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Analytic techniques of Complex Geometry

First I would like to express my deep gratitude to the Academy for the attribution
of the Dannie Heineman prize rewarding my mathematical work. This is certainly
the greatest honour I have ever had in my mathematical career. In this address to
the Academy, I will try to outline the historical development of ideas which gradually
led to the modern concepts of analytic and algebraic geometry, in particular those
connected with my personal work.

Of course, the prehistory of algebraic geometry traces back to the work of the
ancient Greeks, through the study of conic curves by Apollonius and the solution
of geometric questions such as duplication of cubes and division of angles in equal
parts. However, analytic geometry could not be developed on its own stand before
the invention of cartesian coordinates by Fermat and Descartes in the first part of the
17th century. In the previous century, imaginary numbers had been introduced by
Tartaglia and Cardano as a way to circumvent the nonexistence of real solutions to
algebraic equations of degree 2 or more. These numbers remained mythical quantities
for more than two hundred years. The clear picture everyone has in mind today that
imaginary numbers are in one-to-one correspondence with points of a plane was sur-
prisingly discovered only at the end of the 18th century by Gauss, Argand and Wessel.
Roughly at the same period took place an important development of projective geom-
etry which culminated with the work of Poncelet. Originally, projective geometry was
designed to describe properties of figures depending only on incidence properties of
their constituents, namely points, lines, curves, etc. For that purpose, the introduc-
tion of points at infinity appeared as a very efficient way of avoiding exceptional cases
in the general statements of intersection theory, for example in Bezout’s theorem that
two plane algebraic curves of degrees p and q meet in p×q points exactly. Since conic
curves are of degree 2, Bezout’s theorem tells us for instance that two conic curves
should always intersect in four points.
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The figure shows that the intersection of a circle with an
ellipse always has four points, provided points are counted
with multiplicities and imaginary points are taken into ac-
count (they are hidden from our eyes in some third or fourth
dimension). In the case of two circles, the imaginary points
of intersection are located at infinity in the directions cor-
responding to slopes ±
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So, in some sense, it became more or less clear to geometers around 1850 that a
nice theory could only be made on what we now call in modern language “compact
complex manifolds”, that is, generalized surfaces of arbitrary dimension, on which
coordinates are allowed to take imaginary values, including points at infinity.

A manifold is a composite object obtained by attaching
open coordinate patches together. The manifold is said to
be compact if it has no boundary points at finite or infinite
distance, as a sphere or a torus for instance, in contrast
with a disk or a ball which do have boundary points.
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As a culmination of Euler’s achievements, analytic function theory was developed
during the 19th century by several prominent analysts among which Legendre, Abel,
Cauchy, Gauss, Jacobi. Finally Riemann realized the very rich interplay between
analytic function theory and geometry. Especially, he was the first mathematician
to have a clear picture of the general concept of manifolds of arbitrary dimension,
although the correct definition could only be introduced much later by Hermann
Weyl. Riemann was also the first to make use of the basic properties of harmonic
functions in a geometric context. It was not before 1900 that Hilbert could finally
establish on solid grounds Riemann’s intuitive application of the Dirichlet principle.
As the audience has probably noticed, a large part of the mathematicians involved in
these crucial achievements lived or worked in Göttingen.

Another strong impetus in the interconnection between geometry and analysis
was inspired by Physics. This impetus came in particular through Maxwell’s theory
of electromagnetism and the introduction of the concept of space-time continuum by
Einstein at the turn of the 20th century, following previous works by Lorentz and
Minkowski. According to Einstein’s general relativity theory, the gravitational force
can be described in terms of the curvature of the space-time continuum via the so
called Einstein equations

Ri
i αβ = λgαβ,

where g denotes the Minkowski metric and R its curvature tensor. The other forces
can be also described in terms of vector or scalar fields satisfying suitable partial diffe-
rential equations. In quantum field theory, the behaviour of any particle is character-
ized by its wave function, which is obtained by computing solutions of the Schrödinger
equation. From a geometric point of view, a magnetic field can be also seen as the
curvature of a geometric object called a vector bundle, representing all possible vari-
ations of the state of the particle in function of its position p in the space-time
continuum.
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In quantum field theory, there is a corresponding energy functional for the particle
submitted to the electromagnetic field. In 1985, I developed a new theory which
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is now rewarded by the Dannie Heineman prize, according to which it is possible
to obtain asymptotic estimates of the energy eigenstates of the particle when the
electromagnetic field becomes very large. All this has striking consequences when
the universe is taken to be a compact complex manifold, that is, includes imaginary
points and points at infinity. In fact complex analytic functions on a manifold are
solutions of the Cauchy-Riemann ∂ operator and the obstructions to the solvability
of the corresponding equation are computed by what mathematicians call analytic
cohomology groups. These groups were introduced around 1950 and studied by many
prominent mathematicians, among whom I should mention Kodaira, Cartan, Serre,
Grothendieck, Prof. Friedrich Hirzebruch from the Max Planck Institut in Bonn and
Prof. Hans Grauert from Göttingen; some other important contributions to analytic
geometry were also made by Prof. C.L. Siegel in Göttingen. In the 1985 work already
mentioned, I obtained a rather general formula relating the curvature tensor to the
analytic cohomology groups, that is, to the ground state energy levels of the particle.

More recently, during a visit to Bayreuth university in 1989, I realized that a
modified version of Einstein’s gravitational equations could be used to solve a long
standing problem of algebraic geometry concerning 3 or higher dimensional varieties
of general type. The idea is to use Einstein’s equations for a large pointwise mass
distribution: physicists would probably imagine a black hole in that context (in their
terminology, a black hole is a big star collapsed onto itself). Similar ideas have
led physicists to introduce new models of our universe called Calabi-Yau manifolds,
which are supposed to achieve the long-awaited unified theory of forces. Shing-Tung
Yau is a famous Chinese-American mathematician who received the Fields medal in
mathematics in 1978 for his solution of Calabi’s conjectures on Einstein equations.

I hope that these rough indications will contribute to give an idea of the very rich
interplay existing today between analysis, geometry and physical theories. I would
like to conclude by saying that the role of past and present mathematicians working
in Göttingen has been extremely influential in all these domains.
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