Kobayashi-Liibke inequalities for Chern classes
of Hermite-Einstein vector bundles and
Guggenheimer-Yau-Bogomolov-Miyaoka inequalities
for Chern classes of Kahler-Einstein manifolds

Let (X,w) be a compact Kéhler manifold, n = dim X, and let E be a
holomorphic vector bundle over X, » = rank . We suppose that E is equipped
with a hermitian metric, h and denote by Dg j the Chern connection on (E,h).
The Chern curvature form is

@h(E) = DJQE‘,h'
In a (local) orthonormal frame (eq)1<a<r of E, we write

On(E) = (Oap)i<ap<r
where the ©,4 are complex valued (1, 1)-forms satisfying the hermitian condition
O©.3 = O3,. We denote
@aﬁ =1 Z @agjkdzj A dzp.

1<a,f<r, 1<j,k<n

The hermitian symmetry condition can then be read @agjk = Ogak;. If at some
point zy € X the coordinates (z;) are chosen so that (dz;(xo)) is an orthonormal
basis of T% , , we define

Tr, O (E) = (Z@aﬁﬂ) € 0°(X, hom(E, E)).

J

DEFINITION. — The hermitian vector bundle (E,h) is said to be Hermite-

Einstein with respect to the Kahler metric w if there is a constant A > 0 such
that Tl‘w@h(E) = )\IdE

Recall that the Chern forms ¢y (F);, are defined by the formula
det (I +10,(E)) = det(dag +10nps) =1+ tci(E)p + ...+ ¢, (E)p.

This gives in particular the identities

Cl(E)h — Z@aou

1

co(E)p = Z Oaa NOpgg — Onp N Og = 3 Z@aa NOgg — Bus N Opgq.
a<p o,

The trace Tr,©,(F) can be computed by the formula

wn—l n

On(E) A oy = TrwOn(E) %
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By taking the trace with respect to the indices o in F and taking the Hermite-
Einstein equation into account, we find

wn—l W™

(B N —— = Ar —.
1(EDn (n—1)! n!
This implies that the number A in the definition of Hermite-Einstein metrics is a
purely numerical invariant, namely

Az%/Xcl(E)/\w”_l//Xw”.

KOBAYASHI-LUBKE INEQUALITY. — If E admits a Hermite-Einstein metric h
with respect to w, then

[(r — ey (E)2 —2r CQ(E);J Aw"2 <0
at every point of X. Moreover, the equality holds if and only if

1
@h(E) = ;Cl(E)h ® Ildg.

Observe that the equality holds pointwise already if we have the numerical
equality

/X [(r=1)c1(E)* = 2rco(E)] Aw™ 2 =0,

If we introduce the (formal) vector bundle E =FE® (det E)~Y" (E is the
“normalized” vector bundle such that det £ = O), then ¢;(E); = 0 and

~ 1

By the formula for the chern classes of E'® L, the Kobayashi-Liibke inequality can
be rewritten as B
co(E)p A w2 <0,

with equality if and only if E is unitary flat. In that case, we say that FE is
projectively flat.

Proof. By the above,

(r=1ei(E)f = 2rca(E)p = Y —Oaa AOpg + 1 Oap A Opa.
a,B
Taking the wedge product with w™~2/(n —2)! means taking the trace, i.e. the sum
of coefficients of the terms i dz; Adz; Ni dz, Adz}, for all j < k. For this, we have to
look at products of the type (i dz; AdZ;) A (i dz AdZy) or (i dz; ANdZ) A (i dzi ANdZ;).
This yields

wn—2
2[(r — De1(E); — 2rca(E)p] A w2
= Y —(©aa;jiOsprk — OaajkOpks) + 7(Oapj;Opark — OasikOpakj)-

a?/B’j7k



The initial factor 2 comes from the fact that the final sum is taken over all
unordered indices j, k (terms with j = k cancel). The Hermite-Einstein condition
yields > ; ©agj; = Adag, s0 we get

Z —04a;iO88kk + T O0pjiOsakk = Z N 600085 + TA%605050
Oé,ﬁ,j,k 0‘76
= X242\ = 0.

Hence, using the hermitian symmetry of ©,3;1, we find

wn—2
2[(r — 1)e1(E); — 2r ca(E)p] A 2
= Y ©aajkOpsik — 7 [Ousjil’
@.B,5,k
=—r Y [Oagil’+ ) (Z OuajkOppjk =7 Y \@aajk:|2)
a#ﬁ:jak ]ak 04,6 (6%
1 2
=-r Z ‘@aﬁjk‘Q 3 Z }@aajk - @ﬂﬁjk‘ <0.
a#B,j.k @.B,5,k

This proves the expected inequality. Moreover, the equality holds if and only if
we have
Oapjk =0 for a# B, Oajr =7, forall a.

where v = szk vikdz; N dzy is a (1,1)-form (take e.g., vjx = ©115%). Hence
Or(FE) = v® Idg. By taking the trace with respect to F in this last equality, we
get ¢1(E), = r~y. Therefore the equality occurs if and only if

1
@h(E) = ;Cl(E)h®IdE. O

COROLLARY 1. — Let (E, h) be a Hermite-Einstein vector bundle with ¢;(E) = 0
and c2(F) = 0. Then E is unitary flat for some hermitian metric h' = he™%.

Proof. By the assumption ¢;(E) = 0, we can write ¢;(E), = 5=00¢ for some

global function ¢ on X. The equality case of the Kobayashi-Liibke inequality
yields

1i
), ou/r(B) = O (E) — ;ia&p ®Idg = 0. O

COROLLARY 2. — Let X be a compact Kéhler manifold with ¢1(X) = ca(X) = 0.
Then X is a finite unramified quotient of a torus.

Proof. By the Aubin-Calabi-Yau theorem, X admits a Ricci-flat Kahler metric w.
Since Ricci(w) = Tr,0,(Tx), we see that (Tx,w) is a Hermite-Einstein vector
bundle, and ¢;(Tx), = Ricci(w) = 0. By the Kobayashi-Liibke inequality,
we conclude that (T'x,w) is unitary flat, given by a unitary representation
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71(X) — U(n). Let X be the universal covering of X and & the induced metric.
Then (Tj(v, w) is a trivial vector bundle equipped with a flat metric. Let (&1, ... ,&,)
be an orthonormal parallel frame of T'x. Since V§; = 0, we conclude that d§; = 0,
and it is easy to infer from this that [§;,&,] = 0. The flow of each vector field
>~ A& is defined for all times (this follows from the fact the length of a trajectory
is proportional to the time, and @ is complete). Hence we get an action of C" on
X, and it follows easily that (X, &) ~ (€™, can). Now, m1(X) acts by isometries
on this C". The classification of subgroups of affine transformations acting freely
(and with compact quotient) shows that 71 (X) must be a semi-direct product of a
finite group of isometries by a group of translations associated to a lattice A C C".
Hence there is an exact sequence
0—A—m(X)—G—0

where G is a finite group of isometries. It follows that there is a finite unramified
covering map C"/A — X /m1(X) ~ X of X by a torus. O

We now discuss the special case of the tangent bundle T’y in case (X,w) is
a compact Kéhler-Einstein manifold. The Kahler-Einstein condition means that
Ricci(w) = Aw for some real constant A, i.e., Tr, 0, (Tx) = Mdr, . In particular,
(T'x,w) is a Hermite-Einstein vector bundle. Here, however, the coefficients
(Oagjk)1<a,,j,k<n of the curvature tensor O, (7Tx ) satisfy the additional symmetry
relations
(%) Oapjk = Ojpak = Oakjp = Ojkap-
These relations follow easily from the identity Oz, = —D2wag/ 0207, in normal
coordinates, when we apply the Kéhler condition Ow,p/0z; = Ow;z/0z. It
follows that the Chern forms satisfy a slightly stronger inequality than the general
inequality valid for Hermite-Einstein bundles. In fact (Tx,w) satisfies a similar
inequality where the rank r = n is replaced by n + 1.

GUGGENHEIMER-YAU INEQUALITY. — Let (Tx,w) be a compact n-dimensional
Kiéhler-Einstein manifold, with constant A € R. If A = 0, then ca(Tx ), Aw™ 2 > 0.
If A # 0, we have the inequality

[ncl(X)2 - (2n+ 2)02(X)] -(Aer(X))"2 <0,
and the equality also holds pointwise if we replace the Chern classes by the Chern
forms c(Tx).. The equality occurs in the following cases:

(i) If A =0, then (X,w) is a finite unramified quotient of a torus.
(ii) If A > 0, then (X,w) ~ (IP", Fubini Study).
(iii) If A < 0, then (X,w) ~ (IB, /T, Poincaré metric), i.e. X is a compact

unramified quotient of the ball in C".

COROLLARY (Bogomolov-Miyaoka-Yau). — Let X be a surface of general type
with K x ample. Then there is an inequality c1(X)? < 3¢3(X), and the equality
occurs if and only if X is a quotient of the ball 1B,.
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Miyaoka has shown that the inequality holds in fact as soon as X is a surface
with general type.

Proof. As in the proof of the Kobayashi-Liibke inequality, we find

nel(Tx)2 = (2n+2)c2(Tx)w = ¥ ~Oaa AOps + (n+1)Oap A Opga.
7/8

Taking the wedge product with w™=2/(n — 2)!, we get

n—2
9 w
2[nei(Tx); — (2n +2) e2(Tx )] A (n —2)!
= Y —(Oanj;Opsrk — OaajkOpsrs) + (n +1)(Oap;iOpark — OapjkOpaks)-

a,B,5,k

If we had the factor » = n instead of (n 4 1) in the right hand side, the terms in
jj and kk would cancel (as they did before). Hence we find

wn—2
2[nc1(Tx)? — (2n+2) c2(Tx )w] A w2
= > OaajrOsski + OapiiOpark — (N + 1)OapjkOpan;
a?/th?k
= Z 204ajkOpsk; — (N +1)OapjtOpak;-
a?/B’j7k

Here, the symmetry relation (x) was used in order to obtain the equality of the
summation of the first two terms. Using also the hermitian symmetry relation,
our sum X can be rewritten as

S== Y [Oaajk — Opgirl* = (n 4+ 1)|Oapjkl* +2n Y [Oaajil’

O‘aﬁv.jak a,j,k
== D |Oaajr = Oppjel* — (n+1) > Okl
a,B,5,k «a,3,7,k, pairwise #
8 > 1Onajtl? 4> 1Oanas +4 Y 1Oaasl’ + Z Onacdl }
aFj<k#o aFtj a<j
+2n [2 > 10aainl? 23 1Oaaai> +2 [Oaajs* + Z Ocaal’]
aFj<k#o aFtj a<j
== Y Oaajt = Opprl> = (n+1) > ©asik|?
a#B,j,k a,B,j,k, pairwise #
—(4n+8) > [Oaaikl’ =4 [Oaaasl® =4 Oaa|”
aFj<k#o aFtj a<j

+(n—1)) |Oaaaal*

All terms are negative except the last one. We try to absorb this term in the
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summations involving the coefficients ©,4;;. This gives

== Y |Oaajk —Opgirl> = (n+1) > Oasjkl?
a#B,j#k a,f,j,k, pairwise #
—(n+8) D |Oaajkl’ =4 Oaaa;l’
aFj<k#a a#j
- Z ©aaj; — @ﬁﬂjj‘Q - 42 ‘Gaajj‘Q +(n—1) Z ‘Qaaaa|2~
a#ﬁv] OL<] «

The last line is equal to

~ Y 1@aaji = ©pgis* 2 ) 1Oaass — Oppssl’

aB#ja a8
—4 Z |@ozozﬁﬁ|2 +(n—1) Z |®aaaa|2
a<pf a
=— Y |Oaajj — Opgjsl
aB#ja
—(n=1))_|Oaaaal’ =8 [Oaassl’ +2 > OaassOssss + OnapsOpsss
o a<f aFtp
== Y 1Oaaii — s3> = D 1Oanaa — 20 aassl’:
aAB#ja a#B
Therefore we find
S== Y |Oaajk —Oppkl’ = (n+1) > Oagpjl”
a#B.j#k o, B,k pairwise #
—(4n—|—8) Z |®ao¢jk‘2_42|6aa0j ?
aFj<k#a a#j
— > 1Oaaii — O85> = Y 1Oanaa — 20aass|®.
a#B#ja a#B

This proves the expected inequality ¥ < 0. Moreover, we have ¥ = 0 if and only
if there is a scalar p such that

®O¢aﬁﬁ = @aﬁﬁa = @aﬁaﬁ = for o 7£ Ba @Ozozozoz == 2#7

and all other coefficients ©,3;; are zero. By taking the trace Zj Onajj, We get
A = (n+1)u. We thus obtain that the hermitian form associated to the curvature
tensor is

A _ _
(0.(Tx)(E®n),E @ N = > " ans€aTp + EanplaTla
5

n—f—la

() = (P I + & mP?)

for all £,7 € Tx. When A\ = 0, the curvature tensor vanishes identically and we
have already seen that X is a finite unramified quotient of a torus. Assume from
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now on that A # 0. The formula (x*) shows that the curvature tensor is constant
and coincides with the curvature tensor of IP" (case A > 0), or of the ball IB,, (case
A < 0), relatively to the canonical metrics on these spaces. By a well-known result
from the theory of hermitian symmetric spaces*, it follows that (X,w) is locally
isometric to IP" (resp. IB,). Since the universal covering X is a complete and
locally symmetric hermitian manifold, we conclude that X ~ IP", resp. X ~ B".
In the case A > 0, X is a Fano manifold, thus X is simply connected and X = X.
The proof is complete. O

To compute the curvature of IP" and IB", we use the fact that the canonical
metric is

_ L ¥a) 2 n — _L ¥aY o 2 n
w= 27T8810g(1+\z\ ) on IP",  resp. w 27T8(910g(1 |z]*) on IB",

with respect to the non homogeneous coordinates on IP". We thus get

i (dz@dE (dz, z)|?
W= — —

2r\1+[z[2 (14 |2]?)
By computing the derivatives O,g;x = —0%*wap/02;0Z) at z = 0, we easily see

that the curvature is given by (xx) with A = +(n + 1). The equality also holds at
any other point by the homogeneity of IP" and IB".

i (dz@dE |(dz, 2)|? )

) rep w= 1— 22 T (1= 222

T oor

Observe that the riemannian exponential map exp : T'x o — X at the origin
of C" C IP" or IB™ is unitary invariant. It follows that the holomorphic part A
of the Taylor expansion of exp at 0 is unitary invariant. This invariance forces
h to coincide with the identity map in the standard coordinates of IP" and IB".
From this observation, it is not difficult to justify intuitively the local isometry
statement used above. In fact let X be a hermitian manifold whose curvature
tensor is given by (x%), A # 0. Then w is proportional to ¢;(Tx), and so w is a
Kéhler-Einstein metric. Since the Kahler-Einstein equation is (nonlinear) elliptic
with real analytic coefficients in terms of any real analytic Kahler form, it follows
that w is real analytic, and so is the exponential map. Fix a point x¢p € X and let
h:C" ~Tx 4, — X be the holomorphic part of the Taylor expansion of exp at
the origin. Then A must provide the holomorphic coordinates we are looking for,
i.e. h*w must coincide with the metric of IP" (resp. IB™) in a neighborhood of the
origin.

* See for example, F. Tricerri et L. Vanhecke, Variétés riemanniennes dont
le tenseur de courbure est celui d’un espace symétrique riemannien irréductible,
C. R. Acad. Sc. Paris, 302 (1986), 233-235.
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