipositive, but nevertheless slightly negative in some points, and moreover the
diameter of X need not remain uniformly bounded; this difficulty is solved by
observing that a large fraction of the volume of X remains at bounded distance
without being disconnected (Lemma 1.3). A by-product of our proof is that
Conjecture 1 holds in the semipositive case. This was in fact already known since
a long time in the context of riemannian manifolds (cf. e.g. [HK79]); our method
is then nothing more than the usual riemannian geometry proof combined with
the Aubin-Calabi-Yau theorem. In this way we get:

Theorem 2. — Let X be a compact Kähler manifold with −KX hermitian

semipositive. Then π1(X) has polynomial growth of degree ≤ 2 dimX , in

particular h1(X,OX) ≤ dimX .

Note that there are simple examples of compact Kähler manifolds X with
−KX nef but not hermitian semipositive, e.g. some ruled surfaces over elliptic
curves (see examples 1.7 and 3.5 in [DPS91]). Also, to give a more precise idea
of what Conjecture 1 means, let us recall Gromov’s well-known result [Gr81] : a
finitely generated group has polynomial growth if and only if it contains a nilpotent
subgroup of finite index. Much more might be perhaps expected in the present
situation:

Question. — Let X be a compact Kähler manifold with −KX nef. Does there

exist a finite étale covering X̃ of X such the Albanese map X̃ → Alb(X̃) induces

an isomorphism of fundamental groups ?
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If this would be the case, π1(X) would always be an extension of a finite group
by a free abelian group of even rank. Concerning Conjecture 2, the following result
will be proved in Section 2:

Theorem 3. — Let X be a n-dimensional compact Kähler manifold such that

−KX is nef. Then

(i) The Albanese map α : X → Alb(X) is surjective as soon as the Albanese

dimension p = dimα(X) is 0, 1 or n, and also for p = n−1 if X is projective.

(ii) If X is projective and if the generic fiber F of α has −KF big, then α is

surjective.

The case p = 1 in (i) is a straightforward consequence of Theorem 1,
as pointed out to us by F. Campana, if one observes that the growth of the
fundamental group of a curve of genus ≥ 2 is of exponential type. The other
interesting case p = n − 1 is obtained as a consequence of point (ii), which is
itself a rather simple consequence of the Kawamata-Viehweg vanishing theorem.
Theorem 3 settles Conjecture 2 for projective 3-folds. In that case, we can also
obtain a direct algebraic proof of the Albanese surjectivity in most cases by an
examination of the structure of Mori contractions of X . When the contraction is
not a modification, we give the description of the fibration structure of X . This
is done in Section 3.

To conclude let us mention that the first theorem was used in the classification
of compact Kähler manifolds with nef tangent bundles [DPS91] in a crucial way.

Acknowledgement: Our collaboration has been made possible by PROCOPE and
the DFG Schwerpunktprogramm “Komplexe Mannigfaltigkeiten”. We would like
to thank Prof. F.A. Bogomolov, F. Campana and P. Gauduchon for very useful
discussions.

1. Subexponential growth of the fundamental group

If G is a finitely generated group with generators g1, . . . , gp, we denote by
N(k) the number of elements γ ∈ G which can be written as words

γ = gε1
i1
. . . gεk

ik
, εj = 0, 1 or − 1

of length ≤ k in terms of the generators. The group G is said to have
subexponential growth if for every ε > 0 there is a constant C(ε) such that

N(k) ≤ C(ε)eεk for k ≥ 0.

This notion is independent of the choice of generators. In the free group with two
generators, we have

N(k) = 1 + 4(1 + 3 + 32 + ...+ 3k−1) = 2 · 3k − 1.
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It follows immediately that a group with subexponential growth cannot contain a
non abelian free subgroup. The main goal of this section is to prove

Theorem 1.1. — Let X be a compact Kähler manifold such that K−1
X is nef.

Then π1(X) has subexponential growth.

Proof. The first step consists in the construction of suitable Kähler metrics by
means of the Aubin-Calabi-Yau theorem. Let ω be a fixed Kähler metric on X .
Since K−1

X is nef, for every ε > 0 there exists a smooth hermitian metric hε on
K−1

X such that
uε = Θhε

(K−1
X ) ≥ −εω.

By [Au76] and [Y77, 78] there exists a unique Kähler metric ωε in the cohomology
class {ω} such that

(+) Ricci(ωε) = −εωε + εω + uε.

In fact uε belongs to the Ricci class c1(K
−1
X ) = c1(X), hence so does the right

hand side −εωε + εω + uε. In particular there exists a function fε such that

uε = Ricci(ω) + i∂∂fε.

If we set ωε = ω+ i∂∂ϕ (where ϕ depends on ε), equation (+) is equivalent to the
Monge-Ampère equation

(++)
(ω + i∂∂ϕ)n

ωn
= eεϕ−fε

because
i∂∂ log(ω + i∂∂ϕ)n/ωn = Ricci(ω) − Ricci(ωε)

= ε(ωε − ω) + Ricci(ω) − uε

= i∂∂(εϕ− fε).

It follows from the results of [Au76] that (++) has a unique solution ϕ, thanks to
the fact the right hand side of (++) is increasing in ϕ. Since uε ≥ −εω, equation
(+) implies in particular that Ricci(ωε) ≥ −εωε.

We now recall a well-known differential geometric technique used to get
bounds for N(k) (this technique has been explained to us in a very efficient way

by S. Gallot). Let (M, g) be a compact Riemannian m-fold and let E ⊂ M̃ be

a fundamental domain for the action of π1(M) on the universal covering M̃ . Fix

a ∈ E and set β = diamE. Since π1(M) acts isometrically on M̃ with respect to
the pull-back metric g̃, we infer that

Ek =
⋃

γ∈π1(M), length(γ)≤k

γ(E)

has volume equal toN(k) Vol(M) and is contained in the geodesic ballB(a, αk+β),
where α is the maximum of the length of loops representing the generators gj .
Therefore

(⋆) N(k) ≤ Vol
(
B(a, αk + β)

)

Vol(M)
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and it is enough to bound the volume of geodesic balls in M̃ . For this we use the
following fundamental inequality due to R. Bishop [Bi63], Heintze-Karcher [HK78]
and M. Gage [Ga80].

Lemma 1.2. — Let

Φ : T
M̃, a

→ M̃, Φ(ζ) = expa(ζ)

be the (geodesic) exponential map. Denote by

Φ⋆dVg = a(t, ζ) dt dσ(ζ)

the expression of the volume element in spherical coordinates with t ∈ IR+ and

ζ ∈ Sa(1) = unit sphere in T
M̃, a

. Suppose that a(t, ζ) does not vanish for

t ∈ ]0, τ(ζ)[ , with τ(ζ) = +∞ or a(τ(ζ), ζ) = 0. Then b(t, ζ) = a(t, ζ)1/(m−1)

satisfies on ]0, τ(ζ)[ the inequality

∂2

∂t2
b(t, ζ) +

1

m− 1
Riccig(v(t, ζ), v(t, ζ)) b(t, ζ) ≤ 0

where

v(t, ζ) =
d

dt
expa(tζ) ∈ SΦ(tζ)(1) ⊂ T

M̃, Φ(tζ)
.

If Riccig ≥ −εg, we infer in particular

∂2b

∂t2
− ε

m− 1
b ≤ 0

and therefore b(t, ζ) ≤ α−1 sinh(αt) with α =
√
ε/(m− 1) (to check this, observe

that b(t, ζ) = t + o(t) at 0 and that sinh(αt) ∂b/∂t− α cosh(αt) b has a negative
derivative). Now, every point x ∈ B(a, r) can be joined to a by a minimal geodesic
arc of length < r. Such a geodesic arc cannot contain any focal point (i.e. any
critical value of Φ), except possibly at the end point x. It follows that B(a, r) is
the image by Φ of the open set

Ω(r) =
{
(t, ζ) ∈ [0, r[× Sa(1) ; t < τ(ζ)

}
.

Therefore

Volg(B(a, r)) ≤
∫

Ω(r)

Φ⋆dVg =

∫

Ω(r)

b(t, ζ)m−1dt dσ(ζ).

As α−1 sinh(αt) ≤ t eαt, we get

(⋆⋆) Volg(B(a, r)) ≤
∫

Sa(1)

dσ(ζ)

∫ r

0

tm−1e(m−1)αtdt ≤ vmr
me

√
(m−1)ε r

where vm is the volume of the unit ball in IRm.

In our application, the difficulty is that the metric g = ωε varies with ε as
well as the constants α = αε, β = βε in (⋆), and αε

√
(m− 1)ε need not converge

to 0 as ε tends to 0. We overcome this difficulty by the following lemma, which
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shows that an arbitrary large fraction of the volume of X̃ remains at bounded
distance without being disconnected.

Lemma 1.3. — Let U1, U2 be compact subsets of X̃. Then for every δ > 0,

there are closed subsets U1,ε,δ ⊂ U1 and U2,ε,δ ⊂ U2 with Volω(Uj \ Uj,ε,δ) < δ,
such that any two points x1 ∈ U1,ε,δ, x2 ∈ U2,ε,δ can be joined by a path of length

≤ C δ−1/2 with respect to ωε, where C is a constant independent of ε and δ.

Proof. The basic observation is that∫

X

ωε ∧ ωn−1 =

∫

X

ωn

does not depend on ε, therefore ‖ωε‖L1(X) is uniformly bounded. First suppose
that U1 = U2 = K where K is a compact convex set in some coordinate open
set Ω of X̃. We simply join x1 ∈ K, x2 ∈ K by the segment [x1, x2] ⊂ K and
compute the average ωε-length of this segment when x1, x2 vary (the average being
computed in L2 norm with respect to the Lebesgue measure of Ω). By Fubini and
the Cauchy-Schwarz inequality we get

∫

K×K

(∫ 1

0

√
ωε

(
(1 − t)x1 + tx2

)
· (x2 − x1) dt

)2

dx1 dx2

≤ ‖x2 − x1‖
∫ 1

0

dt

∫

K×K

∥∥ωε

(
(1 − t)x1 + tx2

)∥∥ dx1 dx2

≤ 22ndiamK · Vol(K) · ‖ωε‖L1(K) ≤ C1

where C1 is independent of ε ; the last inequality is obtained by integrating first
with respect to y = (1− t)x1 when t ≤ 1

2 , resp. y = tx2 when t ≥ 1
2 (observe that

dxj ≤ 22ndy in both cases).

It follows that the set S of pairs (x1, x2) ∈ K×K such that lengthωε
([x1, x2])

exceeds (C1/δ)
1/2 has measure < δ in K × K. By Fubini, the set Q of

points x1 ∈ K such that the slice S(x1) = {x2 ∈ K ; (x1, x2) ∈ S} has
volume Vol(S(x1)) ≥ 1

2
Vol(K) itself has volume Vol(Q) < 2δ/Vol(K). Now for

x1, x2 ∈ K \Q we have by definition Vol(S(xj)) <
1
2Vol(K), therefore

K \

(
S(x1) ∪

(
K \ S(x2)

)
6= ∅.

If y is a point in this set, then (x1, y) /∈ S and (x2, y) /∈ S, hence

lengthωε

(
[x1, y] ∪ [y, x2]

)
≤ 2(C1/δ)

1/2.

By continuity, a similar estimate still holds for any two points x1, x2 ∈ K \Q, with
some y ∈ K. When U1 = U2 = K, the lemma is thus proved with Uj,ε,δ = K \Q :
note that

Volω(Uj \ Uj,ε,δ) ≤ Volω(Q) ≤ C2Vol(Q) < 2C2δ/Vol(K)

and replace δ by cδ with c = Vol(K)/(2C2) to get the desired bound δ for the
volume of Uj \ Uj,ε,δ.
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If U1, U2 are isomorphic to compact convex subsets in Cn, we find a chain of
such sets V1, . . . , VN with V1 = U1, VN = U2 and V ◦

j ∩V ◦
j+1 6= ∅. By the first case,

there exists for each j = 1, . . . , N a subset Vj,ε,δ ⊂ Vj with Volω(Vj \ Vj,ε,δ) < δ
such that any pair of points in Vj,ε,δ can be joined by a path of length ≤ C3δ

−1/2.
If we take δ < 1

2Volω(Vj ∩ Vj+1) for every j, then (Vj \ Vj,ε,δ) ∪ (Vj+1 \ Vj+1,ε,δ)
cannot contain Vj ∩ Vj+1 and therefore Vj,ε,δ ∩ Vj+1,ε,δ 6= ∅. This implies that any
x ∈ U1,ε,δ := V1,ε,δ can be joined to any y ∈ U2,ε,δ := VN,ε,δ by a piecewise linear
path of length ≤ NC3δ

−1/2. The case where U1, U2 are arbitrary is obtained by
covering these sets with finitely many compact convex coordinate patches.

We take U to be a compact set containing the fundamental domain E, so
large that U◦ ∩ gj(U

◦) 6= ∅ for each generator gj. We apply Lemma 1.3 with
U1 = U2 = U and δ > 0 fixed such that

δ <
1

2
Volω(E), δ <

1

2
Volω

(
U ∩ gj(U)

)
.

We get Uε,δ ⊂ U with Volω(U \ Uε,δ) < δ and diam ωε
(Uε,δ) ≤ Cδ−1/2. The ine-

qualities on volumes imply that Volω(Uε,δ∩E) ≥ 1
2
Volω(E) and Uε,δ∩gj(Uε,δ) 6= ∅

for every j (note that all gj preserve volumes). It is then clear that

Wk,ε,δ :=
⋃

γ∈π1(X), length(γ)≤k

γ(Uε,δ)

satisfies

Volω(Wk,ε,δ) ≥ N(k) Volω(Uε,δ ∩ E) ≥ N(k)
1

2
Volω(E) and

diam ωε
(Wk,ε,δ) ≤ k diam ωε

Uε,δ ≤ kCδ−1/2.

Since m = dimIRX = 2n, inequality (⋆⋆) implies

Volωε
(Wk,ε,δ) ≤ Volωε

(
B(a, kCδ−1/2)

)
≤ C4k

2neC5
√

ε k.

Now X is compact, so there is a constant C(ε) > 0 such that ωn ≤ C(ε)ωn
ε .

We conclude that

N(k) ≤ 2 Volω(Wk,ε,δ)

Volω(E)
≤ C6C(ε)k2neC5

√
ε k.

The proof of Theorem 1.1 is complete.

Remark 1.4. — In the non-Kähler case, one might try instead to use hermitian
metrics ωε in the same conformal class as ω, such that

∫
X
ωn

ε =
∫

X
ωn and

Θωε
(K−1

X ) = uε ≥ −εω. Then Lemma 1.3 still holds. The major difficulty is that
the first Chern form Θωε

(K−1
X ) differs from the Riemannian Ricci tensor Ricci(ωε)

and there is no known analogue of Inequality 1.2 in that case. The fact that we
control Θωε

(K−1
X ) by −εω instead of −εωε could be also a source of difficulties.

Remark 1.5. — It is well known and easy to check that equation (++) implies

C(ε) = max
ωn

ωn
ε

≤ exp
(

max
X

fε − min
X

fε

)
.

7



In fact, this follows from the observation that i∂∂ϕ ≥ 0 at a minimum point,
thus (ω + i∂∂ϕ)n/ωn ≥ 1 and (++) implies εminϕ ≥ min fε. Similarly we have
εmaxϕ ≤ max fε. Since fε is a potential of Θhε

(K−1
X )−Ricci(ω) and converges to

an almost plurisubharmonic function as ε tends to 0, it is reasonable to expect that
C(ε) has polynomial growth in ε−1 ; this would imply that π1(X) has polynomial
growth by taking ε = k−2. When K−1

X has a semipositive metric, we can even
take ε = 0 and find a metric ω0 with Ricci(ω0) = u0 ≥ 0. This gives:

Theorem 1.6. — If X is Kähler and K−1
X is hermitian semipositive (e.g. if K−m

X

is generated by sections for some m) then π1(X) has polynomial growth of degree

≤ 2n. In particular

q(X) = h1(X,O) =
1

2
rankZZH1(X,ZZ) ≤ n.

Remark 1.7. — If X is a Fano manifold, i.e. if K−1
X is ample, the above

techniques can be used to show that X is simply connected, as observed long
ago by S. Kobayashi [Ko61]. In fact the Aubin-Calabi-Yau theorem provides a
Kähler metric ω with Ricci(ω) = u > 0, say u ≥ εω. Then Lemma 1.2 implies
∂2b/∂t2 + ε

2n−1
b(t, ζ) ≤ 0, thus b(t, ζ) ≤ α−1 sin(αt) with α =

√
ε/(2n− 1).

In particular τ(ζ) ≤ π/α, hence the universal covering X̃ is compact of diameter
≤ π/α and π1(X) is finite (all this was already settled by S. Myers [My41] for

arbitrary Riemannian manifolds). The Hirzebruch-Riemann-Roch formula implies

χ(X̃,O
X̃

) = k χ(X,OX) with k = #π1(X).

Moreover, the Kodaira vanishing theorem applied to the ample line bundle
L = K−1

X̃
gives

Hq(X̃,O
X̃

) = Hq(X̃,K
X̃
⊗ L) = 0 for q ≥ 1,

hence χ(X̃,O
X̃

) = h0(X̃,O
X̃

) = 1 and k = 1.

2. Surjectivity of the Albanese map

Let X be a compact Kähler manifold and let q(X) = h1(X,OX) be its
irregularity. Recall that the Albanese map is a holomorphic map from X to the
Albanese torus

Alb(X) := H0(X,ΩX)⋆/H1(X,ZZ), dimAlb(X) = q(X),

defined by

α(x)(h) :=

∫ x

x0

h, h ∈ H0(X,Ω1
X) ;

the path from x0 to x in the integral is taken modulo an arbitrary loop at x0,
i.e. modulo H1(X,ZZ). We first reprove Lichnerowicz’ fibration theorem [Li71] by
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a simpler method based on the Bochner technique (of course Lichnerowicz had
somehow to circumvent the Aubin-Calabi-Yau theorem, which was not available
at that time). Our starting point is the following basic formula.

Formula 2.1. — Let # be the conjugate linear C∞-isomorphism TX → Ω1
X ,

v 7→ iv ω, given by a Kähler metric ω. Denote also by # : ΛpTX → Ωp
X the

induced C∞ isomorphism from p-vectors to p-forms. Then for an arbitrary smooth

section v of ΛpTX we have∫

X

‖∂(#v)‖2dVω =

∫

X

‖∂v‖2dVω +

∫

X

〈R(v), v〉 dVω

where dVω is the Kähler element of volume and R is the hermitian operator

v =
∑

|I|=p

vI
∂

∂zI
7−→ R(v) =

∑

|I|=p

(∑

k∈I

ρk

)
vI

∂

∂zI

associated to the Ricci curvature form: ρk denotes the eigenvalues of Ricci(ω) in

an ω-orthonormal frame (∂/∂zk).

Proof. We first make a pointwise calculation of ∂
⋆
∂v and ∂

⋆
∂(#v) in a normal

coordinate system for the Kähler metric ω. In such coordinates we can write

ω = i
∑

1≤m≤n

dzm ∧ dzm − i
∑

1≤j,k,ℓ,m≤n

cjkℓmzjzkdzℓ ∧ dzm +O(|z|3)

where (cjkℓm) is the curvature tensor of TX with respect to ω. The Kähler property
shows that we have the symmetry relations cjkℓm = cℓkjm = cjmℓk, and the Ricci
tensor R =

∑
Rℓmdzℓ ∧ dzm is obtained as the trace: Rℓm =

∑
j cjjℓm. Since ω is

tangent of order 2 to a flat metric at the center x0 of the chart, we easily see that
the first order operator ∂

⋆
has the same formal expression at x0 as in the case of

the flat metric on Cn : if w if a smooth (0, q)-form with values in a holomorphic
vector bundle E trivialized locally by a holomorphic frame (eλ) such that (eλ(x0))
is orthonormal and Deλ(x0) = 0, we have at x0 the formula

w =
∑

λ, |J|=q

wλ,J eλ ⊗ dzJ , ∂
⋆
w = −

∑

λ, |J|=q,k

∂wλ,J

∂zk
eλ ⊗

( ∂

∂zk
dzJ

)
.

This applies of course to the case of sections of ΛpTX or Ωp
X expressed in terms

of the frames ∂/∂zI and dzI , |I| = p. From this, we immediately find that for any
smooth sections v =

∑
vI ∂/∂zI and w =

∑
wI dzI we have

∂
⋆
∂v = −

∑

I,k

∂2vI

∂zk∂zk

∂

∂zI
, ∂

⋆
∂w = −

∑

I,k

∂2wI

∂zk∂zk
dzI

at the point x0. Now, we get

#
∂

∂zm
= i

∂

∂zm
ω = dzm −

∑

j,k,ℓ

cjkℓmzjzkdzℓ +O(|z|3),

#v =
∑

I

vIdzI −
∑

I,j,k,ℓ,m

vIcjkℓmzjzkdzℓ ∧
( ∂

∂zm
dzI

)
+O(|z|3).
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Computing ∂
⋆
∂(#v) at x0 we obtain

∂
⋆
∂(#v) = −

∑

I,k

∂2vI

∂zk∂zk
dzI +

∑

I,k,ℓ,m

vIckkℓmdzℓ ∧
( ∂

∂zm
dzI

)

= #(∂
⋆
∂v) +

∑

I,ℓ,m

vIRℓmdzℓ ∧
( ∂

∂zm
dzI

)
= #(∂

⋆
∂v) + #R(v).

Formula 2.1 then follows from this identity by writing
∫

X

‖∂(#v)‖2dVω =

∫

X

〈∂⋆
∂(#v),#v〉 dVω =

∫

X

〈∂⋆
∂v + R(v), v〉 dVω.

We easily deduce from this the fibration theorem of Lichnerowicz [Li71, 72],
as well as analogous results of [Li67] in the case Ricci(ω) ≤ 0.

Theorem 2.2. — Let (X,ω) be a compact Kähler manifold. Consider the

natural contraction pairing

Ψ : H0(X,ΛpTX) ×H0(X,Ωp
X) −→ C, 0 ≤ p ≤ n = dimX.

(i) If Ricci(ω) ≥ 0, then Ψ has zero kernel in H0(X,Ωp
X). In that case, the

Albanese map α : X → Alb(X) is a submersion and every holomorphic

vector field of Alb(X) admits a lifting to X . Therefore, there is a group of

analytic automorphisms of X lying over the group of translations of Alb(X).

(ii) If Ricci(ω) ≤ 0, then Ψ has zero kernel in H0(X,ΛpTX). In that case the

identity component Aut(X)◦ of Aut(X) is abelian and leaves invariant all

global holomorphic p-forms or p-vector fields.

Proof. Let v be a smooth section of ΛpTX and let w = #v be the associated smooth
(p, 0)-form. By definition of # we have v w = ‖v‖2. Now, when Ricci(ω) ≥ 0,
Formula 2.1 shows that

∫
X
‖∂w‖2dVω ≥

∫
X
‖∂v‖2dVω, thus v is holomorphic as

soon as w is. Therefore we get an injective conjugate linear map

#−1 : H0(X,Ωp
X) −→ H0(X,ΛpTX)

with the property that (#−1w) w is a non zero constant for w 6= 0. This shows
that the kernel of Ψ in H0(X,Ωp

X) is zero. On the other hand, when Ricci(ω) ≤ 0,
the inequality is reversed and we get an injection

# : H0(X,ΛpTX) −→ H0(X,Ωp
X).

Hence in that case the kernel of Ψ in H0(X,ΛpTX) is zero.

(i) By the above with p = 1, every holomorphic 1-form h which is not identically
zero does not vanish at all, because there is a vector field v such that v h = 1.
Let (h1, . . . , hq) be a basis of H0(X,Ω1

X). Then for each point x ∈ X the 1-forms
h1(x), . . . , hq(x) must be independent in T ⋆

X,x. In the basis of TAlb(X) provided
by the hj ’s, we have dα(x) = (h1(x), . . . hq(x)) and so dα(x) is surjective. Now,
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there are holomorphic vector fields v1, . . . , vq on X such that vi hj = δij . These
vector fields clearly generate a subgroup G of Aut(X)◦ which lies over the group
of translations of Alb(X).

(ii) Let v1, . . . , vq be a basis of the Lie algebra of Aut(X)◦. Then all Lie brackets
[vi, vj ] vanish, because we have

[vi, vj ] h = vi · (vj h) − vj · (vi h) = 0

for every holomorphic 1-form h (just observe that vi h and vj h are constant
functions). Thus Aut(X)◦ is abelian. Moreover, for any holomorphic p-form w,
the Lie derivative Lvi

(w) vanishes :

Lvi
(w) = d(vi w) + vi (dw) = 0,

because all holomorphic forms on a compact Kähler manifold are d-closed. Hence
w is invariant under Aut(X)◦. By duality, we easily conclude that the holomorphic
p-vectors are also kept invariant.

We now discuss conjecture 2 for compact Kähler manifolds X with −KX

being only nef. The proof of the following theorem has been communicated to us
by F. Campana.

Theorem 2.3. — Let X be a compact Kähler manifold with −KX nef. Let

α : X −→ Alb(X) be the Albanese map. If dimα(X) = 1, then α is surjective.

Proof. α(X) is a smooth curve C. Assume that C has genus g ≥ 2. Then π1(C)
has exponential growth; in fact it contains a free group with 2g − 1 generators.
Because of the exact sequence π1(X)

α⋆−→ π1(C) −→ π0(F ), the image of α⋆

has finite index in π1(C), hence π1(X) is of exponential growth, contradicting
Theorem 1.1.

First suppose dimα(X) = dimX . If α(X) 6= Alb(X), there would be at
least two independent sections of KX coming from H0(Ωn

Alb(X)) ; since −KX is
nef, these sections would not vanish and so KX = OX , contradiction. The next
interesting case is dimα(X) = dimX − 1, which we treat next. We first prove a
more general statement.

Theorem 2.4. — Let X be a compact Kähler manifold with −KX nef. Then

there is no holomorphic surjective map ϕ : X −→ Y to a projective variety Y with

κ(Y ) > 0 such that −KF is big for the general fiber F of ϕ.

By definition the Kodaira dimension κ(Y ) is the Kodaira dimension of a
desingularisation.

Proof. Assume there is a map ϕ as above. We may assume that Y is normal by
passing to the normalization, and moreover that the fibers are connected by taking
the Stein factorization. Choose a very ample divisor H on Y . Letting m = dimY ,
we pick a curve

C = H1 ∩ . . . ∩Hm−1

11



with Hi ∈ |H| in general position. Then C is smooth as well as XC = ϕ−1(C) by
Bertini’s lemma. Moreover

(1) c1(ωY ) · C > 0,

since C ∩ Sing(Y ) = ∅ and since ωY = π⋆(ωỸ
) on Y \ Sing(Y ) for every

desingularisation π : Ỹ −→ Y .

Let f = ϕ|XC
. We claim:

(2) ω−1
XC/C is big and nef.

In fact,
ω−1

XC/C = ω−1
X/Y |XC

= ω−1
X |XC

⊗ f⋆
(
ωY |C

)

which is nef because of (1). Letting p = dimXC and taking p-th powers, we
observe that c1(f

⋆ωY |C) ≥ c1(O(F )) by (1), F being a generic fibre, thus

c1(ω
−1
XC/C)p ≥ c1

(
ω−1

X |XC

)p−1 · c1
(
f⋆ωY |C

)
≥ c1

(
ω−1

X |XC

)p−1 · F = c1(ω
−1
F )p−1,

which is positive by our assumption that −KF is big. Now we can apply
Kawamata-Viehweg’s vanishing theorem [Ka82, Vi82] to obtain

H1
(
XC , ωXC

⊗ ω−1
XC/C

)
= 0

But ωXC
⊗ ω−1

XC/C = f⋆(ωC), so via the Leray spectral sequence we conclude

H1(C, ωC) = 0, which is absurd.

Corollary 2.5. — Let X be a n-dimensional projective (or Moishezon) mani-

fold with −KX nef. Assume that the Albanese map α has (n − 1)-dimensional

image. Then α is surjective.

Proof. If α is not surjective, the image Y = α(X) automatically has κ(Y ) > 0
since we get at least two independent holomorphic forms of maximum degree from
the Albanese torus. We may thus assume κ(Y ) > 0. Let F be the general fiber of
α, which is a curve. Since −KF = −KX |F is nef, F is rational or elliptic. In the
first case, α is surjective by the previous theorem. If F is elliptic, then κ(X) = 0,
so h0(X,mKX) 6= 0 for some m and consequently mKX = OX . Therefore α is
onto by Theorem 2.2 (i).

The last part of the proof shows more generally that conjecture 2 holds if
κ(X) = 0. A different proof of Corollary 2.5 has been given by F. Campana.

3. Threefolds whose anticanonical bundles are nef

In this section we want to study the structure of projective 3-folds X with
−KX nef in more detail. In particular we prove Conjecture 2 in dimension 3 with
purely algebraic methods, except in one very special case. In fact, we prove that
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the Albanese map is surjective except possibly when all extremal contractions of
X are of type (B), defined in Proposition 3.3 (2). For the structure of surfaces
with −KX nef we refer to [CP91].

Let always X denote a smooth projective 3-fold with −KX nef and let
α : X −→ Alb(X) be the Albanese map. By the last words of Section 2, the
structure of X is clear if κ(X) = 0 ; so we will assume κ(X) = −∞ ; note that KX

is not nef in this case. Then there exists an extremal ray on X ([Mo82], [KMM87]);
let ϕ : X −→W be the associated contraction. We want to analyze the structure
of ϕ.

Proposition 3.1. — If dimW ≤ 2, α is surjective. More precisely:

(1) If W is a point, X is Fano with b2 = 1, in particular X is simply connected.

(2) If W is a (smooth) curve, then g(W ) ≤ 1. In case g(W ) = 1, we have α = ϕ ;

if g(W ) = 0, we have q(X) = 0. In all cases ϕ has the structure of a del

Pezzo fibration.

(3) If W is a (smooth) surface, then either

a) ϕ is a IP1-bundle and −KW is nef

b) ϕ is a proper conic bundle with discriminant locus ∆ such that

−(4KW + ∆) is nef, and q(W ) ≤ 1.

Proof. (1) If dimW = 0, then q(X) = 0, hence our claim is obvious.

(2) Let dimW = 1. Since Rqϕ⋆(OX) = 0 for q > 0, either ϕ is the Albanese map
and then we must show that q(W ) = 1 or q(W ) = 0. So assume q(W ) ≥ 2. Then
the canonical bundle KW is ample. Let KX/W be the relative canonical bundle,
so

KX/W = KX − ϕ⋆(KW ).

Since the Picard number ρ(X) = ρ(W )+1 = 2 (see e.g. [KMM87]), and since −KX

is nef and ϕ-ample ([KMM87]), −KX/W is ample. Hence by Kodaira vanishing:

H1
(
X,OX(−KX/W ) ⊗OX(KX)

)
= 0,

so H1
(
X,ϕ⋆(OW (KW )

)
= 0 and H1

(
W,OW (KW )

)
= 0, which is absurd.

(3) Now assume dimW = 2. Then W is smooth and ϕ is a IP1-bundle or a conic
bundle ([Mo82]). Since q(X) = q(W ), we have a diagram

X
α−→ Alb(X)

ϕ
y y γ

W
β−→ Alb(W )

with β being the Albanese map of W and γ being finite.
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(3a) Assume ϕ to be a IP1-bundle. We will prove that −KW is nef, hence β is onto
and so is α. Take any irreducible curve C ⊂ W . Since ϕ−1(C) = IP(EC) with
a rank 2-bundle EC on C, we have (after possibly passing to the normalization
of C):

−KX | IP(EC) = −KIP(EC ) + ϕ⋆(NC/W )

by the adjunction formula. Since

−KIP(EC ) = O
IP

(
EC⊗

det E⋆
C

2 ⊗ (−KC )

2

)(2),

we have
−KX | IP(EC) = O

IP

(
EC⊗

det E⋆
C

2 ⊗
(−KW/C)

2

)(2).

Since −KX is nef, we conclude that

EC ⊗ detE⋆
C

2
⊗ (−KW/C)

2
is nef.

Now c1
(
EC ⊗ det E⋆

C

2

)
= 0, hence −KW/C must be nef and −KW itself is nef.

(3b) Next assume ϕ to be a proper conic bundle. Let ∆ ⊂W be the discriminant
locus, i.e.

∆ =
{
w ∈W ; Xw not smooth

}
.

From the well-known formula (see e.g. [Mi81])

K2
X · ϕ−1(C) = −(4KW + ∆) · C

for every curve C ⊂W , we deduce from the nefness of −KX that −(4KW + ∆) is
nef.

Now we conclude by means of the following:

Lemma 3.2. — Let W be a smooth projective surface, ∆ ⊂ W be a (possibly

reducible) curve. Assume that −(4KW + ∆) is nef. Then q(W ) ≤ 1.

Proof. Obviously κ(W ) = −∞. We can easily reduce the problem to the case of
W being minimal. If W 6= IP2, then W is ruled over a curve C. Now it is an easy
exercise using [Ha77, V.2] to prove that g(C) ≤ 1.

Proposition 3.3. — Assume dimW = 3. Let E be the exceptional set of ϕ.

(1) If dimϕ(E) = 0, then −KW is big and nef and q(X) = 0.

(2) If dimϕ(E) = 1, then W is smooth, ϕ is the blow-up of the smooth curve

C0 = ϕ(E) and −KW is again nef except for the following special cases:

C0 is rational and moreover either

(A) NC0/W ≃ O(−2) ⊕O(−2) or

(B) NC0/W ≃ O(−1) ⊕O(−2).
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Proof. By [Mo82] E is always an irreducible divisor and if dimϕ(E) = 1, W is
smooth and ϕ is the blow-up of a smooth curve. We may always assume K3

X = 0,
otherwise q(X) = 0 by Kawamata-Viehweg vanishing.

(1) We have the following formula of Q-divisors:

KX = ϕ⋆(KW ) + ϑE

with some ϑ ∈ Q+ ([Mo82], in fact either E ≃ IP2 or E is a normal quadric and
ϑ = 2, 1 or 1/2). Hence −KW is nef. Furthermore:

K3
X = K3

W + ϑ3E3

and since E3 > 0 (E has always negative normal bundle, [Mo82]), we conclude
from K3

X = 0 that K3
W < 0, so −KW is big and nef (observe that W might be

singular). Now a “singular” version of the Kawamata-Viehweg vanishing theorem
([KMM87, 1.2.5, 1.2.6] applied to D = 0) yields

H1(W,OW ) = 0.

Since Rqϕ⋆(OX) = 0 for q > 0, we get q(X) = 0.

(2) From the formula KX = ϕ⋆(KW ) +E, we immediately see that

−KW · C ≥ 0

for every curve C 6= C0.

Let NC0/W = N denote the normal bundle of C0. Let V = N⋆ ⊗ L with
L ∈ Pic(C0) be its normalization, i.e. H0(V ) 6= 0, but H0(V ⊗ G) = 0 for
all line bundles G with deg G < 0. Let µ = degL. Then E can be written as
E = IP(N⋆) = IP(V ). The “tautological” line bundle OIP(V )(1) has a “canonical”
section C1 satisfying C2

1 = −e = c1(V ) (see [Ha77, V.2]). In this terminology

(KX · C1) = (KW · C0) + (E · C1).

Let F be a fiber of ϕ|E . Write for numerical equivalence

−KX |E ≡ aC1 + bF.

Since (KX · F ) = −1, we have a = 1. Moreover

NE |X ≡ −C1 + µF

just by definition of µ and by the fact that N⋆
E |X = OIP(N⋆)(1). Hence

(KW ·C0) = (KX · C1) − (E · C1) = −b− µ ;

so −KW is nef if

(⋆) b+ µ ≥ 0.

Letting g be the genus of C0, we have K2
E = 8(1 − g) ; on the other hand we

compute by adjunction:

K2
E = (KX +E)2|E =

(
− 2C1 + (µ− b)F

)2
.
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Thus 8(1 − g) = 4b− 4e− 4µ, and consequently

(⋆⋆) b+ µ = 2b− e+ 2(g − 1).

Since −KX |E is nef, we have K2
X · E ≥ 0, which is equivalent to b ≥ e/2.

Combining this with (⋆⋆) shows that b + µ ≥ 0 at least if g ≥ 1. Therefore,
if g ≥ 1, −KW is nef.

Now assume g = 0. Then (⋆) is equivalent to

(⋆′) b ≥ e

2
+ 1.

Again by nefness of −KX |E we get

0 ≤ (−KX · C1) = (C1 + b F · C1) = b− e,

so b ≥ e. This settles already the case e ≥ 2.

Since e ≥ 0, we are left with e = 0 and e = 1 and additionally e ≤ b < e
2 + 1.

This leads to (A) and (B).

Remark 3.4. — Assume that −KX is big and nef. Then X is “almost Fano” in
the following sense. By the Base Point Free Theorem [KMM87] we have a surjective
map ϕ : X −→ Y , given by the base point free system | −mKX | for some suitable
m, to a normal projective variety Y . This variety Y carries an ample line bundle
L such that ϕ⋆(L) = −mKX . The map ϕ being a modification, we conclude that
L = −mKY . Thus Y is Q-Gorenstein with at most canonical singularities and the
Q-Cartier divisor −KY is ample. We say that Y is “Q-Fano”. In particular Y has
irregularity 0 (Q-Fano are even expected to be simply connected and so X would
be simply connected).

We are now interested in those X which are not “almost Fano”, i.e. such
that (−KX)3 = 0.

Proposition 3.5. — Assume −KX nef and K3
X = 0. If ϕ is a contraction of

type (B), then q(X) = 0 and moreover X is birational to a Q-Fano variety. In

particular Alb(X) = 0.

Proof. Let ϕ : X −→W be the contraction, which is the blow-up of C0 ⊂W such
that C0 ≃ IP1 and

NC0/W ≃ O(−1) ⊕O(−2).

Let E ⊂ X be the exceptional divisor. We have

E ≃ IP(N⋆
C0/W ) = IP

(
O(1) ⊕O(2)

)
= Σ1

(Σ1 = Hirzebruch surface of index 1). Let C ⊂ E be the unique section with
C2 = −1. Let π : X+ −→ X be the blow-up of C. Since NC/E = O(−1) and

NE/X = OIP(N⋆
C0/X

)(−1) = OIP(O⊕O(−1))(−1) ⊗ ϕ⋆O(−2) = O(−C − 2Fϕ),

we get NE/X
∣∣C = O(−1) and obtain from

0 −→ NC/E −→ NC/X −→ NE/X
∣∣C −→ 0

16



that NC/X = O(−1) ⊕ O(−1). Hence the exceptional divisor D = π−1(C) is
IP1 × IP1 and ND/X+ = OIP(N⋆

C/X
)(−1) = O(−1)×O(−1). Therefore D can be

blown down along the other ruling. Let σ : X+ −→ X− be this blowing down.

Claim 3.6. — The anticanonical divisor −KX− is nef.

Proof. Let A− ⊂ X− be an arbitrary curve not in the center of σ, A+ the strict
transform in X+ and A the image in X . As KX+ = σ⋆(KX−) +D, we have

(−KX+ ·A+) = (−KX− ·A−) − (D ·A+)

and

(−KX+ ·A+) = (−KX ·A) − (D ·A+).

Hence (−KX− · A−) = (−KX · A) ≥ 0. Since the center B of σ is rational with
NB/X+ = O(−1) ⊕O(−1), we have KX− ·B = 0 and hence −KX− is nef.

Let E+ be the strict transform of E in X+ and E− = σ(E+). We have
E = IP

(
O(1) ⊕ O(2)

)
= Σ1, E

+ ≃ E, and E− ≃ IP2 because the (−1)-curve of
E+ gets contracted by σ.

Claim 3.7. — We have NE−/X− = O(−2).

Proof. We first compute E3, (E+)3 and (E−)3. We have

E3 = c1(NE/X)2 = (−C − 2Fϕ)2|E = C2 + 4C · Fϕ = −1 + 4 = 3.

As π is the blow-up of a curve in E, we get π⋆(E) = E+ +D. Hence

(E+)3 = E3 − 3 π⋆(E)2 ·D + 3 π⋆(E) ·D2 −D3.

Moreover

D3 = c1(ND/X+)2 = 2, E+ ·D2 = (IP1 × {0}) ·D = −1,

π⋆(E) ·D2 = (E+ +D) ·D2 = 1, (E+)3 = 3 − 0 + 3 − 2 = 4 ;

note that π⋆(E)2 · D = 0 since π projects D to a curve. We finally have
σ⋆(E−) = E+ because σ is a blowing down along ruling lines of D which
intersect E+ only in one point. Therefore (E−)3 = (E+)3 = 4. We must have
NE−/X− = O(k) for some k < 0 (since E− is exceptional) and

(E−)3 = c1(NE−/X−)2 = k2,

so k = −2 as desired.

Let ψ : X− −→ Z be the blowing down of E−. Then Z has only one rational
singularity which is in fact terminal. The nefness of −KZ follows from the nefness
of −KX− . A well-known calculation (see [Mo82]) yields

KX− = ψ⋆(KZ) +
1

2
E−,

17



hence

0 ≤ (−KX−)3 = (−KZ)3 − 1

8
(E−)3 = (−KZ)3 − 1

2
.

Therefore (−KZ)3 ≥ 1/2 and −KZ is big, i.e. Z is birational to a Q-Fano
manifold (see Remark 3.4). The singular Kawamata-Viehweg vanishing theorem
(cf. [KMM], 1.2.6) applied to −KZ gives

H1(Z,OZ) = 0,

therefore q(X) = q(Z) = 0.

We have thus shown that case (B) does not occur when q(X) > 0. Therefore,
putting everything together, we have proved:

Theorem 3.8. — Let X be a smooth projective 3-fold with −KX nef and

κ(X) = −∞. Let ϕ : X −→ W be the contraction of an extremal ray. Then

−KW is nef except possibly for the following cases:

(a) ϕ is the blow-up of a smooth rational curve C such that

NC/W ≃
{
O(−1) ⊕O(−2) or

O(−2) ⊕O(−2).

In the first case X has irregularity 0 and is birational to a Q-Fano variety.

(b) ϕ is a proper conic bundle over a surface W with −(4KW + ∆) nef, ∆ being

the discriminant locus.

Remark 3.9. — Let X be a smooth projective 3-fold with −KX nef. The above
algebraic considerations again show that the Albanese map α : X −→ Alb(X) is
surjective, except possibly if all contractions X −→ W are of type (A) or if this
situation occurs after finitely many blowing-downs.

Proof. We may assume KX not nef. Let ϕ : X −→ W be the contraction of an
extremal ray. If dimW ≤ 2, α is already surjective by Prop. 3.1. If dimW = 3,
ϕ must be either the blow-up of a point, hence (−KW )3 > 0 and q(X) = q(W ) = 0
(except possibly for case (A)), or ϕ is the blow-up of a smooth curve and −KW is
again nef with W smooth. Then we proceed by induction on b2(W ).

Remarks 3.10. —

(1) In 3.8 (a) consider the morphism ψ = Φ|−mKX | with suitable m. In case
NC/W = O(−1) ⊕ O(−2), ψ contracts the exceptional curve of E ≃ Σ1, in the
other case ϕ contracts all curves in E ≃ IP1 × IP1 which are ruling lines non
contracted by ϕ. It would be interesting to know whether 3.8 (a) can really occur.

(2) If ϕ : X −→ W is a proper conic bundle with −KX nef, then (−KW ·C) ≥ 0 if
C 6⊂ ∆ or C ⊂ ∆ but a multiple of C moves. So −KW is “almost nef”. It would
be interesting to have a rough classification of conic bundles X with −KX nef.
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(3) For contractions of type (A), we have in fact the following additional informa-
tion:

Proposition 3.11. — Assume that −KX is nef, K3
X = 0 and that ϕ : X −→W

is of type (A). Then K2
X = 0.

Proof. Let ψ : W → W ′ be the blow-down of C0 = ϕ(E). Let σ = ψ ◦ ϕ. Let
N1(Z) = Pic(Z) ⊗ZZ IR/≡ for any Z. Then σ⋆(N1(W ′)) is a linear subspace of
codimension 2 in N1(X), in fact ψ⋆(N1(W ′)) is of codimension 1 in N1(W ), and
ϕ⋆(N1(W )) is of codimension 1 in N1(X), as one checks immediately from Mori
theory.

Assume K2
X 6= 0. Then (K2

X)⊥ =
{
L ∈ N1(X) ; L · K2

X = 0
}

is of
codimension 1 in N1(X). Hence:

(K2
X)⊥ = σ⋆(N1(W ′)) ⊕ IR ·KX

because K3
X = 0. Since K2

X · E = 0, E is in (K2
X)⊥, so

E = µKX + σ⋆(H)

with H ∈ N1(W ′). Cutting by a fiber of ϕ yields µ = 1. Since KX = ϕ⋆(KW )+E,
we conclude ϕ⋆(KW ) = −σ⋆(H), i.e. KW = −ψ⋆(H), which is false.
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