
Kobayashi-Lübke inequalities for Chern classes
of Hermite-Einstein vector bundles and

Guggenheimer-Yau-Bogomolov-Miyaoka inequalities
for Chern classes of Kähler-Einstein manifolds

Let (X,ω) be a compact Kähler manifold, n = dimX , and let E be a
holomorphic vector bundle over X , r = rankE. We suppose that E is equipped
with a hermitian metric, h and denote by DE,h the Chern connection on (E, h).
The Chern curvature form is

Θh(E) = D2
E,h.

In a (local) orthonormal frame (eα)1≤α≤r of E, we write

Θh(E) = (Θαβ)1≤α,β≤r

where the Θαβ are complex valued (1, 1)-forms satisfying the hermitian condition
Θαβ = Θβα. We denote

Θαβ = i
∑

1≤α,β≤r, 1≤j,k≤n

Θαβjkdzj ∧ dzk.

The hermitian symmetry condition can then be read Θαβjk = Θβαkj . If at some
point x0 ∈ X the coordinates (zj) are chosen so that (dzj(x0)) is an orthonormal
basis of T ⋆

X,x0
, we define

TrωΘh(E) =
(∑

j

Θαβjj

)
∈ C∞(X, hom(E,E)).

Definition. — The hermitian vector bundle (E, h) is said to be Hermite-

Einstein with respect to the Kähler metric ω if there is a constant λ > 0 such

that TrωΘh(E) = λIdE .

Recall that the Chern forms ck(E)h are defined by the formula

det
(
I + tΘh(E)

)
= det(δαβ + tΘαβ) = 1 + t c1(E)h + . . .+ trcr(E)h.

This gives in particular the identities

c1(E)h =
∑

α

Θαα,

c2(E)h =
∑

α<β

Θαα ∧ Θββ − Θαβ ∧ Θβα =
1

2

∑

α,β

Θαα ∧ Θββ − Θαβ ∧ Θβα.

The trace TrωΘh(E) can be computed by the formula

Θh(E) ∧
ωn−1

(n− 1)!
= TrωΘh(E)

ωn

n!
.

1



By taking the trace with respect to the indices α in E and taking the Hermite-
Einstein equation into account, we find

c1(E)h ∧
ωn−1

(n− 1)!
= λr

ωn

n!
.

This implies that the number λ in the definition of Hermite-Einstein metrics is a
purely numerical invariant, namely

λ =
n

r

∫

X

c1(E) ∧ ωn−1
/ ∫

X

ωn.

Kobayashi-Lübke inequality. — If E admits a Hermite-Einstein metric h
with respect to ω, then

[
(r − 1)c1(E)2h − 2r c2(E)h

]
∧ ωn−2 ≤ 0

at every point of X . Moreover, the equality holds if and only if

Θh(E) =
1

r
c1(E)h ⊗ IdE .

Observe that the equality holds pointwise already if we have the numerical
equality ∫

X

[
(r − 1)c1(E)2 − 2r c2(E)

]
∧ ωn−2 = 0.

If we introduce the (formal) vector bundle Ẽ = E ⊗ (detE)−1/r (Ẽ is the

“normalized” vector bundle such that det Ẽ = O), then c1(Ẽ)h = 0 and

Θh(Ẽ) =
(
Θh(E) −

1

r
c1(E)h ⊗ IdE

)
⊗ Id(det E)−1/r .

By the formula for the chern classes of E⊗L, the Kobayashi-Lübke inequality can
be rewritten as

c2(Ẽ)h ∧ ωn−2 ≤ 0,

with equality if and only if Ẽ is unitary flat. In that case, we say that E is
projectively flat.

Proof. By the above,

(r − 1)c1(E)2h − 2r c2(E)h =
∑

α,β

−Θαα ∧ Θββ + rΘαβ ∧ Θβα.

Taking the wedge product with ωn−2/(n−2)! means taking the trace, i.e. the sum
of coefficients of the terms i dzj ∧dzj∧i dzk∧dzk for all j < k. For this, we have to
look at products of the type (i dzj∧dzj)∧(i dzk∧dzk) or (i dzj∧dzk)∧(i dzk∧dzj).
This yields

2
[
(r − 1)c1(E)2h − 2r c2(E)h

]
∧

ωn−2

(n− 2)!

=
∑

α,β,j,k

−(ΘααjjΘββkk − ΘααjkΘββkj) + r(ΘαβjjΘβαkk − ΘαβjkΘβαkj).
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The initial factor 2 comes from the fact that the final sum is taken over all
unordered indices j, k (terms with j = k cancel). The Hermite-Einstein condition
yields

∑
j Θαβjj = λ δαβ, so we get

∑

α,β,j,k

−ΘααjjΘββkk + rΘαβjjΘβαkk =
∑

α,β

−λ2δααδββ + rλ2δαβδβα

= −r2λ2 + r2λ2 = 0.

Hence, using the hermitian symmetry of Θαβjk, we find

2
[
(r − 1)c1(E)2h − 2r c2(E)h

]
∧

ωn−2

(n− 2)!

=
∑

α,β,j,k

ΘααjkΘββjk − r |Θαβjk|
2

= −r
∑

α 6=β,j,k

|Θαβjk|
2 +

∑

j,k

(∑

α,β

ΘααjkΘββjk − r
∑

α

|Θααjk|
2
)

= −r
∑

α 6=β,j,k

|Θαβjk|
2 −

1

2

∑

α,β,j,k

∣∣Θααjk − Θββjk

∣∣2 ≤ 0.

This proves the expected inequality. Moreover, the equality holds if and only if
we have

Θαβjk = 0 for α 6= β, Θααjk = γjk for all α.

where γ = i
∑

j,k γjkdzj ∧ dzk is a (1, 1)-form (take e.g., γjk = Θ11jk). Hence
Θh(E) = γ ⊗ IdE . By taking the trace with respect to E in this last equality, we
get c1(E)h = r γ. Therefore the equality occurs if and only if

Θh(E) =
1

r
c1(E)h ⊗ IdE .

Corollary 1. — Let (E, h) be a Hermite-Einstein vector bundle with c1(E) = 0
and c2(E) = 0. Then E is unitary flat for some hermitian metric h′ = h e−ϕ.

Proof. By the assumption c1(E) = 0, we can write c1(E)h = i
2π∂∂ψ for some

global function ψ on X . The equality case of the Kobayashi-Lübke inequality
yields

Θh eψ/r(E) = Θh(E) −
1

r

i

2π
∂∂ψ ⊗ IdE = 0.

Corollary 2. — LetX be a compact Kähler manifold with c1(X) = c2(X) = 0.

Then X is a finite unramified quotient of a torus.

Proof. By the Aubin-Calabi-Yau theorem, X admits a Ricci-flat Kähler metric ω.
Since Ricci(ω) = TrωΘω(TX), we see that (TX , ω) is a Hermite-Einstein vector
bundle, and c1(TX)ω = Ricci(ω) = 0. By the Kobayashi-Lübke inequality,
we conclude that (TX , ω) is unitary flat, given by a unitary representation
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π1(X) → U(n). Let X̃ be the universal covering of X and ω̃ the induced metric.
Then (T

X̃
, ω̃) is a trivial vector bundle equipped with a flat metric. Let (ξ1, . . . ,ξn)

be an orthonormal parallel frame of TX . Since ∇ξj = 0, we conclude that dξ⋆
j = 0,

and it is easy to infer from this that [ξj, ξk] = 0. The flow of each vector field∑
λjξj is defined for all times (this follows from the fact the length of a trajectory

is proportional to the time, and ω̃ is complete). Hence we get an action of Cn on

X̃, and it follows easily that (X̃, ω̃) ≃ (Cn, can). Now, π1(X) acts by isometries
on this Cn. The classification of subgroups of affine transformations acting freely
(and with compact quotient) shows that π1(X) must be a semi-direct product of a
finite group of isometries by a group of translations associated to a lattice Λ ⊂ Cn.
Hence there is an exact sequence

0 −→ Λ −→ π1(X) −→ G −→ 0

where G is a finite group of isometries. It follows that there is a finite unramified
covering map Cn/Λ → X̃/π1(X) ≃ X of X by a torus.

We now discuss the special case of the tangent bundle TX in case (X,ω) is
a compact Kähler-Einstein manifold. The Kähler-Einstein condition means that
Ricci(ω) = λω for some real constant λ, i.e., TrωΘω(TX) = λIdTX . In particular,
(TX , ω) is a Hermite-Einstein vector bundle. Here, however, the coefficients
(Θαβjk)1≤α,β,j,k≤n of the curvature tensor Θω(TX) satisfy the additional symmetry
relations

(⋆) Θαβjk = Θjβαk = Θαkjβ = Θjkαβ .

These relations follow easily from the identity Θαβjk = −∂2ωαβ/∂zj∂zk in normal
coordinates, when we apply the Kähler condition ∂ωαβ/∂zj = ∂ωjβ/∂zα. It
follows that the Chern forms satisfy a slightly stronger inequality than the general
inequality valid for Hermite-Einstein bundles. In fact (TX , ω) satisfies a similar
inequality where the rank r = n is replaced by n+ 1.

Guggenheimer-Yau inequality. — Let (TX , ω) be a compact n-dimensional

Kähler-Einstein manifold, with constant λ ∈ IR. If λ = 0, then c2(TX)ω∧ω
n−2 ≥ 0.

If λ 6= 0, we have the inequality[
nc1(X)2 − (2n+ 2)c2(X)

]
· (λc1(X))n−2 ≤ 0,

and the equality also holds pointwise if we replace the Chern classes by the Chern

forms ck(TX)ω. The equality occurs in the following cases:

(i) If λ = 0, then (X,ω) is a finite unramified quotient of a torus.

(ii) If λ > 0, then (X,ω) ≃ (IPn,Fubini Study).

(iii) If λ < 0, then (X,ω) ≃ (IBn/Γ,Poincaré metric), i.e. X is a compact

unramified quotient of the ball in Cn.

Corollary (Bogomolov-Miyaoka-Yau). — Let X be a surface of general type

with KX ample. Then there is an inequality c1(X)2 ≤ 3 c2(X), and the equality

occurs if and only if X is a quotient of the ball IB2.
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Miyaoka has shown that the inequality holds in fact as soon asX is a surface
with general type.

Proof. As in the proof of the Kobayashi-Lübke inequality, we find

n c1(TX)2ω − (2n+ 2)c2(TX)ω =
∑

α,β

−Θαα ∧ Θββ + (n+ 1)Θαβ ∧ Θβα.

Taking the wedge product with ωn−2/(n− 2)!, we get

2
[
n c1(TX)2ω − (2n+ 2) c2(TX)ω

]
∧

ωn−2

(n− 2)!

=
∑

α,β,j,k

−(ΘααjjΘββkk − ΘααjkΘββkj) + (n+ 1)(ΘαβjjΘβαkk − ΘαβjkΘβαkj).

If we had the factor r = n instead of (n+ 1) in the right hand side, the terms in
jj and kk would cancel (as they did before). Hence we find

2
[
n c1(TX)2ω − (2n+ 2) c2(TX)ω

]
∧

ωn−2

(n− 2)!

=
∑

α,β,j,k

ΘααjkΘββkj + ΘαβjjΘβαkk − (n+ 1)ΘαβjkΘβαkj

=
∑

α,β,j,k

2 ΘααjkΘββkj − (n+ 1)ΘαβjkΘβαkj .

Here, the symmetry relation (⋆) was used in order to obtain the equality of the
summation of the first two terms. Using also the hermitian symmetry relation,
our sum Σ can be rewritten as

Σ = −
∑

α,β,j,k

|Θααjk − Θββjk|
2 − (n+ 1)|Θαβjk|

2 + 2n
∑

α,j,k

|Θααjk|
2

= −
∑

α,β,j,k

|Θααjk − Θββjk|
2 − (n+ 1)

∑

α,β,j,k,pairwise 6=

|Θαβjk|
2

− (n+ 1)
[
8

∑

α 6=j<k 6=α

|Θααjk|
2 + 4

∑

α 6=j

|Θαααj|
2 + 4

∑

α<j

|Θααjj|
2 +

∑

α

|Θαααα|
2
]

+ 2n
[
2

∑

α 6=j<k 6=α

|Θααjk|
2 + 2

∑

α 6=j

|Θαααj|
2 + 2

∑

α<j

|Θααjj|
2 +

∑

α

|Θαααα|
2
]

= −
∑

α 6=β,j,k

|Θααjk − Θββjk|
2 − (n+ 1)

∑

α,β,j,k,pairwise 6=

|Θαβjk|
2

− (4n+ 8)
∑

α 6=j<k 6=α

|Θααjk|
2 − 4

∑

α 6=j

|Θαααj|
2 − 4

∑

α<j

|Θααjj |
2

+ (n− 1)
∑

α

|Θαααα|
2.

All terms are negative except the last one. We try to absorb this term in the
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summations involving the coefficients Θααjj . This gives

Σ = −
∑

α 6=β,j 6=k

|Θααjk − Θββjk|
2 − (n+ 1)

∑

α,β,j,k,pairwise 6=

|Θαβjk|
2

− (4n+ 8)
∑

α 6=j<k 6=α

|Θααjk|
2 − 4

∑

α 6=j

|Θαααj |
2

−
∑

α 6=β,j

|Θααjj − Θββjj |
2 − 4

∑

α<j

|Θααjj |
2 + (n− 1)

∑

α

|Θαααα|
2.

The last line is equal to

−
∑

α 6=β 6=j 6=α

|Θααjj − Θββjj |
2 − 2

∑

α 6=β

|Θααββ − Θββββ |
2

− 4
∑

α<β

|Θααββ|
2 + (n− 1)

∑

α

|Θαααα|
2

= −
∑

α 6=β 6=j 6=α

|Θααjj − Θββjj |
2

− (n− 1)
∑

α

|Θαααα|
2 − 8

∑

α<β

|Θααββ|
2 + 2

∑

α 6=β

ΘααββΘββββ + ΘααββΘββββ

= −
∑

α 6=β 6=j 6=α

|Θααjj − Θββjj |
2 −

∑

α 6=β

|Θαααα − 2Θααββ |
2.

Therefore we find

Σ = −
∑

α 6=β,j 6=k

|Θααjk − Θββjk|
2 − (n+ 1)

∑

α,β,j,k,pairwise 6=

|Θαβjk|
2

− (4n+ 8)
∑

α 6=j<k 6=α

|Θααjk|
2 − 4

∑

α 6=j

|Θαααj |
2

−
∑

α 6=β 6=j 6=α

|Θααjj − Θββjj |
2 −

∑

α 6=β

|Θαααα − 2Θααββ|
2.

This proves the expected inequality Σ ≤ 0. Moreover, we have Σ = 0 if and only
if there is a scalar µ such that

Θααββ = Θαββα = Θαβαβ = µ for α 6= β, Θαααα = 2µ,

and all other coefficients Θαβjk are zero. By taking the trace
∑

j Θααjj , we get
λ = (n+1)µ. We thus obtain that the hermitian form associated to the curvature
tensor is

〈Θω(TX)(ξ ⊗ η), ξ ⊗ η〉ω =
λ

n+ 1

∑

α,β

ξαηβξαηβ + ξαηβξβηα

=
λ

n+ 1

(
|ξ|2|η|2 + |〈ξ, η〉|2

)
(⋆⋆)

for all ξ, η ∈ TX . When λ = 0, the curvature tensor vanishes identically and we
have already seen that X is a finite unramified quotient of a torus. Assume from
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now on that λ 6= 0. The formula (⋆⋆) shows that the curvature tensor is constant
and coincides with the curvature tensor of IPn (case λ > 0), or of the ball IBn (case
λ < 0), relatively to the canonical metrics on these spaces. By a well-known result
from the theory of hermitian symmetric spaces⋆, it follows that (X,ω) is locally

isometric to IPn (resp. IBn). Since the universal covering X̃ is a complete and

locally symmetric hermitian manifold, we conclude that X̃ ≃ IPn, resp. X̃ ≃ IBn.
In the case λ > 0, X is a Fano manifold, thus X is simply connected and X = X̃ .
The proof is complete.

To compute the curvature of IPn and IBn, we use the fact that the canonical
metric is

ω =
i

2π
∂∂ log(1 + |z|2) on IPn, resp. ω = −

i

2π
∂∂ log(1 − |z|2) on IBn,

with respect to the non homogeneous coordinates on IPn. We thus get

ω =
i

2π

(dz ⊗ dz

1 + |z|2
−

|〈dz, z〉|2

(1 + |z|2)2

)
, resp. ω =

i

2π

(dz ⊗ dz

1 − |z|2
+

|〈dz, z〉|2

(1 − |z|2)2

)
.

By computing the derivatives Θαβjk = −∂2ωαβ/∂zj∂zk at z = 0, we easily see
that the curvature is given by (⋆⋆) with λ = ±(n+ 1). The equality also holds at
any other point by the homogeneity of IPn and IBn.

Observe that the riemannian exponential map exp : TX,0 → X at the origin
of Cn ⊂ IPn or IBn is unitary invariant. It follows that the holomorphic part h
of the Taylor expansion of exp at 0 is unitary invariant. This invariance forces
h to coincide with the identity map in the standard coordinates of IPn and IBn.
From this observation, it is not difficult to justify intuitively the local isometry
statement used above. In fact let X be a hermitian manifold whose curvature
tensor is given by (⋆⋆), λ 6= 0. Then ω is proportional to c1(TX)ω and so ω is a
Kähler-Einstein metric. Since the Kähler-Einstein equation is (nonlinear) elliptic
with real analytic coefficients in terms of any real analytic Kähler form, it follows
that ω is real analytic, and so is the exponential map. Fix a point x0 ∈ X and let
h : Cn ≃ TX,x0

→ X be the holomorphic part of the Taylor expansion of exp at
the origin. Then h must provide the holomorphic coordinates we are looking for,
i.e. h⋆ω must coincide with the metric of IPn (resp. IBn) in a neighborhood of the
origin.

⋆ See for example, F. Tricerri et L. Vanhecke, Variétés riemanniennes dont

le tenseur de courbure est celui d’un espace symétrique riemannien irréductible,
C. R. Acad. Sc. Paris, 302 (1986), 233-235.
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