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Abstract

The goal of this work is to investigate some basic properties of Finsler metrics on holomorphic
vector bundles, in the perspective of obtaining geometric versions of the Serre duality theorem.
We establish a duality framework under which pseudoconvexity and pseudoconcavity properties
get exchanged — up to some technical restrictions. These duality properties are shown to be
related to several geometric problems, such as the conjecture of Hartshorne and Schneider,
asserting that the complement of a g-codimensional algebraic subvariety with ample normal
bundle is g-convex. In full generality, a functorial construction of Finsler metrics on symmetric
powers of a Finslerian vector bundle is obtained. The construction preserves positivity of
curvature, as expected from the fact that tensor products of ample vector bundles are ample.
From this, a new shorter and more geometric proof of a basic regularization theorem for closed
(1,1) currents is derived. The technique is based on the construction of a mollifier operator for
plurisubharmonic functions, depending on the choice of a Finsler metric on the cotangent bundle

and its symmetric powers.
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§0. Introduction

The goal of the present paper is to investigate some duality properties
connecting pseudoconvexity and pseudoconcavity. Our ultimate perspective would
be a geometric duality theory parallel to Serre duality, in the sense that Serre
duality would be the underlying cohomological theory. Although similar ideas
have already been used by several authors in various contexts, e.g. for the study
of direct images of sheaves (Ramis-Ruget-Verdier [RRV71]), or in connection with
the study of Fantappie transforms and lineal convexity (see Kiselman’s recent
work [Kis97]), or in the study of Monge-Ampere equations (Lempert [Lem85|),
we feel that the “convex-concave” duality theory still suffers from a severe lack of
understanding.

Our main concern is about Finsler metrics on holomorphic vector bundles. As
is well known, a holomorphic vector bundle £ on a compact complex manifold
is ample in the sense of Hartshorne [Har66] if and only if its dual E* admits a
strictly pseudoconvex tubular neighborhood of 0, that is, if and only if £* has a
strictly plurisubharmonic smooth Finsler metric. In that case, we expect E itself
to have a tubular neighborhood of the zero section such that the Levi form of
the boundary has everywhere signature (r — 1,n), where r is the rank of E and
n = dim X; in other words, E has a Finsler metric whose Levi form has signature
(r,n). This is indeed the case if E is positive in the sense of Griffiths, that is, if
the above plurisuharmonic Finsler metric on E* can be chosen to be hermitian;
more generally, Sommese [Som78, 79, 82] has observed that everything works well
if the Finsler metric is fiberwise convex (in the ordinary sense). The Kodaira-
Serre vanishing theorem tells us that strict pseudoconvexity of E* implies that the
cohomology of high symmetric powers S FE is concentrated in degree 0, while the
Andreotti-Grauert vanishing theorem tells us that (r,n) convexity-concavity of E
implies that the cohomology of S™ E™ is concentrated in degree n. Of course, both
properties are connected from a cohomological view point by the Serre duality
theorem, but the related geometric picture seems to be far more involved. A still
deeper unsolved question is Griffiths’ conjecture on the equivalence of ampleness
and positivity of curvature for hermitian metrics [Gri69].

One of the difficulties is that “linear” duality between E and E™* is not sufficient
to produce the expected biduality properties relating convexity on one side and
concavity on the other side. What seems to be needed rather, is a duality between
large symmetric powers S™FE and S™FE*, asymptotically as m goes to infinity
(“polynomial duality”). Although we have not been able to find a completely
satisfactory framework for such a theory, one of our results is that there is a
functorial and natural construction which assigns Finsler metrics on all symmetric
powers S™E, whenever a Finsler metric on F is given. The assignment has
the desired property that the Finsler metrics on S™F are plurisubharmonic if
the Finsler metric on E was. The construction uses “polynomial duality” in an
essential way, although it does not produce good metrics on the dual bundles
SME*.

Several interesting questions depend on the solution to these problems.
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R. Hartshorne [Har70] raised the question whether the complement of an alge-
braic subvariety Y with ample normal bundle Ny in a projective algebraic variety
X is g-convex in the sense of Andreotti-Grauert, with ¢ = codimY. Michael
Schneider [Sch73] proved the result in the case the normal bundle is positive is the
sense of Griffiths, thus yielding strong support for Hartshorne’s conjecture. As a
consequence of Sommese’s observation, Schneider’s result extends the case if Ny
has a strictly pseudoconvex and fiberwise convex neighborhood of the zero section,
which is the case for instance if Ny is ample and globally generated.

Other related questions which we treat in detail are the approximation of
closed positive (1, 1)-currents and the attenuation of their singularities. In general,
a closed positive current 7' cannot be approximated (even in the weak topology)
by smooth closed positive currents. A cohomological obstruction lies in the fact
that 7' may have negative intersection numbergs {T'}? - Y with some subvarieties
Y C X. This is the case for instance if 7' = [E] is the current of integration
on a the exceptional curve of a blown-up surface and Y = E. However, as we
showed in previous papers ([Dem82, Dem92, 94]), the approximation is possible if
we allow the regularization 7. to have a small negative part. The main point is to
control this negative part accurately, in term of the global geometry of the ambient
geometry X. It turns out that more or less optimal bounds can be described in
terms of the convexity of a Finsler metric on the tangent bundle Tx. Again, a
relatively easy proof can be obtained for the case of a hermitian metric ([Dem82,
94]), but the general Finsler case (as solved in [Dem 92]) still required very tricky
analytic techniques. We give here an easier and more natural method based on
the use of “symmetric products” of Finsler metrics.

Many of the ideas presented here have matured over a long period of time,
for a large part through discussion and joint research with Thomas Peternell and
Michael Schneider. Especially, the earlier results [Dem92] concerning smoothing of
currents were strongly motivated by techniques needed in our joint work [DPS94].
I would like here to express my deep memory of Michael Schneider, and my
gratitude for his very beneficial mathematical influence.

§1. Pseudoconvex Finsler metrics and ample vector bundles

Let X be a complex manifold and F a holomorphic vector bundle over X. We
set n = dim¢ X and r = rank E. Following S. Kobayashi [Kob75], we introduce

1.1. Definition. A (positive definite) Finsler metric on E is a positive complex
homogeneous function £ — ||£||. defined on each fiber E,, that is, such that
IINE|2 = | A€l for each A € C and & € E,, and ||&||. > 0 for & # 0.

We will in general assume some regularity, e.g. continuity of the function
(z,€) — ||£]|» on the total space E of the bundle. We say that the metric is
smooth if it is smooth on £\ {0}. The logarithmic indicatrix of the Finsler metric
is by definition the function

(1.2) x(x, &) = log [& ]2
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We will say in addition that the Finsler metric is convez if the function £ — [|£]|,
is convex on each fiber E, (viewed as a real vector space). A Finsler metric is
convex if and only if it derives from a norm (hermitian norms are of course of a
special interest in this respect); however, we will have to deal as well with non
convex Finsler metrics.

The interest in Finsler metrics essentially arises from the following well-known
characterization of ample vector bundles ([Kod54], [Gra58], [Kob75]).

1.3. Theorem. Let E be a vector bundle on a compact complex manifold X. The
following properties are equivalent.

(1) E is ample (in the sense of Hartshorne [Ha66]).

(2) Op(r)(1) is an ample line bundle on the projectivized bundle P(E) (of hyper-
planes of E).

(3) Op(g)(1) carries a smooth hermitian metric of positive Chern curvature form.

(4) E* carries a smooth Finsler metric which is strictly plurisubharmonic on the
total space E* . {0}.

(5) E* admits a smoothly bounded strictly pseudoconvez tubular neighborhood U
of the zero section.

Actually, the equivalence of (1), (2) is a purely algebraic fact, while the
equivalence of (2) and (3) is a consequence of the Kodaira embedding theorem. The
equivalence of (3) and (4) just comes from the observation that a Finsler metric
on E* can be viewed also as a hermitian metric h* on the line bundle Opg)(—1)
(as the total space of Op(g)(—1) coincides with the blow-up of E* along the zero
section), and from the obvious identity

7 —
(mp(E) On+ (Opm)(—1)) = —%66)(*,

*

where O+ (Op(g)(—1)) denotes the Chern curvature form of h* = eX , and
mpe) ¢ E* N~ {0} — P(F) the canonical projection. Finally, if we have a
Finsler metric as in (4), then U. = {&*; ||€*||* < ¢} is a fundamental system
of strictly pseudoconvex neighborhood of the zero section of E*. Conversely, given
such a neighborhood U, we can make it complex homogeneous by replacing U
with U* = ﬂ| A1 AU. Then U* is the unit ball bundle of a continuous strictly
plurisubharmonic Finsler metric on E* (which can further be made smooth thanks
to Richberg’s regularization theorem [Ric68], or by the much more precise results
of [Dem92], which will be reproved in a simpler way in section 9).

1.4. Remark. It is unknown whether the ampleness of E implies the existence
of a convez strictly plurisubharmonic Finsler metric on E*. Sommese [Som78]
observed that this is the case if E is ample and generated by sections. In fact, if
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there are sections 0; € H°(X, E) generating E, then
1/2
ho(€") = (D los (@) - €°*)
J

defines a weakly plurisubharmonic and strictly convex (actually hermitian) metric
on E*. On the other hand, the ampleness implies the existence of a strictly
plurisubharmonic Finsler metric hy, thus (1—¢)hg—+ehy is strictly plurisubharmonic
and strictly convex for € small enough. Griffiths conjectured that ampleness of F
might even be equivalent to the existence of a hermitian metric with positive
curvature, thus to the existence of a hermitian strictly plurisubharmonic metric
on E*. Not much is known about this conjecture, except that it holds true if
r = rank £ = 1 (Kodaira) and n = dimX = 1 (Umemura [Um73], see also
Campana-Flenner [CaF90]). Our feeling is that the general case should depend on
deep facts of gauge theory (some sort of vector bundle version of the Calabi-Yau
theorem would be needed).

§2. Linearly dual Finsler metrics

Given a Finsler metric || || on a holomorphic vector bundle E, one gets a dual
(or rather linearly dual) Finsler metric || ||* on E* by putting
€ - €]
(2.1) 1€7]I% = sup " e EL

cce, {0y I€llz

Equivalently, in terms of the logarithmic indicatrix, we have

(2.2) X*(x,€7) = sup logl¢-&"| —x(x,§), & € EL
EeE ~{0}

It is clear that the linearly dual metric || ||* is always convex, and therefore the
biduality formula || [[** = || holds true if and only if | || is convex.

A basic observation made by Sommese [Som78] is that the pseudoconvexity
of a Finsler metric is related to some sort of pseudoconcavity of the dual metric,
provided that the given metric is fiberwise convex. We will reprove it briefly in
order to prepare the reader to the general case (which requires polynomial duality,
and not only linear duality). We first need a definition.

2.3. Definition. Let E be equipped with a smooth Finsler metric of logarithmic
indicatriz x(z,£) = log ||€||l.. We say that || || has transversal Levi signature (r,n)
(where r = rank E and n = dim X)) if, at every point (x,£) € E ~ {0}, the Levi
form i00(eX) is positive definite along the fiber E, and negative definite on some
n-dimensional subspace W C T (,.¢) which is transversal to the fiber E,.

This property can also be described geometrically as follows.
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2.4. Proposition. The Finsler metric | || on E has transversal Levi signature
(r,n) if and only if it is fiberwise strictly pseudoconver, and through every point
(z0,&0) of the unit sphere bundle ||| = 1 passes a germ of complex n-dimensional
submanifold My which is entirely contained in the unit ball bundle {||¢|| < 1} and
has (strict) contact order 2 at (xg,&p).

Proof (Sketch). 1If the geometric property (2.4) is satisfied, we simply take
W' = Ty (20,60)- Conversely, if i00eX has signature (r,n) as in 2.3, then i0dx
has signature (r — 1,n) (with one zero eigenvalue in the radial direction, since x
is log homogeneous). The Levi form of the hypersurface x = 0 thus has signature
(r —1,n) as well, and we can take the negative eigenspace W C Tg (5,.¢,) to be
tangent to that hypersurface. The germ Mj is then taken to be the graph of a
germ of holomorphic section o : (X, z¢) — E tangent to W, with the second order
jet of o adjusted in such a way that x(z,0(z)) < —e|z — z¢|* (as dx(xo) # 0, one
can eliminate the holomorphic and antiholomorphic parts in the second order jet
of x(z,0(x))). O

One has the following basic result, the main part of which (a) is due to
A. Sommese [Som78].

2.5. Theorem. Let E be equipped with a smooth Finsler metric of logarithmic
indicatriz x(z, &) = log||€||.. Assume that the metric is (fiberwise) strictly convez.

(a) If the metric || || is strictly plurisubharmonic on E {0}, then the dual metric
| |I* =eX" has transversal Levi signature (r,n) on E* ~ {0}.

(b) In the opposite direction, if || || has transversal Levi signature (r,n), then
| || is strictly plurisubharmonic on E* ~. {0}.

2.6. Remark. Theorem 2.5 still holds under the following more general, but more
technical hypothesis, in place of the strict convexity hypothesis:

(H) For every point (z,[£*]) € P(Ey), the supremum

X*($,£*> = sup lOg |§ : §*| - X(x7£>7 5* € E;
E€E,~{0}

is reached on a unique line [§] = f(z,[£*]) € P(E;), where ] is a non critical
maximum point along P(E,).

Notice that the supremum is always reached in at least one element [¢] €
P(E.), just by compactness. The assumption that there is a unique such point
(€] = f(z,[£*]) which is non critical ensures that f is smooth by the implicit
function theorem, hence x* will be also smooth.

The uniqueness assumption is indeed satisfied if the Finsler metric of E is
strictly conver. Indeed, if the maximum is reached for two non colinear vectors &,
& and if we adjust & and &; by taking multiples such that & - & =& - & =1,
then again & - &* = 1 for all & = (1 — t)& + t&1 € €0, &1[, while the strict
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convexity implies x(z, &) < x(x,&) = x(x, &), contradiction. We see as well that
the maximum must be a non critical point, and that the Finsler metric || ||* is
strictly convex. Thus, in this case, || || is strictly plurisubharmonic if and only if
|| ||* has transversal Levi signature (r,n).

2.7. Remark. In Theorem 2.5, the extra convexity assumption (or its weaker
counterpart (H)) is certainly needed. In fact, if the conclusions were true without
any further assumption, the linear bidual of a continuous plurisubharmonic Finsler
metric would still be plurisubharmonic (since we can approximate locally such
metrics by smooth strictly plurisubharmonic ones). This would imply that the
convex hull of a pseudoconvex circled tubular neighborhood is pseudoconvex.
However, if we equip the trivial rank two vector bundle C x C? over C with the
plurisubharmonic Finsler metric

€]le = max (&1, [, |[2[v/]€1] 1€2]).

a trivial computation shows that the convex hull is associated with the metric

I = max( , il + )

€117 €11, |€2l, e |2(\fl\ €2])
which is not plurisubharmonic in x. O
Proof of Theorem 2.5. (a) First observe that exp(x*) = || [|* is convex, and

even strictly convex since the assumptions are not affected by small smooth €
or C? perturbations on y. Thus i90 exp(x*) has at least r positive eigenvalues
eigenvalues along the vertical directions of £* — X.

Let f : P(E*) — P(F) be defined as in condition 2.5 (H), and let ]?
E ~ {0}* — E ~ {0} be a lifting of f. One can get such a global lifting f by

setting e.g. f (x £*)-&* =1, so that f is uniquely defined. By definition of xy* and
f, we have

X (2, 6%) =log |f(2,6%) - & — x(, f(2,£))
ina neighborhood of (xo, £5). Fix alocal trivialization Ej;; ~ U x V xhere V' ~ C"
and view f as a map f E|U ~ U x V* — V defined in a neighborhood of (zg, £F).
As dim E = n + r and dim V = r, the kernel of the 0-differential

af(x():ga) : TE*,(IQ,ES) - V
is a complex subspace Wo C T+ (4.¢2) of dimension p > n. By definition of Wy,

there is a germ of p-dimensional submanifold M C E* with T M, (z0,65) = Wo, and
a germ of holomorphic function g : M — V such that

F(2,6%) = g(2,) + O(Jz — mo* + 1€ — &|*) on M.
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This implies

X*(x,€%) = loglg(z, %) - €| = x(z, g(2,€") + O(|z — zo[* + € = &) on M.
In fact, since & = f(z0,&;) is a stationary point for & — log |€ - £*| — x(z,§), the
partial derivative in £ is O(|z — xo| + |§ — &o|), and a substitution of £ = f(z,£*)
by & = g(z, &) introduces an error

O(|z — xo| + € — &o| + & — &) € — &1| = O(Jz — xo)® + [€* — &)
at most. Therefore
i00x* (z, &%) = —i00x(x, g(x,£*)) < 0  in restriction to Wy = T (zo.62)-

This shows that i90x* has at least p > n negative eigenvalues. As there are
already r negative eigenvalues, the only possibility is that p = n.

(b) The assumption on (F,x) means that for every (zo,&) € E ~ {0}, there
is a germ of holomorphic section o : X — FE such that —y(z,o(x)) is strictly
plurisubharmonic and o(zo) = §. Fix {5 € £~ {0} and take {y € E, ~ {0}
to be the unique point where the maximum defining x* is reached. Then we infer
that x*(z,&*) > log |£* - o(x)| — x(x, 0(x)), with equality at (xo,&}). An obvious
application of the mean value inequality then shows that x* is plurisubharmonic
and that i00x* is strictly positive in all directions of T+, except the radial vertical
direction. O

§3. A characterization of signature (r,n) concavity

Let E be a holomorphic vector bundle equipped with a smooth Finsler metric
which satisfies the concavity properties exhibited by Theorem 2.5. We then have
the following results about supremum of plurisubharmonic functions.

3.1. Theorem. Assume that the Finsler metric || ||g on E has transversal Levi
signature (r,n). Then, for every plurisubharmonic function (z,&) — u(x,§) on
the total space E, the function

My(z,t) =  sup u(z,§)
[HENE

s plurisubharmonic on X x C.

Proof. Let us first consider the restriction x +— M,(x,0), and pick a point xg
in X. Let & € E, |%]|lg = 1 be a point such that M, (z¢,0) = u(xo,&). By
Proposition 2.4, there a germ of holomorphic section o : (X, z9) — F such that
o(xg) = &, whose graph is contained in the unit ball bundle |||l < 1. Thus
My (z,0) > u(x,o(z)) and u(zo,o(xg)) = My(x0,0). This implies that M, (x,0)
satisfies the mean value inequality at xg. As x( is arbitrary, we conclude that
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x +— My (z,0) is plurisubharmonic. The plurisubharmonicity in (x,t) follows by
considering the pull-back of E* to X x C by the projection (z,t) — x, equipped
with the Finsler metric |e7|||¢||g at point (z,t). We again have osculating
holomorphic sections contained in the unit ball bundle ||£||g < |e!|, and the
conclusion follows as before. O

We now turn ourselves to the “converse” result:

3.2. Theorem. Let || ||g be a smooth Finsler metric on E which is fiberwise
strictly plurisubharmonic on all fibers E,. Assume that X is Stein and that

My(z,t) =  sup u(z,§)
[HENE

is plurisubharmonic on X x C for every plurisubharmonic function (z, &) — u(x,§)
on the total space E. Then the Levi form of || || g has at least n seminegative
eigenvalues, in other words || ||g is, locally over X, a limit of smooth Finsler
metrics of transversal Levi signature (r,n).

Proof. Once we know that there are at least n seminegative eigenvalues, we can
produce metrics of signature (r,n) by considering

—e|x|?
(@,8) = [lglpe™*,  e>0

in any coordinate patch, whence the final assertion. Now, assume that the Levi
form of || ||g has at least (r + 1) positive eigenvalues at some point (zg, &) € F.
Then the direct sum of positive eigenspaces in T (4,.¢,) Projects to a positive
dimensional subspace in T’y ;,. Consider a germ of smooth complex curve I' C X
passing through z, such that its tangent at x( is contained in that subspace. Then
(after shrinking I if necessary) the restriction of the metric || || to Ejr is strictly
plurisubharmonic. By the well-known properties of strictly pseudoconvex domains
the unit ball bundle [|£||gz < 1 admits a peak function u at (z¢, &), that is, there is
a smooth strictly plurisuharmonic function v on Ejr which is equal to 0 at (zo, o)
and strictly negative on the set {(x,£) # (z0,&0); |||l < 1}. As u is smooth, we
can extend it to F|p, where B = B(xo,0) is a small ball centered at z. As X is
Stein, we can even extend it to E, possibly after shrinking B. Now M,(z,0) is
equal to 0 at x¢ and strictly negative elsewhere on the curve I'. This contradicts
the maximum principle and shows that M, cannot be plurisubharmonic. Hence
the assumption was absurd and the Levi form of || ||z has at least n seminegative
eigenvalues. O

84. A conjecture of Hartshorne and Schneider on comple-
ments of algebraic subvarieties
Our study is closely connected to the following interesting (and unsolved)

conjecture of R. Hartshorne, which was first partially confirmed by Michael
Schneider [Sch73] in the case of a Griffiths positive normal bundle.
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4.1. Conjecture. If X is a projective n-dimensional manifold and Y C X is a
complex submanifold of codimension q with ample normal bundle Ny , then X \Y
is g-convex in the sense of Andreotti-Grauert. In other words, X \Y has a smooth

exhaustion function whose Levi form has at least n — q + 1 positive eigenvalues on
a neighborhood of Y .

Using Sommese’s result 2.5 (a), one can settle the following special case of the
conjecture.

4.2. Proposition (Sommese). In addition to the hypotheses in the conjecture,
assume that N3 has a strictly convex plurisubharmonic Finsler metric (this is the
case for instance if Ny is generated by global sections). Then X \'Y is q-convez.

Proof. By adding ¢ times a strictly plurisubharmonic Finsler metric on Ny (which
exists thanks to the assumption that Ny is ample), we can even assume that the
metric on Ny is strictly convex and strictly plurisubharmonic. Then the dual
metric on Ny has a Levi form of signature (¢,n — ¢). Let X — X be the blow-up
of X with center Y, and Y = P(Ny) the exceptional divisor. Then, by Theorem
2.5, the Finsler metric on Ny corresponds to a hermitian metric on

Opvy)(=1) = Ny = 05(Y) 5,
whose curvature form has signature (¢ —1,n —¢) on Y. Take an arbitrary smooth
extension of that metric to a metric of 0% (Y) on X. After multiplying the metric

by a factor of the form exp(C d(z,Y)?) in a neighborhood of ¥ (where C' > 0
and d(z,Y") is the riemannian distance to Y with respect to some metric), we can

achieve that the curvature of O )?(Y) acquires an additional negative eigenvalue in
the normal direction to Y. In this way, the curvature form of © 55(17) has signature
(g—1,n— g+ 1) in a neighborhood of Y. We let oy € HO()},OQ(?)) be the

canonical section of divisor Y. An exhaustion of X \Y = X \Y with the required
properties is obtained by putting ¢(z) = —log [l (2)]]- O

85. Symmetric and tensor products of Finsler metrics

Let E be a holomorphic vector bundle of rank r. In the sequel, we consider
the m-th symmetric product S™ E x S™2 F — S™1T™2 [} and the m-th symmetric
power E — S™E, £ — £ which we view as the result of taking products of
polynomials on E*. We also use the duality pairing S™E* x S™E — C, denoted
by (61,603) — 07 - 05. In multi-index notation, we have

al

e)® - (e*)? = —
(@ (") = Gap g

where (e;)1gj<r is a basis of E, (e})1¢ < the dual basis in £*, 1 < j < 7, and
(e)* = e ...e2 [Caution: this formula implies that 67-057 # (0 -05%)P for general
elements 01 € S™E, 0, € S™E*, although this is true if m = 1].
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Whilst the linear dual || ||g+« of a Finsler metric | ||g is not well behaved
if || ||g is not convex, we will see that (positive) symmetric powers and tensor
powers can always be equipped with natural well behaved Finsler metrics. For an
element 0* € S™E™*, viewed as a homogeneous polynomial of degree m on E, we
set

* |6* ’ £m‘ *  em
(51) H@ ||SmE*’LTOm = sup em sup |6 £ ‘
" envqoy IEIE jee<

[In the notation L%, the upper index oo refers to the fact that we use sup norms,
while the lower indices 1 refers to the fact that 6* appears with exponent 1, and
€™ with exponent m.| This definition just reduces to the definition of the dual
metric in the case m = 1, and thus need not be better behaved than the dual
metric from the view point of curvature. On the other hand, for all 87 € S™ E™,

1 =1, 2, it satisfies the submultiplicative law

165 03llsmrsma e e, < 10T sma e s, 16 llsmare nse,

On the “positive side”, i.e. for 7 € S™E, we define a sequence of metrics

I ||SmE’L;f>1 on S™E, p > 1, and their “limit” || ||SmE’L£71 by putting
TP . 6* 1/p
(52 Flsmesg, = swp (L)
Pt geesmope{o} M0 HSPmE*,L;XjPm
= sup 7P . 6 |H/P,

||9*|‘S7nPE*,LT?an§1
(53) ||THSmE,L£71 = limsup HTHSmE,L;‘jl'

p—+oo
In the case m = 1, we have of course S'E = E, but neither || ||51E’L;o1 nor
| lls1m,zo0 | necessarily coincide with the original metric || [|[g. In fact, by

definition, it is easily seen that the unit ball bundle [|{[|s1p L < 1 is just the
(fiberwise) polynomial hull of the ball bundle |||/ < 1. In particular, || [|s1p o

and || ||g do coincide if and only if | ||g is plurisubharmonic on all fibers F,,
which is certainly the case if | ||g is globally plurisubharmonic on E [By contrast,
the unit ball bundle |{|s1p e <1 is the convex hull of ||{||g < 1, and need not

be pseudoconvex even if the latter is; see Remark 2.7]. Our first observation is

5.4. Proposition. The L metric || ||smpg > | is always well defined and non

degenerate (in the sense that the limsup is finite and non zero for T # 0), and it
defines a continuous Finsler metric on S™E.

Proof. If in (5.2) we restrict 8* to be of the form 6* = (£*)™P, then

g = (1T, (€)™ s, = €50,
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where || ||g« is the linear dual of | ||g. From this we infer

I7llsmE L0, 2 sup 7. &
Y lE* [ ex <1

for all p=1,2,..., 00, in particular ||7||smp o is non degenerate. In the other

1
direction, we have to show that ||7||smp, L, is finite. We first make an explicit
calculation when || ||g is a hermitian norm. We may assume E = C" with its
standard hermitian norm. Then, writing 6* - " = Z|a|:m co£® in multi-index
notation, we get

2
e D IR IE L S D N
R

|a|=m

This is obtained by integrating over the n-torus §; = t;/zei“i, 0 < u; <27 (with
t = (t;) fixed, > t; = 1), and applying Parseval’s formula. We can now replace the
right hand supremum by the average over the (n — 1)-simplex > ¢; = 1. A short
computation yields

—1)! a!
o* 2m L e 2 (T a2 .
16 s, > T =) 2= !

la|=m

However Z|a|:m |C°‘|2(Ico>j—i)! is just the hermitian norm on S™ E* induced by the

inclusion S™E* C (E*)®™. The dual norm is the hermitian norm on S™E. From
this, we infer

(mp+ 1) (mp+2)...(mp+r—1)\1/2p )
I7lsmag, < ( T ) NI b e

Irllsmz.cx , < I7l5m 5 herm

[using the obvious fact that hermitian norms are submultiplicative], whence the
finiteness of [|7||sm g o . Finally, given any two Finsler metrics 1|| |z and o ||e

such that 1]| ||g < 2|l ||g, it is clear that 1HT||SmE’Lg . < 2[|T||SmE’L£1. By

comparing a given Finsler norm || ||z = 1| ||g with a hermitian norm ol &, we
conclude that the metric || [|smp,r, must be finite. Moreover, comparing the
metrics || ||z at nearby points, we see that || [|smp,re | varies continuously (and
that it depends continuously on || ||g)- O

Our next observation is that the L° metrics on the negative symmetric
powers S™E* can be replaced by L? metrics without changing the final metric
| llsmE L, on S™E. To see this, fix an arbitrary smooth positive volume form
dV on P(E}), with (say) fP(E;) dV = 1. We can view any element 6* € S"™E*

as a section of HO(P(E}), Op(gsy(m)). Let ||0*||%(m) be the pointwise norm on
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Op(g+)(m) induced by || | g, and let do be the area measure on the unit sphere
bundle 3(E) induced by dV. We then set

T / 16712y dV = / 6% €7 2o (¢).
tm P(E}) Ecx(E2)

Clearly
107 |smpe,z2 < [107[smpe, 150 -

1,m

On the other hand, there exists a constant C' such that

(5.5) ||9*||25mE*,L;>fm <Cm™! HQ*H?S*ME*,LE,M'

This is seen by applying the mean value inequality for subharmonic functions,
on balls of radius ~ 1//m centered at arbitrary points in P(F,). In fact, in a
suitable local trivialization of Op(g«) near a point [{y] € P(E}), we can write
160%1% (m) = |05]%2e=™% where 65 is the holomorphic function representing 6*, and
1 is the weight of the metric on Op(g+)(1). We let £ be the holomorphic part in
the first jet of ¢ at [§p], and apply the mean value inequality to

|986—m£|26—m(w—2 Re Z)‘

As 1) — 2Re{ vanishes at second order at [£p], its maximum on a ball of radius
1/y/m is O(1/m). Hence, up to a constant independent of m, we can replace
|0se ™t 2e=m(¥=2Red) 1y the subharmonic function |@5e~™¢|2. Inequality (5.5)
then follows from the mean value inequality on the ball B([{o],1/4/m) [noticing
that the volume of this ball is ~ 1/m"~!]. Now (5.5) shows that the replacement
of |0*([spmp+,L3e by [|60*||spm g+ 12 0 (5.2) and (5.3) does not affect the limit
as p tends to +oo. ’

If | ||z is (globally) plurisubharmonic, we can even use more global L? metrics
without changing the limit. Take a small Stein open subset U € X and fix a Kahler
metric w on P(E|*U). To any section o € HY (7~ (U), Op(g+)(m)) = H(U, S"E*),

we associate the L? norm

||0-H25mE*,L% m(U) :/ |0"2de,
’ W)

where 7 : P(E*) — X is the canonical projection. In this way, we obtain a Hilbert
space

%E,m(U> = {0§ ||J||2SWE*,L§(U) < +OO} C HO(W_I(U>7 OP(E*)(m»,
and associated (non hermitian!) metrics

HTHSmEm,L? () = sup lo(x) - Tp|1/p,
P o €HE,mp(U), |lofI<1

Illsm e, 2z, @) =limsup irllsep, 2 @), 7 €S Es
’ p—) o0 )
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As these metrics are obtained by taking sups of plurisubharmonic functions
((x,7) — o(x) - 7P is holomorphic on the total space of S™F), it is clear that the
corresponding metrics are plurisubharmonic on S™F. Furthermore, an argument
entirely similar to the one used for (5.5) shows that

lo@) 5 g, 2 < Cm"olEnp 12 @) VeeU el

In order to get this, we apply the mean value inequality on balls of radius
1/y/m centered at points of the fiber P(E}) and transversal to that fiber, in
combination with Fubini’s theorem. In the other direction, the Ohsawa-Takegoshi
L? extension theorem ([OhT87], [Ohs88], [Man93]), shows that every element
0* € S™Ey, viewed as a section of Op(gs)(m), can be extended to a section
o€ H (=Y (U),Op(g+)(m)) such that

lollsmper2 @) < CN0%smps r2 s
where C’ does not depend on x € U. For this, we use the fundamental assumption
that || [z is plurisubharmonic (and take profit of the fact that Op(g«)(1) is
relatively ample to get enough positivity in the curvature estimates: write e.g.
Op(er)(m) = Opgx(m —mo) ® Op(g+)(mo), keep the original metric on the first
factor O p(g+)(m —myg), and put a metric with uniformly positive curvature on the
second factor). From this, we conclude that |[7|smp, r2 () coincides with the

metric defined in (5.3). Since this metric depends in fine only on || ||z, we will
simply denote it by || |[smg. We have thus proven:

5.6. Theorem. If | ||g is (strictly) plurisubharmonic on E, then || |smg is
(strictly) plurisubharmonic on S™E.

The case of strict plurisubharmonicity can be handled by more or less obvious
perturbation arguments and will not be detailed here. As a consequence, we get
the Finsler metric analogue of the fact that a direct sum or tensor product of
ample vector bundles is ample.

5.7. Corollary. If E, F' are holomorphic vector bundles, and || | g, | ||z are
(strictly) plurisubharmonic Finsler metrics on E, F, there exist naturally defined
(strictly) plurisubharmonic Finsler metrics || ||por, | |Eor on E® F, EQ F
respectively.

Proof. In the case of the direct sum, we simply set || ® n|lpar = €|l + ||| F-
The logarithmic indicatrix is given by

xeer (& n) =log (exp(xe(z,£)) + exp(xr(z,1))),

and it is clear from there that xyggqp is plurisubharmonic. Now, we observe that
S2(E@F)=S’E®S?’F@®(E®F). Hence E® F can be viewed as a subbundle of
S?2(E @ F). To get the required Finsler metric on F ® F, we just apply Theorem
5.5 to S?(E @ F) and take the induced metric on E ® F. O
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5.8. Remark. It would be interesting to know whether good Finsler metrics could
be defined as well on the dual symmetric powers S™FE*. One natural candidate

would be to use the already defined metrics || ||smg and to set
||T*HSmE*,L;°1 — sup ‘T*P_g‘l/p,
" ellspme<l

|7 lsmpe Lo | = limsup (|7 |lsmps Lo,
A T ome ,

However, we do not know how to handle these “bidually defined” Finsler met-
rics, and the natural question whether || [|gmp« > has transversal signature
(dim S™E*,n) probably has a negative answer if || || g is not convex (although
this might be “asymptotically true” as m tends to 4+00).

5.9. Relation to cohomology vanishing and duality theorems. If | | g+ is
smooth and strictly plurisubharmonic, then E' is ample, thus its symmetric powers
S™FE have a lot of sections and the Kodaira-Serre vanishing theorem holds true,
le.

HYX,S"E®J) =0, q#0,
for every coherent sheaf F and m > my(F) large enough. In a parallel way, if || ||z
has a metric of signature (r,n), then the line bundle Op(g+)(1) has a hermitian

metric such that the curvature has signature (r — 1,n) over P(E*). From this, by
the standard Bochner technique, we conclude that

HQ(P(E*)7OP(E*)<m)®g) =0, Q%nv

for every locally free sheaf § on P(E*) and m > m(G). The Leray spectral
sequence shows that

HY(X,S™E* @ F) = HY(P(E*), O p(g+(m) @ 7*F),

thus we have vanishing of this group as well is F is locally free and ¢ # n,
m = mo(F). The Serre duality theorem connects the two facts via an isomorphism

HI(X,S"E*@F)* =H"1YX,S"E®F* ® Kx).

What we are looking for, in some sense, is a “Finsler metric version” of the Serre
duality theorem. Up to our knowledge, the duality works well only for convex
Finsler metrics (and also asymptotically, for high symmetric powers S™FE which
carry positively curved hermitian metrics). O
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§6. A trick on Taylor series

Let 7 : E — X be a holomorphic vector bundle, such that E* is equipped with
a continuous plurisubharmonic Finsler metric ||£*||g+ = exp(x*(z,£&*)). Thanks
to section 5, we are able to define plurisubharmonic Finsler metrics || ||gmpg+ on
all symmetric powers of E*. Our goal is to use these metrics in order to define
plurisubharmonic sup functionals for holomorphic or plurisubharmonic functions.
We first start with the simpler case when || | g+ is convex.

6.1. Theorem. Assume that || | g+ is plurisubharmonic and convex, and let
I€lle = exp(x(x,&)) be the (linearly) dual metric. Then, for every plurisubhar-
monic function (z,&) — u(x, &) on the total space E, the function

Mi(z,t) = sup u(z,§)
[HENE

s plurisubharmonic on X x C.

Proof. This is a local result on X, so we can assume that X is an open set 2 C C™
and that £ = Q x C" is trivial. By the standard approximation techniques, we
can approximate || ||g+« by smooth strictly convex and strictly plurisubharmonic
metrics ¢|| ||+ = || ||g~ which decrease to || ||g+ as € decreases to 0. We then
get a decreasing family lim |._,g)cMy(2,t) = My(z,t). It is thus enough to
treat the case of smooth strictly convex and strictly plurisubharmonic metrics

|| ||g«. In that case, | ||g has a Levi form of signature (r,n) and we conclude by
Theorem 3.1. O
Unfortunately, in the general case when || ||g+ is not convex, this simple

approach does not work [in the sense that M, is not always plurisubharmonic].
We circumvent this difficulty by using instead the well-known trick of Taylor
expansions, and replacing the sup with a more sophisticated evaluation of norms.
If f is a holomorphic function on the total space of E/, the Taylor expansion of f
along the fibers of E/ can be written as

“+o0
= Z am(x) - €™, e FE,,
m=0

where a,, is a section in H%(X, S™E*). In that case, we set
(6.2) M (x,t) Z lam ()| gm s €™

This is by definition a plurisubharmonic function on X x C. In fact, log ]\/4\}((1', t)

is a plurisubharmonic function as well. As we will see in the following lemma, ]\/4\}<
will play essentially the same role as M, could have played.
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6.3. Lemma. Fiz a hermitian metric || ||gs herm = || ||+, and let || || g herm De
the dual metric. Then there is an inequality

wp |f@o <M< (141) s |f@e)

€]l s <[et| €7 €l B nerm <(1+€) et

Proof. The left hand inequality is obtained by expanding

—+oo

F@, &) < lam(z) - Znam )|sm e [IEIIR,

m=0

thanks to the fact that a,,(x)? - &P = (a,,(z) - £™)P. In the other direction, we
have

lam (@)|[sm e < llam(2)|lsm &+ nerm
<(m—i—1)...(m‘—|—r—1) sup |am (2) - €7
(T - 1) H‘EHE,hcrmgl

thanks to the inequalities obtained in the proof of Proposition 5.4. Now, the
standard Cauchy inequalities imply

1

swp () €7 < o s [F(6)]
Hg”E,herm:l ||§HE,herm:R

Combining all the above with R > |ef|, we get

. 4 1)t 1)
M¥(z,t) < sup  |f(x,9)] |
f HgHE,hcrng Z (T - 1)!
1

sup \f(w,§)|<(1+l)r a6l

S Ehy
(1= 1) 1l e €115 herm (1)l

The lemma is proved. Ol

6.4. Remark. It is clear that the sup functional M 7l is submultiplicative, i.e.

Mﬁ}g'(x,t) < MX (x,t) M| |(a: t).

If]
However, the analogous property for ]\/I\}‘ would require to know whether
HCL . b||Sm1+m2E* < HCLHSmlE* ||b“sm2E*,

(or a similar inequality with a constant C' independent of my, ms). It is not clear
whether such a property is true, since the precise asymptotic behaviour of the
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metrics || ||sm g+ is hard to understand. In order to circumvent this problem, we
select a non increasing sequence of real numbers p,, € |0, 1] with pg = 1, such that

(6.5) prmntmalla - bllsms i e < pmypmallalsms e [Bllsms e

for all my, my. One can easily find such a sequence p = (p,,) by induction on m,
taking p,,/pm—1 small enough. Then

(6'6) MX,P 33 t Z pmHam ||Sm157*|e |

obviously satisfies the submultiplicative property. On the other hand, we lose
the left hand inequality in Lemma 6.3. This unsatisfactory feature will create
additional difficulties which we can only solve at the expense of using deeper
analytic techniques. O

We are mostly interested in the case when E = T is the tangent bundle,
and assume that a plurisubharmonic Finsler metric [[£*||7; = exp(x*(z,&¥)) is
given. Locally, on a small coordinate open set U € Uy C X associated with a
holomorphic chart

TZUO—>7'(U0) C(Cn,

we have a corresponding trivialization 7’ : Txjy ~ 7(U)xC". Given a holomorphic

function f in a neighborhood of U, we consider the holomorphic function such
that F(z,¢) = f(a(x,€)) where a(z, &) = 77 H(r(x) + 7/ (2)€)). It is defined on a
sufficiently small ball bundle B.(Tx ) = {(z,&) € Txjv; ||| < e}, € > 0. Thus

(6.7) MY (x,t) == MY (2,1)

makes sense for |ef| < ce, ¢ > 0. Again, by construction, this is a plurisubharmonic
function of (z,t) on U x {|e'| < ce}. This function will be used as a replacement
of the sup of f on the Finsler ball a(z, B(0, |e!|)) € X (which we unfortunately
know nothing about). However, the definition is not coordinate invariant, and we
have to investigate the effect of coordinate changes.

6.8. Lemma. Consider two holomorphic coordinate coordinate charts ; on a
neighborhood of U, j = 1,2, and the corresponding maps

aj: B(Txp) = Uo,  ay(2,&) =77 (7;(2) + 7)(2)€)).

Let F; = foaj, 7 =1,2, and let 6 > 0 be fized. Then there is a choice of a
decreasing sequence p = (pm,) such that

Mgp(a:, < (1+ 5)@;0(;5,13),
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where p depends on U, 71, T2, but not on f (here |e!| is suppose to be chosen small
enough so that both sides are defined). Any sequence p with py,/pm—1 smaller that
a given suitable sequence of small numbers works.

In other words, if the sequence (p,,) decays sufficiently fast, the functional
M ;f’p (z,t) defined above can be chosen to be “almost” coordinate invariant.

Proof. 1t is easy to check by the implicit function theorem that there exists a
(uniquely) defined map w : Tx — T, defined near the zero section and tangent
to the identity at 0, such that

az(z,€) = ai(z,w(@,§)),  w(z,€)=E+0(E%).

Hence, if we write

—+o00
foaj(@,& =) am;x) -,  j=1,2
m=0

the series corresponding to index j = 2 is obtained from the j = 1 series by
substituting & — w(x, ). It follows that

am2(%) = am1 (2) + D Linu(®) - a1 (2)

p<m

where L,, , : SPT% — S™T% are certain holomorphic linear maps depending only
on the chart mappings 71, 72. If p,,,/pm—1 is small enough, the contribution given
by pim D < Lim,pu (%) -ap,1(2) is negligible compared to the py[la,,1(2)[/sery . The
lemma follows. O

§7. Approximation of plurisubharmonic functions by loga-
rithms of holomorphic functions

The next step is to extend the M}"p functional to plurisubharmonic functions
defined on a complex manifold, when the cotangent bundle T% is equipped with
a Finsler metric. The simplest way to do this is to approximate such functions
by logarithms of holomorphic functions, by means of the Ohsawa-Takegoshi L?
extension theorem ([OhT87], [Ohs88], [Man93]). We reproduce here some of
the techniques introduced in [Dem92|, but with substantial improvements. The
procedure is still local and not completely canonical, so we will have later to apply
a gluing procedure.

7.1. Theorem. Let ¢ be a plurisubharmonic function on a bounded pseu-
doconvex open set U C C". For every p > 0, let Hp,(U) be the Hilbert

space of holomorphic functions f on U such that fU |f|2e=2PPd\ < 400 and let

Op = 2—1p log > |o¢|? where (0¢) is an orthonormal basis of Hp,(U). Then there are

constants C1,Cy > 0 independent of p such that
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. 1. C
() ¢(z) = = <pp(2) < sup p(¢) + ~log —
p (C—2|<r p o

for every z € U and r < d(z,0U). In particular, ¢, converges to ¢ pointwise
and in Li _ topology on U when p — 400 and

(ii) v(p, 2) — L < v(pp,2) < v(p,z) for everyz e U.
p

Proof. Note that > |0¢(2)|? is the square of the norm of the evaluation linear form
[ f(z) on H,,(U). As ¢ is locally bounded above, the L? topology is actually
stronger than the topology of uniform convergence on compact subsets of U. It
follows that the series > |oy|? converges uniformly on U and that its sum is real
analytic. Moreover, we have

1
(7.2) ¢p(2) = sup —log|f(z)|
feB,(1) P
where Bp(1) is the unit ball of H,,(U). For r < d(z,0U), the mean value
inequality applied to the plurisubharmonic function |f|? implies

1
w2 /n)

VBT [ e

exp (2p sup @(C))/Ulflze_zp‘pd)v

= ng2n
T2 [l C—z|<r

If we take the supremum over all f € B,(1) we get

1 1
pp(2) < sup @(C) + 5 log ————
P lc—z|<r 2p wnr2n /)

and the second inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi
extension theorem ([OhT87], [Ohs88], [Man93]) applied to the 0-dimensional
subvariety {z} C U shows that for any a € C there is a holomorphic function
f on U such that f(z) = a and

[ 1P < Cafape o),
U
where C3 only depends on n and diam U. We fix a such that the right hand side

is 1. This gives the other inequality

1 log Cs
> —log|al = ¢(z) — .
©p(2) ’ og la| = p(2) 2

The above inequality implies v(p,, 2) < v(p, ). In the opposite direction, we find

1 Cs
sup  ¢p(7) < sup  @(() + ~log —.
lz—z|<r [¢—z|<2r p r



87. Approximation of plurisubharmonic functions by holomorphic functions 21

Divide by logr and take the limit as r tends to 0. The quotient by logr of the
supremum of a plurisubharmonic function over B(z, ) tends to the Lelong number

at . Thus we obtain n

v(ep, ) = v(e,x) — . O

Another important fact is that the approximations ¢, do no depend much on

the open set U, and they have a good dependence on ¢ under small perturbations.

In fact, let U’',U"” C U be Stein open subsets, and let ¢’, ¢" be plurisubharmonic

functions on U’, U” such that |¢' — ¢"| < e on U' NU”. If f’ is a function in the
unit ball of H,,(U’), then

/ |f/‘26—2p<p”d)\ < 62p£
u'nu’”

by the hypothesis on ¢’ — ¢”. For every zog € U’, we can find a function
I € Hypr (U) such that f”’(zo) = f'(x0) and

1" C /
112 _—2pep d\ < 2p£/ 12 _—2pyp d\.
/H |f"]"e (d(a:o,BU))2”+2e o |f'|7e

This is done as usual, by solving the equation dg = 9(0f') with a cut-off function
6 supported in the ball B(wg,5/2) and equal to 1 on B(wg,5/4), § = d(xo,CU),
with the weight 2pp(z) +2nlog |z — x| ; the desired function is then f” =60 f' —g.
By readjusting f” by a constant so that f” is in the unit sphere, and by taking
the sup of log|f/'(xo)| and log|f"”(x¢)| for all f/ and f” in the unit ball of their
respective Hilbert spaces, we conclude that

’ " 1 ¢
SOp(l') < Spp(x> t+e+ 2_p log d(a:, B(U’ N U//>)2n+2

on U'NnU",

with some constant C' > 0 depending only on the pair (U’,U”). By symmetry, we
get
1 C

/ 12
o log A, S0 N O onU'NnU".

(7.3) oy () — @ ()] < e+

The next idea would be to take Taylor series much in the same way as we did
in §6, and look e.g. at

1 —
@Xapap(l-’ t) = Sup — log M}(’p(xg t)-
f€BL(1) p

The main problem with this approach occurs when we want to check the effect
of a change of coordinate patch. We then want to compare the jets with those of
the functions f obtained on another coordinate patch, say up to an order Cp for
C > 0 large. The comparison would be easy (by the usual Hérmander-Bombieri
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O-technique, as we did for the O-jets in (7.3)) for jets of small order in comparison
to p, but going to such high orders introduces intolerable distortion in the required
bounds. A solution to this problem is to introduce further approximations of ¢,
for which we have better control on the jets. This can be done by using Skoda’s
L?-estimates for surjective bundle morphisms [Sko72b, 78]. This approach was
already used in [Dem92], but in a less effective fashion.

Let Kg : ¢ — ¢, be the transformation defined above. This transformation
has the effect of converting the singularities of ¢, which are a priori arbitrary,
into logarithmic analytic singularities (and, as a side effect, the multiplicities get
discretized, with values in %N). We simply iterate the process twice, and look at

(7.4) Pp,q = K;()Jq<Kg(90))

for large integers ¢ > p > 1. In other words,
1 2 1 ~ 2
Vy(2) = — log oe(2)|7, Yp,q(z) = — log oe(z
o2 = 5083l () = 5 1og S Fel)
where 0 = (0¢)seny and & = (¢)sen are Hilbert bases of the L? spaces

o) = { [ 1P < oo} I, W) = { [ 1110172007 < +o0).

Theorem 7.1 shows that we still have essentially the same estimates for ¢, , as we
had for ¢,,, namely

: Ch 1 1 Cs
751 z2) — — < Ppql2) < sup +{=+—)log—
50 e = <enald) < swp p(O+ () low
(7.5 ii) v(p,z) — n(1 + i) < v(pp,g, 2) < V(@ 2).

b pq

The major improvement is that we can now compare the jets when U varies, even
when we allow a small perturbation on ¢ as well.

7.6. Proposition. Suppose that we have plurisubharmonic functions ¢, ©”
defined on bounded Stein open sets U', U" € C™, with |¢'—¢"| < e on U'NU". Let
o' = (0y)een, 0" = (0} )een be the associated Hilbert bases of Hyu (U'), Hpur (U"),
and 0" = (0y)een, 0" = (07 )een the bases of Hpqpr (U'), Hypgur (U"). Fiz a Stein
open set W € U' NU" and a holomorphic function " on U" such that

/ If"1%e”] 2% < 1, g>n+1.

(i) One can write f" =3, cnm gr(0') on W with m = q—n—1 and

/ > lgLlPlo’| 72 ax < ¢Paeres
WL
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with a constant C > 1 depending only on d(W,C(U' N U")).

(ii) There are holomorphic functions hy on W such that f” =35 hya, on W, and

sup > " |hel? < Ci(p)CPe?re
¢

where C' is as in (1) and C1(p) depends on p (and U',U", W as well).

Proof. (i) Thanks to (7.3), we have |0/| > C~1e™P¢|¢”| on W for some constant
C > 1 depending only only on d(W,C(U’ N U")). Therefore

/ |f|2|0‘,|_2qd)\ < C2qe2pqa.
w

Let us apply Skoda’s L? division theorem (Corollary 10.6) with r = n, m = g—n—1,
a = 1, on the Stein open set W. Our assertion (i) follows, after absorbing the
extra constant (¢ —n) in C?1.

(ii) We first apply (i) on a Stein open set W; such that W € Wy € U' nU”,
and write in this way f” =3, gr(0’)* with the L? estimate as in (i). By Nadel
[Nad90] (see also [Dem93]), the ideal sheaf J of holomorphic functions v on U’ such
that

/ Plo’| 727 DA < oo
U/

is coherent and locally generated by its global L? sections (of course, this ideal
depends on the o), hence on p and ¢’). It follows that we can find finitely many
holomorphic functions vy, ...,vxy, N = N(p), such that

/ v;[?[o’| 2N = 1
U/

and J(W1) = Y v;O(W;). As the topology given by the L? norm on the L?
sections of J(W7) is stronger than the Fréchet topology of uniform convergence on
compact subsets, and as we have a Fréchet epimorphism O(W;)®N — J(Wy),
(a1,...,an) — Y ajv;, the open mapping theorem shows that we can write

g =Y a;v; with
N
sup 3 Jay1? < Ap) / lg[2]o"] 72D g
Wi Wy

for every holomorphic function g on W; for which the right hand side is finite
[the constant A(p) depends on J, hence on p]. In particular, we can write

gL, = Zj a; r,v; with

sup > fa; p|* < A(P)/ D lgnlPlo’| 72T dA < A(p) e,
WL WL
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We find
=Y gu(0) = a; 90",
L SL

and as L runs over all multiindices of length m = q¢—n — 1 we get

J, S laste i = [ 51yl 70 D0 = N = M)
UL vy

=~/

We can therefore express the function g;(o’)% in terms of the Hilbert basis (7))

> = N(p).

N\L 2 : ~/ 2 :
g] (O- ) = bj’L7€0-€7 b]’Lae S C’ |b]aL7€
¢ 3,L.e

Summing up everything, we obtain

1! ~/ ~/
fr= E aj, b 0y = E heoy, he = E aj,Lbj 1.
7 i

J,L,e

The Cauchy-Schwarz inequality implies

supz el < supz laj 1? Z 1b;.2.0|> < N(p)A(p)C?9e?Pe,
W WL 4,00

as desired. O

Now, assume that X is a complex manifold such that T% is equipped with a
plurisubharmonic Finsler metric. As all constructions to be used are local, we may
suppose that we are in a small coordinate open subset Uy @ X or, equivalently,
in a Stein open set Uy € C", with ¢ being defined on Uy. We fix Stein open sets
U € U; € Uy and select a sequence p = (p,,) satisfying property (6.5) on each
fiber Ty; . Finally, for (z,t) € U x C, we set

1 — C
(7.7) QXPPA(g t) ;= sup — log M¥P(z,t) + =, Co > 0,
feB, 4(1) P4 D

where f runs over the unit ball B, (1) of Hpyp, (Ur) and F(z,&) = f(z + §).
Then ®X#P9(x, t) is well defined on U x {Ret < —A} for A > 0 sufficiently large.
Thanks to Lemma 6.8, the choice of coordinates on Up is essentially irrelevant
when we compute M¥*(z,t), provided that p decays fast enough. Moreover, a
change of coordinate 7 : Uy — 7(Up) has the effect of replacing ¢ by ¢™ = por7!
and ¢, by ¢ = @01 ' +0(1/p), since the only change occurring in the definition
of Hp,r (7(Ur)) is the replacement of the Lebesgue volume form dX by 7*d\, which
affects the L? norm by at most a constant. Similarly, the L? norm of Hpger (T(U1))
gets modified by an irrelevant multiplicative factor exp(O(q)), inducing a negligible
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error term O(1/p) in (7.7). If Cy > 0 is large enough, (7.2) combined with 7.5 (i)
implies that

C(O 1 Oo 1 1 O
z) < z)+ — =sup — lo )|+ — < su + -+ —)log —
P < () + ) s logf@)|+ 21 < sup 0(Q)+ (4 ) o

for some C' > 0, where f runs over B, 4(1) C Hpyp, (Ur). Lemma 6.3 applied with
r = |et| then gives

(7.8 i)
C 1 1 C
QXPPA(r t) < sup  ppq(2) + < sup p(z) - n(— + —) Ret + —,
|z—z|<C"|et| p |z—z|<Cet| p pq p
(7.8 ii)

C

[z2—z|<ex,p,p,q,0,U €] p [z2—z|<ex,p,p.0,0,0 €]

\%

where C', C" are universal constants, and ¢, , p .0, depends on all given data, but
is independent of z. The last inequality is a simple consequence of the fact that the
Taylor series M " (z,t) =37, 5o pmllam ()] |e™?| are never identically zero, hence
their behavior as [e‘| — 0 is the same as for the series 3y pmllam(x)l[e™],
truncated at some rank N = N, ;. The constant ¢, , ;. 4,00 then essentially
depends only on inf,,<n pm. The upper and lower bound provided by (7.8) imply

in particular

. . @X,p,p,q(x’ t) . SUDP|;—z|<|et| Pp Q(Z>
: lim  ——— == 1 rr =
(7.9 1) o lim Rot roim Ret V(#Pp,q> T),
L RXPPA(g ) SUDL e Ppa(2)
7.9 1 — S =0,
(To1)  fm | —x Ret

where the second limit is uniform on U [For this, we use the convexity of
Ret — sup|,_y<jet| p(2) to check that the constants C' in sup|,_;<cjet) p(2) are
irrelevant|. For future reference, we also note

(7.10) The functions ®X#P9(x,t) are continuous on U x {Ret < —A}.

This is an immediate consequence of the fact that the unit ball B, ,(1) of
Hpgep, (U1) is a normal family of holomorphic functions. We now investigate the
effect of a perturbation on .

7.11. Proposition. Let U' € U; € Uy, U’ € U{ € Uy and let ¢, ¢" be
plurisubharmonic functions on U1, U{" such that |¢" — ¢’ —Reg| < e on Ui NUY,
for some holomorphic function g € O(U{ NU{"). There are constants Ca(p) and
C3 (depending also on ', @, g, U', U") such that

Ca(p) . C3

}q)//x,p,p,q(x’ t) _ q;lx,p,p,q@’ t) _ Reg(m)} < 2+
q b
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for allz € U' NU" and |e'| < ro(g) small enough.

Proof. We first treat the simpler case when g = 0. By 7.6 (ii), every function
f" e B (1) C Hpge,(U7') can be written

= Zhﬁ}, supz |he|? < Cy(p)C*2e2Pe®

£eN

on any relatively compact neighborhood W of U"NU” in U; N U;'. Fix a small
polydisk D(r) C C" such that U'NU” + D(r) C U; N U, and expand

he(x) = Z a0z —x0)”

aecN"?

as a power series at each point zq € U’ NU”. By integrating > |h¢|? over the
polycircle [[0D(zg j,7;), we find

(7.12) >

LeN,aeNn

e |2 < Cl (p)c2qe2pqa‘

By substituting h, with its Taylor expansion in the definition of f”, we find
"(z) = Z Do (7) wo (x
aeNn

where

Pa(z) = (2 — 20)%, Wa(T) = Za&oﬁz-

£eN

The L? norm of w, in Hpger (U7) is (>, \ag,a\z)l/z, hence by definition

Co 1 ]\/4\35;[)(550775)
? + p_q lOg 5 1/2 < q);,p,q(x()?t)‘
(Ze |a€,oz| )

On the other hand, if |e!| < ||r||, Lemma 6.3 implies that

MXP(zo,t) < sup |[(x —x0)*| < 27"
D(zo,r/3)

From this, we infer

MYF (wo,t) < D M (wo, ) MY (w0, t)
aeNn

< 3wt (Llonal )" ex (@) 0.1) = Cofp)

aecN”

Z 27%(Cy(p)C?1e*P9°) 1/2 exp (pq(®), ,(xo,t) — Co/p))
aeN™
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thanks to (7.12). By taking i log(...) and passing to the sup over all f”, we get
7 1 n 2q_2pqe) 1/2 /
@, (70, 1t) < p—log (2" (Ch(p)C?9e?P9%) ') + @, (20, 1).

Proposition 7.11 is thus proved for the case ¢ = 0, even with ¢ instead of 2¢ in
the final estimate. In case g is non zero, we observe that the replacement of ¢’ by
¢’ 4+ Re g yields isomorphisms of Hilbert spaces

Hopp (U1) — Hp(pr+re gy (U1), fr—ePIf,
j{pq%(U{) - j{pq(w;JrReg)(U{)a fr—ePldf.

The only difference occurring in the proof is that we get

"=y g

£eN

instead of f” = 3 ,.nh0y. In the upper bound for M}ﬁ,p(xo, t), this introduces an

extra term M0, (o, ), which we evaluate as exp(pq(Re g(zq) + O(|e!]))) thanks
to Lemma 6.3. The general estimate follows, possibly with an additional ¢ error
when |e!| is small enough. O

The final step in the construction is to “glue” together the functions

oX-PPd (g, 1), (p,q) € N2. We choose a fast increasing sequence p — ¢(p), in such

a way that 02(1(01;) < 1 , where C3(p) is the constant occurring in Proposition 7.11.

We now define
M&f’p’s(x,t) = QP ()

lo 1 1
(7.13) ;= sup (q)xvp,pvq(p)(x, t —logp) + oep + n(— + _) Re t)
p>s p p  pap)

[The terms in log p are there only for a minor technical reason, to make sure that

Mé’pvs(aj, t) is a continuous function]. In this way, we achieve the expected goals,
namely:

7.14. Proposition. Let ¢ be a plurisbharmonic function defined on a bounded
Stein open set Uy € C" such that T is equipped with a plurisubharmonic smooth
Finsler metric, and let U € Uy. Then there is a functional M5 (associated with
the choice of a sequence q(p) which may have to be adjusted when ¢ varies, but can
be taken fized if © remains in a bounded set of L'(Uy)), such that the functions
OXoP5 () t) = Mg’p’s(x, t) satisfy the following properties:

(i) The functions ®X**(x,t) are defined on U x {Ret < —A} for A > 0 large,
and are locally bounded continuous plurisubharmonic functions depending only
on Ret; moreover, p — ®XP5(x,t) is a decreasing family of functions.
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1
(i) @(z) < X% (x,t) < sup o(z) +C 083 for some C' > 0.
lz—z[|<Cs~ et
. QXS (z,t)  SUP|_g|<)et| P(2)
] _ < _
0 et | ™ Ret Ret ’

uniformly on every compact subset of U, in particular

X:p,5
lim i G0 (2,1) =

Ret——o0 Ret

v(p, )

for every x € U.

(iv) For every holomorphic change of coordinates T : Uy — 7(Up), the sequence
p = (pm) can be chosen (depending only on T) such that for some constant
C > 0 we have

| M5 (7(2), 8) — MXP* (2, 1)] <

por—1

w | Q

forallz € U,

when T :(Uo) 158 equipped with the induced Finsler metric.

(v) Let U € U{ € Uy, U" € Uy € Uy be Stein open subsets, and let ¢, ¢ be
plurisubharmonic functions on Uy, Uy such that |¢'—p| <1 on U7, |¢"—p| <1
on U{" and |¢" — ¢ — Reg| < e on U NU{ for some holomorphic function
g€ OUNUY). Then

‘Mxps )—]f\z;‘,’p’s(x,t)‘ < 25—|—% for allz € U' NU" and |e'| < ro(e),

where C' = C(p,U’,U").

Proof. All properties are almost immediate consequences of the properties already
obtained for ®X-7P-9 simply by taking the supremum. We check e.g. the continuity
of ®X#5 inequality (ii) and the second statement of (iii). In fact, (7.8 i,ii) imply

lo 1 1
P PaP) (g ¢ —logp) + 8Py ( + —) Ret
p p  pq(p)

lo
< s p(z)+02P
lz—z|| <Cp—1let| p

log p 1 1
> p(x) + +n(-+ —— ) Ret,
#le) p <p pq@ﬁ)

and (7.14 ii) follows from this. Moreover, the function ®X*P:4() (2, t —logp) + - - -
converges to ¢(z) as p — +oo, while its terms get > () for p large, thanks to
the lower bound. It follows that the sup in (7.13) is locally finite, therefore ®X:#-*
is continuous. To prove (iii), we first observe that the right hand inequality in (i)
gives

PXoP3 (2, 1) . SUP|,—g|<|et| P(2)

Reilfl—r{l—oo Ret = Re%l—{n—oo Ret - V<(p, .’13)
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In the other direction, the definition of ®X:#**(x,t) combined with (7.8 ii) implies

1 1
PXP3 (1) > &PPIP) (1t — logp) + n(— + —) Ret
P palp)

WV

sup o(z) + n(% + @) Ret

lz—z|<p~tep,p,qp),0,Ul€]

for all p > s, hence

oX-P,s t su _ z 1 1
fm @) o S al<jet] P )+n(_+_).
Ret——00 Ret Ret——00 Ret p  pq(p)
We get the desired conclusion by letting p — +o00. O

§8. A variant of Kiselman’s Legendre transform

To begin with, let ¢ be a plurisubharmonic function on a bounded pseudo-
convex open set U € C". Consider the trivial vector bundle Ty = U x C”, and
assume that T} is equipped with a smooth Finsler metric y« [|£*]|* = exp(x*(z,£¥))
for £ € T .. We assume that the curvature of the Finsler metric [|£*[|% = eX” (2:£7)
on T satisfies

(5.1) 290" (2, €) + mhu(z) > 0

for some nonnegative continuous (1,1)-form v on U, where ny : Ty — U is the
projection. If x* = log h* is a hermitian metric on 7%, we let h be the dual metric
on Tx and set

(8.2)" O (z,w) =  sup  p(z+£).

nll€l=<le®|

By Theorem 6.1, this definition works equally well when h* is a fiberwise convex
Finsler metric. Clearly ®" (z,w) depends only on the real part Rew of w and is
defined on the open set 2 of points (z,w) € U x C such that Rew < logd.(z,0U),
where d, denotes euclidean distance with respect to || ||,. Now, we would like
to extend this to the case of a general Finsler metric, without any convexity
assumption. As a replacement for the “sup formula” (8.2)", we set

(8.2)x ®X* (z,w) = MY"*(2,w)

where MX*$ denotes the functional associated with X, as in §7. Here, however,
X(z,&*) need not be plurisubharmonic. This is not a real difficulty, since the

definition of the M functional in (6.6) shows that

Mé"p’s(z, w) = M;‘“’p’s(z, w —v(z))
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for any smooth function v on U such that x,(z,&*) := x(z,&*) + v(z) is plurisub-
harmonic on U (and such a function always exists by our assumption (8.1)). One
of our main concern is to investigate singularities of ¢ and these singularities are
reflected in the way ®" (z,w) and ®X:** decay to —oo as Rew goes to —oo. In
this perspective, Proposition 7.14 (iii) shows that considering ®X:**(z, w) instead
of ®" (z,w) does not make any difference. Moreover ®X:**(z, w) and ®”_(z,w) are
both convex increasing function of Rew. For (z,w) € Q and ¢ > 0, we introduce
the (generalized) Legendre transform

(8.3)" (2, w) = %Eg O (z,w+t) —ct,
(8.3)x NP3 (2, w) = t}r<ng OXP % (z,w +t) — ct.

It is easy to see that these functions are increasing in ¢ and that

(8.4)h lim ®" (2, w) = (), lim ®" = "

c—0 c—+o0

The analogue for ®X7% is

(8.4)X lim ®X7*(z,w) = lim ®X *(z,Ret) € [p(2), p(z) + Clogs/s],

c—0 Ret——o0

hm @X?pvs — @Xava.
c——+00 ¢ o0

When 4||€]| is taken to be a constant metric, we know by Kiselman [Kis78] that
®" and ®” are plurisubharmonic functions of the pair (z,w), and that the Lelong
numbers of ®" (e, w) are given by

(8.5)" V(q)?(.,w),z) = (v(p, 2) — c)+, V(z,w) € Q.

Since (8.5)" depends only on the maps z — ®" (z,w) with w fixed, the equality
is still valid when h is a variable hermitian metric, and Proposition 7.14 (iii) even
shows that the analogous property for ®X*¢ is true:

(8.5)X v(®XP 5 (o, w), z) = (v(ip,2) — c)+, V(z,w) € Q.
As usual we denote by

(8.6) Ec(p)={z€U; v(p,z) >c}

the Lelong sublevel sets of ¢. From now on, we omit the superscripts in
the notation ®" or ®X:»* since all properties are the same in both cases. In
general, ®., is continuous on  and its right derivative 0®.(z,w)/0Rew, is
upper semicontinuous; indeed, this partial derivative is the decreasing limit of
(Poo(z,w + t) — Poo(z,w))/t as ¢t | 04. It follows that ®. is continuous on
QN (Ec(p) x C): in fact, we have v(p,2) = limy_,_o 0P (2,t)/0t4 < ¢ on
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every compact set i C 2\ (E.(¢) x C), so by the upper semicontinuity there is a
constant to such that 0P (z,w+1t)/0t+ < ¢ for (z,w) € K and t < ty. Therefore

D.(z,w) = t0i<r}tf<0 S (z,w+t)—ct on K,

and this infimum with compact range is continuous. Our next goal is to investigate
the plurisubharmonicity of ®..

8.7. Proposition. Assume the curvature of the Finsler metric ||&*|* = eX (")
on E* satisfies

00" (. €") + mxu(z) > 0

for some nonnegative continuous (1,1)-form u on X, where 7x : E* — X s
the projection. Then ®. = ®X:** [and likewise ®. = ®"] enjoys the following
properties.

(i) For allm > 0, we have

D (2,
O (z,w—1n) = D(z,w) — min{aaT(juw), c}n;

(ii) For ((,n) € Ty x C and c € |0, +o0], the Hessian of ®. satisfies

0P (2, w)

i
JE— > - I
ﬂ_aa(q)c)(z,w)(c’n> = mln{ ORew4

) C} u(C).

Proof. (i) For n > 0 and ¢ < 0, the convexity of ®(z,w) in Rew implies

0P (2, w + 1)

(poo(Z,w+t_n)>q)oo(Z7w+t)_n O Rew

As 0P (z,w)/ORew_ is increasing in Rew, the infimum of both sides minus ct
gives
0P (2,w)

T ORew_

On the other hand, the change of variables t = t' + n yields

Pe(z,w —n) 2 Pe(z, w)

b.(z,w—n) = ) i<nf Do (z,w+t") —c(t' +1) = P(2,w) — cn.
/\_7]

Property (i) follows.

(ii) Fix (z0,wo) € © and a semipositive quadratic function v(z) on C" such
that 00v(0) > u.,. Then the inequality *00v(z — 29) > u(z) still holds on a
neighborhood Uy of zg, and the Finsler metric ||£*|*e?(*=%0) is plurisubharmonic
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on this neighborhood. From this, we conclude by Lemma 7.7 that the associated
function
h(z,w) := Poo (2, w + v(z — 20))

is plurisubharmonic on Uj. Its Legendre transform

he(z,w) = ing h(z,w—1t) = ®.(z,w+v(z — 20))

1<

is again plurisubharmonic. For small (¢,n) € Ty x C, the mean value inequality
yields

2 27
/0 (20 + €¢, wo + €n) % = /0 he (20 + € ¢, wo + 1 — v(()) 9
> he (20, wo — v(¢)) = Pe(20, wo — v(¢))
0P (20, wo)
ORew, C}U(C)

O
=)

> (I)C(Z(), U)()) — min{

[the last inequality follows from (i)]. For A > 0® (20, wp)/ORew,, we still have
A > 0P (z,w)/ORew in a neighborhood of (zg, wy) by the upper semicontinuity,
and we conclude that the function ®.(z, w)+min{ A, c}v(z) satisfies the mean value
inequality near (zp,wp). Hence ®.(z, w)+min{ A, c}v(z) is plurisubharmonic near
(20, wo). Since this is still true as A tends to 0P (2, w)/0Rew, and Lddv tends
to u.,, the proof of (ii) is complete. O

§9. Regularization of closed positive (1,1)-currents

The next step is to describe a gluing process for the construction of global
regularizations of almost plurisubharmonic functions. We suppose that T% is
equipped with a Finsler metric ||€*||% = X (®€") satisfying

L 90X (2, ) + mxu(z) > 0,
v

where u is a smooth semipositive (1,1)-form on X. Notice that £99x*(z,£*) is
just the Chern curvature of the induced hermitian metric on O7px(1). An almost
positive (1, 1)-current is by definition a real (1, 1)-current such that 7" > ~ for some
real (1,1)-form « with locally bounded coefficients. An almost psh function is a
function v which can be written locally as ¥ = ¢ +w where ¢ is plurisubharmonic
and w smooth. With these definitions, %85@[1 is almost positive if and only if ¥ is
almost psh.

The following thereom was proved in [Dem92] with a rather long and tricky
proof. We present here a shorter and better approach using our modified Kiselman-
Legendre transforms.

9.1. Theorem. Let T be a closed almost positive (1,1)-current and let a be a
smooth real (1,1)-form in the same 00-cohomology class as T, i.e. T = a+ =00y
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where ) is an almost psh function. Let vy be a continuous real (1,1)-form such
that T > ~y. Suppose that Orx (1) is equipped with a smooth hermitian metric such
that the Chern curvature form satisfies

@(OTx(l)) +7r§(u >0

with mx : P(T*X) — X and with some nonnegative smooth (1,1)-form u on X.
Fiz a hermitian metric w on X. Then for every ¢ > 0, there is a sequence of
closed almost positive (1,1)-currents T, ), = o+ %851pc’k such that 1., is smooth
on X N E.(T) and decreases to 1 as k tends to +oo (in particular, the current
Ter is smooth on X \ E.(T) and converges weakly to T on X), and such that

(i) Ter = v —min{Ag, clu —epw  where:

(ii) A\g(z) is a decreasing sequence of continuous functions on X such that
limy 4 o0 Ap(2) = (T, x) at every point,

(iii) ey is positive decreasing and limy_, o e = 0,

(iv)v(Tep, ) = (W(T,z) — c)+ at every point x € X.

Proof. We first show that we indeed can write T' = o + %B&D with o smooth. Let
(U7) be a finite covering of X by coordinate balls and (6;) a partition of unity
subordinate to (UJQ). If T is written locally T' = %85% with v; defined on UJQ,
then ¢y = > 60;1; has the property that o := T — %851# is smooth. This is an
easy consequence of the fact that 15, — 1; is plurisubharmonic, hence smooth, on
UJO N UY, writing T as %35@% over UQ. By replacing T with T — « and ~ with
v — a, we can assume that « = 0 (in other words, Theorem 9.1 essentially deals
only with the singular part of T).

We can therefore assume that T = %85% where 1 is an almost plurisubhar-
monic function on X such that 7" > ~ for some continuous (1, 1)-form . We select
a finite covering W = (W,,) of X by open coordinate charts. Given § > 0, we take
in each W, a maximal family of points with (coordinate) distance to the boundary
> 30 and mutual distance > §. In this way, we get for 6 > 0 small a finite covering
of X by open balls U; of radius 9§, such that the concentric ball U JQ of radius 26 is
relatively compact in the corresponding chart W,. Let 7; : U JQ — B;) := B(a;, 26)
be the isomorphism given by the coordinates of W, and

Bj € Bj € B},  B; = B(ay,9), B} = B(aj,V26), BY = B(a;,26),

U; eU} eUY, U; =7; ' (B)), Ul =71 (B}), U? =7 (BY).
Let £(6) be a modulus of continuity for y on the sets U7, such that lims_oe(J) = 0
and v, — 7 < 36(6) w, for all z, 2’ € U?. We denote by ~; the (1,1)-form with
constant coefficients on Bj such that 77, coincides with v — e(d) w at Tj_l(aj).
Then we have

(9.2) 0<y -7/ <2(f)w on Uj;
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for 6 > 0 small. We set ¢; = 9o Tj_l on B? and let 7; be the homogeneous
quadratic function in z — a; such that %85% =, on B;). Finally, we set

(9.3) ©i(2) = vi(2) —7;(2) on B?.

It is clear that ¢; is plurisubharmonic, since

7 —
;83(4@ orj) =T —717v; 2v—T1/7 = 0.

We combine (8.2)X and (8.3)X to define “regularized” functions

P5S s ATXP58 1
(9.4)  @F7°(z,w) = inf MXP*(z,w), z € By,

t<0  F9

(05) WP (z,0) = DXL (2,0) +7,(2) — () 2z —q,’,  ze B,

(9.6) VXM (z,w) = sup V7% (7)(z),w), x€EX,

U} Sx ’
for Rew < —A, with A > 0. We have to check that the gluing procedure used in
the definition of WX#** does not introduce discontinuities when x passes through
a boundary QU}. For this, we must compare W37 (7;(x), w) and W02 (14 (x), w)
on overlapping open sets U jl, U ,% The comparison involves two points:
o effect of replacing ¢; with ¢; —7;,
o effect of coordinate changes.

Let us first assume for simplicity that U jl and U} are contained in the same
coordinate patch W, (in such a way that 7; = 7, on U jl NUE, therefore in this case,
we do not have to worry about coordinate changes). Then 1; = v, on B} N B},
and therefore @i, —¢; = 7; —7% is a quadratic function whose Levi form is O(e(9)),
by the assumption on the modulus of continuity of . This quadratic function can
be written as

3;(2) = A (z) = Re gjr(2) + qjr(z — 23),
the sum of an affine pluriharmonic part Re gj; and a quadratic term g;z(z — z;)k)
which takes O(£(8)0%) values (since diam Bj N By, < d). Therefore we have

lor — p; — Regji| < Ce(8)6°.

By 7.14 (v), we conclude that

/

s s C
[ @2 (2 w) = BY (2, w) — Regju(2)| < 202(8)8° + —

for some constants C, C’, hence
/

(@27 (2, w) +Fu(2) = (@0 (,0) +55(2)) | < 3Ce(0)6% + =
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Now, in case Uj1 and U,% are not equipped with the same coordinates, 7.14 (iv)
shows that an extra error term C/s is introduced by the change of coordinates
Tjk = Tj 0Ty ! and also possibly a further O(6%) term due to the fact that Vj O Tik
differs from a quadratic function by terms of order 3 or more in the 7;-coordinates.
Combining everything together, we get

(@57 (0 (2), w) + A (Tr(2))) — (B2 (15(2), w) + 7;(7(2))) |
<C” (5(5>52 L é) < O"e(6)82

if we choose s > 1/((6)§?). We assume from now on that s is chosen in this way.
For z € BUI =T; “1(S(a;,/26)), formula (9.5) yields

W (1i(2), w) = 7 (15(2), w) + 75 (75(2)) — e(8)1/2262,

J’C

whereas there exists k such that z € Uy, = 7, ' (B(ay, 6)), hence
L (12 w) 2 L (15(2),w) + Fu(ri(2) — ()22,
We infer from this
VL3 (1(2), w) = WS (15(2), w) > €(8)/26% — C"e(6)5° > 0

for § small enough. This shows that formula (9.6) makes sense for § small.
Formulas (9.2) and (9.5) show that

07 00 (ry(2) w) > OB (75 (2),w) + 7 - Celd)

for some constant C' > 0. The sequence of approximations . j needed in the
theorem is obtained by taking sequences dx | 0, s > 1/(g(6;)d%) and Ay, 1 +oo,
and putting

~ 1

Deb(2) = WP (2, Ay) +

where WX-7+%% is constructed as above by means of an open covering U of X with
balls of radii ~ ;. By (9.7) and Proposition 8.7 ii), we find

/Z: o~ . aQ)X’P:Sk 1
— > Z0 4y _ /24,
W@@ngk > —min (BRe o (z, Ak),c>u Ce(0r)“w
As lm 22 itable choice of A
s . lim OOm(z,w) = v(p,2) = v(¢, z), a suitable choice of Ay ensures
that
~ aQ)X’P:Sk
Me(2) i= =—=—=—(2,—A) = v(¥, 2) as k — +00.

ORew_
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Furthermore, an appropriate choice of the sequences 0, sp, Ay guarantees that

the sequence 1.y is non increasing. [The only point we have to mind about is

the effect of a change of the open covering, as the radius d; of the covering balls

decreases to 0. However, Proposition 7.14 (iv, v) shows that the effect can be made
1 1

negligible with respect to ; — 77, and then everything is ok]. We can ensure as

well that \j is decreasing, by replacing if necessary Xk with

Aio(2) = sup Ae(2).
o>k

Finally, the functions @Zc, « that we got are (a priori) just known to be continuous on
XN E.(T), thanks to Proposition 7.14 (i) and the discussion before Proposition 8.7.
Again, Richberg’s approximation theorem [Ric68] shows that we can replace Jc’k
with a smooth approximation 1., on X \ E.(T), with ‘Jck — .| arbitrarily
small in uniform norm, and at the expense of losing an extra error term £iw in
the lower bound for %351%,1« Theorem 9.1 is proved. O

10. Appendix: basic results on L? estimates
§ pPp

We state here the basic L? existence theorems used in the above sections,
concerning 0 equations or holomorphic functions. The first of these is the intrinsic
manifold version of Hérmander’s L? estimates [Hor65, 66], based on the Bochner-
Kodaira-Nakano technique (see also Andreotti-Vesentini [AV65]).

10.1. Theorem. Let L be a holomorphic line bundle on a weakly pseudoconvex
n-dimensional manifold X equipped with a Kdhler metric w. Suppose that L has
a smooth hermitian metric whose curvature form satisfies

21 O(L) +i00p > Aw

where ¢ is an almost psh function and A a positive continuous function on X.
Then for every form v of type (n,q), q = 1, with values in L, such that dv = 0
and

1 2 —
—|v|e”?dV, < 400,
/4t

there exists a form u of type (n,q — 1) with values in L such that Ou = v and

1 1
/ lulfe=?dV, < —/ —|v|?e~*dV,.
X q7/x A

A weakly pseudoconvex manifold is by definition a complex manifold possessing

a smooth weakly pseudoconvex exhaustion function (examples: Stein manifolds,
compact manifolds, the total space of a Griffiths weakly negative vector bundle,
..). Suppose that ¢ has Lelong number v(p,z) = 0 at a given point x. Then
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for every m the weight =% is integrable in a small neighborhood V' of x (see
[SkoT72al). Let 6 be a cut-off function equal to 1 near x, with support in V. Let
z be coordinates and let e be a local frame of L on V. For ¢ small enough, the
curvature form

2w O(L) + 100 (¢p(2) + 2¢6(2) log |z — z|)

is still positive definite. We apply A.1 to the bundle L™ equipped with the
corresponding weight m(¢(2) + 2¢0(z)log |z — x|), and solve the equation du = v
for the (n,1)-form v = 9(0(2)P(z)dz; A ... A dz, ® e™) associated to an arbitrary
polynomial P. The L? estimate shows that the solution u has to vanish at order
> q+ 1 at x where ¢ = [me] — n, hence

O(z)P(2)dzy N\ ... Ndzp @ €™ — u(z)
is a holomorphic section of Kx ® L™ with prescribed jet of order ¢ at x.

10.2. Corollary. Suppose that 2m O(L) + i00¢ > dw for some § > 0. Let
x € X be such that v(p,x) = 0. Then there exists € > 0 such that the sections in
HY(X,Kx ® L™) generate all jets of order < me at x for m large. O

We now state the basic L? extension theorem which was needed in several
occasions. A detailed proof can be found in [OhT87|, [Ohs88] and [Man93] (see
also our lecture notes [Dem96|, Theorem 13.6). Only the case ¢ = 0 (dealing with
holomorphic sections) does play a role in this work.

10.3. Ohsawa-Takegoshi theorem. Let X be a weakly pseudoconvex n-
dimensional complex manifold equipped with a Kdihler metric w, let L (resp. E) be
a hermitian holomorphic line bundle (resp. a hermitian holomorphic vector bundle
of rank r over X), and s a global holomorphic section of E. Assume that s is
generically transverse to the zero section, and let

Y ={z€X; s(x)=0,A"ds(z) # 0}, p=dimY =n—r.

Moreover, assume that the (1,1)-form iO(L) + rid0dlog |s|? is semipositive and
that there is a continuous function a > 1 such that the following two inequalities
hold everywhere on X :

1 {iO(E)s, s}

a) iO(L)+riddlog|s|* > a ME ,

b) |s| <e .

Then for every smooth O-closed (0, q)-form f over Y with values in the line bundle
A"TX @ L (restricted to Y), such that [, |f[*|A"(ds)|~2dV,, < +oo, there exists
a 0-closed (0,q)-form F over X with values in A"T% ® L, such that F is smooth
over X \ {s = A"(ds) = 0}, satisfies Fy = f and

/17

Ik
dVx ., < C, dVy .,
/X 5|2 (= Tog[s))2 ~ © y AT (ds)2T T
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where C.. is a numerical constant depending only on r.
10.4. Corollary. Let Y be a pure dimensional closed complex submanifold of C™,

let Q) be a bounded pseudoconvex open set and let @ be a plurisubharmonic function
on . Then for any holomorphic function f on'Y N Q with

/ |f|26_‘pdVy < 400,
YNQ

there exists a holomorphic extension F to ) such that
/ |F|2e=?dV < A/ |flPe™%dVy < +oo.
Q YNQ

Here A depends only on'Y and on the diameter of €.

Finally, a crucial application of Skoda’s L? estimates [Sko72b, 78] for ideals of
holomorphic functions was made in section 5:

10.5. Theorem. Let ¢ be a plurisubharmonic function on a pseudoconvex open
set 8 C C" and let o1,...,0n be holomorphic functions on Q (the sequence o;
can be infinite). Set r = min{N — 1,n} and |0]*> = > |0j|?>. Then, for every
holomorphic function f on £ such that

/ |f12|o]| T2 )e=PqV < 400, o >0,
0

there exist holomorphic functions g1, ...,gn on ) such that f = ZKKN g;0; and

«

1
/ gPlo| 20+ @e—eqy < 4 / F 2|0 240 2 gy < oo,
@ Q

«

10.6. Corollary. With the same notations, suppose that
/ |[fPlo| 2 mEe2dV < oo
Q

for some o > 0 and some integer m > 1. Then there exist holomorphic functions
gr for all L = (€y,...,4y) € {1,...,N}™ such that

L . L
f= g grLo with o~ =oy,04,...00,,
L

/ > lgrlPle| 2 remedy < azm/ f2]o| 20t mte) =gy < 4oo.
Q I o
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Proof. Use induction on m: if the result is true for (m—1, a+1) then f = >, gro?

with A of length m — 1, and each function g, can be written gy = sz JgrLoe,.
with L = (A, 4,,) and

1
/Z|gL‘2|O_‘—2(T+a)e—<PdV< o+ /|GA‘2|U‘_2(T+1+Q)6_('DCZV<—|—OO,
2, Q

«

a+1

/Z|QA|2|U|_2(T+1+Q)6_(PdV< Oé+m/ |f|2|0|_2(r+m+a)€_@dv<+OO. 0
Q5 Q

References

[AnV65] A. Andreotti and E. Vesentini: Carleman estimates for the Laplace-Beltrami
equation in complex manifolds; Publ. Math. L.H.E.S. 25 (1965), 81-130.

[CaF90] F. Campana, H. Flenner;A characterization of ample vector bundles on a curve;
Math. Ann. 287 (1990) 571-575.

[Dem82] J.-P. Demailly: Estimations L? pour I'opérateur & d’un fibré vectoriel holomorphe
semi-positif au dessus d’une variété kahlérienne compléte; Ann. Sci. Ec. Norm. Sup.
15 (1982) 457-511.

[Dem92] J.-P. Demailly: Regularization of closed positive currents and Intersection Theory;
J. Alg. Geom. 1 (1992), 361-409.

[Dem93] J.-P. Demailly: A numerical criterion for very ample line bundles; J. Differential
Geom. 37 (1993) 323-374.

[Dem94] J.-P. Demailly: Regularization of closed positive currents of type (1,1) by the flow
of a Chern connection; Actes du Colloque en I’honneur de P. Dolbeault (Juin 1992),
édité par H. Skoda et J.M. Trépreau, Aspects of Mathematics, Vol. E 26, Vieweg
(1994), 105-126.

[Dem96] J.-P. Demailly: L2 estimates for the d-operator on complex manifolds; Lecture Notes
of the 1996 Summer School on Complex Analysis, Institut Fourier Grenoble (1996).

[DPS94] J.-P. Demailly, Th. Peternell, M. Schneider; Compact complex manifolds with
numerically effective tangent bundles; J. Algebraic Geometry 3 (1994) 295-345.

[Gra58] H. Grauert: On Levi’s problem and the embedding of real-analytic manifolds; Ann.
Math. 68 (1958) 460-472.

[Gri69] P.A. Griffiths: Hermitian differential geometry, Chern classes and positive vector
bundles; Global Analysis, papers in honor of K. Kodaira, Princeton Univ. Press,
Princeton (1969), 181-251.

[Har66] R. Hartshorne: Ample vector bundles; Publ. Math. Inst. Hautes Etud. Sci. 29 (1966)
63-94.

[Har70] R. Hartshorne: Ample subvarieties of algebraic varieties; Lecture Notes in Math.
no 156, Springer-Verlag, Berlin (1970).

[Hor65] L. Hérmander: L? estimates and existence theorems for the O operator; Acta Math.
113 (1965) 89-152.

[Hor66] L. Hérmander: An introduction to Complex Analysis in several variables; 1966, 3rd
edition, North-Holland Math. Libr., Vol. 7, Amsterdam (1973).

[Kis78] C.0O. Kiselman: The partial Legendre transformation for plurisubharmonic func-
tions; Invent. Math. 49 (1978) 137-148.

[Kis97] C.0O. Kiselman: Duality of functions defined in lineally convex sets; Univ. lagell.

Acta. Math. 35 (1997) 7-36.



40 J.-P. Demailly, Pseudoconvex-concave duality and regularization of currents

[Kob75]
[Lem85]
[Man93]
[Nad89]
[Nad90]
[OhT87]
[Ohs88]
[RRV71]
[Ric68]
[Sch73]
[Sko72a]

[Sko72b]

[SkoT78]
[Siu74]

[SomT78]
[SomT79]

[Som8&2]

[UmT73]

S. Kobayashi: Negative vector bundles and complex Finsler structures; Nagoya
math. J. 57 (1975) 153-166.

L. Lempert: Symmetries and other transformations of the complex Monge-Ampére
equation; Duke Math. J. 52 (1985) 869-885.

L. Manivel: Un théoréme de prolongement L? de sections holomorphes d’un fibré
vectoriel; Math. Zeitschrift, 212 (1993) 107-122.

A.M. Nadel: Multiplier ideal sheaves and existence of Kéahler-Einstein metrics of
positive scalar curvature; Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 7299-7300.

A.M. Nadel: Multiplier ideal sheaves and Kahler-Einstein metrics of positive scalar
curvature; Annals of Math. 132 (1990), 549-596.

T. Ohsawa and K. Takegoshi: On the extension of L? holomorphic functions; Math.
Zeitschrift 195 (1987) 197-204.

T. Ohsawa: On the extension of L? holomorphic functions, II; Publ. RIMS, Kyoto
Univ. 24 (1988), 265-275.

J.-P. Ramis, G. Ruget and J.-L. Verdier: Dualité relative en géométrie analytique
complexe; Invent. Math. 13 (1971) 261-283.

R. Richberg: Stetige streng pseudokonvexe Funktionen; Math. Ann. 175 (1968)
257-286.

M. Schneider: Uber eine Vermutung von Hartshorne; Math. Ann. 201 (1973) 221
229.

H. Skoda: Sous-ensembles analytiques d’ordre fini ou infini dans C™; Bull. Soc.
Math. France 100 (1972) 353—-408.

H. Skoda: Applications des techniques L? & la théorie des idéaux d’une algébre de
fonctions holomorphes avec poids; Ann. Scient. Ec. Norm. Sup. 4e Série 5 (1972)
545-579.

H. Skoda: Morphismes surjectifs de fibrés vectoriels semi-positifs; Ann. Sci. Ecole
Norm. Sup. 11 (1978) 577-611.

Y.T. Siu: Analyticity of sets associated to Lelong numbers and the extension of
closed positive currents; Invent. Math. 27 (1974), 53-156.

A.J. Sommese: Concavity theorems; Math. Ann. 235, (1978) 37-53.

A.J. Sommese: Complex subspaces of homogeneous complex manifolds. I: Trans-
planting theorems; Duke Math. J. 46, (1979) 527-548.

A.J. Sommese: Complex subspaces of homogeneous complex manifolds. II: Homo-
topy results; Nagoya Math. J. 86 (1982) 101-129.

H. Umemura; Moduli spaces of the stable vector bundles over abelian surfaces;
Nagoya Math. J. 77 (1980) 47-60 (1980).

Jean-Pierre Demailly

Université de Grenoble I

Département de Mathématiques

Institut Fourier, UMR 5582 du CNRS
38402 Saint-Martin d’Heres Cedex, France

e-mail: demailly@ujf-grenoble.fr

(version of September 22, 1998, printed on September 17, 2007)



